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Abstract

Bulk metallic glasses (BMGs) are a promising emerging engineering material distinguished
by their unique mechanical properties and amorphous microstructure. In recent years, an ex-
tremely promising microscale processing method for bulk metallic glasses, called thermoplastic-
forming has emerged. As with any emerging technology, the scientific basis for this process
is at present fragmented and limited. As a result their is no generally agreed upon the-
ory to model the large-deformation, elastic-visco-plastic response of amorphous metals in
the temperature range relevant to thermoplastic-forming. What is needed is a unified con-
stitutive framework that is capable of capturing the transition from a elastic-visco-plastic
solid-like response below the glass transition to a Newtonian fluid-like response above the
glass transition.

We have developed a finite-deformation constitutive theory aimed to fill this need. The
material parameters appearing in the theory have been determined to reproduce the ex-
perimentally measured stress-strain response of Zr41.2Ti:3.sCUl 2.5Ni10Be 22.5 (Vitreloy-1) in a
strain rate range of [10 - 5 , 10-1] s- 1, and in a temperature range [593, 683] K, which spans the
glass transition temperature 0, = 623K of this material. We have implemented our theory
in the finite element program ABAQUS/Explicit. The numerical simulation capability of
the theory is demonstrated with simulations of micron-scale hot-embossing processes for the
manufacture of micro-patterned surfaces.

Thesis Supervisor: Lallit Anand
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

Bulk metallic glasses (BMGs) possess unique mechanical properties which make them at-
tractive materials for fabricating components for a variety of applications. For example, the
commercial Zr-based alloys exhibit superior tensile strength (- 2.0 GPa), high yield strain (?
2%), relatively high fracture toughness (j 10 - 40 MPav/--), and good corrosion resistance
[cf., e.g., 1-3]. A particularly important characteristic of metallic glasses is their intrinsic
homogeneity to the nanoscale because of the absence of grain boundaries. This characteristic,
coupled with their unique mechanical properties, makes them ideal materials for fabricating
micron-scale components, or high-aspect-ratio micro-patterned surfaces, which may in turn
be used, for example, as dies for the manufacture of polymeric microfluidic devices. However,
in order to realize the potential of BMGs in such applications, robust materials-processing
techniques for fabricating microscale features and components must be developed.

In recent years, an extremely promising method called thermoplastic forming has emerged
[cf., e.g., 4-9]. The thermal history of this processing method is schematically shown on a
time-temperature-transformation (TTT) diagram for a bulk metallic glass in Figure(I-1). In
this process, the BMG is first obtained in the amorphous state by traditional die-casting.
The shape in this step is not the final shape but in the form of simple plates or rods.
The BMG plate (or rod) is then heated into the supercooled liquid region above the glass
transition temperature of the material, where it may be isothermally formed to produce
intricate microscale patterns and then slowly cooled. Since BMGs in their supercooled
region are metastable, they eventually crystallize; however, the crystallization kinetics in
BMG alloys are sluggish, and this results in a relatively large temperature-time processing
window in which thermoplastic forming may be carried out without crystallization.1 Further,
since the forming is done isothermally and the subsequent cooling is rather slow, and since
there is no phase change on cooling, residual stresses and part distortion can be minimized

'The temperature-time processing window for thermoplastic forming is typically much larger than that
afforded by die-casting.



.-- all factors which potentially allow for a forming process which is much better controlled
than die-casting.

A specific thermoplastic forming process geared towards producing nano/microscale,
high-aspect ratio, patterned features on surfaces is that of micro-hot-embossing. In this
process, the BMG is formed in its supercooled liquid region by pressing it against a master-
surface with the desired nano/microscale features (usually a patterned silicon wafer). The
viability of this process has been demonstrated extensively in the literature [cf., e.g., 4--9].
However, as with any emerging technology, the scientific basis for this process is at present
fragmented and limited. Experiments to determine the stress-strain response of BMGs in
the appropriate temperature and strain-rate regime required to develop mechanistically-
informed continuum-level constitutive equations useful for applications are just beginning to
appear [cf., e.g., 10, 11]. Because of this, numerically-based process-simulation capabilities
for thermoplastic forming of BMGs also do not exist, and most of the recent experimental
micro-hot-embossing studies have been conducted by trial-and-error.

While no set of widely-accepted constitutive equations spanning the necessary range of
processing temperatures and strain rates exists, some recent progress towards this end has
been made by [12, 13].2 In addition, in two recent papers Anand and Su [15, 16] have
developed a continuum-level constitutive theory aimed at modeling the room-temperature
response of metallic glasses, and in [17] these authors have extended their theory to model
the response of metallic glasses at high homologous temperatures in the range 0.77g, <

<9 0. 9•,. The purpose of this thesis is to build on the constitutive framework of Anand
and Su to represent the mechanical response of metallic glasses in the temperature range
0 .9'0 •, ) ' 9,. where 0,, > V'O is the first crystallization temperature of the material; the
higher-end of this temperature range is of utmost importance for thermoplastic forming.

The structure of this thesis is as follows. In Chapter 2, we recall the constitutive frame-
work of Anand and Su [15-17] for bulk metallic glasses. In Chapter 3, we specialize this
theory to model the elastic-viscoplastic response of metallic glasses in the temperature range
0.9i, < ~9 < V . We use the experimental data of [10] for the widely studied metallic
glass Zr41.2Ti13.8Cu 12.5Ni10 Be 22.5 (Vitreloy-1) to estimate the material parameters appearing
in our specialized equations, and using the specialized model, we compare the numerically-
calculated stress-strain curves with the corresponding experimental results. We have imple-
mented our constitutive model in the finite element program ABAQUS/Explicit (2006). In
Chapter 4, we use this simulation capability to determine appropriate processing conditions
for several micron-scale hot-embossing processes and compare results from the hot-embossing
simulations against results from corresponding physical experiments. We close in Chapter 5
with some final remarks.

2Also see [10, 14]; however, these two sets of authors use a "fictive-stress" model, whose physical basis
we do not comprehend.
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Figure 1-1: A schematic time-temperature-transformation (TTT) diagram for a bulk metallic
glass. The processing route for thermoplastic forming is shown: the amorphous metal is heated
into the supercooled region, isothermally formed, and then slowly cooled.
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Chapter 2

Finite-deformation Theory

2.1 Introduction

An accurate quantitative description of the elastic-viscoplastic constitutive response of metal-
lic glasses at high temperatures spanning their glass transition temperature is crucial for the
development of a numerical capability for simulation of thermoplastic forming of metallic
glasses. The constitutive theory developed in this chapter is based on the work of Anand
and Su [1-3].

An essential kinematical ingredient of elastic-viscoplastic constitutive theories for metallic
glasses is the classical Kriner [4]- Lee [5] multiplicative decomposition

F = FeFP (2.1)

of the deformation gradient F into elastic and plastic parts Fe and F P [e.g., 1-3, 6, 7].
It is important to note from the outset that FP is to be regarded as an internal variable

of the theory whose evolution is determined by an equation of the form FP = LPFp (to be

discussed shortly), with Fe then defined by Fe d= FFp-1. Hence FP and Fe in the decom-
position (2.1) are not purely kinematical in nature, as they are not defined independently of
constitutive equations.

2.2 Notation

We use standard notation of modern continuum mechanics. Specifically: V and Div denote
the gradient and divergence with respect to the material point X in the reference configu-
ration; grad and div denote these operators with respect to the point x = x(X, t) in the
deformed body; a superposed dot denotes the material time-derivative. Throughout, we write
Fe- 1 = (Fe)-l, FP-T = (FP)-T, etc. We write tr A, sym A, skw A, Ao, and symoA respec-



tively, for the trace, symmetric, skew, deviatoric, and symmetric-deviatoric parts of a tensor
A. Also, the inner product of tensors A and B is denoted by A: B, and the magnitude of
A by IAI= vA-:A.

2.3 Kinematics

2.3.1 Basic Kinematics

We consider a homogeneous body B identified with the region of space it occupies in a fixed
reference configuration, and denote by X an arbitrary material point of B. A motion of B
is then a smooth one-to-one mapping x = x(X, t) with deformation gradient, velocity, and
velocity gradient given by

F = VX, v = X, L = grad v = FF -1 . (2.2)

To model the inelastic response of the material we assume that the deformation gradient
F may be decomposed as

F = FeF ".  (2.3)
As is standard, we assume that

J = det F > 0,

and consistent with this we assume that

def def
Je = det Fe > 0, JP det FP > 0, (2.4)

so that Fe and FP are invertible.
Restrict attention to a prescribed material point X, and let x denote its place in the

deformed configuration at a fixed time t. Then, bearing in mind that (for X fixed) the linear
transformations Fe(X) and FP(X) at X are invertible, we let

clef (2.5)
Mx = range of FP(X) = domain of Fe(X), (2.5)

and refer to Mx as the intermediate space at X. Mx plays roles for FP(X) and Fe(X)
analogous to those played by the infinitesimal neighborhoods of X and x for F: FP(X) is
a linear transformation of an infinitesimal neighborhood of X to A/x; FC(X) is a linear
transformation from AMx to an infinitesimal neighborhood of x. Unlike the reference and
deformed configurations, which are global, each intermediate space Mx is local. Note that the
local intermediate space AMx is only a mathematical construct, it is not local a "configuration"
actually occupied by the body.

We refer to FP and Fe as the plastic and elastic parts of F. Physically,

* FP(X) represents the local plastic deformation of the material at X due to "plastic
mechanisms" such as the cumulative effects of inelastic transformations resulting from



the cooperative action of atomic clusters in metallic glasses in a microscopic neighbor-
hood of X. This local deformation carries the material into - and ultimately "pins"
the material to - a coherent structure that resides in the intermediate space at X (as
represented by the range of FP(X));

* Fe(X) represents the subsequent stretching and rotation of this coherent structure,
and thereby represents the "elastic mechanisms," such as stretching and rotation of
the interatomic structure in metallic glasses.

By (2.2)3 and (2.3),
L = grad v = L' + FeLpFe- 1

with
Le = FeFe-1

As is standard, we define the total, elastic, and plastic stretching and spin tensors through

D = sym L,

De = sym Le,

DP = sym LP ,

W = skw L,

W e = skw Le,

Wp = skw LP,

so that L = D + W, Le = D' + We, and L" = DP + W P.
The right and left and polar decompositions of Fe are given by

Fe = ReUe = VeR ,

where Re is a rotation (proper orthogonal tensor), while U' and
definite tensors with

Ue = FeT Ve = vFEFT

Ve are symmetric, positive-

(2.10)

Also, the right and left elastic Cauchy-Green tensors are given by

Ce = Ue2= FeT Fe, BC = Ve2 = FeFeT

and the right and left inelastic Cauchy-Green tensors by

Cp = Up 2 = FpT F p,

We refer to
trLp = trD P  as the plastic dilatation-rate,

and note that
jP = JP tr L.

For later use, we define the plastic volumetric strain by

def
S= Po +ln JP,

(2.6)

(2.7)

(2.8)

(2.9)

(2.11)

(2.12)

(2.13)

(2.14)

LP = FPFP-1

BP = Vp2 = FPFpT



where 0po is the plastic volumetric strain when JP = 1; then

<b = trLp . (2.15)

2.4 Frame-indifference

Changes in frame (observer) are smooth time-dependent rigid transformations of the Eu-
clidean space through which the body moves. We require that the theory be invariant under
such transformations, and hence under transformations of the form

X(X, t) - Q(t)(x(X, t) - o) + y(t) (2.16)

with Q(t) a rotation (proper-orthogonal tensor), y(t) a point at each t, and o a fixed origin.
Then, under a change in observer, the deformation gradient transforms according to

F - QF. (2.17)

Thus, F -- QF + QF, and by (2.2)3,

W - QWQT + QQT.

