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Abstract

Advanced fiber reinforced composites combine high specific strength and stiffness.

Advanced composites are currently being introduced into modem U.S. Navy ships to achieve

weight savings, maintenance reduction, and signature reduction. These advancements manifest

themselves in Naval ships as increases in survivability, payload, range, speed, and weapon

systems performance.

In this thesis, vinyl ester resin matrix laminates and sandwich composites are

emphasized since they are increasingly being used in naval applications. Impact damage of

laminated and sandwich composites under low-velocity and high-velocity impact are

investigated. Delamination damage is explored in detail since delamination is one of the major

failure modes of many advanced composites structures. Delamination initiation loads for various

laminates having different stacking sequences are compared. In many laminates containing

various stacking sequences, placing the 900 laminae on the outside (as opposed to the inside) will

reduce the delamination initiation load under impact. Moreover, an open literature survey of

numerous laminated and sandwich composites having different stacking sequences and



thicknesses and subjected to low-velocity impact is undertaken. The failure mode, failure load,

and displacement at failure of these composites are summarized.

Other topics investigated include (1) effects of a composite's constituents on damage

susceptibility, (2) post-impact residual characterization and strength, and (3) nondestructive

testing techniques. Prediction methods for residual strength are tabulated based on the impact

damage type for laminated and sandwich composites. Further, NASA and Boeing compression-

after-impact tests are summarized for laminated composites after low-energy impacts. Damage

and residual strength are analyzed for epoxy and PEEK resin laminates. An initial sorting for the

selection of nondestructive testing methods for specific composite discontinuities is summarized.

Extensive presentations of tables and figures are used to summarize the results of the

literature surveys on impact resistance and energy absorbing capabilities of composites.

Particular attention is given to methods for impact resistance improvement. Impact resistance

improvement methods are compared according to increases in interlaminar Mode I and Mode II

fracture toughness and in residual strength. These comparisons support data for the selection of

impact resistance improvement.

Numerous laminates having different lamina orientations are compared to understand the

influence of stacking sequence on impact damage resistance and energy absorption capability.

Matrix properties are investigated for many laminates and it is noted that higher interlaminar

fracture toughness of matrix materials will increase energy absorption capability. The effects of

other constituents of a laminate on impact resistance and energy absorbing capability are also

summarized. Among the types of composites investigated in this thesis, carbon fiber/PEEK

laminates exhibited the highest specific energy absorption.

Recommendations for further studies are offered based on these summaries.
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1. Introduction

1.1. Overview

In recent years, composite materials have been increasingly replacing conventional

metallic materials in the aerospace, civil, marine, and automotive industries, since they offer

excellent specific strength and stiffness properties. Composites' intrinsic high strength-to-weight

and stiffness-to-weight ratios, corrosion and chemical resistance, improved impact and fatigue

resistance, and potential for lower fabrication and life-cycle costs are making them more

attractive.

Currently, carbon fiber reinforced plastics (CFRP) are widely used in both military and

civil aircraft, due to their superior specific stiffness and strength compared to conventional

metallic materials. Glass fiber composites have been used in the marine industry for decades

because of their corrosion resistance, low cost, ease of fabrication, and low maintenance.

Specifically, E-glass vinyl ester composites are also used in marine structures because of their

low cost and resistance to a seawater environment.

1.2. Definition of Problem

One concern in the use of composite materials is their response to localized impact

loading such as that caused by dropped tools. Low-energy impacts can cause extensive internal

damage, taking the form of fiber fracture, delamination, and matrix cracking. At high impact

energies, perforation may occur and the impactor may cause cracking and spalling. Such

damage will degrade the load-bearing ability of the structure, and their effects can be

approximated using mechanics principles.



Some applications of composite materials involve dynamically loaded components and

structures. Hence, there is a need to understand the dynamic behavior of composite materials for

the analysis and design of composite structures subjected to anticipated impact loadings. The

mechanical properties of composite materials under dynamic loading conditions are not well

understood.

Impact damage can significantly reduce residual strength of composite laminates. The

prediction of the post-impact load-bearing capability of damaged composite structures is more

difficult than for metals since the damage zone is generally complex in nature and consequently

difficult to characterize. The problem is further complicated by a lack of existing standards or

established testing techniques for impact of composite materials. Much of the work published in

the literature has been conducted on purpose-built machines using convenient specimen

geometries. As a result, direct comparisons between different material systems and tests are

difficult.

Energy absorption capability is an important property of composites subjected to impact

loading, in part, since there is a correlation between energy absorption and failure modes. It is

therefore useful to understand the effect of a composite constituent parameter on the energy

absorption capability of a composite structure. To understand the penetration resistance of

composites subjected to ballistic impact, there is a need to investigate penetration and

perforation threshold energies. Further, the ballistic limit velocity and the material

parameters affecting it should be studied to better understand ballistic impact behavior.



1.3. Overview of Thesis

The majority of this thesis is undertaken on continuous fiber reinforced vinyl ester resin

matrix composites since these materials are finding use in naval applications. In this thesis, low-

velocity impact is defined and damage modes, including their interactions due to low-velocity

impact loading, are described from the onset of damage to final failure.

Damage characterization and nondestructive inspection methods are reviewed. Among

these methods, visual, ultrasonic, and laser shearography are considered in detail since they

are currently the primary testing techniques for damage evaluation in the United States Navy.

Moreover, damage assessment and post-impact residual strength prediction are discussed. The

effects of the composite's constituents such as matrix, fiber, interphase, and fiber stacking

sequence on residual strength are also explored.

Numerous techniques, ranging from the use of tough resins to the optimization of fiber

stacking sequence, have been proposed to improve impact damage resistance. Energy absorption

characteristics of composites under low-velocity impact and ballistic impact, as well as the

impactor speed, are analyzed. Finally, effects of the composite's constituents such as matrix,

fiber type and geometry, and fiber volume fraction on energy absorption capability are discussed.



2. Characterization of Impact Properties of Composite Materials

Impact may be defined as the relatively sudden application of an impulsive load,

generally to a limited volume of material or part of a structure. Often, impacts are classified into

either low or high velocity (and sometimes hyper velocity), but the transition between categories

are vague and authors vary on their definition.

Low velocity is defined up to 10 m-s- ', by considering the test techniques which are

generally employed in simulating impact events [Charpy, Izod, instrumented falling weight

impact testing (IFWIT), etc.] [1]. Low-velocity impact was defined depending on the material

properties, target stiffness, and the impactor's mass and stiffness. Low-velocity impact was

designated as quasi-static events, the upper limit of which can vary from one to tens of m-s-'

[2,3]. However, in another study it was asserted that low-velocity impacts occur for impact

speeds of less than 100 m-s-1 [2]. It was further suggested that the type of impact can be

classified according to the damage incurred, especially if damage is the main concern. Thus,

low-velocity impact is characterized by delamination and matrix cracking and high-velocity

impact is characterized by penetration-induced fiber breakage [4,5].

High-velocity impact response is dominated by stress wave propagation through the

material, and since the structure does not have time to respond, it leads to localized damage.

Often, boundary condition effects can be ignored because the impact event is over before the

stress waves reach the edge of the structure.

In low-velocity impact, as the contact duration is long enough for the entire structure to

respond to the impact, more energy is absorbed elastically and the dynamic structural response

of the target is of highest importance. It is indicated that the low- and high-velocity impact

responses of a composite structure may vary considerably and under low-velocity impact loading



where the elastic energy absorbing capability of the structure is important, the structural

geometry determines the target's impact response. Conversely, under conditions of high-velocity

impact loading where the projectile generates a localized form of target response, geometrical

parameters such as the width and length of the target appear to have very little effect on the

impact response [1]. A simple model is offered to determine the transition to high velocity by

defining a low-velocity impact as being one in which the through-thickness stress wave plays no

significant part in the stress distribution [6,7]. A cylindrical zone under the impactor is

considered to undergo a uniform strain as the stress wave propagates through the plate, and for

epoxy composites this gives the transition to stress-wave-dominated events at 10-20 m-s-1 for

failure strains between 0.5 and 1% [6].

2.1. Modes of Failure and Failure Load in Low-velocity Impact

Although many failure modes can be cited after low-velocity impact, the heterogeneous

and anisotropic nature of fiber-reinforced plastic (FRP) laminates gives rise to four major modes

of failure.

1) matrix mode: Cracking occurs parallel to the fibers due to tension, compression or shear;

2) delamination mode: Produced by interlaminar stresses;

3) fiber mode: In tension fiber breakage and in compression fiber buckling;

4) penetration: The impacted surface is completely perforated by the impactor. It is important

to identify the mode of failure because this will yield information not only about the impact

event, but also about the structure's residual strength. Interaction between failure modes is also

very important in understanding damage mode initiation and propagation [4].



2.1.1. Matrix Damage

Matrix damage generally takes the form of matrix cracking and debonding between

fiber and matrix. It is the first type of failure induced by transverse low-velocity impact [8]. The

majority of the impact test research has involved low-energy testing, in the range of 1 to 5 J (i.e.

that which causes only minimal damage). Matrix cracks are usually oriented in planes parallel to

the fiber direction in unidirectional layers and occur due to property mismatching between the

fiber and matrix. A typical crack and delamination pattern is shown in Figure 1.

Matrix cracks in the upper layers (Figure la) and the middle layer (Figure Ib) begin

under the edges of the impactor. These shear cracks [9] are formed by the very high transverse

shear stress through the material, and are inclined at approximately 45'. The transverse shear

stresses are related to the contact area and contact force. In Figure la the crack on the bottom

layer is called a bending crack since it is induced by high tensile bending stresses and is

characteristically vertical. The bending stress is related to the flexural deformation of the

laminate [10]. Lee and Sun [11 ] reached the same conclusions in their analyses.

The type of matrix cracking is dependent on the global structure of the impacted

specimens [12]. Due to excessive transverse deflection, bending cracks in the lower layers occur

and subsequent membrane effects predominate for long thin specimens, whereas short thick

specimens are stiffer and so higher peak contact forces induce transverse shear cracks under the

impactor in the upper plies. A detailed view of matrix cracking which agreed with the above

was presented by Liu and Malvern [4], while Wu and Springer [13] reported detailed locations of

matrix cracking for graphite epoxy plates of various stacking sequences. Many studies have

been conducted in this area, and it was postulated that the bending crack in the 900 layer is

caused by a combination of out-of-plane normal stress (033) , in-plane tensile stress (oll), and



interlaminar longitudinal shear stress (013) (Figure 2) for line-loading impact damage

[9,14,15,16,17,18]. These studies concluded that 033 was very small relative to o 1 and 013

throughout the impact event, and there is a critical energy below which no damage occurs.

2 natriM x cracks

Delamination
(a) T nsvr se view (b) L angitudinal view

Figure 1: Initial damage in an impacted 0/90/0 composite plate [8].

7.... r> 3 Direction of impact

Figure 2: Diagram of stress components contributing to bending matrix crack in transverse layer [15].



2.1.2. Delamination

The impact induced delamination is the most important damage mode because the level

of impact energy to initiate delamination is low and the post-impact compressive strength is

dramatically reduced to delamination [19]. A delamination is a crack which runs in the resin-

rich area (approximately 0.0007 mm in graphite/epoxy laminates [20]) between plies of different

fiber orientation and not between lamina in the same ply group [13,21,22].

Detailed connections between delaminations and the areas over which matrix cracks were

found for various lay-ups were compiled [4]. It was explained that delamination was a result of

the bending stiffness mismatch between adjacent layers, i.e. the different fiber orientations

between the layers and delamination areas were generally oblong-shaped with their major axis

being coincident with the fiber orientation of the layer below the interface [23]. For 0/90

laminates the shape became that of a distinct peanut. These results have been widely reported in

the literature [8,13,15,24,25,26,27].

Further, the bending-induced stresses, which are the major cause of delamination, as both

experiment and analysis revealed that along the fiber direction the plate tends to bend concave,

while the bend is convex in the transverse direction [23]. A bending mismatch coefficient

between two adjacent laminates was defined, which includes bending stiffness terms and

predicts the peanut shape reported for 0/90 laminates. The greater the mismatch (0/90 is the

worst-case fiber orientation), the greater the delamination area. This is also affected by ,

stacking sequence, material properties and laminate thickness [28]. This damage mode is more

likely to occur for short spans and thick laminates with low interlaminar shear strength

[29,30,31].



2.1.2-1. Prediction of Delamination

If the impact-induced delamination crack growth is a quasi-static event, the maximum

delamination size should correspond to the magnitude of the maximum impact load. Hence, for

a given impact condition, if the peak contact force is known, one can obtain the delamination

crack length by using the linear relationship between the peak contact force and delamination

crack length. Moreover, if the peak force is unknown, it can be estimated by using the linear

relationship between the peak force and impact velocity acquired from experimental data [10].

2.1.2-2. Delamination Initiation and Interaction with Matrix Cracking

Above a threshold energy, delamination caused by transverse impact occurs and a

transverse matrix crack usually extends across the entire lamina with the crack tips touching the

interfaces [32]. It has also been observed that delamination only occurs in the presence of a

matrix crack [18]. Many detailed studies have been conducted to verify this fact and to explain

the stress states that could cause this interaction.

Among these studies, one that revealed for the first time the association between matrix

cracking and delamination was performed by Takeda [33]. This research explicitly revealed that

delaminations do not always run precisely along the interface region, but can run slightly to

either side. In another study [8], delamination-matrix crack interaction was examined for 0/90/0

laminates subjected to transverse point impact. It was concluded that when the inclined shear

crack in the upper layer (Figure la) reaches the interface, it is halted by the change in

orientation of the fibers and so it propagates between the layers as a delamination. Generally,

this delamination is restricted by the middle transverse crack (Figure Ib). The vertical bending



crack (Figure ib) is thought to initiate the lower interface delamination, the growth of which is

not constrained. Matrix cracks which lead to delamination are known as critical matrix cracks

[15]. For a 0/90/0 composite, many line-loading, low-velocity impact tests were performed and

a typical damage pattern emerged as shown in Figure 3 [9,15,18,34]. Three-dimensional finite

element analysis was used to simulate these matrix cracks in studying the stress in the vicinity of

the cracks [15]. It was concluded that delamination was initiated as a mode I fracture process

due to very high out-of-plane normal stresses caused by the presence of the matrix cracks and

high interlaminar shear stresses along the interface. In another study on this topic [35], it was

proposed that matrix crack initiated-delamination was due to the interlaminar normal and shear

stresses at the interfaces.
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Figure 3: Typical matrix crack and delamination pattern from line-load impact on a 0/90/0 composite [15].

Utilizing a fracture mechanics approach, an analytical model to study the interaction of

damage mechanisms due to line-load impact was developed [34]. It was shown that both

bending cracks and shear cracks could initiate delamination, but that delamination induced by

shear cracks is unstable and that bending crack induced delaminations grow in a stable manner,

proportional to the applied load.
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The stresses producing impact-induced delamination were described in detail [28,36].

All the modes which could be induced by impact-bending, twisting, and transverse shear were

considered, as were the restraints on the affected ply due to layers above and below. It was

concluded that if the cracked ply group is above the interface, then (if the upper interface of the

ply group is unrestrained) interlaminar transverse shear stresses (012 and 023) contribute to

delamination; if the cracked ply group is below the interface, transverse in-plane stress and

interlaminar transverse shear stress (022 and 012) contribute to delamination as long as the ply

group lower interface is unrestrained. 012, 023, 022, can be drawn from Figure 2.

Because an initial flaw or crack size is assumed, most fracture mechanics analyses of

the initiation and growth of delamination are difficult to apply [37]; however, it was notably

shown that in a highly simplified isotropic axisymmetric analysis for the threshold force for

growth of an internal circular delamination in the mid-plane, the mode II strain energy release

rate is independent of delamination radius [7].

2.1.2-3 Delamination Growth

Delamination growth was attributed to interlaminar longitudinal shear stress (013) and

transverse in-plane stress (022) in the layer below the delaminated interface and to the

interlaminar transverse shear stress (012) in the layer above the interface [26]. 013, 022, (12 can be

drawn from Figure 2. Artificial delaminations were introduced by putting a thin foil between

plies in the manufacturing stage to assess delamination growth from a known initial size [38].

