Computer Science and Artificial Intelligence Laboratory

Technical Report

MIT-CSAIL-TR-2009-010 March 26, 2009

Finding Bugs in Web Applications Using
Dynamic Test Generation and Explicit

State Model Checking

Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip,
Danny Dig, Amit Paradkar, and Michael D. Ernst

massachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.edu

CSAIL

Finding Bugs in Web Applications Using Dynamic
Test Generation and Explicit State Model Checking

Shay Artzi' Adam Kiezun® Julian Dolby*
Frank Tip* Danny Dig* Amit Paradkar* Michael D. Ernst*
TMIT CSAIL, {artzi,akiezun}@csail.mit.edu
#IBM T.J. Watson Research Center, {dolby,ftip,paradkar}@us.ibm.com
*University of lllinois at Urbana-Champaign, dig@illinois.edu
*University of Washington,mernst@cs.washington.edu

Abstract—

Web script crashes and malformed dynamically-generated web pages
are common errors, and they seriously impact the usability of web applica-
tions. Current tools for web-page validation cannot handle the dynamically
generated pages that are ubiquitous on today’s Internet. We present a
dynamic test generation technique for the domain of dynamic web ap-
plications. The technique utilizes both combined concrete and symbolic
execution and explicit-state model checking. The technique generates tests
automatically, runs the tests capturing logical constraints on inputs, and
minimizes the conditions on the inputs to failing tests, so that the resulting
bug reports are small and useful in finding and fixing the underlying faults.

Our tool Apollo implements the technique for the PHP programming
language. Apollo generates test inputs for a web application, monitors the
application for crashes, and validates that the output conforms to the HTML
specification. This paper presents Apollo’s algorithms and implementation,
and an experimental evaluation that revealed 302 faults in 6 PHP web
applications.

General Terms Reliability, Verification

Index Terms—Software Testing, Web Applications, Dynamic Analysis, PHP

1 INTRODUCTION

including large, well-known websites such as Wikipedia and
WordPress.

Our goal is to find two kinds of failures in web applications:
execution failureghat are manifested as crashes or warnings
during program execution, adiT ML failuresthat occur when
the application generates malformed HTML. As an example,
execution failures may occur when a web application calls an
undefined function or reads a nonexistent file. In such cases,
the HTML output contains an error message and execution
of the application may be halted, depending on the severity
of the failure. HTML failures occur when output is generated
that is not syntactically well-formed HTML (e.g., when an
opening tag is not accompanied by a matching closing tag).
Although web browsers are designed to tolerate some degree
of malformedness in HTML, several kinds of problems may
occur. First and most serious is that browsers’ attempts to
compensate for malformed web pages may lead to crashes
and security vulnerabiliti¥s Second, standard HTML ren-
ders fastet. Third, malformed HTML is less portable across
browsers and is vulnerable to breaking or looking strange
when displayed by browser versions on which it is not tested.

Dynamic test generation tools, such as DART [18], Cute [36T0Urth, @ browser might succeed in displaying only part of
and EXE [7], generate tests by executing an application gnmalformed webpage, while silently discarding important

concrete input values, and then creating additional inplites

information. Fifth, search engines may have trouble inagxi

by solving symbolic constraints derived from exerciseduain Malformed pages [45]. _ .

flow paths. To date, such approaches have not been pragtical {"Veb developers widely recognize the importance of creat-
the domain of web applications, which pose special chatiengnd €gal HTML. Many websites are checked using HTML
due to the dynamism of the programming languages, the u@é|dator§._ However, HTML validators can only point out
of implicit input parameters, their use of persistent stared Problems in HTML pages, and are by themselves incapable

their complex patterns of user interaction.

of finding faults in applications thajenerateHTML pages.

This paper extends dynamic test generation to the domaindfecking dynamic web applications (i.e., applications that
web applications that dynamically create web (HTML) pagdEnerate pages during execution) requires checking tleat th

during execution, which are typically presented to the user

2. See bug reports 269095, 320459, and 328937 at fitipgzilla.mozilla.

browser. Apollo applies these techniques in the contexhef torgshow bug.cgi?
scripting language PHP, one of the most popular languages fo3. See httgweblogs.mozillazine.oybyatyarchiveg2003_03.html#

web programming. According to the internet research seyvi

02904. According to a Mozilla developer, one reason why onaiéd
TML renders slower is that “improper tag nesting [...] tregg residual

Netcraft, PHP powered 21 million domains as of April 2007 style handling to try to produce the expected visual resutlich can be very

1. See httg/news.netcraft.com

expensive” [33].
4. httpy/validator.w3.org, httg/www.htmlhelp.cornytoolsvalidator

application creates a valid HTML page @very possible available, and restores the environment state before Brgcu
execution path. In practice, even professionally develaggped a new script based on a detected user option.
thoroughly tested applications often contain multiplelttau Techniques based on combined concrete and symbolic exe-
(see Section 6). cutions [7], [18], [36] may create multiple inputs that espo
There are two general approaches to finding faults in wée same fault. In contrast to previous techniques, to avoid
applications: static analysis and dynamic analysis (tgitin overwhelming the developer, our technique automaticekyi
the context of web applications, static approaches havigeliim tifies the minimal part of the input that is responsible for
potential because (i) web applications are often written iniggering the failure. This step is similar in spirit to Deel
dynamic scripting languages that enable on-the-fly creati®ebugging [8]. However, since Delta Debugging is a general,
of code, and (ii) control in a web application typically flowsblack-boxinput minimization technique, it is oblivious to the
via the generated HTML text (e.g., buttons and menus thatoperties of inputs. In contrast, our techniquenisite-box
require user interaction to execute), rather than solely vi uses the information that certain inputs induce pastiall
the analyzed code. Both of these issues pose significanerlapping control flow paths. By intersecting these paths
challenges to approaches based on static analysis. Tedtingur techniqgue minimizes the constraints on the inputs withi
dynamic web applications is also challenging, because tf@ver program runs.
input space is large and applications typically requiretipia The contributions of this paper are the following:
user interactions. The state-of-the-practice in valaatfor . We adapt the established technique of dynamic test
web-standard compliance of real web applications involves generation, based on combined concrete and symbolic
the use of programs such as HTML Kithat validate each execution [7], [18], [36], to the domain of PHP web
generated page, but require manual generation of inputs tha applications. This involved the following innovations) (i
lead to displaying dierent pages. We know of no automated using an HTML verifier as an oracle, (ii) inferring input

tool for the validation of web applications that dynamigall parameters that are not manifested in the source code,

generate HTML pages. (iii) dealing with datatypes and operations specific to the
This paper presents an automated technique for finding PHP language, (iv) tracking the use of persistent state and

failures in HTML-generating web applications. Our techugq how input flows through it, and (v) simulating user input

is based on dynamic test generation, using combined cencret for interactive applications.
and symbolic (concolic) execution and constraint solvidj [« We created a tool, Apollo, that implements the technique
[18], [36]. We created a tool, Apollo, that implements owtte for PHP.
nique in the context of the publicly available PHP interpret « We evaluated our tool by applying it to 6 real web ap-
Apollo first executes the web application under test with plications and comparing the results with random testing.
an empty input. During each execution, Apollo monitors the We show that dynamic test generation can lfiective
program to record the dependence of control-flow on input. when adapted to the domain of web applications written
Additionally, for each execution Apollo determines whethe in PHP: Apollo identified 302 faults while achieving line
execution failures or HTML failures occur (for HTML failuse coverage of 50.2%.
an HTML validator is used as an oracle). Apollo automat- « We present a detailed classification of the faults found by
ically and iteratively creates new inputs using the recdrde Apollo.
dependence to create inputs that exerciséemint control The remainder of this paper is organized as follows. Sec-
flow. Most previous approaches for concolic execution onljon 2 presents an overview of PHP, introduces our running
detect “standard errors” such as crashes and assertiarefil example, and discusses classes of failures in PHP web applic
Our approach also detects such standard errors, but is to fighs. Section 3 presents a simplified version of the alfgorit
knowledge the first to use an oracle to detect specificatigid illustrates it on an example program. Section 4 presents
violations in the application’s output. the complete algorithm handling stateful execution wite th
Another novelty in our work is the inference of inputsimulation of interactive user inputs, and illustrates rit @n
parameters, which are not manifested in the source code, Bimple program. Section 5 discusses our Apollo implerenta
which are interactively supplied by the user (e.g., by @figk tion. Section 6 presents our experimental evaluation ofllapo
buttons in generated HTML pages). The desired behavior oba open-source web applications. Section 7 gives an owervie

PHP application is usually achieved by a series of intevasti of related work, and Section 8 presents conclusions.
between the user and the server (e.g., a minimum of five user

actions are needed from opening the main Amazon pageo
buying a book). We handle this problem by enhancing the o
combined concrete and symbolic execution technique witht 1€ PHP Scripting Language
explicit-state model checking based on automatic dynamidis section briefly reviews the PHP scripting language, fo-
simulation of user interactions. In order to simulate uségri cusing on those aspects of PHP thafeti from mainstream
action, Apollo stores the state of the environment (dambatinguages. Readers familiar with PHP may skip to the discus-
sessions, cookies) after each execution, analyzes theitougion of the running example in Section 2.2.
of the execution to detect the possible user options that ard®HP is widely used for implementing web applications, in
part due to its rich library support for network interaction
5. httpy/www.htmlkit.com HTTP processing, and database access. The input to a PHP