Moreover, FeF P -, QFeFP, and therefore, since observers view only the deformed config-
uration,

F e -*QF e , F P is invariant,

and, by (2.7)1,
Le - QLeQ T + QQT.

Hence,
D e --+ QDQ T, We , QWeQ T + QQT .

Also, by (2.7)2,
LP , D', and W P are invariant.

Further, by (2.9),

F = ReU e 
- QFe = QReU e,

F e = V CR - QF e = QVeQT QRe,

and we may conclude from the uniqueness of the polar decomposition that

Re --+ QR', V e --> QVeQT, Ue is invariant.

Hence,

L --+ QLQ T + QQT.

D - QDQ T,

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)
w w w •



Hence, from (2.11), B e and Ce transform as

B e -- QBeQT , and Ce is invariant. (2.25)

2.5 Development of the theory based on the principle
of virtual power

Following [8-10], the theory presented here is based on the belief that

* the power expended by each independent "rate-like" kinematical descriptor be expressible
in terms of an associated force system consistent with its own balance.

However, the basic "rate-like" descriptors, namely, v, Le, and LP are not independent, since
by (2.6) they are constrained by

grad v = Le + F LP Fe-l ,  (2.26)

and it is not apparent what forms the associated force balances should take. It is in such
situations that the strength of the principle of virtual power becomes apparent, since the
principle of virtual power automatically determines the underlying force balances.

2.5.1 External and internal expenditures of power

We write Bt = x(B, t) for the deformed body. We use the term part to denote an arbitrary
time-dependent subregion Pt of Bt that deforms with the body, so that

Pt = X(P, t) (2.27)

for some fixed subregion P of B. The outward unit normal on the boundary OPt of Pt is
denoted by n.

The power expended on Pt by material or bodies exterior to Pt results from a. macroscopic
surface traction t(n), measured per unit area in the deformed body, and a macroscopic body
force b, measured per unit volume in the deformed body, each of whose working accompanies
the macroscopic motion of the body. The body force b is assumed to include inertial forces;
that is, granted that the underlying frame is inertial,

b = b0 - pyý, (2.28)

with bo the noninertial body force, and p(x, t) > 0 is the mass density in the deformed body.
We therefore write the external power as

wVext (Pt) = t(n) -vda + b -vdv, (2.29)O(2. 9



with t(n) (for each unit vector n) and b defined over the body for all time.

We assume that power is expended internally by

* elastic stresses T power-conjugate to L', and

* microstresses T P power-conjugate to LP,

and we write the internal power as

Wint,(P~) - = (T: L+ -1 TP: LP) dv. (2.30)

Here T and TP are defined over the body for all time. The term Je-1 arises because the
microstress-power TP : LP is measured per unit volume in the corresponding intermediate
space, but the integration is carried out within the deformed body.

2.5.2 Principle of virtual power.

Assume that, at some arbitrarily chosen but fixed time, the fields X and Fe (and hence F
and FP) are known, and consider the fields v, Le, and LP as virtual velocities to be specified
independently in a. manner consistent with (2.26); that is, denoting the virtual fields by 9,
Le, and LP to differentiate them from fields associated with the actual evolution of the body,
we require that

grad - = f1 + FeLtPF - 1. (2.31)

More specifically, we define a generalized virtual velocity to be a list

v = (,,I LP)

consistent with (2.31).
We write

'ext (Pt, V) = t(n) -i da + j b - dv, (2.32)

wint (Pt, V) = j. (T: L + e- 1 T P: LP) d7,

respectively, for the external and internal expenditures of virtual power. Then, the principle
of virtual power is the requirement that the external and internal powers be balanced. That
is

* given any part Pt,

Wext (Pt, V) = Wint (Pt, V) for all generalized virtual velocities V. (2.33)



2.5.3 Frame-indifference of the internal power and its consequences

To deduce the consequences of the principle of virtual power, assume that (2.33) is satisfied.
In applying the virtual balance (2.33) we are at liberty to choose any V consistent with the
constraint (2.31).

We require that

* the internal power be invariant under a change in frame.

Thus, consider the internal power Wint (Pt, V) under an arbitrary change in frame. In the
new frame, Pt transforms rigidly to a region P'P, T transforms to T*, T P transforms to TP*,
Le transforms to

Le* = QLeQT +QQ .

and LP is invariant. Hence, under a change in frame Wint(Pt, V) transforms to

Wirt ()t, V*) = J {T*: (QLeQT + QQT) + Je-l TP.: } dv,

= 'Q T*: (QeQT+ Q QT) + e- 1 TP*: LP dv,

where in the second of the equations above, since Pt is simply Pt transformed rigidly, we
have replaced the region of integration Pt by Pt.

We deduce below the transformation rules for the elastic stress T and the microstress
TP under a change in frame by using the requirement that the internal power be invariant
under a change in frame:

Wilnt(Pt , V*) = irint (Pt, 1V).

Since the region Pt is arbitrary, this requirement yields the relation

T*:(QLeQT QT) e) JETP :p .e je-1 TPLP.

Also, since the change in frame is arbitrary, if we choose it such that Q is an arbitrary
time-independent rotation, so that Q = 0, we find that

T: Le + J"- : L T*: = (QLeQ T)+ e- TP*LP

= (QTT*Q): Le e-1 TP*: LP,

or

(T- (QT*TQ) i (TP - TP*) : = 0.

Since this must hold for all Le and LP, we find that the elastic stress T transforms according
to

T* = QTQT . (2.34)



and the microstress T P is invariant:
TP* = T P. (2.35)

Next, if we assume that Q = 1 at the time in question, so that Q is an arbitrary skew tensor,
we find that

T:Q = 0,

or that the elastic stress T is symmetric,

T = TT . (2.36)

Finally, using (2.36) we may write the internal power (2.30) as

(2.37)f (T: De + e-1 TP: LP) dv.
-Pt,

2.5.4 Macroscopic force balance. Microscopic force balance

As previously stated, to deduce the consequences of the principle of virtual power, assume
that (2.33) is satisfied. In applying the virtual balance (2.33) we are at liberty to choose any
V consistent with the constraint (2.31).

First consider a generalized virtual velocity which is strictly elastic in the sense that

1O = 0, so that by (2.31) gradi = L' .

For this choice of V, (2.33) yields

J t(n) -irda + b . ýrdv = T:grad i•dv.

Then, using the divergence theorem,

/(t(n) -Tn) *ida + (div T + b) •- dv = 0.

Since this relation must hold for all )t and all r, standard variational arguments yield the
traction condition

and the local force balance

t(n) = Tn,

div T + b = 0.

(2.39)

(2.40)

Recall that we have assumed that that b includes inertial body forces. Thus, recalling (2.28),
the local force balance (2.40) becomes

div T + b0 = p.v,

(2.38)

(2.41)



with bo the noninertial body force. Therefore, the symmetric stress T plays the role of the
macroscopic Cauchy stress, and (2.41) and (2.36) represent the classical macroscopic force
and moment balances.

Next, to discuss the microscopic counterparts of these results, we choose a generalized
virtual velocity field V for which

v - 0, so that by (2.31) L • = -F•LPFe - 1.  (2.42)

Then, the external power vanishes identically, so that, by (2.33), the internal power must
also vanish, and satisfy

w~int (Pt, ) = e- 1 (TP - Je F TTFe-T) LP dv = 0.

Since this must be satisfied for all Pt and all tensors LP, a standard argument yields the
microforce balance

Me = TP, (2.43)

where
M d= je Fe T TFe- T  (2.44)

is a Mandel stress. The balance (2.43) characterizes the interaction between internal forces
associated with the elastic response of the material and internal forces associated with inelas-
ticity.

For later use we introduce a stress measure

Se def JeFe-ITFe T, (2.45)

then the corresponding M e is given by

M e = CeS . (2.46)

2.6 Local dissipation inequality

We consider a purely mechanical theory. Thus, we limit our considerations here to isothermal
situations in the absence of temperature gradients. Let

* t9 > 0 denote the absolute temperature,

* E and r represent the specific internal energy and specific entropy densities, measured
per unit mass in the deformed body,

Then, balance of energy is the requirement that

I p dv = Vext (Pt), (2.47)



while the second law takes the form of an entropy imbalance

I p7ldv > 0.

Thus, since Wext(Pt) = Wjintt(t.) and since Pt is arbitrary, we
forms of (2.47) and (2.48):

(2.48)

may use (2.37) to obtain local

p = T:De J+ -1 TP:

Let
def

# = e - dr

(2.49)

(2.50)
denote the specific (Helmholtz) free energy. Then (2.49) yields the local dissipation inequality

pO - T: De - J-1 TP: LP < 0. (2.51)

The free-energy density per unit volume of the intermediate space is given by

01 = p" 0.

Also, note that

Pi = JPpi, pi = jep, and p, = Jp.

Furthermore, taking the time derivative of (2.53)1 and noting that PR is not a function of
time, we obtain the following expression for the rate of change of p,:

P• = -pitrL P,  (2.54)

and from (2.52) and (2.54) we obtain an expression for 0:

= I , + i)trLP) . (2.55)

Then multiplying (2.51) through by JP and using (2.55), we obtain

,'i1 + ~',tr LP - Je T: D - TP: LP < 02,

(2.52)

(2.53)

(2.56)



Further, differentiating (2.11)1 results in the following expression for the rate of change
of C':

ce = (FeTVF + re-Fe )

= FeT (FeFe-1 + Fe- FeT)Fe

= 2 FeTDeFe. (2.57)

Hence

De = F e-TCe Fe-, (2.58)

and therefore

JeT:,De JeT: (Fe-TCeFe-1 (2.59)

JeFe-1TFe-) : Ce. (2.60)

Thus using (2.45), we obtain

JeT:De D= Se:Ce (2.61)

For later use, from (2.37), (2.43) and (2.61), we note that the internal power per unit volume
of the intermediate space is

Se: Ce + TP: LP. (2.62)
Using (2.61) we may rewrite the free-energy imbalance as

,j + 'itr LP - Se: Ce - T: LP" 0, (2.63)

Finally, we note that I, and 0 are invariant under a change in frame since they are scalar
fields, and on account of the transformation rules (2.23), (2.25), (2.34) and the definitions
(2.44) and (2.45), the fields

Ce, LP, Se, and TP, (2.64)

are also invariant.

2.7 Constitutive theory
The macroforce balance, the microforce balance, and the dissipation inequality are basic
laws, common to large classes of elastic-plastic materials; we keep such laws distinct from
specific constitutive equations, which differentiate between particular materials. We view
the dissipation inequality (2.63) as a guide in the development of a suitable constitutive
theory. In this regard we do not seek the most general constitutive equations consistent with



the dissipation inequality; instead we develop special constitutive equations close to those
upon which the classical theories of plasticity are based.

2.7.1 Constitutive equations

To account for the major strain-hardening characteristics of materials observed during plastic
deformation, we introduce a list of n scalar internal state-variables = (1,2,... n) which
represent important aspects of the microstructural resistance to plastic flow. Since ý are
scalar fields they invariant under a change in frame.

Guided by the dissipation inequality (2.63), we assume the following special set of con-
stitutive equations:

Se = Se(Ce, (, ,
- (2.65)

I = TI (LP , J, , )

Note that on account of the transformation rules listed in the paragraph containing (2.64)
and since (p, ý, 6) are also invariant,

* the constitutive equations (2.65) are frame-indifferent.

