
Near-Real Time Atmospheric Density Model Correction
Using Space Catalog Data

by

George Richard Granholm

B.S. Astronautical Engineering
United States Air Force Academy, 1998

SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND
ASTRONAUTICS IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF

MASTER OF SCIENCE IN AERONAUTICS AND ASTRONAUTICS
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 2000

© 2000 George Richard Granholm. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper
and electronic copies of this thesis document in whole or in part.

Signature of Author:
Department of Aeronautics and Astronautics

May 19, 2000

Certified by:
Dr. Ronald J. Proulx

*esis, upervisor, CSDL

Certified by:
Dr. Paul J. Cefola

Thesis Supervisor, CSDL
Lecturer, Department of Aeronautics and Astronautics

Accepted by:
Nesbitt W. Hagood III

Professor of Aeronautics and Astronautics
Chairman, Department Graduate Committee

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

SEP 0 7 2000

LIBRARIES

[This Page Intentionally Left Blank]

Near-Real Time Atmospheric Density Model Correction Using Space Catalog Data

by

George Richard Granholm

Submitted to the Department of Aeronautics and Astronautics on May 19, 2000 in
Partial Fulfillment of the Requirements for the Degree of

Master of Science in Aeronautics and Astronautics

ABSTRACT

Several theories have been presented in regard to creating a
neutral density model that is corrected or calibrated in near-real
time using data from space catalogs. These theories are usually
limited to a small number of frequently tracked "calibration
satellites" about which information such as mass and cross-
sectional area is known very accurately. This work, however,
attempts to validate a methodology by which drag information from
all available low-altitude space objects is used to update any given
density model on a comprehensive basis. The basic update and
prediction algorithms and a technique to estimate true ballistic
factors are derived in detail. A full simulation capability is
independently verified. The process is initially demonstrated using
simulated range, azimuth, and elevation observations so that issues
such as required number and types of calibration satellites, density
of observations, and susceptibility to atmospheric conditions can be
examined. Methods of forecasting the density correction models
are also validated under different atmospheric conditions.

Thesis Supervisor: Dr. Ronald J. Proulx
Title: Principle Member of the Technical Staff, The Charles Stark Draper Laboratory

Thesis Supervisor: Dr. Paul J. Cefola
Title: Lecturer, Department of Aeronautics and Astronautics
Program Manager, The Charles Stark Draper Laboratory

[This Page Intentionally Left Blank]

ACKNOWLEDGEMENTS

There are always many people to thank for an endeavor as time-consuming and
fraught with challenges as a Master's Thesis, but I have to begin by thanking my two
advisors at Draper Laboratory, Dr. Ron Proulx and Dr. Paul Cefola. On countless
occasions over the past two years, they have given me advice, encouragement,
knowledge, intuition, prodding, and perspective on all areas of my work here at Draper.
This thesis truly could not have been even attempted without their help and sponsorship.

I also must express my deepest regards and thanks to my mentors in Russia,
Professor Andrey Nazarenko and Dr. Vasiliy Yurasov, for their considerable experience
and understanding of atmospheric calibration, and for the countless e-mails which passed
to me some small part of that understanding. Their discoveries over the past two decades
are the core of the work presented here.

There are a number of other people and departments at Draper who I would like
to thank, including: Paul Motyka, Tim Brand, Lee Norris, and Neil Dennehy for their
sponsorship of my work and funds for conference travel; George Schmidt and the
Education Office for my appointment and for paying the bills; Linda Leonard for
accommodating my sometimes unreasonable demands on ELROND and DC1; Dave
Carter and Rick Metzinger for their help with GTDS; Barbara Benson for assistance with
reams of paperwork; Joe Sartia and others at Repro; Trish and Rosemary in the Travel
Office; Ellen, Amy, and the Library staff; and PC Support.

Many members of the MIT community also greatly assisted me over my two
years in Cambridge. First of all, I want to give thanks to Dr. Richard Battin for passing
on to me a little perspective on the great history and traditions of our field; to Professor
Alan Willsky for his furiously-paced lectures and great knowledge of all things
stochastic; to Professor John Deyst for his valuable perspective and direction; and to Liz
Zotos and Marie Stupard for keeping the Registrar happy throughout.

This work could not have been accomplished without a great deal of help from
members of the technical community around the country, and indeed, the world. A lot of
the help came from LtCol David Vallado, who provided data, code, advice, and most
importantly a sympathetic voice in Colorado. Thanks also must go to Chris Sabol for
commiseration and advice on GTDS bugs; to Cheryl Walker and Capt. Darren Roberts
for their help in obtaining information on ITT's Modified Atmospheric Density Model
(MADM); to Lt. Matt Bradford at NASA-Langley for finding valuable background
research; and to Eberhard Gill at ESOC for his help with atmospheric forecasting. I must
also thank John Draim of Ellipso Inc. for sponsoring my initial efforts in atmospheric
drag analysis.

Additional thanks go to Col Kuconis and SSgt Marcaurelle at DET 365 for
helping me adjust to life in the real Air Force, and to Malisa Freeland and Capt Melissa
Flattery at AFIT for setting up TDYs from Alaska to Florida.

There is a long, distinguished line of Draper Fellows who have worked for Dr.
Proulx and Dr. Cefola, most of whom have gone on to very successful careers in the
aerospace industry. I have had the privelege of meeting four of them, but at various times
I have drawn from the work of Fellows going back to the 1980s. Thanks to all for your
careful work and documentation. To Joe Neelon, Brian Kantsiper, and Scott Carter,
thanks for showing me there is life after MIT. To my first officemate Jim Smith, you
gave me a great example of the right way to do a thesis. Thanks also to my new
officemate Raja Chari for your humor and tolerance of my sometimes strange behavior.
To Andre Girerd, John Stedl, Paul Goulart, and Andy Grubler, you gave me the
opportunity to waste time in new and creative ways, which is at times a necessity.

Many things I will remember most about my years in Boston will be my
experiences with my friends and roommates. Thanks to Troy Hacker and Chris Raines
for forcing me to actually go out and enjoy myself from time to time. To Jeff Freedman,
it's too bad we never got the Hobie-Cat, but I enjoyed all the rollerblading, sailing, and
crew practices. To Nick Hague, Scott McKeever, and Jim Wecht, it's always a challenge
to find good roommates - but I know now how lucky I was to live with you guys. Good
luck in the years to come and I hope we always can keep in touch.

The deepest thanks go to the people without whom I wouldn't be here at all.
Thanks Mom, Dad, and Marin for your encouragment and friendly ribbing, and for giving
me the motivation and skills to succeed in life. I will be officially entering into the
Brugman family in June, but I have felt like you took me in as your son right from the
beginning. Thanks to Dennis Brugman for your valuable technical insight and expertise,
and to Barbara Brugman for your always thoughtful suggestions and advice. Finally, to
the love of my life and my wife-to-be - Rena, I cannot begin to thank you for all the ways
you've improved my life. This thesis, and all achievements to come, are dedicated to
you.

This thesis was prepared at The Charles Stark Draper Laboratory, Inc., with
support from Draper Laboratory's DFY99 and 00 IR&D Programs under Astrodynamics
IR&D Contract 00-2-837, Project No. 15080.

Publication of this thesis does not constitute approval of Draper or the sponsoring
agency of the findings or conclusions contained herein. It is published for the exchange
and stimulation of ideas.

Permission is hereby granted by the Author to the Massachusetts Institute of
Technology to reproduce any or all of this thesis.

GVrge R. Granholm, 2 Lt., USAF

ASSIGNMENT

Draper Laboratory Report Number T-1380.

In consideration for the research opportunity and permission to prepare my thesis by and
at The Charles Stark Draper Laboratory, Inc., I hereby assign my copyright of the thesis
to The Charles Stark Draper Laboratory, Inc., Cambridge, Massachusetts.

<"'@ateGeorge ranholm, 2 Lt., USAF

[This Page Intentionally Left Blank]

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ... 19

1.1 THE PROBLEM OF DRAG MISMODELING 19

1.1.1 Overview of Atmospheric Structure and Models................................. 20

1.1.2 Some Problems with Current Thennrmospheric Models 24

1.2 THE DENSITY CORRECTION PROCESS 25

1.2.1 Basic Operation .. 26

1.3 PREVIOUS W ORK .. 29

1.4 O UTLINE OF THESIS 30

CHAPTER 2 MATHEMATICAL SPECIFICATIONS31

2.1 CONSTRUCTION OF DENSITY VARIATIONS ... 31

2.1.1 Batch-Fit Concepts... 32

2.1.2 Recursive Filtering Concepts......................... 33

2.1.3 Relating Ballistic Factors to Density Variations 34

2.1.4 Least-Squares Solution... 36

2.1.5 Validation of Solutions... 39

2.2 ESTIMATION OF BALLISTIC FACTORS 40

2.2.1 Ballistic Factor Estimation with One Standard Satellite........................... 41

2.2.2 Ballistic Factor Estimation with Multiple Standard Satellites 45

2.3 FORECASTING OF DENSITY VARIATIONS .. 46

CHAPTER 3 TOOLS AND SOFTWARE .. 51

3.1 THE RESEARCH AND DEVELOPMENT VERSION OF THE GODDARD TRAJECTORY

DETERMINATION SYSTEM (R&D GTDS) 51

3.1.1 Validation of NT-GTDS.. 53

3.1.2 Validation of UNIX-G TD S .. 54

3.1.3 Incorporation of Density Correction into UNIX-GTDS................. 55

3.1.3.1 M odifications to Existing Code 55

3.1.3.2 New GTDS Subroutines 56

3.1.3.3 The ATMCAL GTDS Control Card 57

3.1.4 Other Code Fixes and Modifications 59

3.2 ATMOSPHERIC CORRECTION DRIVER PROGRAMS .. 60

3.2.1 Generation of Osculating Truth Files: The TLE2osc Program 60

3.2.2 Generation of Simulated Observations: The genobs Program 61

3.2.3 Estimation of Short-Arc Ballistic Factors: The estbfs Program................... 61

3.2.4 Calculation of Density Variations: The calcvars Program 62

3.3 OTHER DATA PROCESSORS AND PROGRAM UTILITIES 63

3.3.1 TLE Processing Utilities ... 63

3.3.2 Observation Processing Utilities 63

CHAPTER 4 DATA FLOW AND TASK DESCRIPTION 65

4.1 DETAILED DATA FLOW FOR SIMULATED OBSERVATIONS 65

4.1.1 Generation of Osculating Orbits.. 66

4.1.2 Generation of Simulated Observations 68

4.1.3 Differential Correction and Generation of k Measurements 70

4.1.4 Calculation of Density Variations.. 71

4.2 DATA FLOW FOR REAL OBSERVATIONS ... 72

4.2.1 Differential Correction and Generation of k Measurements 72

4.2.2 Calculation of Density Variations.. 73

4.3 TEST CASES .. 73

4.3.1 End-to-End Softvare Validation .. 73

4.3.2 Correction of an Inaccurate Density Model 77

4.3.3 Correction of an Inaccurate Model With Forecasting........................ . 78

CHAPTER 5 RESULTS ... 79

5.1 END-TO-END SOFTWARE VALIDATION 79

5.2 CORRECTION OF AN INACCURATE DENSITY MODEL 80

5.2.1 Calculation and Analysis of Density Variation Coefficients................ 81

5.2.2 Comparison of Actual Density Values 82

5.2.2.1 Quiet Epoch .. 83

5.2.2.2 Perturbed Epoch... 86

5.2.3 Quiet Epoch DC Test Cases..................................... 89

10

5.2.4 Perturbed Epoch Test Cases 97

5.2.5 Partial Calibration Database Test Case.................................... 100

5.3 TEST OF FORECASTING ALGORITHMS 103

CHAPTER 6 CONCLUSIONS AND FUTURE WORK 107

6.1 C ONCLU SIONS 107

6.1.1 Algorithm Development and Implementation 108

6.1.2 Tools and Software.................................... .. 108

6.1.3 Density Correction Analysis................................. 110

6.2 FUTURE W ORK... I 10

6.2.1 Algorithm Improvements....................... 111......................... I

6.2.2 Softwvare Additions 111

6.2.3 Further Tests of Density Correction .. 113

6.2.4 Application of Density Correction to New Problems 114

APPENDIX A DATA ANALYSIS PLOTS .. 117

A. 1 SCHATTEN MISMODELING QUIET EPOCH TEST CASES 117

A.2 SCHATTEN MISMODELING PERTURBED EPOCH SPARSE DATA TEST CASES........ 125

A.3 SCHATTEN MISMODELING PERTURBED EPOCH DENSE DATA TEST CASES 130

APPENDIX B USE OF UNIX-GTDS ON DC1 138

B.1 WORKING WITH THE CONCURRENT VERSIONS SYSTEM (CVS) 1.10.5 139

B.1.1 Introduction to Using the GTDS Libraries .. 139

B.1.1 Frequently-Used CVS Commands ... 142

B. 1.2 How to Add New Files to the GTDS Libraries............................. 142

B.1.3 Setting Up the GTDS/CVS Environment .. 143

B .2 THE G TD S D ATA FILES.................................. .. 144

B.3 COMPILING, LINKING, AND EXECUTING GTDS .. 148

B.4 LIST OF KNOWN GTDS BUGS AND FUNCTIONAL LIMITATIONS 152

APPENDIX C DENSITY CORRECTION SOFTWARE 153

C. I THE TLE2OSC.PL PROGRAM .. 153

C.2 THE GENOBS.PL PROGRAM 157

11

C.3 THE ESTBFS.PL PROGRAM ... 162

C.4 THE CALCVARS.PL PROGRAM.................................. 171

C.5 THE CALC B.M PROGRAM.. 174

REFERENCES .. 179

12

LIST OF FIGURES

Figure 1.1: Layers of the Amosphere and Ionosphere 20

Figure 2.1: Density Correction Flow Diagram Using Simulated Observations......... 31

Figure 2.2: Ratio of True Density to Jacchia '71 Density [36] 38

Figure 2.3: Shaping Filter for Random Forecasting Component........................ . 47

Figure 4.1: Program Utility Data Flow For Simulated Data.. 65

Figure 4.2: Program Utility Data Flow For Real Data ... 72

Figure 4.3: Average Planetary Amplitude (Ap), Dec 15, 1999 - Feb 11, 2000............. 74

Figure 4.4: Average Planetary Amplitude (Ap), Jan - Jun 1992 74

Figure 4.5: Daily 10.7 cm Solar Flux, Dec 15, 1999 - Feb 11, 2000 75

Figure 4.6: Histogram of Ballistic Factors ... 76

Figure 4.7: Histogram of Perigee Heights in Kilometers................ 76

Figure 5.1: Density Variation Coefficient bl, No Mismodeling......................... 79

Figure 5.2: Density Variation Coefficient b2, No Mismodeling........................ 80

Figure 5.3: Density Variation Coefficient bl, Schatten Mismodeling and Noise......... 81

Figure 5.4: Density Variation Coefficient b2, Schatten Mismodeling and Noise......... 82

Figure 5.5: Three-Hour Values of ap for Quiet Interval .. 83

Figure 5.6: Relative Error in Uncorrected and Corrected Density at 200 kin, Quiet

Epoch 84

Figure 5.7: Relative Error in Uncorrected and Corrected Density at 400 kin, Quiet

Epoch 85

Figure 5.8: Relative Error in Uncorrected and Corrected Density at 600 kin, Quiet

Epoch .. 85

Figure 5.9: Three-Hour Values of ap for Perturbed Interval............................ 86

Figure 5.10: Relative Error in Uncorrected and Corrected Density at 200 km,

Perturbed Epoch ... 87

Figure 5.11: Relative Error in Uncorrected and Corrected Density at 400 kin,

Perturbed Epoch ... 87

Figure 5.12: Relative Error in Uncorrected and Corrected Density at 600 kin,

Perturbed Epoch... 88

Figure 5.13: Fit Error for NSSC# 09854, Quiet Epoch, Schatten Mismodeling, No

Corrections 91

Figure 5.14: Fit Error for NSSC# 09854, Quiet Epoch, Schatten Mismodeling, With

Corrections ... 92

Figure 5.15: Predict Error for NSSC# 09854, Quiet Epoch, Schatten Mismodeling, No

Corrections ... 93

Figure 5.16: Predict Error for NSSC# 09854, Quiet Epoch, Schatten Mismodeling,

W ith Corrections .. 94

Figure 5.17: Fit and Predict Errors for NSSC# 09854, Perturbed Epoch, Schatten

Mismodeling, With Corrections... 97

Figure 5.18: Comparison of bl For Full and Partial Calibration Database 101

Figure 5.19: Comparison of b2 For Full and Partial Calibration Database 102

Figure 5.20: True and Predicted b, From First Epoch 103

Figure 5.21: Truite and Predicted b2 From First Epoch 104

Figure 5.22: Trite and Predicted b, From First Epoch, Longer Time Interval 104

Figure 5.23: True and Predicted b2 From First Epoch 105

NSSC# 09854

NSSC# 09854

NSSC# 09854

NSSC# 17769

NSSC# 25013

NSSC# 25947

NSSC# 09854

Fit Span Error, No Corrections...118

Predict Span Error, No Corrections 119

Fit Span Error, With Corrections.................. 120

Predict Span Error, With Corrections 121

Fit and Predict Span Error, Without/With Corrections... 122

Fit and Predict Span Error, Without/With Corrections... 123

Fit and Predict Span Error, Without/With Corrections ... 124

Fit Span Error, With Corrections 126

Figure A.9: NSSC# 09854 Predict Span Error, With Corrections 127

NSSC# 17769

NSSC# 25013

NSSC# 09854

NSSC# 09854

NSSC# 09854

NSSC# 09854

Fit and Predict Span Error, Without/With Corrections. 128

& 25074 Fit and Predict Span Error, With Corrections 129

Fit Span Error, No Corrections....................................... 131

Predict Span Error, No Corrections....................... 132

Fit Span Error, With Corrections 133

Predict Span Error, With Corrections................... 134

A.1: NSSC# 09854Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

A.2:

A.3:

A.4:

A.5:

A.6:

A.7:

A.8:

Figure

Figure

Figure

Figure

Figure

Figure

A.10:

A. 11:

A.12:

A.13:

A.14:

A.15:

Figure A.16: NSSC# 17769 Fit and Predict Span Error, Without/With Corrections. 135

Figure A.17: NSSC# 25013 Fit and Predict Span Error, Without/With Corrections. 136

Figure A.18: NSSC# 25974 Fit and Predict Spain Error, Without/With Corrections. 137

Figure B.I: The GTDS File Libraries and Repositories 141

Figure B.2: GTDS/CVS Modifications to .cshrc File................................ 144

Table B.3: UNIX-GTDS Database Files .. 145

Figure B.4: Example of Data File Driver Program 147

Figure B.5: The UNIX-GTDS Makefile.. 150

Figure B.6: The run_gtds. com File................................ 151

[This Page Intentionally Left Blank]

LIST OF TABLES

Table 3.1: GTDS Code Modifications/Additions For JR-71 Atmospheric Correction.. 56

Table 3.2: New Variables in the ATMCALJAC Common Block 57

Table 3.3: ATMCAL Control Card Description...................... 58

Table 3.4: GTDS Code Modifications/Additions For JR-71 Atmospheric Correction.. 59

Table 4.1: Format of initinfo.txt .. 68

Table 4.2: Form at of ballfcts.txt .. 71

Table 4.3: Format of Density Variation Coefficients File.. 71

Table 5.1: Density Error Statistics... 89

Table 5.2: Orbital Elements and Ballistic Factors for Test DC Objects 89

Table 5.3: Position Error Characteristics for Quiet Epoch Test Cases 95

Table 5.4: Fit Statistics for Quiet Epoch Test Cases 96

Table 5.5: Position Error Characteristics for Perturbed Epoch Test Cases with Sparse

D ata.. 98

Table 5.6: Fit Statistics for Perturbed Epoch Test Cases with Sparse Data 99

Table 5.7: Position Error Characteristics Perturbed Hot Epoch Test Cases with Dense

D ata.. 99

Table 5.8: Fit Statistics for Perturbed Epoch Test Cases with Dense Data 100

Table B.1: GTDS-Specific CVS Commands ... 140

Table B.2: Frequently Used CVS Commands......................... 142

Table B.3: GTDS Data File Driver Programs .. 148

[This Page Intentionally Left Blank]

Chapter 1 Introduction

1.1 The Problem of Drag Mismodeling

Long-term precision orbit prediction has been of interest since Gauss applied his

method of least squares to determine the orbit of the asteroid Ceres in 1801 [2].

Dynamical astronomers in the 19 th and 20 th centuries grew steadily more proficient at

predicting eclipses, the appearance of comets, and the locations of newly-discovered

heavenly bodies. However, as the world entered the age of artificial satellites in 1957,

precision orbit prediction suddenly became much more important. The unique

environment of space was utilized for communications, remote sensing, navigation, and

scientific research, and these various types of missions placed new demands on space

operations. Today, a wide range of operations depend in varying degrees on the accuracy

of perturbation models and propagation methods, including space catalog maintenance,

maneuver planning, debris analysis, collision avoidance, and re-entry problems.

Most sources of error in orbit prediction, including a non-spherical Earth, third-

body effects, solar radiation pressure, and Earth tides, have been modeled with fair

success. Carter showed in 1994 that the Draper R&D Goddard Trajectory Determination

System (GTDS) orbit propagation tool is accurate to within one meter of the 1334 km

TOPEX reference orbit [45]. However, it has been more difficult to capture the motion

of lower-altitude objects due to the inaccuracy of atmospheric density models. Even the

models considered to be the closest approximations to real-world conditions, such as

Jacchia-Roberts '71 (JR-71) [15] or MSISE-90 [24], can only approach 10% accuracy in

quiet conditions and 20-30% in atmospherically perturbed conditions [3]. It is a

reflection of the difficulty of density modeling that JR-71 is still one of the most accurate

models available even after almost thirty years of research [4].

This is not to say that our understanding of the atmosphere has not grown since

1971. The past decade in particular has seen attempts to produce entirely new density

models based on physical principles rather than empirical observations. This thesis is not

such an attempt. Instead, the goal is to outline methods by which the accuracy of

already-existing density models may be improved using information currently available

from catalogues of frequently tracked space objects. The methodology is developed with

sufficient generality such that it may be applied to any thermospheric model that can

demonstrate a reasonable level of accuracy over the long term

1.1.1 Overview of Atmospheric Structure and Models

Before specific models of the upper atmosphere are discussed in detail, it is

important to provide some explanation of relevant terms and underlying principles. The

atmosphere of the Earth can be divided into distinct regions according to several criteria,

but the most common criterion is temperature.

Figure 1.1: Layers of the Amosphere and Ionosphere

The lowest ten to twenty kilometers of the atmosphere is referred to as the

troposphere, literally the "region of change." The troposphere is characterized by

decreasing temperature and terminates at the tropopause. Above the tropopause is the

stratosphere, in which temperature generally increases until about 50-55 kilometers. The

upper boundary of this inversion layer is the stratopause, which is followed by the

mesosphere. The mesosphere features steadily decreasing temperature up to the

mesopause, at 80-85 kilometers. The region above the mesopause is the thennosphere.

This is the region most frequently modeled for purposes of spacecraft drag [18].

Some other layers of the atmosphere relevant to density modeling are the

ionosphere, homere, honosphere, heterosphere, and exosphere. The ionosphere is the layer

starting at 70-80 kilometers in which ionization of one of the atmospheric constituents is

significant. The ionosphere can be divided into a number of regions according to

electron density, beginning with the D-region under 100 km, continuing through the E-

region, and topped by the F-region above approximately 280 km [31].

The honmosphere extends from the surface to approximately 90 kilometers. It is

characterized by constant atmospheric composition as measured by the mean molecular

mass. Dissociation of molecular oxygen leads to decreasing mean molecular mass above

the homopause and into the heterosphere [18]. The heterosphere is characterized by

diffusive equilibrium of its major constituents, which include molecular nitrogen (N2),

atomic oxygen (0), helium (He), and atomic hydrogen (H) [30]. Each species is

distributed in altitude independently of the molecular weight of other species. Because

the scale height of each constituent is inversely proportional to molecular mass, the

bottom layer of the atmosphere is primarily molecular nitrogen. Above this layer is a

layer of predominantly atomic oxygen at space shuttle altitudes, a layer of helium, and a

top neutral layer of atomic hydrogen [30]. High-energy solar rays also produce ions of

each of these species, but only the 0+ ion contributes to drag in a significant manner [30].

The hydrogen layer lies primarily in the exosphere, which is the highest region of the

atmosphere and is where atmospheric particles can move in free orbits, subject only to

gravitational forces.

These layers of the atmosphere are by no means axially symmetric or static over

time, as was once thought. The most significant spatial and temporal variations can be

grouped into categories as follows:

(1) The density of each constituent is directly proportional to its temperature, and

the primary source of atmospheric heat is extreme ultraviolet (EUV) solar

radiation. EUV radiation exhibits long-term variations over the course of the

11-year solar cycle, and short-term variations related to active regions on the

solar surface which appear once per solar rotation (-27 days) [5].

(2) The atmosphere rotates approximately with the Earth, meaning that

temperature also varies as a function of solar hour angle, reaching a maximum

at 2:00 PM local time and a minumum at 3:00 AM local time. This variation

is known as the diurnal (day-night) effect. Also grouped with the diurnal

variation are latitudinal dependencies. The maximum density was once

thought to follow the declination of the sun, but is now known to occur at

approximately twice the latitude of the sub-solar point [28].

(3) Researchers in geodesy have observed a semiannual variation in

thermospheric density, leading to density maxima in April and October and

minima in January and July [6]. The physics causing this phenomenon are not

fully understood, but many researchers believe the effect is caused by

seasonal-latitudinal variations in the mesosphere [28]. Another hypothesis

explains the semiannual effect as the result of seasonally varying interaction

of the solar wind with the magnetosphere, caused by inclination of the dipole

with respect to the ecliptic plane. Regardless of cause, the year-to-year

semiannual variations are irregular and defy precise modeling or prediction

[32].

(4) Coronal Mass Ejections and other solar eruptions deposit high-energy plasma

into the solar wind, which in turn injects energy into the magnetosphere in the

form of Joule heating [7]. The resulting geomagnetic storms are the single

largest factor affecting short-term fluctuations in thermospheric density [5].

(5) Another variation described by Keating et. al. [30] is the "winter helium

bulge," which refers to increased concentrations of helium in the winter

hemisphere (on the other side of the equator from the sub-solar point). There

is also a corresponding increase of positively charged atomic oxygen (O+) in

the summer hemisphere.

Most thermospheric models have attempted to describe some or all of these

variations, with varying success. Jacchia's 1971 model [15] with Roberts' analytical

evaluation methods [16] is based on empirical fitting of total density and incorporates all

of the above variations. JR-71 has been shown to display a good combination of speed

and accuracy [33]. In addition, JR-71 is in wide use today, and will therefore be the truth

model of choice for the numerical simulations in this thesis. However, it is instructive to

briefly review major efforts in density modeling since 1971. A detailed but by no means

complete list of thermospheric models developed in the last thirty years would include:

* Jacchia '77 [17]

* Barlier's DTM 78 model [19]

* the 1979 Aeros model of Kbhnlein [20]

* the NASA/MSFC GRAM model [46]

* Alycad6's 1981 model [21]

* the Russian GOST model [47]

* Hedin's MSIS models [22-24]

* the MET model developed by Hickey in 1988 [25]

* Sehnal and Pospisilova's TD 88 model [26]

* the Fuller-Rowell CTIM model of 1996 [27]

* Hicks' 1997 GWUAM model [28]

* Owens' development of MET-99 last year [29]

The sheer number of different models should indicate that the problem of density

modeling continues to merit serious attention.

1.1.2 Some Problems with Current Thermospheric Models

Why such difficulty in modeling and predicting the effects of drag on a

spacecraft? To more effectively address this question, we may categorize problems with

density modeling into three areas: (1) thermospheric density model limitations; (2) data

prediction errors; and (3) errors in modeling the drag force exerted on a spatially and

compositionally complex spacecraft. This work focuses on improving results in the first

two areas.

(1) Thermospheric density model limitations. Thermospheric models vary in

complexity, size, and accuracy, but most models share certain characteristics

and assumptions. All models recognize the influence of EUV radiation on

density. However, direct measurements of EUV radiation are not generally

available, so we are forced to rely on the ground-based 10.7-cm solar flux

(usually designated as F10.7) as a proxy measurement. Marcos showed in 1997

that the F10 .7 measurements do not completely represent the actual EUV

radiation, and can result in amplitude errors under spectral analysis of up to

30% [6].

We can measure the effect of the solar wind on the Earth's magnetic field

with the Kp index, a globally averaged logarithmic index of geomagnetic

activity. Some models also use geomagnetic information in the form of the

daily Ap index, which is a linearized version of the sum of Kp values

averaged over one day. The Ap index, while able to capture the average effect

of geomagnetic storms on thermospheric density, cannot accurately specify

the spatial distribution and temporal evolution of the magnetospheric sources

of energy. In addition, no widely available thermospheric model has

incorporated the tidal and wave motions of the lower and middle atmosphere.

The result of these limitations is that models are limited to 10% accuracy even

when all necessary data are available.

(2) Data prediction errors. When dealing with prediction problems where future

F10.7 and Ap values are not available, we must use some kind of forecasting

algorithm or rely only on past data. Most models use a combination of daily

F10 .7 values and 81-day averages of F10 .7 (denoted by Fo,7) centered on the

epoch of interest to calculate the exospheric temperature, which is usually the

basis for the neutral thermospheric density. The daily F10 .7 values fluctuate in

accordance with the appearance of active regions on the solar surface over the

course of its 27-day rotation. Nostrand has shown that the Air Force Global

Weather Central (AFGWC) can only accurately predict F10.7 up to three days

[53]. When the necessary data are not available, many agencies (including the

Air Force Space Warfare Center) use a running average taken over the past 90

days as an estimate of F,0.7. If the solar flux does not conform to its past

behavior, this estimation can result in errors of up to 40 solar flux units, or

equivalently a density difference of about a factor of two [8]. In addition, the

long-term Ap trend is dictated by the 11-year solar cycle and can be predicted

with reasonable accuracy, but the day-to-day Ap measurements fluctuate in a

semi-random manner. Therefore, the predicted values of Ap and Fo0. can at

best capture long-term trends and will not reflect day-to-day fluctuations.

(3) Errors in drag force modeling. Most current thermospheric models do not

incorporate detailed information about gas-surface interaction between air

molecules and three-dimensional spacecraft surfaces [9]. Instead, all

information about how a spacecraft interacts with the thermosphere is reduced

to one dimension in the form of the unitless drag coefficient, CD. This

coefficient is usually assumed to be constant and is used as a parameter by

which the estimation process can adjust the effects of drag to best fit

observations. Unless the attitude, shape, and composition of a space object is

known very accurately, the best estimate of the coefficient of drag (on which

the ballistic factor directly depends) may deviate from the true, time-varying

coefficient by as much as 15% [4].

1.2 The Density Correction Process

It seems clear that to more effectively model short-term variations in density, we

must come up with a way to more frequently and comprehensively measure changes in

atmospheric conditions. Several investigators have suggested the launch of low-cost

"calibration" satellites to directly measure atmospheric density in the low-altitude regime;

Laneve [48] proposes a small constellation of spherical satellites in highly elliptical

orbits. However, an even lower-cost approach is to use data that we currently have in the

US Space Catalog to estimate corrections to existing atmospheric models in near-real

time. The basic idea is that if we know the orientation, mass, and cross-sectional area of

a particular spacecraft, but our differential corrections process is telling us something

different, the difference between the truth and estimate is a reflection of the inaccuracy of

the density model for that particular range of time and altitude. This assumes that we can

isolate the effect of drag perturbations on the objects from the effects of other

perturbations. If we take enough measurements of diverse low-altitude objects over a

long enough period of time, we should be able to form a density correction model on a

global scale. The density correction model may also be forecast into the future for orbit

prediction purposes. Not all objects used in the correction model need to have precisely

known cross-sectional area and mass. In fact, the process may be used to better estimate

unknown spacecraft characteristics as a by-product of density correction.

1.2.1 Basic Operation

We initially select 200-300 frequently tracked objects that have sufficiently

diverse inclinations, eccentricities, and perigee heights between 200 and 600 km. We

then designate objects that have constant and precisely known ballistic factors as

"standard" satellites. The ballistic factor is defined as

= , (1.1)

where CD is the coefficient of drag, Ax is the cross-sectional area perpendicular to the

satellite's motion, and in is the mass. The subscript i refers here to the i'h satellite, where

the satellites are numbered from 1 to n.

An example of a standard satellite might be a spherical object with known mass

and composition in a stable, near-circular orbit. The drag coefficient for these types of

satellites does not vary appreciably over time or altitude, as long as the satellite remains

in the low-altitude drag regime (under 600 km) [4]. Because we can essentially eliminate

errors due to unknown mass, cross-sectional area, or drag coefficient, the standard

satellites will form the core of our density correction database. Nazarenko has shown

that the density correction process can be effective if 1/10 objects in the database are

standard [1].

The remaining objects are designated as "non-standard" satellites. We define a

constant "true" ballistic factor for these objects as well, although the actual ballistic factor

may be changing from one moment to the next. We also know the degree of variability

for each ballistic factor in the form of the standard deviation.

For standard satellites, the values CD, Ax, and nz are well known and ki can be

calculated to a high level of accuracy. For non-standard satellites, the true ballistic

factors can be approximated by averaging ballistic factors taken over a sufficient number

of preceding solar rotations. We will not be able to gain as much information about the

inaccuracy of our density model from the non-standard satellites, but some error can be

removed using measurements from the standard satellites as calibration data. This

process and more details on the estimation of "true" ballistic factors for non-standard

satellites are presented in Chapter Two.

Using precise orbit propagation tools (i.e. special perturbations or semi-analytic

theory) and a sliding three-day window of observations, we estimate the orbits and

ballistic factors of all satellites in the database. The deviations from the true ballistic

factors should reflect the amount of error in the given thermospheric model for a

particular altitude and time. We "attribute" each observed ballistic factor to a specific

time and altitude, group ballistic factors into 3-4 hour spans, and construct linear models

of density variations for each span. The linear models will be piecewise constant for each

span, and will depend only on altitude. By using 200-300 satellites in the database, we

ensure that each three-hour span will contain at least 35-40 ballistic factor estimations.

According to the work of both Storz [11] and Nazarenko [1], this seems to be the

minimum number of measurements necessary for obtaining adequate global coverage of

the thermosphere. Over the time period of interest, our thermospheric model has now

been calibrated to data taken from the space catalog. This process should account for the

major errors caused by limitations in the model as discussed in area (1) under Section

1.1.2 above.

Once the density variation models have been calculated, the original

thermospheric model plus the corrections can be used to estimate the orbit and ballistic

factor of a new, possibly unknown space object. The orbital elements should be more

accurate as we are no longer trying to fit observations to an incorrect model. Also,

because we have accounted for the limitations of the density model, we are left only with

errors in the ballistic coefficient. We should therefore be able to gain more information

about the "true" ballistic coefficient of the target object and possibly information about

coefficient decay rates, mass, or shape as well.

To reduce error associated with Section 1.1.2 (2), data prediction, we can treat

the density variation model coefficients as observations of stochastic processes. The

deterministic components are estimated first, and a Kalman filter is then used to forecast

the random component. It is thus possible to obtain density variation models for time

periods during which we have no measured thermospheric data. This approach is in

effect a way of forecasting values of Ap and F10.7 in a stochastically optimal way.

Regardless of whether real observations are available, it will be necessary to

construct an observation simulator. This is so that we can completely validate the

algorithms before moving on to real data. First, the ballistic factors and mean elements

of the standard and non-standard satellites are generated with sufficient diversity in

orbital eccentricity, perigee height, and inclination. We simulate truth orbits of all

satellites using a high-precision propagator, the truth density model, and the true ballistic

factors. The orbits are simulated for a relatively long period of time (at least 20-30 days)

so that we can gain some sense of how the process performs over changing atmospheric

conditions. This long time period is also necessary to allow the estimation of "true"

ballistic factors for non-standard satellites.