The energy absorbed per unit area of delamination growth was calculated as (595 J'm-2) [39].

It was concluded that the interlaminar fracture toughness was independent of delamination size

and that delamination area could be predicted from the peak impact force generated [10]. It was



also revealed that there was a linear relationship between the peak force and the delamination

area and, by extrapolating from the results, a value of threshold force for the onset of

delamination was found [25]. In a numerical simulation of impact-induced delamination

growth, it was concluded that mode II was the dominant failure mode for propagation [40].

2.1.3. Fiber Failure

Fiber failure generally occurs much later in the fracture process than matrix cracking

and delamination, and there is less information on this area since many researchers have

concentrated on the low-energy modes of damage. Fiber failure occurs under the impactor due

to locally high stresses and indentation effects governed by shear forces and on the non-impacted

face due to high bending stresses. Fiber failure is a precursor to the catastrophic penetration

mode [30],

2.1.4. Penetration

Penetration occurs when the fiber failure reaches a critical extent, enabling the impactor

to completely penetrate the material and it is a macroscopic mode of failure [41]. Many studies

into penetration impact have mainly concentrated on the ballistic range; however, some low-

velocity impact work has been performed. It was shown that the impact energy penetration

threshold rises rapidly with specimen thickness for carbon fiber reinforced plastic (CFRP) [12].

Penetration was also analyzed to calculate the energy absorbed by shear-out (i.e. removal of

shear plug), delamination, and elastic flexure. This simplified analysis predicted shear-out as the

major form of energy absorption (50-60% depending on plate thickness).



A variety of glass fiber-reinforced plastic (GFRP) composites at penetration loads was

tested and it was concluded that the glass fiber treatment played a key role in determining the

perforation load. While the matrix had little effect, polyester was more penetration-resistant than

epoxy [42].

2.1.5. Failure Load

Failure load is the load level at which the failure modes such as delamination, matrix

cracking, penetration etc... initiate. For instance, the results from two experimental

investigations for three types of graphite/epoxy laminate specimens and five types of glass/epoxy

laminate specimens are shown in Table 1.

Table 1: Delamination initiation load

Laminate Stacking sequence Delamination initiation Reference
load(N)

Graphite/epoxy [902/02/902] 5338 [32]
Graphite/epoxy [906/02/906] 2112 [32]
Graphite/epoxy [0/9012/0] 5115 [32]

Glass/epoxy [04/154/04] 5300 [43]
Glass/epoxy [03/156/03] 5711 [43]
Glass/epoxy [03/158/03] 5914 [43]
Glass/epoxy [02/152/0/15] 6368 [43]
Glass/epoxy [(0/15)3]s 6696 [43]

From the Table 1, the delamination initiation load is lower for thicker 90' laminates.

Also, placing 900 laminae on the outer faces of the laminate facilitate delamination by the

reduction of delamination initiation loads [32,43,44]. Further, transverse matrix cracks in cross-

plied laminates significantly reduce laminate strength. Also, it was noted that thicker 900 -plies

with larger transverse matrix cracks cause higher stress concentration in the load-carrying 0"-

plies and consequently result in further reductions in laminate strength [45].



For a sandwich structure there is a difference between top and bottom facesheet

deflections due to indentation of the top facesheet associated with core crushing. The top

facesheet deflection increases at a nearly linear rate versus impact force, a portion of which is

recovered upon unloading. The portion of the top facesheet deflection that is not recovered is

due largely to core crushing. Typical facesheet deflections and damage initiation are shown in

Figuie 4 versus load versus displacement. From this graph, the total indentation can be

estimated by subtracting the bottom facesheet deflection from the upper facesheet deflection.
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Figure 4: Load vs. displacement curves for upper and lower facesheets of sandwich panel [46].

The experimental results obtained from various investigations [32,44,45,46] on the failure loads

of laminates and sandwich structures are shown in Table 2. In these studies two types of

sandwich materials with similar types of polyvinyl chloride (PVC) foam and with unidirectional

glass fiber fabric cross-ply laminate skins were investigated under low-velocity impact loading.

In addition, thirteen different graphite epoxy and glass epoxy laminates with different resins and

stacking sequences were investigated under low-velocity impact.



Table 2: Failure loads of laminates and sandwich structures

Material Stacking sequence Average Failure Failure Displacement Ref.
composition thickness mode load(kN) at

(mm) failure(mm)

AS4/3501-6 [02] 0.254 Fiber failure 16.013 * 45
AS4/3501-6 [04] 0.505 Fiber failure 28.91 * 45
AS4/3501-6 [06] 0.762 Fiber failure 43.014 * 45
AS4/3501-6 [902/02/902] 0.762 Fiber failure 13.7 * 32
AS4/3501-6 [904/0 2/90 4] 1.27 Fiber failure 11.12 * 32
AS4/3501-6 [906/0 2/90 6] 1.778 Fiber failure 10.49 * 32
AS4/3501-6 [0/904/0] 0.762 Fiber failure 13.84 * 32
AS4/3501-6 [0/908/0] 1.27 Fiber failure 12.54 * 32
AS4/3501-6 [0/9012/0] 1.778 Fiber failure 12.45 * 32
SD1 C70 55 [(02/902)s]s 15 Delamination 1.051 11.6 46

Between skins
SD2 C70 75 [(02/902)s]s 15 Delamination 1.4 11.51 46

Between skins
SD3 C70 75 [(02/902)S]s 25 Delamination 1.929 12.22 46

Between skins
AS4/3502 [145/0/9013s 3.21 Fiber Breakage 11.77 0.64 44
AS4/3502 [±45]24 6.52 Fiber Breakage 21.92 0.91 44
AS4/3502 [+45/Od6/45/06]s 4.22 Fiber Breakage 17.33 0.55 44

AS4/3502 [90]48 6.22 Fiber Breakage 6.05 0.42 44
AS4/PEEK [(-45)2/04/ 90/±4 5/02/90]s 3.86 Fiber Breakage 16.95 0.95 44
AS4/PEEK [±45/906/-45/906]s 4.27 Fiber Breakage 14.12 1.13 44
AS4/PEEK [±45/906/±45/906/0]s 4.61 Fiber Breakage 17.37 1.24 44

* Not evaluated



3. Characterization of Impact Damage

Many different sources can cause damage in composites, such as static and fatigue

loading, environmental factors such as moisture absorption and corrosion, low energy impact

during manufacture and in service. The low energy impact can be potentially dangerous as it can

produce extensive subsurface delaminations that are not visible on the laminate surface. It has

been proved that the presence of internal damage causes substantial losses in strength and

stiffness of the composite components [47]. The damage induced by low-energy impact is often

a complex mixture of three principal failure modes, namely, delaminations, matrix cracking, and

fiber failure as mentioned in the impact properties section.

The delamination patterns at each interface are different in size, shape, and orientation.

Matrix cracks also propagate in different manners in each layer. To fully understand the damage

state, not only should the surface damage be evaluated, but also the location and spatial geometry

of all delaminations and transverse matrix cracks within the composite must be accurately

determined. Residual properties of a composite after impact are a complex function of the depth

of the damage, so that, an accurate description of the impact damage state is a prerequisite to

reliable assessment of residual mechanical properties [48].

To get an accurate damage assessment in composite materials, many experimental

techniques that can be classified into destructive and nondestructive means were developed. The

destructive techniques such as de-ply method and cross sectional fractography are designed to

visualize the characteristic internal damage state. The nondestructive methods involve detection,

measurements of the size and location of damage state based on visual inspection and optical

microscopy, tap testing, bond testers, laser holography, shearography, ultrasonic testing, X-

radiography, infrared termography, and eddy current testing.



The following study addresses nondestructive techniques which are mostly used in

marine and aerospace industry and rating of these inspection techniques is shown in Table 3.

3.1. Current Inspection Methods

3.1.1. Visual Inspection and Optical Microscopy

Visual inspection is the original method of NDT with the naked eye or with optical aids

such as microscopes, magnifying glasses, boroscopes, etc.. and it is still the first steps carried out

in the inspection of components and is usually followed by more sophisticated NDT methods

[49]. The visual inspection is particularly useful for moving components made from laminated

composites and sandwich structures, such as water impellers, helicopter rotor blades, turbine

compressor buckets [50]. Visual examination techniques are limited to the detection of surface-

breaking defects and gross damages. Their main advantage is that result can be readily

interpreted by an inspector. With visual equipment being continuously updated and coupled with

image processing equipment, visual inspection still has an important place in NDT and should

not be ignored [51,52].

An optical microphotograph of a glass woven fabric vinyl ester matrix composite taken

with the aid of transmitted light is shown in Figure 5. In addition to the extensive delamination

observed in the central impact area, minute interface debonding occurred along the warp and

weft directions of woven fabric in the surrounding regions near the back surface of impact,

which contributed considerably to the total damage area of the laminate. It was found that the

total damage area varied significantly depending on the fiber-matrix interface bond strength

which was affected by silane coupling agent applied onto the glass fiber surface [53,54].



Figure 5: A magnified view of impact damage in a glass woven fabric vinyl ester matrix composite [53,54].

3.1.2. Tap Testing

This Technique has been commonly used for in service inspection because it does not

require sophisticated, expensive equipment. This test involves tapping of thin composite

laminate parts using a coin or a special tap hammer. The tap test relies on the different acoustic

resonance of the loose upper layer compared to surrounding material, and thus is only sensitive

to laminar-type flaws, including delaminations and debonds of fairly large area. Therefore, the

disadvantages of this method are subjective interpretation, reduced sensitivity with flaw depth

and complex flaw geometry, and an inability to calibrate effectively for either flaw size or depth.

This means that the applications of thicker laminates and more highly loaded designs make this

approach inadequate in many cases. Thus, it is considered not sufficient by itself for impact

damage evaluation [50,55,56,57].



3.1.3. Ultrasonic Testing

Ultrasonic measurements are certainly the most commonly used inspection method to

detect damage in composite structures. Ultrasonic testing methods use ultrasonic waves in the

frequency range from 1 to 20 MHz. for material examination and internal flaw detection and

sizing [51,52]. Ultrasonic systems benefited from visualization enhancing techniques which

display results in a color coded C-scan format. Ultrasonic testing of composites with

conventional equipment requires the use of a uniform layer of gel or water couplant between the

probe and the material inspected.

Although this technique has many advantages, the inspection of honeycomb composites

is difficult with ultrasound because the propagation of ultrasound is limited by the

inconsistencies in the impedance between the air and solid walls of the cell, thus, causing high

attenuation occurring in the material. Hence, non-conventional ultrasonic systems have been

developed to try to overcome these limitations. Among these new systems we can find laser

generated ultrasound [58,59,60] or fully automated equipment [61]. Even these expensive

systems present some limitations in terms of portability and on-site inspection, the lowest

reported impact energy detected in composites appears to be 12 J [61]. By the other studies the

energies reported as 14 J and 15 J [62,63].

3.1.4. Radiography

X-Radiography is one of the most useful forms of NDE because it can be used

effectively on very complicated structures, thus, it can provide detailed inspection especially

where other methods are inapplicable [50,51,55,56,57]. X-Radiography is particularly useful

for the detection of defects in bonded honeycomb core sandwich structures. The low density and



thin composite skins usually provide minimal interference so that X-rays can image the core

material.

Because X-rays are weakly absorbed by graphite composites, low energy radiation has

to be used. Using low kilo-voltage radiography for inspection of composites, the sensitivity and

resolution of different film types were evaluated and the problems encountered were described

[64]. Honeycomb core defects can be detected but radiographs are usually of poor resolution and

image processing facilities are required to enhance the signal-to-noise ratio. Dye penetrants are

often used and injected into the components inspected. The dye is detected by X-rays and is

used to reveal the extent of delamination in honeycomb structures. However, it was shown that

impact detection with X-rays, even with a dye penetrant, remains a difficult task [65]. In another

research, very low detection rates were reported while using X-rays to inspect impacted

composites [66].

3.1.5. Infrared Thermography

The physical basis of infrared thermography is well established as a standard non-

destructive inspection technique. Important use of this technique is made in the aerospace

industry of infrared thermographic systems to inspect composite materials [50,51,55,56,57].

Such systems present the advantage of portability and can be coupled to a computer for online

automated signal interpretation. Infrared thermography is a non-contact method which measures

and display variations in infrared radiation in real time allowing rapid scanning of large

structures. Nevertheless, infrared thermography still remains an expensive technique when

compared to the others. Moreover, it sometimes requires extensive image processing before a

flaw can be accurately located due to poor signal to noise ratio. By the several experiments it



has revealed that the minimum energy of impact subject to change between 3.4 J and 13 J. A

schematic diagram of a typical infrared thermographic inspection system is shown in Figure 6

[67,68].
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Figure 6: Schematic diagram of a typical thermographic inspection system [67,68].

3.1.6. Eddy Current Testing

Ultrasonic inspection was considered as the most reliable method until recently

[58,59,60,61], however recent developments have shown that eddy current method can be used

effectively and reliably as an inspection method for quantifying and detecting damages

especially in carbon-reinforced composite materials. Using electromagnetic testing, cracks,

disbonds, delaminations and variations in fiber orientation in graphite materials can be revealed.

Some works on this field described the use of eddy currents to assess the structural integrity of

conducting fibers in a non-conducting matrix [68,69]. Eddy current testing presents the

advantage of being a reliable, low cost technique compared to othe techniques such as

radiography, laser induced ultrasounds, infrared termography or shearography. In addition, there

are no safety hazards associated to eddy current inspection.



Table 3: Rating of major inspection techniques [70,71].

Factor or --

Consideration 9 1

Damage Type
Sensitivity:
Delaminations Good Good Fair Fair Poor Fair Fair **
Fiber Breakage Fair Very Good Poor Poor Poor * Good

Poor
Matrix Cracks Fair Very Good Poor Poor Poor * Poor

Poor
Surface Defects Very Poor Poor None Poor Very Poor Poor * Poor
Skin-skin Disbond Poor * Fair Good * Good Fair *
Skin-core Disbond * * Poor Good Poor Good Poor *
Crushed Core * * Good Fair * Fair * *
Corroded Core * * Fair * Poor * * *
Damage Size Fair Good Good Fair Very Poor Poor * Fair
Sensitivity
Damage Location
Sensitivity :
Distance from Fair Good Good Poor Very Poor Very Poor * Poor
Surface

" Data not available
** According to [70] very poor, according to [71] fair

3.2. Nondestructive Testing of Marine Composites

Marine composites, as in the aerospace field require 100% inspection. Every method

that is applied for aerospace composites is not applicable for marine composites. For instance,

tap testing is not a good method for the evaluation of composite materials especially when the

composite is thick [72]. The problems facing NDE inspection of composite marine structures are

that large areas require to be inspected with 100% coverage, in a relatively short time frame, with

a high degree of sensitivity. Traditional approaches to the non-destructive testing of marine

composites have revolved around ultrasonics, however the low frequencies required to penetrate

FRP have long wavelengths, which exclude the detailed sensitivity required [73].



3.3. Damage Assessment and Damage Tolerance

3.3.1. Damage Tolerance and Post Impact Residual Strength

Damage tolerance of composites can be defined as the ability of a structure to resist the

formation of damage caused by certain forms of external load and the ability to sustain further

service load. Dramatic loss in residual strength and structural integrity results due to the

susceptibility of composite materials to impact damage. Even barely visible impact damage

(BVID) can cause strength reductions of up to 50%, depending on the dominant damage mode

residual strengths in tension, compression, bending and fatigue are reduced to varying degrees.

3.3.1-1. Residual Tensile Strength

Residual tensile strength normally follows a curve as shown in Figure 7 [74]. In region

I, no damage occurs as the impact energy is below the threshold value for damage initiation. In

region II, once the threshold has been reached, the residual tensile strength reduces quickly to a

minimum as the extent of damage increases. In region III residual strength has a constant value

because the impact velocity has reached a point where clean perforation occurs, leaving a neat

hole. In this region the tensile residual strength can be estimated by considering the damage to

be equivalent to a hole, the size of the impactor. The minimum in region II is less than the

constant value in region III because the damage spreads over a larger area than is produced at a

higher velocity when the damage is more localized (resulting in a cleaner hole) [29]. As the

fibers carry the majority of tensile load in the longitudinal direction, fiber damage is the critical

damage mode.