2.7.2 Thermodynamic restrictions

With a view toward determining the restrictions imposed by the local dissipation inequality,
we note that under isothermal conditions

-a,(Ce,o, ) ail(CC, 7P )
#i(Ce. 9), =-) =9 : Ce + Vp.

Hence, satisfaction of the free-energy imbalance (2.63) requires that the constitutive
equations (2.65) satisfy

½Se(Ce W,•) - Oa:I(CeW V) Ce)
2 ace •

TIp(Lp, p, (, ) - : LP > 0 . (2.66)



Also, defining

YP(C e , LP , p, ~,t ) [ TP(LP, ý,c 1,) -

we may write the free-energy imbalance as

- e , O+ 0 (C0, ), ( )) (2.67)

Se(Ce, Vl) -a Ce : Ce + YP(Ce, LP, 9, •(), :) LP > 0. (2.68)

This must hold for all arguments in the domains of the constitutive functions, and in all
motions of the body.

Thus, sufficient conditions that the constitutive equations satisfy the free-energy imbal-
ance are that

(i) the free energy determines the stress via the stress relation:

0,0( (Ce, 2 79)Se(Ce, ~, ) = 2 ceOC" (2.69)

(ii) the dissipative flow stress function YP satisfies the mechanical dissipation inequal-
ity

Y"(Ce,LP, p, ý, V): LP > 0. (2.70)

The left side of (2.70) represents the rate of energy dissipation, measured per unit
volume in the intermediate space.

We assume henceforth that (2.69) holds in all motions of the body, and that the material is
strictly dissipative in the sense

(2.71)

whenever LP # 0.

2.7.3 Flow rule

An important result of the theory is the flow rule, obtained upon using (2.67) and the
microforce balance (2.43),

YP(Ce, LP, V, ', V) = [Me

For conciseness, we define the stress E as

(2.72)

+ 0 1(C d 1]. (2.73)

YP(Ce, LP, o, (, d): Lp > 0

07(C,(c , 9)
- V,(Ce , ) +

(C" ý0' 79)Lef [M
E- = Me



Thus, the flow rule becomes
YP(C" , LP , p, ý, V) = E. (2.74)

2.8 Isotropy

The following definitions help to make precise our notion of an isotropic (amorphous) mate-
rial:

(i) Orth + = the group of all rotations (the proper orthogonal group);

(ii) the symmetry group ga, is the group of all rotations of the reference configuration that
leaves the response of the material unaltered.

(ii) the symmetry group 9, at each time t, is the group of all rotations of the intermediate
structural space that leaves the response of the material unaltered.

We now discuss the manner in which the basic fields transform under such transforma-
tions, granted the physically natural requirement of invariance of the internal power (2.62),
or equivalently, the requirement that

Se: Ce and TP: L be invariant. (2.75)

Let Q be a time-independent rotation of the reference configuration. Then F -+ FQ, and
hence

FP--+ FPQ and Fe is invariant, (2.76)
so that, by (2.7) and (2.11), Ce and LP are invariant. We may therefore use (2.75) to conclude
that S' and T P are invariant. Thus

* the constitutive equations (2.65) are unaffected by such rotations for the reference
configuration.

Next, let Q, a time-independent rotation of the corresponding intermediate space, be a
symmetry transformation. Then F is unaltered by such a rotation, and hence

and F P --- QTFP,

and also
Ce -* QTCeQ, &Ce - QT CeQ,

Then (2.78) and (2.75) yield the transformation laws

S * QTSeQ, VT p - QTTpQ.

LP -- QTLPQ.

(2.77)

(2.78)

(2.79)

F e -- FeQ



Thus, with reference to the constitutive equations (2.65) we conclude that

V,(Ce, (p, 1) = V)(Q TCeQ, o, 09),

QTSe(Ce, 0, 9)Q = Se(Q TCeQ, W 19),
(2.80)

QT TP(LP, p,o , ) Q = TP(Q T LPQ, I, ~, ),

hi(L P, W,, , 6) = hi(Q TLPQ, o, , 0),

must hold for all rotations Q in the symmetry group 9, at each time t.
We refer to the material as isotropic (and to the reference configuration and intermediate

spaces as undistorted) if
gR = Orth+, 9I = Orth+ ,  (2.81)

so that the response of the material is invariant under arbitrary rotations of the reference
and intermediate space at each time t. Henceforth

* we restrict attention to materials that are isotropic.

In this case,

* the response functions V,, Se, TP, hi, and YP must each be isotropic.

2.8.1 Consequences of isotropy of the elastic response

Since (0(Ce, o, '0) is an isotropic function of Ce, it has the representation

,i01(Ce. s, 0) = i (ICe, so, '), (2.82)

where
IZc = (Ce Ce),3(Ce

is the list of principal invariants of Ce.The spectral representation of Ce is

3

Ce = wer 0 r. (2.83)
i=1

where (w w, w, w') are the positive eigenvalues, and (ri, r2, re) are the orthonormal eigenvec-
tors of Ce.Let

A = Wi,  (2.84)

denote the positive eigenvalues of Ue = .C- . Then the principal invariants of C e may be
expressed as

I(C ) = Ae 2 + e2 +
2(C e A2 e 2  2 e 2 e 2 e 2 (2.85)

1 (C e2 2 3e21
i, (c) = A 2A e2 e2.



Using (2.85) in (2.82) to express the free energy in terms of the principal stretches, we obtain:

=1(A', A', A', ',). (2.86)

Then, by the chain-rule and (2.69), the stress S' is given by

S =2
OCe

3-3 V),(xe, ~xe, I , ) oA\
= 2 2

3 1 aVJi (A 7, A ,A o) &aw= 37 z (2.87)

Assume that the squared principal stretches w. are distinct, so that the w,' and the
principal directions re may be considered as functions of Ce. Then, from (2.83),

r e r re (2.88)aCe

and, granted this, (2.88) amnd (2.87) imply that

3 e,S0:- b 'e ,-, rA W 0 (2.89)
i=l i  2 r.

Also, use of (2.83) and (2.89) in (2.46) gives

tk (AC A6 e
= A e 1 2 3  e P e (2.90)

i=I 0

Next, since
3

Fe= A I 0 r , (2.91)
i=1

where
1 = Re r e

are the eigenvectors of V e (or Be), use of (2.45) and (2.89) gives

i=l = i a'2 i=1



or

T = J-i ,A le & (2.92)
i=1 i

Further, (2.92) and (2.90) yield the important relation

Me = JR e RTR'. (2.93)

and hence that

* the Mandel stress Me is symmetric.

Furthermore, from (2.73), we recognize that the dissipative stress E is also symmetric.

2.9 Specialization of the constitutive equations

The constitutive equations listed in above are fairly general. With a view towards ap-
plications to amorphous metallic glasses, we specialize the theory by imposing additional
constitutive assumptions based on experience with existing recent theories of isotropic vis-
coplasticity of metallic glasses.

2.9.1 Invertibility assumption for the flow rule

In classical theories of plasticity, the flow rule is usually specified as an equation for the
plastic velocity gradient L2 in terms of a suitable stress measure and other internal variables.
Accordingly, we assume that for a fixed state (Me, Ce, ý,, , V9), the dissipative flow stress
function YP is invertible, so that we may write

LP = L(E, , , ). (2.94)

In this case, the dissipation inequality (2.70) may be written as

E: L~(E, o, ý, 6) > 0 for LP # 0. (2.95)

Since the function YP is isotropic, the function LP is also an isotropic function of its argu-
ments.

2.9.2 Elastic energy and stress

Recall that (Ae, Ae, IA) denote the principle stretches. Next, let

defEf = In A' (2.96)



define principal elastic logarithmic strains, and consider a free energy function of the form

V), (A e, A e, Ae, (p I ) = V)1(E•, e, E , E e3 , • ) (2.97)

so that, using (2.92)

J O-iE (E , ,E e, ýo,,d
T = J e-1 1E (2.98)

i= 1

We consider the following simple generalization of the classical strain energy function of
infinitesimal isotropic elasticity which uses a logarithmic measure of finite strain,

',S,(E', E2, E , p, 19) = G [(E )2 + (Eg)2 + (E+)2 ] + (K - 2G) (E( + E( + E )2 , (2.99)

where the plastic volumetric strain-dependent and temperature-dependent parameters

G(W, d) > 0, K(ý, V) > 0.

are the shear modulus and bulk modulus, respectively.

Then, (2.98) gives

T = Je- 1 (2GE. + (KI

(2.100)

(2.101)
S G) (E + E3 + E:) )i i I

Let

(2.102)def TE ie 1e 0 l e

i=1

denote the logarithmic elastic strain tensor in the deformed body, and

3
Ee def E re re,

i= 1

denote the logarithmic elastic strain tensor in the intermediate space, so that

(2.103)

Ee = ReTHeRe.

Then, (2.101) gives
T = Je- 1 {2GHe + K tr Hel} .

(2.104)

(2.105)

Further, using (2.93) a.nd (2.105), we find that the stress M' is given by the simple relation

Me = 2GEe + K tr Eel. (2.106)



Thus, summarizing, with
3

Ce = w r0r,, (2.107)
i=1

the spectral representation of C e, and with

def 1
Ee = In Ce (2.108)

2

denoting a logarithmic strain measure, we consider an elastic free energy of the form:

VI(E e, p, 9) = GIEe 2 + ½K(trE')2 , (2.109)

where the plastic volumetric strain-dependent and temperature-dependent parameters

G(, ) ) > 0, K(, V) > 0, (2.110)

are the shear modulus and bulk modulus, respectively. In this case, the constitutive equation
for the stress M e becomes

M = 2GEE + KtrEel, (2.111)

and the corresponding Cauchy stress, using (2.93), is

T = Je-1ReMeRer. (2.112)

2.9.3 Kinematical hypothesis for plastic velocity gradient. Inter-
nal variables

We assume that plastic flow occurs by shearing accompanied by dilatation (or compaction)
relative to some slip systems. Each slip system is specified by a slip direction s("), and a slip
plane normal m (') (we label slip systems by integers a), with

s(a) • m (l () = 0, Is((Y)I, 1m(a)I = 1, (2.113)

and we take the plastic stretching to be made up of shearing rates v(") on the set of potential
slip systems, and assume that this shearing is accompanied by shear-induced dilatation rates
6(') in the directions normal to the shear directions. That is, the total plastic velocity
gradient is taken as

LP= - LP(a), 6 m) m( )

LP- J/ (a)s (() ( m(n)) + 0(a)(Ma) & Ma)), Va _> O, (2.114)
1() = 3 L( )



where / is a dilatancy function. Positive values of / describe plastically dilatant behavior,
while / < 0 describes behavior that is plastically compacting.