The positions and velocities of the satellites are used as inputs to the observation

simulator, and the output observations are in the form of time-tagged range, azimuth, and

elevation with appropriate noise characteristics. The ballistic factors of the non-standard

satellites are then reset to a-priori values, and we fit the observations for each satellite

using a sliding three-day window as described above. The fit model will be either a

simpler thermospheric model or the truth model but with smoothed Ap and F10.7 inputs.

The ballistic factor estimations are used to construct the 3-hour density variation models

over the entire 20-30 day time period. If the process works, the simpler fit model plus the

corrections should equal the truth model. For testing, a target orbit and target ballistic

factor are estimated using the corrected density model, and accuracy of the density

variation prediction algorithms is investigated by comparing the estimated orbit with the

"truth" orbit.

1.3 Previous Work

The idea of using observations of drag-perturbed spacecraft to improve

thermospheric models is not a new one. In fact, the initial derivation of most models was

done in precisely such a manner, primarily because the atmosphere is not understood well

enough to construct a model based solely on physical principles. However, the particular

method of model correction has varied widely. One idea presented by Barker et. al. in

1989 [34], specifically applied to the decay problem, is to parameterize the ballistic

coefficient as a linear function of time. The rate of change of ballistic coefficient is then

solved for in a differential correction process and used for orbit prediction. Wright

presented a more comprehensive methodology in 1990 [35], in which a subset of

atmospheric density parameters is estimated for each spacecraft in a sequential filter.

These parameters include coefficients that appear in Jacchia's empirical equations for

exospheric temperature, diurnal variations, geomagnetic disturbances, and other effects.

The parameters are then processed by a second sequential filter to provide density

corrections in near-real time.

More recently, Marcos et. al. [6] presented a scheme for correcting a given

atmospheric model using observations from a calibration satellite, where the satellite's

true ballistic factor is known very precisely. These observations are fit over a few days

and the resulting ratio of "adjusted" to true ballistic coefficient is used to correct the

model on a global scale. Storz [11] has also outlined a somewhat different approach in

the past year, in which estimated ballistic factors are used to solve for energy dissipation

rates for a number of calibration satellites. The energy dissipation rates are then used to

estimate coefficients for a spherical harmonic expansion of exospheric temperature,

which is one of the primary inputs into Jacchia's models.

Some of the most comprehensive work in dynamic atmospheric correction,

however, has been performed over the past decade by A.I. Nazarenko and V.Yurasov [1,

12, 13]. This thesis extends and applies some of their methods in a more operational

environment. The underlying mathematical theory is refined and presented in more

detail. The theory is independently verified with a simulation of all phases of the

problem, including data generation and differential corrections. The dependence of orbit

determination accuracy on atmospheric conditions, quantity, and quality of observations

is investigated. Finally, we will verify the effectiveness of "true" ballistic factor

estimation and density variation forecasting.

1.4 Outline of Thesis

The next chapter of the thesis will explain the density correction process in more

mathematical detail, including the calculation of density variations, estimation of "true"

ballistic factors, and forecasting of density variations. The third chapter outlines the tools

and software used in this thesis, including the Goddard Trajectory Determination System

(GTDS) and the density correction software written by the author. The fourth chapter

describes the setup of the simulation and types of test cases to be executed. Chapter Five

discusses the results of the test cases, and Chapter Six will present conclusions and future

work. Appendix A will include additional results in graphical form, and Appendix B will

discuss issues dealing with operation of GTDS on the UNIX system.

Chapter 2 Mathematical Specifications

Most of the derivations in this chapter follow the general flow of the reports

authored by A. I. Nazarenko and commissioned by Draper Laboratory over the past three

years [1]. However, an attempt has been made to correct a few errors and standardize the

notation. Additionally, the sections on estimation of "true" ballistic factors and

forecasting of density variations are presented in more detail. Systematic derivations

allow a reader not already familiar with some of the concepts to follow along without too

much difficulty.

Presented below is a flow diagram of each stage in the density correction process.

The diagram assumes that the observations are simulated. Each stage in density

correction and prediction is derived in the sections to follow.

Truth
Pos/Vcl

-I
Truth Force Models

I) numerical integration
2) higher order geopotential
3) drag (JR 71. MSISE-90. GOST)
4) Luni-Solar Point Masses
5) Solar Radiation Pressure

1) Truth density mnodel
2) Truth ballstc factors

Once per run
> Once per solar rotatn

I) Station locations
2t Error characteristics

Figure 2.1: Density Correction Flow Diagram Using Simulated Observations

2.1 Construction of Density Variations

There are two approaches that one can take in obtaining the ballistic factor

estimations from the observation data: batch-fit methods, and recursive filtering

1) standard
satellites
2) non-standard
satellites
3) user satellites

Truth

techniques. An overview of the basic concepts for each of these techniques is discussed

below.

2.1.1 Batch-Fit Concepts

We are initially given observations for a large group of "standard" and "non-

standard" satellites with perigee heights between 200 km and 600 km. The observations

are distributed over at least an interval of one solar rotation (--27 days) to have enough

data to come up with initial estimates of non-standard satellite ballistic factors. We are

also given an a-priori density model, which for simulated observations can be the same

overall model as the truth model but without short-period density fluctuations. The a-

priori model can also be an entirely different model than the truth. If the observations are

not simulated, we will use the best available model including all long and short-period

perturbations. Observations taken an average of three times a day from somewhere in the

range of 200-300 satellites should provide enough information for problem solution. The

exact number and duration of needed observing passes is unknown, and can be adjusted

as necessary.

We want to use these observations to estimate ballistic factors, which are then

used to construct linear density variation models; however, we must first "localize" the

ballistic factor estimations with respect to altitude and time. Beginning with the first

three days of data, we estimate the orbital elements and ballistic factors for each of our n

space objects. The estimated ballistic factor for each satellite is in some sense a

reflection of the average drag that the satellite experienced over the fit span; therefore,

each ballistic factor can be localized to the height of perigee. The error associated with

this attribution should be insignificant because atmospheric density decreases

exponentially with increasing altitude. The time attributed to each density variation

depends on the estimation method. For batch least-squares fitting, the estimator attempts

to find a value of the ballistic factor such that the residual errors over the entire interval

are minimized. Therefore, assuming the observations are distributed somewhat

uniformly across the fit span, the estimated ballistic factor should be attributed to the

midpoint of the observations for that particular satellite. Once we have estimated and

localized all of the n ballistic factors, the three-day fit window is shifted forward by three

hours, and we re-estimate orbital elements and ballistic factors for all satellites for which

we have obtained new observations. If observations for each object come in every 8

hours, the average number of new ballistic factor estimations obtained every three hours

will be equal to 3n/8. This means that n should be 2 214 to ensure an average of 80 new

ballistic factor estimations per three hours.

We are left with a large number of ballistic factor estimations, each one of which

is associated with a particular satellite, altitude, and time. We now need to group the

estimations into j spans of 3-4 hours each so that we may construct a linear density

variation model for each span. The length j of each span, wherej ranges from I to N,

should be minimized so that the density variation model can capture short-period

fluctuations in density. However, iz must be long enough to contain a sufficient number

of ballistic factor estimations, as was discussed previously. We will set "t,,,i,, equal to 3

hours. The first density variation model span will begin about 1.5 hours before the

midpoint of the first three-day fit window, since that is where the first ballistic factor

estimations will be attributed. We assign the beginning of the first span to TI, and count

the number of estimations contained in [TI, T, + 3hrs), eliminating any estimations from

identical satellites. If the number of estimations is greater than 35, we assign T2 = (TI + 3

hrs) and continue with the second span. Otherwise, we extend the first span by 5-minute

intervals until we have enough estimations. We continue with the process until the start

and end times of all N spans have been defined. We will now adopt the following

notation: ki, refers to the ballistic factor estimation associated with the i"' satellite and the

j"' span; hi is the height of perigee attributed to k, ; and ti is the time attributed to ki. We

also have oa2 , which is a measure of the variability of the ballistic factors for satellite i,

and which will be further defined below.

2.1.2 Recursive Filtering Concepts

Most of the concepts described for batch-fit techniques also apply to recursive

filtering methods, but there are a few important differences relating to the attribution of

ballistic factors. We begin with the same number and frequency of observations, but it

may be necessary to use more than three days of data to allow the filter to converge to a

valid solution. Once solutions have been obtained for all n satellites, we assign the

current time to the beginning of the first density variation model span (T1), and take

additional observations for three hours. Each observation is used to recursively estimate

the real-time orbital elements and ballistic factor, meaning that the time attribution for

each ballistic factor, tij, is simply equal to the time of estimation. The attribution altitude

remains the height of perigee, also at the time of estimation (if the height of perigee is

changing over time). If there are greater than 35 estimations after 3 hours, we assign T2

= T, + 3 hrs and move to the next span; otherwise, we take more range/az/el observations

until we obtain 35 estimations. As soon as we reach the end of the available

observations, our sorting process is finished, and we are ready to construct our linear

density variation models for each span.

2.1.3 Relating Ballistic Factors to Density Variations

We next will derive the relationship between the ratio of estimated to "true"

ballistic factor and the ratio of the difference in true and modeled density to the modeled

density. The true density at a given time and altitude is related to the modeled density by

the following equation:

P = P,,, + Sp = P, 1+ p (2.1)

where Pm refers to the density calculated by the model. We are trying to measure the

density variation term Sp / p,, at a particular altitude and time given the true ballistic

factor ki and the estimated ballistic factor k' , which is obtained from the observations as

described above. We can choose an orbital element directly related to energy of the orbit

(such as period or semi-major axis) and write its true rate of change over one revolution

as the product of the true ballistic factor, true perigee density, and some function of the

orbital elements. For the purposes of our simulation, we will choose the period rate,

denoted by i:

t P= k, p(h,,t). f (x) (2.2)

The term x refers to the state vector, which may be any complete set of the six orbital

elements. We estimate the period rate from our observations, and use the ballistic factor

to fit the observation to the modeled density at perigee:

?Tj = kij -p,,, (hij, t)i f (x) (2.3)

This equation assumes that our perturbation model can very accurately describe

other perturbations that affect the energy of the orbit, such as third-body perturbations,

solar radiation pressure, and non-spherical Earth effects. In other words, it is necessary

to use semi-analytic techniques or special perturbations to propagate orbits. Otherwise,

we will not definitively know whether our estimator is adjusting the ballistic factor in

response to errors in the atmospheric model or in response to other model errors. We

define the relative errorE between the real and estimated period rate with the following

equation:

, = T(1 +) (2.4)

Combining Eqs. (2.2)-(2.4), we can write

k p(h, ,t,) k Sp k (2.5)1= - -I- -- (hyty)- E (2.5)
ki p.. (hi , ti ki p,1 ki

If we assume that the observed period rate is a good approximation of the true

period rate, i.e. E = 0, we now have a relation between the density variation at perigee

and the ratio of estimated to true ballistic factors. However, unless we are dealing with a

standard satellite, we do not know the true ballistic factor ki. For these non-standard

satellites, we can use the time-averaged ballistic factor ki as an approximation of the true

ballistic factor; methods for obtaining k, will be discussed in Section 2.2. These

assumptions and the previous derivations result in the fundamental equation for

constructing density variations

9P(hmtij) = - 1 (2.6)
Pm k,

where the subscripts i andj denote the i'lh satellite and j' span, as was mentioned before.

Each density variation is used to construct the time and altitude-dependent density

variation model for each span.

2.1.4 Least-Squares Solution

At this stage of the problem, we have at least 35 density variation measurements

for each of the N three-four hour time spans in the form of the ratio of estimated to "true"

ballistic factors. The satellites used in any particular span are a subset of the entire set of

satellites, which we will denote by I = { 1,...,n }. The subset of satellites for span j, which

we denote by nj c I, will change from one span to the next. Conversely, the spans that

satellite i appears in is a subset of the entire set of spans, which we will denote by J =

{ 1,...,N). The subset of spans for satellite i, which we denote by Ni c J, is different for

each satellite.

Our task is to now use the density variation measurements to construct piecewise-

constant linear models, which are assumed to take the following form:

P (h, ,tj) - 1 = blf (h1i) + b2f, (hIi) + A, (2.7)
p,,, k,

By "piecewise-constant," we mean that each linear model is constant with respect

to time over its particular span j. The term Aij is the residual error for each estimation

and is assumed to be zero-mean white Gaussian noise (WGN) with variance o02. The

linear function are defined as fi(hij) = 1 and f 2 (hij) = (hi - 400)/200, the forms of which

impart a physical meaning to the coefficients b1i and b2j: the first measures the relative

variation of density at 400 km, and the second characterizes the change of relative

variations within ± 200 km of the mean altitude of 400 km. Although the density models

are specifically tailored to the 200-600 km range, it should be possible to apply the

equations above 600 km without negative consequences. This is because it is very likely

that lower-altitude error trends will continue in some fashion at higher altitudes, and also

because drag effects are significantly reduced at these altitudes.

The reader should note that the linear correction models do not depend on

longitude or latitude, meaning that the same correction is applied at a particular altitude

and time regardless of position. This feature could lead to errors when the atmosphere is

perturbed by location-dependent sources, such as geomagnetic disturbances. However,

the simplicity of the correction equations was found by Nazarenko to be a necessary

limitation of density correction. A possible consequence of increasing the number of

terms in the correction equations is that the useful information contained in the

observation data must be spread over a greater number of coefficients, resulting in lower

accuracy for all [12]. It may be feasible to construct more complex models with greater

quantities and quality of observations.

The linearity of the functions allows for the direct solution of the problem using

analytical least-squares techniques. To properly justify the use of least-squares for this

problem, we should demonstrate that the assumption of Gaussian white noise is a good

one. Implicit in this assumption is that the average error in our given atmospheric model

is also Gaussian. Jaeck-Berger and Barlier obtained approximately 12000 measurements

of density from 80 satellites over a three-year period, and calculated the ratio of true

density to the density calculated by the Jacchia '71 model [36]. Their results are shown

in the figure below:

(a

-a

'I

-i

v_ ._ _ __ _ _ _

(t t . ~ .C..ttc -.

0.5 0.G 0.1 0.8 0.3 1.0 1.1 -t.- - 5. ,1.7 1.8 9 2.0

Figure 2.2: Ratio of True Density to Jacchia '71 Density [36]

The dashed line refers to the actual ratio of true density to J71 density, while the

solid line is the result of an empirically corrected J71 model devised by Jaeck-Berger and

Barlier. Corrected or uncorrected, however, the errors are seen to be distributed in a

Gaussian fashion with mean of approximately one.

We are now ready to define our cost function and minimize with respect to the

model coefficients, but we first will redefine several quantities in vector notation. The

residual error vector is defined by:

AT = [Ai .. A,]T (2.8)

where each residual error is found from the following equation:

A, = - - b -f1 (hl) (2.9)

The vector defined in Eq. (2.8) does not really contain the residuals for the

satellites i = 1,... ,nj, but in actuality is defined by the ordered subset nj c I. However,

from this point forward, we will abuse notation in a similar manner for all vectors

Mn ·7··1 · 1 · · .-C-·C-~

composed of elements taken from the subsets nj or Ni. The weighting matrix Pj is a

diagonal nj x nj matrix with the weight for the i'h satellite equal to 1/Co2. In reality, we

will not know the "true" variance, but we can use the time-averaged estimate o7 instead.

Our cost function can now be simply written as

I(b) = AjPA1 (2.10)

where bjT = [bij b2j]T. If we define the vector aj as

(2.11)aT LftTi1!
ki

and the n12 x 2 matrix Fj as

F, (2.12)

then the cost function becomes

T) /,. ' (2.13)

Taking the first derivative with respect to bj, setting the equation equal to zero,

and solving, we obtain the traditional least-squares solution:

= (FTPF)-1 F Pja= P j'ja (2.14)

2.1.5 Validation of Solutions

The solutions obtained from Eq. (2.14) above must be checked for physical

authenticity. We set the following constraints on allowable values of density variations:

fl (hj) f2(hlj)

f , (hsjj) f 2 (h/I,,,

T[L \ __S'• 171k

b (I) = (a - F b) P (a - F

b y)

kTi
k?1

P (h, = 200) = b 1 -bjI <0.3 (2.15)
P,

- 0.5 < (hi, = 600) = b 2j + b2j < 2.0 (2.16)
Pm

These bounds are commensurate with the max 30% error in most density models

at low altitudes, and with the greater errors occurring at higher altitudes. Nazarenko [1]

found that almost all density variations fell within these boundary values, but the values

may be adjusted as necessary.

2.2 Estimation of Ballistic Factors

Through all previous derivations, we have assumed that we accurately know the

"true" ballistic factor ki and its variability in the form of ai2 for each of the n satellites.

However, this is usually not the case for non-standard satellites, which will comprise a

majority of the space objects used in the atmosphere correction service. We instead must

use some kind of estimation process to find time averaged versions of these quantities,

which are expressed as k, and o, . The fundamental assumption on which the rest of the

derivations will rely is that the average residual error for a particular satellite is equal to

zero:

E[A]= 0 (2.17)

Here, E is the expectation operator and the terms written in the Arial font are

considered random variables. Note that the residual term here refers to residual errors

averaged across many spans for one satellite, where the residual vector in Eq. (2.8) refers

to a particular span j but many different satellites. This equation will be valid if the

differences between the true and modeled density can be accurately captured by the

density variation models defined in Eq. (2.7). This in turn means that on the average, the

modeled density should be an accurate representation of the true density, as shown in

Figure 2.2 above.

The first task is to define a measure of quality for the density variation models. A

natural measure is the averaged sum of residuals for a particular satellite over the

appropriate spans. For standard satellites, the measure is defined as

SjN, (2.18)
INeI

where e E Ie , I, c I is the subset of standards satellites, and Ne c J is the subset of spans

which contain ballistic factor estimations from standard satellite e. The term IN,I refers

to the ordinality (i.e. size) of the subset Ne. A similar measure for non-standard satellites

can be defined with

SJENi (2.19)
jNI

where i E I; If C I is the subset of non-standard satellites, and Ni c J is the subset of

spans which contain ballistic factor estimations from non-standard satellite i. Note that

SUIe = I.

The method of estimation depends on the number of standard satellites available.

The equations are first derived using one standard satellite, and are then generalized for

the case in which we have multiple standard satellites.

2.2.1 Ballistic Factor Estimation with One Standard Satellite

We seek to find the set of "true" ballistic factors that minimize the quality

measures defined in Eqs. (2.18) and (2.19). We will first make use of the information

provided by the standard satellite in the form of Q,. It is reasonably certain that changes

in the ballistic factor of the standard satellite are due to density model inaccuracies and

not to changes in satellite attitude or composition. Therefore, if Q, is not equal to zero,

its magnitude is in some sense a measure of the validity or "bias" of the density variation

models as a whole.

As discussed above, the residuals for any satellite are expected to sum to zero:

j -- I + •b• fq (ho), = 0 (2.20)

Here, b, is the density variation model coefficient which has been estimated using the

uncorrected ballistic factors. The term b,1 will refer to the density variation model

coefficient calculated using "true" ballistic factors. If we solve for the a-priori ballistic

factor k, in the above equation, we find that

Ikii
S= jN, (2.21)

1+ b f q(hij)J
jEN, q=1

If the true values of the ballistic factors were known and we constructed density

variation models using these factors, Eq. (2.20) would remain valid:

k2
- 1 + Ib ffq (hj) =0 (2.22)

j N i " 7=

Solving for the true ballistic factor ki,

k̂
ij

ki = N, (2.23)

1+ b , f, (hiij
jeN, q=1

We now make our key assumption: that each a-priori ballistic factor deviates by a

factor ý from the true ballistic factor. In equation form:

ki = . ki , i If (2.24)

Combining Eqs. (2.21), (2.23), and (2.24) leads to

. 1 + bj fq (hI) = 4 1+ b(fq (hl) (2.25)
N, q=jN q=

We are now ready to solve for c using the information obtained from Qe. Since

this information approximately reflects the average or overall "bias" of the variation

model due to inaccuracies in non-standard ballistic factors, we can write

2 2

S 1+ jbjfq (hej) I= 1+ b, f (h,) (2.26)
jeN q=1 jeN, q=1

Applying the condition of Eq. (2.22) to the standard satellite,

j 1+ b fq (hej) =0 (2.27)
j•eN, k e , q=

The previous two equations are then combined and the sum of density variation

model evaluations is subtracted from both sides to produce

k 2 2
e lj I+ vf(h,) = I+ • •v(h) .(h -1) (2.28)

jEN, k , q= =l q=1

We observe that the LHS of this equation is equal to (Qe, I Ne I). Solving for the

correction term (, the fundamental ballistic factor correction equation is obtained:

Q= 1+ N (2.29)

S+ •_^j fq (h)
je N, q=1

This correction factor is applied to each non-standard ballistic factor according to

the following equation:

(k) (, ji If (2.30)

The correction process will undoubtedly overestimate some ballistic factors and

underestimate others because the correction factor removes the average deviation

obtained from the standard satellite information. However, the next stage of ballistic

factor updating will remove these individual biases using information from each non-

standard satellite in the form of Qi.

We first define a new satellite-dependent correction factor:

ki = iy, .ki (2.31)

The fundamental equation for the new correction factor is derived using the same

methodology as above, except that Qi is used as the information basis instead of Qe,:

Vyi = 1 Qj (2.32)

1 + ,(qj fq (hij)
jeN (q=1

A different correction factor is calculated for each satellite and applied using the

analogue of Eq. (2.30):

(k)new (ki)old (2.33)

It is also necessary to obtain estimates of the variance of residual errors, or oi2.

Since the residual error for each satellite and at each span is assumed to be an

independent, identically distributed Gaussian random variable, we may use the (efficient)

max-likelihood estimate for the variance:

2A-2
' e2 = JN, (2.34)

INI

It can be seen from Eqs. (2.29), (2.32), and (2.34) that the updating of ballistic

factors depends on the construction of density variation models, and vice-versa.

Therefore, iteration will be necessary. To summarize, the density variation models are

first constructed for each time span using the least squares solution in Eq. (2.14) and the

a-priori estimates of ballistic factors and residual variances. After data has been

processed for one solar rotation (27-28 days), new ballistic factors and variances are

calculated as described above, and we return to the beginning of the solar rotation to

reconstruct the density variation models. Usually, only three to four iterations are

necessary to meet acceptable convergence criteria [1]. Nazarenko did encounter some

problems with convergence, but found the algorithms to be more robust if the global

correction factor ý is applied only in the first iteration. We will follow his

recommendations and use this approach hereafter.

2.2.2 Ballistic Factor Estimation with Multiple Standard Satellites

One possible source of error associated with the previous method is that the

information obtained from Qe, is associated with a particular altitude, he', which is equal to

the perigee altitudes hij averaged over the spans j E N,. It is likely that the correction

factor ý is not entirely appropriate for the entire range of altitudes associated with all of

the non-standard satellites. However, if a sufficient number of standard satellites with

different perigee altitudes can be found, we can construct an altitude-dependent function

using the values of Qe, for e E I, as measurements. The number of standard satellites will

not be large, meaning that the unknown function is assumed to be linear. This

assumption ensures that we are not trying to extract too much information from the data,

and allows for use of the analytical least square method.

Each value of Q, is measured in the presence of WGN:

Qe = F(hI) + Ee (2.35)

The unknown function F(h) is assumed to take the following form:

(h - 200)
F(h) = a, + a, - (2.36)

200

The coefficients are estimated in a similar manner as the density variation model

coefficients in Section 2.1.4, and the equations will not be presented here. We calculate

the RMS error of the residuals and compare to the coefficient a2. If the absolute value of

a 2 exceeds the RMS error, we will assume that a2 = 0 and recalculate al. After the

coefficients are estimated, the first-stage ballistic factor correction factors can be

calculated for each satellite using the following equation:

F(h-) .IN, I=+ = 1 + (2.37)
I +I q fq (h)

jE Nj q=1

These correction factors are applied only for the first iteration. The second-stage

correction factors described in Eq. (2.32) are calculated in the same manner regardless of

number of standard satellites.

2.3 Forecasting of Density Variations

We have outlined approaches for obtaining the linear density variation models for

spans for which we have ballistic factor observations. We will now derive the methods

used to forecast the variation models for those spans for which we do not have

observations. The basic concept is to treat the model coefficients bij and b2j calculated

for each of the N spans as measurements of stochastic processes. The derivation for each

of the two coefficients is essentially the same, so we will use the general expression x(t)

for both of the processes. We can separate x(t) into deterministic and random

components:

x(t) = xd(t) + x,(t) (2.38)

The random component is assumed to be a wide-sense stationary Gaussian

random process and has a correlation function defined by

K,, (r) = . -exp(-afrj) (2.39)

The variance of x,(t), given by or , is in the range of 0.1 - 0.6; Nazarenko [14]

outlines the method of calculation in one of his earlier works. The parameter ox has been

experimentally determined to be 0.241/day. The corresponding power spectral density is

given by

2U a
S. (s) = ------ (2.40)' a- - s-

We can graphically conceptualize x,(t) as the output of a causal' shaping filter

with unit variance Gaussian white noise as the input:

Iw(t) 2~a X,(t)0
S ,(s)=1 s+a

H(s)

Figure 2.3: Shaping Filter for Random Forecasting Component

This allows us to write the differential equation describing x,(t):

-x, ((0 (2.41)dt -a -X, (t) + . w(t) (2.41)

To forecast values of x,(t), we simply solve the differential equation without the

white noise (which we have no way of predicting):

r, (t) = exp(-a(t - t,)) - ^, (t,) (2.42)

Therefore, to determine the best estimate of x,(t) at any future time t, we simply

need the initial value at time t,, •r (t,) . The deterministic component of the signal is

assumed to be the sum of a constant parameter and a sinusoid:

xd (t) = X + (Xd () - X) . COs(A(t - t,)) + sin(A(t -t)) (2.43)

A linear time-invariant system is causal if the output is dependent on the current and/or past values of the
input signal. A causalfilter must have all poles in the left-half plane (LHP) if it is to be stable.

where A = 27/T and T = 27 days (one solar rotation), i is the constant parameter, and

,cd (t,) and ,, (t,,) are the values of the function and its derivative at some initial time to,.

We will be "observing" x(t) at the beginning of each density variation model span,

where the beginning time of the j' span is denoted by Tj. We assume that each

measurement of x(Tj) is subject to zero-mean white Gaussian noise, denoted by vj, which

has a variance of 2 and is statistically independent of x,(t). Using the traditional

designation of z(Tj) = zj for the measurements, we have

Zi = xd(T) + x, (Tj) + vj (2.44)

Our task, then, is to estimate Y ,xd(t,) , id(to), and ,t(t,) , where to will be taken

as the time of our last measurement, i.e. t, = TN. Thus, to is not actually the "initial" time,

but because we are modeling the deterministic component using periodic functions, the

temporal location of to should not significantly affect results. Because the random

component is independent of the deterministic component, we can first estimate

2r xd,(to), and id(t,,) and use the residuals in the second stage to estimate Xr(to). We

can rewrite Eq. (2.44) as

j = xd (T,)+)y (2.45)

where yj is considered to be the total error of the measurements. If yj is white Gaussian

noise, we can estimate the deterministic parameters using the least-squares (max

likelihood) method. However, Eq. (2.39) indicates that the error is correlated at different

time moments, meaning that the covariance matrix for the vector of zj measurements will

not be diagonal. Inversion of the covariance matrix for hundreds of measurements

(needed in order to calculate the weighting matrix in the least-squares problem) could be

very computationally costly. Therefore, we need to make some kind of simplifying

assumption. We note that the total interval of measurements processing is one to two

months, while the interval of correlation of measurements (controlled by the value of a in

the correlation function) is on the order of a few days. This means that we can safely

neglect the correlation of different measurements, and because we trust each

measurement equally, can completely eliminate the need to calculate a weighting matrix.

The solution to the least-squares problem is found from

Xd (t,) =(G'G G)-G' Z (2.46)

xi((Gt)1)

where the j'h row of the (N x 3) matrix G is defined by

1- cos(A(t1 - to)) cos(A(t - t,,)) sin(A(t1 - t,,)) (2.47)

and Z is formed from the measurements of zj , where j = 1,...,N. Once we have the

solutions for the deterministic parameters, we calculate the residuals using the following

equation:

yj = z- s- (xd (to) - x) - os((t - t,,)) - d(tsin(A(t - t)) (2.48)

We now have N measurements of a stochastic process with additive white

Gaussian noise:

y j = Xr (T) + vj (2.49)

The optimal solution for this problem is to use a scalar Kalman filter. Eqs.

(2.41) and (2.49) function respectively as the state equation and output equation in our

state-space model. We use the traditional designations for estimator variance at update

time (pjlj) and predicted variance (pjlj), as well as for the current estimate (r1jlj) and

predicted estimate (,r.j+j). The filter is initialized with pjo = o2 and .r. lo = 0, and the

time between the ji' and (j+1) 'i measurement is denoted by zT. For any given iteration, we

first compute the traditional Kalman gain:

P j(j-1gj = - I _

We then update the last prediction using the new measurement at timej, and propagate

the estimator variance:

1 l = r,jljI + g (Y - r.jlj 1)

PjI
= ga 2

(2.51)

(2.52)

The signal and variance can be propagated using the basic Kalman filter prediction

equations:

r.j+llj = exp(-a'rj)-* rjlj

Pj+,1j = exp(-2a'rj) - pjJj + (1 - exp(-2arj)). o·

(2.53)

(2.54)

The time span j is incremented, and the equations are iterated until we reach the

final measurement at j = N. The value of r.NIN is taken to be r,)(to) in Eq. (2.42), and

we can now forecast the random component as necessary. Similar methods have been

outlined in the DFY 97 Stage 3 of Nazarenko's report [1].

(2.50)

Chapter 3 Tools and Software

A key requirement of atmospheric density correction in near-real time is an

efficient and high-speed method of organizing and processing large amounts of data. In

addition, the estimation of ballistic factor observations must occur in an automated

fashion, as hundreds of objects are used as calibration satellites. Two software tools

proved to be absolutely essential for the work in this thesis: the GTDS computer

application, and scripting files written in the Perl 5.0 programming language. Each is

described in the sections to follow.

3.1 The Research and Development Version of the Goddard Trajectory

Determination System (R&D GTDS)

In order to make the best use of our observations, and also to be able to separate

the effects of atmospheric drag from other perturbations, we must use a propagation

model that is as accurate as possible. One of the most accurate special perturbation

models available is the Research & Development version of the Goddard Trajectory

Determination System (R&D GTDS) as currently implemented at the Charles Stark

Draper Laboratory.

R&D GTDS is a multi-purpose computer application originally developed for

NASA/Goddard Space Flight Center in the 1970s. The R&D version has been

extensively modified at Draper Laboratory to include Precision Mean Element-based

orbit generation and determination. A sequential Kalman filter (SKF) and extended

sequential Kalman filter (ESKF) were added to estimate mean elements. New

observation models and coordinate systems were added; the NORAD GP Theory and the

Naval Space Command PPT2 Theory were included as perturbation models. R&D

GTDS is divided into nine functional components, but only three will be used in an

atmosphere correction service. They are:

Ephemeris Generation Program (EPHEM) - This utility is used to propagate

satellite states from epoch over a given period of time. Nineteen analytic and

numerical propagation techniques can be called by EPHEM. The technique used

for atmospheric correction will be high-precision numerical integration, which

usually goes by the name of Cowell's method when applied to orbit propagation

problems. The particular implementation of Cowell's method respectively

employs multi-step Stibrmer-Cowell and Adams methods for solution of the class

II and class I differential equations. EPHEM will generate state histories in

binary or ASCII format upon request.

Differential Corrections Program (DC) - The DC program uses simulated or real

observations to estimate the values of desired solve-for parameters such as orbital

elements, dynamic coefficients, and station locations and biases. A method is

chosen to propagate the a-priori state, and residuals are computed from the

difference between predicted and input observations. The residuals are used to

solve the linearized system for the change in state, and the process is repeated

until the state parameters converge to a specified tolerance. The program can also

generate statistics such as correlation coefficients, mean values, and covariance

matrices.

Data Simulation Prograin (DATASIM) - The DATASIM program uses a binary

file generated by EPHEM containing satellite states over the desired time span.

This file is used to create simulated observations of a specified type and at a

desired frequency. Observations can include equipment and environment-

dependent biases and noise. The observations are computed using any desired

ground station location or satellite location if satellite-to-satellite tracking (SST) is

used. These observations can be used as input to the DC program or to determine

visibility or tracking schedules.

Fischer [37] details the history and capability of the many currently existing

versions of R&D GTDS, and his work will not be repeated here. It will be instructional,

however, to describe the various fixes and modifications made to the version of GTDS

used in this thesis. When work on atmospheric corrections at Draper first began in 1999,

several requirements for an orbit propagator were identified. The propagator had to be

very accurate, computationally efficient, and include numerous perturbation models. It

also had to include an accurate drag model able to effectively capture long-term trends in

atmospheric density, such as JR-71 or MSISE-90. Finally, it was desired to implement

the software on a UNIX-based SGI workstation for greater computational speed and

stability. These requirements left us with two possible starting points: VAX-GTDS and

NT-GTDS PR6. The former was implemented on a Digital Equipment Corporation

(DEC, now owned by Compaq) VAXStation 4000 with an OpenVMS V6.2 operating

system. The latter was ported from an SGI system to the 486 personal computer

environment in 1994, and then to the 32-bit Windows NT environment in 1996. Each

version contained functionality lacking in the other, but NT-GTDS PR-6 included both

the JR-71 and MSISE-90 atmospheric models, and it was thought that PR-6 would be

easier to port back to the UNIX environment. NT-GTDS PR-6 was therefore selected as

the platform for further development. Before work on atmospheric correction could

begin, however, NT-GTDS had to be validated as an error-free platform for high-

accuracy orbit determination and prediction.

3.1.1 Validation of NT-GTDS

Metzinger [38] developed a series of test cases in 1993 designed to fully validate

each component and function of GTDS, regardless of platform. These test cases had

been executed for the PR-2 version of GTDS, which was an earlier version also

implemented on the PC; however, the test cases had not been executed in a systematic

fashion for any version since. It was hoped that PR-6 would prove to be fully functional

as it contained a number of improvements dealing with sequential filtering and complex

drag modeling not available in other versions. Unfortunately, when a differential

correction (DC) run was performed using actual NORAD observations of SV10299 in

Test#3, significant errors arose. These errors did not occur when the same test was run

using an earlier version of NT-GTDS designated by PR-5. Due to the complex nature of

GTDS and the fact that at a minimum PR-5 contained the MSISE-90 atmospheric model,

it was decided to abandon PR-6 and attempt to validate PR-5 as the development

platform instead of attempting to debug PR-6. The test cases were repeated on the PC,

and all 21 tests were shown to match Metzinger's results to acceptable levels of accuracy

(mm level or better).

One problem identified with the development of GTDS on the PC was that some

changes were made to the source code which went undocumented; this made it very

difficult to find and remove errors discovered after the fact. Based on our experiences

with NT-GTDS, we decided to set a requirement for UNIX-GTDS that it be included in a

version control system, in which changes must be documented and original versions of

code can always be retrieved. This requirement should greatly simplify any future

debugging or modifications should they become necessary.

3.1.2 Validation of UNIX-GTDS

A total of 1320 FORTRAN source files were copied from the PC to DC1, an

eight-processor Silicon Graphics Inc. Origin 2000 machine running IRIX 6.5.3. The

source code was immediately imported into the Concurrent Versions System (CVS)

1.10.5 version control system [54] to track changes and to preserve the original

importation. A makefile was constructed and, after a few small modifications, the code

was compiled and linked into an executable. The necessary compilation steps and

platform-dependent options are described in Appendix B.

The next major task was to construct the many data files that are required for

execution of GTDS. Many of these data files are stored in binary format, and therefore

cannot be directly transferred from system to system, but must instead be recreated in

each location. A library of data file generation routines was constructed, and the ten or so

data files were generated and linked to appropriate GTDS input files. Particular attention

was paid to GTDS$075, which is the input file required for the JR-71 atmospheric model.