Figure 7: Residual tensile strength versus impact energy [74].

3.3.1-2. Residual Compressive Strength

Poor post-impact compressive strength (PICS) is the greatest weakness of composite

laminates in terms of residual properties. This is mainly due to local instability resulting from

delamination causing large reductions in compressive strength [29,75]. As delamination can be

produced by low-energy impacts, large strength reductions in compression can occur for barely

visible impact damage (BVID). Delamination divides the laminate into sub-laminates which

have a lower bending stiffness than the original laminate and are less resistant to buckling loads

[76]. Under a compressive load, a delamination can cause buckling in one of three modes [74]:

global instability (buckling of the laminate), local instability (buckling of the thinner sub-

laminate), or a combination of the above. The mode of failure generally changes from global, to

local, to mixed mode as the delamination length increases.

PICS testing is often avoided due to the difficulty in providing a large enough gauge

section to accommodate the damage. This necessitates the use of complex anti-buckling guides

which must support the specimen to prevent global buckling, but at the same time must not

prevent local instability [77].



3.3.1-3. Residual flexural strength

Less work has been done in this area, but it has been reported that both flexural modulus

and strength decreased with increasing low-velocity impact energy for ductile specimens

(glass/epoxy) while brittle graphite/epoxy exhibited no losses until complete failure occurred

[74]. Flexural testing introduces a complex stress pattern in the specimen; therefore the effect of

the damage on residual strength is less easy to analyze.

3.3.1-4. Residual fatigue life

It was reported that compression-compression and tension-compression are the critical

fatigue loading cases, which would correspond to compression being the worst-case static

loading condition [78]. The maximum residual compressive load divided by the static failure

load (S) typically decreases from 1.0 to 0.6 in the range 1 to 106 cycles, depending on the initial

damage size. The rate of degeneration is at its highest up to 100 cycles, and after 106 cycles no

further degradation occurs; so S = 0.6 may be assumed to be the fatigue threshold. Therefore it

is believed that fatigue loading is not a good way of characterizing residual properties.

3.3.2. Evaluation of Damage Tolerance

A precise definition of composite impact damage tolerance with the support of a

standard test method is not available. Post-impact compressive strength has been adopted in the

industry as a method to evaluate composite impact damage tolerance.



3.3.2-1. Compression After Impact

The compression after impact (CAI) is an empirical evaluation of the degradation of the

compressive strength of the laminate due to out-of-plane impact. The CAI problem is considered

to be one of the most important issues in the design of composite structures. It has been studied

by many researchers, and several methods were used to determine the CAI [79,80,81,82,83,84].

CAI strength prediction methods are shown in Table 4.

Table 4: Prediction of CAI strength.

Composite Approach Model Damage Zone Reference
Type

Laminate Sublaminate Stability Maximum Strain Circular, Elliptical [79],[80]
Method Criterion Sublaminate

Laminate Finite Element Method Stress Redistribution and Circular Soft Inclusion [81]
Failure Criterion

Laminate Complex Potential Point Stress Criterion Elliptical Soft Inclusion [82]
Method

Sandwich Empirical Methods Impact Region Stress Elliptic Inclusion [83]
Structure Concentration
Sandwich Semi-Empirical Impact Region Stress Elliptic Inclusion [84]
Structure Methods Concentration

Among the above mentioned approaches, the most popular models are the sublaminate

stability based methods although the details of the numerical modeling of impact damage in

these studies may not fully agree with each other.

The accumulation of test data on many material systems from various researches has

enabled some general conclusions as shown in Table 5.



Table 5: General conclusions.
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Figure 8: Post-impact tensile and compressive strength reductions of composite laminates [86].
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Figure 9: Dependence of compressive strength on resin systems [87].

Impact Type Consideration Conclusion Related Reference
Figure

Low Energy Compression and Larger strength degradation in 8 [85],[86]
tension compression than tension

Low Energy Different resins Different resins showed significantly 9 [87],[88],
similar fibers different characteristics in terms of [89]

impact energy
Low Energy Resin toughness Compressive strength correlates -- [88],[89]

positively with maximum strain to failure
of resin and interlaminar fracture energy
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3.3.2-2. Compression After Impact Tests for Laminates

Damage tolerance in laminates is usually studied by determining the effect of different

impact energies on their residual strength and the compression after impact (CAI) test being the

experimental test of components damaged by low energy impact. The damage tolerance of

various lay-ups of thin carbon/epoxy laminates (1.6-2.2 mm thick) is examined by compression

after impact (CAI) tests, using a testing device which adapts to the thicknesses of the specimens

and does not require tabs nor any modification of the specimen geometry [90]. CAI tests must

be carried out in a device that avoids global buckling of the impacted specimens, so that failure

comes as the delamination progresses with the local buckling of the sublaminates produced by

impact. Considering these requirements and trying to avoid the problems of other investigations,

several devices were designed. One of the design is shown in Figure 10 (a) which is mostly

used by aeronautical groups such as Composite Research Advisory Group in Great Britain

(CRAG), NASA and Boeing [91][92],[93]. It is adapted to the geometry of the impacted

specimens used in the studies. After the CAI test of the specimens, compression-shear failure in

the free area between the supported and the clamped zones, near the top loading plate is

observed. CRAG, NASA and Boeing Tests are compared in Table 6.



Table 6: Comparison of testing conditions for three post-impact CAI tests.

Test Material : Impact: Compression: Ref.
Thickness/Lay up Indentor /Support Specimen Size Loading Loading Rate

Conditions

indentor-4- 10 mm End tabs
Mass-as required recommended Adjust to

2 mm Drop height-1 m h=180 mm but other achieve
CRAG (+45/-45/0/90) Energy-as required w=50 mm suitable end failure in [92]

Support- cD 100 mm ring grips acceptable 30-90 s
Clamped- D 140 mm
indentor -0 12.7 mm

Mass-4.5 kg
6.35 mm Drop height--0.63 m h=254-317 mm 1.27

NASA (+45/0/-45/90) Energy-28 J w=178 mm End Loading [91]
Support- (D 127 mm square

Clamped
indentor -D 15.75 mm

Mass--4.6 to 6.8 kg h=152 mm
Boeing 4 to 5 mm Energy-as required w= 102 mm End Loading 0.5 [93]

(-45/0/+45/90) Support- D 127 x 76 mm
Clamped at four points

Abbreviations: CRAG, Composite Research Advisory Group.

Another set-up is shown in Figure 10 (b). It used two anti-buckling plates with a square

central opening [90,94]. Failure in the specimen is by compression-shear in one of the free

zones, between the loading and the anti-buckling plates. A third set-up, is shown in Figure 10

(c). Each of two anti-buckling plates is modified by splitting it into two parts, an upper and a

lower plate. The two rear plates are welded to the loading plates. Both halves have a rectangular

opening in the middle that leave the central surface of the specimen free and do not modify the

surfaces damaged by the impact [90]. The positioning and alignment of the specimen in the

loading direction is ensured in the test device when it is placed in the hydraulic machine, by the

union of each part of the rear anti-buckling plate to the loading plates as shown in Figure 11.
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Figure 10: CAI devices [90].
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Figure 11: CAI set up [94].

3.3.3. Damage Assessment

3.3.3-1. Assessment of Impact Damage After CAI Tests

A toughened epoxy with Toroyca T800H carbon fibers (F924C) and PEEK with AS4

carbon fibers (APC2) were investigated for the damage assessment after compression after

impact (CAI) test [87]. Delamination damage width plotted as a function of incident impact

''
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energy as shown in Figure 12 (a). The absorbed energy at damage initiation has been plotted on

the energy axis to indicate the threshold below which delamination should not occur. The

increase in damage width with increasing impact energy was much more rapid for F924C. 40

mm damage was reached at -4 J for F924C , APC-2 has only reached 15 mm damage width for

the same incident energy. The damage did not extend far outside the 40 mm diameter for F924C

so that above 4 J the F924C curve leveled off. A similar response would be expected for the

APC2 if the impact energy was further increased. It is clear that the scatter in the data is much

greater for the APC2 than for the F924C.
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Figure 12: (a) Damage width vs. incident impact energy, (b) compression strength vs. damage width [87].

Figure 12 (b) showed the post impact compressive strength (PICS) of the two materials

plotted against damage width as measured using the ultrasonic C-scan. Although the scatter was

quite high there was a clear indication of a link between the residual strength and damage width.

Furthermore, differences between the two materials were much reduced, the indication being that
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APC2 performed only slightly better than F924C during the compression test. The diagonal line

in Figure 12 (b) represented the strength reduction which would be expected if the loss in

strength were simply due to a decrease in the cross-sectional area of the specimen able to carry

load (the net section strength reduction line (NSRL)).

The triangular area formed by the axes and this line was regarded as a notch-sensitive zone

while the area above the line represented a notch-insensitive zone. For the F924C material the

points lay very close to the NSRL for damage widths up to 35 mm. For larger damage widths

the points lay above the line indicating that the strength did not reduce to zero when the damage

has spread all the way across the specimen. This was expected, as the material on either side of

the delamination could still support load. The data points for APC-2 lay almost exclusively

above the NSRL, indicating that the material was notch-insensitive in this loading mode for this

type of damage.

3.3.3-2. Comparison of Low- and High-velocity Impact Loading

Carbon fiber reinforced plastics (CFRP) manufactured from XA-S fibers and epoxy resins

were investigated under low- and high-velocity impact loading [1]. The variation of delaminated

area (as measured from the C-scans) for both types of impact loading with energy for the 16 ply

(00, +450) CFRP composite is shown in Figure 13. The overall level of damage increased

rapidly with increasing energy, high velocity impact precipitating a greater level of impact

damage for a given incident energy.
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Figure 13: The variation of delaminated area with impact energy after high- and low-velocity impact loading [1].

After impact loading, residual strength analysis was done for the same composites. The

variation of the normalized tensile strength after high- and low-velocity impact with incident

energy for the eight and 16 ply (0', +450) composites is presented in Figure 14 (a) and (b). In

all cases the curves exhibited the same general form. At low incident energies there appeared to

be no reduction in the load-carrying capability of the composites. Measurable reductions in

residual strength were first noted at the onset of fiber fracture; i.e., the destruction of the main

load-carrying component of the material. The residual tensile strength then continued to drop

rapidly until the target perforation threshold was reached at which point damage was extensive.

At energies in excess of the perforation limit damage became more localized and the residual

strength began to rise slowly.
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Figure 14: The variation of the normalized tensile strength after impact with impact energy, (a) for 8 ply (00, +450),(b) for 16 ply (00, +450), composites [1].

Considering first the eight ply laminate, Figure 14 (a), it appeared that for a given incident

energy, the residual strength after low-velocity impact was superior to that after high-velocity

loading.

The data for the 16 ply laminate, Figure 14 (b), indicated that the low- and high-velocity

post-impact tensile properties were very similar. This effect was somewhat surprising since the

overall level of damage detected after impact was greater in high-velocity loading. If similar

tests were conducted on longer specimens where the elastic energy absorbing capability was

greater it was believed that significant differences would be apparent between low- and high-

velocity residual properties. Therefore, it was concluded that high-velocity impact loading is

more detrimental to the tensile load-carrying capability than low-velocity impact.
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3.3.4. Influence of Constituents on the Post-impact Residual Strength

3.3.4-1. Effect of Fiber Properties on Post-impact Residual Strength

In recent years a concerted effort has been made by the manufacturers of high

performance fibers to improve both the short- and long-term mechanical properties of advanced

composites. Much of this improvement has been achieved by increasing the strain to failure of

the reinforcing fibers. The energy absorbing capacity of the fibers was identified as an important

parameter in determining the level of damage incurred in a composite laminate. Often, materials

that satisfy this condition also offer excellent residual properties. It was shown that this was the

case for low and high strain carbon fiber composites [85]. An AS4 carbon fiber composite with

a superior strain energy absorbing capacity than that of an XAS carbon fiber composite offered

superior residual properties as seen in Figure 15 [85]. This is not always the case, however.

For example, if the stiffness of the fiber is very low and its strain to failure high, a composite

containing these fibers will be capable of absorbing large amounts of energy but will exhibit

poor residual compressive properties. In order to overcome this, hybrid composites are

frequently used, combining the energy absorbing capability of low modulus fibers with stiffer

fibers capable of resisting compressive loads [37]. As stated previously, many of the latest

generation of composites are based on fibers with smaller diameters. Since the compressive

strength of a composite depends upon the stability of the fibers, it would be expected that smaller

diameter fibers would result in a material with poorer compressive properties. This indeed

appears to be the case. However, reducing the fiber diameter increases the energy absorbing

capability of the composite, resulting in lower levels of damage for a given incident energy. The

reductions in plain compressive properties of the composite appear to be offset by the reduction

in damage area.
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Figure 15: Variation of tensile and compressive residual strength with impact energy [85].

3.3.4-2. Effect of Matrix Properties on Post-impact Residual Strength

Impact-damaged composites are probably most sensitive to compressive loading since

impact-generated delaminations tend to reduce the stability of the load-beating plies resulting in

premature failure through buckling.

The residual tensile properties of toughened composites do not appear to be significantly

better than those of standard epoxy systems as shown in Figure 16 [86]. This results from the

fact that composites with tougher matrices tend to be more notch-sensitive due to reduced

splitting and delamination around stress concentrations such as notches or damage [95].

Toughening composites using elastomeric particles reduces the level of delamination

and therefore enhances residual compressive properties as shown in Figure 17 [86]. However,

the presence of such inclusions often reduces the glass transition temperature of the matrix



material which in turn reduces the hot-wet properties of the composite. In many situations a

compromise is therefore necessary.

1400

1200

l000

400

200

0.0 2.0 4.0 6.0 8. 10.0 12.0
Impct engy (J)

14.0

Figure 16: Variation of residual tensile strength with impact energy [86].
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Figure 17: Residual compressive strength of toughened and brittle epoxy-based composites [86].
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3.3.4-3. Effect of Interphase Properties on Post-impact Residual Strength

It has been shown that increasing the strength of the fiber/matrix bond increases the

interlaminar shear strength (ILSS) of the composite until a plateau is reached beyond which point

no significant increase is possible as shown in Figure 18 [86]. Over this range of treatment

levels the notched tensile strength falls dramatically. Increasing the ILSS in this way suppresses

the formation of delaminated zones in the region of stress concentrations, rendering the material

more notch-sensitive. Consequently, even though surface treatment of the fibers reduces the

level of damage for a given energy, the increased notch-sensitivity of the laminate results in

poorer residual tensile properties as shown in Figure 19 [86]. Conversely, treating the fibers

improves the post-impact compressive properties as shown in the lower part of Figure 18.

Clearly, the level of surface treatment applied to the fibers in a multidirectional composite will

depend upon the operational conditions the component will encounter. In general, a compromise

is sought in which the fibers are given intermediate levels of treatment.
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Figure 18: Variation of ILSS and notched strength of carbon fiber composites a function of fiber surface
treatment [86].
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Figure 19: Residual strength of treated and untreated carbon fiber composites versus impact energy [86].

3.3.4-4. Effect of Specimen Width and Damage Size on Post-impact Residual Strength

The stress analysis indicated that interaction between finite specimen width and notch

width influenced stress distribution around notch and finite width effect became significant for

large ratio of notch width to specimen width. Moreover, for infinite laminate, the stress gradient

was different for different notch sizes. Large stresses were localized more closely to the edge of

a small notch than a large notch. Therefore, specimen and notch widths play critical roles in the

compression and tension tests of notched laminates [96].

Compared with damage width, the dent diameter has little effect on CAI performance as

it is within some range. This observation coincides with the test results of notched laminates. It

was indicated that the residual strength of the notched laminates was hardly affected by notch

shape [97,98]. This is believed to be due to damage zone near the edge of the notch.



Consequently, this damage zone significantly reduces the effect of the notch shape on stress

distribution and, thus the notch size parallel to loading direction has no significant effect on

notched laminate strength. For impact damaged laminates, a similar result can be expected.