For an amorphous isotropic material there are no preferred directions other than the
principal directions of stress, and accordingly we consider potential slip systems with respect
to these principal directions of stress. The symmetric stress E has the spectral representation

3

E= Z i 6 0 6i,, (2.115)
i=1

where {oai i = 1, 2, 3} are the principal values, and {1i i = 1, 2, 3} are the orthonormal princi-
pal directions of E. We assume that the principal stresses {ai i = 1, 2, 3} are strictly ordered
such that

U1 a02 > a3. (2.116)

First, consider potential slip in the (61,63)-plane. Let (s(`), m(a)) denote a potential slip

system lying in this plane and oriented such that s(' ) makes an angle ý with respect to the
61-axis

s(") = cos ý61 + sin .6 3, m(Ia) = sin 61 - cos ý6 3,

and let
7(T))(() = s(a) - Em (' ••) ,  and a()() = -m (" ) . Em (a).

denote the resolved shear stress and compressive normal traction for such a system. Then,
introducing an internal variable it 2 0 called the internal friction coefficient, we define the
quantity

def arctanp (2.117)

called the angle of internal friction, and assume that any given instant for a fixed stress E,
shearing is possible only on those slip systems for which

f (() = {7(I ) - (tanw) a()} ,

is a maximum with respect to (. It is easily shown that f(s) is a maximum for

=+ r+ .I(2.118)

Hence, there are two potential slip systems in the (i61,63)-plane, with slip directions which
are symmetrically disposed about the maximum principal stress direction:

s(
-

) = cose61 + sin 63, m (1) = sin 61 - cos fa,2

s(2) = COs 61 - sin ý6 3, m (2) = sin 61 + cos ý63 :

with
ý = (7/4) + (w/2) (2.120)



In an entirely analogous manner, the slip systems in the (61, 62)-plane are

s(3) = cos e61 + sin 6e2,

s (4) = COS 61 - sin 162,

while those in the (62, 63)-plane are

s(
-

) = cos 6e2 + sin •63 ,

s(6) = cos 6e2 - sin •63,

m (3) = sin 061 - cos 62 ,

m (4) = sin ~i6 + cos 862,J

m (5) = sin e62 - COS ý63 ,

m (6) = sin ý6 2 + COS 63.

Thus, the total plastic stretching is made up of contributions from shearing on each of
the six potential slip systems:

LP = v() (s(a) ® m(Q)) + om ( ) 0 m(a) }.
a=1

(2.123)

The corresponding shearing rates v(' ) are given by a flow function

v(1 ) = ,(a) ((n) (), ( , S, t, 9) > 0, (2.124)

where S is a stress-dimensioned internal variable which represents a transient resistance
to plastic flow (accompanying the microstructural disordering), assumed for an isotropic
material to be the same for all slip systems.

It is convenient to write A for the list of variables

A = (El, S, p, o).

Using this notation, we assume that the dilatancy parameter /3 depends on A,

13 = (A). (2.125)

With LP given by (2.123) , the dissipation inequality requires that

E: L = [7 (a) - a(a)] V(C) > 0 (2.126)

whenever plastic flow occurs. We assume that the material is strongly dissipative in the sense
that

for each a.[•(") - p .a(a)] V( ) > 0

Thus, whenever v(a)> 0, we must have

(2.127)

(2.128)

(2.121)

(2.122)

[r(a) - 0' (7 )] > 0,
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which is a thermodynamic restriction that the dilatancy function , = ý(A) must satisfy.

We emphasize that we do not assume that p = f, which (using classical terminology)
would correspond to an associated/normality flow rule.

Straight-forward calculations show that the resolved shear stresses and compressive nor-
mal tractions on the slip systems are given by

(1,2) _ 1 sin(2)(o - U3 ), U0(12) _ 1i U + U3 ) + 1 cos(2)(u - U3 ),

"(34) = sin(2)(a1 - 2 ), U (3,4) (1 + 2 ) ± cos(2()(u - 2 ), (2.129)

7(",6) = 1 sin(2)(U2 - 3 (5,6) 2 + 3) o+ 1 cos(2()(U 2 - 3 ).

Thus, from (2.124) we note that in the case of distinct principal stresses

(1) (2) (3) (4) (5) () if 1l > 02 > U3 , (2.130)

and in situations when the principal stresses are not distinct we have

(1) = (2) V /(3) (4), (5) = ( ) = 0 if 01 > U2 = 03, (2.131)

-
(1) = v(2) = (5) = (6),  (3) = (4) = 0, if aO = U2 > a3 , (2.132)

and
(1) = - (2) = /(3) = /(4) = /(5) = 1(6) = 0 if 1 = 2 = U3 . (2.133)

Remark 1: When aT > -2 = U:3, e2 and e 3 are any two orthonormal vectors perpendicular to

e1, and we have an infinite number of potential slip systems with slip directions s(') lying on
a cone with axis e1 and a semi-angle 1 = {(7r/4) + (r/2)}. In enumerating our slip systems
we choose an arbitrary pair of orthonormal vectors (e2, e3) perpendicular to ei; this choice,
and therefore the choice of slip systems is clearly non-unique. A similar remark concerning

a non-unique choice of slip systems holds when a1 = U2 > U3.

Remark 2: On account of (2.130), (2.131), (2.132), we can demonstrate that the plastic
spin indeed does vanish, W P = 0.

2.9.4 Evolution equations for internal variables. Dilatancy equa-
tion

The internal variables ( of the model are the resistance S and the internal friction p, = tan w,
for which we need to prescribe evolution equations, and we also need to specify a constitutive
equation for the dilatancy function 3, which determines the evolution of the volumetric
plastic strain p.

Recall from (2.14) that p = (o + In JP , and therefore 9 = trL P .Thus using (2.123) we
have that

I =p P, (2.134)
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where
v; v (Y)  (2.135)

is the sum of the shearing rate on all the slip systems.
Furthermore, we assume that the evolution of the internal variables, S and p, is given by

a set of coupled differential equations:

S = h(A, v")3 A (2.136)
S= g(A, v



2.10 Summary of the specialized constitutive model

In this section, we summarize the specialized form of our theory. The underlying constitutive
equations relate the following basic fields:

x = x(X, t),
F = VX, J = detF > 0,
F = FeFP,

FfP, ,P = det F P > 0 ,

F", Je = det F e > 0,

Fe = RCUe = VeR ,
U e = \ e rr 0 r,e

E" = E (ln A•)re 0 r,e
s = Qo + In JP,
T, T = TT ,
Me = ReT (JeT)Re,
'0 > 0,

S,
P > 0,

wo- = arctan u,

/3,

motion;

deformation gradient;

elastic-plastic decomposition of F;

inelastic distortion;

elastic distortion;

polar decomposition of F;

spectral decomposition of Ue,

logarithmic elastic strain,
plastic volumetric strain;

Cauchy stress;
stress conjugate to elastic strain, Ee;
absolute temperature;
free energy density per unit intermediate volume;

flow resistance;

internal friction coefficient;
internal friction angle;
dilatancy parameter;

The set of constitutive equations are summarized below:

1. Free energy:

with

1,(Ee, (, 0) = GI E 2 + 1K(trEe) 2 ,

G = G(p, V) > 0, K = K(o, 1) > 0,

the elastic shear modulus and bulk modulus.

2. Equation for the stress: The Cauchy stress is given by

T - 1 RMR er ,

Me- =l)(Ee, = 2GEe + K(trEe)1.
0E C

where

(2.137)

(2.138)

(2.139)

(2.140)



3. Dissipative stress: The thermodynamically-consistent driving stress for plastic flow
E is given by

def (0(E , , 0)E = Me - (Ee, ', V9) +

The symmetric stress tensor E has the spectral representation

F = E e6i: (96i,

(2.141)

(2.142)

where {aili = 1,2, 3} are the principal values, and {e6ii = 1,2, 3} the corresponding
orthonormal principal directions. We assume that the principal stresses {aoIi = 1, 2, 3}
are strictly ordered such that

Oa1 • U"2 Ž U3. (2.143)

4. Slip systems, resolved shear stress, and compressive normal traction: We
assume that plastic flow occurs by shearing accompanied by dilatation relative to some
slip systems. Slip systems are labeled by integers a; each slip system is specified by a
slip direction s" , and a slip plane normal m" with

s(a) .m (a) = 0, (2.144)

As discussed previously, for an amorphous isotropic material there are no preferred
directions other than the principal directions of stress, and accordingly we consider
plastic flow to be possible on six potential slip systems defined relative to the principal
directions of stress E:

= cos (e1 + sin (e3,

= cos (1e - sinl e3 ,

= cos (e 1 + sin ýe 2,

= cos (e1 - sin (e2,

= cos e2 + sin 0e3 ,

= cos (e2 - sinl e3,

m ( )  sin ýe6

m (2) = sin 611

mIn) = sin ý61

m (4) = sill E1

m (5) = sin Se2

mI(6) = sin 62

7r w
4 2

def
w = arctan /

is an angle of internal friction, and 1p > 0 is a friction coefficient.

where

- cos 63a,
+ cos ýi3,
- cos {12,
+ cos 162,
- cos 8a3 ,
+ cos 3•*.,

and

(2.145)

(2.146)

(2.147)

|s(a) , Im(a) I= 1.



The resolved shear and compressive normal traction on each slip system are given by

(2.148)

5. Flow rule: The evolution equation for FP is

F"(X, 0) = 1, (2.149)

with L" given by

LP = E V(a) [s(Y) ® m (") + 0 m (V) 0 m()] .
cr=l

(2.150)

The constitutive equation for the shearing rates v((') is taken as

(2.151)

c_(a) def _m(a) . Em().

where S is a positive-valued, stress-dimensioned internal variable which represents a
transient resistance to plastic flow (accompanying the microstructural disordering),
assumed for an isotropic material to be the same for all slip systems.

The quantity (3 is a shear-induced plastic dilatancy function. Positive values of P
describe plastically dilatant behavior, while 3 < 0 describes behavior that is plastically
compacting. It is convenient to write A for the list of variables

A = (n, e S,dp, p).

Using this notation, we assume that the dilatancy parameter 3 depends on A,

o = p(A). (2.152)

The dissipation inequality (2.126) requires that

6

E:L = [ ( 3) - (a()] (") > 0

whenever plastic flow occurs. We require that

for each a;

thus, whenever v(' ) > 0, we must have

[T(a)- 3 (T )] > 0.

(2.153)

(2.154)

FP = LP FP,

V(ct)= pý(a) (T()(cl ), ( , S, 9 , S ) 2 0,

[r(a) -3 . (a ] ,) > 0

(2.155)



This is a restriction that the dilatancy function / must satisfy.

We emphasize that we do not assume that p = /, which would correspond to an
associated/normality flow rule.

6. Evolution equations for ýo, S and p: The evolution of the plastic volumetric strain
is given by

S= PýP, cp(X, 0) = P, (2.156)

where
6

Pdf de

Furthermore, we assume that the evolution of the internal variables, S and p, is given
by a set of coupled differential equations:

S= h(A, vp) (o (2.157)
t = g (, e t) a

These evolution equations are accompanied by the appropriate initial conditions

S(X, 0) = So, p(X, 0) = uo. (2.158)
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Chapter 3

Application to amorphous metals at
high temperatures spanning the glass

transition temperature

3.1 Introduction

The constitutive theory outlined in the previous chapter is fairly general. In this chapter,
we specialize this theory to model the elastic-viscoplastic response of metallic glasses in the
temperature range 0.90•, < '0 $ .

3.2 Internal Friction

Since there is not enough experimental information concerning the pressure-sensitivity of
plastic flow of metallic glasses at high homologous temperatures, and since the pressure-
sensitivity is expected to be small, from the outset we set the internal friction coefficient
y = 0. In setting the internal friction to be zero, the Coulomb-type theory of Anand and Su
reduces to a Tresca-type theory.

3.3 Scalar flow function. Evolution of the internal vari-
ables.

Next, we discuss the specialization of the important scalar flow rate equation (2.124). To do
this, we first review some physical aspects of the inelastic deformation of metallic glasses,
and also recall the classical one-dimensional model of Spaepen (1977) which is often used to
represent the macroscopic inelastic response of metallic glasses.