This data file is built from inputs from the National Geophysical Data Center (NGDC)

[39] in the form of daily values of F 10.7 and Ap. Where these inputs are not available,

such as for runs requiring propagation of orbits into future times, the data file can be built

from predicted indices provided by Dr. Kenneth Schatten at the National Science

Foundation [40]. Fischer describes the building of the JR-71 and JR-71/MSIS

(GTDS$076) files in detail in his thesis, but a few modifications and fixes should be

noted here. First, an implicit conversion of real data to integer data on the PC was

leading to slightly inaccurate values of Ap. A more significant error was found in the

interpolation of real data into the Schatten data. An error in integer math was causing the

GTDS file to use all real data until the beginning of the Schatten file, at which point the

values jumped in a discontinuous fashion to the predicted values. This bug was fixed in

such a manner as to allow smooth progression from real data to Schatten data over the

81-day interpolation region. The building of the GTDS data files is described in more

detail in Appendix B.

With the code compiled and the data files built, the 21 Metzinger test cases were

executed. All cases performed as expected, with the exception of some output file

options, and the UNIX port of PR-5 was validated as the version for future development.

This does not mean that the code is entirely error free in the SGI environment, however; a

list has been maintained of desired additions and fixes, and is presented in Appendix B

for future reference.

3.1.3 Incorporation of Density Correction into UNIX-GTDS

To allow for demonstration of the effectiveness of the density correction process,

GTDS was modified to read a text file of variation model coefficients and calculate

corrections upon request. There were a number of tasks involved in this modification,

including adaptation of existing code and incorporation of a few new routines. A GTDS

Control Card was also added to allow a user to turn on or off atmospheric correction

without having to recompile any code. The code modifications, additions, and new

variables can be referenced in Table 3.1 and Table 3.2 and the new control card in Table

3.3 below.

3.1.3.1 Modifications to Existing Code

The first change was to the SETDAF.FOR subroutine, which opens all data files

necessary for the particular type of run requested. Fortran Reference Number (FRN) 106,

which is assigned to the file GTDS$106, was associated with the JR-71 atmospheric

correction file. It should be noted that each correction file is specific to a particular

model, so all modifications have been made in such a way as to allow for other correction

files (perhaps for the MSISE-90 model or GOST) to be added later. The FRN of the JR-

71 correction file was assigned to a common block in FILESBD.FOR, and the

SHUTDAF.FOR routine was modified to close the new data file upon job completion.

The next necessary step was to modify SETORB.FOR and SETOGI.FOR to

allow for reading of the new Control Card, which was identified with the label

"ATMCAL". The ATMCAL card, which is described in detail below, allows a user to

turn on or off atmospheric correction of a specified density model for EPHEM or DC

runs as desired.

The atmospheric density is calculated in a number of different routines in the JR-

71 model, depending on the requested altitude; therefore, the optional call to the density

correction routine had to be placed in each location. If the altitude is between 90 and 100

km, the BARODE.FOR routine is used; for 100-125 km, the DIFFDE.FOR routine; and

for greater than 125 km, the density is calculated in HIALT.FOR. An optional call to

CALCCALJAC.FOR was placed in each location. Also, the density correction common

block (described below) had to be initialized at the start of each run, so a call to

INITCALJAC.FOR was added to JACROB.FOR, which is the controlling routine for

calculation of density in JR-71.

3.1.3.2 New GTDS Subroutines

Two new routines, a block data file, and a ".cmn" initialization file were added to

the GTDS code. The ".cmn" file defines the /ATMCALJAC/ common block with a

number of new variables listed in Table 3.2 below. The new routines are INITCALJAC,

which reads the correction coefficients into the common block; CALCCALJAC, which

calculates the density correction based on input request time and altitude; and

ATMCALJACBD, which initializes the /ATMCALJAC/ common block.

Table 3.1: GTDS Code Modifications/Additions For JR-71 Atmospheric Correction

Routine Modification/Addition
ATMCALJACBD Initializes JR-71 density correction variables in /ATMCALJAC/

common block
Initial addition to GTDS

BARODE Calculates JR-71 density for 90-100 km
Added call to CALCCALJAC

CALCCALJAC Calculates density corrections for the JR-71 model
Initial addition to GTDS

DIFFDE Calculates JR-71 density for 100-125 km
Added call to CALCCALJAC

FILESBD Defines FRNs for standard GTDS input/output files
Added FRN 106 for Jacchia atmospheric correction file
Set IFILE(106) in /FILES/ common block equal to NCALJAC
Set NCALJAC = 106

HIALT Calculates JR-71 density for above 125 km
Added call to CALCCALJAC

INITCALJAC Reads Jacchia density correction file into conmmon block
Initial addition to GTDS

JACROB Driver routine to calculate JR-71 density
Added optional call to INITCALJAC.FOR

SETDAF Opens all necessary GTDS files
Opened GTDS$106 - Jacchia correction file
Added 'READONLY' to data file opens for multi-user access

SETOG1 Interprets orbit gen. cards that come after DRAG in SETORB
Added ATMCAL card
Set ATMCAL switches if read ATMOSDEN card

SETORB Interprets orbit generator optional keyword cards
Added code to interpret ATMCAL card

SHUTDAF Closes all necessary GTDS files
Modified to close all FRNs from 1-106

Table 3.2: New Variables in the ATMCALJAC Common Block

Variable Description Type I/O
DATEBEGJAC Beginning date of JR-71 correction file Real*8 O
DATEENDJAC End date of JR-71 correction file Real*8 O
SPANEPCHJAC Array of span length for each span j Real*8 O
CALB IJAC Array of bl correction coefficients Real*8 O
CALB2JAC Array of b2 correction coefficients Real*8 O
CALSWITJAC On/off switch for JR-71 correction Logical I
CALINITJAC Specifies whether to initialize common block Logical I/O

3.1.3.3 The ATMCAL GTDS Control Card

The following table describes the formatting of the new ATMCAL GTDS control

card. The card was designed such that corrections to other atmospheric models, such as

MSISE-90 or Harris-Priester, may be specified at such point when the functionality is

added to the code. Note that only the JR-71 option is currently supported.

Table 3.3: ATMCAL Control Card Description

ATMCAL
(OGOPT)

* Card format: (A8, 313, 3G21.14)
* Applicable programs: DC, EPHEM, FILTER
* Detailed format:

Columns Format Description

1-8 A8 ATMCAL - Input card to atmospheric corrections

9-11 13 Turn on/off atmospheric correction
=0 Off (default)
=1 On

12-14 13 Number of atmospheric model to apply corrections to*:
=1 Jacchia-Roberts '71
=2 larris-Priester
=3 .lacchia-64
=4 Jacchia-70
=5 NISIS-77
=6-S Reserved for RADARSAT
=9 MSISE-90
=10 Reserved for GOST

15-17 13 Unused

18-38 G21.14 Unused

39-59 G21.14 Unused

60-80 G21.14 Unused

JR-71 is currently the only model that corrections may be applied to in GTDS, as of
May 2000.

3.1.4 Other Code Fixes and Modifications

A number of other bug fixes and modifications were necessary to make UNIX-

GTDS an effective platform for testing of atmospheric density correction. The new

routine ASCIIORB I_DATA was ported from VAX-GTDS and added to UNIX-GTDS

to allow for output of .ASCII files in parallel with the binary .ORB1 files. Also, two

major bugs were identified and fixed:

1. No-observations bug: GTDS crashed if a specified station in a DATASIM

run did not have any observations of the target satellite.

2. Year-rollover bug: a DC run would not execute properly if observations in

the input file crossed a year boundary.

The following table outlines the subroutines that were modified or added to UNIX-

GTDS.

Table 3.4: GTDS Code Modifications/Additions For JR-71 Atmospheric Correction

Routine Modification/Addition
ASCII ORBI DATA Writes .ASCII fles in parallel with .ORB1 files

Initial addition to GTDS
ELEME Converts Cartesian, Keplerian, or spherical elements to one

of the other two systems
Removed debug print

FILESBD Defines FRNs for standard GTDS input/output files
Added FRNS 101-105 for ASCII state histories; these files
correspond with the five .ORB1 files, with 101 <-- 24
(primary) and 102 <-- 81 (secondary).

OBSWF Writes observation working file for DATASIM run
Fixed year-rollover bug by ensuring EDAY refers to correct
year

ORB1 Writes the .ORB1 binary output files
Added call to ASCII ORB I DATA

SETDAF Opens all necessary GTDS files
Opened GTDS$101-105 (.ASCII files associated with
primary and secondary .ORBI files)
Added 'READONLY' to data file opens for multi-user
access

STARPT Generates printer sunmmnary report of passes in DATASIM
run based on information in DSP sunmary file
Added test to ensure num. of records in DSP file > 0

3.2 Atmospheric Correction Driver Programs

One of the most challenging aspects of the methodology presented in this thesis is

the amount of computation involved. If accurate atmospheric correction is to be applied

for any significant length of time, literally thousands of differential correction jobs are

required. It very quickly became clear that an efficient methodology for automating such

tasks as truth file generation, data simulation, differential correction, and calculation of

density variations was required. It was decided to automate these tasks using script files

written in the Perl 5.0 programming language. Perl is an obvious choice due to its ease of

use, readability, and speed, as well as for its ability to work with text files. For further

documentation, please refer to the Perl programming guide, otherwise known as the

"Camel Book" [41]. A brief description of each of the main script files follows, along

with some of the design decisions that went into their construction. The first two scripts

are necessary only if the atmospheric correction run will be using simulated observations.

Chapter Four contains a more detailed description of each data file and the overall data

flow for each test case, whereas this section focuses mainly on how to execute the scripts

in a general sense.

3.2.1 Generation of Osculating Truth Files: The TLE2osc Program

The first task for a simulated run of atmospheric correction is to generate the

"truth" files for all objects. The input file takes the form of a list of satellites in

NORAD's two-line element (TLE) format [42]. The "true" ballistic factor is converted

from the NORAD drag parameter (BSTAR) given on the two-line element set. The list

of TLEs should be as close to the desired start epoch as possible, and should only contain

satellites with perigees in the proper altitude range (200-600 km). The user must specify

the name of the input and output files, start and end epochs, and how many of the input

objects are to be "standard" satellites. Because Perl scripts can be run without manual

compilation, these options can be changed directly in TLE2osc.pl. The program creates a

GTDS card deck, runs GTDS, and produces an .ORB 1, .ASCII, and .ORBIT "truth" file

for each input object in the list of TLEs. The program also writes the initinfo.txt file,

which contains a list of the NORAD Space Surveillance Center (NSSC) catalog numbers

for each satellite to be used for atmospheric calibration. Other information needed for the

subsequent phases of the simulation is also contained in this file. The exact structure of

initinfo.txt is described in more detail in Chapter 4.

3.2.2 Generation of Simulated Observations: The genobs Program

This program relies on the GTDS DATASIM program to simulate all

observations. DATASIM uses the .ORBIT file and the initinfo.txt file created by

TLE2osc.pl to generate range, azimuth, and elevation observations from user-specified

ground stations. The user must also provide the names of input and output files and

begin and end epochs. The program determines which objects are standard from

*initinfo.txt, and adds Gaussian noise to the observations accordingly. genobs.pl outputs

an observation file for each object in OBSCARD (GTDS$015) file format, where each

observation is printed with epoch on a separate line in a sequential .ASCII file.

3.2.3 Estimation of Short-Arc Ballistic Factors: The estbfs Program

This script is one of the most important and complex components of the density

correction process, since it must be executed regardless of whether the observations are

real or simulated. The main purpose of the program is to automatically cycle through the

overall time interval in sequenced spans of three to four days and execute short-arc fits of

observation data for each object Because thousands of GTDS DC runs are required and

each run can take anywhere from 5-30 seconds, it was decided to give estbfs.pl the

capability of spawning multiple processes to break up the job into smaller pieces. This is

only possible on a platform such as the SGI DC machine that has multiple processors

and multitasking capabilities.

The program first reads initinfo.txt to determine which objects are to be used for

atmospheric correction. It then sets up a card deck for the first differential correction run

starting from the specified start epoch. The length of the fit span is also an input option.

A key issue is where to obtain the a-priori state vector for the DC program. If the

observations are simulated, the a-priori state vector for the first run is taken from the truth

file and from converged DC runs thereafter. If the observations are real, the first a-priori

estimate must be derived from some outside source, which will usually be an up-to-date

TLE set; subsequent a-priori state vectors will again be taken from converged DC runs.

Another important consideration is the a-priori ballistic factor. For simulated

objects, if the object is standard, estbfs.pl provides the true ballistic factor given in

initinfo.txt; otherwise, the true ballistic factor is randomly distorted by up to a factor of

two. For real objects, the only change for standard or non-standard objects is in setting

the a-priori standard deviations in the differential corrections process.

The DC program is executed and the output tested for convergence. If the run

converges, the resulting estimated ballistic factor (designated by ki in earlier chapters) is

stored in ballfcts.txt, and the propagated Cartesian state is used as an a-priori guess for

the next DC run. The fit span is shifted by a default number of hours (usually three), and

the process continues until the end of the overall time span as specified by the user. One

more function of estbfs.pl is to generate an observation schedule for each object; if there

are no new observations for a particular fit span, by default the DC program is not

executed.

3.2.4 Calculation of Density Variations: The calcvars Program

This script performs the actual calculations of density variations, estimation of

"true" ballistic factors, and forecasting of variation coefficients as necessary. The

majority of the code is written in Perl, but the matrix manipulations and filtering are

written in Matlab code and called as a Matlab script file from calcvars.pl [57]. As has

been the case for the other script files, the initinfo.txt file is used to provide input

information such as true ballistic factors and which satellites are considered to be

standard. The calcvars.pl script also requires ballfcts.txt from estbfs.pl, and input options

such as desired begin and end epoch and file locations. The user must also specify if

calculation of "true" ballistic factors is desired, in which case iteration between

calcvars.pl and estbfs.pl will occur. The program will output a file with a user-supplied

filename that will contain density variation coefficients in a format recognizable by

UNIX-GTDS.

3.3 Other Data Processors and Program Utilities

A few other miscellaneous programs were useful in various stages of this research

and are documented below.

3.3.1 TLE Processing Utilities

A user often wishes to extract a sub-set of objects from a long text file in TLE

format. A convenient utility written by Willie Koorts and available on his home page

[43] was used for such a purpose. The extract.exe program takes an input file of NSSC

numbers or names of satellites and the original TLE text file, and outputs the

corresponding subset of TLEs.

Another useful capability is to be able to screen objects in a TLE file for desired

characteristics such as perigee height or eccentricity. Mike McCants has written a

program entitled xlate.exe, also available on his home page [44], that takes a TLE file and

outputs a list of objects in more readable format. The user can specify ranges of period,

mean motion, apogee, perigee, or other orbital characteristics. The above two utilities are

stored on the PC under the G:\GRANHOLM\THESIS\TLES directory on an archived

hard drive belonging to Dr. Paul Cefola at Draper Laboratory.

Throughout the atmospheric correction process, it is often necessary to make

conversions from calendar date to Julian date and vice versa. Two routines, cal2jul and

jul2cal, were written in Perl and included in each Perl script as the "Dates" module. The

conversion routines have been validated to better than 0.0001 seconds accuracy.

3.3.2 Observation Processing Utilities

NORAD provides its observations to users in B3 format, which must be converted

to OBSCARD format if to be used by GTDS. Lt. Col. David Vallado wrote a utility to

perform this conversion which is called convobs.exe; readers interested in obtaining a

copy of the program should contact Lt. Col. Vallado directly at (719-554-3638) or via e-

mail at valladod@usspace.cas.spacecom.af.mil.

[This Page Intentionally Left Blank]

Chapter 4 Data Flow and Task Description

This chapter will describe the inputs and outputs of each part of the density

correction process, and will outline the different test stages and types of test cases. The

first section deals with the simulated observations case and is followed by a section on

real observations. The third section goes into the test cases to be executed for the

following test stages: concept validation, correction of inaccurate density models, and

forecasting of model coefficients.

4.1 Detailed Data Flow for Simulated Observations

Presented below is a data flow diagram showing the interface between the utilities

used in the atmospheric correction process for simulated observations. Each step in the

process is explained in more detail in the sections that follow.

TLE file

I
User-Def. Options:
1) Begin & end epoch,. TLE2osc
2) Filenames &

storage locations , 1) initinfo.tx
2) truth OUT

1) initinfo.txt
2) ORBIT truth files
3) ASCII truth files

User-Def. Options: 1) OBSCARD files
1) Begin & end epoch genobs 2) DATASIM
2) Filenames & OUTPUT files

storage locations J
User-Def. Options:
1) Begin & end epoch
2) Filenames &

storage locations
3) Number of processes
4) Force model options

User-Def. Options:
1) Begin & end epoch
2) Filenames &

storage locations
3) Forecasting options
4) Est. of "true"

ballistic factor optns

Figure 4.1: Program Utility Data Flow For Simulated Data

7

4.1.1 Generation of Osculating Orbits

For the simulation to be as realistic as possible, the distribution of calibration

satellites should be approximately equivalent to the actual distribution of LEO objects

currently tracked by NORAD. The best way to obtain a realistic distribution is via the

processing of a current listing of the space catalog in TLE format, which is available from

a number of locations on the Internet. We were able to obtain a fairly comprehensive list

from Allen Thompson's compilation on the Jet Propulsion Laboratory anonymous FTP

site [49].

The list of TLEs can be parsed for perigee height using both the xlate.exe and

extract.exe programs described in Chapter 3, with a constraint of 200 km < hp < 600 km.

Another constraint should be placed on apogee height so as to eliminate satellites that

spend a majority of their orbits above 600 km; suggested allowable values fall between

200 and 800 km. This constraint theoretically allows for a maximum eccentricity of

0.044, but in practice the eccentricity for these type of objects rarely exceeds 0.03.

The TLEs are originally generated by NORAD using their SGP4 general

perturbation theory [55], and must be converted to osculating elements to allow for high-

precision propagation. Before this conversion can take place, however, the elements

must be formatted for input into a GTDS card deck. Implicit in this formatting is a time

conversion from NORAD day of year to Julian date. NORAD labels each two-line

element with a two-digit year and a fractional day of year, where 99001.000 would be

0:00 UT January 1S, 1999. This time format implies potential confusion for dates after

1999, but NORAD has specified that all year fields greater than 56 refer to years before

2000, and all year fields less than or equal to 56 refer to years of 2000 or later. This

problem will have to be resolved on a more permanent basis in 2056, but hopefully

improvements will be made in space catalog maintainance over the next fifty years that

will make NORAD SGP4 theory obsolete.

The other initial conversion that must take place deals with the SGP4 drag

parameter, BSTAR. BSTAR is given in units of ERl' (inverse Earth radii), and is

converted to the conventional definition of ballistic factor given in Chapter 2 using the

following formula taken from Vallado[50]:

k = 6.3708105 -BSTAR

Here, k is in units of m2/kg. Note that a different "ballistic factor" is defined by Vallado

and others without the /2 term, so the conversion factor has been scaled accordingly.

We need a few more pieces of information before being able to make the

conversion to osculating elements. The EPHEM program requires that we separate the

ballistic factor into its components of cross-sectional area, mass, and CD. We repeat the

definition of k from Chapter 1:

k = C A (4.2)

The actual drag force is computed using only k, so as long as the product of area-

to-mass ratio and CD/2 remains the same, we may assign the individual values somewhat

arbitrarily. However, the area-to-mass ratio is also used in computation of solar radiation

pressure, so it is desired to use a somewhat realistic estimation. If we assume some

nominal value for CD and use the radar cross-section (RCS) as an estimate of Ax, we can

solve for the mass using Eq. (4.2). A good average value of CD for LEO satellites is 2.2,

as shown by numerous studies [4,51].

The general perturbation theories employed by NORAD have been shown to be

relatively inaccurate, and even more so for low-altitude objects [52]. Therefore, it is

desired to propagate using NORAD theories for as short a time as possible, and then use

high-accuracy special perturbation techniques for the remaining long-arc truth file

generation. GTDS performs the coordinate system conversion from NORAD Historical

Data System format for the TLEs (type 18 on the ELEMENT1 card) to mean Earth

equator and equinox of 1950. The latter is the coordinate system used for the remainder

of the data processing.

These calculations and conversions are performed by the TLE2osc.pl program

introduced in Chapter 3. The program automatically does TLE to osculating conversions

for all TLEs given in the input file. The primary output of a TLE2osc.pl run is a file

called initinfo.txt, which contains the NORAD Space Surveillance Center (NSSC)

catalog number, international COSPAR/WWAS (COSPAR World Warning Agency for

(4.1)

Satellites) designation, true ballistic factor k in m2/kg, radar cross-section in m2, true

variance ori 2, standard or non-standard status, and a designation for observation type

(simulated = 29, real = 15). The file is structured as follows:

Table 4.1: Format of initinfo.txt

NSSC# Int'l Des ki RCS ai 2 Stnd/Non Obs. Type

00063 60016A 1.97068E-03 0.523 1.0000E-06 S 29

00179 61015BD 9.03126E-02 1.155 2.0000E-06 N 29

The format of this file is somewhat similar to a data file used by Nazarenko and

labeled as Table 2 in DFY 97 Stage 1 of his report [1], but more information such as

international designation and RCS has been added to accommodate GTDS requirements.

The a-priori variance of each object is arbitrarily assigned a different default value for

standard and non-standard objects, where the non-standard variance is twice the standard

variance. The actual values of variances do not matter in themselves, because they are

used only for relative weighting in the least-squares estimation of density variation

coefficients. It is only after the first iteration in the estimation of "true" ballistic factors

that values of ri2 will change for each satellite.

Additional outputs of EPHEM used by the other density correction utilities are:

ORBIT files (GTDS$020), which are direct-access binary files containing all necessary

information for a DATASIM run; ASCII files (GTDS$101-105), which can be used as

"truth" state histories in later test cases; and the OUTPUT files (GTDS$006), which are

used by estbfs.pl to come up with a-priori state vectors in the DC runs.

4.1.2 Generation of Simulated Observations

For all simulation runs in this thesis, observations were assumed to come from

four ground station locations: Eglin AFB, FL; Kaena Point, HI; Fylingdales, England;

and Grand Forks, ND with the PAR (Safeguard) system. These locations were chosen to

approximate real-world tracking geometry and observation rates. The observation

scheduling is executed such that the average number of observations per object per day

approximately matches the number of real observations obtained by NORAD for low-

altitude space objects. Because Fylingdales, Grand Forks, and Eglin are phased-array

radars, they are given twice the observation rate of Kaena Point. Another requirement is

that the flow of observations should be evenly distributed throughout the day, so that

there will be enough k estimations to construct each three-hour density variation model.

Range, azimuth, and elevation observations can be simulated with or without

noise as desired. Noise characteristics and station locations are taken from the Station

Location and Accuracy Database (SLAD) compiled by J. Fischer for his thesis research

[37]. This information is not reproduced here, but if more information is desired, the

reader can contact Dr. Ronald Proulx and Dr. Paul Cefola at the Draper Laboratory.

GTDS incorporates station locations and noise information using Station Cards I

and 0, respectively. It is also possible to set default noise characteristics for a particular

type of observation across all stations using the OBSDEV card, but the reader should

note that Station Card 0 takes priority.

The genobs.pl program reads initinfo.txt, sets up GTDS card decks for all given

objects, and executes DATASIM runs with desired options. Initially, the observations

were output in the form of the GTDS$029 binary file for later use by the DC program.

However, a bug was discovered dealing with the OBSINPUT card: the beginning epoch

on OBSINPUT must match the beginning epoch of GTDS$029, or the code will not

execute properly. This means that in order to specify the correct observation input span,

the user must include an ACCREJ card with the start and end times of the fit span.

However, the ACCREJ card cannot be placed in the DCOPT subdeck as the code will

again crash; instead, ACCREJ must fall under the DMOPT subdeck. This is very

inconvenient if the solve-for epoch is in the middle of the overall time interval. Because

GTDS first builds an observation working file containing all observations up until the

solve-for epoch, execution time may increase by an order of magnitude.

The solution to this problem is to output all observations in GTDS$006, the

default output file, and then program the script file to automatically build an observation

file in OBSCARD (GTDS$015) format after the DATASIM run finishes. The

OBSCARD observation files are in more readable form (.ASCII), and fortunately do not

exhibit any of the undesirable features associated with GTDS$029.

4.1.3 Differential Correction and Generation of k Measurements

The only input data files required for the execution of the DC runs are the

initinfo.txt file and the OBSCARD file for each object. However, the estbfs.pl program

also needs OUTPUT files from the EPHEM runs to obtain an a-priori state estimate for

the first DC run, and from the DATASIM runs to generate observation schedules for each

object. After the first DC run, a-priori guesses for the state vectors are taken from the

OUTPUT files of converged DC runs. For the a-priori ballistic factors, if the object is

standard, the a-priori is equal to the truth. If the object is non-standard, the true ballistic

factor is distorted by a random factor with probability '/2 of falling between 0.5 and 1 and

probability V2 of falling between 1 and 2. These distorted values of "true" ballistic factors

are stored in a new file entitled initinfo est.txt, which will be used for estimation of

"true" ballistic factors in calcvars.pl.

Some objects will not have enough observations to allow the DC program to

converge on a viable solution. Therefore, an option has been added to estbfs.pl to move

to the next object if DC fails to converge in a specified number of days. The physical

model options can be altered from truth options as desired.

GTDS cannot directly solve for k in a differential correction run, but instead

solves for the relative variation of the coefficient of drag (CD) in the form of the variable

Pl:

CD = CD (+ pl) (4.3)

Therefore, a non-zero value of p, will adjust the default value of CDo up or down as

necessary. This estimated value of the drag coefficient is then substituted back into Eq.

(4.2) to give a measurement of k at the appropriate perigee height and attribution time.

The output of estbfs.pl is stored in a file named ballfcts.txt, which includes the

NSSC catalog number, attribution time in Julian date, estimated ballistic factor, and

current perigee height in km:

Table 4.2: Format of ballfcts.txt

4.1.4 Calculation of Density Variations

The calcvars.pl program initially reads both the initinfo.txt (or initinfo est.txt if

"true" ballistic factors are to be estimated) and the ballfcts.txt files. The ballistic factor

estimations are sorted into three-four hour time spans (the default length of each span,

Trin, can be defined by the user), and each span is tested to ensure that it contains at least

35 estimations. If necessary, the span length z is extended until the number of

estimations exceeds the minimum value. The program then calculates and writes the Fj

and Pj matrices and the aj vector defined in Chapter 2 to a temporary text file, and calls

the Matlab script calc b.m. The Matlab script reads the temporary text file, and performs

a 3-c test on the values in the aj vector such that any measurements greater than three

standard deviations from the mean are rejected. Finally, Matlab performs the necessary

matrix multiplications and inversions to calculate the density variation coefficients blj

and b2j, also defined in Chapter 2. The density variation coefficients are written in a user-

defined text file that can be read as GTDS file 106:

Table 4.3: Format of Density Variation Coefficients File

If iterative estimation of "true" ballistic factors is requested, calcvars.pl calculates

the new estimates of ballistic factors and variances and stores them in initinfo est.txt for

71

NSSC# ti /i hi

00063 2451529.00 2.10366E-03 5.45516E+02

00063 2451529.75 2.12907E-03 5.39491E+02

tstart,j bij b2j

2451529.000 2.40157E-02 1.79451E-02

2451529.125 2.79308E-02 2.49923E-02

the next run of estbfs.pl. If forecasting is requested, the program uses the density

variation coefficients to predict values up to a specified end epoch.

4.2 Data Flow for Real Observations

The second stage of the density correction process does not have to be executed if

real observations are available. The process must be initialized using TLE2osc.pl, which

is followed by execution (and iteration) of estbfs.pl and calcvars.pl.

TLE file Real observation

1) A-priori
state vectors

) initinfo.txt

User-Def. Options:
1) Begin & end epoch
2) Filenames &

storage locations

User-Def. Options:
1) Begin & end epoch
2) Filenames &

storage locations
3) Number of processes
4) Force model options

User-Def. Options:
1) Begin & end epoch
2) Filenames &

storage locations
3) Forecasting options
4) Est. of "true"

ballistic factor optns

Figure 4.2: Program Utility Data Flow For Real Data

4.2.1 Differential Correction and Generation of k Measurements

While it is not necessary to generate truth files when using real data, it will still be

necessary to run an abridged version of TLE2osc.pl so as to generate the initinfo.txt file.

Standard and non-standard satellites should be assigned based on actual spacecraft

characteristics. For those satellites where a "true" ballistic factor is unknown, an up-to-

date TLE can be used as a rough estimate. Current TLEs for the selected objects will also

be used for the first a-priori guesses of spacecraft states in the DC runs. Observations

should be supplied in OBSCARD-compatible format. After initialization, the estbfs.pl

program is run in the same manner as for simulated observations.

4.2.2 Calculation of Density Variations

The calcvars.pl program does not differ in execution for real or simulated jobs.

The default will be to estimate "true" ballistic factors, as there will undoubtedly be a

large number of objects for which we do not have accurate area, mass, or coefficient of

drag.

4.3 Test Cases

4.3.1 End-to-End Software Validation

The purpose of the first test is to validate the flow of data from one piece of the

simulation to the next. The observations will be simulated with no noise, and the DC

runs will be given the truth density model and truth ballistic factors. The resulting

density variations are expected to essentially equal zero over the entire time period.

The test will be run over the first fifteen days of a two-month interval beginning

on December 15th, 1999. This period of time was chosen to match the begin and end

times of the real data that U.S. Space Command has made available to Draper Laboratory

for continuing research in atmospheric correction. Atmospheric conditions over this

interval are average: the daily values of Ap exhibit some instability but do not exceed 40,

while the Flo.7 fluctuates around 155 (W/m 2)/Hz. Ap values for the time period in

question are presented in Figure 4.3 below. The Schatten predict values are also included

on this plot for reference in other tests.

J~A :nA7A4N.
-I- Mean Ap
I-~' Schatten Ap

Days From Dec 15, 1999

Figure 4.3: Average Planetary Amplitude (Ap), Dec 15, 1999 - Feb 11, 2000

To give some sense of how these geomagnetic conditions compare with other time

intervals, the figure below illustrates a particularly perturbed six-month period in 1992:

1.liLLJ1
ALu u-ur A U-llrr

Day

Figure 4.4: Average Planetary Amplitude (Ap), Jan - Jun 1992

74

___ ___ ~___ ~

A; ~nl~h~ 11l1 111111111 1

__I I

auAmu=Un1.444y;

A typical indicator of the relative strength of geomagnetic disturbance is how

many daily Ap values exceed 40. From comparison of these two plots, we can conclude

that our two-month interval is not particularly perturbed, but features more variation than

some quieter intervals

We also present the real and predicted Schatten values of the solar F10 .7 flux:

E

E

d
L,.

Days From Dec 15, 1999

Figure 4.5: Daily 10.7 cm Solar Flux, Dec 15, 1999 - Feb 11, 2000

The F10.7 values range over the course of the eleven-year solar cycle from a

minimum of approximately 65 to a maximum of 200 [56]. Therefore, we see that our

interval occurs during a relatively "hot" epoch, which means that the atmosphere will be

at higher temperatures and more dense than during "cold" epochs. Although these

conditions will cause LEO objects to decay more rapidly, our density correction process

should actually function better because the effect of drag on satellites can be more easily

detected.

The truth orbits will be generated from a TLE file dated Dec 14, 1999, and taken

from the JPL FTP site [49]. The TLE file was limited to objects with apogees and

perigees in the range previously described in Section 4.1.1. A number of the 454 objects

I-+- F10.7
-- Schatten F10.7

were removed from consideration because they were known to be debris or exhibited

rapid decay behavior, leaving us with 335 objects to be used for atmospheric correction.

These objects have the following distribution of ballistic factors:

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Figure 4.6: Histogram of Ballistic Factors

As can be seen from the above figure, most of the ballistic factors are in the range of

[0,0.01]. A histogram of starting perigee heights can also be plotted:

n
150 200 250 350 400 450 500 550

Figure 4.7: Histogram of Perigee Heights in Kilometers

U -

-I

650

· · · · · · · r

A

7n .

I

The perigee heights are seen to fall mostly between 300 and 600 km, which is in

approximate agreement with the results presented by Nazarenko in DFY 97 Stage 3 of his

report [1]. It appears that we are using more high-altitude objects than Nazarenko, but

this can be explained by the fact that we have more objects total in the database. If we

removed some of the high-altitude objects, the histogram would undoubtedly be closer in

appearance to what appears in Ref. [1].

To improve computational speed, the truth file will be generated using the JGM2

gravity model truncated to degree and order of 4x4. This simplification will still allow us

to capture the approximate real-world evolution of the orbits, and will not introduce any

error in the density correction process as long as the fit gravity model is also JGM2 4x4.

Solar radiation pressure effects will be included, with the solar reflectivity constant (CR)

assigned the default value of 1.2. Third-body effects such as solar and lunar

perturbations will also be taken into account.

4.3.2 Correction of an Inaccurate Density Model

This test case will validate the effectiveness of the density correction process in

capturing short-term variations that are missing in a given density model. All objects are

assumed to be standard, i.e. the calculation of variations will have access to all true

ballistic factors. The truth model will remain JR-71, but the fit model is JR-71 with

"smoothed" values which were originally taken from a Schatten predict file. The

smoothed value of Ap over the 58-day interval is approximately equal to 15, while the

smoothed F10.7 slowly increases from 154 to 158. Plots of these values can be seen in

Figure 4.3 and Figure 4.5 above.

Other perturbations and force models are the same as in the first test case. Tests

will be executed with noise added to the simulated range, azimuth, and elevation

observations, where the noise characteristics are specific to each ground station and can

be found in the SLAD file described earlier. Two measures of quality will be used: 1)

comparison of the actual density in the truth model to the modeled density plus

corrections, and 2) execution of differential correction runs for low, medium, and high-

altitude objects in the database. The observations will be fit to the smoothed model

without corrections, and the radial, cross-track, and along-track errors will be plotted for

a given fit and predict interval. Then, the same observations will be fit to the atmospheric

model with corrections and the resulting fit and predict plots and statistics can be

compared to the first case.

One more validation will take place in this phase of testing. The number of objects

available to the density correction process will be reduced from the full 333 to a number

near 200, and the test cases will be repeated. This test should allow us to observe the

dependence of density correction on the number of calibration satellites available.

4.3.3 Correction of an Inaccurate Model With Forecasting

This test case will focus on validation of the forecasting algorithms presented in

Section 2.3. Forecasted density variation coefficients for two different epochs will be

calculated and compared with "true" coefficients. The accuracy of forecasting will be

determined with respect to length of prediction interval. Calculation of the deterministic

and random component of each signal will be validated.

Chapter 5 Results

All test cases follow the general pattern and are executed under the conditions

described in Section 4.3.

5.1 End-to-End Software Validation

The purpose of this test is to ensure that all the pieces of the simulation connect

properly, and to show that the density variations are equal to zero if our fit model is equal

to the truth model. This test case was executed under the conditions described in Section

4.3.1. The density variations were only calculated for fifteen days, as this was thought to

be a sufficient amount of time to determine if the algorithms are functioning properly.

Figures 5.1 and 5.2 illustrate the progression of the density variation model coefficients

bl and b2 over time:

2 4 6 8
Days After Dec 15, 1999

10 12 14

Figure 5.1: Density Variation Coefficient bl, No Mismodeling

0.008

0.006

0.004

0.002

-0.002

-0.004

-0.006

-0.008

-n n

0

II · · · · ·

I I - -

I I I I I I

E

E

E

V.V 1

0.008

0.006

0.004

0.002

C4 0

-0.002

-0.004

-0.006

-0.008

-n n1
0 2 4 6 8 10 12 14

Days After Dec 15, 1999

Figure 5.2: Density Variation Coefficient b2, No Mismodeling

As expected, the variation coefficients are essentially equal to zero over the entire

time interval. The mean value of bl = -2.6487x10- 7 with a maximum of 6.4747x 100 6,

and the mean of b2 = 2.8295x10-0 7 with a maximum of 3.2653x10-0 5 . These results

indicate that the differential correction process is not introducing any significant error

into the calculation of density variations. The results also show that all pieces of software

and associated interfaces shown in Figure 4.1 are properly connected. As these results do

not shed any light on any other aspects of density correction, we shall move on to the

Schatten mismodeling cases.