ConTtexT: PHP \WEB APPLICATIONS

1 <?php 27 function validateLogin() {
2 28 if(!lisset($_GET[’username’])) {
3 make_header(); // print HTML header 29 echo "<j2> username must be supplied.</h2>\n";
4 30 return;
s // Make the $page variable easy to use // 31 }
6 if(!isset($_GET[’page’])) S$page = O; 32 $username = $_GET[’username’];
7 else $page = $_GET[’page’]; 33 $password = $_GET[’password’];
8 34 if($username=="john" && $password=="theTeacher")
9 // Bring up the report cards and stop processing // 35 $page=1;
10 if($_GET[’page2’]==1337) { 36 else if($username=="john" && $password=="theStudent")
11 require(’printReportCards.php’); 37 $page=2;
12 die(); // terminate the PHP program 38 else echo "<h2>Login error. Please try again</h2>\n";
13 } 39 }
14 40
15 // Validate and log the user into the system // 41 function make_header() { // print HTML header
16 if($_GET["login"] == 1) validatelLogin(Q); 42 print("
17 43 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
18 switch ($page) 44 "http://www.w3.org/TR/html4/strict.dtd">
19 { 45 <HTML>
20 case 0: require(’login.php’); break; 46 <HEAD> <TITLE> Class Management </TITLE> </HEAD>
21 case 1: require(’TeacherMain.php’); break; 47 <BODY>");
22 case 2: require(’StudentMain.php’); break; 48 }
23 default: die("Incorrect page number. Please verify."); 49
24 } 50 function make_footer() { // close HTML elements opened by header()
25 51 print("
26 make_footer(); // print HTML footer 52 </BODY>
27 ... 53 </HTML>");

54 }

55 7>

Fig. 1. A simplified PHP program excerpt from SchoolMate. This exceoptains three faults (2 real, 1 seeded), explained in Section 2.3.

program is a map from strings to strings. Each key is 22 PHP Example
parameter that the program can read, write, or check if gts SThe PHP program of Figure 1 is a simplified version of

The strin_g value correspondir}g to a key may be imerpretedeiéhoolMaté, which allows school administrators to manage
a nqme_nca! value if appropriate. The output of a PHP Wellasses and users, teachers to manage assignments argj grade
application is an HTML document that can be presented ina y < ,dents to access their information.
web browser. Lines 6-7 read the global parametage that is supplied
PHP is object-oriented, in the sense that it has classt®,the program in the URL, e.g., httwww.mywebsite.
interfaces, and dynamically dispatched methods with syntaomyindex.php?pagel. Line 10 examines the value of the
and semantics similar to that of Java. PHP also has featugégbal parametepage2 to determine whether to evaluate file
of scripting languages, such as dynamic typing ancevam printReportCards.php.
construct that interprets and executes a string value that w FunctionvalidateLogin (lines 27-39) sets the global param-
computed at run-time as a code fragment. For example, #ferpage to the correct value based on the identity of the user.
following code fragment: This value is used in thewitch statement on line 18, which
presents the login screen or one of the tegshaident screens.

$code = "$x = 3;"; $x = 7; eval($code); echo $x;

. . . 2.3 Failures in PHP Programs
prints the values (names of PHP variables start with ti§e g

character). Other examples of the dynamic nature of PHP &Wr technique targets two types of failures that can be
a predicate that checks whether a variable has been defirifomatically identified during the execution of PHP web

and class and function definitions that are statements thgt n@Pplications. Firstexecution failuresmay be caused by a
occur anywhere. missing included file, an incorrect MySQL query, or by an un-

o) caught exception. Such failures are easily identified aPthie

The code in Figure 1 illustrates the flavor of PHP. Thgyerhreter generates an error message and halts execution
require statement that used on line 11 of Figure 1 resemblegss serious execution failures, such as those caused by the
the C #include directive in the sense that it includes the g of deprecated language constructs, produce obtrusive e
code from another source file. However, the C version j§essages but do not halt execution. SecdidML failures
a pre-processor directive with a constant argument, wkeregolve situations in which the generated HTML page is not
the PHP version is an ordinary statement in which the filg nactically correct according to an HTML validator. Sec-
name is computed at runtime. There are many similar casgs, 1 discussed several negative consequences of matiorme
where run-time values are used, esgitch labels need not be L.
constant. This degree of flexibility is prized by PHP develsp Aq 4p example, the program of Figure 1 contains three

for enabling rapid application prototyping and developmery,iis which cause the following failures when the program
However, the flexibility can make the overall structure of oyecuted:

program hard to discern and it can make programs prone to
code quality problems. 6. httpy/sourceforge.ngprojectgschoolmate

1) Executing the program results in arecution failurethe ~ parameters Program#, oracleQ, Initial stateSo
file printReportcards.php referenced on line 11 is missing. result : Bug reportsB;

2) The program producesnalformed HTML because the 8 : setOf((failure, setOf(pathConstraint)setOf(input)))
make footer Method is not executed in certain situations! 8 = @;
resulting in an unclosed HTML tag in the output. In2 toExplore:= emptyQueug;
particular, the default case of theitch statement on 3 enqueugtoExplore (emptyPathConstrai) emptylnpuy);
line 23 terminates program execution when the global While not empty(toExplore) and not timeExpirediQ
parametepage is not 0, 1, or 2 and wheguge is not written 5 (pathConstraintinput) := dequeu@oExplore);

by functionvalidateLogin. 6 output:= executeConcre(So, ¥, inpud);
3) The program producemialformed HTMLwhen line 29 7 foreachf in getFailuregO, outpu) do
generates an illegal HTML tagp. 8 merge(f, pathConstraintinput) into B;

The first failure is similar to a failure that our tool found in® newConfigs= getConfig@nput);

one of the PHP applications we studied. The second faildfe ~ foreach (pathConstraint input) < ne_WQOHfiQS?O
is caused by a fault that exists in the original code of the er?queuétoEprore(pathConstralm;mput,-)),
SchoolMate program. The third failure is the result of a fadf etum 5;

that was artificially inserted into the example for illusioa. 13 Subroutine getConfignput):

14 configs:= @;
3 FINpING FAILURES IN PHP WEB APPLICATIONS 15 C1 A ... A Cy = executeSymboliS, P, input);
Our technique for finding failures in PHP applications is e-vais foreachi = 1,...,ndo
ation on an established dynamic test generation technitjue {7 newPC:=C; A ... ACi_1 A =G

[18], [19], [36] sometimes referred to as concolic testiRgr 18 input := solvénewPQ;
expository purposes, we will present the algorithm in two if input# L then
steps. First, this section presents a simplified versionhef bo enqueugonfigs (newPCinput));

algorithm that does simulate user inputs or keep track aafreturn configs
persistent session state. We will demonstrate this siraglifi
algorithm on the example of Figure 1. Then, Section 4 presefig. 2: The failure detection algorithm. The output of the
a generalized version of the algorithm that handles usertin@lgorithm is a set of bug reports. Each bug report contains a
simulation and stateful executions, and illustrates it oncge failure, a set of path constraints exposing the failure, and
complex example. set of input exposing the failure. Tl®lveauxiliary function

The basic idea behind the technique is to execute an appises the constraint solver to find an input satisfying thé pat
cation on some initial input (e.g., an arbitrarily or randgm constraint, or returnsL if no satisfying input exists. The
chosen input), and then on additional inputs obtained Ilmyergeauxiliary function merges the pair of pathConstraint
solving constraints derived from exercised control flowhgat and input for an already detected failure into the bug report
We adapted this technique to PHP web applications as fallovisr that failure.

e We extend the technique to consider failures other than
execution failures by using an oracle to determine whether o

not program output is correct. In particular, we use an HTMine algorithm is a set of bug repors for the program®,
validator to determine whether the output is a well-formegecording too. The report consist of a single failure, defined
HTML page. by the error message and the set of statements that is related
e The PHP language contains constructs suchisast tg the failure. In addition, the report contains the set of al
(checking whether a variable is defined}enpty (checking jnputs under which the failure was exposed, and the set of all
whether a variable contains a value from a specific sef}ire path constraints that lead to the inputs exposing the &ilur
(dynamic loading of additional code to be executetljder The gigorithm uses a queue of configurations. Each config-
for redirection of execution, and several others that neghie uration is a pair of a path constraint and an inputpath
generation of constraints that are absent in languagesaiChygnsiraint is a conjunction of conditions on the program’s
CorJava. , _ _ input parameters. The queue is initialized with the empty
* PHP applications typically interact with a database anghy, constraint and the empty input (line 3). The program is
need appropriate va_lues for user authen_tlcatlon (i.erne®e o o ted concretely on the input (line 6) and tested fouffed
and password). It is not possible to infer these values By e oracle (line 7). Then, the path constraint and inpat fo

either static or dynamic analysis, or by randomly guessingyqp, getected failure are merged into the corresponding bug
Therefore, our technique uses a pre-specified set of varlmesrfeport (lines 7-8).

database authentication.