3.3.1 Physical Background

The micro-mechanisms of inelastic deformation in bulk metallic glasses are not related to
dislocation-based mechanisms that characterize the plastic deformation of crystalline metals.
The plastic deformation of amorphous metallic glasses is fundamentally different from that
in crystalline solids because of the lack of long-range order in the atomic structure of these
materials. The underlying atomistic mechanisms of the inelastic deformation of metallic
glasses have been under intense investigation for the past three decades, and are still not
completely understood [cf., e.g., 1-7]. However, atomistic simulations reported in the liter-
ature [cf., e.g., 8-12] show that at a micromechanical level, inelastic deformation in metallic
glasses occurs by local shearing of clusters of atoms (a 30-100 atoms), this shearing is ac-
companied by deformation-induced microstructural disordering and inelastic dilatation that
produces strain-softening, which at low homologous temperatures leads to the formation of
intense shear bands.

Deformation-induced mnicrostructural disordering in a metallic glass also occurs in the
high temnperature range. A macroscopic manifestation of the structural disordering in this
temperature range is that in strain-controlled isothermal compression or tension experiments
at constant strain rate, the microstructural disordering leads to strain-softening. However,
because of the high strain rate sensitivity of the material at elevated temperatures, it does
not exhibit macroscopic localized shear bands and the deformation appears as nominally
homogeneous. Experimental examples of such macroscopic response may be found in de Hey
et al. [6] for the amorphous metal Pd 40 Ni 40P2 0, and in Lu et al. [2] for the commercial
Zr-ba.sed alloy Vitreloy-1.

3.3.2 The Spaepen model

A continuum-level one-dimensional model which has long been used to represent the inelastic
response of metallic glasses is the free volume model proposed by Spaepen [1], and it is this
model that was used by de Hey et al. [6] to analyze their experimental results. Briefly, let

'iPl denote the magnitude of the plastic strain rate in a one-dimensional setting. In such a
setting, the flow equation proposed by Spaepen has the form

i0J = 2 cf kf Q sinh 2 kB 9 (3.1)

Here jou is the a~bsolute value of the stress, co is a local transformation strain, vo is an
activation volume, Q is an atomic volume, kf is a temperature dependent rate factor, kB is
Boltzmann's constant, and

cf= exp(- ) exp v* (3.2)

is the concentration of flow defects defined in ternms of a normalized free volume parameter
( = vf/(- v*), where vf is the average free volume per atom, v* is a critical value of the free



volume, and -y is a geometrical overlap factor with a value between 0.5 and 1. In de Hey
et al. [6], the evolution of the defect concentration is taken as'

f = (a( c (ln c)) JP' - k, cj (Cf - Cf,eq) , (3.3)

dynamic defect creation static thermal recovery

with a( a temperature dependent parameter, k, a temperature dependent rate factor, and

Cf,eq = exp( - 1 ) (3.4)
(egq

where

(eq = (3.5)
is the value of the free volume in thermal equilibrium at a temperature 19; here 190 and B are
two material constants known as the Vogel-Fulcher-Tamann (VFT) parameters.

A study of the paper by de Hey et al. [6] reveals that the flow equation (3.1) and the
evolution equation (3.3), when suitably calibrated, are not able to produce stress-strain curves
that match their corresponding experimental stress-strain data which show the phenomena
of stress-overshoot and strain-softening in monotonic experiments at a given strain rate, and
strain rate history effects in experiments involving strain rate increments and decrements.

In our opinion, even though the flow and evolution equations (3.1) and (3.3) are physically
reasonably well-motivated, they leave out some important coupling effects and thereby are
unable to quantitatively reproduce the stress-overshoot and strain-softening phenomenon
which arise in a metallic glass due to deformation-induced microstructural disordering. In
what follows, we propose suitable simple phenomenological modifications to the Spaepen
model in order to provide additional flexibility to reproduce the experimentally-observed
stress-strain response of metallic glasses in the temperature range 0.919, $ H 1r9.

3.3.3 Modified Spaepen model

We begin by using the plastic volumetric strain o and the internal variable S to modify
Spaepen's flow equation to better reproduce the stress-overshoot and strain-softening phe-
nomena due to deformation-induced disordering. In our macroscopic theory, we associate the
widely observed deformation-induced microstructural disordering of a metallic glass with the
plastic volumetric strain p. Thus, throughout, we will refer to p as an "order-parameter."
The internal variable S is a stress-dimensioned parameter representing a transient change
in resistance to plastic flow accompanying the microstructural disordering. Guided by (3.1)

'In Spaepen's original model [1], the evolution of the defect concentration is also controlled by diffusional
mechanisms. However, the effects of diffusion of free volume at nominal strain rates > 10-5s - 1 and moderate
strain levels is expected to be small, and is accordingly not considered here.



and (3.2), the flow function for the scalar shearing rate on each slip system is taken as

(a) = o exp - exp - sinh ff (3.6))_ 2kB'd (36

with vo a pre-exponential factor of the order of the Debye frequency, ( a free volume pa-
rameter as in Spaepen's theory, AF an activation energy, V - (covo) an activation volume,
and

(a•) def
T,.=f ( ) -- S (3.7)

an effective stress, where S is the transient change in flow resistance accompanying the
microstructural disordering of the material. The scalar flow rate v(( ) is positive whenever
T f > 0, and is zero otherwise.

The evolution equation for the resistance S is coupled with the evolution equation for
p, and it is this coupling which is used to model the yield-peak observed in stress-strain
response of metallic glasses.2 Specifically we take the evolution of S to be governed by

S = h vi, with initial value S(X, 0) = So,

h = ho (S* - S), and S = ( , * ,) (3.8)

Next, we identify ( as
def

p = oo + In P, (3.9)

with ýpo a constant, so that the change in cp form its initial value 'po is due to the plastic
volumetric strain (ln JP). Then, the standard kinematical relation JP = JPtrLp gives b =
trL p, and hence, using (2.123), we obtain the following evolution equation for W,

-= p i? with initial value p(X, 0) = iro, (3.10)

where 3 is the shear-induced dilatancy function. We take this dilatancy function to be given
by

13= g (ýc* - o), with -* = #*(vp , 0) > 0. (3.11)

In these coupled evolution equations for S and cp, the parameters ho, g, So and oPo are
constants. The function h represents the strain-hardening/softening function for the slip
resistance during plastic flow: the material hardens (h > 0) if S < S*, and softens (h < 0)
if S > S*. The critical value S* of S controlling such hardening/softening transitions is
assumed to depend on the current values of the plastic strain rate, temperature, and the
order-parameter p. In the dilatancy function, the parameter W* represents a strain rate and
temperature dependent critical value for the order-parameter: the material dilates (0 > 0)
when p < "*, and compacts (3 < 0) when p > ýp*. In a monotonic experiment at a
given strain rate and temperature, the shear-induced dilatancy vanishes (3 = 0) when O =

2Coupled differential evolution equations of this type have previously been used to model yield peaks in
granular materials, Anand and Gu [13], as well as amorphous polymeric materials, Anand and Gurtin [14].



o*. However, in an experiment in which the strain rate and temperature are varying (e.g.
strain rate or temperature jump experiments), the material will in general dilate or compact,
depending on the strain rate and temperature history, and because of the coupling between
the evolution equations for S and p, the resistance S will also vary.

Particular forms for the functions ^ 2*(vP, 9) and S* (v, P, ýo) need to be specified. The
function W* controls the amount of disordering the material undergoes during deformation
and is both strain rate and temperature dependent. The strain rate and temperature de-
pendence of p* is quite nonlinear; W* is expected to decrease with increasing temperature
at a fixed strain rate, and increase with strain rate at a fixed temperature. Guided by the
experimental data for the stress overshoot (cf. Figures 3-1, 3-2, 3-3, 3-4), we model this
temperature and strain rate dependence of o* using the following functional form,

= I - ( 9)) if (19 - 0do) < (3.12)?9, (3.12)
0 if (d - 190) > V",

with

s = ki + k2 In 3 ,

79 = 11 + 12 In (.)
( Vref

where {290op, q, qk, k2, 11, 12, Vref} are constants. At a fixed strain rate, p, and '06 are constant,
and (3.12) describes the temperature variation of W* in the range [2do, 9,], with P* = Ps when
(6 - Vo) = 0 and Wp* = 0 when (09 - •o) = 'h; the parameters p and q control the nonlinear
variation of p* between the limits [ko, 0]. The assumed strain rate dependence of Wp and V,
is given in (3.13).3

Further, for the function S*, which controls the magnitude of the stress-overshoot, we
assume

S* = b(p* - ) , (3.14)

so that the value of S* depends linearly on the difference between the current value of W
and the parameter p*. Also, since experimental data (cf. Figures 3-5, 3-6) shows that the
magnitude of the stress overshoot is different in strain rate decrement and increment tests, we
assign different values for the constant b during dilation (p < o*), and compaction (p > p*):

bdil if W < 0p*,
b = bom if > *. (3.15)

3Cf. Figure A-4, which schematically shows the temperature and strain rate variation of <p* based on
equations (3.12) and (3.13).



Next, we turn our attention to the term exp(-1/() in (3.6), which represents the concen-
tration of flow defects. Having accounted for the deformation-induced disordering of the
material via the internal variables S and <, as discussed above, we assume henceforth that
the free volume ( is only a function of temperature.4 Recall that in the Spaepen model the
temperature dependence of the "':equilibrium" value of ( is taken in the linear Vogel-Fulcher-
Tamann (VFT) form (3.5). Here, following [15] and [16], we adopt the Grest and Cohen [17]
temperature dependent form for the free volume concentration,

•(() + [1 7- 19ref + (V -() ref)2 d29 , (3.16)

where, dl, d2 and 7 )ref are material constants. The non-linear Grest-Cohen relation (3.16) is
well-defined at temperatures lower than ')ref, and approaches a linear VFT-type relation at
high temperatures.

In most previous models of viscoplastic flow of metallic glasses, attention has been re-
stricted to temperature ranges either below 0,9 or well-above t9, (but below V9,). In either
of these two regimes, the activation energy AF and the activation volume V appearing in
the thermally-activated model (3.6) may be assumed to have different but constant values in
the two different temperature regimes. However, our interest here is in developing a simple
model, which does not differ drastically from (3.6), but is able to capture the strain-rate and
temperature dependent response of metallic glasses through the important, but difficult to
model, temperature range of 0.9), K 79 < 19d. We accomplish this by assuming that

* the activation energy AF decreases, and the activation volume V increases, as the
temperature increases from approximately 0.9'0, through 1) , to tO).

Specifically, for the temperature dependence of the activation energy AF we adopt the
following simple phenomenological form,

1 1 1
AF(79) = I(AFgi + AFsc) - 2(AFqj - AFSo) tanh( ( - 7g) (3.17)

where AFq. and AF,,(< AF 1) are the values of the activation energies in the glassy and
supercooled liquid regions; and AF > 0 is a parameter denoting the temperature range across
which the assumed hyperbolic-tangent-type transition in the value of the activation energy
from AFgi to AF,, occurs.

Similarly, for the temperature dependence of the activation volume V we adopt the form,

1 1 1
V(19) = 2(Vq + Vsc) - (Vi- V,,) tanh (19 -19v) (3.18)

4In our phenomenological macroscopic theory the order-parameter <p appears as an internal variable which
is distinct from the free volume ( in Spaepen's theory. However, physically, W may be thought of as the
change in the free volume due to deformation-induced disordering from the purely temperature dependent
equilibrium value ( .



where VYi and V~,(> Y, 1) are values of the activation volumes in the glassy and supercooled
liquid regions; h9v is the temperature at which the activation volume begins to increase (not
necessarily equal to V6); and Av > 0 is a parameter denoting the temperature range across
which the transition occurs.