5.2 Correction of an Inaccurate Density Model

For the second series of test cases, described in Section 4.3.2, the objective is to

determine if the density variations can capture the difference between a truth density

model and a smoothed Schatten fit model. This determination can be made through

_ n·

direct examination of the density coefficients, comparison of actual density values at

various altitudes, and the execution of differential correction for satellites in test orbits.

5.2.1 Calculation and Analysis of Density Variation Coefficients

Density corrections were calculated using the same objects as the first test case

but with noisy measurements and mismodeling of the atmosphere. Density variation

models were produced every three hours for the entire 55-day interval. Time histories of

the model coefficients are given in Figure 5.3 and Figure 5.4 below:

Days After Dec 16, 1999 12:00 UT

Figure 5.3: Density Variation Coefficient bl, Schatten Mismodeling and Noise

p

.0

0 5 10 15 20 25 30 35 40 45 50 55
Days After Dec 16, 1999 12:00 UT

Figure 5.4: Density Variation Coefficient b2, Schatten Mismodeling and Noise

Note that the density variations begin a day and a half after the beginning of the

simulation time period. This is because the first estimated ballistic factors are attributed

to the midpoint of the first three-day fit interval. When compared to the general trend of

atmospheric conditions given in Figure 4.3, we see that the major period of the variations

is approximately 25-26 days, which matches the period of the fluctuations in F10 .7 values.

We also observe short-term spikes in the density variations, which seem to correspond to

rapid changes in geomagnetic conditions as measured by the Ap index in Figure 4.5.

This does not necessarily mean that the density corrections are applied with appropriate

magnitude and/or phase; other tests will be necessary to make this determination.

5.2.2 Comparison of Actual Density Values

In some sense, the true measure of how well the density correction process

performs is found in an examination of actual values of density at various altitudes and

times. We computed the actual density encountered by a simulated spacecraft in a

circular, equatorial orbit at 200 km, 400 km, and 600 km over the entire 55-day span.

Three density histories were computed at each altitude: the truth density, the uncorrected

Schatten density, and the corrected Schatten density. The densities were computed every

60 seconds over two time intervals respectively chosen for their relatively quiet and

perturbed geomagnetic conditions. These intervals were used for the fit and predict

intervals for the DC test cases which follow later in this section.

5.2.2.1 Quiet Epoch

The quiet interval extends from Dec 17, 1999 to Dec 25, 1999. A detailed picture

of the quiet geomagnetic conditions is given in the following figure:

-- 3-Hour ap
-.- Schatten ap

Day In Dec 1999

Figure 5.5: Three-Hour Values of ap for Quiet Interval

Note that ap refers to the three-hour measurement, while Ap is equal to the one-

day average of the eight ap values. The relative error in percent of the Schatten density

and corrected Schatten density for the quiet epoch at 200 km is presented in Figure 5.6

below:

0

w

C

Days From Dec 17, 1999

Figure 5.6: Relative Error in Uncorrected and Corrected Density at 200 km,

Quiet Epoch

We observe two trends in the Schatten density error: a short-term three-hour

component corresponding to errors in geomagnetic conditions, and an overall bias most

likely due to inaccurate F10.7 values. The average Schatten error over this eight-day

interval is equal to -3.51%, and the standard deviation is equal to 2.71%. The density

correction process appears to have removed most of the bias and some of the short-term

variation: the mean corrected error = 0.38%, and the standard deviation is 2.13%.

Significant short-term variations remain in the corrected density, which indicates that the

correction process is not able to capture all of the effects due to unmodeled geomagnetic

disturbances. This could be due to a number of reasons: 1) the differences between true

ap and Schatten ap are relatively small for this interval; 2) the fit interval used in

estimation of ballistic factors is too long; and 3) the observation data rates are not high

enough.

The figures below present relative density errors at 400 km and 600 km:

0
L.

w
1i

n.

0 1 2 3 4 5 6 7 8
Days From Dec 17, 1999

Figure 5.7: Relative Error in Uncorrected and Corrected Density at 400 km,

Quiet Epoch

0

ci

a)
0.

0 1 2 3 4 S 6
Days From Dec 17, 1999

Figure 5.8: Relative Error in Uncorrected and Corrected Density at 600 km,

Quiet Epoch

These figures are almost identical to the 200 km case except in scale, with the

uncorrected density error reaching almost 40% in the 600 km case. This trend is to be

expected for higher altitude regimes, where relative density fluctuations are considerably

greater than for lower altitudes.

5.2.2.2 Perturbed Epoch

The perturbed interval covers the eight days from Dec 28, 1999 to Jan 5, 2000,

with geomagnetic conditions detailed in Figure 5.9:

80

70

60

so

S40

30

20

10

0

Day In Dec 1999 -Jan 2000

Figure 5.9: Three-Hour Values of ap for Perturbed Interval

The perturbed interval is seen to contain a significant spike in ap, which should be

reflected in the density error plots. It should be noted that the JR-71 model assumes a

6.7-hour lag between the time of change in ap value and its actual effect on density.

Figures 5.10-5.12 illustrate density errors at 200, 400, and 600 km:

0L.
0

h.LU

Days From Dec 28, 1999

Figure 5.10: Relative Error in Uncorrected and Corrected Density at 200

km, Perturbed Epoch

0 1 2 3 4 5 6 7 8
Days From Dec 28, 1999

Figure 5.11: Relative Error in Uncorrected and

km, Perturbed Epoch

Corrected Density at 400

Lu
C
0
0
0.

0
w
a-
U

IL0.

0 1 2 3 4 5 6 7 8
Days From Dec 28, 1999

Figure 5.12: Relative Error in Uncorrected and Corrected Density at 600

km, Perturbed Epoch

There is indeed a significant spike in error corresponding to the unmodeled jump

in ap on the third day. The corrected density does not completely remove the spike, but

at a minimum shifts it down to a more appropriate regime. We again observe that short-

term errors remain in the corrected density, but the biases have been essentially removed.

Table 5.1 summarizes the error statistics for both the quiet and perturbed epochs:

Table 5.1: Density Error Statistics

In all cases, the corrected mean error is reduced to 2% or less, and the corrected

standard deviation is reduced by 21 - 36%.

5.2.3 Quiet Epoch DC Test Cases

We next executed a number of GTDS DC test cases in each epoch to determine if

corrections to a density model could improve orbital fits and predictions. The first DC

test cases were run for four objects in the density calibration database. The objects were

chosen to have varying perigee heights, eccentricities, inclinations, and ballistic factors in

order to thoroughly test the density correction process. Orbital elements and ballistic

factors for each object are given below:

Table 5.2: Orbital Elements and Ballistic Factors for Test DC Objects

NSSC # hper (km) e i (deg) k

09854 303.2 0.00116 80.87 0.005241

25013 398.5 0.00521 44.94 0.002228

17769 568.9 0.01245 98.66 0.08469

25947 232.7 0.03358 51.77 0.005988

We will begin with NSSC# 09854, which in some sense is the "easiest" test case

in that it is in a moderately low-altitude circular orbit with an average ballistic factor.

89

Initially, a three-day window from Dec 17 - Dec 20, 1999 was used as the quiet fit

interval. However, not all of the test objects had enough observations during this interval

to allow the DC program to converge on a viable solution without density correction. We

analyzed the observation frequencies for our simulated calibration database, and

compared the results to average Air Force Space Command observation frequencies.

Using a tracking schedule such that each ground station tracked all visible objects for 6

hours each day, the average number of simulated observations per object per day is

approximately 30. (One observation is defined as a given set of measurements with a

particular epoch). Actual Air Force Space Command data were also analyzed, and it was

found that the average number of observations works out to be approximately 36

observations per object per day. Thus, it is possible that our data is a bit too sparse in

some cases (such as the very low-altitude objects) to allow for good convergence, but

should on the average be a conservative approximation of real-world conditions.

With our tracking schedule validated, we decided to extend the fit interval to five

days instead of trying to re-simulate new data. The data were fit to the smoothed

Schatten density model without corrections, and the estimated state vector was then

propagated over the five-day fit interval and a three-day predict interval again using the

smoothed Schatten model. We then executed the same test cases using the corrected

density model in both fit and prediction intervals. This test model is perhaps not too

realistic with respect to real-world tracking, since we have access to the corrected model

in the future as well as the past. However, such a test scheme is more similar to real-

world problems such as post-processing of observation data to estimate spacecraft

characteristics such as mass.

Errors in the radial, cross-track, and along-track directions were computed for

spacecraft position and velocity. We can see from Figure 5.13 below that the DC

program has some trouble fitting the observations to the inaccurate density model. A

maximum error of 1505 m and 1634 mm/sec and RMS error of 586 m and 662 mm/sec

are observed.

NSSC# 09854, Schatten Mismodeling, No Corrections
Total Position Error (Fit Span)

Time (days from Dec 17, 1999 00'00m008)

NSSC# 09854, Schatten Mismodeling, No Corrections
Total Velocity Error (Fit Span)

05 1 1.5 2 25 3 3.5
Time (days from Dec 17, 1999 000m00)

4 4.5 5

Figure 5.13: Fit Error for NSSC# 09854, Quiet Epoch, Schatten Mismodeling, No

Corrections

When the corrections are applied to the density model, however, the fit is much

better. The max state errors are 808 m and 866 mm/sec and the RMS state errors are 302

m and 334 mm/sec, as seen in Figure 5.14 below.

E0
LUi.
o

Mean: 446 Stand Dev 380 .Max Dev: 1.51e+03
2 2 1 1 a a 1

1600

1400

1200

1000

E 600

0
t: 400

200

0

0

...... :.

.0.:n . "... .. D.3 ..

.

....Mean 500 d D 4 Max Dev 1.63e+03

NSSC# 09854, Schatten Mismodeling, With Corrections
Total Position Error (Fit Span)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time (days from Dec 17, 1999 00 00m00)

NSSC# 09854, Schatten Mismodeling, With Corrections
Total Velocity Error (Fit Span)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (days from Dec 17, 1999 0D00hm00')

Figure 5.14: Fit Error for NSSC# 09854, Quiet Epoch, Schatten Mismodeling, With

Corrections

The efficacy of the process is displayed in a much better fashion, however, in the

three-day predict interval. The DC program estimates a drag coefficient that best fits the

data in the fit interval, but if atmospheric conditions change in the predict interval, the

estimated drag coefficient is no longer appropriate. The result is that drag effects in the

predict interval cause quadratically increasing errors in just a few days, as can be seen in

the following Figure 5.15. The max state errors grow to 55.4 km and 63.8 m/sec in 72

hours.

92

5

4

0EJ

a

6

5

$A44

a,
E3

E
ý 2

10

0

NSSC# 09854, Schatten Mismodeling, No Corrections
XoW Total Position Error (Predict Span)

0.5 1 1.5 2 2.5 3
Time (days from Dec 22, 1999 O'00 m000)

NSSC# 09854, Schatten Mismodeling, No Corrections
Xo' Total Velocity Error (Predict Span)

0 0.5 1 1.5 2 2.5 3
Time (days from Dec 22, 1999 0"00"'00')

Figure 5.15: Predict Error for NSSC# 09854, Quiet Epoch, Schatten Mismodeling,

No Corrections

When the density corrections are applied, the error is reduced by more than an

order of magnitude: the max errors over the three-day predict span are 3.27 km and 3.71

m/sec (Figure 5.16). The error reaches the 1-km level after approximately 32 hours, as

opposed to just a few hours for the uncorrected density case. This result indicates that we

are obtaining a better-estimated drag coefficient (in the form of p,) in the fit interval.

The quality of estimated drag coefficients is discussed in more detail later in this section.

93

Mean o 8To0: ta d Psi ionev 1.57e+04 i Max Dev 5n55e+04
II I I I

.

L...............i..

Mean: 2 07e+04 Stand Dev: 1 81e+04 Max Dev: 6 38e+04
I I I I I

For plots of the position and velocity error in the radial, cross-track, and along-track

directions, please refer to Figures A.1-4 in Appendix A.

3000

2500

,2000

E 1500

i 1000

500

0

3500

3000

8 2500

. 2000

= 1500

S oo

500

0

NSSC# 09854, Schatten Mismodeling, With Corrections
Total Position Error (Predict Span)

...

Mean: 1.29e+03 Stand Dev 1.01e+03 Max Dev: 3 27e+03
I I I I I
0.5 1 1.5 2 25

Time (days from Dec 22, 1999 00omo00')

NSSC# 09854, Schatten Mismodeling, With Corrections
Total Velocity Error (Predict Span)

0 0.5 1 1.5 2
Time (days from Dec 22, 1999 0000m00s)

2.5 3

Figure 5.16: Predict Error for NSSC# 09854, Quiet Epoch, Schatten Mismodeling,

With Corrections

The position error characteristics for each object are compiled in Table 5.3 below.

The maximum and root-mean-square (RMS) error in the radial, cross-track, and along-

track directions is presented for each of the four test objects, with the density model

uncorrected and corrected, for the fit interval and predict intervals. All numbers are

given in units of meters.

94

*

*

...

.. . I***

Mean: 1.48e+03 Stand Dev- 1.16e+03 : Max' Dev: 3.71e+03
.......... ... :.
Mean, 1 48e+03 : Stand De•. 1.16e+03 , Max Dev: 3 71e+03

I I I I I

Table 5.3: Position Error Characteristics for Quiet Epoch Test Cases

NSSC# Uncorr/ Radial Error Cross-Trk Along-Trk Total Error
Corr (m) Error (m) Error (m) (m)

Fit Span: Dec 17 - Dec 22, 1999
Max RMS Max RMS Max RMS Max RMS

09854 Uncorr 112.9 65.04 33.21 20.30 1504. 582.4 1505. 586.3
Corr 96.47 48.26 11.17 7.607 807.5 298.0 808.2 301.9

25013 Uncorr 32.74 21.12 78.40 52.43 212.4 80.27 212.5 98.14
Corr 14.88 7.777 34.59 22.69 94.27 43.40 94.85 49.58

17769 Uncorr 67.09 40.70 33.55 21.03 713.7 192.7 713.8 198.1
Corr 15.49 4.706 36.92 23.97 243.8 86.02 246.1 89.39

25947 Uncorr 95.00 44.23 21.84 14.81 2215. 511.1 2216. 513.1
Corr 406.3 235.8 242.7 156.1 2511. 741.8 2514. 793.7

Predict Span: Dec 22 - Dec 25 1999

09854 Uncorr 612.4 223.1 33.70 22.21 55461 23918 55462 23919
Corr 77.44 45.76 11.39 7.884 3274. 1635. 3274. 1636.

25013 Uncorr 85.10 31.19 68.77 45.97 6213. 2776. 6213. 2776.
Corr 11.60 7.387 29.42 19.93 133.8 67.02 133.9 70.30

17769 Uncorr 253.2 69.25 41.25 26.32 16345 7367. 16347 7367.
Corr 21.23 6.525 40.12 27.27 1780. 891.4 1780. 891.9

25947 Uncorr 2416. 629.8 26.64 10.01 57799 25607 57850 25614
Corr 718.5 330.7 200.1 135.5 11748 5259. 11749 5271.

We immediately notice that the position error is dominated by the along-track

component, which is typical for drag-pertubed orbit determination problems.

The next test cases were executed for NSSC# 25013, which tests the process at a

slightly higher altitude and eccentricity. As we see from Table 5.3 above and from

Figure A.5 in Appendix A, the improvements are even more dramatic. The total fit error

is more than cut in half, and the total RMS predict error decreases from 6213 m to 133.9

m, a 46-fold improvement.

At higher altitudes, the density correction process was again shown to be

effective. Total error plots for NSSC# 17769 in the fit and predict intervals with and

without corrections are included in Figure A.6. The total RMS error for NSSC# 17769 is

cut from 7367 m to 891.9 m, or by about 8 times. The improvements are not as drastic as

for the lower-altitude cases, which is what we would expect since objects at higher

altitudes are not as drag-perturbed.

The final test case, using measurement from NSSC# 25947 and presented in

Figure A.7, is the most challenging due to the object's high eccentricity and relatively

low perigee height. The DC program had a great deal of trouble fitting the observations

to the uncorrected density model, as is evidenced by the 57.9 km max predict error after

three days. With corrections applied, the statistics are considerably better: 11.7 km max

predict error, or about a five-fold improvement. It is interesting to note, however, that the

fit interval error with corrections is actually slightly worse than without corrections. We

can explain this phenomenon using statistics in Table 5.4:

Table 5.4: Fit Statistics for Quiet Epoch Test Cases

NSSC # Uncorr/ p,1 p - (m) A-priori
Corr Accuracy

Uncorr 0.138 0.568E-4 0.850 100 m
09854

Corr -0.016 0.401E-4 0.106 100 m

Uncorr 0.370 0.670E-3 0.214 100 m
25013

Corr -0.012 0.379E-3 0.173 100 m

Uncorr 0.208 0.138E-2 0.451 10 m
17769

Corr -0.017 0.114E-2 0.464 10 m

Uncorr 0.100 0.915E-3 0.427 100 m
25947

Corr -0.012 0.760E-3 0.394 10 m

This table presents the converged values of p, and associated standard deviation,

and the standard deviation of the semi-major axis. Also shown is the a-priori state

accuracy required to achieve convergence. We see that fitting observations with density

corrections results in smaller values of p,, indicating that the corrected density model is

in fact closely approaching the truth density model. The standard deviation of p, also

improves in every case, although more significantly for the low and middle-altitude

cases. For the high-altitude and eccentric cases, we see that the quality of the fit as

measured by oa does not greatly improve or even degrades going from corrections to no

corrections. However, because we have more accurately estimated the true ballistic

factor, the error in the predict spans is not nearly as great.

The last column of the table presents the necessary a-priori accuracy in the state

vector (position and velocity) to allow the DC program to obtain a valid solution from the

observations. The number in meters corresponds with the required velocity accuracy in

units of mm/sec. The required accuracy is the same in all cases except for NSSC# 25947:

for this object, the corrected density model actually required more a-priori accuracy to

converge. This corresponds with our earlier observation that the fit with corrections is

worse for this object, which may be due to poor observability of the drag coefficient with

relatively sparse observations.

5.2.4 Perturbed Epoch Test Cases

The same test cases were initially executed fitting five days of data from Dec 28,

1999 to Jan 2, 2000. The same data rates as for the first test cases were used, but

significant convergence problems arose. Even with 7 or 8-digit apriori state accuracy,

uncorrected fits caused the DC program to exceed the allowable number of iterations or

to stop due to numerical instability. The corrected fits,however, were able to converge

with sparse data in all cases. Plots of the total error in the predict and fit intervals for

NSSC# 09854 are presented in Figure 5.17 below:

NSSC# 09854, Schatten Mismodelling and Sparse Data, With Corrections
Total Position Error (Fit Span)

11!. 359 11 S,.nd1a'r2
Mean: 3!9 nd 0... • 213.

a 05 1 15 2 25 3 35 4 45 5
Time (days from Dec 28, 1999 0d00O"W)

NSSC# 09854, Schatten Mismodelling and Sparse Data, With Corrections
Total Velocity Error (Fit Span)

NSSC# 09854, Schatten Mismodelling and Sparse Data, With Corrections
Total Position Error (Predict Span)

Time (days from Jan 02, 2000 Od'0"Om00

NSSC# 09854, Schatten Mismodeling and Sparse Data, With Corrections
Total Velocity Error (Predict Span)

2500

2000

1500

5000

Soo

OS 1 1.S 2
Time (days from Jan 02, 2000 0O00m'0Q)

25

Figure 5.17: Fit and Predict Errors for NSSC# 09854, Perturbed Epoch,

Schatten Mismodeling, With Corrections

97

WVVVAMMA

U..."" 758 " '"'I

Me*n 847 S 8ndO.:.2 Mai Dev 2 69e03

_ __ · · ·

......... !

05

For plots of radial, cross-track, and along-track error, refer to Appendix A Figures

A.8 and A.9 We can observe a maximum in the fit error on the fourth day corresponding

to the spike in ap values shown in Figure 5.9 earlier. Additional results for these sparse-

data fits are presented in Table 5.5 which follows and in Figures A.10-A.11.

Table 5.5: Position Error Characteristics for Perturbed Epoch Test Cases with
Sparse Data

NSSC # Uncorr/ Radial Error Cross-Trk Along-Trk Total Error
Corr (m) Error (m) Error (m) (m)

Fit Span: Dec 28, 1999 - Jan 2 2000
Max RMS Max RMS Max RMS Max RMS

09854 Uncorr Did not converge
Corr 150.2 93.05 75.51 45.62 1014. 405.7 1015. 418.5

25013 Uncorr Did not converge
Corr 21.60 13.99 8.715 5.711 206.7 66.45 206.7 68.12

17769 Uncorr 55.35 34.60 104.0 64.13 452.2 184.6 461.9 198.3
Corr 170.3 116.8 37.89 26.58 828.0 445.5 828.6 461.3

25947 Uncorr Did not converge
Corr 281.0 183.0 24.83 16.53 1641. 748.9 1641. 771.0

Predict Span: Jan 2, 2000 - Jan 5, 2000

09854 Uncorr Did not converge
Corr 142.8 93.39 92.07 59.60 2450. 1006. 2450. 1012.

25013 Uncorr Did not converge
Corr 22.00 13.83 9.207 6.368 676.7 336.7 676.8 337.0

17769 Uncorr 184.7 77.04 119.2 79.44 11111 5832. 11112 5833.
Corr 166.4 108.2 38.63 26.97 3185. 1750. 3185. 1753.

25947 Uncorr Did not converge
Corr 669.5 270.8 33.44 19.00 19536 9663. 19536 9667.

We can see from these results that the density correction process allows us to

maintain operability even for very low data rates. The DC program was able to converge

on a solution using the uncorrected density model for NSSC# 25947, but the corrected

solution seems to be better in terms of predict errors. This is due to the fact that the DC

runs were able to capture the p, values very well:

Table 5.6: Fit Statistics for Perturbed Epoch Test Cases with Sparse Data

NSSC # Uncorr/ p pl a (m) A-priori
Corr1 Accuracy

Uncorr Did not converge
Corr 0.017 0.166E-3 0.518 10 m

Uncorr Did not converge
25013

Corr 0.002 0.523E-3 0.101 1 m

Uncorr -0.234 0.704E-3 0.097 10 m
17769

Corr -0.004 0.853E-3 0.090 100 m

Uncorr Did not converge
25947

Corr 0.032 0.239E-2 0.579 100 m

In order to obtain comparable results for corrected and uncorrected cases, we

regenerated simulated observations with identical characteristics but increased the data

rate by a factor of six to 180 obs/object/day (on average). Accordingly, the fit interval

was reduced back to three days. The predict interval remained at three days, and the

density correction model remained the same. Table 5.7 presents the error characteristics:

Table 5.7: Position Error Characteristics Perturbed Hot Epoch Test Cases with
Dense Data

NSSC # Uncorr/ Radial Error Cross-Trk Along-Trk Total Error
Corr Error Error

Fit Span: Dec 28 - Dec 31, 1999
Max RMS Max RMS Max RMS Max RMS

09854 Uncorr 143.0 90.51 118.7 77.71 888.6 343.0 889.4 363.0
Corr 310.6 211.8 103.6 67.78 1493. 694.0 1496. 728.3

25013 Uncorr 19.43 8.282 32.39 22.13 2334. 943.1 2334. 943.4
Corr 22.20 14.04 12.03 8.198 265.4 72.49 265.5 74.26

17769 Uncorr 99.38 65.28 14.34 9.821 527.4 243.9 527.7 252.7
Corr 88.22 58.68 13.10 8.950 573.2 231.4 573.5 238.8

25947 Uncorr 566.5 116.0 66.01 42.43 11187 2252. 11188 2255.
Corr 165.0 104.0 85.64 56.94 1690. 733.1 1690. 742.5

Predict Span: Dec 31, 1999 - Jan 3, 2000

09854 Uncorr 196.1 100.9 144.6 93.06 12292 8561. 12292 8563.
Corr 328.9 212.7 125.5 81.72 7178. 3457. 7178. 3464.

25013 Uncorr 37.72 16.28 32.68 23.05 5642. 3074. 5642. 3074.
Corr 23.23 14.07 12.86 8.799 622.1 349.8 622.1 350.2

17769 Uncorr 110.3 69.18 13.47 9.100 1142. 625.6 1142. 629.2
Corr 83.48 55.10 13.14 8.939 2149. 1014. 2149. 1015.

25947 Uncorr 532.9 261.4 82.32 52.49 17214 12061 17214 12064
Corr 356.8 135.1 100.0 63.68 10273 4595. 10276 4597.

Several comments can be made about the above results, which are illustrated in

Figures A.12-18 in Appendix A. The overall magnitude of fit and predict errors is much

lower than for the quiet epoch due to the increased amount of data. The improvements in

the predict span errors are not nearly as drastic as for the quiet epoch cases, with the

exception of the medium-altitude object (25013) with a reduction in total RMS predict

error from 3074 m to 350.2 m, shown in Figure A.17. Two to three-fold reductions in

predict error are observed for the low-altitude and eccentric test cases in Figures A.12-15

and A. 18, respectively. The high-altitude test case demonstrates the difficulty of

accurately capturing drag effects at altitudes of 500 km or higher: the corrected model is

actually outperformed by the uncorrected model in the predict span by 385.8 m RMS.

This result, shown in Figure A.16, could indicate that the density corrections applied to

higher altitudes are incorrect for this epoch, or that the DC program had difficulty

converging on a good solution.

The following table presents fit statistics for the perturbed, dense data case:

Table 5.8: Fit Statistics for Perturbed Epoch Test Cases with Dense Data

NSSC # Uncorr/ p1 a (m) A-priori
Corr Accuracy

Uncorr -0.086 0.605E-4 0.214 1 m
09854

Corr 0.024 0.883E-4 0.259 10 m

Uncorr -0.025 0.979E-3 0.087 100 m
25013

Corr 0.017 0.124E-2 0.089 100 m

Uncorr -0.211 0.361E-2 0.599 10 m
17769

Corr 0.014 0.533E-3 0.087 10 m

Uncorr -0.054 0.463E-3 0.049 10 m
25947

Corr 0.034 0.468E-3 0.067 10 m

5.2.5 Partial Calibration Database Test Case

This test case examined the impact of reducing the number of satellites used in the

density correction database from the full 335 to 214, which is the number used by

Nazarenko in his simulations [1]. The first 214 objects in order of NSSC catalog number

100

in the ballfcts.txt file were selected as the objects to be used to calculate the new density

variations. This means that we are assuming the orbital characteristics are distributed

randomly with respect to NSSC number. The following plots compare the old and new

values of bl and b2 over the 55-day time interval:

0 5 10 15 20 25 30 35 40 45 50 55

0 5 10 15 20 25 30 35 40 45 50 55
Days After 16 Dec, 1999 12:00 UT

Figure 5.18: Comparison of bl For Full and Partial Calibration Database

101

n

.S

0 5 10 15 20 25 30 35 40 45 50 55
Days After 16 Dec, 1999 12:00 UT

Figure 5.19: Comparison of b2 For Full and Partial Calibration Database

If we calculate the statistics for the difference between the full and partial

database versions of bl, we find that the maximum difference is equal to 0.0775; the

mean difference is 0.000113, and the standard deviation is 0.0142. For the b2 coefficient,

the maximum difference is 0.0518, the mean difference is equal to -0.000294, and the

standard deviation is 0.0121. Looking at the mean values of the differences, it seems that

reducing the number of calibration satellites to 214 does not seem to significantly affect

the accuracy of density variations. If we consider the full database variations as the truth,

the average error in the density correction factor at an altitude of 400 km is only 0.01%,

increasing to 0.04% at 200 km. Even assuming that the maximum errors occur during the

same 3-hour time span and in complementary directions, the correction factor will only

be off by 13%. This might seem like a significant error until we realize that this worst-

case correction factor is applied for only one 3-hour span.

102

5.3 Test of Forecasting Algorithms

The final test cases attempt to validate the density variation forecasting algorithms

as presented in Section 2.3. The density variation coefficients were forecast for three-day

intervals from two different epochs. The first epoch is Jan 2, 2000, which corresponds to

the beginning of the predict interval for the "perturbed" sparse-data DC test cases. A

comparison of the "true" and predicted coefficients is presented in Figures 5.20 and 5.21

below:

Days After Jan 1, 2000

Figure 5.20: True and Predicted bl From First Epoch

103

.d

Days After Jan 1, 2000

Figure 5.21: True and Predicted b2 From First Epoch

This epoch is a particularly difficult case because the motion of the coefficients

has just reversed direction, seen from the expanded time plot in Figure 5.22:

Days After Dec 16, 1999 12:00 UT

Figure 5.22: True and Predicted bl From First Epoch, Longer Time Interval

104

.d

This is in some sense a worst case scenario because the deterministic and random

components of the forecast signal are working in opposite directions.

The second epoch was arbitrarily chosen to be 25 days after the start of the overall

time interval, which works out to be Jan 10, 2000 12:00 UT. Figure 5.23 illustrates the

true and forecasted values of the b, coefficient:

0 1 2 3 4 5 6 7 8 9 10
Days After Jan 4, 2000

Figure 5.23: True and Predicted b2 From First Epoch

The forecast values appear to behaving in a much more reasonable fashion for this

time interval, although after about three days the forecast values begin to diverge more

significantly. A conclusion we can draw from these results is that the forecasting

algorithm should function reasonably well for a short predict interval (i.e. 2-3 days), but

could lead to errors for longer-term predicts.

105

[This Page Intentionally Left Blank]

106

Chapter 6 Conclusions and Future Work

6.1 Conclusions

Atmospheric density modeling error accounts for much of the difficulty that space

agencies have in tracking low-altitude space objects. Such diverse missions as space

catalog maintenance, maneuver planning, decay and re-entry analysis, and collision

avoidance could each benefit from better knowledge and prediction of atmospheric

conditions. The importance of atmospheric modeling has been recognized by the scores

of researchers who have worked to develop new, more accurate density models based on

direct measurements of density from space or on physical principles. However, the

development of new, complex models is often a lengthy and expensive process. This

work has investigated a method of correcting existing atmospheric density models using

information that we already possess in the space catalog database. The existing general

perturbations catalog may be adequate, but the density correction process is particularly

suited to special perturbations catalogs now being investigated. The method can

potentially be applied to any currently existing density model and for any mission

requiring better orbital prediction capability. The end result could be an "atmospheric

correction service" that would allow users to obtain near real-time density corrections and

predictions from a centralized location. Much work remains to be done before such a

goal is attained, but this thesis has demonstrated the basic feasibility of the idea, and has

laid the groundwork for future efforts.

The conclusions will be presented in three sections. The first section summarizes

the analytical development of the atmospheric correction algorithms, and their

implementation in a newly constructed software package. The following section will

present the tools developed as part of the process, and the modifications and

improvements made to the GTDS software utility. The final section of conclusions will

outline the numerical analysis and testing of the density correction process. A section

will follow the conclusions on proposed future work.

107

6.1.1 Algorithm Development and Implementation

The first step in atmospheric correction research was the detailed derivation and

analysis of the basic algorithms originally presented in the work of Nazarenko [1]. No

major errors were found in any stage of the process. Notation was standardized, and

some of the equations were simplified or explained in more familiar terminology. A few

errors were removed, primarily in the algorithms dealing with the forecasting of the

density variation models in Section 2.3.

The algorithms were implemented and tested in an entirely independent software

environment. The Matlab software package [57] proved to be invaluable for its ability to

manipulate large amounts of data in matrix form. The new implementation served as an

excellent validation of Nazarenko's investigations and of the feasibility and robustness of

the algorithms.

Another important conclusion deals with the interaction among researchers in

different locations around the country, and indeed, the world. Using modem

communications technology such as e-mail and high-capacity portable storage mediums,

we were able to exchange data, ideas and suggestions as the research progressed. This

work would not have been possible if many very knowledgeable scientists and engineers

had not been willing to freely share information and insight.

6.1.2 Tools and Software

A very useful result of the research in this thesis was the establishment of a

powerful, flexible computational environment for orbit determination and analysis on the

DC 1 Unix-based SGI workstation at The Draper Laboratory. The most current functional

version of R&D GTDS on the personal computer was ported to DC1 and thoroughly

tested for all necessary functionality. The source code was imported into a configuration-

managed environment so that future modifications to GTDS will be fully documented

and reversible. It should be noted that GTDS has existed in configuration managed

environments up until the last few years, when a proliferation of different versions came

into existence. It is highly desirable for all versions to be re-imported or merged into one

fully functional platform. This work can serve as the first step in such an effort.

108

A complete reference has been compiled with instructions on how to use the

configuration management system, build GTDS data files, link and compile the source

code into an executable, and operate the software.

Due to the vast amount of computation and data handling required by the

atmospheric correction process, it was necessary to develop automated, efficient

techniques to drive GTDS runs and to generate and parse large data files. The Perl

programming language was chosen for this purpose and quickly proved itself to be

indispensable. Perl is portable and widely used, meaning that the scripts given in

Appendix C may be used on different platforms and easily tailored to specific

computational environments. A benefit of the use of Perl on DC1 was the relative ease of

implementing large jobs in parallel, thereby reducing run time by an order of magnitude.

It became possible to execute thousands of high-precision differential corrections for

hundreds of objects in the database over an interval of several weeks or months and finish

in a matter of hours.

Implicit in the automated Perl scripts is the capability of using GTDS in a more

flexible manner. The script files can generate GTDS card decks, run the GTDS code, and

extract data from the output files as necessary. The TLE2osc.pl program produces

osculating orbital elements from an input file consisting of Two-Line Elements sets. The

genobs.pl program has the capability of producing simulated observations in OBSCARD

format with user-defined station locations, biases, and observation noise. The estbfs.pl

program can perform iterative differential correction runs for large numbers of objects

and over long intervals of time.

GTDS was modified and improved to make the code more functional and reliable.

The ability to generate state histories in ASCII file format, present in the VAX-GTDS

version, was added to UNIX-GTDS. Bugs associated with the year-rollover problem and

the no-observation problem as described in Section 3.1.4 were corrected. The ability to

run GTDS in parallel, with simultaneous access of data files, was implemented and

verified. Finally, a list of known bugs and functional limitations of the code was

compiled and is presented in Appendix B Section 5.

109

6.1.3 Density Correction Analysis

The ability of the density correction process to update a density model in near-real

time was demonstrated over a range of altitudes and atmospheric conditions. The

algorithms were shown to be capable of removing time-localized errors in spans of one

day or longer. When actual values of uncorrected and corrected density for both

geomagnetically quiet and perturbed epochs were compared, it was found that biases in

density values were reduced to 2% or less and standard deviations cut by 21-36%.

The reduction in density error translated to significant improvement in fitting

observation data and reduction in orbit prediction error. Four types of orbits at different

altitudes and eccentricities were investigated in both quiet and perturbed epochs and with

low and high data rates. Density correction led to better fits of sparse data, and in some

cases allowed the differential corrections process to converge where the use of

uncorrected density was causing divergence. The onset of quadratic error growth in the

predict span was delayed for one-two days, and total error after three days was often

reduced by an order of magnitude or better. Drag coefficients could be more accurately

estimated from observation data, which indicates potential applications in estimation of

unknown spacecraft characteristics such as mass or cross-sectional area.

Algorithms for forecasting density correction models were tested for quiet and

perturbed epochs. The methodology of separating the signal into random and

deterministic components was validated, and reasonably good forecasting was

demonstrated for intervals of up to three days. The architecture for the processing of

actual observations was established. Overall, the techniques presented in this thesis

exhibited flexibility and a degree of robustness for different conditions, altitudes, and

types of orbits, and show great promise for future investigations.

6.2 Future Work

All future work to follow is ordered first by topic and next by priority within the

topic.

110

6.2.1 Algorithm Improvements

Most of the work on implementation of density correction algorithms has been

performed, with the exception of estimation of "true" ballistic factors and the

improvement of the forecasting algorithms using more sophisticated physical models.