Next, the algorithm uses a subroutine, newConfigs, to find
new configurations. First, the program is executed symbol-
3.1 Algorithm ically on the same input (line 15). The result of symbolic
Figure 2 shows pseudo-code for our algorithm. The inpuéxecution is a path constraint, ¢, that is satisfied by the
to the algorithm are: a prograrR, an oracle for the output path that was just executed from entry to exit of the whole
O, and an initial state of the environmeS&p. The output of program. The subroutine then creates new inputs by solving

4

modified versions of the path constraint (lines 16—20), asparameters Program#, oracleO, bug reportb
follows. For each prefix of the path constraint, the algonith result : Short path constraint that expodetailure
negates the last conjunct (line 17). A solution, if it existst C1 A ... A Cq := intersectb.pathConstraints

to such an alternative path constraint corresponds to aut ing PC:= trug;

that will execute the program along a prefix of the origina$ foreachi=1,...,n do

execution path, and then take the opposite branch, predematb PG = Ci A...C1 AC1 A...Cy;

covering new code. The algorithm uses a constraint solverto if !exposesFailurgpc) then

find a concrete input for each path constraint (line 18). 6 pc:= pCcA G
7 if exposesFailurdpc) then

8 return pc;

9 return shortestb.pathConstrainty
Let us now consider how the algorithm of Figure 2 exposes

the third fault in the example program of Figure 1. 10 Subroutine exposesFailurgco):

Iteration 1. The first input to the program is the emptyz input,. := solvgpc);

input, which is the result of solving the empty path consirai 12 if input,. # L then

During the execution of the program on the empty input, the output,. := executeConcre{®, input,);

condition on line 6 evaluates terue, and page is set toe. 14 failures,. := getFailuregO, output,y);

The condition on line 10 evaluates filse. The condition 15 return b.failure € failures,;

on line 16 evaluates t@alse because parametesgin iS not 16 return false

defined. Theswitch statement on line 18 selects the case grig. 3: The path constraint minimization algorithm. The
line 20 becauseage has the value of. Execution terminates methodintersectreturns the set of conjuncts that are present
on line 26. The HTML verifier determines that the outpui all given path constraints, and the mettsitbrtestreturns

is legal, andexecuteSymboliproduces the following path the path constraint with fewest conjuncts. The other aanili
constraint: functions are the same as in Figure 2.

3.2 Example

NotSefpage) A page2 # 1337 A login # 1 (I)

The algorithm now enters thfreach loop on line 16 of This eliminates irrelevant constraints, and a solution dor
Figure 2, and starts generating new path conditions by systeshorter path constraint is often a smaller input.
atically traversing subsequences of the above path camistra For a given bug reporb, the algorithm first intersects all
and negating the last conjunct. Hence, from (1), the alparit the path constraints exposibdailure (line 1). The minimizer
derives the following three path constraints: systematically removes one conjunct at a time (lines 346). |
one of these shorter path constraints does not expéaure,
then the removed conjunct is required for expodifgilure.
The set of all such required conjuncts determines the mini-
mized path constraint. From the minimized path constréet,
Iteration 2. For path constraint (I1), the constraint solver ma)"?1 lqror:ghgg%rr?tilrfe; aF(i:;lTr((:are;e ér;%it t::tt :ﬁgfss;;h?hghiae
find the following input (the solver is free to select any mlureturned path constraint is the shortest possible thatseeo

for page2, other than 1337)page2 « 0, login « 1.
When the program is executed with this input, the conditicntrrl1e failure. However, the algorithm is simple, fast, afféetive

: : o In practice (see Section 6.3.2).
of the if-statement on line 16 evaluatesttae, resulting in a 0 N difers f input minimization techni
call to thevalidateLogin method. Then, the condition of the —uf MINIMIZEr QIIETS frominput minimization techniques,

if-statement on line 28 evaluates teue because th@sername such as delta debugging [8], [44], in that our algorithm

parameter is not set, resulting in the generation of outp%?ftrst(.es O? ;hqaatht cgntstraln'Fthellt SXPOSTES the |fa|luref,.andt
containing an incorrect HTML tagz on line 29. When the no ?anu foﬂs rain conC|sdey %SC” ﬁgac?sgo |ntpu s
HTML validator checks the page, the failure is discovere‘ﬁ'g" € constrainfage2 # 1337 describes all inputs feren

and a bug report is created and added to the output set ole N 13_37)_' _Slnce a cor_1crete Input is an |_nstant|at|on pf a
reports. constraint, it is more féective to reason about input properties

in terms of their constraints.

Each failure might be encountered along several execution
3.3 Path Constraint Minimization paths that might partially overlap. Without any informatio
The failure detection algorithm (Figure 2) returns bug répo about the properties of the inputs, delta debugging mirésiiz
Each bug report contains a set of path constraints, andmly a single input at a time, while our algorithm handles
set of inputs exposing the failure. Previous dynamic testultiple path constraints that lead to a failure.
generation tools [7], [18], [36] presented the whole inpig. {
many (inputParametervalue pairs) to the user without an
indication of the subset of the input responsible for thiufei
As a postmortem phase, our minimizing algorithm attempts The malformed HTML failure described in Section 3.2 can be
find a shorter path constraint for a given bug report (Figyre 3riggered along dferent execution paths. For example, both of

NotSefpage) A page2 # 1337 A login=1 (Il)
NotSefpage) A page2 = 1337 (1
Sefpage) (V)

3.4 Minimization Example

the following path constraints lead to inputs that expose tiPHP script. In contrast, the algorithm presented in thisiGec
failure. Path constrainta] is the same as (Il) in Section 3.2. remembers and restores the state between executions of PHP
scripts. This technique, known as state matching, is widely
known in model checking [22], [39] and implemented in tools
such as SPIN [11] and JavaPathFinder [21]. To our knowledge,

. .) i we are the first to implement state matching in the context of
First, the minimizer computes the intersection of the paffjep, applications and PHP.

constraints (line 1). The intersection is:

NotSefpage) A page2 # 1337 A login = 1 (@
Sefpage) A page = 0 A page2 # 1337 A login=1 (b)

page2 # 1337 Alogin =1 (anb) 4.1 Interactive User Simulation Example

Figure 4 shows an example of a PHP application that is

Then, the minimizer creates two shorter path constraints Bgsigned to illustrate the particular complexities of firgli
removing each of the two conjuncts in turn. First, the minfaults in an interactive web applications. In particuldre t
mizer creates path constraimigin = 1. This path constraint figure shows: anndex.php top-level script that contains static
corresponds to an input that reproduces the failure, namé&lfML in Figure 4(a), a generic login scriptogin.php in
login < 1. The minimizer determines this by executing th&igure 4(c), and a skeleton of a data display scyip.php
program on the input (line 14 in Figure 3). Second, the minin Figure 4(d). The PHP scripts in Figure 4 rely on a
mizer creates path constraage2 # 1337. This path constraint shared include fileonstants.php that defines some standard
does not correspond to an input that exposes the failures, Theonstants, which is shown in in Figure 4(b). Note that the
the minimizer concludes that the conditinsyin = 1, that was code in Figure 4 is an ad-hoc mixture of PHP statements and
removed from &N b) to form the second path constraint, ifHTML fragments. The PHP code is delimited kyphp and
required. In this example, the minimizer returngin = 1. 7> tokens (For instance lines 44 and 69 in Figure 4(c)). The
The result is the minimal path constraint that describes thse of HTML in the middle of PHP indicates that HTML is
minimal failure-inducing input, namelyogin « 1. generated as if it were the argument of a print statement. The
dirname function—which returns the directory component of a
filename—is used in theequire Statements, as an example of
including a file whose name is computed at run-time.

These PHP scripts are part of the client-server work flow
A typical PHP web application is a client-server applicatioin a web application: the user first sees th@ex.php page
in which data and control flows interactively between a servef Figure 4(a) and enters credentials. The user-input cre-
that runs PHP scripts and a client, which is usually a wetentials are processed by the script in Figure 4(c), which
browser. The PHP scripts that run on the server generggnerates a response page that allows the user to enter
HTML that includes interactive user input widgets such dsirther input—a topic—that in turn entails further pro-
buttons and menu items that, when selected by the user,@nvakssing by the script in Figure 4(d). Note that the user
other PHP scripts. When these other PHP scripts are invokedme and password that are entered by the user during
they are passed a combination of user input and constargssalthe execution oflogin.php are stored in special locations
taken from the generated HTML. Modeling such user input iS SESSION[$userTag] and $ SESSION[$pwTag 1, respectively.
important, because coverage of the application will tylbica Moreover, if the user is the administrator, this fact is reled
remain very low otherwise. similarly, in §_SESSION[$typeTag 1. These locations illustrate

In Section 3, we described how to find failures in PHP welhow PHP handlesession statevhich is data that persists from
applications by adapting an existing test generation amiro one page to another, typically for a particular interactigna
to consider language constructs that are specific to PHP, frticular user. Thus, the updates teession in Figure 4(c)
using an oracle to validate the output, and by supportingll be seen (as the SESSION information is saved and read
database interaction. However, we did not yet supply aisolut locally on the server) by the code in Figure 4(d) when the user
for handling user input options that are created dynanyidsll follows the link toview.php in the HTML page that is returned
a web application, which includes keeping track of paramsetedy login.php. Theview.php Script uses this session information
that are transferred from one script to the next—either lig verify the usernamipassword in line 46.
persisting them in the environment, or by sending them asOur example program contains an error in the HTML
part of the call. produced for the administrative details: the tag that is