Most of the previous investigations concerned the effect of various parameters, such as

damage area, impact velocity and energy, impactor size and shape, and specimen support, etc. on

residual strength. The recent studies show that all their effects on residual strength can be

explained only by one parameter, i.e., damage width. The damage width is the most important

factor governing CAI performance [99].

3.3.4-5. Effect of Fiber Stacking Sequence on Post-impact Residual Strength

The role of the fiber stacking sequence plays a significant role in determining the

residual properties of impact damaged composites. Much of the work published in the literature

concerns the residual compressive properties of damaged composites since this is considered to

be the most critical form of loading condition. Certain conflicts may exist, when considering the

optimum fiber stacking sequence for residual compressive strength. It was suggested that for

improved post-impact residual strength the +/-45o fibers should be located on the outermost

surface of the composite [100]. This may not be an ideal stacking sequence for stability in

compression. Stiffer laminates, for example, those with surface 00 fibers, are better suited to in-

plane compressive loading. Nevertheless, in another work [101], it has been shown that an

APC2 (020, +/-450)2s laminate offers inferior properties to those of a (+/-450,030,+/-450,00)s

plate, as shown in Figure 20.
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Figure 20: Effect of placing 450 plies on the outer surface of a 16-ply carbon fiber/peek laminate [101].

The use of woven +/-450 fabrics in (0', +/-450) laminates served to reduce the overall

level of delamination under impact loading [102]. The subsequent residual strengths of the

mixed-woven composites were superior to those of the standard material manufactured from

unidirectional plies as shown in Figure 21.

Similar improvements in residual strength have been noted following impact on stitched

carbon fiber composites [103]. Compression after impact tests on a number of AS4/3501-6

laminates [103] showed that stitched laminates offered residual strengths up to 100% greater

than their unstitched counterparts. One of the disadvantages of this process is that the

undamaged compressive strength of the material is reduced by up to 20% [103].

A 45* outside

A

-

~141~ ·-' --



U

E

0 1 2 3 4 5 6 7
Impact energy J)

Figure 21: Effect of replacing the +/-45' plies in a 16-ply (00, +/-45') CFRP composite with a woven fabric [102].



4. Impact Resistance and Response

Impact resistance can be defined as the ability of a material to absorb energy during

fracture. The total fracture energy absorbed by a material during impact should correspond to

the amount of damage in one or more modes of rupture. The higher the energy absorption, the

tougher the material. When dealing with laminated composites, this rule is complicated, since

laminated plates have a unique failure mechanism of delamination.

If the measure of toughness is the compression strength or buckling load after impact,

then delamination is probably the most devastating failure mode. Therefore, it is necessary to

specify both the type of damage and the absorbed energy when considering impact resistance [3].

Failure modes that involve fracture of the matrix or interphase region result in low

fracture energies, whereas failures involving fiber fracture result in significantly greater energy

dissipation. The relative energy absorbing capability of these fracture modes depends upon the

basic properties of the constituents as well as the loading mode. Typical fracture energies for a

number of continuous fiber composites are given in Table 7.

Table 7: Fracture energy absorbing capability of various continuous fiber composites for different failure modes.

Failure mode Material Fracture energy Reference
(kJ-m-Z )

Delamination T300/epoxy 0.1 [104]
IM6/PEEK 2.2 [105]

E-glass/vinyl ester 0.43 [106]
Fiber pull-out CF/polyester 26 [107]

CF/bismaleimide 800 [108]
Debonding CF/epoxy 6 [109]

Splitting Type II CF/epoxy 0.1-1 [110]
AS4/PEEK 3.8 [89]

Transverse fiber Treated CF/epoxy 20 [111]
fracture Untreated CF/epoxy 60 [111]

AS4/PEEK 128 [89]
Abbreviations: CF, carbon fiber.



4.1. Methods for Improving Impact Damage Resistance

There are many methods to improve impact damage resistance of composite materials.

The details of these techniques, and the resulting interlaminar fracture resistance and impact

performance of the modified composites are discussed below.

4.1.1. Modification of Thermoset Resins

The low-velocity impact resistance of a resin composite is, to a great extent, controlled

by the resin toughness. The ability of the resin to undergo large plastic deformation during an

impact event is essential to achieving improved damage resistance of the composite. Better

resistance to delamination and matrix cracking achieved with a tougher resin leads to improved

impact resistance. It was demonstrated that, compared to more brittle carbon epoxy composites,

carbon-PEEK composites exhibited significantly less extensive delaminations and, therefore,

their compressive strengths after impact were much higher [110,112].

In general, improvement in interlaminar fracture toughness of CFRPs due to toughened

resins is disappointing, although rubber modified epoxies display up to a twenty-fold

improvement in fracture toughness of the bulk resin. Rubber modified epoxies and high

performance thermoplastics have higher resistance to impact damage than unmodified thermoset

resins [113]. Furthermore, the residual strength is substantially higher for the composites

containing modified resins and thermoplastics than the unmodified counterparts for a given

impact energy [113,114], as shown in Figure 22.
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Figure 22: Normalized residual flexural strength as a function of impact energy [115].

4.1.2. Interleaving Technique

The interleaving technique is based on various crack arrest concepts where integral

crack arrester strips were placed in damage-prone regions to enable the composite to sustain

static and dynamic critical loads [116]. In subsequent studies, soft, ductile, and tough strips of

adhesive layers were interleaved between delamination-prone layers to suppress the onset of free

edge delamination of CFRPs due to in-plane axial loading [117, 118]. A configuration of a

laminate with interleaved layers is shown in Figure 23.

Figure 23: Configuration of a laminate with interleaved layers [117].



Interleaving has been shown to significantly improve the impact resistance of graphite

epoxy and graphite bismaleimide composites [119,120], as manifested by an increase in residual

compressive strength after impact. The shear failure strain of the interleaf resin has been

identified as a key parameter in the impact damage tolerance improvement [119, 120,121]. The

adhesive layers in composite laminates also effectively suppress delamination up to very high

impact velocities and help reduce stress concentrations.

The role of the interleaves under impact loading is to alter the failure modes by allowing

the transverse and delamination cracks to be arrested upon reaching the interleaved strips. The

delamination area as a function of impact energy, as shown in Figure 24, demonstrates clearly

the major advantage of the interleaved strips. These studies serve to demonstrate the advantages

of utilizing the interleaving concept to improve composite toughness. However, the material

variables that dictate the composite toughness need to be defined and optimized.
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Figure 24: Delamination area as a function of impact energy for AS4/1808 CFRPs with and without interleaved

strips [121].
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Thermoplastic interleaves were found to be more effective than thermoset counterparts

due to their higher energy absorption capability. Further, the interleaved strips made from

ductile short fibers and an adhesive provided an additional energy absorption source during

interlaminar fracture because of the toughening mechanisms associated with the fibers, such as

interfacial debonding and subsequent fiber pull-out [122]. Table 8 shows improved interlaminar

fracture toughness due to interleaved adhesive layers.

Table 8: Mode I and Mode II interlaminar fracture toughness of CFRPs containing interleaved adhesive layers
[122].

Types of Adhesive Adhesive Thickness GIcc Guce
Layer (mm) (kJ/m) (kJ/m2)

Tuff-ply 0.04 0.444 1.15
Tuff-ply 0.08 0.575 1.7
Tuff-ply 0.11 0.754 2.61
FM® 73 0.12 0.975 1.84
FM® 300 0.1 1.14 1.77
FM® 300 0.26 1.47 2.23
FM® 300 0.3 1.27 2.01
FM® 300 0.68 1.48 2.32
FM® 300 1.1 1.78 1.65

4.1.3. Hybrid Fiber Composites

There are many studies regarding the improvement of impact performance of CFRPs by

hybridizing with glass and aramid fibers [123,124]. Most of these studies are concerned with

enhanced energy absorption capabilities mainly based on Charpy impact tests. Although widely

accepted by relevant industries for easy specimen preparation and simple testing, these tests are

not particularly suited to thorough characterization of impact performance of composite

laminates as the loading geometry does not represent the end-use application of the composite

structures [125,126].



In recent studies, with the development of ultra high molecular weight polyethylene

(UHMWPE) fibers which have advantages of high ductility and light weight, the potential of

incorporating polyethylene fibers into brittle carbon fibers has been extensively investigated. The

strain energy absorption capacity of the fiber is one of the dominant parameters which dictate the

impact damage resistance of a composite [1]. Significant improvement in damage resistance and

damage tolerance was demonstrated in terms of the maximum load sustained, energy absorbed,

and residual strength after impact [126,127,128]. The stacking sequence and the interfacial

adhesion in hybrid laminates were found to play a critical role in controlling the plastic

deformation and delamination under impact loading. The increase in energy absorbed and

maximum load with increasing volume content of polyethylene fibers are shown in Figure 25.
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Figure 25: (a) Impact energy absorbed and (b) maximum load sustained by the laminate as a function of volume

fraction of polyethylene fibers [128].

In these tests mentioned above, impact behavior was determined with a Dynatup model

drop-weight facility and the specimens were impacted with an impactor nose tip of 1.27 cm in

diameter and dropped through 1.5 m height. No penetration was observed in any laminates
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containing more than three layers of polyethylene fabrics, except when they were loaded at

relatively high rates and at low temperatures. The penetration resistance of hybrid laminates was

found to be dictated by the strength and ductility of the polyethylene fibers [127]. Good

adhesion at the polyethylene fiber-matrix interface was detrimental to the impact performance.

The residual flexural strength measured after controlled impact is presented in Figure

26. Composites containing polyethylene fibers treated with chromic acid resulted in a

substantially greater reduction in strength than those with untreated fibers, especially at a high

impact energy level. For a given damage area the residual strength of the composite with

untreated polyethylene fibers was superior to that of treated fibers within the data scatter. The

implication of these findings is that for a given impact energy level, the treated fibers were more

susceptible to intensive local damage than the untreated fibers, which, in turn, had a harmful

effect on the flexural load-carrying capacity of the laminates [126].
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Figure 26: Residual flexural strength of carbon polyethylene hybrid fiber composites as a function of(a) incipient

impact energy and (b) damage area [126].



4.1.4. Impact Performance of Woven Fabric Composites and Laminates Containing a Few
Woven Fabric Laminae

Early studies of the impact of woven fabric composites involved the incorporation of

woven fabrics at critical lamina interfaces such as [+/-45o] layers [1,102]. The woven fabric

layers reduced the extent of impact damage by suppressing the initiation of delamination, and

thus improved the residual strength. Figure 27 presents a comparison of the residual

compressive strength, indicating a marked reduction with increasing impact energy, the effect

being greater for non-woven laminates than those with woven fabrics. Incipient impact energy

is the energy required for damage initiation in the form of delamination, incipient damage load

reflects the damage initiation in the form of delamination and the maximum load represents the

peak load that a laminate can tolerate before undergoing major damage.
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Figure 27: Plots of (a) incipient damage load and (b) incipient impact energy as a function of impact energy [129].

A comprehensive study was conducted using CFRPs made from woven fabrics and

unidirectional cross-plies with two lay-up sequences [129]. These laminates of similar thickness

should have similar static in-plane mechanical properties in the undamaged state. The load



displacement records obtained for a wide range of impact energy showed lower maximum loads

[130] and larger total displacements for the woven fabric than for the cross-ply laminates. For

the woven fabric laminates there were neither incipient damage load drops nor slope changes

until the maximum load was reached, suggesting the initial damage occurred at the maximum

load. There was no dramatic load drop after the maximum. In contrast, the cross-ply laminate

exhibited a sudden small change in slope and clear incipient damage load drop in the ascending

portion of the load, and the maximum load was followed by an instantaneous steep load drop

toward zero for all energy levels studied. Figure 27 depicts the relationship between the

characteristic impact loads and energies generated from the load-displacement curves.

Maximum load was almost constant for the woven-fabric laminates, while for the

laminates with cross-plies it increased consistently with increasing impact energy to a value

much higher than that of the woven-fabric laminates at high impact energies, as shown in Figure

28. The lower maximum loads, but substantially higher plateau loads after the peak, along with

the larger total displacement, were an indication of more ductile and compliant nature of the

woven-fabric composites.
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Figure 28: Plot of the maximum load as a function of impact energy [129]



The residual CAI strengths and the theoretical predictions based on a simple residual

strength analysis are plotted in Figure 29 [115,129] as a function of impact energy and total

damage area on the surface, respectively. The residual CAI strengths were normalized by

undamaged strengths measured before impact loading. Both the threshold energy and threshold

damage that the material withstood without strength degradation were similar for the composites

with two different fiber configurations, while the rates of strength degradation were much higher

for the cross-ply laminates. This means that the reduction in CAI was much smaller for the

woven fabric laminates than for those with cross-plies over the range of both impact energy and

surface damage area.
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4.1.5. Stitched Composites

Stitc h
strands

Figure 30: Schematic presentation of a stitched laminate [131].

The stitching technique has been widely accepted as a method to enhance the

interlaminar fracture resistance and the impact damage tolerance of composites [131 ]. Figure 30

shows schematically a stitched laminate. This technique was originally devised to reduce

delamination using steel wires placed at ±450 angle through the laminate thickness. Later,

aiming mainly at reducing the free-edge delamination and thus improving the in-plane tensile

strength of CFRPs, aramid threads were stitched along the edges of the laminates. The stitches

increased the mode I interlaminar fracture toughness by 85%, and at the same time enhanced the

flexural strength by up to 30% for CFRPs fabricated from prepregs, as detailed in Table 9. The

unstitched fiber composites normally failed by interlaminar shear, whereas the stitched

counterparts failed predominantly by tension due to the high restriction of shear which was

achieved by the through-thickness stitches [132].

Table 9: Effect of stitching on free-edge delamination in CFRP [132,133]

Stitching Details Flexural Strength Mode I Interlaminar fracture
(MPa) Toughness (J/m 2)

No stitching 226 1880
6.35 mm at stitch free center zone 268 2150
11.1 mm at stitch free center zone 290 3450
14.3 mm at stitch free center zone 217 3250

19.05 mm at stitch free center zone 283 2170



Stitch density was found to be one of the most dominant parameters influencing the

efficiency of stitching. There is a critical stitch density above which the improvement of

interlaminar fracture toughness can be achieved. However, too high a stitch density is most

often detrimental. The stitch density above an optimum value reduced significantly the in-plane

strength and stiffness in compression and the interlaminar shear strength in bending [132,134].

A typical example is presented in Figure 31 where the interlaminar shear strength

decreases drastically above the optimal stitch density. The major reasons for these undesirable

effects arise from the severe misalignment of longitudinal fibers due to the presence of stitch

strands, the formation of a resin-rich region at the stitch holes, and localized in-plane fiber

damage due to needle penetration [135].
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Figure 31: Interlaminar shear strength as a function of stitch density for glass fiber-epoxy matrix composites [132].

Impact data on stitched and unstitched CFRP composites containing varying constituent

combinations showed that the damage area was less and the residual compression after impact



(CAI) strength was higher for the stitched CFRP composites. These results were valid only when

the stitched density was below the optimum value, and the major damage mode due to low-

velocity impact was delamination, but not when there was transverse fiber fracture. The damage

area decreased continuously with increasing stitch density, before the optimum stitch density was

reached as shown in Figure 32 [136].

In some isolated cases, stitching had few beneficial effects, and even negative effects,

on the impact resistance of CFRPs. The damage area and the residual CAI strength were more

similar between the composites with and without stitches when orthotropic laminates were

subjected to impact while loaded in axial tension. This disappointing result was mainly

associated with excessive stitch density and unfavorable transverse shear failure of the stitched

laminates.
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Figure 32: The relationship between damage area and stitch density [136].

The effectiveness of the individual techniques mentioned above is highlighted in Table 10.



Table 10: Comparison of methods of improving the impact damage tolerance of CFRPs.