3.4 Elastic Moduli

Finally, the elastic moduli also change as the temperature changes across the range of inter-
est. Since measurements of temperature variations of elastic moduli are typically made for
the Young's modulus E, we first consider the temperature variation of this constitutive mod-
ulus. Following the work of [18] on amorphous polymers, we assume that the temperature
dependence of the Young's modulus may be adequately approximated by the function

1 1 1
E(V) = 2(Egi + Es•) - 2(Egq - Eýc)tanh ( (?9 - t9g)) + kE('O - g), (3.19)

where Eq. and Esc(< Eqi) are representative moduli in the glassy and supercooled liquid
regions; and AE is a parameter denoting the temperature range across which this transition
occurs, and kE represents the slope of the temperature variation of E beyond the transition
region, where

kE = kE, V > gg. (3.20)

Further, for the temperature dependence of Poisson's ratio we assume

1 1 1
v(19) = (Vgl + sc) - 2()- ( )tanh ('0 - '9) (3.21)

with v.l and v~, representative values of Poisson's ratio below and above the temperature
6, respectively. Using (3.19) and (3.21), the temperature dependent values of the shear and
bulk moduli may then be found by using the standard relations:

E(19)() E(09)G(?) = K(O) = (3.22)2(1 + v(V))' 3(1 - 2v(.9))

3.5 Stress-strain response of the metallic glass Zr 41.2Ti13.8
Cu 12.5Ni 10Be 22.5

We have estimated the materials parameters appearing in our constitutive model for Zr 41.2
Ti13.sCu12.5Nio10Be 22.5 from the data published by Lu et al. [2], Masuhr et al. [15], and Tsau
et al. [19] for this material. For ease of presentation, we relegate our procedure for material
parameter estimation to Appendix A.



Figures 3-1, 3-2, 3-3, and 3-4 compare the one-dimensional stress-strain curves (dashed
lines) calculated using our model, with the corresponding experimental results (solid lines)
of Lu et al. [2], from which the material parameters were estimated. The quality of the fit
over a wide range of temperatures and strain rates of interest is quite reasonable.

Predictions from the model were also compared against corresponding experimental data
from the strain rate jump experiments of Lu et al. [2]. Figures 3-5 and 3-6 compare the
experimental data and the model predictions for several of these strain rate increment and
decrement experiments at temperatures both below and above T,. The quality of the pre-
dictions over a wide variety of strain rate histories is quite encouraging.

A feature of the stress-strain response of metallic glasses of particular interest is the
"steady-state stress," that is, the stress level at a given temperature and strain rate beyond
which the stress level reaches a plateau and is essentially constant; cf. Figures 3-1, 3-2, 3-3,
anrid 3-4. Our model, when specialized to a one-dimensional situation (cf. Appendix A),
shows that in a fully-developed state at a given temperature 09 and an axial strain rate e,
the axial stress reaches the steady-state stress as. given by (A.9), viz.

4kB9 1 AF
ass = B- sinh- ( exp •exp . (3.23)V 2vo k kat?

Figure 3-7a shows the variation of the steady-state stress a,, versus the strain rate C at
various temperatures, and compares it with the corresponding experimental data extracted
from Lu et al. [2]. The quality of the fit of the model to the experimental data is quite
reasonable.

Equation (3.23) may be used to define a strain rate and temperature dependent non-
Newtonian shear viscosity

def Uss 4k9. (1\
73 (, 0) - 3V sexp exp exp (3.24)3e 3Ve 2vo ( kBI

Under high temperatures and low strain rates, the inverse hyperbolic sine term in (3.24) may
be approximated by its argument to obtain an expression for a Newtonian viscosity which
is only a function of temperature,

'qNewtonian (9) = - exp exp . (3.25)3Vvo ( k.BI9
Figure 3-7b shows the experimental data of Figure 3-7a re-plotted in terms of a non-
Newtonian viscosity as a function of the temperature at various strain rates, and compared
against the curves generated according to (3.24); the Newtonian approximation (3.25) is
also shown in this figure as a dashed line. As is clear from this figure, the model nicely
reproduces the important transition of the viscosity from a non-Newtonian response to a
Newtonian response as the material goes through the glass transition.
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We have implemented our constitutive model in the finite element program ABAQUS/
Explicit [20] by writing a user-material subroutine. In the next chapter, we use this simula-
tion capability to determine appropriate processing conditions for a representative micron-
scale hot-embossing process for Vitreloy-1.
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Figure 3-1: Stress-strain curves for Vitreloy-1 at various temperatures and strain rates from Lu
et al. [2]. The solid lines are the experimental data, and the dashed lines are results from the model.
Markers serve to distinguish data at different strain rates; they do not represent individual data
points.
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Figure 3-2: Stress-strain curves for Vitreloy-1 at various temperatures and strain rates from Lu
et al. [2]. The solid lines are the experimental data, and the dashed lines are results from the model.
Markers serve to distinguish data at different strain rates; they do not represent individual data
points.
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Figure 3-3: Stress-strain curves for Vitreloy-1 at various temperatures and strain rates from Lu
et al. [2]. The solid lines are the experimental data, and the dashed lines are results from the model.
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et al. [2]. The solid lines are the experimental data, and the dashed lines are results from the model.
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points.
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Chapter 4

Micro-hot-embossing: numerical
simulations and experiments

4.1 Introduction

Numerical simulation of micro-hot-embossing processes for metallic glasses are virtually non-
existent. Most previously published attempts [1-6] have been hampered by the lack of a
suitable constitutive model and its numerical implementation in a finite element program. In
this chapter, we utilize our elastic-viscoplastic, large-deformation theory for metallic glasses
and its numerical implementation in Abaqus/Explicit [7] by carrying out representative hot-
embossing simulations and comparing aspects of the results from such simulations against
the corresponding experimental results. We begin by considering a simple pattern consisting
of a series of long channels. Then, we consider a pattern with practical applicability, that of a
imicrofluidic mixer. We subsequently use the resulting metallic glass part in the manufacture
of a polymeric microfluidic device.

4.2 A plain strain micro-hot-embossing

4.2.1 Finite element simulation

As a simple example of a micro-hot-embossing process, we consider the embossing of a series
of long raised ridges into a bulk metallic glass substrate. To this end, a silicon tool was man-
ufactured using deep-reactive-ion-etching (DRIE) of a 4 inch diameter silicon wafer. The
pattern consists of 240 micron wide channels, 33 microns deep, spaced 360 microns apart.
Figure 4-la shows a schematic of the pattern, and Figure 4-1b shows an SEM photomicro-
graph of a portion of the silicon tool.



Since the channels are long relative to their width, and there are a large number of them
aligned in parallel, we employ a plane strain idealization in our numerical simulation and
consider only a single half-segment, with suitable boundary conditions. Figure 4-1c shows
the finite element mesh. The metallic glass substrate is modeled using a mesh consisting of
1035 ABAQUS-CPE4R plane strain elements, and the silicon tool is modeled using an ap-
propriately shaped rigid surface. Contact between the substrate and tool was approximated
as frictionless. The displacement boundary conditions on the portions AD and BC of the
mesh boundary are it = 0, while on the portion CD of the mesh, ul = u2 = 0 are prescribed.

The simulations were performed under typical conditions for micro-hot-embossing. We
chose a temperature of 420 0 C and a process time of 2 minutes; for Vitreloy-1 the risk of
crystallization and the subsequent deterioration of mechanical properties under these process
conditions is expected to be minimal [e.g. 5, 6]. In our numerical simulations, we sought
to determine a molding pressure that will result in good replication. After a few trial
simulations, it was found that for the geometry under consideration, at 4200 C, a pressure of
20 MPa would result in a filled mold after 2 minutes. Figure 4-2a,b show the time-histories
of the compressive pressure and the vertical position of the tool. Figure 4-2c shows contours
of the equivalent plastic strain (fJ vP(x) dX) after 20 seconds when the mold is only partially
filled, and Figure 4-2d shows the contours of equivalent plastic strain at 120 seconds when
the mold has completely filled; as expected, the plastic strain is greatest in the corner of the
mold. It is noteworthy that while the mold reaches a steady position of 12pm after about
20 seconds, additional time under pressure is required for the mold to fill completely. Thus,
sufficient hold time at pressure is needed to fill intricate geometries.

In the next section, we describe the results of a micro-hot-embossing experiment carried
out under these processing conditions.

4.2.2 Experimental procedures and results

The hot-embossing experiment was carried out on a servo-hydraulic Instron testing machine
equipped with heated compression platens.' A 12 mmn square sheet specimen of Vitreloy-
1 and a 12 mm square patterned-silicon tool were aligned and placed between the heated
compression platens. The embossing experiment was conducted under nominally isothermal
conditions at a temperature of 4200 C in air. The load was ramped up to produce a pressure
of 20 MPa in 2 seconds, and thereafter held constant for another 2 minutes. Following
the embossing process, the metallic glass substrate and silicon wafer, now bonded together,
are removed from the load fraine. The metallic glass is separated from the silicon mold by
etching away the silicon in a heated KOH bath, leaving the embossed metallic glass part.

Figure 4-3a shows an SEM image of two channels in the silicon tool, and Figure 4-3b
(a closeup of the side-wall of a channel) shows the micron-level scalloping produced by the
DRIE process used to manufacture the tool. SEM images of embossed ridges in Vitreloy-
1 are shown Figure 4-3c. and Figure 4-3d shows a closeup of the side-wall of a ridge in

'For a detailed explanation of the procedures employed in this micro-hot-embossing experiment, see
Appendix B



the embossed BMG. These results show good mold-filling and replication under the process
conditions. The closeup images of the walls of the tool and the embossed features show
that the BMG replicates the small-scale striations produced in the silicon mold during deep
reactive ion etching. Thus, even though the macroscopic features in our silicon tool are on
the order of tens of microns, the BMG can replicate features in the tool which are as small
as 1 p/m.

We further investigated the quality of the embossed feature by using optical profilometry
methods. Figure 4-4 compares cross-sections of the silicon tool and the embossed BMG
feature, along with 3D images of a channel in the tool and a corresponding ridge in the
embossed substrate. The dimensions of the embossed feature closely match those of the
corresponding feature in the mold.

4.3 Embossing of a microfluidic mixer device

While the embossing of the previous pattern serves as a good representative hot-embossing
process, the resulting metallic glass part has little applicability. In this section, we wish to
produce a metallic glass part with practical use. An emerging application for micro-patterned
metallic glass surfaces is as a die for the embossing of polymeric microfluidic devices. In
recent micro-hot-embossing studies on polymeric materials [cf., e.g., 8-13], patterned silicon
wafers are predominantly used as mold materials. Unlike in the hot-embossing of metallic
glasses where the tool is considered sacrificial, in the embossing of polymeric materials, the
tool may be demolded from the polymeric part to be used again. However, silicon is a highly
brittle material and generally fails after only a few embossings. Therefore, patterned metallic
glass surfaces may be used as highly robust tooling for the micro-hot-embossing of polymeric
microfluidic devices.

In this section, we use the simulation capability to determine appropriate processing
parameters to produce a metallic glass part with a microfluidic device pattern. We then use
the resulting part to produce a polymeric microfluidic device.

4.3.1 Finite element simulation

The pattern considered in this example is that of a standard snake mixer. This pattern
consists of two inlets which converge into a single channel. This channel then winds around
forming a series of long, straight, parallel channels before finally terminating in a single
outlet. The channel is 50 microns wide and 65 microns deep. A schematic of the mixer
pattern is shown in Figure 4-5a, and a schematic of the channel cross-section is shown in
Figure 4-5b. As in the previous example, a silicon tool was manufactured using DRIE.
Figures 4-6 show SEM photomicrographs of several portions of the silicon tool.