To handle this problem, Apollo implements a form obpened on line 62 of Figure 4(d) is not closed. While this
explicit-state software model checking. That is, Apolls-sy fault itself is trivial, finding it is not. Assume that testin
tematically explores the state space of the system, i.e., #tarts (as an ordinary user would) by entering credentetiset
program under test. The algorithm in Section 3 always resstascript in Figure 4(c). A tester must then discover that sgtti
the execution from the same initial state, and discardsttte s suser to the value admin’ results in the selection of a ferent
reached at the end of each execution. Thus, the algoritimanch that records the user type@nin’ in the session state
reaches only 1-level deep into the application, where ea(dee lines 34—36 imogin.php). After that, a tester would have
level corresponds to a cycle of: a PHP script that generatesenter a topic in the form generated by the login script, and
an HTML form that the user interacts with to invoke the nextvould then proceed to Figure 4(d) with the appropriate sessi

4 ComeINED CONCRETE AND SyMBoLIC EXECUTION WITH
ExpLiciT-STATE MoDEL CHECKING

1 <html> 10 <?php

2 <head>Login</head> 11 userTag = ’user’

3 <body> 12 pwTag = 'pw’;

4 <form name="login" action="exampleLogin.php"> 13 typeTag = ’type’;

5 <input type="text" name="user"/> 14 7>

6 <input type="password" name="pw"/>

7 </form>

s ey (a) index.php ’(b) constants.php
15 <HTML> 42 <HTML>

16 <?php 43 <HEAD>Topic View</HEAD>

17 require(dirname(__FILENAME__).’/includes/constants.php’); 44 <?php

18 45 print "<BODY>\n";

19 $user = $_REQUEST[’user’]; 46 if(check_password($_SESSION[$userTag], $_SESSION[S$pwTag]l) {
20 $pw = $_REQUEST[’pw’ 1; 47 require(dirname(__FILENAME__).’/includes/constants.php’);
21 48

22 if (check_password($user, $pw) { 49 $type = $_SESSION[$typeTag J;

23 print "<HEAD>Login Successful</HEAD>\n"; 50 $topic = $_REQUEST[’topic’];

24 51

25 $_SESSION[S$userTag] = $user; 52 if ($type == ’admin’) {

26 $_SESSION[$pwTag] = $pw; 53 print "<H1>Admin ";

27 7> 54 } else {

28 <BODY> 55 print "<H1>Normal ";

29 <FORM action="view.php"> 56 }

30 <INPUT TYPE="text" NAME="topic"/> 57 print "View of $topic</H1>\n";

31 </FORM> 58

32 </BODY> 59 /% code to print topic view... */

33 <?php 60

34 if ($user == ’admin’) { 61 if ($type == ’admin’) {

35 $_SESSION[$typeTag] = ’admin’; 62 print "<H2>Administrative Details\n";
36 } 63 /* code to print admin details... */

37 else { 64 }

38 print "<HEAD>Login Failed</HEAD>\n"; 65 } else {

39 } 66 print "Please Log in\n";

40 7> 67 }

41 </HTML> 68 print "</BODY>\n";

(c) login.php o ZjHTMb (d) view.php

Fig. 4. Example PHP web application.

state, which will finally generate HTML exhibiting the faultwhen the condition in line 46 of Figure 4(d) is false) and will
as is shown in Figure 5(a). Thus, finding the fault requiresreot present useful information. For simplicity, the aldjom
careful selection of inputs to a series of interactive gsrips implicitly handles the fact that there are possibly mudiphtry
well as making sure updates to the session state during pgmnts into a PHP program. Thus, an input will contain the
execution of these scripts are preserved (l.e., makingthate script to execute in addition to the values of the parameters
the execution of the €ierent script happen during the samé&or instance, the first call might be to index.php script,levhi

session). subsequent calls can execute other scripts.
There are four dferences (underlined in the figure) with the
4.2 Algorithm simplified algorithm that was previously shown in Figure 2.

Figure 6 shows pseudo-code for the algorithm, which extends o configuration contains an explicit state of the environ-
the algorithm in Figure 2 with explicit-state model cheakio ment (before the only state that was used was the initial
handle the complexity of simulating user inputs. The akjoni stateSp) in addition to the path constraint and the input
tracks the state of the environment, and automaticallyodisc (line 3).

ers additional configqrations basgd onan analy;is of t_f'pwd)ut 2) Before the program is executed, the algorithm (method
for available user options. In particular, the algorithirt@cks executeConcrete) Will restore the environment to the state
changes to the state of the environment (i.e., session, state given in the configuration (line 7), and will return the new
cookle_s, and the database) and (ii) performs an “on the f_Iy state of the environment after the execution.

analysis of the output produced by the program to determing \yhen thegetcontigs subroutine is executed to find new
what user options it contains, with their associated PHIptscr configurations, it analyzes the output (the actual mech-
By determining the state of the environment as it exists when gnicm of the analysis is explained and demonstrated in
an HTML page is produced, the algorithm can determine the ggcign 5.3) to find new possible transitions from the
environment in which additional scripts are executed asaltre new environment state (lines 24—26). Each transition is
of user interaction. This is important because a script ishmu expressed as a pair of a path constraint and an input.

more likely to perform complex behavior when executed iy The algorithm uses a set of configurations that are already
the correct context (environment). For example, if the web’ , ihe queue (line 14) and it performs state matching, in
application does not record in the environment that a user is 4.qar 1o only explore new configurations (line 11).

logged in, most subsequent calls will terminate quickly (e.

<HTML>

<HEAD>Topic View</HEAD>

<BODY>

<H1>Admin View of A topic</H1>

B W N e

5 <H2>Administrative Details

</BODY>
</HTML>

N o

](a) HTML output

HTML line | PHP lines in 4(d)
1 42
2 | 43
3 45
4 53, 57
5 | 62
6| 68 .
7| 70 ’(b) output mappm@;

Error at line 6, character 7: end tag for "H2" omitted; possible causes include a missing

end tag, improper nesting of elements, or use of an element where it is not allowed

Line 5, character 1: start tag was here

’ (c) Output of WDG Validato¢

Fig. 5: (a) HTML produced by the script of Figure 4(djb) Output mapping constructed during executi¢c). Part of output of WDG

Validator on the HTML of Figure 5(a).

parameters Program®, oracleO, Initial stateSg
result : Bug reports3;
B : setOf((failure, setOf(pathConstraint)setOf(input)))
B = 2;
toExplore:= emptyQueug;
enqueu@oE xplore (emptyP), emptylnpuf), So));
visited = {{(emptyPathConstrai(y, emptylan(t)_,So>};
while not empty(toExplore) and not timeExpiredi)
(pathConstraintinput, Sstart) := dequeu@oExplore;
(output Seng) = executeConcre(Ssiarn, P, input);
foreach f in getFailuregO, outpu) do
merge(f, pathConstraintinput) into 3;
newConfigs= getConfigénput, output Sstart, Send);
newConfigs= newConfigs- visited
foreach (pathConstraint input, S;) € newConfigslo
enqueu@oExplore (pathCon_strair]t input, Si));
visited:= visitedu (S;, input); o
return B;

© 0o N O oM W N R

e
= O

B R e
A oW N

=
3]

16 Subroutine getConfigénput, output Sstart, Send):

17 configs:= @;

18 C1 A ... A C, := executeSymboliSsiarn, P, input);

19 foreachi = 1,...,ndo

20 newPC:=c; A... ACi_1 A G

21 input := solvépathConstrainy;

22 if input+ L then

23 enqueugonfigs (newPGinput Ssiar));

24 foreach (newlnput, newPG) € analyzeOutpybutpu) do
25 if newlnput# L then

26 configs:= configsu (newPG, newInput, Send);
27 return configs

Fig. 6: The failure detection algorithm. The output of the
algorithm is a set of bug reports, each reports a failure hed t
set of tests exposing that failure. Teelveauxiliary function
uses the constraint solver to find an input satisfying thé pat
constraint, or returnsL if no satisfying input exists. The
merge auxiliary function merges the pair of pathConstraint
and input for an already detected failure into the bug repo
for that failure. TheanalyzeOutputauxiliary function per-
forms an analysis of the output to extract possible traositi

from the current environment state.

r

4.3 Example

We will now illustrate the algorithm of Figure 6 using the
example application of Figure 4. The inputs to the algorithm
are: P is the code from Figure 4, the initial state of the
environment is empty, the first script to execute is the scrip
in Figure 4(a), andD is the WDG HTML validatof. The
algorithm begins on line 3 by initializing the work queue it
one item: an empty input to the script of Figure 4(a) with an
empty path constraint and an empty initial environment.

iteration 1. The first iteration of the outer loop (lines 5-14)
removes that item from the queue (line 6), restores the empty
initial state, and executes the script (line 7).