The former, as outlined in Section 2.2, was originally intended for inclusion in this work,

but was not accomplished due to time constraints.

Estimation of "true" ballistic factors is the last major step in the simulation tests.

If the density correction process is shown to be effective even when given inaccurate

ballistic factors for the majority of the objects in the database, the simulation tests will be

essentially complete, and we can move on to processing of actual observations.

The forecasting algorithms as derived in Section 2.3 are reasonably effective, but

do not incorporate very much information about the physical processes involved in the

evolution of atmospheric conditions. Very detailed methods of forecasting solar and

geomagnetic indices up to a month in advance have been presented in a study

commissioned by the European Space Agency in 1991 [58]. These techniques may be

incorporated into the density variation forecasting algorithms, or possibly can be

implemented as a separate tool used to generate predicted solar and geomagnetic indices

for direct input into an atmospheric model such as JR-71.

6.2.2 Software Additions

When examining actual values of density produced by the JR-71 model in Section

5.2.2, it was noticed that the density moved in a discontinuous fashion for each three-

hour value of ap. After some investigation, it was determined that these jumps were due

to empirical equations presented on page 37 of Jacchia's 1971 report [15]. Jacchia

recommended that smoothed geomagnetic indices are used in the equations, but the

implementation of his model in GTDS was found to use the original discontinuous

values. For the simulated data cases that were investigated in this thesis, both the "truth"

and smoothed models contained these jumps, although frequently in different directions

and magnitudes. However, if actual space catalog data is to be analyzed, it will be

necessary to implement a smoothing process in GTDS in order to avoid errors in orbital

111

estimation. Other organizations using some form of Jacchia's 1971 model should ensure

that this error is not present in their orbit propagation software as well.

The next step in improvement of software should be to add a sequential filtering

capability to the density correction software. This will require numerous modifications to

the estbfs.pl Perl script, and may require some validation of the filter code in GTDS. A

sequential filter, however, will eliminate the need of processing the same data multiple

times in overlapping batch runs, and will allow more up-to-date estimates of ballistic

factors for each object in the database.

The multiprocessing capability of the Perl scripts relies largely on the inherently

parallel nature of the DC1 machine. If the density correction algorithms are to be

implemented in a truly portable, non-platform dependent fashion, the use of a parallel

processing standard such as MPI (Message-Passing Interface) [59] or PVM (Parallel

Virtual Machine) [60] will be required.

Most of the research done by Nazarenko and his colleagues used the GOST

atmospheric model, an empirical density model first developed by I.I. Volkov in the late

1970s and refined in 1984 [47]. It would be very useful to implement this model into

GTDS so that some of our results could be compared more directly to earlier density

correction investigations. The relative simplicity and accuracy of this model also makes

it desirable for other applications.

The final area of software improvement deals with GTDS. The first necessary

step should be to investigate the known bugs and limitations of the code presented in

Section B.4, and to determine if they are causing any degradation of results. Once these

bugs and limitations are removed or bypassed, future work should focus on the

incorporation of the additions currently existing in the GTDS PR-6 version on the PC.

Many of these additions are desirable for work on atmospheric correction, including

atmospheric lift modeling, the altitude-dependent error function, and filter improvements.

Other modifications to GTDS exist only in the version currently residing on the

VAX, including the J2000 coordinate system, 50x50 gravitational models, and solid

Earth tides. These modifications, if incorporated into UNIX-GTDS, will aid in the

processing of actual observational data.

112

Nazarenko, Yurasov, and others are currently investigating the Universal

Semianalytic Method (USM) semianalytic theory. It would be desirable to incorporate

this software as part of GTDS or as a standalone software package. This would

encourage further cooperation with their efforts, and would provide Draper Laboratory

with another powerful, highly accurate tool for orbit determination and prediction.

6.2.3 Further Tests of Density Correction

The tests presented in this thesis have demonstrated the effectiveness of density

correction under various conditions and for various types of objects, but more testing is

required. A number of trade studies should be performed using simulated data,

including:

* Data rates: can higher observation rates for the objects in the density

correction database help capture short-term (i.e. 3-hour) density variations?

* Perturbation models: general perturbations vs. special perturbations

* Gravity models: what is the effect of gravity model truncation?

* Correction of different density models: MSISE-90, GOST

* Biases/measurement error: how do observation biases and noise affect the

results?

Once these tests have been performed, the process can be applied to problems

involving actual data. This will inevitably require extensive analysis of the error and bias

characteristics of the data, but the overall data flow should follow the outline presented in

Section 4.2. The software has been designed to allow for actual data processing with

minimal modification.

The processing of actual data may require the use of a sequential filter. If so, the

filter should be validated using simulated data before its application to real-world

problems. As mentioned in Section 6.2.2 above, PR-6 GTDS contains a number of fixes

and improvements to the Linear Kalman Filter (LKF) and Extended Kalman Filter

(EKF). These additions should be a starting point for any filtering analysis.

Once the above validations and additions have been made, the concept of the

"density correction service" can be investigated in detail. Each phase of the atmospheric

113

correction process will be implemented in a more operational environment. There are

several requirements for operational near-real time atmospheric correction, including:

* Obtaining up-to-date observation data

* Keeping a current database of object characteristics, such as mass, cross-

sectional area, true ballistic factor, and status as standard or non-standard

* Obtaining current and predicted solar and geomagnetic indices

These requirements are challenges in themselves, but are necessary if a true test of

concept is desired. An operational test could feature a number of targets with unknown

mass or shape characteristics, and the objective would be to use density correction in

near-real time to improve orbital prediction or identification of these objects. The test

could be run over a period of several months, with the atmospheric correction service

providing real time or forecast corrections to the user on demand. The density

corrections could even be made available on the Internet, as are many orbit determination

products such as TLEs or solar/geomagnetic indices. If successful, the atmospheric

correction service could be expanded to include multiple atmospheric models. The

service could be used by organizations worldwide to improve tracking, maneuver

planning, collision avoidance, or for whatever other purposes that are desired.

6.2.4 Application of Density Correction to New Problems

If the density correction process can be validated as a truly effective and robust

technique for removing errors in density models, the number of potential applications is

vast. One application which has recently taken on more importance is collision

avoidance and debris analysis. With the ever-expanding number of objects in Earth orbit,

the risk is growing that a space asset such as the soon-to-be inhabited International Space

Station (ISS) will be severely damaged or destroyed by collision with debris. It is

therefore very important that we obtain the capability of predicting the orbits of low-

altitude debris with more precision. Improved or corrected atmospheric models will also

allow us to execute more effective avoidance or stationkeeping maneuvers with less use

of propellant.

Part of the problem of debris avoidance is the identification and estimation of

characteristics for newly-acquired space objects. A more accurate atmospheric density

114

model will allow for better estimation of mass, area, or coefficient of drag, which in turn

improves prediction capability.

The goal of this research was to provide a method of obtaining better atmospheric

density estimates without building a new model. However, if a large amount of

correction data specific to a particular model can be compiled, it may be possible to

systematically remove some biases from the model equations.

The past thirty years have seen great advances in our understanding of the

atmosphere, but not in our ability to model it. However, with new high-speed computers

and more accurate orbit propagation and estimation techniques, we are finally beginning

to make effective use of the vast amounts of observational data collected every day. The

only challenge now is to ensure that information is distributed freely and ideas allowed to

circulate throughout the space surveillance community. If we can meet that challenge, it

seems inevitable that the "15% barrier" in density model accuracy can finally be broken.

115

[This Page Intentionally Left Blank]

116

Data Analysis Plots

This appendix contains additional plots of test case results that are presented in

Chapter 5.

A.1 Schatten Mismodeling Quiet Epoch Test Cases

117

Appendix A

Figure A.1: NSSC# 09854 Fit Span Error, No Corrections

NSSC# 09854, Schatten Mismodeling, No Corrections NSSC# 09854, Schatten Mismodeling, No Corrections
Along-Track Position Error (Fit Span) Cross-Track Position Error (Fit Span)

10
to0

-20

-30

Mean: 0 i)0644 A- . MaDw 312
0 0 I 1 2 25 3 35 4 40 O0 1 15 2 25 3 3.5 4 4

Time (days from Doe 17, 1999 g 00"'00') Time (days from Dec 17.1999 0O00"o00')

NSSC# 09854, Schatten Mismodeling, No Corrections NSSC# 09854, Schatten Mismodeling, No Corrections
Along-Track Velocity Error (Fit Span) Cross-Track Velocity Error (Fit Span)

so

20

10

L-10-aoS

0 0 1 1.0 2 25 3 35 4 45 5

Time (days from Doc 17.1999 0o 00'00')

'F

Time (days from Doc 17,1999 Od00n00) Time (days from Dc 17.1999 d0900)
000)

NSSC# 09854, Schatten Mismodeling, No Corrections NSSC# 09854, Schatten Mismodeling, No Corrections
Radial Velocity Error (Fit Span) Total Velocity Error (Fit Span)

1o0 I"

1400.

"0 0

2001

4 500 nd a 4M0 Maxr.. Do. I &U.O3
a O's 1.$ 2 25 3 35 4 4S

Time (days from Dec 17, 1999 00o'0000') Time (days from Dec 17, 1999 Od00"'00
*)

118

w

(.

Mean 320 St•nd De:. 487 Ma D.M Io 5*.03

'F
A

8

`2
d
E

u

S

I

2-

I5NC

Figure A.2: NSSC# 09854 Predict Span Error, No Corrections

NSSC# 09854, Schatten Mismodeling, No Corrections
xo' Along-Track Position Error (Predict Span)

................

Mean -l.B+ Bo StandDev I Stet t Met 0. 0e SSot

o0S 1. 2 20

Time (days from Dec 22, 1999 0o00oo00
)

NSSC# 09854, Schatten Mismodeling, No Corrections
Along-Track Velocity Error (Predict Span)

Time (days from Dec 22, 1999 Od0Om00'o
)

NSSC# 09854, Schatten Mismodeling, No Corrections
Radial Position Error (Predict Span)

os 1 s 10 2

Tim. (days from 0.. 22, 1999 od'00"'00

NSSC# 09854, Schatten Mismodeling, No Corrections
DoRadlal Vl'ofitoh E.rt.ror(rdlictSto- **-'-~--'

2$05 i IS 2
Time (days from Dec 22,1999 0D00bOO00)

Time (days from Dec 22,1999 000dOO00)

NSSC# 09854, Schatten Mismodeling, No Corrections
Cross-Track Velocity Error (Predict Span)

Mean.

Time (days from Dec 22,1999 Od0000')

NSSC# 09854, Schatten Mismodeling, No Corrections
o10' Total Position Error (Predict Span)

Time (days from Dec 22, 1999 0 0010)

NSSC# 09854, Schatten Mismodeling, No Corrections

* Total Velocity Error
erP{ dict Span)

0 1i 105 2
Time (days from Dec 22,1999 0O00)'00)

119

8

I
e
E
B
5

e
w

soo

40

loo00

-100

. ! I . . -

.6 .i.s Mean: 1. 5 04 St.ad . S .teO. M 0. Dr s o e...
OS I 1 S 2 2

... ...ii ! :..............
I I I

e..1D.......

Moan 2 07e.04 Stand D . 1.81"4 M.i! D"y 5Me,0 04

Mea' 2 0?0*4 Stand De 1 8**0a Ma Dev 6 38 *04..... I

..........

..

..

Moan 2a OIo+Oi Stand Dow. 16le-01 Mai D~v 6 38*.04

-6_I

............· · · ·· · · ·-

................. ·

05 1 1.5 2 25

to- Radial Velt-Ity Errorpf· r id c .. I ror 1{3 J r

................. •.......... . • •......i i.............ii.·..·.....:•;....... .
..I

Figure A.3: NSSC# 09854 Fit Span Error, With Corrections

NSSC# 09854, Schatten Mismodeling, With Corrections
Along-Track Position Error (Fit Span)

NSSC# 09854, Schatten Mismodeling, With Corrections
Cross-Track Position Error (Fit Span)

-50. 01lI•• MNIMI 11 U~nmHW-LrU lr iliilirri rrHlrrlll~ rNil [l
-400 iear 1W. M r. Dw 1 ;w Moore 1,0102 ta IrýOv7.1 - MIAX DOW. 112

0 0S s 15 2 5 2 3 35 4 45 0 05 1 1.5 2 2.5 3 35 4 45
Time (days from Dec 17, 1999 Od00"00) Time (days from Dec 17, 1999 0o00o"00

e

NSSC# 09854, Schatten Mismodelling, With Corrections
Along-Track Velocity Error (Fit Span)

NSSC# 09854, Schatten Mismodelling, With Corrections
Cross-Track Velocity Error (Fit Span)

0

*0Elu

Mean: 0(14 SlaedDv~.n 8.7 lMuDewlS

0 0.5 1 15 2 2.5 3 35 4 45 5
Time (days from Dec 17, 1999 od00o000)

0 0 1 S 2 25 3 3 4 45
Time (days from Dec 17, 199 0d 00m0)

NSSC# 09854, Schatten Mismodeling, With Corrections
Radial Velocity Error (Fit Span)

Time (days from Dec 17. 1999 OdhO0 00)

Time (days from Doc 17.1999 OdG000o)

NSSC# 09854, Schatten Mismodeling, With Corrections
Total Velocity Error (Fit Span)

Tim. (days from D 17 1999

120 o 2 : : ;
-11,O S 1 I.S 2 2.5 3 35 4 d5 STime (days from Dec 17,1999 0I0"00

s
3

)

120

. , , ,
M"aw 2i3 S ev: 179 in. Ow. ". .

Figure A.4: NSSC# 09854 Predict Span Error, With Corrections

NSSC# 09854, Schatten Mismodeling, With Corrections
Along-Track Position Error (Predict Span)

0 0 Is 2
Time (days from Doe 22,.1999 Od'00000)

25

NSSC# 09854, Schatten Mismodeling, With Corrections

NSSC# 09854, Schatten Mismodeling, With Corrections
Cross-Track Position Error (Predict Span)

Time (days from Dec 22.1999 O 00O"00)

NSSC# 09854, Schatten Mismodeling, With Corrections
Cross-Track Velocity Error (Predict Span)

Time (days from Dec 22, 1999 0d
1
00O'0)

NSSC# 09854, Schatten Mismodeling, With Corrections
Radial Position Error (Predict Span)

Time (days from Dc 22. 199 0I9009mD0

NSSC# 09854, Schatten Mismodeling, With Corrections
Radial Velocity Error (Predict Span)

S1..... a

Mean
0 0.S 15 2

Time (days from Dec 22.1999 0000 00O

Iso

soo

o

o500i 50

0

2S 3

NSSC# 09854, Schatten Mismodeling, With Corrections
Total Position Error (Predict Span)

Time (days from Dec22. 1999 d00'o"0o)

NSSC# 09854, Schatten Mismodeling, With Corrections
Total Velocity Error (Predict Span)

0S 1 Is 2
Time (days from Dec 22.1999 0D00'

1
00)

25 3

121

....

..........~*! · · ·· · '···)· · ·· · · · · ··

................ :

...........2 .I~...'3......." "M ~* ,

.......

Siadn45 . MaD 4

..

.............··· · · ·. ··.. ·· ·.... · ··... ... ·.·.

............... .. .~...... ~ l o.
Mean. 1.29*.3Sad w 01-0 a eý32*0

-00

S-10oo

I

-3000

-3500

-4000

................. · · . · · · · · · ·;.....;... ...

...................

............. .. .~.1.. 1................

.........

Moan I 430.0i Stand Dev. 1 16*+03 Mai Dev 3 71 e*0

Figure A.5: NSSC# 17769 Fit and Predict Span Error, Without/With Corrections

NSSC# 17769, Schatten Mismodeling, No Corrections
Total Position Error (Fit Span)

Time (days from Dec 17,1999 0d00
5
m0)

NSSC# 17769, Schatten Mismodeling, No Corrections
Total Velocity Error (Fit Span)

..........

\Aili,
S I

05 I 15 2 25 3 35 4 45

Time (days from Dec 17,1999 0O00
5
00)

Total Position Error (Fit Span)

NSSC# 17769, Schatten Mismodeling, No Corrections
Total Position Error (Predict Span)

0 05 1 2 2.5
Time (days from Doc 22, 1999 000om00)

NSSC# 17769, Schatten Mismodeling, No Corrections
Total Velocity Error (Predict Span)

05 1 S5 2 25

Time (days trom Dec 22.1999 OdOm00)

Total Position Error (Predict Span)

5 1 5s 2 25 3 35 4 45

Time (days from Doc 17,1999 d000"m00)

NSSC# 17769, Schatten Mismodeling, With Corrections
Total Velocity Error (Fit Span)

0 OS 9 SS 2 25 3 35 4 45

Time (days from Dec 17,1999 OdOOO'006)

1600

1200

soo

200

1600

1600

400

200

v 15 2
Time (days from Dec 22,1999 odoo'

m
OD)

............... si ' ..i6 i..," i....Ma

: 7

.3................I···

................. I.....

796T :SnD10 1Dr ~·O

NSSC# 17769, Schatten Mismodeling, With Corrections
Total Velocity Error (Predict Span)

..........;.;.................

......................

..............··········· ·.
..

' .:0.

. .. I .. .

0 05 i s. 2
Time (days from Dec 22,1999 oo0'"OO00

)
25 3

122

....··

....

..

·······...............................·

......

Means

.· · · · ·.. ·....··.......

L.................

.............

................. • i •..... •................. ,................

· · · · · · ··........

.......... i;03.... e........ '. . .. ti "......63e 04
..

..

..I I I

M......ro.. :..... .. 4.
.ý I3

0 0

M . 1 ; I3 *..... 4 ..
? . . S3 36 ." . ax D"v 246

...
...... ;~..... i,

.....................
Me~n 7 • : Surd Dvw S? 2 : ~ Dw• e 260

__ ----

o

j
5

IS'

S

Figure A.6: NSSC# 25013 Fit and Predict Span Error, Without/With Corrections

NSSC# 25013, Schatten Mismodeling, No Corrections
Total Position Error (Fit Span)

Time (days from Dec 17,1999 O0000m00)

NSSC# 25013, Schatten Mismodeling, No Corrections
Total Velocity Error (Fit Span)

Time (days from Dec 17, 1999 Od0"0030)

NSSC# 25013, Schatten Mismodeling, With Corrections
Total Position Error (Fit Span)

Time (days from Doc 17.1999 O "000o)

NSSC# 25013, Schatten Mismodeling, With Corrections
Total Velocity Error (Fit Span)

6000

-5000
9
14000

32000

2000

10000,

1,o

120

so

200

020

NSSC# 25013, Schatten Mismodellng, No Corrections
Total Position Error (Predict Span)

. .a 2....... 3 . . . 1 m 2..... .. . v

OS i 1 iS 2 2

Time (days from Dec 22, 1999 0000'"00
)

NSSC# 25013, Schatten Mismodelling, No Corrections
Total Velocity Error (Predict Span)

0os 1 15 2
Time (days from Doc 22,1999 000o0m00)

NSSC# 25013, Schatten Mismodelling, With Corrections
Total Position Error (Predict Span)

05 1 1 2 25

Time (days from Dec 22, 1999 0000'00
)

NSSC# 25013, Schatten Mismodeling, With Corrections
Total Velocity Error (Predict Span)

05 1

Time (days from Dec 22,1999 O0Om00")

123

....... r. ";I! I;;;III;II• I •I;I II ;;;I;I I~i i
.... ;i ·i } ·................i } ;ili iA l: ~ """'"'~~~'~

•...... IM aJr. S d a 13.
Wan.: 90.2Stn o 3. A D i1

. ;......... ,.........

.....:. •I •........... Ihi , ;..
......... ·11II UI t"' ~ 1 Il""ill " """"'

............s. dsv2-
..........

............ ·~C..... i

. '.•.... o..• I: 61•; i •i;,:o

· · · · ·.... · · I............

..... (·+5 M Dr sP~0

.........!·····

..........····
... · ·· ·..

a D
• , ...-,;5 s... .•...........- , , ,.. Max O w. 9 1,- ·.........

an V7 9

Mkss 679

.......... I .I. .,--- ·····ilil .--......... .1i....: :::~l:::::i::

....

..

....
................ ; ············:· ·····

.............i i..................i
• ,+................ ;

Figure A.7: NSSC# 25947 Fit and Predict Span Error, Without/With Corrections

NSSC# 25947, Schatten Mismodeling, No Corrections
Total Position Error (Fit Span)

Me05n 3 1 T 2 25 3 N 5 4 40xO 2.22 ,03

0s I IS 2 25 3 34 4 4S

Time (days from Dec 17.1999 0Od00m00)

NSSC# 25947, Schatten Mismodeling, No Corrections
Total Velocity Error (Fit Span)

Time (days from Dec 17,1999 0d00'"00')

0 OS I 15 2 2S 3 3S 4 45

Time (days from Dec 17, 1999 000'"00'0
)

NSSC# 25947, Schatten Mismodeling, With Corrections
Total Velocity Error (Fit Span)

IS

I
2

a
A5tt

C

1000

0

NSSC# 25947, Schatten Mismodeling, No Corrections
a o1 Total Position Error (Predict Span)

0s 1 15 2 25

Time (days from Dec 22,1999 000'm00")

NSSC# 25947, Schatten Mismodeling, No Corrections
lo Total Velocity Error (Predict Span)

05 t .5 2
Time (days from Dec 22,1999 odoooo000

)
25 3

NSSC# 25947, Schatten Mismodeling, With Corrections
Total Position Error (Predict Span)

0S 1 15 2 25

Time (days from D.o 22, 1999 0d00o"00)

NSSC# 25947, Schatten Mismodeling, With Corrections
Total Velocity Error (Predict Span)

05 1 15 2
Time (days from Doc 22,1999 00•00'0')

1SO0

. V . 704nD4.

i ·;.·..... i

SInd D 411 Max De . 2 36s.03

2 25 3 35S 4 4S

...................
,.. . . z

, •
.

S' D.evi .! IaI .j!D5! ".03i

.......;..~ ;..

................Z~nO)... ...:~.. .iD ~.

2000

-

i

200

......... ... ·.iii i, , l... i....... iii VIi ii , .. I .r

164arv 4,649oi0 SW Stand rv:. 3 63U.03 Max Day. 1 32*.04

124

25

I I I

- ·

k.

,

Schatten Mismodeling Perturbed Epoch Sparse Data Test Cases

125

Figure A.8: NSSC# 09854 Fit Span Error, With Corrections

NSSC# 09854, Schatten Mismodeling and Sparse Data, With Corrections
Along-Track Position Error (Fit Span)

"".... " " I IIII" ! •....'"1

Moan Is C S?. w 394 M" i 1,0 oi'
0 05 1 1.5 2 25 35 5 I

Time (days from Dec 28, 1999 0O00m00')

NSSC# 09854, Schatten Mismodeling and Sparse Data, With Corrections
Along-Track Velocity Error (Fit Span)

i4

Mean .I 4Is " Ow.lI07l IH
0 05 1 1 2 2.5 3 3S 4 45

Time (days from Dec 28,1999 Odo0 00')

r-' •.;o...... jd. • D."•- x -
0 05 1 IS 2 25 3 35 4 45 5

Time (days from Dec 28, 1999 0o000'00)

NSSC# 09854, Schatten Mismodeling and Sparse Data, With Corrections
Radial Velocity Error (Fit Span)

0 OS 1 IS 2 25 3 35 4 45
Time (days from Dec 28. 1999 0 00'"00)

NSSC# 09854, Schatten Mismodeling and Sparse Data, With Corrections
Cross-Track Position Error (Fit Span)

-so U .i H

0 05 1 2 2 3 5 4 45 5

Time (days from Dec 28,1999 d000'o00)

NSSC# 09854, Schatten Mismodeling and Sparse Data, With Corrections
Cross-Track Velocity Error (Fit Span)

54 ··· ···········..........····s

20HIIIIBIIIBIIIIIIIIIIBIIIIIIIIIII

-" '""""" '"""n""" l!II""lllllllllllllllllll................
UMontt2i S0.,,dDsv527S U oDs62

-100
I 1s 2 25 3 35 4 45 s

Time (days from Dec 28, 1999 0000`3
)

NSSC# 09854, Schatten Mismodeling and Sparse Data, With Corrections
Total Position Error (Fit Span)

Time (days from D.c 28.,9s OI" 00"000a)

NSSC# 09854, Schatten Mismodeling and Sparse Data, With Corrections
Total Velocity Error (Fit Span)

126

so

so80€

40

.20

JU -20_40

-~..~.~ .~~~~ ~T-. 1i11h1.-

...

i

Moon -T13 . Sn Deo 414 lMas O3 20o2*..03
..........A - - -A

" '1 1' loll 'P11 "..........'...... I 'p , 1" " "
.........•' '•: I.........': : " • " •Moarv 359 Stand Doe 21 S Pax Dow 02*+03' :

Imn

i i

............

Figure A.9: NSSC# 09854 Predict Span Error, With Corrections

NSSC# 09854, Schatten Mismodelting and Sparse Data, With Corrections
Along-Track Position Error (Predict Span)

Time (days from Jan 02, 2000 ODO0000)

NSSC# 09854, Schatten Mismodeling and Sparse Data, With Corrections

NSSC# 09854, Schatten Mismodeling and Sparse Data, With Corrections
Radial Position Error (Predict Span)

SM6 A-r -'S '2 ."" 3 3S
OS I s

NSSC# 09854, Schatten Mismodeling and Sparse Data, With Corrections
Cross-Track Position Error (Predict Span)

L*

2000

Is

-1000

soc

60

21 J

Time (days from Jan 02, 2000 Od00'm00)

NSSC# 09854, Schatten Mismodeling and Sparse Data, With Corrections
Radial Velocity Error (Predict Span)

0a I 5s 2

Time (days from Jan 02, 2000 DOOO"001)

2500

2000

1500

I
ESooo

5os

M ?S.tdDow.59. t O.. . O t. ...1

Time (days from Jan 02, 2000 od0000'oo"

NSSC# 09854, Schatten Mismodeling and Sparse Data, With Corrections
Cross-Track Velocity Error (Predict Span)

NSSC# 09854, Schatten Mismodeling and Sparse Data, With Corrections
Total Position Error (Predict Span)

0 05 t I. 2 25 3
Time (days from Jan 02, 2000 0d0'0000)

NSSC# 09854, Schatten Mismodeling and Sparse Data, With Corrections
Total Velocity Error (Predict Span)

............. ~ ~ ,

.............. . . . •

.

.....:-
Mean 847 SdDoo.4w 712 MaxDo, 269o.03

I · I 21
Tim (dys from Jn 02 2

Tim* (days from Jan 02, 2000 0 0'"-00

127

0

-2000

-2500

................ .. ·........

..................

................

...............

...... ...;....·.....

Me, Dew 4S. ý3

.............................

2500

2000

1500

1000

-500

~.......... . ~·...... ·...

1............. -v · · ·

r
............ '

•

1.6 ,,Q

1.............:..

~;.....~..........~.. soro Pw, 050MAI (~93

................

a·n: 75 8 Suw4 Dwri 672 Me De: 2 4S+0

l m

3Is 1 5 2 25 I

25

Figure A.10: NSSC# 17769 Fit and Predict Span Error, Without/With Corrections

NSSC# 17769, Schatten Mismodeling and Sparse Data, No Corrections
Total Position Error (Fit Span)

Time (days from Doe 28,1999 00
0

0")

NSSC# 17769, Schatten Mismodeling and Sparse Data, No Corrections
Total Velocity Error (Fit Span)

0 os I is 2 25 3 36 4 45

Time (days from Doe 28.1999 0d"00"00)

NSSC# 17769, Schatten Mismodelling and Sparse Data, With Corrections
Total Position Error (Fit Span).. i.........I~l··: llill l i ·I-··········lls111111111 1 . 111dr

JIM II

0 05 1 IS 2 2. 3 35 4 45 5

Time (days from De. 2, 1999 O00"'0D0*)

NSSC# 17769, Schatten Mismodeling and Sparse Data, With Corrections
Total Velocity Error (Fit Span)

Time (days from Doe 28,1999 0d00'm00)

10o000

amo

200M

6t000

E

20oo0

NSSC# 17769, Schatten Mismodeling and Sparse Data, No Corrections
Total Position Error (Predict Span)

Time (days from Jan 02, 2000 0d00'm00)

NSSC# 17769, Schatten Mismodeling and Sparse Data, No Corrections
Total Velocity Error (Predict Span)

os 1 15 2

Time (days from Jan 02, 2000 od 00000b)

NSSC# 17769, Schatten Mismodelling and Sparse Data, With Corrections
Total Position Error (Predict Span)

Time (days from Jan 02, 2000 0d00'm00
)

NSSC# 17769, Schatten Mismodeling and Sparse Data, With Corrections
Total Velocity Error (Predict Span)

0 05 I 1. 2

Time (days from Jan 02, 2000 000'm00
)

128

.. ... i..... .

O S 1 is 2 29 3 35 4 45

..............~.

~~..~~..........·...

......... ·.... ·..

... ·······-·.....·....i......

Mean: 4 85*9 S.d De 3 24..W Me: Dev 1 4110+04

05 1 2 25
0

......5......1····............

.................

................i··-·····.·......

·.....ii, -iib:• i'i)Z"
• !• ·' 4'.:. I......... I... .. . '

Men I.6*0 I~n Iev 3I6.3MzDe:11*

................ i................. i................

.,......S ...0 : 74 ,........ .. . a De 3.9 ,, .
...........)····

Mean. tsS md @4 6J .i V a 419*03
05 15 2 2S

i. ' i ; I i -1,I1I1IIIIII ~ .II

.;

................ .: (.............

'-
M,'ean. 1,6;90+0i Stand Dev:.767 Mi• Do, 32@.03

I

$

C

Figure A.11: NSSC# 25013 & 25074 Fit and Predict Span Error, With Corrections

NSSC# 25013, Schatten Mismodeling and Sparse Data, With Corrections
Total Position Error (Fit Span)

Time (days from De• 28, 1999 ooo00m• .

NSSC# 25013, Schatten Mismodeling and Sparse Data, With Corrections
Total Velocity Error (Fit Span)

05 1 1S 2 2.5 3 35 4 45

Time (days from D•c 28, 1999 o00"'00)

NSSC# 25947, Schatten Mismodeling and Sparse Data, With Corrections
Total Position Error (Fit Span)

NSSC# 25013, Schatten Mismodelling and Sparse Data, With Corrections
Total Position Error (Predict Span)

0 05 1 S 2
Time (days from Jan 02, 2000 0d'00"o)

25

NSSC# 25013, Schatten Mismodeling and Sparse Data, With Corrections
Total Velocity Error (Predict Span)

0 OS I IS 2

Time (days from Jan 02, 2000 00"00'00')

NSSC# 25947, Schatten Mismodeling and Sparse Data, With Corrections
Total Position Error (Predict Span)

.........I •.........

..........~""''' i I i

I l1" ' • "". ll.:!1, • ...jjjvl: 1• ;..... : " 111 iM~aý 609 i Scam Dw. 3" Max 0 1640.03

Time (days from D*c 28,1999 0 h00'm00
)

19000

16000

14000

12000

10000

4000

2000

s0 I 1 2
Time (days from Jan 02, 2000 000'm"'OO)

NSSC# 25947, Schatten Mismodeling and Sparse Data, With Corrections
Total Velocity Error (Fit Span)

Time (days from Dec 28, 1999 O•00m00')

NSSC# 25947, Schatten Mismodeling and Sparse Data, With Corrections
' Total Velocit r

o 05 -I

Time (days from Jan 02. 2000 O(0m0'00)

129

.......................

.... i ii ii iii ii ii ii ii ii .i ii

i................
.~.

Mean 278 Sh"d DO* 190 Max Do:w, 6

......... *, ;............ ;............

...II..

......

.

..

SM a ' 0 9 ::. • • • .'''......... .. :........,Mevn*S ··t- Sb" Dev V .*,****,*,,*

............~....

............ ··· ···..·· · · ·; ·· ·· · · ··

M··nS 14 u *ýD. 213 Ma! Dev 737

.

S.. i
................. i -.

,I ... I

25 3

.Snd Deln .Ma.. l Denv 54*•03"

L

.

. ..:

.Mean -a $89.0 Stand Dwr· · · · . .--· j-~--

1 .

.Um· .~rO .cMk
I . .

.........! III

€

Toa VeoctyEr

....... ·····...........
..~........ ·..·.....-...

...... ? I

.· · · · l- · · ··......... · ~r......

............. • :....

all

A.3 Schatten Mismodeling Perturbed Epoch Dense Data Test Cases

130

Figure A.12: NSSC# 09854 Fit Span Error, No Corrections

NSSC# 09854, Schatten Mismodeling, No Corrections
Along-Track Position Error (Fit Span)

Time (days from Dec 28,1999 00dboo00"

NSSC# 09854, Schatten Mismodeling, No Corrections
Cross-Track Position Error (Fit Span)

Time (days from Dec 28, 1999 0o00mo00)

NSSC# 09854, Schatten Mismodeling, No Corrections NSSC# 09854, Schatten Mismodeling, No Corrections
Along-Track Velocity Error (Fit Span)

Time (days from Dec 28,1999 Od'000')00

NSSC# 09854, Schatten Mismodeling, No Corrections
Radial Velocity Error (Fit Span)

Time (days from Dec 28,1999 0O0000m)

800

700

so

ti,400

¶00

i * .tlndO.,0 4.. c ..137 .

Time (days from Dec 28, 1999 0O"000')

NSSC# 09854, Schatten Mismodeling, No Corrections
Total Position Error (Fit Span)

Time (days from Dec 28, 1999 Od00'm00)

NSSC# 09854, Schatten Mismodeling, No Corrections
Total Velocity Error (Fit Span)

OS 1 1 9 2
Time (days from Dec 28, 1999 Od00•0m0)

131

............i::......I "
. e n... ?0... ,t~ . .• 2 t.... - e e '8 '......

...
Mean- I O*Slan De ; 29

...
. , 1

' I. I..... I11.. 11'
..i6 aL o

.. i "Ah: :.-AJA--..···,····· ...·
......... · ·· ·· · ·...

.........
......I

Mean 340 Sl ad 1863 UMat D 889

25 3

Figure A.13: NSSC# 09854 Predict Span Error, No Corrections

NSSC# 09854, Schatten Mismodeling, No Corrections
Along-Track Position Error (Predict Span)

o

-t12ooo
.• .l..M.
Meam -0357 Stald Dw. 3.1 MaiOw. 14

Time (days from De 31. 1999 00OO00
m

0)

NSSC# 09854, Schatten Mismodeling, No Corrections
Cross-Track Velocity Error (Predict Span)

Time (days from Dee 31,1999 0O•00"00)

Time (days from Dec 31.1999 00hmo00

NSSCS 09854, Schatten Mismodeling, No Corrections
Radial Velocity Error (Predict Span)

05 1 i5 2
Time (days from Dec 31,1999 Od'0000)

12000

5000o

sOW

sooo

2000

12000

2OObi

2000

aoo

NSSC# 09854, Schatten Mismodeling, No Corrections
Total Position Error (Predict Span)

Time (days from De 31.,1999 0 O
0

0"b0D)

NSSC# 09854, Schatten Mismodeling, No Corrections
Total Velocity Error (Predict Span)

.............a...aI I 2 I 1

25 3 0 O I1 1s 2
Time (days from Dec 31,1999 Od0o0"00)

25 3

132

Os I Is 2 25

Time (days from Dec 1,1999 03,9OdmO0)

NSSC# 09854, Schatten Mismodeling, No Corrections
Along-Track Velocity Error (Predict Span)

.... 7
S.......

.-S..····...

.......... ..i" """'""~"''""" "'""
......

Mean -7 519#63 i SWMd Dwý. 4. 1 @.03 a! Dow 1,23*.0

........