Since the microfluidic mixer is a complex three-dimensional pattern, simulation of the
entire pattern would be prohibitively expensive computationally. The bulk of the pattern
consists of long, straight, parallel channels. Thus, we take the same approach as in the
previous section and employ a plane strain idealization, considering a single half-segment with



suitable boundary conditions. Figure 4-5c shows the finite element mesh. The metallic glass
substrate is modeled using a mesh consisting of 3047 ABAQUS-CPE4R plane strain elements,
and the silicon tool is modeled using an appropriately shaped rigid surface. As before,
contact between the substrate and tool is approximated as frictionless, and the displacement
boundary conditions on the portions AD and BC of the mesh boundary are ul = 0, while
on the portion CD of the mesh, ul = u2 = 0 are prescribed.

Again, we chose typical conditions for micro-hot-embossing, specifically a temperature
of 4200 C and a process time of 2 minutes, and use the simulation capability to determine a
molding pressure that will result in good replication. We wish for the entire process to be
completed in two minutes; however, we are only simulating a portion of the pattern, the long,
straight channels. Therefore, in order to ensure that the other features of the pattern, i.e.
the bends and the inlets and outlet, are filled, we seek a pressure that will result in a filled
mold after 90 seconds. After a few trial simulations, it was found that for the geometry under
consideration, at 420'C, a pressure of 40 MPa would result in a filled mold after 90 seconds.
Figure 4-7a,b show the time-histories of the compressive pressure and the vertical position
of the tool. Figure 4-7c shows contours of the equivalent plastic strain after 90 seconds when
the mold is filled, and once again, as expected, the plastic strain is greatest in the corner
of the mold. Furthermore, the magnitude of equivalent plastic strain is significantly greater
in this example than in the previous process; however, the plastic strain is predominantly
localized to the wall of the resulting ridge. In this process, the long, straight channels of the
pattern will be replicated after 90 seconds under 40 MPa at 420'C. An extra 30 seconds of
hold time are allotted to ensure complete replication of all the features of the pattern.

In the following section, we describe the results of a micro-hot-embossing experiment
carried out under these processing conditions, as well as the embossing of a polymeric mi-
crofluidic device.

4.3.2 Experimental procedures and results

The hot-ernbossing experiment was carried out on the same apparatus and using similar
procedures as the previous example. In this case, a. 12 mm by 25 mm sheet specimen of
Vitreloy-1, and a 12 mm by 25 mm patterned-silicon tool were aligned and placed between
the heated compression platens. The embossing experiment was conducted at a temperature
of 420 0C, and the load was ramped up to produce a pressure of 40 MPa in 2 seconds, and
thereafter held constant for another 2 minutes. The metallic glass part was then separated
from the silicon mold via a heated KOH bath.

Figure 4-8 shows SEM images of various portions of the BMG part, including a channel,
a bend, and part of an inlet. These results show good mold-filling and replication under the
process conditions. Thus, a complex pattern with practical applicability was successfully
produced under the conditions determined by the numerical simulation capability.

Next, the resulting metallic glass part was used for its intended purpose: to emboss a
polymeric microfluidic device. The a.morphous polymer used in this study was the cyclo-
olefin-polynier Zeonex 690R with a glass transition temperature of 136 0C. Fromn a recent
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study on the micro-hot-embossing of Zeonex 690R [14], it has been determined that emboss-
ing at 165 0C for 2 minutes under a pressure of 2 MPa is sufficient for good replication. This
process was then carried out using the same embossing apparatus on a 12 mm by 25 mm
sheet of Zeonex 690R. After the embossing was completed, the polymeric part and metallic
glass tool were left under pressure as the apparatus cooled to below the glass transition of
the polymer. This was done to minimize distortion of the features in the polymeric device
upon cooling. After the assembly had sufficiently cooled, the pressure was removed, and the
polymeric part and metallic glass tool were physically separated. The metallic glass tool suf-
fered no degradation during this process and may be used for further embossing procedures.
SEM images of various portions of the resulting polymeric device are shown in Figure 4-9.
Here we see accurate replication of the intended geometry. Thus, we have successfully repro-
duced the pattern of a microfluidic mixer in a polymeric material without degradation to the
metallic glass mold. This work demonstrates an emerging application for micro-patterned
surfaces manufactured from metallic glasses.
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Figure 4-3: (a) SEM image of silicon tool. (b) Closeup of the side-wall of a channel in the silicon

tool showing the micron-level scalloping produced by DRIE. (c) SEM image of embossed ridges in

Vitreloy-1. (d) Closeup of the side-wall of a ridge in the embossed BMG --- the scalloped walls of

the channels in the tool are nicely replicated.
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Figure 4-5: (a) Schematic of the microfluidic mixer pattern. (b) Schematic of the channel cross-
section. (c) Finite element mesh for a plane strain simulation showing the meshed substrate and
the tool modeled as a rigid surface. The displacement boundary conditions on the portions AD
and BC of the mesh boundary are ul = 0, while on the portion CD of the mesh, ul = u2 = 0 are
prescribed.
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Figure 4-6: SEM micrographs of the silicon tool used to emboss a microfluidic mixer pattern,including (a) a channel, (b) part of an inlet, and (c) a bend.
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Figure 4-8: SEM results of the micro-hot-embossing of a microfluidic mixer into a

substrate, including (a) a straight ridge, (b) part of an inlet, and (c) a raised bend.
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Figure 4-9: SEM results of the micro-hot-embossing of a polymeric microfluidic mixer, including

(a) a channel, (b) part of an inlet, and (c) a bend.
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Chapter 5

Concluding remarks

We have generalized the finite-deformation constitutive theory of Anand and Su [1-3] to
represent the mechanical response of metallic glasses in the temperature range 0. 9',g < 9 <
I'O. The material parameters appearing in the theory have been estimated for Vitreloy-1
(6, = 623K) in a temperature range spanning 593K to 683K, and in a strain-rate range of
S10 -5 s-1 to 10-1 s- 1. The calibrated constitutive model reproduces important aspects

of the mechanical behavior, such as stress-overshoot and strain-softening as well as the
the non-Newtonian viscous-type character of the steady-state response of Vitreloy-1 in this
temperature and strain rate range.

The new constitutive theory has been implemented in the finite element program ABAQUS/
Explicit (2006) by writing a user material subroutine. This numerical simulation capability
is then used to determine appropriate processing parameters in order to carry out represen-
tative micron-scale hot-embossing operations. By carrying out corresponding hot-embossing
experiments, we have demonstrated that micron-scale features in Vitreloy-1 may be accu-
rately replicated under the processing conditions determined by use of the numerical simu-
lation and design capability reported in this thesis. Furthermore, we have demonstrated an
emerging application for the resulting micro-patterned metallic glass parts: as robust tooling
for the micro-hot-embossing of polymeric materials.

The constitutive equations and numerical simulation capability presented in this the-
sis, should facilitate further simulation-based study and design of micro-scale thermoplastic
forming processes of metallic glasses.

5.1 Future Work

Below are listed several directions for future work:

* In order to simulate the full hot-embossing process, including heat-up and cool-down,
the current theory must be extended to a thermo-mechanically coupled one.



* Recent work towards a constitutive theory for metallic glasses at high temperatures
[5, 6] utilize a single internal variable that represents the free volume of the material.
In order for a theory of this type to work over a wide range of temperatures and strain
rates, an understanding of how the free-volume changes with both deformation and
temperature is required; however, the data necessary to formulate a theory of this
type does not exist in the literature. Therefore, it is necessary to perform a suite
of stress/strain experiments spanning a wide range of temperatures and strain rates,
accompanied by the attendant DSC experiments. A set of experiments of this type
will provide the necessary insight into the deformation and temperature dependence
of the free volume.

* The simulation results appearing in Chapter 4 relied on the implementation of the
constitutive equations in an explicit integration scheme. In order to improve the ro-
bustness of the numerical simulation capability, an implicit integration procedure for
the constitutive equations presented in this thesis needs to be determined.

* The theory presented in this thesis is length-scale independent. However, there are
indications in the literature that at sufficiently small length-scales, this is not the
case. Thus, higher-order theories of plasticity will need to be explored to capture this
length-scale dependence.
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Appendix A

A heuristic procedure for material
parameter estimation

A.1 Introduction

The constitutive model summarized in Chapters 2 and 3 contains 33 material parameters
which are used to represent the elastic-viscoplastic behavior of a metallic glass through its
glass transition temperature.' The material parameters may be grouped according to the
following three lists:

(MP1) {vo, di, d2, 70 ref, AFg, AF, AF, V, VAi , Av, v, } used to represent the "steady-state"
viscoplastic flow;

(MP2) {So, ho, bdil, bcom, o, o 9  p, q, k0 , , k2, 11, 17, Uref} used to represent the transient stress-
overshoot and strain-softening response of the material due to microstructural disor-
dering; and

(MP3) {Eg, Es, AE, 0 9gj, 7kE1 , kEV, VUg c} used to represent the temperature dependence of
the elastic moduli of the material.

In this Appendix we outline a heuristic procedure for estimating the values of these pa-
rameters for a metallic glass. Using available experimental data in the literature [1--3], we
illustrate this procedure by estimating the material parameters for Vitreloy-1 in the temrn-
perature range [593, 683] K and strain rate range [10 - 5 , 10-1] s- ' . The literature value of the
glass transition temperature of this material is

6, = 623K. (A.1)

'We acknowledge that this is a rather long list, but most of these parameters enter the phenomenological
functions employed to represent, the strong temperature dependence of the underlying physical quantities.



A.2 Estimation of the parameter list MP1

In simple compression, the principal stresses are

Ul = a2 = 0, a• < 0. (A.2)

Straight-forward calculations using (2.145) and (2.148) show that in this case the resolved
shear stresses on the slip systems are given by

S (1) (2) (5) (6) 3 T(3) = (4) = 0. (A.3)

Thus, (3.6) dictates that the shearing rate on the slip systems must obey,

v() = (2) = (5) = (6) > 0, and V(3) = v(4) = 0. (A.4)

Further, it is easy to verify that the non-zero resolved shear stresses and shearing rates on
the slip systems are given by

(1)  (2) - (5) - (6) = 1 and V(1) = (2) - (5) = /(6) (A.5)

where a > 0 and iP > 0 are the axial stress and axial plastic strain rate in a compression
test. Thus, in one dimension Equation (3.6) gives

P = 2 1o exp exp sinh 2kBV > 0. (A.6)

In a fully-developed flow state at given temperature 0 and strain rate e, when the stress
reaches a steady-state "plateau" value a,,, e - P and

.= and 6 V(') = 21. (A.7)

Further, at steady-state at given temperature and strain rate, the order-parameter reaches
its steady-state value <p*, the disordering resistance S goes to zero (cf. (3.14)), and (A.6)
reduces to

12vo exp exp sinh >0. (A.8)
( ked 4k )

Equation (A.8) is easily inverted to obtain an expression for steady-state stress as a function
of applied strain rate and temperature

4k0 sinh 1  1( (AF•
a*s = sinh-V exp - exp . (A.9)

V (2o v k //

Equation (A.9), along with experimental data for the steady-state stress as a function of
strain rate and temperature [1], as well as the variation of the viscosity of the material



with temperature at high temperatures [2], allow one to estimate numerical values for the
parameter list MP1.