Method CFRP Composite % increase in GIcC and/or % increase References
System GIIc in CAI

Toughened IM7/X5255-3 45 (mode I&II) 55 [113]
Thermosets AS4/907 250 (mode I), 95 (mode II) 90 [137,138]

Interleaving AS6/985 20 (mode I) 50 [103]
Techniques AS4/1808 20 (mode I), 140 (mode II) 100 [121]

Hybrid Fibers XA-S/LY556 - 140 [126]
Polyethylene

Woven T300/914 - 45 [102]
Fabrics T300/913 - 35 [129]

Stitched AS4/3501 150-2600 (mode I) 25-50 [139]

Fibers 1 [140]

4.2. Influence of Constituent Properties on Impact Resistance and Response of Composite
Materials

4.2.1. Fiber

The role of the fibers in a composite structure is extremely important since they are

responsible for bearing a significant percentage of the applied load. Many types of fiber are

available. In aeronautical applications these mostly include carbon, glass, and Kevlar fibers.

Within each of these categories, fibers exhibiting a wide range of mechanical properties are

available. Unfortunately, it is often difficult to separate the effects of mechanical properties

(such as strength and stiffness) from those arising from geometrical factors (such as fiber shape

and diameter) and interfacial properties (such as the strength of the chemical bond between fiber

and matrix).

In a study [141], in which the relative performance of a number of continuous fiber

composites was examined, suggested that the Charpy impact resistance of S-glass and Kevlar

fiber reinforced composites was over five times greater than that of a Modmor II carbon fiber-



reinforced composite. Charpy load/time traces of a number of materials was examined and it

was shown that the curve corresponding to a high modulus strength (HMS) carbon composite

was extremely brittle, failing catastrophically at maximum load [142]. E-glass and Kevlar 49

composites failed in a more progressive manner, indicative of energy dissipation through

delamination, splitting, and other failure processes. Charpy load/time traces were quantified by

defining a ductility index (DI), this being the ratio of the energies associated with the crack

propagation phase (the area after maximum load) and the initiation phase (the area up to

maximum load). The resulting ductility indices for the Kevlar-49, E-glass and HMS

carbon/epoxy composites were 23, 0.4 and 0.0, respectively, clearly indicating the superior

energy absorbing capability of the Kevlar fiber.

The low-velocity impact response of composites containing type I and II carbon fibers

was compared [143,144]. In both cases it was demonstrated that the materials containing type II

fibers (higher failure strength) offered superior impact resistance.

Izod impact tests were conducted on a wide range of systems to better understand the

fundamental parameters controlling the processes of energy absorption and dissipation in

composite materials [145]. It was concluded that flexure and interlaminar shear deformations

were dominant energy-absorbing mechanisms in composites and that the area under the

material's linear stress/strain diagram represented a useful approach for predicting the impact

resistance of a composite. Essentially, composites with large areas under the stress/strain curve

were more effective energy absorbers. Figure 33 presented the experimental data plotted as a

function of the energy absorbing capability of the fiber as determined by the energy under the

static tensile stress/strain curve [146]. An examination of the data suggested a possible

relationship between these two parameters, with materials containing fibers with a greater strain



energy absorbing capacity offering improved izod energies. Therefore, it appeared that this

technique formed a useful guide for assessing and evaluating the impact resistance of composite

materials.
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Figure 33: Variation of Izod impact energy with strain energy absorbing capacity of fibers [146].

Although the above approach was valuable for evaluating the impact resistance of a

composite, a complete analysis should have taken energy dissipation into consideration in failure

processes such as fiber/matrix debonding and fiber pull-out. Expressions were given for work

associated with micro-mechanical fracture processes such as debonding and fiber pull-out [147].

The work for debonding was given as

it *d 2 •2W .= d 1f (1)

24. E

where d = fiber diameter, or = failure strength of the fiber, Id = length of the debonded zone and

Ef= fiber modulus. The work to pull-out is given as

I

I-
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WP 24 (2)24

where l, = critical transfer length and r=constant frictional shear stress.

It was concluded that post-debond fiber sliding is the primary energy absorbing mechanism

in glass fiber composites, whereas fiber pull-out is responsible for much of the toughness in a

carbon fiber composite. An examination of Equation (2) indicates a strong dependency of work

to pull-out on fiber diameter. In theory, increasing the diameter of the reinforcing fiber should

result in a composite with an improved resistance to pull-out and perhaps improved toughness

[110]. Another study reported results that appear to support a fiber diameter dependence in

continuous fiber reinforced composites [141]. However, the conclusions are based on

differences between glass and boron fiber composites with different fiber volume fractions and

are not, therefore, conclusive.

Fiber manufacturers have been improving the strain to failure of carbon fibers by

reducing their diameter: Typically, the first generation of carbon fibers such as T300 and AS4

had diameters of 7-8 gLm. Fibers such as IM6 have diameters of approximately 5 gtm. By

improving the strain to failure of the fibers in this way, the manufacturers have also improved the

strain energy absorbing ability of composites and thereby improved their impact resistance. It

was shown that the interlaminar fracture toughness of IM6/PEEK is superior to that AS4/PEEK

[148]. Similar conclusions following low-velocity impact tests on these materials was drawn by

Curson [149].

4.2.2. Matrix

The polymeric matrix in a fiber-reinforced composite serves to protect, align and

stabilize the fibers as well as provide stress transfer from one fiber to another. In general, both



the stiffness and strength of the matrix are considerably below those of the reinforcing fiber. The

fiber is therefore responsible for carrying most of the applied load in a composite component.

The role of the matrix is nevertheless critical. For example, damage to the matrix such as

impact-induced delamination can reduce the load-bearing capability of the composite by up to

50% [102]. As a result of this relatively poor behavior, much work has been undertaken in

recent years in an attempt to identify the fundamental matrix properties that influence the impact

resistance of composite materials. Since the first generation of matrix systems for advanced

composites lacked toughness, a number of techniques have been developed to improve the

toughness of these materials. These include:

* the use of plasticizing modifiers [110];

* the addition of rubber particles such as carboxyl-terminated butadiene-acrylonitrile

(CTBN) [150,151];

* the addition of thermoplastic particles such as polyethersulphone (PES) and

polyetherimide (PEI) [152];

* a reduction in the cross-linking density of thermosets such as epoxy resins [153,154];

* the use of thermoplastic matrices such as PEEK;

* the inclusion of thin, tough layers at ply interfaces [88,114].

Adding a plasticizer to Epikote 828 epoxy resin increased the Mode I fracture toughness by over

two orders of magnitude [110]. When used as a matrix system in a carbon fiber composite,

increases in toughness resulted; however, in this case the Izod impact energy was improved by

only 25%. This disappointing transfer of toughness was explained by the fact that the Izod test

induces crack propagation across fibers rather than between them.

High-velocity impact tests were conducted on a limited number of Modmor II carbon



fiber composites [155]. Their data suggested that the impact resistance of these materials did not

depend upon the properties of the polymeric matrix.

In a more detailed analysis, the impact resistance of 24 modified and unmodified

carbon fiber/epoxy composites was examined [151]. Their experimental analysis showed that

both the level of damage incurred as well as the residual compressive properties of the laminates

varied enormously. It was found that the brittle laminates tended to fail by extensive

delamination, whereas the tougher systems failed in transverse shear near the impact location. It

was concluded that the tensile performance of the neat matrix has a significant influence on the

impact behavior of a composite structure. For improved impact resistance, the strength of the

matrix should exceed 69 MPa and its strain to failure should be greater than 4%. Finally, in

order to ensure adequate compressive strength, the shear modulus should be greater than 3.1

GPa.

To identify a link between matrix properties and composite fracture toughness, data

from three sources were analyzed [150]. A definite correlation was identified between the resin

Mode I fracture toughness and composite interlaminar fracture energy as measured by the double

cantilever beam (DCB) specimen, as shown in Figure 34.
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Figure 34: Variation of composite Mode I interlaminar fracture energy with resin fracture energy [150].

With brittle polymers, the resin toughness is fully transferred to the composite, whereas

with tougher polymers the resin toughness is only partly transferred to the composite. In the

latter it is proposed that the presence of the fibers restricts the crack-tip plastic zone size, thereby

reducing the positive effect of the tougher matrices. This approach was extended by conducting

Mode I, Mode II, and compression after impact (CAI) tests on a number of epoxy and

bismaleimide-based carbon fiber composites [88,156]. It was demonstrated that no correlation

existed between the Mode I interlaminar toughness and the CAI properties as shown in Figure

35(a), whereas very good agreement was found between the Mode II resistance and residual

compressive strength as shown Figure 35(b). It is clear that the matrix in a flexurally loaded

composite will be subjected to a large Mode II component and that the shear properties of the

matrix will be important in determining the level of damage incurred. It is somewhat less clear

why the residual compressive properties of the composite should be Mode II controlled since the

failure process is undoubtedly complex, containing a significant Mode I component.



e 4

> i2I

=-u

:I,

. -

S-

:

1•U
* uS
bU,

! *
0 100 0 30 40 $0 S0 10 2 40 W0

Residual compression strength after impact (MPa) Resin compression strength after impact (MPa)

(a) (b)

Figure 35: Variation of residual compression strength after impact with (a) mode I and (b) mode II strain energy
release rate [156].

Materials that satisfy the above condition and therefore offer superior impact properties

include thermoplastic based composites and interleaved laminates. Considerable interest has

been generated by carbon fiber-reinforced PEEK(APC2), a semi-crystalline thermoplastic

composite [105,149,157,158]. Interlaminar fracture testing and impact loading have shown that

this material offers excellent static and dynamic toughness and is capable of absorbing a

considerable amount of energy while incurring only small amounts of damage [101,149,159].

Scanning electron micrographs of the fracture surfaces indicate extensive drawing and plastic

flow [160]. Another advantage of this material is that its thermoplastic matrix allows rapid

repair using fusion techniques such as the hot press technique [161]. Here, impact damage can

be reduced or removed by simply heating the component to a temperature above the melting

point of the matrix, reforming and cooling.

The high-velocity impact response of carbon fiber/PEEK has received very little attention.
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Initial testing has suggested that its high velocity impact response is perhaps relatively poor. It

was shown that beyond a certain velocity threshold, APC2 experienced a sudden drop in flexural

strength [158]. Similar observations have been observed following ballistic impact tests on this

material [101]. These observations suggest that care should be exercised when attempting to

relate static properties such as interlaminar toughness and strength to characterize dynamic

properties such as impact resistance.

Polymer interleaving involves the use of high toughness films or layers at ply interfaces

in relatively brittle materials. The inclusion of such layers increases the laminate's interlaminar

fracture toughness [156] as well as reduces the level of damage incurred for a given incident

energy [162]. The load-bearing properties of damaged interleaved composites are significantly

superior to those of conventional epoxy composites [162]. Interlayer technology is still in its

infancy; however, early results are very favorable and the technique offers enormous potential.

4.2.3. Interphase

The strength of the bond between the matrix resin and the fiber reinforcement is a

controlling factor in determining the mechanical performance of most polymer composites. In

general, the surface of the fibers is treated by an oxidative process in order to improve the level

of adhesion between matrix and fiber. Initially, this interfacial zone was considered as being a

two dimensional surface with effectively zero thickness. However, studies have shown that this

region is in fact three-dimensional, having its own distinct properties [163].

Studies have demonstrated that varying the level of surface treatment applied to a

carbon fiber can change the mode of composite failure as well as many fundamental mechanical

properties [110,163,164,165]. Composites with low levels of fiber surface treatment fail at



relatively low stresses when loaded transversely to the fibers, leaving smooth fibers on the

fracture surface. Increasing the level of treatment applied to the fibers increases the transverse

failure stress and failure occurs within the matrix; i.e., the interphase region is no longer the

weakest link in the composite.

It was shown that improving the fiber/matrix bond strength in a carbon fiber-reinforced

epoxy resulted in a four-fold increase in the incident impact energy required to initiate damage.

At higher impact energies, the load-bearing properties of composites with surface-treated fibers

drops dramatically until the perforation limit is reached [111]. In another study, it was

demonstrated that the perforation threshold energy in a surface-treated composite is significantly

lower than that of a similar untreated laminate [ 166].

This behavior has been explained by noting that the transverse fracture energy of a

composite, a fundamental parameter for determining resistance to penetration and perforation,

depends strongly upon the fiber/matrix bond strength [111]. Penetration is a macroscopic mode

of failure enabling the impactor to completely penetrate the material. Perforation is the action

of passing through the target structure of the projectile. Carbon fiber-reinforced epoxies with

untreated fibers offer transverse fracture energies as high as 60 km-2 [111]. Transverse failure

in composites with high levels of fiber surface treatment absorbs considerably less energy, with

quoted transverse fracture energies being as low as 20 kJm -2 [111]. At energy levels above that

required to achieve perforation, damage in a fiber-treated composite tends to be localized around

the point of impact, often taking the form of a clean hole [165]. The post-perforation residual

properties of treated composites are generally superior to those of untreated composites as shown

in Figure 36.
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Figure 36: Residual flexural strength vs. impact energy for ballistically penetrated surface-treated and untreated
carbon-fiber composites [111].

The impact resistance of T300/MY-720 carbon fiber/epoxy was enhanced by coating

the surfaces of the fibers with a thin layer of CTBN rubber [167].

4.2.4. Fiber Stacking Sequence

Composite materials offer a unique advantage in that properties such as strength and

stiffness can be tailored to meet specific design requirements through a careful selection of the

fiber stacking sequence. It was shown that the impact resistance of composite materials also

depends upon the specific order in which the plies are stacked [96,101,168,169,170]. For

example, unidirectional composites having all their fibers aligned in one direction fail by

splitting at very low energies and are therefore highly unsuitable for applications where impact

loading might occur [110]. Following impact tests on a series of (0O, +/-45°) laminates, it was

shown by several studies that composites having +/-45' surface plies offered a superior impact

resistance and improved residual strengths [101,168]. It was suggested that the +/-45' plies

increased the flexibility of the composite, thereby improving its ability to absorb energy



elastically [100]. Further, placing such plies on the surface of a composite serves to protect the

load-bearing 0' plies against damage induced by the impinging projectile [100]. These ideas

were supported by another study, in which instrumented Charpy tests on a series of

multidirectional T300 carbon fiber composites were conducted [170]. It was demonstrated that

(+/-450) composites were capable of absorbing considerably more energy than (00,900), (00,+/-

450) and (0',900,+/-450) laminates.

The studies showed that damage initiation in a series of (+/-450) laminates subjected to

low-velocity impact depended upon the thickness and therefore the stiffness of the composite

[12]. Initial failure in thin, flexible targets occurs in the innermost ply as a result of the tensile

component of the flexural stress field. Damage in thicker, stiffer targets initiates at the top

surface due to the contact stress field as shown in Figure 37.
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Figure 37: Low-velocity impact energy to initiate damage vs. target thickness for (+/-450) CFRP composites [171].

Thus, increasing the flexural stiffness of a target, for example, by placing fibers on the surface of

a laminate, can enhance its impact resistance [100]. This is true for the range of stiffnesses
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where initial failure occurs at the top surface of the component. In more flexible targets,

however, reducing the flexural stiffness may precipitate failure at a lower incident energy.

A detailed study identified fundamental aspects in the development of damage in glass

fiber-reinforced plastic (GFRP) subjected to high-velocity impact loading (impactor speed>10

m/s) [172]. It was shown that increasing the angle q in a (050,qo,05s) laminate resulted in greater

delamination-type damage for a given incident energy as shown in Figure 38. Increasing q in

this way also had the effect of reducing the first damage threshold energy. The studies also

showed that for a given energy, increasing the thickness of the GFRP target resulted in an

increase in the delaminated area. This increase in damage area may result from the reduction in

the target's energy absorbing capability [100]. This work was extended by developing a simple

model for predicting the likely delamination sites in a number of different composites [23]. It

was suggested that delamination in multi-angle composites is more likely to occur at interfaces

where the mismatch in bending stiffhess is greatest, for example, between +/-450 plies. It was

shown experimentally that the level of delamination in a glass/epoxy composite increased as the

angle q in a (0O,qo) laminate increased; i.e., as the bending stiffhess mismatch increased. This

evidence suggests that if delamination needs to be suppressed, laminates with sudden large

changes in fiber direction should be avoided.
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Figure 38: Delaminated area vs. impact energy for impacted GFRP laminates [172].