No failures are observed. The call &xecuteSymbolion
line 18 returns an empty path constraint, so the function
analyzeOutpubn line 24 is executed next, and returns one
user option;{login.php, @, @) for executinglogin.php with no
input, and the empty state. This configuration is added to the
gueue (line 13) since it was not seen before.

iteration 2-5. The next iteration of the top-level loop de-
queues the new work item, and executegin.php With
empty input, and empty state. No failures are found. The
call to executeSymbolin line 18 returns a path constraint
user # admin A user # reg, indicating that the call to
check password 0N line 22 in Figure 4(c) returned fafsesiven
this, the loop at lines 19-23 will generate several new work
items for the same script with the following path constrsint
user # admin A user = reg, and user = admin Which are
obtained by negating the previous path constraint. The loop
on lines 24—26 is not entered, because no user input options
are found. After several similar iterations, two inputs are
discovereduser = adminApw = admin, anduser = regApw = reg.
These corresponds to alternate control flows in which the
check password test succeeds.

iteration 6-7. The next iteration of the top-level loop dequeues
an item that allows theheck password call to succeed (assume

it selecteduser = reg...). Once again, no failures are observed,
but now the session state witlserand pw set is recorded at
line 7. Also, this timeanalyzeOutpufline 24) finds the link to
t[he script in Figure 4(d), and so the loop at lines 24—26 adds
one item to the queue, executingew.php with the current
session state.

7. httpy/htmlhelp.conftoolgvalidatoy
8. For simplicity, we omit the details of this function. It compsa the user
name and password to some constaadsin’ and ‘reg’.

. The Shadow Interpreter is a PHP interpreter that we

Executor Apollo Architecture have modified to propagate and record path constraints
it state ——p| _ STOtE } Bug Finder and positional information associated with output. This
L ;”fge' positional information is used to determine which failures
g .
— -— HTML Tl are likely to be symptoms of the same fault. _
Program shadow Execution Failufes « The State Managerrestores the given state of the envi-
. e Constraints B ety ronment (database, session, cookies) before the execution
g \ e and stores the new environment after the execution.
g \?% The Bug Finder uses an oracle to find HTML failures,
a Minimizer

stores the all bug reports, and finds the minimal conditians o
the input parameters for each bug report. The Bug Finder has
| the following sub-components:

—I « The Oracle finds HTML failures in the output of the

. TheBug Report Repository stores all bug reports found
during all executions.

o The Input Minimizer finds, for a given bug report,

Fig. 7: The architecture of Apollo. the smallest path constraint on the input parameters that

results in inputs inducing the same failure as in the report.

The next iteration of the top-level loop dequeues one work The Input Generator implements the algorithm described

item. Assume that it takes the last one described above., Th|LTSF|gure 6. The Input Generator contains the following sub-

it executes the script in Figure 4(d) with a session that deﬁncomponents.

user and pw but nottype Hence, it produces an execution * 1he Ul Option Analyzer analyzes the HTML output of
With No errors. each execution to convert the interactive user options into

new inputs to execute.
iteration 8-9. The next loop iteration takes that last work . The Symbolic Driver generates new path constraints
item, containing a user and password pair for which the oallt from the constraints found during the execution.
check_password succeeds, with the user name agin’. Once . TheConstraint Solver computes an assignment of values
again, no failures occur, but now the session state sy, to input parameters that satisfies a given path constraint.
pw andtype set is recorded at line 7. This time, there are no . The Value Generator generates values for parameters
new inputs to be derived from the path constraint, since all that are not otherwise constrained, using a combination

prefixes have been covered already. Once again, parsing the of random value generation and constant values mined
output finds the link to the script in Figure 4(d) and adds a from the program source code.

work item to the queue, but with aftirent session state (in
this case, the session state also includes a valugyfey. The

resulting execution of the script in Figure 4(d) with thesses B)
state that includesyperesults in an HTML failure. We modified the Zend PHP interpreter 52.® produce

symbolic path constraints for the executed program, using

5 | the “shadow interpreter” approach [9]. The shadow integsre
MPLEMENTATION performs the regular (concrete) program execution usikg th

We created a tool called Apollo that implements our teclgoncrete values, and simultaneously performs symbolictexe

nique for PHP. Apollo consists of three major componentgon. Creating the shadow interpreter required five altenat
Executor, Bug Finder, and Input Generator illustrated in tg the PHP runtime:

Figure 7. This section first provides a high-level overvieV\i) Associating Symbolic Parameters with Values
of the components and then discusses the pragmatics of thep symbolic variable may be associated with each value.

implementation. Values derived from the input—that is, either read directly
The inputs to Apollo are the program under test and g jnnut or computed from input values—have symbolic

an initial val_ue for the environ_ment. The environment vyill variables associated with them. Values not derived from
usually consist of a database with some values, and adalition o input do not. These associations arise when a value

information about usernaneassword pairs for the database. 5 yead from one of the special array®osT, _GET,
Attempting to retrieve information from the database using g REQUEST, Which store parameters sﬁpplie& to the
randomly chosen values for userngpassword is unlikely to PHprrogram. For example, executing the statensent
be successful. Symbolic execution is equally helplessowith s GET["param1”] results in associating the value read from
the database manager because reversing cryptographie funcp global parameteparani and bound to parameter
tions is beyond the state-of-the-art for constraint saver with the symbolic variablearan. Values maintain their

TheExecutor is responsible for executing a PHP script with - gssqciations through assignments and function calls (thus
a given input in a given state. The executor contains two sub-

components: 9. http//www.php.net

Constraint
Solver

Ul Option
Analyzer

Symbolic
Driver

Value Generator

Input Generator

5.1 Executor

2)

3)

4)

5)

the interpreter performs symbolic execution at the inter- while manually using the subject program on an Apache
procedural level). Importantly, during program execution server.

the concrete values remain, and the shadow interpreterrhe modified interpreter performs symbolic execution along
does not influence execution. with concrete execution, i.e., every variable during paogr
Unlike other projects that perform concrete and symboligkecution has a concrete value and may have additionally
execution [7], [18], [19], [36], our interpreter does nok symbolic value. Only the concrete values influence the
associate complex symbolic expressions with all runtim@ntrol flow during the program execution, while the symboli
values, but only symbolic variables, which exist onlgxecution is only a “witness” that records, but does not
for input-derived values. This design keeps the constraiffluence, control flow decisions at branching points. This
solver simple and reduces the performance overhead. dssign deals with exceptions naturally because exceptions
our results (Section 6) indicate, this lightweight appfoacot disrupt the symbolic-value mapping for variables.

is suficient for the analyzed PHP programs. Our approach to symbolic execution allows us to handle
Storing Constraints at Branch Points many PHP constructs that are problematic in a purely static
At branching points (i.e., value comparisons) that involvgpproach. For instance, for computed variable names ¢&.g.,
values associated with symbolic variables, the interprete g(s5,0)), any symbolic information associated with the value
extends the initially empty path constraint with a conjunghat is held by the variable named hyo will be passed to
that corresponds to the branch actually taken in the exeguby the assignmett. In order to heuristically group HTML
tion. For example, if the program executes a statement fajlures that may be manifestations of the same fault, Apoll
(sname == "John") and this condition succeeds, wher@me records the output statement (i.€4o Or print) that generated

is associated with the symbolic variahigrnane, then the each fragment of HTML output.

algorithm appends the conjungtername = "John" to the State Manager. PHP applications make use of persistent
path constraint. state such as the database, session information, and sookie
Handling PHP Native Functions The State Manager is in charge of (i) restoring the envirartme

Our modified interpreter records conditions for PHPprior to each execution, and (ii) storing the new environmen
specific comparison operations, suchiaset and empty, after each execution.

which can be applied to any variable. Operatioizet
returns a boolean value that indicates whether or not 32 ,

value diferent fromnuLL was supplied for a variable. The5' Bug Finder

empty Operator returns true when applied to: the empﬂ/—he bug finder is in charge of transforming the results of
string, e, "0, NULL, false, OF an empty array. The interpreterthe executed inputs into bug reports. Below is a detailed
records the use ofsset on values with an associateddescription of the components of the bug finder.

symbolic variable, and on uninitialized parameters. Bug Report Repository This repository stores the bug
The isset comparison creates either thotSetor the Set reports found in all executions. Each time a failure is detgc
condition. The constraint solver chooses an arbitraryevalthe corresponding bug report (for all failures with the same
for a parametes if the only condition forp is Set(p). Oth- characteristics) is updated with the path constraint aed th
erwise, it will also take into account other conditions. Thifput inducing the failure. A failure is defined by its char-
NotSetcondition is used only in checking the feasibilityacteristics, which include: the type of the failure (exémut

of a path constraint. A path constraint with tNetSet(p) failure or HTML failure), the corresponding message (PHP er
condition is feasible only if it does not contain any othefor/warning message for execution failures, and validator mes-
conditions onp. The empty comparison creates equality orsage for HTML failures), and the PHP statement generating
inequality conditions between the parameter and the valuée problematic HTML fragments identified by the validator
that are considered empty by PHP. (for HTML failures), or the PHP statement involved in the
Propagating Inputs through Sessions and Cookies PHP interpreter error report (for execution failures). Wiies
The use of session state allows a PHP application to stg¥ploration is complete, each bug report contains onertailu
user-supplied information on the server for retrieval bgharacteristics, (error message and statement involveldein
other scripts. We enhanced the PHP interpreter to recdgdlure) and the sets of path constraints and inputs exgosin
when input parameters are stored in session state. Ti#Bures with the same characteristics.

enables Apollo to track constraints on input parameters inOracle. PHP Web applications output HTMKHTML.

all scripts that use them. Therefore, in Apollo, we use as oracle an HTML validator
Web Server Integration that returns syntactic (malformed) HTML failures found in
Dynamic web applications often depend on informatio given document. We experimented with both tH8ire
supplied by a web-server (such as Apache), and soM&G validatot! and the online W3C markup validation
PHP constructs are simply ignored by the command ligervicé?. Both oracles identified the same HTML failures.
interpreter (e.g.heade). In order to allow Apollo to an- Our experiments use the faster WDG validator.