The procedure that we have used for estimating the values of these parameters is as
follows. First, let

def ass def - 1AF
ad - and * = exp - exp , (A.10)

792vo ( k /

define "termperature-compensated" values of o-,, and C, respectively, so that (A.9) may be
written as

* 4kB sinhl' (*). (A.11)
V

Thus, at each temperature, oa* depends linearly on sinh-l(1 *) as shown schematically in
Figure A-1; however, note that the slope of this line depends on temperature because the
activation volume is temperature dependent. Note that values of o* are known directly from
the experimental data of Lu et al. [1]. However, to determine values for i* one needs a value
for the reference strain rate ivo and the parameters {d•i, d2, •9ref, AFe;, AFcs, AF}.

We choose a reference strain rate vo of 5 x 10:12 s- 1 which is on the order of the Debye
frequency. For the para.meters, dl, d2, and tref in the Grest-Cohen equation (3.16), we
employ the viscosity data reported in [2] for Vitreloy-1. These authors fit the temperature
dependence of the high-temperature viscosity data using the following functional forim

o(0) = 0o exp , with ((19) 2= - 9ref + ( - '19ref) 2 + d2 j , (A.12)

which differs from Equation (3.25) of the present theory, in that it does not contain an
activation energy term exp(AF/kuI)). We use the values d2 = 162K and 'ref = 672K
from [2]; however, we adjust their value of dl in order to fit the non-Newtonian viscosity
(3.24) estimated by using the data of [1]. Values of di and AF were determined by using
an iterative procedure. The starting value of d, was taken as dl = 4933K [2], and an
activation energy AF was estimated for each temperature that would result in the linear
relationship (A.11) at that temperature. This process was repeated until the values of dl and
AF for each temperature provided acceptable fits to Equation (A.11). Once the temperature
dependence of AF was determined, the values of the subsidiary values { AFJt,, AFs:, AF} were
determined by fitting this data to Equation (3.17). The temperature dependent free volume
concentration of Equation (3.16) is plotted in Figure A-2. and the resulting temperature
dependent values of the activation energy along with the fit to Equation (3.17) are shown in
Figure A-3a.2 Finally, with the values of i* determined at each temperature, the activation
volume V for each temperature was determined from the slopes of the c** versus sinh l(*)
plots at each temperature. The values of activation volume determined in this mnanner are

2It is important to note that while the variation of AF with temperature a~ppears to be quite small
from AFq = 1.64 x 10-19". to AF,, = 1.51 x 10-19 J --- it is necessary to account for this variation to obtain
a good fit to the values of the steady-state stress over a wide range of temperatures.



plotted in Figure A-3b, and the subsidiary values {Vq, :, Av, t9v} were determined by
fitting (3.18) to this data. The values of the parameters in the list MP1, determined using
this procedure, are given in Table A.1.

Parameter Value
vo (s- ) 5 x 1012
dl (K) 2865.8
d2 (K) 162
9ref (K) 672
AFl (J) 1.64 x 10-19
AFsc (J) 1.51 x 10-1

AF (K) 7.57
Vg (m3) 1.82 x 10- 28

VY (m3 ) 3.54 x 10- 28

vi9 (K) 655.63
Av (K) 9.18

Table A.1: List MP1.

A.3 Estimation of the parameter list MP2

Once the steady-state levels of the flow stress at each temperature and strain rate have
been fit adequately by the constitutive model, it remains to determine the parameters
{So, ho, bdil, bco, mýO, 9, 1p, qo , q, k, k 2 1, 2ref} which determine the evolution of S and p,

Parameter Value
So (MPa) 0
ho 40
bdil (GPa) 500
bco,, (GPa) 125
0o 0

g 12.5
9o (K) 300

p 1.5
q 0.5
kl 5.0 x 10- 4

k2 3.00 x 10- 4

Vref (s-') 2.00 x 10 - 5

11 (K) 292
12 (K) 9

Table A.2: List MP2.



and control the levels of stress-overshoot and strain-softening in the stress-strain curves.
The parameters So and ýo0 describe the initial values of the internal variables. We assume
that the material begins in a well-annealed, "ground" state as far as the internal variables
S and ý9 are concerned. Thus, we take So and po to be zero. The parameter ho controls the
strain-hardening slope of the curves, bdil affects the peak value, and g controls how quickly
the strain-softening occurs, while {00, pq k, k 2, k2, 11,2, Uref} affect the strain rate and tem-
perature sensitivity of the peak value of the stress. First, the values of h0o, g, and bd1 il were
selected following a few trials using different values of these parameters. Next, the necessary
value of ý)* to attain the appropriate stress peak value was determined for each stress-strain
curve. Then. the values of {00, p, q, k, k2, 2,k2 11 2 ref} were adjusted to fit the dependence of

O* on strain rate and temperature. This dependence is shown in Figure A-4. Lastly, an
appropriate value for bcom,, was selected based on magnitude of the stress trough in strain
rate decrement tests. The values of the parameters in the list MP2 are given in Table A.2.

A.4 Estimation of the parameter list MP3

The temperature dependence of Young's modulus was estimated from the DMA data of [3] for
Vitreloy-1. This data provides guidance in choosing values for EB• ., AE, and kEg,. However,
due to the onset of crystallization during a DMA test, reliable data for E is inaccessible for
higher temperatures, leaving definite values for E,, and kEs, unclear; for these parameters
we simply assume plausible extrapolated values. Likewise, we choose a value for u1l based
on the room temperature value of the Poisson's ratio, and we base our choice for ise on the
assumption that material is almost incorpressible above the glass transition temperature.
The values of the parameters in the list MP3, determined using this iterative procedure, are
given in Table A.3.

Parameter Value
Eg2 (GPa) 80.7
E,, (GPa) 30.0
AE (K) 24.0
kEy, (MPa) 39.0
kE,,, (MPa) 39.0
1/9! 0.360
VIc 0.447

Table A.3: List MP3.

Using the temperature dependent functions (3.19) and (3.21) for the Young's modulus
and the Poisson's ratio, we may calculate the temperature dependence of the shear and
bulk moduli using (3.22). The temperature dependence of the estimated elastic mnoduli for
Vitreloy-1 is shown in Figure A-5.
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Figure A-1: Schematic of the fit of temperature-compensated strain rate to temperature-
compensated stress.
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Appendix B

Experimental Details

B.1 Introduction

This appendix explains in detail the micro-hot-embossing experimental procedures described
in Chapter 4.

B.2 Procedures

B.2.1 Micro-hot-embossing of metallic glass substrates

The samples of Zr 41.2Ti 13.8Cu 12.5Ni10 Be 22.5 used in this study were obtained from the cases of
SanDisk Cruzer Titanium USB Flash Drives. The material was cut into square sheets with
sides approximately 12.5 mm in length. After being cut from the case, the sheets are slightly
curved. The samples were flattened by applying a pressure of about 40 MPa at 400'C for
a few seconds. The flattened samples were then polished to a 1 micron surface finish on a
South Bay Technology (SBT) 920 Lapping and Polishing Machine. The resulting sample has
a thickness of about 1 mm.

Patterned silicon tools were used in the micro-hot-embossing experiments. To manufac-
ture the tool, a 100 mm diameter (100) silicon wafer was spin-coated with a 10 trm thick
layer of AZ4620 positive photoresist (Shipley, Newton, MA). For the plane strain, repeated
pattern, the resist was photolithographically patterned with an array of long, parallel rect-
angular openings that were 240 tm wide spaced 360 mn apart, and for the microfluidic
mixer pattern, the resist was patterned with the 50 pm snake mixer pattern. The photore-
sist served as a mask for the subsequent deep reactive ion etching of the underlying silicon.
The silicon was etched to a depth of approximately 33 Lnm for the plane strain, repeated
pattern and to a depth of approximately 65 pm for the mixer pattern, using a fluorine-based
inductively coupled plasma in a machine manufactured by Surface Technology Systems of
Newport, UK. After etching, the photoresist was stripped from the wafer in a Piranha bath.



SEM images of the plane strain repeated mold and mixer mold are shown in Figures 4-3a,b
and 4-6, respectively.

All experiments were conducted using a biaxial servo-hydraulic Instron testing machine
having a normal load capacity of 220 kN over an axial travel of 100 mm and a torque
capacity of 2.2 kN-mn over a rotational travel of 95' . A custom heated load train shown
in Figure B-1 was designed for the micro-hot-embossing experiments. The loading blocks
are manufactured from H13 tool steel1 , which provides decent heat conduction, but it is
also very durable. These are thermally isolated from the rest of the load train by 1 inch
thick Cogetherm-P blocks.2 The load train is attached to the hydraulic Instron grips through
platen connectors manufactured from H13 tool steel.3 An assembly drawing of the load train
is shown in Figure B-2, and detailed engineering drawings of each component are shown in
Figures B-3, B-4. and B-5. The embossing experiments were conducted under load control.
The Instron Waveform Generator software was used to specify the load profiles.

After embossing, the metallic glass part and silicon tool become bonded together. The
silicon is removed from the metallic glass by dissolving it away in a heated potassium hy-
droxide (KOH) bath. A 4.5M KOH solution was prepared at room temperature and heated
to 80-900 C on a hot plate. The bonded silicon and metallic glass were placed into the heated
solution, and the solution was stirred with a magnetic stirrer at 100 rpm. After about 30
minutes, all of the silicon tool had been dissolved away, leaving the metallic glass part.

B.2.2 Micro-hot-embossing of polymeric substrates

The samples of Zeonex 690R were obtained as 3 mm thick sheets from Zeon Chemicals L.P.

and subsequently cut to the appropriate size. The metallic glass tool was manufactured as
described above, and the same experimental apparatus as described above was used. After
the embossing was completed, the polymeric part and metallic glass tool were left under
pressure as the apparatus cooled to below the glass transition of the polymer. This was
done to minimize distortion of the features in the polymeric device upon cooling. After
the assembly had sufficiently cooled, the pressure was removed, and the polymeric part and
metallic glass tool were physically separated. The metallic glass tool suffered no degradation
during this process. This is in contrast to the separation of the silicon mold from the metallic

glass part where the silicon mold is completely destroyed.

B.2.3 Temperature Control

An easy to control heating system was designed to allow for quick and precise control of the
embossing temperature. Each loading block was supplied 800 W of electrical heating power
from 4 cartridge heaters, 4 and the temperature in each loading block was measured by a J-

1 Carpenter Powder Products, H13 Tool Steel, 3.75 in. dia x 12 in. long stock
2Foundry Services, Inc.
3 Carpenter Powder Products, H13 Tool Steel, 2 in. dia x 12 in. long stock
4 McMaster-Carr 3614K36, 200 W, 1.7 A, 0.25 in. dia., 2 in. length, bonded-graphite coating



type thermocouple probe. 5 Benchtop controllers' were used to maintain the temperature in
each loading block through a feedback loop between the thermocouple probes and cartridge
heaters.

This set-up along with the thermal insulation provided by the Cogetherm-P insulating
blocks allowed for temperatures of 5000C and above to be reached in 20 to 30 minutes when
heating from room temperature.

5Omega JMQSS-062E-6, 304 SS sheath, 0.062 in. dia., 6 in. length, exposed junction, miniature connector
6Omega CSC32J-C2/4 benchtop controller
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Figure B-1: Images of the experimental set-up used for micro-hot-embossing. (a) Large image

of set-up showing platen connectors and Instron grips. (b) Close-up of the experimental set-up

showing the cartridge heaters and thermocouples on the right.
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Figure B-2: Assembly drawing of the complete load train.
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Figure B-3: Drawing of platen connector used to connect load train to the Instron. Dimensions

in inches unless otherwise noted.
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Figure B-4: Drawing of insulating plate. Dimensions in inches unless otherwise noted.
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Figure B-5: Drawing of loading block. Dimensions in inches unless otherwise noted.
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