SUM Dv 90 2 . M
I, ..• . .-I

S

14000

12000

10000

000

0

.. ;

M*en a 67*0. SW DO" 4 73*.03 Ma Dov 1.4.04

1·nu~

2S

..i, , : ..i ..i .i

i

Figure A.14: NSSC# 09854 Fit Span Error, With Corrections

NSSC# 09854, Schatten Mismodeling, With Corrections
Along-Track Position Error (Fit Span)

Time (days from Dec 28, 1999 OOO"'m00)

NSSC# 09854, Schatten Mismodeling, With Corrections

Time (days from Dec 28,1999 OdOmO00so)

NSSC# 09854, Schatten Mismodellng, With Corrections NSSC# 09854, Schatten Mismodeling, With Corrections
Along-Track Velocity Error (Fit Span)

Time (days from Dec 28, 1999 000'"m00)

NSSC# 09854, Schatten Mismodeling, With Corrections
Radial Velocity Error (Fit Span)

05 1 IS 2
Time (days from Dec 28.1999 Od'00"00D)

T

9

Time (days from Dec 28,1999 0D000m00"'

I NSSC# 09854, Schatten Mismodeling, With Corrections

Time (days from Dec 28, 1999 OdO"000)

133

UMean 369 : Stand Dm 588 Max DW 1.49+03

†,'**;''.II! '11111††††††††††'11111..... " f,...••.............. ... lW . 'l l
... 03

t
d

EY

e
w

Figure A.15: NSSC# 09854 Predict Span Error, With Corrections

NSSC# 09854, Schatten Mismodeling. With Corrections
Along-Track Position Error (Predict Span)

Io

a-aK

-1000
.1ooa-2oo

3-3000

00 0 1 15 2
Time (days from Dec 31,1999 d00 00"'00)

2S 3

Time (days from Dec 31,1999 00m00"')

NSSC# 09854, Schatten Mismodeling, With Corrections
Along-Track Velocity Error (Predict Span)

..I.
Sta Ow. 212 Mai0ow 32

Time (days from Dec 31,1999 0I 00
)

"00)

NSSC# 09854, Schatten Mismodeling, With Corrections
Radial Velocity Error (Predict Span)

S.

T

05 S(d 15rom 2
Time (days from Dec 31,1999 It" 001'00"

20 3

7000

4000

2000

8

.S•!........ , ., .,.•••::.

Time (days from Doc 31,199 OM0 01o00)

NSSC# 09854, Schatten Mismodeling, With Corrections

NSSC# 09854, Schatten Mismodeling, With Corrections
Total Position Error (Predict Span)

................ '''................. !................ I............:•
.................................. '..
...............

..···

!Ilv vvvr............... ...~~~~~~~.~............. _
Ta ..

?
.......00OI 242e.Ii 1 202@ 3Do

0.S 1 1. 2
Time (days from Dec 31,1999 00d00m00

)

NSSC# 09854, Schatten Mismodeling, With Corrections
Total Velocity Error (Predict Span)

00 1 15 2

Time (days from Dec 31,1999 OM 0 O'00)

134

.......... ..I
-i.

ea -..k. O
-

~....................~. ~ ~ ~ ~· · · · ··

1l1YMe&& -211e.633 SWW Do; 12*-03 - Ma Dew ?. 1 $*+

.3 010.03 St~nd .. 2 59.03 MD Oevw 79*03

.........i2: :: i: ii 2
i :: '. ".....

..!"-......

-........

Mea• 3 22e•03 : Stand D •. e...

........... .. · ·, · · · ·

......; ·......... . · .··) · I···(·I··Meaft 3 22*.03 00.4 Ow 12 32..03 M4 D. ;'Oa7.03"
U·M ~ ~ ~ 2 2~·0 ~ D ~ ~ ~ Ur(*~·0

2S 3

-Ar

..'··I·· ··-""···Y-rr········· II··· I v·

........

g

m

--rL
I

o.-

Figure A.16: NSSC# 17769 Fit and Predict Span Error, Without/With Corrections

NSSC# 17769, Schatten Mismodeling, No Corrections
Total Position Error (Fit Span)

Time (days from Dec 28, 1999 d00Om"00O

NSSC# 17769, Schatten Mismodeling, No Corrections
Total Velocity Error (Fit Span)

Time (days from Dec 31. 1999 0 003000

NSSC# 17769, Schatten Mismodellng, No Corrections
Total Velocity Error (Predict Span)

t000

ii

I

05 1 15 2 2.6 3

Time (days from Dec 28, 1999 O%0m00o)

Time (days from Dec 28 1999 OI 00'm00)

NSSC# 17769, Schatten Mismodeling, With Corrections
Total Velocity Error (Fit Span)

2000

1800

1200

1000

600a'
200
(1

2000

Bmoo

Is00

6400ysw

Ow
400

Time (days from Dec 28,1999 odooM"00
)

05 t 15 2
Time (days from Dec 31, 1999 Oo0m'00o)

"C1 6 Sh t M im W.............. t Co.ci

..

Total Position Error (Predict Span)

........ ... h. -.i.. t..... C .o .e

.M s.... "'a a......t...wr0 ... s. .3

NSSC# 17769, Schatten Mismodeling, With Corrections
Total Velocity Error (Predict Span)

.M : D..

..........
I......... ;..;

.....:.... ...~ ~ ~~~ t.............i....

Mean 966 Stahnd oftý 400 Mat Dev 2 2&.03
0 05

O.S 1. 25
Time (days trom Doo 31, 1999 O o00"'"00

1 Is 2
Time (days from Dec 31, 1999 Od00m

0
00)

135

25 3

• .:. . ..r. : •

.. l .. ."

StandOa :.27 Mo wDe: 52s

S
............... ,
Men: 533 : : S 00 : 334 K k

Si i i i

: :::. :.... .:. :i.. r
.... Max D ..4K.

..... 1... . i..

........

..·' · · · ·
· · · · · · · ·) · · ·!

Mean KS StadDar'.S45 MaO~v 1 3.03

SO0

450

400

250

2Ko

l00

K

A-A-k

Figure A.17: NSSC# 25013 Fit and Predict Span Error, Without/With Corrections

NSSC# 25013, Schatten Mismodeling, No Corrections
Total Position Error (Fit Span)

Meen 2 1d D 703 Ma 2. 3.03

05 I. 2 25

Time (days from Dec 28, 1999 0 ' 00
"

)

NSSC# 25013, Schatten Mismodeling, No Corrections
Total Velocity Error (Fit Span)

I

1000

0

o

ISO

100

0

25

NSSC# 25013, Schatten Mismodeling, With Corrections
Total Position Error (Fit Span)

a S 4 8 M
...........

..

05s IS 2 25 3 35
Time (days from De* 27, 1999 00'0m00)

NSSC# 25013, Schatten Mlsmodeling, With Corrections
Total Velocity Error (Fit Span)

I ' ! ' v '

Time (days from Dec 27.1999 doo0000o)
35 4

5000

400

8oooo

= 0200

100200Uj

NSSC# 25013, Schatten Mismodeling, No Corrections
Total Position Error (Predict Span)

Men: 2 540+03 Stnd Dm 1.74s+03 Ma Dw S 64U..03

05 1 15 2 25

Time (days from Dec 31, 1999 0c00
)

NSSC# 25013, Schatten Mismodeling, No Corrections
Total Velocity Error (Predict Span)

Ma. S S .ea .. ¶ ... Ma 6230.. 0305.1..........I z '................. ;

I................. ; i....... -....

~..·..

Meam. 2 65*.03 StwA Dev: 1 ý969.03 Mai Ow. 6.33*.03
!

05 1 Is 2

Time (days from Dec 31, 1999 e00m00
)

25 3

NSSC# 25013, Schatten Mismodeling, With Corrections
Total Position Error (Predict Span)

. 6

Mean: M SMUa OW 193 Ma Dw,: 122

05 1 15 2 25

Time (days from Dec 31,1999 0800m00)

NSSC# 25013, Schatten Mismodeling, With Corrections
Total Velocity Error (Predict Span)

0 OS I 15 2

Time (days from Dec 31, 199 O oo00"O)
25 3

136

05 1 i5 2
Time (days from Deo 26, 1999 0 00O00')

........,.~..

................. I;.......................... . .

..;
Meann. 7a Sr 79t : Mi ODr 24".03

.~·........... ~..............
... ···

............O.27

..:.

.........

.....·

.........~r~ij~ ~ ~.j· · .
M~ 37S.d ,. 1 M! e- 7

D.

Figure A.18: NSSC# 25974 Fit and Predict Span Error, Without/With Corrections

NSSC# 25947, Schatten Mismodeling, No Corrections
Total Position Error (Fit Span)

. ,......

Mean: I 6+o03 Stand •v 1.99• Mx Day. 1i12*.04
05 15 2 2. 3 35 4 4

Time (days from Dec 26, 1999 d00oo"00
5
)

NSSC# 25947, Schatten Mismodeling, No Corrections
Total Velocity Error (Fit Span)

14000

10000

!10000
I

400

000

s

NSSC# 25947, Schatten Mismodellng, No Corrections
Total Position Error (Predict Span)

... .1

.........I.

............. ... ":.................

...
...... ·....

Mea·n 1 06*.04 Stand Dev: 5 75*+03 Mal Dev: 1 729+04
0.5 i 1 2 25 3

Time (days from Dec 31. 1999 000OOm00)

NSSC# 25947, Schatten Mismodeling, No Corrections
Total Velocity Error (Predict Span)

Me .a 1"17 . .03 S . .DO. 23*0.. . . Ma De. 27e .. 04

00 1 15 2 25 3 35 4 45

Time (days from Dec 26,1999 o00'"'00)

Total Position Error (Fit Span)

...................V •V ':... :

Mes 0Stand D*. 436 Ma D0v 1.6o.03

05 1 15 2 26

Time (days from Dec 28, 1999 Oo00o00*)

NSSC# 25947, Schatten Mismodeling, With Corrections
Total Velocity Error (Fit Span)

0 OS I t 2

Time (days from Dec 28, 1999 d00
0
0n00)

16000

14000

so

6000

2000

10000

9000

8000

7000

6000

4000

06 1 15 2 25

Time (days from Dec 31, 1999 0 0 0 000)

Total Position Error (Predict Span)
........... ... ~..···· ·. e I

......... ... -. ·...:........

.........·····;· · ·..... N r. ;

..... o

. ,..

NSSC# 25947, Schatten Mismodeling, With Corrections
Total Velocity Error (Predict Span)

...............

"Mea.n 4 h o S D.....
Mean 4 15*.03 Stand Der 040 3

s05 1 1 2
Time (days from Dec 31, 1999 0 00OO00

)

1 Is 2 25

Time (days from Dec 31, 1999 OO'0m"00)

137

10000

6000

Er

0

12000

10000

2000

2ooo

0

400

200

0

L....

•.°..... v a %......... i . ;;'o;".

Mean I 19o. ***...... . Stnd Dev: 6 47*.03 Max Deý 1 99*.04..

.

... I.

..... . ..
. ... · · ·· · · ·. ...· ·

25 3 0 05

n n l I I I

• , . , •

I

I

w

L-
t
d

[This Page Intentionally Left Blank]

138

Appendix B Use of UNIX-GTDS on DC1

This Appendix will serve as a reference for all considerations of running UNIX-

GTDS on the DC1 SGI workstation. Sections include how to obtain and change source

code with CVS; a description of the necessary data files and how to build them;

instructions on compiling the code into an executable; and how to link to the appropriate

data files and run a GTDS job. The final section is a description of known bugs or

limited functionality to be addressed in the future.

B.1 Working with the Concurrent Versions System (CVS) 1.10.5

B.1.1 Introduction to Using the GTDS Libraries

Files incorporated into CVS are stored in "repositories", which contain read-only

copies of the files in a format accessible by the CVS program. The files in the

repositories are never changed directly, but must be checked in and out using CVS

commands. The root of the repository can be defined in a UNIX environment variable

called CVSROOT. This variable should be defined for GTDS users with the following

line in the user's '. cshrc' file (usually located in the root or login directory):

setenv CVSROOT /usr/people2/realastro/cvsroot

All CVS repositories henceforth will be defined relative to this path. GTDS-

related files are stored in the cvsroot/gtds repository, and future projects may be

added in other repositories as desired.

Normally, if a user desires to modify code under CVS management, he or she

must check out a working copy of the entire directory. However, this feature is rather

inconvenient when dealing with the GTDS source code, since a complete working source

directory contains more than 1200 files. Therefore, several new commands have been

defined to allow individual checkouts of files from specific GTDS repositories.. These

commands are summarized in Table B. below:

139

Table B.1: GTDS-Specific CVS Commands

Command Purpose

fetch filename Check out filename into current directory

set_gs Set gtds/source as current repository
Contains main GTDS source files

set_gi Set gtds/include as current repository
Contains all include files with '. cmn' extension

set_gb Set gtds/build_data as current repository
Contains source files, '. corn' files, and text files needed to
build GTDS binary files

set_ge Set gtds/exe as current repository
Contains files needed to compile and run GTDS

set_gd Set gtds/data as current repository
Contains GTDS binary files

The fetch command retrieves an individual file from the current repository into

the working directory. The repository must first be specified with one of the 'setgx'

commands. Five repositories have been defined under the central GTDS repository, and

are described in Table B.1. above. To give an example, if a user wants to retrieve a copy

of aero. for into the current directory:

dcl: l:->set_gs
CVS Library = gtds/source
dcl:2:->fetch aero.for
U ./aero.for
dcl:3:->

If modifications are made to the code and the user wants to check the code back

into the repository, he or she will type:

dcl:3:->cvs commit -m "Included myheader.cmn" aero.for
Checking in aero.for;
/usr/people2/realastro/cvsroot/gtds/source/aero.for,v <-- aero.for
new revision: 1.8; previous revision: 1.7
done

The files under CVS are each stored with a revision number, such as numbers 1.7

and 1.8 seen in the above example. It is possible to obtain or revert to old revisions of

files; see Section B.1.2 for more details.

The primary archives are stored in various repositories under the CVSROOT

directory, but another permanently checked-out copy of each repository is kept in a

"library". Every time a change is committed to a file in the repository, the corresponding

140

file in the library is updated as well. The gtds / source repository has two associated

libraries, gtds/source and gtds/source_dbg. This means that any change to a

source file in the gtds/source repository is immediately reflected in both libraries,

ensuring that the debug and non-debug libraries always have the same copies of source

code. The libraries are used for compilation and execution, but again should not be

accessed directly. The libraries are stored under the

/usr/people2 /realastro/gtds directory. The overall structure of the file

storage is illustrated in Figure B.1 below:

Figure B.1: The GTDS File Libraries and Repositories

All GTDS libraries on the left are paralleled by repositories on the right, with the

exception of the source_dbg library, as this library contains the same source modules

as the source library (but different object files). The only times a user should enter the

library directories is when adding a new source file, or executing the routines for building

141

new data files. See Section B.1.3 for instructions on adding new source code, and

Section B.2 on the creation of GTDS data files.

A final note is necessary about checking out source code from different

repositories. CVS will not function properly in this situation unless all traces of the

previous checkout have been removed from the working directory. CVS creates a "CVS"

directory each time a file is checked out, which contains such information as where the

repository is located and names of all checked-out files. After the file is checked in or

deleted and the user wishes to fetch a file from a different repository, the CVS directory

must be removed from the working directory or the new checkout will not be allowed.

B.1.1 Frequently-Used CVS Commands

Along with the commands listed in Table B.1, there are a number of commands

that users will use frequently when examining or modifying GTDS source code. For

further details on these commands and on all aspects of the CVS program, please refer to

documentation by Cederqvist et. al. [54]. The commands are as follows:

Table B.2: Frequently Used CVS Commands

Conmmand Purpose

cvs commit -m Commit filename to current GTDS repository with
"comment" filename comment
cvs add -m "comment" Adds fi ename to current GTDS repository with comment
filename The filename to be added must be copied into the

appropriate library
cvs update -jnew_rev Reverses all changes between new_rev and oldrev in
-joldrev filename working copy of filename. Use cvs commit to officially

check in oldrev in the repository.
cvs history [options] Shows repository access history.
filename

B.1.2 How to Add New Files to the GTDS Libraries

There are a number of steps that must be taken when incorporating new source

code or files into the GTDS repositories. The easiest way to show these steps is through

an example. Let us say that we are working on a new header file by the name of

142

myheader. cmn. We finish work on the file in the local directory and decide that we

are ready to incorporate into GTDS. The first step is to set the appropriate repository:

dcl :4:->set_gi
CVS Library = gtds/include
dcl:5:->

Next, we must copy the file to be added into the library directory (not the

repository!) and go to that location:

dcl:5:->cp myheader.cmn /usr/people2/realastro/gtds/include
dcl:6:->cd /usr/people2/realastro/gtds/include
dcl:7:->

We are now ready to add the file:

dcl:7:->cvs add -m "Initial importation" myheader.cmn
cvsl.10.5 add: scheduling file 'myheader.cmn' for addition
cvsl.10.5 add: use 'cvsl.10.5 commit' to add this file permanently
dcl:8:->cvs commit -m "Initial importation" myheader.cmn
RCS file: /usr/people2/realastro/cvsroot/gtds/include/myheader.cmn,v
done
Checking in myheader.cmn;
/usr/people2/realastro/cvsroot/gtds/include/myheader.cmn,v <--
myheader. cmn
initial revision: 1.1
done

dcl:9:->

The initial revision of myheader. cmn has been added to the gtds/inc lude

repository, and is automatically created in the appropriate library. Note: New GTDS

source code MUST be added from the gtds/ source library.

B.1.3 Setting Up the GTDS/CVS Environment

To use some of the commands described above and to tell other programs where

to look for certain files, the following lines must be added to the user's '. cshrc' file:

143

GTDS/CVS Environment Variables

CVSROOT /usr/people2/realastro/cvsroot
CVSEDITOR emacs
GTDSLIB /usr/people2/realastro/gtds/lib
GTDSDATA /usr/people2/realastro/gtds/data
GTDS_EXE /usr/people2/realastro/gtds/exe
STORAGE /pre3/granholm
ATMICAL $HOME/thesis/atm_cal
ATM.EPHEM $STORAGE/ephem_runs
ATMDATASIM $STORAGE/datasim_runs
ATM-DC $STORAGE/dc_runs

GTDS/CVS Aliases

cvs '/usr/local/bin/cvsl.10.5'
fetch 'cvs checkout -d . $CVSMODULE/\! ^'

set_gs 'setenv CVSMODULE gtds/source; echo "CVS Library
set_gi 'setenv CVSMODULE gtds/include; echo "CVS Library
set_gb 'setenv CVSMODULE gtds/build_data; echo "CVS Library
set_ge 'setenv CVSMODULE gtds/exe; echo "CVS Library
set_gd 'setenv CVSMODULE gtds/data; echo "CVS Library
makegtds 'cd $GTDSEXE; make; cd -'
makegtds_dbg 'cd $GTDS_EXE; make -f "Makefiledbg"; cd -'

$CVSMODULE"';
$CVSMODULE"';
$CVSMODULE"';
$CVSMODULE"';
$CVSMODULE"';

Figure B.2: GTDS/CVS Modifications to .cshrc File

Note that a few of the environment variables relate specifically to atmospheric

density correction (those variables beginning with "ATM") and can be left out if desired.

A copy of a '. cshrc' file containing the above lines may be found on DC1 in

/usr/people/grgl787.

B.2 The GTDS Data Files

The gtds/data library contains all of the necessary text and binary data files

for execution of GTDS runs. Most of the files in this directory should not need to be

recreated in the near future, but if such a situation does arise the necessary build files are

located in the gtds/build_data library. All data files are kept under CVS

management. The following files currently reside in gtds/data:

144

setenv
setenv
setenv
setenv
setenv
setenv
setenv
setenv
setenv
setenv

alias
alias
alias
alias
alias
alias
alias
alias
alias

Table B.3: UNIX-GTDS Database Files

GTDS Logical File Name (*.dat) Function Effective Time
Name Span

GTDS$001 sfdir stub associated with small files directory

GTDS$002 atmosden Harris-Priester atmosphere density tables

GTDS$008 radarsat_earthfld Earth Geopotential Field (21 x 21 models) updated
for use in the Radarsat FD Program

1 = GEM T3

2= GEM 1OB

3 = WGS 84 (21 x 21 created from 12 x 12)

4= JGM 2

5 = JGM 2 Clone

6 = WGS 72 (12 x 12)

7 =WGS 72(12 x 12)

GTDS$008 old earthfld The baseline 21 x 21 gravity models file

1 = SAO 1969 Standard Earth Model

2 = Earth Potential for Manned Flight Computations
(EPMFC)

3 = GSFC Earth Model (GEM 1)

4 = GSFC Earth Model (GEM 7)

5 = GSFC Earth Model (GEM 9)

6 = GSFC Earth Model (GEM 10B truncated)

7 = WGS 72 (12 x 12)

8 = GSFC Earth Model (GEM L2 truncated)

9= WGS 84 (12 x 12)

145

GTDS$013 errormsg GTDS Error Messages

GTDS$014 gtds.de96.slp1950. SLP Mean of 1950 file supplied by GSFC and used in 1 JAN 1974
bin.data Metzinger test cases to

17 JAN 1986

GTDS$014 june94.msgen.slp. SLP Mean of 1950 file supplied by GSFC in June 94 24 DEC 1987
mn1950 to

18 DEC 2007

GTDS$023 newcomb Modified Newcomb Operator File. Designed for
general use. Power of e (LTS) = 20, size of gravity
field (NTS)= 21, power of e2 (LHAN)= 10. If
modified change size of COMMON block in
nukes.cmn

GTDS$038 gtds.de96.timecoef Timing Coefficient File supplied by GSFC and used
.bin for the Metzinger test cases

GTDS$038 june94.msgen.slp.ti Timing Coefficient File supplied by GSFC in June 94
mcof

GTDS$075 jacchia Jacchia-Roberts Atmosphere Density Model used for 2 MAR 1966
the Metzinger test cases to

15 FEB 1986

GTDS$075 jrdat_nomn Jacchia-Roberts Atmosphere Density Model data 10 FEB 1980
based on Ken Schatten's "nominal" solar activity and to
geomagnetic index predictions and "nominal" cycle 30 SEP 2008
timing; uses real data from 1980 - 1997

GTDS$075 jrdat_nomn_new Jacchia-Roberts Atmosphere Density Model data 10 FEB 1980
based on Ken Schatten's "nominal" solar activity and to
geomagnetic index predictions and "nominal" cycle 30 SEP 2008
timing; uses real data from 1980 - 2000

GTDS$076 ms90_nomn MSISE-90 Atmosphere Density Model data based on 10 FEB 1980
real NOAA data through February 1997, and on Ken to
Schatten's "nominal" solar activity and geomagnetic 30 SEP 2008
index predictions through September 2008. The file is
for use with "nominal" cycle timing.

146

GTDS$078 gtds.de96.slptod.bin SLP True of Date file obtained from the NASA 1 JAN 1974
GSFC and used in the Metzinger test cases to

17 JAN 1986

GTDS$078 june94.msgen.slp.tod SLP True of Date file supplied by GSFC in 24 DEC 1987
1950 June 94 to

18 DEC 2007

GTDS$106 jac_densvars_sn_all_ Jacchia-Roberts Correction File used to correct 17 DEC 1999
fc the Schatten model with noise to

9 FEB 2000

Each of these files is built using a driver program which links the input and output

files to the appropriate file names, compiles and runs the build code, and then cleans up

and exits. An example of one such driver program is given in Figure B.4 below:

WRITATM.COM This .COM file builds the GTDS
Harris-Priester atmospheric density binary file
(linked to GTDS$002) from the
corresponding text file.
--

make writatm

Remove any existing links for files 'input' and 'output'

rm input >&/dev/null
rm output >& /dev/null

Make links for our input and output files

ln -s /usr/people2/realastro/gtds/build_data/atmosden.txt input
In -s /usr/people2/realastro/gtds/data/atmosden.dat output

writatm.exe

rm input >& /dev/null
rm output >& /dev/null

Figure B.4: Example of Data File Driver Program

If a user desires to build a new data file, it is not necessary to change any of the

source code unless functional modifications are desired. The user must simply set the

147

input and output links in the appropriate . com file and execute. Table B.3 outlines the

various driver programs and the corresponding GTDS data files.

Table B.3: GTDS Data File Driver Programs

Filename GTDS Data File

jrmsis2. com Jacchia-Roberts '71 Atmospheric Density File (GTDS$075)

jrmsisin.com MSISE-90 Atmospheric Density File (GTDS$076)

j rmsisrl. com Intermediate text files from real NOAA data to be used by
jrmsisin.comor jrmsis2 .com

j rmsissp.com Intermediate text files from predicted Schatten data to be used
by j rmsisin.com or j rmsis2 .com

writatm.com Harris-Priester Atmospheric Density File (GTDS$002)

writerr.com GTDS Error Messages file (GTDS$013)

writhrm.com Gravitational Potential file (GTDS$008)

writion.com Ionospheric Refraction file (GTDS$039) - not currently used

writnuk.com Newcomb Coefficients file (GTDS$023). Input options may
be set in newcomb. txt

writsfd. com Small Files Directory file (GTDS$001)

writslp. com Solar/Lunar/Planetary Ephemeris file, either mean of date
(GTDS$014) or true of date (GTDS$078)

writs1r. com Solar Flux file (GTDS$059) - not currently used

writtim.com Timing Coefficients file (GTDS$038)

If a user want to add a new data file into the CVS repository, the same procedures

outlined in Section B.1.3 can be followed with one exception: the "-kb" option must be

added to the cvs add command as follows:

dcl:7:->cvs add -kb -m "Initial binary importation" newbinary.dat

This option tells the CVS program that the named file is in binary format, and will

suppress line ending conversions and CVS keyword expansion.

B.3 Compiling, Linking, and Executing GTDS

The compilation of GTDS code has been simplified as much as possible using

Makefiles and newly-defined commands such as make_gtds. Again, the best way

to explain is through an example. Let us say that we have modified two files in the

GTDS database: aero. for and myheader . cmn. We successfully added and checked

148

in the files, and are now ready to compile a new version of GTDS. We have not added

any new source code (new header files do not require any modifications to the

compilation scheme), so we may simply type:

dcl:9:->make_gtds

The make_gtds command executes the make command, which in turn looks at

the various source files specified in the Makefile to see if they need to be recompiled.

In this case, make will see that aero. for is out-of-date and will recompile the source

code into a new object file. Next, all object files will be archived into a library residing

in the gtds/lib directory, and the object files are linked into a new executable in the

gctds/exe directory. Part of the GTDS Makefile is shown in the figure below:

149

UNIX-GTDS PR5 Makefile
Vers. 2 Apr 29, 2000
Author: G. Granholm

INC_FILE = /usr/people2/realastro/gtds/exe/head.mk
include $(INC_FILE)

Block Datas

GTDS_OBJS1 = \
$(GTDS_SRC)/adconsbd.o \
$(GTDSSRC)/anavdpbd.o \
$(GTDSSRC)/anavinbd.o \
$(GTDSSRC)/anlfilbd.o \
$(GTDS SRC)/aprbd.o \
$(GTDSSRC)/ascbd.o \
$(GTDS_SRC)/atmanibd.o \
$(GTDSSRC)/attobcbd.o \

$ (GTDSSRC)/errfunct.o \
$(GTDSSRC)/gnef4.o
$(GTDSSRC)/seteskf.o \
$(GTDS_SRC)/asciiorbl data.o \
$(GTDSSRC)/initcaljac.o \
$(GTDSSRC)/calccaljac.o

default: all

all: archgtds linkgtds

archgtds: $(GTDS_OBJS1) $(GTDS_OBJS2) $(GTDS_OBJS3) $(GTDS_OBJS4) $(GTDS_OBJS5) \
$(GTDS_OBJS6) $(GTDS_SRC)/odsexec.o

$(AR) -v $(GTDS_LIB)/libgtds.a $(GTDSOBJS1)
$(AR) -v $(GTDSLIB)/libgtds.a $(GTDSOBJS2)
$(AR) -v $(GTDS_LIB)/libgtds.a $(GTDS_OBJS3)
$(AR) -v $(GTDS_LIB)/libgtds.a $(GTDS_OBJS4)
$(AR) -v $(GTDS_LIB)/libgtds.a $(GTDS_OBJS5)
$(AR) -v $(GTDS_LIB)/libgtds.a $(GTDS_OBJS6)

linkgtds: $(GTDSOBJS)
$(F77) $(FFLAGS) -o $(GTDS_EXE)/gtds.exe $(GTDS_OBJS1)

$(GTDS_SRC)/odsexec.o \
$(GTDS_LIB) /libgtds.a

clean:
- rm core *.o *.*L

Figure B.5: The UNIX-GTDS Makefile

If a new source file is to be added to GTDS, it is simply appended on the end of

the list of object files in the Makefile. If the source file is a BLOCK DATA file, it

must be added in the first group of objects denoted by $GTDS_OBJS1. If the new file is

a header file, the Makefile does not have to be modified.

A separate compilation command (make_gtds_dbg) and Makefile

(Makefile_dbg) are used for creating a debugging version of GTDS. The only real

150

difference is in the compilation options defined in the make include file, which is

named head.mk or head_dbg.mk for the non-debugging or debugging versions of

the code, respectively. Make sure to re-make both debugged and non-debugged versions

of GTDS if the source code has been changed.

After the code has been compiled, we are ready to execute. Another driver

program by the name of run_gtds. com has been created to standardize and simplify

the way GTDS is executed. A sample run_gtds. com file is given in Figure B.6

below:

--
RUN_GTDS.COM This .COM file makes all necessary links
to data files, obs cards, and input and output
files, runs GTDS, removes links, and exits.

--

Remove any existing links to GTDS$ files

rm GTDS\$* >& /dev/null

Make new links for binary files

In -s /usr/people2/realastro/gtds/data/sfdir.dat GTDS\$001
In -s /usr/people2/realastro/gtds/data/atmosden.dat GTDS\$002
In -s /usr/people2/realastro/gtds/data/radarsat_earthfld.dat GTDS\$008

In -s /usr/people2/realastro/gtds/data/old_earthfld.dat GTDS\$008
In -s /usr/people2/realastro/gtds/data/errormsg.dat GTDS\$013
In -s /usr/people2/realastro/gtds/data/gtds.de96.slp1950.bin.data GTDS\$014
In -s /usr/people2/realastro/gtds/data/newcomb.dat GTDS\$023
In -s /usr/people2/realastro/gtds/data/gtds.de96.timecoef.bin.data GTDS\$038

In -s /usr/people2/realastro/gtds/data/jacchia.data GTDS\$075
In -s /usr/people2/realastro/gtds/data/jrdat_nomn.dat GTDS\$075

In -s /usr/people2/realastro/gtds/data/ms90_nomn.dat GTDS\$076
In -s /usr/people2/realastro/gtds/data/gtds.de96.slptod.bin.data GTDS\$078

Call local .COM file to make input/output links

source /usr/people/grgl787/thesis/gtds_tests/pr5/test5/test5.com

Run the executable

echo
echo
echo UNIX-GTDS
echo Charles Stark Draper Laboratory
echo ""
echo Run started at:
date
/usr/people2/realastro/gtds/exe/gtds.exe
echo Run ended at:
date

Remove links

rm GTDS\$* >& /dev/null

Figure B.6: The rungtds------------------------- co--------- File
Figure B3.6: The run-gtds. com File

151

This driver program makes all the links to the necessary data files, calls a local

driver program to make input/output links, and executes GTDS. If the code is to be

executed with a debugger, run_gtds_dbg. com may be used instead. This driver file

will run the code under the DBX Fortran debugger as a default.

All of the files discussed in Section B.3, including Makefiles, include files,

and driver programs, are configuration managed in the gtds / exe repository.

B.4 List of Known GTDS Bugs and Functional Limitations

The following is a list of known bugs or functional limitations of the GTDS code

as currently implemented on the UNIX system.

1) Hang-up Error: this error sometimes occurs when low-altitude objects are

calculated to impact the Earth. GTDS appears to hang up and must be

manually interrupted. A possible culprit is the SECHEK.FOR routine. This

error may be reducing the number of runs that converge in the density

correction process.

2) DC Epoch Limitation: When using an input .OBS file (GTDS$029) for a DC

run, GTDS halts execution unless the start of the OBSINPUT card matches

the solve-for EPOCH.

3) Random Number Generation Bug: There appears to be a bias in random

noise added to observations using DATASIM only when the optimized

compilation of GTDS is executed. If the non-optimized (debug) version of

the code is used, the bias disappears. The source of the error appears to be

RANDU.FOR.

4) Y2K Bug in Station Pass Report: The full date field does not appear for

dates after Jan 1, 2000 in the DATASIM Station Pass Report.

5) Residual Plot Error: DC Residual plots are not functional.

152

Appendix C Density Correction Software

This Appendix presents the four Perl scripts and the Matlab file used for density

corrections.