alyze more PHP code, Apollo supports execution through))

the Apache web-server in addiion 1o the stand-alongl0sn e ar 1 ay dat flow et prsses ousice PPasute
command line executor. A developer can use Apollo t0 11 hpyhtmihelp.contoolsvalidatorofiline

silently analyze the execution and record any failure foundi2. httpy/validator.w3.org

10

Input Minimizer. Apollo implements the algorithm de- <7p}e“c’ho " ch2>WebChess *.$Version.” Login"</h2>:
scribed in Figure 3 to perfornpostmortemminimization -
of the path constraints. For each bug report, the minimizgﬁr‘“ method="post" action="mainmenu.php">
executes the program multiple times, with multiple iNPutS Nick: <input name="txtNick" type="text" size="15" default="admin"/>
that satisfy diterent path constraints, and attempts to find the ;‘;ESV/V - cinput name="pwdPassword® type="password” size="15"/>
shortest path constraint that results (executing the progr</p>
with an input satisfying the path constraint) in the samkifai <p><input name="login" value="login" type="submit"/>

characteristics. <input name="newAccount" value="New Account"
type="button" onClick="window.open(’newuser.php’, ’_self’)"/>
</p>
</form>

5.3 Input Generator

. Fig. 8: A simplified version of the main entry pointn@ex.php) to

Ul Option Analyzer . . . a PHP program. The HTML output of this program contains a form
Many PHP Web applications create interactive HTML pagegth two buttons. Pressing thegin button executesainmenu. php and

that contain user interface elements such as buttons amekssing theewAccount button will execute theewuser.php Script.

menus that require user interaction to execute furtherspart
of the application. In such cases, pressing the button may
result in the execution of additional PHP source files. There To avoid redundant exploration of similar executions,
are two challenges involved in dealing with such interacti/APollo performs state matching (performed implicitly in
applications. First, we need to analyze the HTML output teine 11 of Figure 6) by not adding already-explored tran-
find the referenced scripts, and thefeient values that can SItions.
be supplied as parameters. Second, Apollo needs to be able tgonstraint — Solver. The interpreter implements a
follow input parameters through the shared global inforamat lightweight symbolic execution, in which the only constrtai
(database, theession, and thecookie mechanisms) are equality and inequality with constants. Apollo tramsfe

Apollo approach to the above challenges is to simulaR&th constraints into integer constraints in a straightéod
user interaction by analyzing the dynamically created HTMWay. and useshoco'® to solve them.
output, and tracking the symbolic parameters through theThis approach still allows us to handle values of the stahdar
environment (with the exception of the database). Apoll¥Pes (integer, string), and is straightforward becauseotily
automatically extracts the available user options from tif@nstraints are equality and inequalfty _
HTML output. Each option contains the script to execute, [N cases where parameters are unconstrained, Apollo uses a
along with any parameters (with default values if suppliedPmbination of values that are randomly generated and salue
for that script. Apollo also analyzes recursive static HTMLthat are obtained by mining the program text for constamts (i
documents that can be called from the dynamic HTML outplR@rticular, constants used in comparison expressions).
i.e. Apollo traverses hyperlinks in the generated dynamic
HTML that link to other HTML documents on the same site® EVALUATION

Since additional code on the client side (for instance, JaWe experimentally measured th&extiveness of Apollo by
script) might be executed when a button is pressed, thising it to find faults in PHP web applications. We designed
approach might induce false positive bug reports. In oexperiments to answer the following research questions:

experiments, this limitation produced no false positivegbu Q1. How many faults can Apollo find, and of what

reports. varieties?

For example after analyzing the output of the program of Q2. How dfective is the fault detection technique of
Figure 8, the Ul Option Analyzer will return the following Apollo compared to alternative approaches in terms
two options: of the number and severity of discovered faults and
1) Script: “mainmenu.php” the line coverage achieved?

PathConstrainttxtiick = " Admir? A Exist pudpassword) Q3. How dfective is our minimization technique in re-
2) Script: “newuser.php” ducing the size of input parameter constraints and
PathConstrainto failure-inducing inputs?

The Symbolic Driver implements the combined concrete For the evaluation, we selected 6 open-source PHP programs
and symbolic algorithm of Figure 2. The driver has twdOm httpj/sourceforge.net (see Figure 9):
main tasks: select which input to consider next (line 5), and+ fagforge: tool for creating and managing documents.
create additional inputs from each executed input (by fegat * Webchessonline chess game.
conjuncts in the path constraint). To select which input to » Schoolmate PHRMySQL solution for administering el-
consider next, the driver uses amverage heuristicsimilar ementary, middle, and high schools.
to those used in EXE [7] and SAGE [19]. Each conjunct in * Phpsysinfa displays system information, e.g., uptime,
the path constraint knows the branch that created the cenjun ~ CPU, memory, etc.
and the driv_er keeps track of all branches preyiously exatut 13, hitpf/choco-solver.ngindex.php2titleMain_Page
and favors inputs created from path constraints that contai 14. Floating-point values can be handled in the same waygthoone of
un-executed branches. the examined programs required it.

11

program version #files PHP LOC #downloads Fault Category Faults | Percentage
fagforge 1.3.2 19 734 14,164 Malformed SQL 60 71.4
webchess 0.9.0 24 2,226 32,352 Array index out of bound 5 6.0
schoolmate 154 63 4,263 4,466 Resource used adfeet 4 4.8
phpsysinfo 2.5.3 73 7,745 492,217 Failed to open stream 4 4.8
timeclock 1.0.3 62 13,879 23,708 File not found 2 2.6
phpBB2 2.0.21 78 16,993 18,668,112 Can’t open connection 2 2.6
Assigning reference 2 2.6

Fig. 9: Subject programétfiles counts the.php and . inc files. PHP Undefined function 1 1.2

LOC is the number of executable PHP lines, computed by the
interpreter as the number of lines with PHP opcodemwnloadsis

the number of downloads fromxtp://sourceforge.net. Fig. 11: The execution faults found by Apollo.

strategy for 10 minutes on each subject program. This time
limit was chosen arbitrarily, but it allows each strategy to
generate hundreds of inputs and we have no reason to believe
that the results would be materiallyffected by a dterent

. timeclock is a web-based timeclock system.
« phpBB2 is a discussion forum.

6.1 Generation Strategies time limit. This time budget includes all experimental task
We use the following test input generation strategies in thé&- Program execution, harvesting of constant valuesfro
remainder of this section: program source, test generation, constraint solving (&her

baé%plicable), output validation via an oracle, and line cage
measurement. To avoid bias, we ran both strategies ins@le th
same experimental harness. This includes the Database Man-
qaer (Section 5), which supplies user names and passwords
or database access. For our experiments, we use the WDG
%@'ne HTML validator, version 1.2.2.
values that appear textually in the program source and < alsq ccy;mpargd Apollo"s results to the re;ults reported
from default values. A diiculty is that the parameters’ > Minamide’s static analysis [31] on four subject programs
r%ectmn 6.3.1 presents the results).

i iately cl f . . .
names and types are nqt |mmed|ate_y clear from t To answer the third research question, about fiiecgve-
source code. The randomized strategy infers the parame-

ters’ names and types from dynamic traces—any variabi§ss of the input minimization, we performed the following e

for which the user can supply a value, is classified aspaenments. Recall tha_t several e>_<ecut|on_ p_at_hs E.md mpay_s m
parameter. expose the same failure. Our input minimization algorithm

attempts to produce the shortest possible input that espose
each failure. The inputs to the minimizer are the failurenidu
6.2 Methodology by the algorithm in Figure 6 along with all the execution sath
To answer the first research question (Q1) we applied Apollbat expose each failure.

to 6 subject programs and we classified the discovered éailur

into five groups based on theirftérent failure characteristics: 6.3 Results

- execution crash:the PHP interpreter terminates with anrigure 10 tabulates the faults (we manually inspected most

. Apollo generates test inputs using the technique descri
in Section 3.