Other techniques to reduce impact-induced delamination include the use of woven

fabrics [102,173], hybridization [174,175,176] (for example, carbon fibers with Kevlar fibers)

and three-dimensional stitching [177,178]. The first of these techniques involves replacing the

unidirectional +/-45' plies in a multidirectional composite by a +/-450 woven fabric. The three-

dimensional nature of the fabric helps suppress the formation of delaminated zones at this critical

interface.

The impact resistance of carbon fiber composites can be enhanced considerably by

incorporating plies of lower modulus fibers [174,175,176]. In order to ensure compatibility, the

matrix resin is usually the same in the two or more constituent materials. It was demonstrated

that the Izod impact energy of a high tensile strength (HTS) carbon fiber composite could be

increased by 500% through hybridization with E-glass fibers [175]. As well as reducing the

basic price of the composite, the addition of the glass fibers was found to change the mode of

fracture from a clean break to a delamination-type failure.
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The high-velocity impact response of a number carbon-Kevlar hybrid laminates was

assessed and it was concluded that the addition of the lower modulus Kevlar fibers increased the

threshold energy for the onset of damage by up to four times [37].

4.2.5. Geometry

Geometry is a fundamental parameter in determining the impact response of a

composite component [12,86,101,110,157,179]. Low-velocity impact tests on CFRP have

shown that the mode of failure in a simple beam may vary depending upon its span-to-depth

ratio. Short thick specimens tend to fail in an interlaminar mode, whereas as long thin beams

failed in flexure [110].

High-velocity impact tests on CFRP indicated that the areal geometry of the target is less

important at high rates of strain [180]. Ultrasonic C-scans of impacted specimens showed that

the level of damage in a small, 50 mm long beam was the same as that in a 150 mm coupon. This

suggests that high-velocity impact loading by a light projectile induces a localized form of target

response in which much of the incident energy of the projectile is dissipated over a small zone

immediate to the point of impact. Tests on large plates have substantiated this claim and it

appears that under certain conditions, small simple coupons can be used to characterize the high

velocity/low mass impact response of composite structures [180].



5. Energy Absorption Characteristics

The energy introduced into a composite specimen, i.e. the impact energy, is

approximately equal to the kinetic energy of the impactor immediately before contact. During

impact tests, energy absorbed by the specimens, i.e. the absorbed energy, can be calculated

from the associated load-deflection curves. For an impact event having a closed load-deflection

curve, the absorbed energy is equal to the area within the load-deflection curve. For an impact

event having an open load- deflection curve, the absorbed energy is equal to the area bounded by

the load-deflection curve and the deflection axis.

5.1. Energy Profiles

Impact energy versus absorbed energy of each impact event can be plotted and shown in

a diagram called an energy profile. An example is illustrated in Figure 39, which gives the

energy profile for a glass/epoxy composite laminate based on eleven tests [181].
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Figure 39: Energy profile based on eleven tests [181].
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Thus, the energy profile is a diagram that shows the relationship between the impact energy and

the absorbed energy.

In Figure 39, there are eleven data points designated by triangular symbols. The data

points correspond to the eleven load-deflection curves in ascending energy order. As each data

point is associated with a dropping height of the impactor, the impact energy increases with the

height of the drop. Since a higher impact energy results in more severe damage to a composite

specimen, the absorbed energy increases with the impact energy. A diagonal line representing

the equal energy between impact and absorption is also shown on the diagram for comparison.

As seen in Figure 39, the first six points are below the equal energy line, implying that there is

an excessive impact energy in each test. The excessive energy is retained in the impactor and

used to rebound the impactor from the specimen at the end of each contact-impact.

Accordingly, all the lowest six cases, which have closed load-deflection curves, have either

complete or partial rebounding in their unloading sections.

As shown in Figure 39, the excessive energy first increases, then decreases as the

impact energy increases. At a higher impact energy level, the absorbed energy becomes equal to

the impact energy. Points that are located very close to the diagonal line represent similarity, or

equality, between the impact energy and the absorbed energy. Thus, they indicate that the energy

used in impacting any of these composite specimens is almost completely, or completely,

absorbed by the specimen. Hence, there is no excessive impact energy to rebound the impactor

from the specimen. Penetration of the impactor into the specimens occurs in these cases.

Penetration is a macroscopic mode of failure enabling the impactor to completely penetrate the

material. The corresponding load-deflection curves of the penetrated cases are no longer closed.

Points that are located on the diagonal line imply progress of penetration.



As the impact energy continues to increase, the impactor moves deeper and deeper into

the composite specimens. That is, the penetration process continues to progress. Once the impact

energy is high enough, perforation eventually takes place in the composite specimens.

Perforation is the action of passing through the target structure of the projectile. In the last two

cases, far away from diagonal line, the composite specimens are perforated. The impact energies

in these two cases are again higher than the absorbed energies and the excessive energies are

retained in the impactor for post-perforation motions.

5.1.1. Penetration Threshold

Based on the energy viewpoint, penetration should take place the first time the absorbed

energy reaches the level of the impact energy when a single impact occurs. In order to better

define the penetration threshold and to account for experimental variation, second-order

polynomial regression and power regression based on the least-squares method are used to

represent the experimental data points. These two curves are shown in Figure 39 for comparison.

The polynomial regression is represented by a dotted line while the power regression by a dashed

line. The polynomial regression intersects with the equal energy line at 127.9 J. The power

regression intersects with the equal-energy line at 131.3 J. These intersection points are called

penetration thresholds. The penetration thresholds based on these two regression methods seem

to agree with each other [181].

During an impact test the size of the impactor significantly affects penetration threshold.

Penetration threshold is approximately linearly proportional to the size of the impactor.



5.1.2. Perforation Threshold

Perforation is another important impact property of composite laminates. It can also be

identified from the energy profile. Once a perforation takes place, the excessive impact energy

will be used to move the impactor through the damaged composite specimen continuously.

Based on Figure 39, the perforation threshold of the composite laminate must be near the first

point coming off the equal-energy line. Thus, the perforation threshold of the glass/epoxy

composite laminates is identified as 143J. However, if such a convenient point is not available

for determining the perforation threshold, the least-squares method for finding the penetration

threshold can be used to determine the perforation threshold from all points coming off the

equal-energy line. The perforation threshold is a material constant because it represents the

energy required to perforate the composite laminates of interest. However, the absorbed energies

of the data points beyond the perforation threshold are not constant because friction and strain-

rate effects are involved in the post-perforation process [181].

During an impact test the size of the impactor significantly affects perforation

threshold. Perforation threshold is approximately linearly proportional to the size of the

impactor.

5.1.3. Range for Penetration Process

The equal energy points in Figure 39, represent different stages of the penetration

process. As the impactor moves deeper into the composite specimen, more energy is required for

the penetration process to advance. Based on the penetration and perforation thresholds of

glass/epoxy composite laminates, there exists a range in which the impact energy and the

absorbed energy are equal to each other. This range is called the range of the penetration

process. The range of the penetration process is expected to be proportional to the thickness of



the composite laminates [181].

5.2. Ballistic Impact

5.2.1. Ballistic Impact Test

Ballistic impact tests are often performed using a helium or air gas gun which allows a

variation of striking velocity from 100 to 500 m/s. The composite is placed between two

clamping (constraining) plates with different diameter holes (so-called apertures) in the center,

and firmly tightened. The composite clamped by plates is placed in the center of the ballistic

impact test apparatus and subjected to fragment-simulating projectiles (FSP) of different weights

and diameters. The striking velocity and residual velocity are estimated from an electronic timer

[182,183].

5.2.2. Ballistic Limit Velocity

The ballistic limit velocity, VBL, is defined as the highest striking velocity, Vs, where the

residual or rebound velocity, Vr, equals zero (i.e. no full penetration) [184,185]. For a better

understanding, Figure 40 shows 23-ply laminates of Spectra 9000 fabric-reinforced vinyl ester

resin composite (6.71 mm thick) and 31-ply laminates of Kevlar KM2® fabric-reinforced

phenolic-polyvinylbutyral resin composite subjected to the ballistic impact of a tungsten carbide

ball (16 g, 12.7 mm diameter) at various levels of striking velocity, which led to either full

perforation or no/partial perforation with rebound action. This plot allows the estimation of the

ballistic limit velocity.
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Figure 40: Relationship between the residual or rebound velocity and striking velocity [183].

For fully perforated specimens, the following relationship can be used to estimate the ballistic

limit velocity.

VBL=(Vs2 Vr2 )1/2 for V>O (1)

where Vs is the striking velocity, Vr is the residual or rebound velocity, and VBL is the ballistic

limit velocity. The relationship in Equation 1 is based on the assumption of a nondeformable

penetrator and the conservation of energy [183].



5.2.3. Factors Affecting Ballistic Impact

5.2.3-1. Effect of Resin Addition on Penetration Characteristics

Single ply specimens of dry Spectra fabric as well as Spectra fabric-reinforced laminate

(25% by weight of resin) were compared in both the static puncture mode and drop-weight

impact loading mode [183] to examine how the addition of a matrix resin alters the penetration

characteristics. Figure 41(a) shows the load-deflection response of Spectra fabric/vinyl ester

resin and Spectra fabric/polyurethane resin composite laminates, while Figure 41(b) shows that

of spectra dry fabrics. The difference between the dry fabric and composite laminate was noted

in the final failure mode. The composite laminate showed a sudden failure with one large drop of

load. On the other hand, the failure of the woven dry fabric was associated with several load

drops. Detailed observation during and after testing of the dry fabric revealed that the numerous

load drops in Figure 41(b) corresponded to successive breaking of individual yams along the

periphery of the penetrating head, and the movement of yams slipping off from the penetrator.

Both of these events led to load drops in a sequential manner, since they resulted in a decrease in

the number of yams imparting force onto the penetrator.

In contrast to the case of dry fabric, the principal yarns in the composite, which face the

penetrating head, failed to carry the load mostly through fracture due to their constraint by the

resin matrix. The composites failed at a higher load than the dry fabric, because they required

more force to break many yams simultaneously than to break them one or two at a time.

Therefore, the effect of the resin addition appeared to be a coupling of the yarns so as to make

the stress state across all fibers more uniform, resulting in a failure process that was more

sudden compared with the dry fabric.
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Figure 41: Load-deflection curves for (a) single-ply composite laminate of Spectra 900® fabric-reinforced vinyl
ester (VE) resin composite vs. spectra 900® fabric-reinforced polyurethane (PU) resin composite

(b) single ply of spectra 900® dry fabric; all under quasi-static penetration loading at 0.000254 m/s
[183].

5.2.3-2. Effect of Multi-ply Composite Laminates with Different Resin Matrices

In Table 11, Spectra 900 fabric-reinforced 5-ply composite laminates with vinyl ester

and polyurethane resin matrices were compared in the following loading modes: low-velocity

drop-weight impact (impact energy=87 J) and ballistic impact (impact energy=37 J) [183]. S2-

glass/epoxy 5-ply and 10-ply laminates were also compared as unstitched, stitched with Kevlar

threads with a stitched density of 2 stitches/cm and 12.7 mm and 25.4 mm spacing

configurations in the following loading modes: low-velocity drop-weight impact (impact

energy=80 J) and ballistic impact (impact energy=4700 J) [186].
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Table 11: Energy absorption for full perforation of 5 and 10 ply laminates.

Laminate Type Number Impact D.W.I. Impact B.I. Reference
of plies Energy(J) Energy Energy(J) Energy

Absorption Absorption

Spectra 5 87 16.4 37 30.07 [183]
900/Vinyl ester

Spectra 5 87 14.3 37 25.95 [183]
900/Polyurethane
S2-Glass/Epoxy 5/10 80 16.72 4700 592 [186]

Unstitched
S2-Glass/Epoxy 5/10 80 31.61 4700 655 [186]
12.7 mm stitched
S2-Glass/Epoxy 5/10 80 18.55 4700 613 [186]

25.4 mm stitched
Abbreviations: D.W.I., drop-weight impact; B.I., ballistic impact

As seen from Table 11, for the same impact energies, Spectra 900/vinyl ester has better drop

weight and ballistic impact performance than Spectra 900/polyurethane. Absorbed energy of

Spectra 900/vinyl ester was observed %14 and %16 higher in drop-weight impact and ballistic

impact, respectively [183]. Further, absorbed energy for unstitched S2-glass/epoxy laminates

was less compared to stitched S2-glass/epoxy ; among stitched laminates, absorbed energy was

more for the 12.7 mm stitch spacing laminates in both drop-weight and ballistic impacts. Thus,

one can conclude that 12.7 mm stitched S2-glass/epoxy has better impact performance than that

of the 25.4 mm stitched and unstitched S2-glass/epoxy.

5.2.3-3. Effect of Laminate Thickness on Ballistic Limit Velocity

Effect of Laminate thickness on ballistic limit velocity was assessed between the angle-

plied unidirectional fiber-reinforced laminates and fabric-reinforced laminates [182,187]. The



data of ballistic limit were plotted as a function of areal density (mass per unit area). Higher areal

density largely means thicker composite systems. An empirical relationship was obtained as

follows:

BL =a(AD)b (2)

where BL is the ballistic limit velocity, AD is the areal density, and a and b are material-

dependent constants [182,187]. Table 12 shows the data obtained in these studies [182,187].

Table 12: Comparison of the different fiber compositions based on empirical data.

Resin Matrix Fiber Composition Reinforcement Geometry a b Ref.
m3/(kg.s)

Vinyl ester Spectra 1000 Angle-plied web 205.36 0.65 [182]
Vinyl ester Spectra 900 Plain-weave fabric 226.36 0.51 [182]
Vinyl ester Kevlar-29 Basket-weave fabric 157.69 0.56 [187]
Vinyl ester S-2 glass Plain-weave fabric 98.81 0.64 [187]

According to data presented in Tablel2, at a given areal density, the ballistic limit velocities of

spectra fiber-reinforced laminates are apparently higher than those of Kevlar-29 and S-2 glass

fiber-reinforced laminates. To understand the difference between the two spectra fiber-based

laminates, ballistic limits of both laminates were plotted as a function of areal density as shown

in Figure 42.
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Figure 42: Ballistic limit velocities of spectra fiber- and spectra fabric-reinforced laminates vs. areal density [182].

At low areal density, both spectra fiber-based laminates demonstrate similar ballistic limits.

However, as areal density increases, differences in ballistic limit become more apparent, with the

angle-plied spectra fiber-reinforced laminate showing higher values.

In another study [188] plain and satin weave carbon/epoxy laminates were investigated and

the ballistic limit velocity was plotted as a function of number of layers as it is shown in Figure

43.
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Figure 43: Variation of ballistic limit velocity with number of layers [188].
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From Figure 43 it can be seen that the ballistic limit velocity for satin weave laminates is much

higher than the corresponding plain weave laminates for the same number of layers. This

characteristic was attributed to satin weave laminates are slightly thicker than plain weave

laminates.

5.3. Influence of Constituents on Energy Absorption Capability

Specific energy absorption, Es, is defined as the energy absorbed per unit mass of

laminate material. Total absorbed energy can be calculated from the area under the load-

displacement curves obtained from impact tests [181]. The energy absorption characteristics of

composites can be adjusted by controlling various parameters such as the fiber type, matrix type,

fiber architecture, specimen geometry, fiber volume fraction, and testing speed.

5.3.1. The Effect of the Matrix on the Energy Absorption Capability

Carbon fiber-reinforced composites with the same fiber orientation and impact rate but

different thermoplastic matrices were investigated. Among all types of composites investigated,

carbon fiber/PEEK laminates exhibited the highest specific energy compared to carbon

fiber/polyetherimide (PEI) and carbon fiber/polyimide (PI) composite materials, and carbon

fiber/polyarylsulfone (PAS) polyimide laminate displayed the lowest energy absorption

capability [189,190,191]. Based on these three studies, the specific energy absorption of

thermoplastic composites follow the order PAS<PI<PEI< PEEK. The specific energy absorption

and interlaminar fracture toughness of these matrices are shown in Table 13. From data in the

table, it was concluded that higher interlaminar fracture toughness of the thermoplastic matrix



materials produced the corresponding increases in energy absorption capability of the composite

material.

Table 13: Effect of matrix on specific energy absorption.