C.1 The TLE2osc.pl Program

#!/usr/bin/perl -I/usr/people/grgl787/thesis/atm_cal/include -w

TLE2osc.pl - TLE Conversion Program

Author:

George R. Granholm
22 Mar 00

use Dates; # Necessary to use cal2jul, jul2cal, & get_time subroutines
use FileHandle; # For autoflush

Set options and variables

$start_epoch
Send_epoch
$model_opt
$tle_file
$Slogfile
$initfile
$rcsfile
$time_limit

"991215 000000.0"; # Must be at least 1 minute after last TLE epoch
"1000211 000000.0";
"lowgrav";
"$ENV(ATM_CAL)/200_600_tles.txt";
"$ENV(ATM_CAL)/${model_opt)/TLE2osc.log";
"$ENV(ATM_CAL}/${model_opt)/initinfo.txt";
"$ENV{ATM_CAL)/rcs.txt";
180;

($start_ymd, $start_hms) = split(" ", $start_epoch);
($endymd, Send_hms) = split(" ", Send_epoch);

Open necessary files

open LOGINFO, ">>$1logfile";
open STDERR, ">>&LOGINFO";
open TLES, $tle_file or die "Invalid TLE filename: $S!\n";
open INITINFO, ">>$initfile";

foreach $fh ("STDOUT", "LOGINFO", "STDERR", "INITINFO") (
$fh->autoflush(l);

Write header to $logfile and STDOUT

foreach $fh ("STDOUT", "LOGINFO") {
print $fh "-" x 50,"\n";
print $fh "-" x 50,"\n";
print $fh "\tTLE2osc.pl: Processing $tle file\n";
print $fh "-" x 50,"\n";
print $fh ("\tJob started at ", get_time(), "\n");
print $fh "-" x 50,"\n";

}

Read in RCS into $rcs{$catnum) hash

open RCSFILE, "<$rcsfile";
while (defined($rcsline = <RCSFILE>))

153

chop $rcsline;
(S$catnum, $area) = split(" ", $rcsline);
Scatnum = sprintf "%5.5d", Scatnum;
if ($area) (Srcs{$catnum) = $area;)
else (Srcs{$catnum) = 2.2;) # Set default to 2.2 m^2 if no data

close RCSFILE;

Read from TLE file

LINE: while (defined($1line = <TLES>)) (# Main loop through TLE file

next LINE if ($line =- /^[^12]sl[s]^\d]/);
if ($line =- s/^l\s(\d{5))\w\s(\d(5))\s*(\w(1,3))//) {

$catnum = $1;
$intl_des = $2 . $3;
chop $1line;
@line = split(" ",$line);
$norad_date = $1line[0];

Match first TLE line

Convert NORAD epoch to calender date

($yr, $day) = ($norad-date =- /(^\d{2))(\d{3}\.\d{8))/);
Syrdays = cal2jul($yr,l,l,0,0,0); # First convert year to Julian date
$norjuldat = ($yr_days + $day - 1); # Add day number to Julian date
@nor_caldat = jul2cal($nor_juldat); # Convert back to calender date
($nor_caldat(O]) = ($nor_caldat(0] =- /\d{2)(\d(2))/); # Two-digit year
if ($norcaldat[0] == 0) ($nor_caldat[O] = "100";) # GTDS Y2K fix
$ymd = join("",@nor_caldat[0 .. 2]);
Shms = join("",@nor_caldat[3 .. 5]);

Calculate end time of GP4 propagation (one minute after NORAD epoch)

$gp4end_jul = $nor_juldat + 1/1440; # Next minute after NORAD epoch
@gp4end_cal = jul2cal($gp4end_jul);
($gp4endcal(0]) = ($gp4end_cal(0) =- /\d{2)(\d{2})/); # Two-digit year
if ($gp4end_cal[0] == 0) ($gp4end_cal[0] = "100";) # GTDS Y2K fix
$gp4end_ymd = join("",@gp4endcal[0 .. 21);
$gp4end_hms = join("",@gp4endcal[3 .. 5]);

Read remaining elements

$dndt = $1line[l];
$d2ndt2 = $1line[2];
$bstar = $1line[3];

Convert d2n/dt2 and B* to standard numerical formats

if ($d2ndt2 =~ /(-*)(\d(5})([+-]\d)/) {
$d2ndt2 = $1 . "0." . $2 . "E" . $3;

)

if ($bstar =~ /(-*)(\d(5))([+-]\d)/) (
$bstar = $1 . "0." . $2 . "E" . $3;

)

Apply Dave Vallado's multiplier to obtain B from B*, and
compute drag coefficient using RCS area and default Cd

$ball_fact = 6.3708105*$bstar; # where B = 1/2 (2
$Ax = Srcs($catnum); # in m^2
$C_d = 2.2; # Default LEO C_d
$mass = ($Ax*$C_d)/(2*$ball_fact); # in kg
$Ax_km = sprintf("%7.10E",($Ax/1000000)); #

Ax/m) C-d

Convert to km^2

elsif ($line =- /^2\s(\d{5))/) { # Match second TLE line
if ($bstar == 0) (next LINE);
chop $1line;
@line = split(" ",$line);

154

$incl = $1line[2];
$raan = $1line[3];
$ecc = $1line[4];
Saop = $1line[5];
$ma = $1line[6];
$Smm = $1line[7];

Convert eccentricity to standard numerical format

if ($ecc =- /(\d(7))/) {
$ecc = "0." . $1;

Separate mean motion from rev number if necessary

if ((length($mm) > 11) && ($mm =- /(\d(l,2)\.\d(8))/)) C
$mm = $1;

goto WRITEINFO; # If you only want to generate initinfo.txt

Write GTDS card file

Sephem_card
$output_file
$orbit_file
$orbl_file
$ascii_file

= "$(catnum)_ephem.gtds";
= "${catnum)_ephem.output";
= "${catnum)_ephem.orbit";
= "${catnum)_ephem.orbl";
= "$(catnum)_ephem.ascii";

open(EPHEM_CARD, ">$ENV(ATM_EPHEM)/${modelopt)/$ephemcard");
write EPHEM_CARD;
close EPHEM_CARD;

Make standard data file links

system q (/usr/bin/tcsh -c 'rm GTDS\$* >& /dev/null' }; # Remove any GTDS$* fls
symlink("$ENV{GTDSDATA)
symlink("$ENV{GTDS_DATA}
symlink("$ENV{GTDS_DATA}
symlink("$ENV{GTDS_DATA)
symlink("$ENV{GTDSDATA)
symlink("$ENV{GTDS_DATA)
symlink("$ENV{GTDS_DATA}
symlink("$ENV{GTDS_DATA)
symlink("$ENV{GTDS_DATA}

/sfdir.dat",
/atmosden.dat",
/radarsat_earthfld.dat",
/errormsg.dat",
/june94.msgen.slp.mn1950.dat",
/newcomb.dat",
/june94.msgen.slp.timcof.dat",
/jrdat_nomn_new.dat",
/june94.msgen.slp.todl950.dat",

"GTDS\$001");
"GTDS\$002");
"GTDS\$008");

"GTDS\$013");
"GTDS\$014");
"GTDS\$023");
"GTDS\$038");
"GTDS\$075");
"GTDS\$078");

Make job-specific data links

symlink("$ENV{ATMEPHEM)
symlink("$ENV{ATMEPHEM}
symlink("$ENV{ATMEPHEM)
symlink("$ENV{ATMEPHEM)
symlink("$ENV{ATMEPHEM)

/$(modelopt)/$ephem_card",
/$(model_opt}/$outputfile",
/${modelopt)/$orbit_file",
/${modelopt}/$orbl_file",
/$(modelopt)/$ascii_file",

"GTDS\$005")
"GTDS\$006")
"GTDS\$020")
"GTDS\$024")
"GTDS\$101")

GTDS storage

Run GTDS!

foreach $fh ("STDOUT","LOGINFO") {
print $fh "-" x 40,"\n";
print $fh " Processing NORAD Catalog \#$catnum\n";
print $fh "-" x 40,"\n";
print $fh "UNIX-GTDS\n";
print $fh "Charles Stark Draper Laboratory\n\n";
print $fh ("Run started at: ", gettime(), "\n");

undef $child_id;

if (S$child_id = fork) (# Parent process here

local $SIG{USR1} = sub (# Define anonymous sub to kill GTDS

155

(my $gtds_id) = split (" ", 'ps I grep gtds');

foreach $fh ("STDOUT","LOGINFO") {
print $fh "GTDS run has exceeded time limit;\n";
print $fh "Killing process $gtds_id\n";

kill 'QUIT', $gtds_id;

waitpid $child_id, 0;

elsif (defined $child_id) {

Wait for child process to finish

Child process here

$par_id = getppid;

local $SIG(ALRM) = sub (# Define local ALRM signal handler
kill 'USR1', Spar_id; # Send USR1 signal to parent if Icl alrm goes off
foreach $fh ("STDOUT","LOGINFO") {

print $fh "Sending USR1 to Spar_id..\n";

alarm $timelimit; # Initialize alarm to go off in $time_limit sec
system("$ENV{GTDSEXE)/gtds.exe");
alarm 0; # Turn off alarm if finish before Stime_limit
die "Exiting child process..."

foreach $fh ("STDOUT","LOGINFO") {
print $fh ("Run ended at: ", get_time(), "\n");

Compress output files using gzip

foreach $fh ("STDOUT","LOGINFO") {
print $fh ("Compressing .orbit file...\n");

system "gzip -v -f $ENV{GTDSSTOR}/${model_opt)/$orbitfile";
system "gzip -v -f $ENV{ATM_EPHEM)/$(model_opt)/$output_file";

system q (/usr/bin/tcsh -c 'rm GTDS\$* >& /dev/null' };

system q { /usr/bin/tcsh -c 'rm tmp.* >& /dev/null');
Remove any GTDS$* fls
Remove any temp files

Write line in INITINFO array

WRITEINFO: {

Sstan_flag = 'S'; # All satellites are standard
$var = 1E-6; # Default variance for standard satellites
$obs type = 29; # Obs type for simulated observations
printf INITINFO "%5s %8s %7.10E %7.10E %7.10E %is %2d\n", $catnum, $intl_des

, $ball_fact, SAx, $var, $stan_flag, $obstype;

close TLES;
close INITINFO;
close LOGINFO;

#============== EPHEM card deck formatting ===- - - -

format EPHEMCARD =
CONTROL EPHEM

EPOCH
$ymd,

@<<<<<<< @>>>>>>>
$intl_des, $catnum

Shms

156

@<<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<<

ELEMENT1 8 18 1 @<<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<<
$Smm, $ecc, $incl

ELEMENT2 @<<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<<
$raan, Saop, $ma

ELEMENT3 @<<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<<
$dndt, $d2ndt2, $bstar

OUTPUT 1 2 1 @<<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<< 60.0
$gp4end_ymd, Sgp4endhms

ORBTYPE 14 1 8 1
OGOPT
POTFIELD 1 7
END
FIN
CONTROL EPHEM OUTPUT @<<<<<<< @>>>>>>>

$intl_des, $catnum
OUTPUT 1 2 1 @<<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<< 86400.0

$startymd, $start_hms
ORBTYPE 2 1 1 60.0
OGOPT
ATMOSDEN 1
DRAG 1 1
DRAGPAR 3 0 @<<<<<<<<<<<<<<<<<<<

$Cd
SCPARAM @<<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<<

$Ax_km, $Smass
POTFIELD 1 4
MAXDEGEQ 1 4.0
MAXORDEQ 1 4.0
SOLRAD 1 1.0
END
FIN
CONTROL EPHEM OUTPUT @<<<<<<< @>>>>>>>

$intl_des, $catnum
OUTPUT 1 2 1 @<<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<< 86400.0

Send_ymd, Send_hms
ORBTYPE 2 1 1 60.0
OGOPT
ATMOSDEN 1
DRAG 1 1
DRAGPAR 3 0 @<<<<<<<<<<<<<<<<<<<

$Cd
SCPARAM @<<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<<

$Ax_km, $mass
POTFIELD 1 4
MAXDEGEQ 1 4.0
MAXORDEQ 1 4.0
SOLRAD 1 1.0
OUTOPT 2 2 1 @>>>>>>@<<<<<<<<<<<< @>>>>>>@<<<<<<<<<<<< 600

$start_ymd, $start_hms, Send_ymd, Send hms
END
FIN

C.2 The genobs.pl Program

#!/usr/bin/perl -I/usr/people/grgl787/thesis/atm_cal/include -w

genobs.pl - Observation Generator Program

Author:

George R. Granholm
06 Apr 00

use Dates; # For cal2jul, jul2cal, & get_time subroutines

157

use Localmath;
use FileHandle;

For round subroutine
For buffer autoflush

Set variables and options

$start_epoch
Send_epoch
$ephem_opt
$datasim_opt
$1logfile
$initfile
Stime_limit
*PI

= "991215 000000.0";
= "1000211 000000.0";
= "lowgrav";
= "lowgravnoise";
= "$ENV{ATM_CAL)/${datasim-opt)/genobs.log";
= "S$ENV(ATMCAL}/${datasinm_opt)/iniinitinfo.txt";
= 180;
= \3.14159265358979;

Define hash which contains obs types

%obstype =(
RANG => 1,
AZ => 4,
EL => 5,

Format start epoch

($start_ymd, $start_hms) = split(" ", $start_epoch);
$start_ymd2 = $startymd;
if (length($start_ymd2) == 7) {

($start_ymd2) = ($start ymd2 =- /(\d{6))$/); # Take off GTDS Y2K fix
for Julian date conversion

($y,$m,$d) = ($startymd2 =- /^(\d{2))(\d{2))(\d{2))/);
($h,$mn,$s) = ($start_hms =- /^(\d{2))(\d(2))(\d{2)[.\s]*\d*)/);
$start_jul = cal2jul($y,$m,Sd,$h,Smn,$s);

Calculate interval times for tracking schedule

Send_intervall = $startjul + 1/4;
Send_interval2 = $start_jul + 2/4;
Send_interval3 = $start_jul + 3/4;
Send_interval4 = Sstart_jul + 1;

Six hours after start
Twelve hours after start
Eighteen hours after start

Twenty-four hours after start
@intervall = jul2cal(Send_intervall);
@interval2 = jul2cal($end_interval2);
@interval3 = jul2cal($end_interval3);
@interval4 = jul2cal($end_interval4);
($intervall[0]) = ($intervall[0] =- /\d(2)(\d{2))
if ($intervall[0] == 0) (Sintervall[0] = "100";)
(Sinterval2[0]) = ($interval2[0] =- /\d(2)(\d(2))
if (Sinterval2[0] == 0) {$interval2[0] = "100";)
($interval3[0]) = ($interval3[0] =- /\d(2)(\d(2))
if ($interval3[0] == 0) {$interval3[0] = "100";}
($interval4[0]) = ($interval4[0] =- /\d(2)(\d(2))
if (Sinterval4[0] == 0) {$interval4[0] = "100";)

Two-digit year
GTDS Y2K fix
Two-digit year
GTDS Y2K fix
Two-digit year
GTDS Y2K fix
Two-digit year
GTDS Y2K fix

$intervall_ymdhms = join("",@intervall);
$interval2_ymdhms = join("",@interval2);
Sinterval3_ymdhms = join("",@interval3);
Sinterval4_ymdhms = join("",@interval4);

Format end epoch

(Send ymd, Send_hms) = split(" ", Send_epoch);
Send_ymd2 = Send_ymd;
if (length($end_ymd2) == 7) {

($end_ymd2) = ($end_ymd2 =~ /(\d{6))$/); # Take off GTDS Y2K fix

(Sy,Sm,Sd) = (Sendymd2 =- /^(\d{2})(\d{2))(\d{2))/);
($h,Smn,Ss) = (Sendhms =- /^(\d{2))(\d(2))(\d{2)[.\s]*\d*)/);
Send_jul = cal2jul($y,$m,Sd,$h,$mn,$s);

$spanlen = round($endjul - Sstartjul);

Open log file

158

open LOGINFO, ">>$1ogfile";
open STDERR, ">>&LOGINFO";

foreach $fh ("STDOUT", "LOGINFO", "STDERR") {
$fh->autoflush(l);

Write header to $logfile and STDOUT

foreach $fh ("STDOUT", "LOGINFO") (
print $fh "-" x 50,"\n";
print $fh "-" x 50,"\n";
print $fh "\tgenobs.pl: Processing $initfile\n";
print $fh "-" x 50,"\n";
print $fh ("\tJob started at ", get_time(), "\n");
print $fh "-" x 50,"\n";

Open and read $initfile

open INITINFO, "<$initfile" or die "Can't find $initfile";

INITLINE: while (defined($1line = <INITINFO>)) {

$1line =- s/^(\d{5})\s//;
$initinfo({$1} = [split(" ",$line)];

close INITINFO;

Begin main loop by $catnum

foreach $catnum (sort keys %initinfo)

foreach $fh ("STDOUT","LOGINFO") {
print $fh "-" x 40,"\n";
print $fh " Processing NORAD Catalog \#$catnum\n";
print $fh "-" x 40,"\n";

$intl_des = Sinitinfo{$catnum)[0];

Write GTDS card file

$datasim_card
Soutput_file
Sorbit_file
Sobs_file

= "${catnum)_datasim.gtds";
= "${catnum)_datasim.output";
= "$(catnuml ephem.orbit";
= "${catnum)_datasim.obscard";

open(DATASIM_CARD, ">$ENV{ATM_DATASIM}/${datasimopt)/$datasimcard");
write DATASIM_CARD;
close DATASIM_CARD;

Make standard data file links

system q (/usr/bin/tcsh -c 'rm GTDS\$* >& /dev/null' };
system q { /usr/bin/tcsh -c 'rm tmp.* >& /dev/null');

symlink("$ENV(GTDS_DATA}/sfdir.dat",
symlink("$ENV{GTDSDATA}/atmosden.dat",
symlink("$ENV(GTDS_DATA}/radarsat earthfld.dat",
symlink("$ENV(GTDS_DATA)/errormsg.dat",
symlink("$ENV{GTDS_DATA}/june94.msgen.slp.mn1950.dat",
symlink("$ENV(GTDSDATA)/newcomb.dat",
symlink("$ENV(GTDSDATA)/june94.msgen.slp.timcof.dat",
symlink("$ENV(GTDSDATA)/jrdat_nomn_new.dat",
symlink("$ENV{GTDSDATA)/june94.msgen.slp.todl950.dat",

Remove any GTDS$* links
Remove any temp files

"GTDS\$001");
"GTDS\$002");
"GTDS\$008");
"GTDS\$013");
"GTDS\$014");
"GTDS\$023");
"GTDS\$038");
"GTDS\$075");
"GTDS\$078");

Inflate .orbit file

159

foreach $fh ("STDOUT","LOGINFO") (
print Sfh ("Inflating .orbit file...\n");

system "gunzip -v $ENV{ATM_EPHEM)/${ephem_opt)/${orbit_file).gz";

Make job-specific data links

symlink("$ENV{ATMDATASIM)/${datasim opt)/$datasim_card","GTDS\$005");
symlink("$ENV{ATM_DATASIM}/$(datasim opt)/$outputfile", "GTDS\$006");
symlink("$ENV{ATMEPHEM)/$(ephemopt)/$orbitfile", "GTDS\$020");

Run GTDS!

foreach $fh ("STDOUT","LOGINFO") {
print $fh "\nUNIX-GTDS\n";
print $fh "Charles Stark Draper Laboratory\n\n";
print $fh ("Run started at: ", get_time(), "\n");

)

undef $child_id;

if ($child_id = fork) { # Parent process here

local $SIG(USR1) = sub (# Define anonymous sub to kill GTDS

(my $gtds_id) = split (" ", 'ps I grep gtds');

foreach $fh ("STDOUT","LOGINFO")
print $fh "GTDS run has exceeded Stime_limit seconds;\n";
print $fh "Killing process $gtds_id\n";

)

kill 'QUIT', $gtds_id;

waitpid $child_id, 0; # Wait for child process to finish

elsif (defined $child_id) { # Child process here

Spar_id = getppid;

local $SIG{ALRM) = sub { # Define local ALRM signal handler
kill 'USR1', Spar_id; # Send USR1 signal to parent if local alarm goes off
foreach Sfh ("STDOUT","LOGINFO") (

print $fh "Sending USR1 to $par_id..\n";

alarm $time limit; # Initialize alarm to go off in Stime_limit sec
system("$ENV{GTDS_EXE)/gtds.exe");
system(*$ENV{GTDS_EXE_DBG)/gtds_dbg.exe"); # Need to run debug version if noise!
alarm 0; # Turn off alarm if GTDS finishes before $time_limit
die "Exiting child process...";

foreach $fh ("STDOUT","LOGINFO") {
print $fh ("Run ended at: ", get_time(), "\n");

}

system q { /usr/bin/tcsh -c 'rm GTDS\$* >& /dev/null');
system q { /usr/bin/tcsh -c 'rm tmp.* >& /dev/null');

foreach $fh ("STDOUT","LOGINFO") {
print $fh ("Compressing .orbit file...\n");

Remove any GTDS$* links
Remove any temp files

Recompress .orbit file

system "gzip -v SENV{ATM_EPHEM)/$(ephem_opt)/$orbit_file";

Read .output file and create OBSCARD file (FRN 15)

foreach $fh ("STDOUT","LOGINFO") {
print Sfh ("Writing OBSCARD\n");

160

open OUTFILE, "<$ENV(ATM_DATASIM}/$tdatasim_opt)/$outputfile";
open OBSCARD, ">$ENV(ATM_DATASIM)/$(datasim_opt)/$obs_file";
printf OBSCARD "OBSCARD \n";

OBSLINE: while (defined($outline = <OUTFILE>))
if ($outline =- m/

^\s{0,1)(\d{6,7})\s+
(\d(5,6)\.\d(3))\s+
(\w(4))\s+
(\w+)\s+
(0\.\d(16))D([-+]\d{2})
/x) {
$Symd = $1;
$hms = sprintf "%010.3f", $2;
$statid = $3;
$type = $obstype($4);
$observtn = sprintf("%16.14fE%3s", $5, $6);
if (($type == 4) 11 ($type == 5)) (

$observtn = ($observtn*$PI)/180; # Convert to radians

write OBSCARD;

elsif ($outline =- /^\s+RETURN 1/) (
printf OBSCARD "END \n";
last OBSLINE;

close OUTFILE;
close OBSCARD;

close LOGINFO;

#============== OBSCARD file formatting

format OBSCARD =
<<$statid< @$type,

Sstatid, Stype, Symd, Shms, $observtn, $observtn

#============== DATASIM card deck formatting==========- ======

format DATASIM_CARD =
CONTROL DATAMGT

OGOPT
POTFIELD 1 4
END
FIN
CONTROL DATASIM

DMOPT
/FLYQ
/PARQ
/EGLQ
/KAEQ
END
DCOPT

1 0346
1 0396
1 0399
1 0932

338.900
347.300

0.380
300.459648

DSPEA1 1 0 @<<<<<<<<<<<<<<<<<<<
$startymd,

DSPEA2 20 1 1 @<<<<<<<<<<<<<<<<<<<
Send_ymd,

DSPEA3
/FLYQ
/PARQ
/EGLQ
/KAEQ

2 1
0 1 4
0 1 4
0 1 4
0 1 4

35.0
48.0
30.0
4.631

541242.8299
484329.1839
303420.7790
213419.4537

@<<<<<<< @>>>>>>>

$intl_des, $catnum

@<<<<<<< @>>>>>>>
$intl_des, $catnum

3591947.6900
2620600.8719
2734706.5526
2014359.7376002

@<<<<<<<<<<<<<<<<<< 60.0
$starthms
@<<<<<<<<<<<<<<<<<<
Sendhms

54.0
54.0
45.0
29.5

54.0
46.8
45.0
30.42

161

ELLMODEL 1
/FLYQ 200001
/PARQ 200001
/EGLQ 200001
/KAEQ 200001
/FLYQ

/PARQ

/EGLQ

/KAEQ

/FLYQ

/PARQ

/EGLQ

/KAEQ

TRACKEL\
END
FIN

6378.135 298.26

7 1 @>> 60.0 24.0
$span_len

7 1 @>> 60.0 24.0
$span_len

7 1 @>> 60.0 24.0
$span_len

7 1 @>> 120.0 24.0
$span_len

9 1 @>>>>>>@<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<
$start_ymd, $start_hms, $intervall_ymdhms

9 1 @<<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<
$intervall_ymdhms, $interval2_ymdhms

9 1 @<<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<
$interval2_ymdhms, $interval3_ymdhms

9 1 @<<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<
$interval3__ymdhms, $interval4_ymdhms

V 3 5.0

C.3 The estbfs.pl Program

estbfs.pl - Ballistic Factor Estimator Program

Author:

George R. Granholm
09 Apr 00

Import modules

use Dates;
use Localmath;
use FileHandle;
sub numerically SS$a <=> $b);

For cal2jul, jul2cal, & get_time subroutines
For round subroutine
for autoflush;
To sort in ascending order

Set options & variables

$start_epoch = "991215 000000.0";
Sendepoch = "1000211 000000.0";
$ephem_opt = "lowgrav";
$datasim_opt = "lowgrav_noise";
$dcopt = "lowgrav_schatten_noise";
Sinitfile = "$ENV{ATM_CAL)/$(dc_opt}/initinfo.txt";
$blfcfile = "$ENV(ATM_CAL)/${(dc_opt)/ballfcts.txt";
$print_sched = 0; # Flag to print pass schedule; 1 = yes, 0 = no
$increment = 0.125; # Shift span for each DC by this much (days)
$fit len = 3; # Length of each fit span (days)
Sdiverge_tol = 11; # Allowed length of "sparse" area in data (days)

(or num. of days of consecutive divergent runs)
Stime_limit = 180; # Allowed duration of GTDS run (secs)
Srhol_tol = 10; # Max absolute value of $rhol
Snum_procs = 8; # Number of processes to spawn (including parent)

Read and format start epoch

(Sstartymd, $start_hms) = split(" ", $start_epoch);
if (length($start_ymd) == 7) {

($start ymd) = ($start_ymd =- /(\d{6))$/); # Take off GTDS Y2K fix

162

5.0

5.0

5.0

5.0

for Julian date conversion
($y,$m,$d) = ($start_ymd =- /^(\d{2})(\d(2})(\d{2})/);
($h,$mn,$s) = (S$start_hms =- /^(\d(2))(\d{2))(\d(2}[.\s]*\d*)/);
$start_jul = cal2jul($y,$m,$d,$h,$mn,S$s);

Read and format end epoch

($end_ymd, Send_hms) = split(" ", Send_epoch);
if (length($end_ymd) == 7) {

($end_ymd) = (Send_ymd =- /(\d{6})$/);

($y,$m,Sd) = ($endymd =- /^(\d{2})(\d(2})(\d({2)/);
(Sh,Smn,$s) = (Sendhms =- /^(\d(2))(\d(2)) \d{2)[.\s]*\d*)/);
$end_jul = cal2jul($y,Sm,Sd,Sh,$mn,$s);

Open and read Sinitfile

open INITINFO, "$initfile" or die "Can't find Sinitfile";

INITLINE: while (defined($Sline = <INITINFO>)) {

$1line =- s/^(\d{5})\s//;
$initinfo{$1) = [split(" ",$line)];

close INITINFO;
@initinfo = sort keys %initinfo;

Open output file so that all processes can access it

open BALLFCTS, ">>$blfcfile";

Spawn appropriate number of processes

$child_id[l] = $$; # Parent process number

SPAWN: for (Sproc_num = 2; Sproc_num <= $num_procs; $procnum++)
$child_id[Sprocnum] = fork; # The parent knows all process nums
if (Schildid[Sprocnum] == 0) { # The child only knows the parent's

$child_id[Sproc_num] = $$; # And its own process num
last SPAWN;)

Create subdirectories for each process

if ($$ == $child_id(l]) ($proc_num = 1; }
Sdc_opt .= "/runS(procnum}";
mkdir "$ENV{ATM_CAL)/${dc_opt)",0777;
mkdir "$ENV{ATM_DC}/Sdc_opt)",0777;
chdir "$ENV{ATM_CAL)/S(dcopt)";
$1logfile = "SENV{ATM_CAL)/S{dc_opt)/estbfs.log";

Open or redirect files

open LOGINFO, ">>$1logfile";
open STDERR, ">>&LOGINFO"; # Redirect STDERR to LOGINFO

foreach $fh ("STDOUT", "LOGINFO", "STDERR", "BALLFCTS") {
$fh->autoflush(l);

Write header to $Slogfile and STDOUT

foreach $fh ("STDOUT", "LOGINFO") {
print $fh "-" x 50,"\n";
print Sfh "-" x 50,"\n";
print $fh "\testbfs.pl: Processing ${initfile)\n";
print $fh "\tProcess \# ${proc_num)\n";
print $fh "-" x 50,"\n";
print $fh ("\tJob started at ", get_time(), "\n");
print $fh "-" x 50,"\n";

163

Assign chunk of @initinfo to each process

for ($i = 1; Si <= $num_procs; $i++) {
$cutoff[$i] = int(($#initinfo/$numprocs)*$i);

$cutoff[0] = -1;

@objects = @initinfo[($cutoff[$proc_num-l]+l)..$cutoff[$procnum]];

Begin main loop by $catnum

OBJLOOP: foreach $catnum (@objects) (

Initialize variables

Sintl_des = $initinfo($catnum)(0];

$ephem_output = "$ENV{ATM_EPHEM}/${ephem_opt)/${catnum)_ephem.output";
Sdatasim_output = "$ENV(ATM_DATASIM)/$(datasinm_opt}/$(catnum)_datasim.output";

Read in array of observation times

open SIMOUT, $datasim_output;
$index = 0;
while (defined($simline = <SIMOUT>))

if ($simline =- /^\s+INTERVAL\s(1,2)\d(l,2)/) {
foreach $i (1..4) {

$simline = <SIMOUT>;
if ($simline =- m{ # Match start of pass

^\s+TIME\slST\sOB\s\=\s*
(\d+)\s+
(\d+)\s+
(\d+\.\d+)
}x) {
$obstart_ymd = $1;
$obstart_hms = sprintf("%04d", $2) . sprintf("%06.3f",$3);

elsif ($simline =- m{ # Match end of pass
^\s+TIME\sLAST\sOB\=\s*
(\d+)\s+
(\d+)\s+
(\d+\.\d+)
)x) (
$obendymd = $1;
$obend hms = sprintf("%04d", $2) . sprintf("%06.3f",$3);

if (length($obstartymd) == 7) (
($obstart_ymd) = ($obstartymd =- /(\d{6))$/);

($y,$m,$d) = ($obstart_ymd =- /^(\d{2})(\d[2})(\d{2))/);
($h,$mn,$s) = ($obstart_hms =- /^()(\d{2))(\d{2)[.\s]*\d*)/);
$obstartjul = cal2jul($y,$m,$d,$h,$mn,$s);

if (length($obendymd) == 7) {
($obendymd) = ($obendymd =- /(\d{6})$/);

($y,$m,Sd) = ($obend-ymd =- /^(\d(2})(\d{2))(\d{2})/);
($h,$mn,S$s) = ($obend_hms =- /^(\d(2})(\d{2})(\d{2}[.\s]*\d*)/);
$obend jul = cal2jul($y,$m,$d,$h,$mn,$s);

if ($obstart_jul != Sobend_jul) (# If pass contains any obs

$obstart[$index] = $obstart_jul; # Store in respective arrays

$obend[$index] = $obendjul;
$index++;

164

close SIMOUT;

Sort and parse array of observation times

@obstart = sort numerically @obstart;
@obend = sort numerically @obend;

for ($i = 1; $i <= $#obstart; $i++) {
if ($obstart[$i] <= $obend[$i-l]) {

splice(@obstart,$i,l);
splice(@obend,$i-l,l);
$i -= 1;

Eliminate overlap

if ($print_sched) {
open SIMSCHED, ">$ENV(ATM_DC)/${dcopt)/$(catnum)_sched.txt";
for ($i = 0; $i <= $#obend; $i++) {

print SIMSCHED "Span ${(i): $obstart[$i] - $obend[$i]\n";

close SIMSCHED;

Calculate mass and area for DC

$ball_fact = $initinfo({$catnum)[l]; # Can be "perfect" B value or with error
$Ax = $initinfo({$catnum)[2];
$C_d = 2.2; # Default for LEO
$mass = ($Ax*$Cd)/(2*$ball-fact); # in kg
$Ax_km = sprintf("%7.10E",($Ax/1000000)); # Convert to km^2

$var = $initinfo({$catnum)[3];
$stan_flag = $initinfo({$catnum)[4];
Sobs_type = $initinfo{$catnum)[5];

Initialize DC start and end epochs

$dc_start_jul = $start-jul;
$dc_end_jul = $start_jul + $fit_len;
$div_cnt = 0;
$run_num = 1;
$first_run = 1;
Sin_span = 1;
$have_obs = 1;
undef %conv_epoch;

Identifies last run that converged

Hash of converged epochs

Begin loop for DC spans

DCLOOP: while ($in_span)

$converged = 0;
$i = 0;
unless ($first_run) {$have_obs = 0);

Test if there are any new observations for this object

TESTOBS: while (!$first_run && ($i <= $#obstart)) {

if ((($obstart[$il >= ($dcend_jul - $increment)) &&
($obstart[$i] <= $dc_end_jul)) or

(($obend[$i] >= ($dcend_jul - $increment)) &&
($obend[$i] <= $dc_end_jul))) {

Shave_obs = 1;
last TESTOBS;

) continue {$i++;)

next DCLOOP unless ($have_obs);

Continue with run

165

foreach $fh ("STDOUT","LOGINFO") {
print $fh "-" x 40,"\n";
print $fh " Processing NORAD Catalog \#$catnum\n";
print $fh " Process \# $proc_num\n";
print $fh " Run number $run_num\n";

@dc_start_cal = jul2cal($dc_start_jul);

Check if $diverge_tol has been exceeded; assign Julian date

to look for in .output file and assign epoch & epoch advance date

if (!$first_run && (($dc_start_jul - (cal2jul(@{ $conv_epoch{$div_cnt))))
> $diverge_tol)) (

foreach $fh ("STDOUT","LOGINFO") {
print $fh "Object $catnum not converged for $diverge_tol consecutive

days;\n";
print $fh "Going to next object\n";

next OBJLOOP;

elsif (!$first_run && (($conv_epoch({$div_cnt)[1] ==
$dc_start_cal[l]) &&
($conv_epoch({$div_cnt)[2] ==
$dc_start_cal[2]))) {

$read_jul = sprintf("%12.4f",$dc start_jul);
@epoch = @dcstartcal;
Sepoch_adv = 0;

)

If last epoch that converged

is on same day as curr. epoch

else { # Either first run or epoch is on different day as last conv.