. Randomizedis an approach similar to the one propose
by Halfond and Orso [20] for JavaScript. The test inp
generation strategy generates test inputs by giving rand
values to parameters. The values are chosen from cons

exception. of the reported failures and, to the best of our knowledge,
- execution error: the PHP interpreter emits an errory|| reported faults are counted only once). and line cowerag
message that is visible in the generated HTML. results of running the two test input generation strategies
. execution warning: the PHP interpreter emits an errokhe subject programs. Thipollo strategy found 302 faults
message that is invisible in the generated HTML. in the subject applications, versus only 95 faultsRamdom-
« HTML error: the program generates HTML for whichjzed, Moreover, theApollo test generation strategy achieved
the validator produces an error report. an average line coverage of 50.2%, versus only 11.6% for
« HTML warning: the program generates HTML for Randomized
which the validator produces a warning report. The coverage ophpbb2 andtimeclock is relatively small
This classification is a refinement of the one presented as the output of these applications contains client-sidiptsc
Section 2.3. written in JavaScript which Apollo currently does not arzaly

To answer the second research question (Q2) we compareffigures 11 and 12 classify the faults reported by Apollo.
our technique to two other approaches. We compared bdthe execution errors (Figure 11) are dominated by database-
the coverage achieved and the number of faults found witblated errors, where the application haffidilties accessing
the Randomizedgeneration strategy. Coverage was measuréte database, resulting in error messages such as (1) lsdppl
using the line coverage metric, i.e., the ratio of the nundfer argument is not a valid MySQL result resource” and (2)
executed lines to the total number of lines with executabl® P “Unable to jump to row 0 on MySQL result”. The two SQL-
code in each application. We ran each test input generatie@tated error messages quoted above occurred in fagforge (9

12

line execution HTML validation
program strategy #inputs generated | coverage % || crash | error | warning error warning Total faults
faqforge Randomized 1461 19.2 0 0 0 10 1 11
Apollo 717 92.4 0 9 0 46 19 74
webchess Randomized 1805 5.9 1 13 2 3 0 19
Apollo 557 42.0 1 20 2 7 0 35
Randomized 1396 8.3 1 0 0 18 0 19
schoolmate | 51, 724 64.9 2| = 9 58 0 100
phpsysinfo Randomized 406 21.3 0 5 3 2 0 10
Apollo 143 56.2 0 5 4 2 0 11
timeclock Randomized 928 3.2 0 1 1 29 1 32
Apollo 789 14.1 0 1 1 64 1 67
Randomized 2497 11.4 0 0 3 1 0 4
phpbb2 Apollo 649 31.7 0 0 5 21 0 26
Total Randomized 8493 11.6 2 19 9 63 2 95
Apollo 3579 50.2 3 56 21 198 20 302

Fig. 10: Experimental results for 10-minute test generation runs. Thle f@esents results for each subject program, and each strategy,
separately. Thetinputs column presents the number of inputs that each strategy created in #retgie budget. Theoveragecolumn

lists the line coverage achieved by the generated inputs.eXbeution crasheserrors, warnings and HTML errors , warnings columns

list the number of faults in the respective categories. Tol faults columns sums up the number of discovered faults.

Fault Category Faults | Percentage| program, the PHP interpreter attempts to load a file that
Element not allowed 40 17.5 does not exist in the current distribution of schoolmatecsi
Missing end tag 39 17.11 schoolmate has 63 files, and PHP is an interpreted language
Can't generate system identifigr 25 11.0| thatallows the use of run-time string values when loadiregfil
No attribute 25 11.0] it is hard to detect such faults. Apollo also discovers a eve
Unopened close tag 21 9.2 fault in the webchess subject program. This fault occursnwhe
Missing attribute 21 9.2 the interpreter tries to call to a function that is undefinete
character not allowed 11 48| the PHP file implementing it is not included due to a value
End tag for unfinished element 11 4.8 supplied as one of the parameters.
Incorrect attribute 8 3.5 The 228 malformed HTML faults can be divided into sev-
Element declaration 8 3.5 eral categories (Figure 12), These faults are mainly corecker
finished prematurely with HTML elements that occur in the wrong place, HTML
Unfinished tag 7 3.1 elements with incorrect values, and with unclosed tags. The
Duplicate specification 4 18 breakdown of HTML faults is similar across thefférent PHP
Undefined element 4 1.8 applications.
Incorrect attribute value 4 1.8

Fig. 12: The HTML faults found by Apolio. 6.3.1 Comparison with Static Analysis

Minamide [31] presents a static analysis for discovering
HTML malformedness faults in PHP applications. Minamide’s
cases of error 1) and webchess (19 cases of error 1 and 1 casalysis tool approximates the string output of a program
of error 2), schoolmate (20 cases of error 1 and 9 casesvagfh a context-free grammar, then discovers unclosed tags
error 2), timeclock (1 case of error 1), and phpbb2 (1 case ly intersecting this grammar with the regular expression of
error 1). matched pairs of delimiters (opetosed tags). By contrast,
These failures have the same cause: user-supplied input analysis uses an HTML validator and covers the entire
parameters are concatenated directly into SQL query strintanguage standard.
leaving these parameters blank results in malformed SQLWe performed our evaluation on a set of applications
causing themysql query functions to return an invalid result. overlapping with Minamide’s (webchess, fagforge, school-
The subject programs failed to check the return value ofate, timeclock). For these four overlapping subject pro-
mysql query, and simply assume that a valid result is regrams, Apollo is both moreffectiveand moregfficient than
turned. These faults are indications of a potentially sexioMinamide’s tool. Apollo found 3.4 times as many HTML
problem: the concatenation of user-supplied strings i@ S validation faults as Minamide’s tool (195 vs. 56). The fault
queries makes these programs vulnerable to SQL injectifsund by Minamide’s tool are not publicly available so we do
attacks [10]. Thus our testing approach indicates posS@Qe not know whether Apollo discovered all faults that Minaméde
injection vulnerabilities despite not being specificalgs@ined tool discovered. However, Apollo found 80 execution faults
to look for security issues. which are out of reach for Minamide’s tool. Apollo is also
The three execution crashes (when the interpreter teresnatore scalable—on schoolmate, Apollo found 58 malformed
with an exception) in Figure 10 happen when the interpreteiTML faults in 10 minutes, while Minamide’s tool found
tries to load files or functions that are missing. For insganconly 14 faults in 126 minutes. The considerably longer ragni
for some inputs that can be supplied to the schoolmate dubjgéme of Minamide’s tool is due to the construction of large

13

success
rate%

path constraints inputs

orig. size reduction | orig. size reduction |nternal Validity. Did Apollo discover real, unseeded, and

program

fagforge 64 223 78% 93 69% unknown faults? Since we used subject projects developed
WethhIeSSt gi gg-g 2%’ ﬁ-g Sggjo by others, we could not influence the quality of the subject
schoolmate . (0} . (1]

phpsysinfo 82 243 82% 175 740, Programs. Apollo does not search for known or seeded faults,

but it finds real faults in real programs. For those subject
Fig. 13: Results of minimization. Theuccess rateindicates the programs that connect to a database, we populated the databa
percentage of faults whose exposing input was successfully mipith random records. The only thing that is “seeded” into
imized (i.e., the minimizer found a shorter exposing input). Thg,e experiment is a usernafpassword combination, so that

orig. size columns list the average size of original (un-minimizedné .
path constraints and inputs. The size of a path constraint is 80”0 can access the records stored in the database.

number of conjuncts. The size of an input is the number of key- External Validity. Will our results generalize beyond the
value pairs in the input. Theeduction columns list the amount by subject programs? We only used Apollo to find faults in 6 PHP
which the Tinimized_size is smaller than the unminimized size (i.@yrojects. These may have serious quality problems, or may be
1~ Gnminmized- The higher the percentage, the more successful ti&representative in other ways. Four of the subject program
minimization. were also used as subject programs by Minamide [31]. We
chose the same programs to compare our results. We chose

. an additional subject program, phpsysinfo, since it is &tmo
automata and to the expensive algorithm for checking dijoi 4, e the size of the largest subject that Minamide used.

ness between regular expressions and context-free Iaeg“ag\dditionally, phpsysinfo is a mature and active project in

) - sourceforge. It is widely used, as witnessed by almost half a

6.3.2 Path Constraint Minimization million downloads (Figure 9), and it is ranked in the top 0.5%
We measure thefkectiveness of the minimization algorithmprojects on sourceforge (rank 997 of 176,575 projects as
of Section 3.3 via the reduction ratio between the size of thié 7 May 2008). Nevertheless, Apollo found 11 faults in
shortest original (un-minimized) path constraint (andui)p phpsysinfo.
and the minimized path constraint (and input). Reliability. Are the results reproducible? The subject pro-

Figure 13 tabulates the results. The results show that @rams that we used are publicly available from sourceforge.
input minimization technique féectively reduces the size of The faults that we found are available for examination at
inputs by at least 42%, for more than 50% of the faults. httpy/pag.csail.mit.ediapollo.

6.4 Threats to Validity 6.5 Limitations

Construct Validity. Why do we count malformed HTML Simulating user inputs based locally executed JavaScript

as a defect in dynamically generated webpages? Doesltee HTML output of a PHP script might contain buttons and
webpage with malformed HTML pose a real problem or thiarbitrary snippets of JavaScript code that are executechwhe
is an artificial problem generated by the overly consereatithe user presses the corresponding button. The actions that
specification of the HTML language? Although web browsethe JavaScript might perform are currently not analyzed by
are resilient to malformed HTML, we have encountered cas@gollo. For instance, the JavaScript code might pass specifi
when malformed HTML crashed the popular Internet Explorerguments to the PHP script. As a result, Apollo might report
web browser. More importantly, even though a particuldalse positives. Apollo might report a false positive if Ajpo
browser might tolerate malformed HTML, fékrent browsers decides to execute a PHP script as a result of simulatingra use
or different versions of the same browser may not displgyessing a button that is not visible. Apollo might also me@o

all information in the presence of malformed HTML. Thidalse positive if it attempts to set an input parameter thauhel
becomes crucial for some websites, for example for sitbave been set by the JavaScript code. In our experiments,
related to financial transactions. Many websites provide Apollo did not report any false positives.

button for verifying the validity of statically generated'MIL. Limited tracking in native methods. Apollo has limited
The challenges of dynamically generated webpages praventtracking of input parameters through PHP native methods.
same institutions from validating the content. PHP native methods are implemented in C, which make

Why do we use line coverage as a quality metric? We ugedifficult to automatically track how input parameters are
line coverage only as secondarymetric, ourprimary metric transformed into output parameters. We have modified the
being the number of faults found. Line coverage indicatd®HP interpreter to track parameters across a very smalesubs
how much of the application was explored by the analysisf the PHP native methods. Similar to [41], we plan to
An analysis can only find faults in lines that are covered, sweate an external language to model the dependences betwee
more coverage generally leads to more faults being detect@gputs and outputs for native methods to increase Apolle lin

Why do we present the user with minimized path constrainteverage when native methods are executed.
and inputs in addition to the inputs exposing the failure? Limited sources of input parameters. Apollo currently
Although an input that corresponds to a longer path comgtraconsiders as parameters only inputs coming from the global
still exposes the same failure, in our experience, the rafrav arrays POST, GET and REQUEST. Supporting other
superfluous information helps programmers with pinpontinglobal parameters such asENV and COOKIE is straight-
the location of the fault. forward.