Fiber Matrix Material Specific Energy Interlaminar Reference
Composition Absorption, Es Fracture

(kJ/kg) Tougness (kJ/m2)

Carbon fiber Polyetheretherketone 194 1.6 [189]
(PEEK)

Carbon fiber Polyetherimide (PEI) 155 1.2 [190,191]
Carbon fiber Polyimide (PI) 131 0.9 [190,191]
Carbon fiber Polyarylsulfone (PAS) 128 0.4 [189]

In a similar study, the energy absorption of carbon/PEI (C/PEI), carbon/polyimide

(C/PI), carbon/polyarylsulfore (C/PAS), and carbon/PEEK (C/PEEK) were investigated and

compared with that of carbon/epoxy and glass/polyester. Carbon/thermoplastic composites

demonstrated superior energy absorbing capabilities (Es=128-194 kJ/kg) than carbon/epoxy (Es

=110 kJ/kg) or glass/polyester (Es=80 kJ/kg) composites [192].

In another study, the energy absorption capability of carbon/epoxy and carbon/PEEK

composites made from unidirectional prepreg materials was investigated by conducting axial

compressive tests [193]. The superior energy absorption capability of carbon fiber/PEEK

composites (180 kJ/kg) was attributed to the higher interlaminar fracture toughness of the

thermoplastic PEEK matrix composite (1.56-2.4 kJ/m2). The carbon/epoxy composite having an

interlaminar fracture toughness in the range 0.12-0.18 kJ/ m2 absorbed only 53 kJ/kg specific

energy.

In a different study, based upon observation and a general understanding of the impact

process, it was concluded that the energy absorption of materials that fail by transverse shearing

or brittle fracturing was little affected by matrix stiffness. However, materials that fail by lamina



bending could be more significantly affected by matrix stiffness. A change in matrix stiffness

could cause brittle fiber composites to fail in a different mode. However, changes in matrix

stiffness had very little effect on the energy absorption of ductile fiber reinforcements [194].

5.3.2. The Effect of Fiber on the Energy Absorption Capability

The type of reinforcing fiber used in a composite material determines to a very large

extent its energy absorption characteristics. A decrease in the density of fiber causes an increase

in specific energy absorption capability of the corresponding fiber-reinforced composites

[195,196]. Energy absorption capacity of graphite/epoxy, Kevlar/epoxy and glass/epoxy

composites having similar ply constructions was compared and it was seen that graphite/epoxy

composite had Es values greater than that of Kevlar/epoxy and glass/epoxy composites. This was

attributed to the lower density of carbon fibers compared to glass and Kevlar fibers [195].

In another study, PEEK matrix composite tubes reinforced with AS4 carbon fiber, IM7

carbon fiber, and S2 glass fiber were investigated, respectively [196]. The fibers were aligned

parallel to the tube axis. S2/PEEK tubes displayed approximately 20% lower Es than the

AS4/PEEK and IM7/PEEK tubes. It was concluded that this was a direct result of the lower

density of the carbon fiber reinforcing materials compared with the glass reinforcing material.

Despite AS4 carbon fibers being more ductile than IM7 carbon fibers, both AS4/PEEK and

IM7/PEEK tubes displayed similar specific energies.

Epoxy composite tubes reinforced with Thornel-300 carbon fibers which have low failure

strain and Hercules AS-4 carbon fibers which have intermediate failure strain were investigated

and it was observed that the tubes having greater energy absorption properties were the ones

reinforced with fibers having higher strain to failure [197]. Table 14 summarizes effects of fiber



on specific energy absorption.

Table 14: Effect of fiber on specific energy absorption Es

Fiber Material Matrix Resin Fiber Specific Energy Reference
Orientation Absorption, Es

(kJ/kg)
AS4 Carbon Polyetheretherketone [±0] 194 [196]
IM7 Carbon Polyetheretherketone [+0] 202 [196]

S2 Glass Polyetheretherketone [±0] 143 [196]
Kevlar Epoxy [0±45] 32 [197]

Graphite Epoxy [0±45] 45 [197]

5.3.3. The Effect of Fiber Orientation on the Energy Absorption Capability

Fiber orientation also plays an important role on the energy absorption of composite

laminates and tubes. Five glass/epoxy composite laminates having different stacking sequences

of [05/05/05] where 0= 0, 15, 30, 45, and 90, were investigated [181]. They were all 3.83 mm

thick. These laminates were subjected to drop-weight impact test by a cylindrical impactor that

had a hemispherical head of 12.5 mm in diameter and a mass of 24 kg. It was concluded that the

[05/905/05] laminate had the highest energy absorption followed by in decreasing energy

absorption by laminates with [05/455/05], [05/305/05], [05/155/05] fiber orientation.

Further, among the five composite laminates investigated, it was obtained that [05/05/0s]

had the lowest penetration threshold and perforation threshold; the composite laminate

[05/155/05] had the highest penetration and perforation thresholds; the penetration and

perforation thresholds of the composite laminates [051/0/05] decreased as the fiber orientation of

the middle lamina increased from 150 to 900, with 0=0 being the exception.

To understand the effect of fiber orientation on energy absorption characteristics of



composite tubes, glass/epoxy, carbon/epoxy and Kevlar/epoxy composite tubes with fiber

orientation [0±0]4 where 0 varied from 0 to 90 were investigated [198]. The specific energy of

the glass/epoxy and Kevlar/epoxy tubes remained constant with increasing 0 up to 45, and

above this value they increased. This increase in energy was attributed to the increased lateral

support to the axial fibers with increasing 0. On the other hand, the specific energy of the

carbon/epoxy tubes initially decreased with increasing 0 up to 450 and then remained constant.

This initial decrease in the energy absorption was attributed to the reduction in axial stiffness of

the composite material with increasing 0.

In a different study [189] carbon fiber-reinforced composite tubes with different

thermoplastic matrices such as PEEK, PEI, PI, and PAS were investigated under quasi-static

loading. The tubes had fiber orientation of [0O], [±+5], [±100], [±150], [±200], [±250] with respect

to the axis of the tube. Table 15 summarizes the effects of fiber orientation on specific energy

absorption for various composite tubes investigated in this study.

Table 15: Effects of fiber orientation on specific energy absorption

Fiber Fiber Matrix Es Matrix Es Matrix Es Ref.
Orientation Composition Resin (kJ/kg) Resin (kJ/kg) Resin (kJ/kg)

[00] Carbon PEEK 194.1 PEI 155.4 PI 131.4 [189]

[+50] Carbon PEEK 205.3 PEI 162.4 PI 151.1 [189]

[+100] Carbon PEEK 225.3 PEI 187.9 PI 160.7 [189]

[±150] Carbon PEEK 226.8 PEI 167.5 PI 162.3 [189]
[±200] Carbon PEEK 202.3 PEI 162.4 PI 167.9 [189]

[±250] Carbon PEEK 181.1 PEI 135.6 PI * [189]

* Not evaluated. Abbreviations: PEEK, polyetheretherketone;PEI, polyetherimide; PI, polyimide



5.3.4. The Effect of Geometry on the Energy Absorption Capability

Increasing thickness is the most direct way to increase the energy absorption capacity of

a material. Figure 44 shows the penetration and perforation thresholds of cross-ply glass/ epoxy

composite laminates for various thicknesses. The penetration threshold (solid circles) and the

perforation threshold (open circles) increase with thickness, and so does the difference between

the penetration and perforation thresholds.
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Figure 44: Penetration and perforation thresholds as a function of composite thickness [ 181].

From the regression curves of penetration and perforation, the following ratio was obtained

P" 0.8. t (3)
Pr

where P, is penetration threshold, Pr is perforation threshold, and t is thickness.

A study was conducted to investigate the geometrical effects in energy absorption of

circular, square, and rectangular cross section tubes. Graphite, Kevlar and glass-reinforced epoxy

tubes were tested under quasi-static loading and it was concluded that for a given fiber lay-up



and tube geometry, the specific energy follows the order, circular > square > rectangle [199].

Further, it was found that the tube inside diameter to wall thickness (D/t) ratio was determined to

significantly affect the energy absorption capability of the composite materials

[200,201,202,203]. Energy absorption was found to be a decreasing nonlinear function of tube

(D/t) ratio. That is, a reduction in D/t ratio resulted in an increase in the specific energy

absorption. It was reported that carbon/epoxy and Kevlar/epoxy tubes with elliptical cross

sections exhibit similar trends, where the energy absorption capability was determined to be a

decreasing nonlinear function of the ratio of tube internal diameter to wall thickness (D/t) [201].

Another study investigated the effect of tube dimensions. It was found that carbon/epoxy

exhibited large changes in energy absorption characteristics with a range of values of tube

diameter (D), tube wall thickness (t) and (D/t) ratio [202]. Table 16 shows how specific energy

absorption changed with (D/t) ratio.

Table 16: Effect of (D/t) ratio on specific energy absorption.

Fiber Matrix Diameter ,D Thickness, t (D/t) Ratio Specific Energy Reference
Composition Resin (mm) (mm) Absorption,Es,(kJ/kg)
Carbon Fiber PEEK 35.5 0.8 44.375 171.7 [203]
Carbon Fiber PEEK 35.5 1.04 34.134 172.3 [203]
Carbon Fiber PEEK 35.5 2.2 16.136 205.9 [203]
Carbon Fiber PEEK 55 1.09 50.458 189 [203]
Carbon Fiber PEEK 55 2.09 26.315 218.4 [203]
Carbon Fiber PEEK 55 2.66 20.676 228.3 [203]
Carbon Fiber PEEK 96 1.64 58.536 194 [203]
Carbon Fiber PEEK 96 1.91 50.261 215.2 [203]

5.3.5. The Effect of Fiber Volume Fraction on the Energy Absorption Capability

Es capability of knitted carbon fiber-fabric/ epoxy and knitted glass fiber-fabric/epoxy

composites was investigated [204,205]. It was found that the specific energy absorption

capability increased with fiber content. Contrary to the above finding, a decrease was reported in
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specific energy absorption of carbon fiber/epoxy composite material with an increase in fiber

volume fraction from 40 to 70% [198]. The decrease in specific energy absorption was attributed

to the decrease in interlaminar shear strength of the composite with increasing fiber content.

In another study, carbon/epoxy composites with fiber volume fractions in the range 40-

55% were investigated [206]. It was concluded that some specimens exhibit a large decrease in

energy absorption capability with increasing fiber volume fraction, whereas other specimens

exhibit a slight decrease. Glass fiber/vinyl ester composites were studied with fiber volume

fractions in the range 10-50% and an increase in specific energy absorption with an increase in

fiber volume fraction was reported [207]. E-glass fiber/epoxy laminates were studied with

different fiber volume fractions as shown in Figure 45 and it was concluded that the amount of

energy absorbed increases with fiber volume fraction [208].
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Figure 45: Effect of fiber volume fraction-energy absorption versus time [208].

Therefore, it should be concluded that an increase in the fiber volume fraction does not

always improve the composite energy absorption capability.
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5.3.6. The Effect of Impactor Speed on the Energy Absorption Capability

Carbon/epoxy and Kevlar/epoxy composites were studied and an increase was reported

in energy absorption with impactor speed increase [209]. Contrarily, graphite/epoxy,

Kevlar/epoxy, and glass/epoxy composites were investigated and very little change in the energy

absorption was reported with testing speed change [210]. In another study [211], the energy

absorption behavior of glass/polyester and glass/vinyl ester composites were investigated in the

impactor speed range from 2.1x 0-4 to 15 m/s. In the case of glass/vinyl ester composites, a 10%

decrease was reported in energy absorption with increasing test speed, however, in the case of

glass/polyester, a 20% increase was reported in energy absorption with increasing test speed.

This result was attributed to the higher tensile strength and modulus of the vinyl ester. These

data are shown in Table 17.

Table 17: Effect of impactor speed on specific energy absorption.

Fiber Matrix Resin Initial Velocity Specific Energy Reference
Composition (m/s) Absorption, Es (kJ/kg)

Glass Vinyl ester 2.1x10-4 57.5 [211]
Glass Vinyl ester 12 53.5 [211]
Glass Polyester 2. lxl0 40.5 [211]
Glass Polyester 12 47.5 [211]
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6. Conclusions and Recommendations

6.1. Modes of Failure [See Tables 1 and 2.]

Conclusions

The modes of impact damage range from matrix cracking and delamination to fiber

failure and penetration. Matrix cracking is the lowest level of failure induced by low-velocity

impact. A matrix crack often extends across the entire lamina with the crack tip touching the

interlaminar interface. Such a crack may turn into a delamination along the interface during

subsequent loading. Delamination is an important damage mode because the level of impact

energy to initiate delamination is often low. Although delamination does not provide high

energy absorption during the impact process, it represents significant degradation to composite

materials. Placing 900 laminae on the outer faces of the laminate further decreases energy

absorption by the reduction of delamination initiation loads. Thus, a stacking sequence of

[450,00,...] would have a higher delamination load than a stacking sequence of [900,00,...].

Delamination crack length can be found using the linear relationship between peak contact force

and delamination crack length. Fiber failure generally occurs much later in the fracture process

than matrix cracking and delamination. Penetration is the worst damage mode and is often

investigated in ballistic loading.

Recommendations

Damage mode interaction should be better understood for predicting initiation and

propagation of a particular form of damage. The current literature contains relatively little

information on fiber failure due to impact. Studies should be conducted to better understand

these issues.
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6.2. Damage Tolerance and Post-impact Residual Strength [See Table 5.]

Conclusions

Post-impact performance is dictated by the existing damage modes, therefore a

combination of tension and compression residual strength testing is required to characterize

damaged laminates. Often, there is a larger strength degradation in compression than in tension

in low- energy impact loadings.

Recommendations

Compared with tension and compression, relatively less work has been conducted on the

residual flexural strength of laminates. Future studies should be conducted to better understand

residual flexural strength.

6.3. Evaluation of Damage Tolerance

Conclusions

The compression after impact (CAI) test is an important characterization in the design of

composite structures. Although there are many methods to predict damage tolerance,

compression after impact testing is one of the best ways to evaluate damage tolerance.

Recommendations

There is no standard testing machine for CAI tests. These tests are conducted using

purpose-built machines for convenient specimen geometries. Standardized testing procedures

could enhance the understanding and expand the applicability of these tests.
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6.4. Effect of Fiber on the Post-impact Residual Strength

Conclusions

Often fibers having high energy absorbing capacity offer excellent residual properties

unless the stiffness of the fiber is very low. Further, reducing the fiber diameter will result in a

degradation in residual strength. However, reducing the fiber diameter increases the energy

absorbing capability of the composite, resulting in lower levels of damage for a given impact

energy. These conclusions are all for a fixed fiber volume fraction.

Recommendations

An improvement in the post-impact residual strength of a laminate can be achieved by

increasing the strain to failure of the reinforcing fiber. This concept suggests a set of tests.

6.5. Effect of Matrix Properties on Post-impact Residual Strength

Conclusions

The post-impact residual strength of toughened composites does not appear to be

significantly better than those of untoughened composites . This results from the ironic fact that

composites with tougher matrices tend to be more notch-sensitive due to reduced splitting and

delamination around stress concentrations such as notches.

6.6. Effect of Interphase Properties on Post-impact Residual Strength

Conclusions

Treating the fibers improves the post-impact compressive properties. Even though

surface treatment of the fibers reduces the level of damage for a given energy, the increased
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notch-sensitivity of the laminate may result in poorer residual tensile properties.

Recommendations

The level of surface treatment applied to fibers in a multidirectional composite should

depend upon the operational conditions the component will encounter. Therefore, a compromise

should be sought in which the fibers are given intermediate levels of treatment.

6.7. Effect of Fiber Stacking Sequence on Post-impact Residual Strength

Conclusions

The role of the fiber stacking sequence plays a significant role in determining the residual

properties of impact damaged composites. For improved post-impact residual strength the

laminate's +/-45' fibers should be located on the outermost surface of the composite [100].

6.8. Modification of Thermoset Resins [See Table 10.]

Conclusions

The low-velocity impact resistance of a resin composite is, to a great extent, controlled by

the resin toughness. Rubber modified epoxies have higher resistance to impact damage and have

higher residual strength than unmodified thermoset resins. Modified thermosets have an

interlaminar fracture toughness ---up to 95%--- and a residual strength ---up to 90%--- greater

than their unmodified counterparts. However, a modified matrix resin imparts improved impact

damage resistance, with a concomitant reduction in stiffness and compressive strength in hot-wet

conditions.
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Recommendations

Care should be taken and a compromise should be sought when modifying composite

thermosets as there are optimal conditions that provide balanced properties of the composites.