$read_jul = sprintf("%12.4f",cal2jul(@dc_start_cal[0..
2],0,0,0));

@epoch = (@dc_start_cal(0..2],0,0,0);
if (($dc_start_cal[3] == 0) && ($dc_start_cal[4] == 0) &&

($dc_start_cal[5] == 0)) {$epoch_adv = 0;)
else {

$epoch_adv = 1;
@epoch_adv = @dc_start_cal;

epoch

Format Sepoch_adv for GTDS

if ($epoch_adv) {
($epochadv[0]) = ($epoch_adv[0] =- /\d{2)(\d{2))$/);
if ($epochadv[O] == 0) {$epoch_adv[0] = 100);
Sepoch_adv_ymd = join("",@epoch_adv[0..2]);
$epoch_adv_hms = join("",@epoch_adv[3..5]);

else (
Sepoch_adv_ymd = "";
$epoch_advhms = "";

Format rest of dates for GTDS

$dc_strt_eph_jul = cal2jul(@dc_startcal(0..2],0,0,0) + 1; # Beg of day aftr epch

@dc_end_cal = jul2cal($dcend_jul);
@dc_strt_eph_cal = jul2cal($dcstrt_eph_jul);
@dc_end_eph_cal = jul2cal($dc_start_jul + $diverge_tol); # Allowd num w/o convrg

($epoch[0]) = ($epoch[0] =- /\d{2)(\d{2})$/);
(S$dc_start_cal[0]) = ($dc_start_cal[0] =- /\d{2)(\d{2))$/);
($dc_end_cal[0]) = ($dc_end_cal[(0 =- /\d{2)(\d{2))$/);
($dcstrteph_cal(0]) = ($dcstrt_eph_cal[0] =- /\d(2)(\d{2))$/);
($dc_end_eph_cal(0]) = ($dcend_eph-cal[O] =- /\d{2}(\d{2))$/);

if ($epoch[0] == 0) ({$epoch[0] = "100";)
if ($dc_start_cal[0] == 0) {$dc_start_cal[0] = "100";)
if ($dc_end_cal(0] == 0) {$dc_end_cal[0] = "100";)

166

if ($dc_strt_eph_cal(O] == 0) {$dc_strt_eph_cal(0] = "100";)
if ($dc_end_eph_cal[0] == 0) ($dc_endeph_cal(0]= "100";}

$epochymd = join("",@epochl0..2]);
Sepoch_hms = join("",@epoch[3..5]);
$dcstartymd = join(*",@dc_start_cal[0..2]);
$dcstart_hms = join("",@dc_start_cal[3..5]);
$dcend ymd = join("",@dc_end_cal[0..2]);
$dc-endhms = join("",@dc_end cal[3..5]);
$dc_strt_eph_ymd = join("",@dc_strt_ephcal[0..2]);
$dc strt eph_hms = "000000.0";
$dc_end_eph.ymd = join("",@dc_endeph_cal[0..2]);
$dcend_ephhms = "000000.0";

Assign input and output file names

if ($firstrun) ($dc_input_file = $ephem_output;}
else ({$dc_input_file =

"$ENV{(ATM_DC)/$(dc_opt)/$(catnum)_dc_${div cnt).output";}

Get a-priori elements from appropriate .output file

open INFILE, $dcinput_file;
$endflag = 0;

if ($firstrun) { # Then read from EPHEM .output file

EPHEMLINE: while (defined($inline = <INFILE>))

if ($inline =- /^ ENTERED ORBINT/) {
$endflag = 1;

elsif ($endflag && ($inline =- /^ DATE.*JULIAN DATE = $read_jul/))
while (defined($inline = <INFILE>)) {

if ($inline =- m{
^\sX\s*(-*\d+\.\d+)
\s *Y\s*(-*\d+\.\d+)
\s*Z\s*(-*\d+\.\d+)
\s*DX\s*(-*\d+\.\d+)
\s*DY\s*(-*\d+\.\d+)
\s*DZ\s*(-*\d+\.\d+)
)x) {
@aprioris = ($1,$2,$3,$4,$5,$6);
last EPHEMLINE;

)

else { # Read from appropriate DC .output file

DCLINE: while (defined($inline = <INFILE>)) {

if ($inline =- /^ DATE.*JULIAN DATE = Sread_jul/)
while (defined($inline = <INFILE>))

if ($inline =- m{
^\sX\s*(-*\d+\.\d+)
\s*Y\s*(-*\d+\.\d+)
\s*Z\s*(-*\d+\.\d+)
\s*DX\s*(-*\d+\.\d+)
\s*DY\s*(-*\d+\.\d+)
\s*DZ\s*(-*\d+\.\d+)
)x) {
@aprioris = ($1,$2,$3,$4,$5,$6);
last DCLINE;

167

close INFILE;

Write GTDS DC card file

$dc_card = "${catnum)_dc_${run_num}.gtds";
Sobs_file = "${catnum}_datasim.obscard";
Sdc_output_file = "$(catnum)_dc_${run_num).output";

open DC_CARD, ">$ENV(ATM_DC)/$(dcopt)/$dc_card";
write DC_CARD;
close DC_CARD;

Make standard data file links

system q { /usr/bin/tcsh -c 'rm GTDS\$* >& /dev/null');
system q { /usr/bin/tcsh -c 'rm tmp.* >& /dev/null');

symlink("$ENV{GTDS_DATA)/sfdir.dat*,
symlink("$ENV{GTDS_DATA)/atmosden.dat",
symlink("$ENV{GTDS_DATA)/radarsatearthfld.dat",
symlink("SENV{GTDS_DATA)/errormsg.dat",
symlink("$ENV{GTDS_DATA)/june94.msgen.slp.mn1950.dat",
symlink("$ENV{GTDS_DATA)/newcomb.dat",
symlink("$ENV{GTDS_DATAI/june94.msgen.slp.timcof.dat",
symlink("$ENV(GTDS_DATA}/jrdat_nomn.dat",
symlink("$ENV{GTDS_DATA)/june94.msgen.slp.todl950.dat",

Remove any GTDS$* Inks
Remove any temp files

"GTDS\$001");
"GTDS\$002");
"GTDS\$008");
"GTDS\$013");
"GTDS\$014");
"GTDS\$023");
"GTDS\$038");
"GTDS\$075");
"GTDS\$078");

Make job-specific data links

symlink("$ENV{ATM_DC)/${dc_opt)/$dc_card", "GTDS\$005");
symlink("$ENV{ATMDC)/${dcopt)/$dcoutputfile", "GTDS\$006");
symlink("$ENV{ATM_DATASIM)/$(datasirropt}/$obsfile", "GTDS\$015");

Run GTDS!

foreach $fh ("STDOUT","LOGINFO") {
print $fh " Epoch ${dc_startymd) ${dc_start_hms)\n";
print $fh "-" x 40,"\n";
print $fh "\nUNIX-GTDS\n";
print $fh "Charles Stark Draper Laboratory\n\n";
print Sfh ("Run started at: ", get_time(), "\n");

undef Sgrandchild_id;

if ($grandchild_id = fork)

local $SIG{USR1) = sub {

Parent or first-generation child process

Define anonymous sub to kill GTDS

Sps = 'ps -f I grep $grandchildid grep gtds';
($uid,$gtds_id) = split (" ",$ps);
foreach $fh ("STDOUT","LOGINFO") (

print $fh "GTDS run has exceeded time limit;\n";
print $fh "Killing process Sgtds_id\n";

kill 'QUIT', $gtds_id;

waitpid ; grandchild
waitpid Sgrandchild_id, 0;

elsif (defined $grandchild_id) {

Wait for child process to finish

Grandchild process

local $SIG(ALRM) = sub (# Define local ALRM signal handler
kill 'USRI', $childid[$proc_num]; # Send USRI signal to parent

if local alarm goes off
foreach $fh ("STDOUT","LOGINFO") {

print $fh "Sending USR1 to $child_id[$proc_num]..\n";
)

168

alarm $timelimit; # Initialize alarm to go off in Stime_limit sec
system("$ENV(GTDS_EXE)/gtds.exe");
alarm 0; # Turn off alarm if GTDS finishes before $timelimit
die "Exiting grandchild process...\n";

foreach $fh ("STDOUT","LOGINFO") {
print $fh ("Run ended at: ", get_time(), "\n");

)

Test if run converged; set flags and read $rhol, $ht_per

open OUTFILE, "GTDS\$006";
$htper = 0;
$rhol = 0;

OUTLINE: while (defined($outline = <OUTFILE>))
if (!$converged && ($outline =- /^\s+*(5) DC CONVERGED/))

$converged = 1;
$div_cnt = $run_num;
$conv_epoch({$run_num) = [@dc_start_cal];
if ($convepoch($run-num}[0] > 99) (# Remove GTDS formatting if necessary

$convepoch{$run_num)[0] -= 100;
$conv_epoch($run_num)[0] = sprintf("%02d", $convepoch{$run_num)[0]);

I
if ($first_run) {$first_run = 0;)

if ($converged) {
if (!$ht_per && ($outline =- /^\s+HT\. OF PERIFOCUS\s+(\d+\.\d+)\s/))

$htper = $1;

if ($htper && ($outline =- s/^\s+AERO VARIATION \(RHOl\)\s+=\s*(-
*\d\.\d(8))D([+-]\d{2})/$1eS2/)) {

$rhol = $outline;

Throw out $rhol values that are obviously not valid

if (abs($rhol) > $rhol_tol) {$converged = 0;)
last OUTLINE;

close OUTFILE;

If converged, write to log, write line to ballfcts.txt

if ($converged) {
foreach $fh ("STDOUT","LOGINFO") {

print $fh ("Run converged\n");

$attrib_time = ($dc_startjul + $dcend_jul)/2;
$C_d_est = $C_d*(l+$rhol);
$B_est = ($C_d_est*$Ax)/(2*$mass);
printf BALLFCTS "%5s %12.4f %7.10E %7.10E\n", $catnum, $attrib_time, $B_est,

$ht_per;

else {
foreach $fh ("STDOUT","LOGINFO") {

print $fh ("Run diverged or bad rhol: $rhol\n");

system q { /usr/bin/tcsh -c 'rm GTDS\$* >& /dev/null' #; # Remove any GTDS$*
links

system q { /usr/bin/tcsh -c 'rm tmp.* >& /dev/null'); # Remove any temp files
system q { /usr/bin/tcsh -c 'rm core >& /dev/null'); # Remove core

) continue {

169

Sdc_start_jul += $increment;
$dc_endjul += $increment;
$run_num += 1;
if ($dc_end_jul > Sendjul) ($in_span = 0;)

foreach $fh ("STDOUT","LOGINFO") {
print $fh ("Compacting .output and .gtds files...\n');

} continue (
system qq! tar cf $ENV{ATM_DC}/${dc_opt)/$(catnum)_dcall.output.tar \\

$ENV{ATM_DC)/${dc opt)/$(catnum)_dc_\[0-9\]*.output;
gzip -v $ENV{ATM_DC}/${dcopt)/$(catnum)_dc_all.output.tar;
rm SENV{ATM_DC)/${dc opt)/${catnum)_dc_\[0-9\]*.output; !;

system qq! tar cf $ENV{ATM_DC)/$(dc_opt}/${catnum}_dc_all.gtds.tar \\
$ENV(ATM_DC)/$(dc-opt)/$(catnum)_dc_\[0-9\]*.gtds;

gzip -v SENV(ATM_DC)/${dc opt)/${catnum)_dc_all.gtds.tar;
rm $ENV{(ATMDC)/$dcopt)/$(catnum)_dc_\[0-9\]*.gtds; !;

close LOGINFO;

If parent, wait for slow-finishing children processes

if ($proc num == 1) (
for ($i = 2; Si <= Snumprocs; $i++) {

waitpid Schild_id[Si],0;

close BALLFCTS;

#============== DC card deck formatting

format DC_CARD =
CONTROL DC @<<<<<<< @>>>>>>>

$intl_des, $catnum
EPOCH @<<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<< @>>>>>>@<<<<<<<<<<<

Sepoch_ymd, Sepoch_hms, Sepoch_adv_ymd, Sepoch_adv_hms
ELEMENT1 1 1 1 @<<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<<

$apriorisf0O, Saprioris(l], $aprioris(2]
ELEMENT2 @<<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<<

Saprioris[3], $aprioris[4], $aprioris(5]
ORBTYPE 2 1 1 60.
OBSINPUT 5 @>>>>>>@<<<<<<<<<<<< @>>>>>>@<<<<<<<<<<<

$dc_start_ymd, $dc_start_hms, $dcendymd, $dc_endhms
DMOPT
/FLYQ 1 0346
/PARQ 1 0396
/EGLQ 1 0399
/KAEQ 1 0932
END
DCOPT
/FLYQ 0 1 4
/PARQ 0 1 4
/EGLQ 0 1 4
/KAEQ 0 1 4
ELLMODEL 1
/FLYQ 200001
/PARQ 200001
/EGLQ 200001
/KAEQ 200001
TRACKELV 3
EDIT
PRINTOUT 1
CONVERG 25 6
END
OGOPT
DRAG 1
ATMOSDEN

338.900
347.300

0.380
300.459648

35.0
48.0
30.0
4.631

6378.135

541242.8299
484329.1839
303420.7790
213419.4537

54.0
54.0
45.0
29.5

298.26

3591947.6900
2620600.8719
2734706.5526
2014359.7376002

54.0
46.8
45.0
30.42

5.0
3.0

1.0D-4

170

close

BALLFCTS;

DRAGPAR 3 0 @<<<<<<<<<<<<<<<<<<<
$C_d

@<<<<<<<<<<<<<<<<<<< 0<<<<<<<<<<<<<<<<<<
$Ax_km,

1 4
1 4

$mass

1.0

DRAGPAR
SCPARAM

MAXDEGEQ
MAXORDEQ
MAXDEGVE
MAXORDVE
POTFIELD
SOLRAD
END
FIN
CONTROL OUTPUT

OUTPUT 1 2 1 @<<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<
$dcstrt_eph_ymd, $dcstrt_eph_hms

2 1 1 60.0

1
3 0

1 4

EPHEM

8<<<<<<< @>>>>>>>
$intl_des, $catnum
10800.0

2.2
@<<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<
$Ax_km, $mass

4.0
4.0
1.0

OUTPUT

OUTPUT 1 2 1 @<<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<
$dcend_eph_ymd, Sdc_end_eph_hms

2 1 1 60.0

@<<<<<<< @>>>>>>>
$intl_des, $catnum
86400.0

2.2
@<<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<

$Ax_km,
1 4
1

$mass

4.0
1.0

C.4 The calcvars.pl Program

calcvars.pl - Density

Author:

George R. Granholm
30 Apr 00

Import modules

use Dates;
use Localmath;
use FileHandle;
sub numerically (Sa <=> $b);

Variation Calculator Program

For cal2jul, jul2cal, & get_time subroutines
For round subroutine
for autoflush;
To sort in ascending order

171

EPHEM

ORBTYPE
OGOPT
ATMOSDEN
DRAG
DRAGPAR
SCPARAM

POTFIELD
MAXDEGEQ
MAXORDEQ
SOLRAD
END
FIN
CONTROL

ORBTYPE
OGOPT
ATMOSDEN
DRAG
DRAGPAR
SCPARAM

POTFIELD
MAXDEGEQ
MAXORDEQ
SOLRAD
END
FIN

Set options & variables

$model_opt = "lowgravschatten_noise";
$1logfile = "$ENV(ATM_CAL)/$(model_opt)/calcvars.log';
Sinitfile = "$ENV{ATMCAL)/${model_opt)/initinfo.txt';
$blfcfile = "$ENV(ATM_CAL)/ballfcts.txt";
$sortdfile = "$ENV{ATM_CAL)/$(modelopt)/ballfcts_sort.txt';
Stmpfile = "$ENV(ATM_CAL}/${model_opt)/array_tmp.txt';
$tau_min = .125; # Minimum length of each span j (days)
$min_num_k = 35; # Minimum number of ballistic factor estimation per span j
$increment = .125; # Increment to add to Staumin

Define f_l1 and f_2 (linear density variation functions)

sub f_l (
return "l";

sub f_2 {
my Sh = shift(@_);
my $value = ($h - 400)/200;
return $value;

Open or redirect files

open LOGINFO, ">>$1logfile";
open STDERR, ">>&LOGINFO"; # Redirect STDERR to LOGINFO
open TMPFILE, ">$tmpfile';

foreach $fh ("STDOUT", "LOGINFO", "STDERR", "TMPFILE") {
$fh->autoflush(l);

Write header to $Slogfile and STDOUT

foreach Sfh ("STDOUT", "LOGINFO") {
print $fh "-" x 50,"\n";
print $fh "-" x 50,"\n";
print $fh "\tcalcvars.pl: Processing ${(initfile)\n";
print $fh "-" x 50,"\n";
print $fh ("\tJob started at ", get_time(), "\n");
print $fh "-" x 50,"\n";

Open and read $initfile

open INITINFO, "$initfile" or die "Can't find $initfile";

INITLINE: while (defined($line = <INITINFO>)) {

$1line =- s/^(\d(5))\s//;
$initinfo{$1} = [split(" ",$line)];

close INITINFO;

Sort $blfcfile by attribution time

foreach $fh ("STDOUT", "LOGINFO") (
print Sfh "Sorting ballistic factors by attribution time...\n";

system "sort -nk2,2 $blfcfile > $sortdfile";

Read $sortdfile into @blfcs array

undef $1line;
open BLFCFILE, "S$sortdfile" or die "Can't find $sortdfile";
$index = 0;

172

while (defined($1ine = <BLFCFILE>)) {
$blfcs[$index] = [split(" ",$line) i;
Sindex++;

close BLFCFILE;

Sj = 0;
$spantime[O] = $blfcs[0][l];
Send_time = $blfcs[$#blfcs][l];
$i_save = 0;

foreach $fh ("STDOUT', "LOGINFO") {
print $fh "Building Stmpfile...\n";

Begin main loop

while ($span_time[$j] <= $end_time)

Stau[Sj] = $tau_min;

COUNTBLFCS: for ($i = $i_save; $i <= $#blfcs; Si++)
if ($blfcs($i][l] < ($span_time[Sj] + Stau[$j])) {

Put in test for negative ball. factors here??
Stemp_array[$i-$i_save] = Sblfcs[$i];

else {
$i_save = Si;
last COUNTBLFCS;

Test for enough estimations in span

if ($#temp array < $min numk)
Stau[$j] += $increment;
$isave -= ($#temp_array+l);
goto COUNTBLFCS;

else (

Define arrays for MATLAB input

foreach $fh ("STDOUT", "LOGINFO") {
print $fh "Span Sj: (Sspan_time[$j],",
Sspantime[$jl + $tau[$j],L)\n";

undef @F;
undef @a;
undef @P;

print TMPFILE "$span_time[$j] ", ($#temp_array+l), "\n";

for ($n = 0; Sn <= $#temp_array; $n++) {
SF[$n] = [f_l($temparray[$n][3]), f 2($temp_array[Sn][3])];
$afSn] = ($temparray[Snj[2]/Sinitinfo(Stemp_arrayf$n][O][l]) - 1;
SP[$n] = 1/$initinfo{Stemp_array[$n][0])[3];
print TMPFILE "$F[Sn][OJ SFfSn][l] Sa[$n] $PfSn]\n";

) continue {
undef @temp_array;
Sj++;
$span_time[Sj] = Sspan_time[Sj-l] + Stauf$j-l];

close TMPFILE;

173

End program

foreach $fh ("STDOUT", "LOGINFO") {
print $fh "-" x 50,"\n";
print $fh ("\tJob ended at ", get_time(), "\n");
print $fh "-" x 50,"\n";

close LOGINFO;

C.5 The calc b.m Program

% Author:

% George R. Granholm
% 1 May 00

clear all;
warning off;
more off;

% Set environment variables and filenames

(status,ATM_CALJ = unix('echo $ATMCAL');
[status,ATM_DC] = unix('echo $ATM_DC');
ATM_CAL = ATM_CAL(1:length(ATM_CAL)-l); % Remove newline
ATM_DC = ATM_DC(l:length(ATM_DC)-l); % Remove newline

model_opt = 'lowgrav_schatten_noise';
tmpfile = 'array_tmp.txt';
outfile = 'jac_densvars_sn_25d.txt';
logfile = 'calc_b.log';

% Open files and initialize variables

logid = fopen(strcat(ATM_CAL,'/',model_opt,'/',logfile),'a');
toler = 3; % 3 sigma tolerance
frcst_days = 30; % Number of days to forecast
T = 27; % Assumed period of density variations
lambda = 2*pi/T;
timegrid = .125; % Time grid for forecasting (days)
sigmabl = 0.07; % Std dev of WGN in bl
sigma_b2 = 0.07; % Std dev of WGN in b2
sigma_bl_r = 0.4; % Std dev of Gauss-Markov RP for bl
sigmab2_r = 0.3; % Std dev of Gauss-Markov RP for b2
alpha = 0.241; % Rate of decay of correlation
calc_flag = 1; % Input flag

% 1 = calculate dens vars
% 2 = read from infile

if (calc_flag==l)

% Begin loop to calculate density variations in data span

tempid = fopen(strcat(ATM_CAL,'/',model_opt,'/',tmpfile),'r');
outid = fopen(strcat(ATM_CAL,'/',model_opt,'/',outfile),'a');
j = 1;
line = fgetl(tempid); % Get first line

while line -= -1

clear F a P Pvec;

values = str2num(line);

174

if length(values) -~= 2
fprintf(logid,'Error - improper formatting of arraytmp.txt\n');
disp('Error - improper formatting of arraytmp.txt\n');
return

end
start_time(j) = values(l);
array_len = values(2);

% Read in data for span j

for i = l:array_len,
values = str2num(fgetl(tempid));
F(i,l) = values(l);
F(i,2) = values(2);
a(i) = values(3);
Pvec(i) = values(4);

end

P = diag(Pvec);

% Test for erroneous measurements

a_avg = mean(a);
a_sigma = std(a);

% disp(sprintf('a_avg = %7.10e, a_sigma = %7.10

delete_count = 0;
i = 1;

while i<=array_len,
if (abs(a(i)-aavg)/a_sigma) > toler

F(i,:) = []; % Delete offending row
a(i) = []; % from matrices or
P(i,:) = []; % vectors
P(:,i) = [];
array_len = arraylen - 1;
delete_count = delete_count + 1;

end
i = i+l;

end

disp(sprintf('%3d meas. > %2d-sigma tol.',...
delete_count, toler));

fprintf(logid,'%3d meas. > %2d-sigma tol. ',...
delete_count, toler);

e' ,aavg ,asigma));

% Calculate bl and b2 for span j

b = (inv(F'*P*F))*(F'*P*a');
densvars(j,l:2) = b';

% Print line to output file

fprintf(outid,'%12.4f % 10.10E % 10.10E \n',start_time(j),b);
fprintf(logid,'%12.4f % 10.10E % 10.10E \n',start_time(j),b);
disp(sprintf('%12.4f % 10.10E % 10.10E',start_time(j),b));

line = fgetl(tempid);
j = j + 1;

end

% End loop to calculate density variations in data span

else

% Read dens vars in data span from file

175

outid = fopen(strcat(ATM_CAL,'/',model_opt,'/',outfile),'a+');
line = fgetl(outid); % Get first line
j=1;

while line -= -1

values = str2num(line);
start_time(j) = values(l);
densvars(j,l:2) = [values(2) values(3)];
line = fgetl(outid);
j = j + 1;

end

end

% Do forecasting if desired

if (frcst_days)

fprintf(logid,'Calculating deterministic component...\n');

disp(sprintf('Calculating deterministic component...'));

% First solve for deterministic component

jmax = j - 1;
t_0 = start_time(jmax);
for j = l:j_max,

G(j,1:3) = [(l-cos(lambda*(start_time(j)
cos(lambda*(start_time(j) -
sin(lambda*(start_time(j) -

- t_0))) .
t_0))
t_0))];

end

Zbl = densvars(:,l);
Z_b2 = densvars(:,2);

S_bl = (inv(G'*G))*(G'*Z_bl);
S_b2 = (inv(G'*G))*(G'*Z_b2);

x_bar_bl
x_bar_b2
x_0_bl
x_0_b2
xdot_0_bl
xdot_0_b2

S_bl(1);
Sb2(1);
S_bl(2);
S_b2(2);
S_bl(3);
S_b2(3);

% Calculate estimate of deterministic component over entire time interval

j_frcst_max = j_max + frcst_days/time_grid;

for j=l:j_frcst_max,
if (j>j_max)

start_time(j) = starttime(j-l) + time_grid;
end

determ(j,l) = x_bar_bl + (x_0_bl-xbar_bl)*cos(lambda*(start_time(j) - t_0))

+(xdot_O_0bl/lambda)*sin(lambda*(starttime(j) - t_0));
determ(j,2) = x_bar_b2 + (x_0_b2-x_bar_b2)*cos(lambda*(starttime(j) - t0)) .

+(xdot_0_b2/lambda)*sin(lambda*(starttime(j) - t_0));

end

% Calculate estimate of random component using scalar Kalman filter

fprintf(logid,'Calculating random component...\n');
disp(sprintf('Calculating random component...'));

p_pred_bl(l) = sigma_bl^2;
p_pred_b2(1) = sigma_b2^2;
xpredbl(l) = 0;

% The bl filter variance at j=l
% The b2 filter variance at j=l
% The prediction of bl at j=l

176

% The prediction of b2 at j=l

for j=l:j_max,

% Calculate residuals (which function as measurements of y(j))

y_bl(j) = densvars(j,l) - determ(j,l);
y_b2(j) = densvars(j,2) - determ(j,2);

% Compute Kalman gain

g_bl(j) = p-predbl(j)/(p.pred_bl(j) + sigma_bl^2);
g_b2(j) = p_pred_b2(j)/(ppredb2(j) + sigma_b2^2);

% Update states and errors based on actual measurement

x_curr_bl(j) = xpred_bl(j) + gbl(j)*(y_bl(j)-xpred_bl(j));
x_curr_b2(j) = xpred_b2(j) + g_b2(j)*(y_b2(j)-xpred_b2(j));
p_curr_bl(j) = (ppred_bl(j)*sigma_bl^2)/(ppred_bl(j)+sigmabl^2);
p_currb2(j) = (ppred_b2(j)*sigma_b2^2)/(ppred_b2(j)+sigma_b2^2);

% Prediction ahead to next time step

tau = start_time(j+l) - starttime(j);
x_pred_bl(j+l) = exp(-alpha*tau)*x_curr bl(j);
x_pred_b2(j+l) = exp(-alpha*tau)*x-curr b2(j);
ppred_bl(j+l) = exp(-2*alpha*tau)*p_curr_bl(j) +

(l-exp(-2*alpha*tau))*sigmablr^2;
p_pred_b2(j+l) = exp(-2*alpha*tau)*p_currb2(j) +

(l-exp(-2*alpha*tau))*sigma b2_r^2;

end

% Save estimates of random component at beginning of forecast span

x r 0 bl = x_curr_bl(j);
x r 0 b2 = xcurrb2(j);

% Write predicted density variations with deterministic + random components

for j=j_max+l:j_frcst_max,

densvars(j,l) = determ(j,l) + exp(-alpha*(start_time(j)-t_0))*xr_0_bl;
densvars(j,2) = determ(j,2) + exp(-alpha*(start_time(j)-t_0))*x_r_0_b2;

fprintf(outid,'%12.4f % 10.10E % 10.10E \n',start_time(j),densvars(j,l:2));
fprintf(logid,'%12.4f % 10.10E % 10.10E \n',start_time(j),densvars(j,l:2));
disp(sprintf('%12.4f % 10.10E % 10.10E',start_time(j),densvars(j,l:2)));

end

end

warning on;

if (calc_flag==l)
fclose(tempid);

end

fclose(outid);
fclose(logid);

177

xpredb2(1) = 0;

[This Page Intentionally Left Blank]

178

References

[1] Nazarenko, Andrey. "Atmospheric Density Tracking Studies." CSDL-C-6505,
Report prepared by the Scientific-Industrial Firm "NUCLON" for the Charles
Stark Draper Laboratory, August 1999.

[2] Battin, R.H. An Introduction to the Mathematics and Methods ofAstrodynamics.
AIAA Educational Series. New York: AIAA, Inc., 1987.

[3] Marcos, F.A. "Accuracy of Atmosphere Drag Models at Low Satellite Altitudes."
Adv. Space Research, Vol. 10, No 3, 1990, pp. 417-422.

[4] Pardini, C. and L. Anselmo. "Calibration of Semi-Empirical Atmosphere Models
Through the Orbital Decay of Spherical Satellites." Paper AAS 99-384, presented
at AIAA/AAS Astrodynamics Specialist Conference, August 1999.

[5] Goddard Trajectory Determination System (GTDS) Mathematical Theory. NASA
Operational GTDS Mathematical Specification. Rev. 1. Ed. Computer Sciences
Corporation and NASA Goddard Space Flight Center. Contract NAS 5-31500,
Task 213, July 1989.

[6] Marcos, F.A., M.J. Kendra, J.M. Griffin, J. Bass, J. Liu, and D. Larsen.
"Precision Low Earth Orbit Determination Using Atmospheric Density
Calibration." Advances in the Astronautical Sciences, Vol. 97(1), 1998, pp. 515-
527.

[7] Viereck, Rodney and J. Joselyn. "Solar Cycle Effects on Thermospheric Density
and Satellite Drag." Paper AAS 99-379, presented at AIAA/AAS Astrodynamics
Specialist Conference, August 1999.

[8] Marcos, F.A. and J.O. Wise. "Satellite Drag Accuracy Improvements From
Neutral Density Model Calibration." Paper AAS 99-381, presented at
AIAA/AAS Astrodynamics Specialist Conference, August 1999.

[9] Karr, G.R. "Environmental Dynamics at Orbital Altitudes." NASA CR-2765.
Washington, D.C.: NASA, 1976.

[10] Gilbreath, G.C., P.W. Schumacher, M. Davis, E. Lydick, and J. Anderson.
"Calibrating the Naval Space Surveillance Fence Using Satellite Laser Ranging."
Advances in the Astronautical Sciences, 97(1), 1998, pp. 403-416.

179

[11] Storz, Mark. "Satellite Drag Accuracy Improvements Estimated from Orbital
Energy Dissipation Rates." Paper AAS 99-385, presented at AIAA/AAS
Astrodynamics Specialist Conference, August 1999.

[12] Cefola, P.J. and A.I. Nazarenko. "Neutral Atmosphere Density Monitoring Based
on Space Surveillance System Orbital Data." Presented at AIAA/AAS
Astrodynamics Specialist Conference, August 1999.

[13] Cefola, P.J. and A.I. Nazarenko. "Refinement of Satellite Ballistic Factors for the
Estimation of Atmosphere Density Variations and Improved LEO Orbit
Prediction." Paper AAS 99-203, Presented at AAS/AIAA Space Flight
Mechanics Meeting, Feb. 1999.

[14] Nazarenko, A.I. "A-priori and A-posteriori Orbit Prediction Errors Evaluation of
Low Height Artificial Earth Satellites." Cosmic Research, Vol. 29, No. 4, 1991.

[15] Jacchia, Luigi. "Revised Static Models of the Thermosphere and Exosphere with
Empirical Temperature Profiles." Smithsonian Astrophysical Observatory
Special Report 332. Cambridge: Smithsonian Institution, 1971.

[16] Roberts, Charles E. "An Analytic Model for Upper Atmosphere Densities Based
Upon Jacchia's 1970 Models." Celestial Mechanics, Vol. 4, Dec 1971, pp. 368-
377.

[17] Jacchia, Luigi. "Thermospheric Temperature, Density, and Composition: New
Models." Smithsonian Astrophysical Observatory Special Report 375.
Cambridge: Smithsonian Inst., 1977.

[18] "Dictionary of Technical Terms for Aerospace Use." Ed. Daniel R. Glover, Jr.
http://roland.grc.nasa.gov/-dglovei/dictionary/. NASA Lewis Research Center.
Accessed Aug 27, 1998.

[19] Barlier, F., C. Jaeck-Berger, J.L., Falin, G. Kockarts and G. Thuillier. "A
Thermospheric Model Based on Satellite Drag Data." Ann. Geophys., Vol 34,
1978, pp. 9-24.

[20] K6hnlein, W., D. Krankowsky, P. Limmerzahl, W. Joos and H. Volland. "A
Thermospheric Model of the Annual Variations of He, N, O, N2, and Ar from the
Aeros - NIMS Data." Journal of Geophysical Research., Vol. 74, 1979, pp.
4355-4362.

[21] Alcayd6, D. "An Analytic Static Model of Temperature and Composition from
20 to 2000 km Altitude." Annale de Geophysique, Vol. 37-4, 1981, pp. 515-528.

180

[22] Hedin, A.E. "A Revised Thermospheric Model Based on Mass Spectrometer and
Incoherent Scatter Data: MSIS-83." Journal of Geophysical Research, Vol. 88,
No. A12, 1983, pp.10170-10188.

[23] Hedin, A.E. "MSIS-86 Thermospheric Model." Joumrnal of Geophysical
Research, Vol. 92, 1987, pp. 4649-4662.

[24] Hedin, A.E. "Extension of the MSIS Thermosphere into the Middle and Lower
Atmosphere." Journal of Geophysical Research., Vol. 96, No. A2, Feb. 1991,
pp. 1159-1172.

[25] Hickey, M.P. "The NASA Marshall Engineering Thermosphere Model." NASA
CR-179359, July 1988.

[26] Sehnal, L. and L. Pospisolova. "Thermospheric Model TD 88." Preprint No. 67,
Astronomical Institute, Czechoslovak Academy of Sciences, 1988.

[27] Fuller-Rowell, T.J., D. Rees, S. Quegan, R.J. Moffett, M.V. Codrescu, and G.H.
Millward. "A Coupled Thermosphere Ionosphere Model (CTIM)." STEP
Handbook of Ionospheric Models. Ed. R.W. Schunk, 1996.

[28] Hicks, J.R. An Adaptive Thennospheric Model to Improve the Prediction of
Satellite Orbits. Master of Science Thesis, The George Washington University,
Washington, D.C., April 1997.

[29] Owens, J.K. "NASA Marshall Engineering Thermosphere Model - 1999 Version
(MET-99)." NASA Technical Memorandum, NASA Marshall Space Flight
Center, Huntsville, Alabama, 1999.

[30] Keating, G.M., J.C. Leary, B.D. Green, O.M. Uy, R.C. Benson, R.E. Erlandson,
T.E. Phillips, J.C. Lesho and M.T. Boies. "Neutral and Ion Drag Effects Near the
Exobase: MSX Satellite Measurements of He and O+." Advances in the
Astronautical Sciences, Vol. 97, 1998, pp. 549-556.

[31] Kockarts, Gaston. "Definition of Space Aeronomy." http://www.oma.be/BIRA-
IASB/Scientific/Home.html. Accessed Aug. 27, 1999.

[32] Marcos, F.A. "Requirements for Improved Thermospheric Neutral Density
Models." Paper AAS 85-312, Presented at AAS/AIAA Astrodynamics Specialist
Conference, Vail, Co, August 1985.

[33] Gaposchkin, E.M. and A.J. Coster. "Evaluation of Recent Atmospheric Density
Models." Paper AAS 87-557, Presented at AAS/AIAA Astrodynamics
Conference, Kalispell, MT, Aug 1987.

181

[34] Barker, W.N., T.J. Eller, and L. E. Herder. "A New Approach in Treating the
Ballistic Coefficient in the Differential Correction Fitting Program." Advances in
the Astronautical Sciences, Vol 71, Pt. I. San Diego: Univelt, Inc., 1989.

[35] Wright, J.R. Personal Correspondence with J. Fischer, AF/Draper Fellow, 1997.

[36] Jaeck-Berger, C. and F. Barlier. "Review of Drag Effects on Satellite Orbits for
Geodynamic Studies." The Use of Artificial Satellites for Geodesy and
Geodynamics, Proceedings of the International Symposium on Geodesy and
Geodynamics, Athens, Greece, May 1973. National Technical University of
Athens: 1974, pp. 2 7 5 -3 1 1 .

[37] Fischer, J.D. The Evolution of Highly Eccentric Orbits. CSDL-T-1310, Master
of Science Thesis, Massachusetts Institute of Technology. Cambridge, MA, June
1998.

[38] Metzinger, R.W. Validation of the Workstation Version of R&D GTDS. Charles
Stark Draper Laboratory: February, 1993. Copy available through Dr. Paul
Cefola, (617) 258-1787.

[39] National Geophysical Data Center Solar-Terrestrial Physics Division FTP site.
ftp://ftp.ngdc.noaa.gov/STP/GEOMAGNETIC DATA/INDICES/KP AP.

[40] Schatten, K. National Science Foundation. Personal correspondence with J.
Fischer, Charles Stark Draper Laboratory. June, 1997.

[41] Wall, L, T. Christiansen, and R. Schwartz. Programming Perl. Sebastopol, CA:
O'Reilly & Associates, 1996.

[42] Kelso, T.S. "Frequently Asked Questions: Two-Line Element Set Format."
http://celestrak.com/columns/v04n03/index.html. Satellite Times. Accessed
January, 1999.

[43] Koorts, Willie. Personal Home Page. http://canopus.saao.ac.za/-wpk/. Accessed
February, 2000.

[44] McCants, Mike. Personal Home Page. http://www.fc.net:80/~-mikem/. Accessed
February, 2000.

[45] Carter, S.S. Precision Orbit Determination From GPS Receiver Navigation
Solutions. CSDL-T-1260, Master of Science Thesis, Massachusetts Institute of
Technology. Cambridge, MA, June 1996.

[46] Justus, C. et al. The NASA/MSFC Global Reference Atmospheric Model - MOD3
(With Sperical Harmonic Wind Model). NASA Contractor Report 3256. NASA
Contract NAS 8-32897, March, 1980.

182

[47] The Upper Atmosphere of the Earth - Model of Density for Ballistic Maintenance
of the Earth Artificial Satellite Flights. GOST 25645.115-84. Moscow: State
Committee of the USSR for Quality Control of Production and Standards, 1984.

[48] Laneve, G. "Small Satellites for Aeronomic Missions in the Lower
Thermosphere." Paper AAS 97-729, Presented at AAS/AIAA Astrodynamics
Specialist Conference, Sun Valley, ID, August 1997.

[49] Thompsen, Allen. FTP Site for NORAD Two-Line Elements.
ftp://kilroy.jpl.nasa.gov/pub/space/elements/satelem. Accessed February, 2000.

[50] Vallado, D. A. Fundamentals ofAstrodynamics and Applications. Space
Technology Series. New York: McGraw-Hill, 1997.

[51] King-Hele, D. Theory of Satellite Orbits in an Atmosphere. London:
Butterworths, 1964.

[52] Cefola, P.J., D.J. Fonte and N. Shah. "The Inclusion of the Naval Space
Command Satellite Theory PPT2 in the R&D GTDS Orbit Determination
System." Paper AAS 96-142, Advances in the Astronautical Sciences:
Spaceflight Mechanics 1996, Vol. 93, Part I. San Diego: Univelt, Inc, 1996, pp.
665-691.

[53] Nostrand, P.M. Forecast Verification of the 10.7 Centimeter Solar Flux and the
Ap Daily Geomagnetic Activity Indices. Master of Science Thesis, Air Force
Institute of Technology. Wright-Patterson Air Force Base, OH, December 1984.

[54] Cederqvist, Per et. al. Version Management with CVS. Signum Support AB:
1992.

[55] Hoots, F.R. and R.L. Roehrich. Models for Propagation of NORAD Element Sets.
Spacetrack Report No. 3, Aerospace Defense Command, United States Air Force,
December 1980.

[56] Mugellesi, R. and D.J. Kerridge. "Prediction of Solar and Geomagnetic Activity
for Low-Flying Spacecraft." European Space Agency (ESA) Journal, Vol. 15,
1991, pp. 123-134.

[57] MATLAB Computer Software. Version 5.3.0.10183 (R11). Copyright 1984-
1999, The Mathworks, Inc. Jan 1999.

[58] Clark, T.D.G, A.W.P Thomson, and D.J. Kerridge. A Review of Methods of
Forecasting Solar and Geomagnetic Activity in the Short-Termn. British
Geological Survey Technical Report WM/91/23C, ESOC Contract Number
7558/88/D/IM(SC). Edinburgh: NERC, 1991.

183

[59] Gropp, William, and Ewing Lusk. User's Guide for mpich, a Portable
Implementation of MPI. Mathematics and Computer Science Division, Argonne
National Laboratory, ANL-96/6, 1996.

[60] Geist, A., A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.
PVM: Parallel Virtual Machine, A User's Guide and Tutorial for Networked
Parallel Computing. MIT Press, Cambridge, MA, 1994.

1/21 - •

184