6.9. Interleaving Technique [See Tables 8 and 10.]

Conclusions

Interleaved strips placed at delamination-prone laminar interfaces are a variant of the

method based on a tough matrix material. Thermoplastic interleaves are found to be more

effective than their thermoset counterparts due to their higher energy absorption capability.

Further, interleaved strips made from ductile short fibers with an adhesive provide an additional

energy absorption source during interlaminar fracture. Interleaving techniques offer greater

residual strength ---up to 100%--- and greater interlaminar fracture toughness ---up to 20%.

Recommendations

Although the interleaving technique is well-established to suppress the onset of

delamination at free-edges, its success for damage tolerance design requires further research.

6.10. Hybrid Fiber Composites [See Table 10.]

Conclusions

Hybridization of low-modulus tough fibers into brittle carbon fibers is based on the fact

that the strain energy absorption capacity of the fiber is the most dominant parameter dictating

the impact damage resistance of composites. Hybridization offers increased residual strengths up

to 140%. Among the many candidate fibers studied in the open literature, the addition of
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polyethylene fibers is frequently recommended for superior damage tolerance and penetration

resistance.

6.11. Woven Fabric Composites [See Table 10.]

Conclusions

The use of woven fabrics in place of cross plies has the beneficial effects of improving

the interlaminar fracture toughness and the impact damage resistance. The propagation of

delamination and shear cracks is also severely hindered by the weave structure in woven fabric

laminates. Woven laminates have residual strengths up to 45% greater than their unwoven

counterparts.

6.12. Stitched Composites [See Tables 9 and 10.]

Conclusions

Through-thickness stitches present an opportunity for the development of composites

with greatly improved resistance to delamination and impact damage. Stitched laminates offer

residual strengths up to 50% and interlaminar fracture toughness up to 150% greater than their

unstitched counterparts. One of the disadvantages of this process is that the undamaged

compressive strength of the material is reduced by up to 20%. Stitch density is a dominant

parameter in determining the efficiency of stitching.

Recommendations

Excessive stitching should be avoided since it is detrimental to damage resistance and

CAI strength due to misalignment and localized disruption of longitudinal fibers.
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6.13. Influence of Fiber on Impact Resistance

Conclusions

The properties of the fibers in a continuous fiber laminate have a significant effect on the

impact resistance and subsequent load-bearing capacity. During low-velocity impact, the ability

of the fibers to store energy elastically appears to be the fundamental parameter in determining

impact resistance. Strain to failure improvement of fibers can be achieved by reducing the fiber

diameter. Impact resistance of S-glass and Kevlar fiber reinforced composites is more than five

times greater than that of a Modmor II carbon fiber reinforced composite. Kevlar fibers, which

have large areas under their stress/strain curves, offer excellent impact resistance.

Recommendations

The role of the fiber diameter on impact resistance is not completely clear in the current

literature. A simple model suggests that composites with larger diameter fibers should be

inherently tougher [110]. Current trends are, however, towards smaller diameter fibers offering

higher strains to failure. Further investigation should be conducted in this area.

6.14. Influence of Matrix on Impact Resistance

Conclusions

It is clear that matrix properties play a significant role in determining the impact resistance

and subsequent load-bearing capability of a fiber reinforced composite. For improved impact

resistance of carbon fiber reinforced epoxy laminates, the strength of the matrix should exceed

69 MPa and its strain to failure should be greater than 4% [151]. It appears that materials with

high Mode II interlaminar fracture toughness offer superior post-impact compression strengths.
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Recommendations

It is somewhat unclear why the residual compressive properties of a composite should be

Mode II controlled since the failure process is undoubtedly complex, containing a significant

Mode I component. Further research should be done on this question.

6.15. Influence of Interphase on Impact Resistance

Conclusions

The level of treatment applied to the surface of the fibers in a composite has a significant

effect upon both its impact resistance as well as its residual load-carrying capability. Improving

the fiber-matrix bond strength in a carbon fiber reinforced epoxy can result in a four-fold

increase in the impact energy required to initiate damage. In general, impact on composites with

low levels of fiber surface treatment may generate large areas of splitting and delamination with

severe effects on the compressive properties of the material. Localized impact loading on highly

treated fiber composites results in a smaller, more localized damage zone, a higher perforation

threshold, and improved residual compressive properties. However, the increased notch

sensitivity associated with fiber surface treatments results in a reduction in the post-impact

tensile strength of the composite.

Recommendations

The level of treatment applied to the surface of the fibers should be determined very

carefully, depending upon the desired application.
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6.16. Influence of Fiber Stacking Sequence on Impact Resistance

Conclusions

The impact resistance of a multidirectional laminate is strongly dependent upon the

specific orientation of the plies. Further, impact damage appears to be greatest where ply

orientation changes of 900 occur. The mismatch in bending stiffness between two such adjacent

plies whether on the surface or internal to the laminate appears to have a significant effect upon

the level of damage incurred at that interface. Increasing the angle q° from 0O to 900 in a

(050,q°,05°) laminate decreases the delamination strength for a given incident impact energy.

Recommendations

These conclusions suggest that for containment of damage in laminates (1) unidirectional

laminates should be avoided since they split and fail at relatively low energies and (2) 900 fiber

direction changes in adjacent lamina should be avoided, if feasible.

6.17. The Effect of the Matrix on the Energy Absorption Capability [See Table 13.]

Conclusions

A higher fracture toughness of thermoplastic matrix materials would increase the energy

absorption capability of the composite material. Among all types of composites investigated in

this thesis, carbon fiber/PEEK laminates exhibited the highest specific energy absorption and this

is attributed to the higher interlaminar fracture toughness of the PEEK matrix.

Recommendations

The question of whether there is a role for thermoplastic composites in the U.S. Navy

could be explored.
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6.18. The Effect of the Fiber on the Energy Absorption Capability [See Table 14.]

Conclusions

Composites reinforced with fibers having higher strain to failure result in greater energy

absorption properties. And, composites reinforced with fibers having lower stiffness result in

greater energy absorption properties.

Recommendation

Changes in fiber stiffness affect energy absorption capability less than changes in fiber

failure strain. This should be considered in the fiber selection process for each task.

6.19. The Effect of the Fiber Orientation on the Energy Absorption Capability [See Table
15.]

Conclusions

Regarding the effects of fiber orientation on the energy absorption capability of a

composite material, the fiber orientations that enhance the energy absorption capability of the

composite also increase the number of fractured fibers, increase the material deformation, and

increase the axial stiffness of the composite material. Thus, for example, glass epoxy laminates

having [05/905/05]s fiber orientations display the highest energy absorption followed, in

decreasing energy absorption, by laminates having [05/455/05]s, [05/305/0s]s, [05/155/0s]s fiber

orientations. While this is true for energy absorption, it is counter to the initial delamination

load, as noted in Conclusion 6.16.
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6.20. The Effect of Fiber Volume Fraction on the Energy Absorption Capability

Conclusions

An increase in the fiber volume content may not always improve the energy absorption

capability of a composite. As the fiber volume fraction increases, the volume of the matrix

between the fibers decreases. This can cause the interlaminar strength of the composite to

decrease. As the interlaminar strength decreases, interlaminar cracks may form at lower loads,

resulting in a reduction in the energy absorption capability. For glass fiber vinyl ester

composites with a fiber volume fraction in the range of 10-50%, an increase in fiber volume

fraction results in an increase in energy absorption.

Recommendations

There has been no systematic study reported in the open literature on the effect of fiber

volume fraction on the energy absorption of composites. Such a study could be rewarding.

6.21. The Effect of Impactor Speed on the Energy Absorption Capability [See Table 17.]

Conclusions

It is known that energy absorption capability is a function of impactor speed. The strain

energy absorbing capabilities of a composite and its geometrical configuration affect the impact

resistance of the structure at low rates of strain. However, the strain energy absorbing

capabilities of the composite and its geometrical configuration are less influential at very high

rates of strain.
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Recommendations

There seems to be a lack of consensus about the influence of the impactor speed on energy

absorption. Further investigations are necessary for a potential consensus on this topic.
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Appendix

Impact Test Techniques for Composite Materials

Most impact tests, at least the final confirming tests of a component, are performed on

the real structure, with a real projectile. This reflects the problem of comparing or extrapolating

results from one test situation to another. Ideally, the impact test fixture should be designed to

simulate the loading conditions to which a composite component is subjected during operational

service and the failure modes that are likely to occur. Without claims to thoroughness, there are

at least two typical test methods. One is a drop weight method and the other a relatively high-

velocity impact test [212]. In simple terms, the impact problem can be divided into two separate

conditions: low velocity impact by a large mass (dropped tool) and high velocity impact by a

small mass (runway debris, small arms fire, etc.). The low velocity impact test is generally

simulated using a falling weight or a swinging pendulum and the high velocity impact test using

a gas gun or some other ballistic launcher. However, as stated previously, a wide variety of non-

standard testing techniques is presently being employed in order to assess the dynamic response

of reinforced plastics [149,155,157,179,213,214,215,216] making direct comparison difficult.

For materials evaluation and characterization, both types of tests have some

disadvantages. Substantial amount of materials maybe required to conduct a complete set of

tests. This is often a very severe problem when trying to characterize new materials available

only in small quantities. In addition, there is the problem of subsequent testing to determine

residual properties after impact. Large, thick panels may require a very large test machine.

Therefore, a major concern in the design of a standard test must be the test specimen size.
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Low-velocity Impact

Charpy and izod pendulums, falling weight fixtures such as the Gardner and drop dart

tests, and hydraulic machines designed to perform both in-plane and out-of-plane testing at

velocities up to 10 ms-1, are used for simulating the low-velocity impact response of composite

materials.

Drop-weight Impact Test

In the drop-weight impact test a weight is allowed to fall from a pre-determined height

to strike the test specimen or plate supported in the horizontal plane. The method of using the

drop-weight impact includes the use of a falling weight that impacts the specimen. A schematic

and a photograph of a drop-weight test are shown in Figure Al.

In testing composite materials, the constant weight and varying height method has to be

used because the composite material is strain rate sensitive [217,218,219]. Sometimes, the

impact event does not cause complete rupture of the test specimen but rebounds, enabling a

residual energy to be determined if necessary. The incident velocity of the impactor can be

determined by using optical sensors located just above the target or from dynamic equations of

motion. Frequently, the impactor is instrumented, enabling the force/time characteristics to be

determined, and may also contain a displacement transducer to permit the determination of

energy dissipation during the impact event.

The most important advantage of this test compared to the Charpy and Izod tests is that a

wider range of test geometries can be tested, thereby enabling more complex components to be

tested. Although testing is generally undertaken using a hemi-spherical impactor, it is possible to
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use other impactor shapes such as blunt cylinders or sharp points. Variations on the drop-weight

theme include the Gardner test where a hemi-spherical impactor strikes a small-diameter circular

plate, and the driven dart test where a hemi-spherical probe is driven into the specimen at a

predetermined rate [217].
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Figure Al: A schematic and a photograph of mechanism of a drop-weight impact test [217,219].

Charpy Pendulum Test

The Charpy test method was originally developed for testing metals. However, it has

been used to conduct many impact studies on composite materials [110,142,220]. The reason

for this choice is the fact that the Charpy pendulum is both simple to use and can be

instrumented, and therefore, in principle, can yield information on the processes of energy

absorption and dissipation in composites. The test specimen is generally a thick beam,

sometimes incorporating a notch at its mid-point as shown in Figure A2 [110]. The specimen is

supported in a horizontal plane and impacted by the swinging pendulum directly opposite the

notch. A dial on the test apparatus is used to record the energy dissipated during impact. By
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instrumenting the impactor with a strain gauge, further information can be obtained , thereby

enabling the determination of the variation of the impact force with time. By integrating the

force/time signal the energy absorbed during impact can also be determined.

Figure A2: Test specimen for Charpy pendulum [110].

The test set-up suffers a number of disadvantages such as the fact that the load/time curves often

contain high frequency harmonic oscillations resulting from the natural response of the impactor.

Once the harmonic frequencies of the various components have been determined, these effects

can generally be filtered out [219]. Another disadvantage is that the test specimen is a short,

thick beam and is therefore not typical of engineering components. Further, the test is

destructive, inducing failure modes that are not necessarily observed under low-velocity impact

loading on operational structures.

It was shown that the Charpy energy of carbon fiber-reinforced plastic (CFRP) varied

with specimen geometry, therefore, the applicability of the technique has been questioned [143].

The Charpy test is suitable only for ranking the impact performance of continuous fiber

composites, and as a first step in determining the dynamic toughness of these materials.
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Izod Test

The Izod impact test is shown schematically in Figure A3. The test set-up and

procedure are similar to those outlined for the Charpy test. In the Izod test, the specimen is

clamped in the vertical plane as a cantilever beam and impacted by a swinging pendulum at the

unsupported end. This test has similar disadvantages to those reported for the Charpy pendulum

test. It is best suited for ranking the impact resistance of composite materials.
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Figure A3: Izod test [146].

Hydraulic Test Machines

Hydraulic test machines have been used for assessing the deformation and failure

characteristics of materials at high rates of strain [104,221]. Test specimens such as double

cantilever beam (DCB) specimens or tensile dog-bone specimens can be tested over a wide range

of strain rates. Bonded strain gauges or an optical transducer can be utilized to measure strain

history of the specimen. If a strain gauge or any other displacement measuring device is bonded

to the specimen, the strain rate sensitivity of the adhesive should be considered. One of the

advantages of this technique is that the test specimens permit the evaluation of basic material
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properties such as tensile strength, modulus, and interlaminar fracture toughness without the

contact effects associated with falling weight impact. In order to ensure that the mass of the load

cell and gripping system are as low as possible, extreme care has to be taken since inertial

effects resulting from these components may conceal the true material response [104]. In

addition, caution should also be exercised when applying fracture mechanics principles to

geometries such as the DCB since the specimen may not be deforming in the same mode as a

similar statically-loaded specimen [104].

Intermediate- and High-velocity Impact

Gas Gun Impact Test

Using a high pressure gas gun, impact testing at ballistic rates of strain can be achieved.

Typically, a gas such as nitrogen is fed to a chamber located at one end of the barrel. Here the

gas is restrained by a plastic diaphragm. When the gas has reached a predetermined value the

diaphragm is burst by electrical heating or a mechanical puncturing device, accelerating a

projectile down the barrel to strike a specimen or component supported vertically. The velocity

of the impactor can be determined just prior to impact using optical sensors [222] or by using a

simple break-wire technique[171]. Generally, the test frequently results in large-scale damage

and/or target perforation. Instrumented gas guns have been developed, enabling

force/displacement histories to be measured [223]. Gas guns are useful for assessing the high

velocity impact response of composite material since they can be used to test large structures. A

schematic of gas gun impact testing is shown in Figure A4.
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Figure A4: Schematic diagram of gas gun impact testing [223].

Hopkinson-bar Technique

The Hopkinson-bar technique permits the determination of the variation of basic

material properties as a function of strain rate. Different types of Hopkinson-bar techniques are

used: Punch-loaded Hopkinson-bar, the compression bar, the tensile bar, and the Hopkinson-bar

shear test [224,225,226]. The set-up and experimental procedures associated with these tests

have been discussed in detail in the literature [224]. The test set-up for undertaking dynamic

tensile tests is illustrated in Figure A5 [227]. Strain rates approaching 1000 s-1 can be achieved

using gas-driven projectiles [224]. Strain gauges bonded to the input and inertia bars enable the

incident and reflected stress waves to be analyzed and permit the determination of a dynamic

stress/strain curve for the material.

To ensure that the interface between the specimen and loading bars is good, care has to

be taken, otherwise a shear failure within the gripping section is likely to occur. Further, in order

to minimize stress concentrations associated with the gripping area, relatively long specimens

are required when testing composite materials [227]
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Figure A5: Hopkinson-bar technique [227].
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