14

7 REeLATED WORK Emmi et al. [14] extend concolic testing to database ap-

An earlier version of this paper was presented at ISSTA(Q8 [thcauons. This approach creates and inserts databasedsec
The Apollo tool presented there did not handle the problem 8Rd enables testing program code that depends on embedded
automatically simulating user interactions in web appiges. SQL queries. , ,
Instead, it relied on a manual transformation of the program'Vassermann et al. [42] present a concolic testing tool for
under test to enable the exploration of a few selected uddnP- _The goal QTIthelf work is _tO. aqtomatIC_al_ly |Qent|fy
inputs. The current paper also extends [2] by providing _sAacurlty vulnerabilities cau_sed by injecting mahmousrq;j_s_
more extensive evaluation, which includes two new large wé© SQL commands. Their tool uses a framework of finite-
applications, and by presenting a detailed classificatfcthe state transducers and a speC|aI|zeq constrallnt solver.
faults found by Apollo. In addition, the Apollo tool presedt ~ Some approaches aim at checking functional correctness.
in [2] did not yet support web server integration, A numbe_r of to_ols [4], [6] use a separate |mplem_ent_at!on of
In the remainder of this section, we discuss three categorfB€ function being tested to compare outputs. This limies th
of related work: (i) combined concrete and symbolic exec@bproach to situations where a second implementationsexist

web applications. there are two significant flerences. First, our work goes

beyond simple assertion failures and crashes by using on
an oracle (in the form of an HTML validator) to determine
correctness, which means that our tool can handle situstion
DART [18] is a tool for finding combinations of input valueswhere the program has functionally incorrect behavior atith

and environment settings for C programs that trigger erraiglying on programmer assertions. Second, our work adesess
such as assertion failures, crashes and nonterminatioRTDAPHP’s complex execution model, that involves multiple stsri
combines random test generation with symbolic reasonifiyoked via user-interface options in generated HTML pages
to keep track of constraints for executed control-flow pathand communicating values via session state and cookies. The
A constraint solver directs subsequent executions towarglsly other concolic testing approach for PHP [42] does not

uncovered branches. CUTE [36] is a variation (calmh- present a fully automatic solution for dealing with mulépl
colic testing on the DART approach. The authors of CUTEnterrelated PHP scripts.

introduce a notion of approximate pointer constraints tabéa
reasoning over memory graphs and handle programs that use . .
pointer arithmetic. 7.2 Minimizing Failure-Inducing Inputs
Subsequent work extends the original approach of co@ur work minimizes the constraints on the input parame-
bining concrete and symbolic executions to accomplish twers. This shortens the failure-inducing inputs and to help
primary goals: 1) improving scalability [1], [5], [16], [17 to pinpoint the cause of faults. Godefroat al. [19] faced
[19], [29], and 2) improving execution coverage and fauthis challenge since their technique produces severahdist
detection capability through better support for pointensl a inputs that expose the same fault. Their approach hashes all
arrays [7], [36], better search heuristics [19], [24], [28] such inputs and returns an example failure-inducing input.
by encompassing wider domains such as database appligark also addresses another issue: identifying the mingeal
tions [14]. of program variables that are essential to induce the failur
Godefroid [16] proposed a compositional approach to ina this regard, our work is similar talelta debugging8],
prove the scalability of DART. In this approach, summariefgl4] and its extensionhierarchical delta debugging32].
of lower level functions are computed dynamically when éheShese approaches modify the failure inducing input diyectl
functions are first encountered. The summaries are exgresgris leading to a single, minimal failure-inducing input. |
as pre- and post-conditions of the function in terms of itsontrast, our technique modifies the set of constraints on
inputs. Subsequent invocations of these lower level fonsti the failure-inducing input. This creates minimpéatterns of
reuse the summary. Anared al. [1] extend this compositional failure-inducing inputs, which facilitates debugging. idover,
approach to be demand-driven to reduce the summary compur technique is morefiécient, because it takes advantage of
tation efort. the (partial) overlapping of flierent inputs.
Exploiting the structure of the program input may improve
scalability [17], [29]. Majumdar and Xu [29] abstract caoxtte , o
free grammars that represent the program inputs to producé3 Testing of Web Applications
symbolic grammar. This grammar reduces the number of inptie language under consideration in this paper, PHP, ig quit
strings to enumerate during test generation. different from the focus of previous testing research. PHP
Majumdar and Sen [28] describe hybrid concolic testingposes several new challenges such as dynamic inclusion of
interleaves random testing with bounded exhaustive syimbdiiles, and function definitions that are statements. Exgstin
exploration to achieve better coverage. Inkumsah and Xg [2echniques for fault detection in PHP applications useicstat
combine evolutionary testing using genetic mutations witlinalysis and target security vulnerabilities suclS€4. injec-
concolic testing to produce longer sequences of test inpuisn or cross-site scriptindXSS) attacks [23], [26], [31], [40],
SAGE [19] also uses improved heuristics, calletlite-box [43]. In particular, Minamide [31] uses static string arsay
fuzzing to achieve higher branch coverage. and language transducers to model PHP string operations to

7.1 Combined Concrete and Symbolic Execution

15

generatepotential HTML output—represented by a context-or ¢) static analysis of server-side implementation logig][
free grammar—from the web application. This method can de approaches that use client-side information or server-
used to generate HTML document instances of the resultisigle monitoring information are inherently incompletedan
grammar and to validate them using an existing HTMLthe quality of generated abstractions depends on the yualit
validator. As a more complete alternative, Minamide pregosof the tests run.
a matching validationwhich checks for containment of the Halfond and Orso [20] use static analysis of the server-side
generated context free grammar against a regular subgat ofimplementation logic to extract a web application’s inded,
HTML specification. However, this approach can only chedke., the set of input parameters and their potential valliesy
for matching start and end tags in the HTML output, whilemplemented their technique for JavaScript. They obtained
our technique covers the entire HTML specification. Alsdyetter code coverage with test cases based on the interface
flow-insensitive and context-insensitive approximatiamshe extracted using their technique as compared to the tess case
static analysis techniques used in this method result sefabased on the interface extracted using a conventional web
positives, while our method reports only real faults. crawler. However, the coverage may depend on the choices
Kiezunet al. present a dynamic tool, Ardilla [27], to createmade by the test generator to combine parameter values—an
SQL and XSS attacks. Their tool uses dynamic taintingxhaustive combination of values may be needed to maximize
concolic execution, and attack-candidate generation afid vcode coverage. In contrast, our work uses dynamic analysis
dation. Like ours, their tool reports only real faults. Hsee of server side implementation logic for fault detection and
Kiezun et al. focus on finding security faults, while weminimizes the number of inputs needed to maximize the
concentrate on functional correctness. Their tool buildswd coverage. Furthermore, we include results on fault detecti
extends the input-generation component of Apollo but dats rcapabilities of our technique. We implemented and evatlate
address the problem of user interaction. It is an intergstirea (Section 6) a version of Halfond and Orso’s technique for PHP
of future research to combine Apollo’s user-interactiord anCompared to that re-implementation, Apollo achieved highe
state-matching with Ardilla’s exploit-detection capatigls. line coverage (50.2% vs. 11.6%) and found more faults (302
McAllister et al. [30] also tackle the problem of testingvs. 95).
interactive web application. Their approach attempts oo
user interactions. Their method relies on pre-recordettaf 8 CoNCLUSIONS

user intera.lctions,.while our approach' automatically d{em We have presented a technique for finding faults in PHP
allowable interactions. Moreover, their approach to higdl web applications that is based on combined concrete and

pers_iste_nt state relies on instrumenting one particulab WEymbolic execution. The work is novel in several respects.
application framework, Django. In contrast, our approaeh First, the technique not only detects run-time errors bso al

.to mstrt_;ment th_e PHP runtlme. system and observe .dat‘f.’lbﬁ%s an HTML validator as an oracle to determine situations
interactions. This allows handling state of PHP appligatio where malformed HTML is created. Second, we address a

regardlegs of any framework they may use.) number of PHP-specific issues, such as the simulation of
B_e nedikiet al_. [3] present a tool, VeriWeb, for aUtomatlcalIyinteractive user input that occurs when user interface ehtsn

testing d_ynam|c webpages. They use a mod_el CheCker0 generated HTML pages are activated, resulting in the

systematically explore all paths (up to a certain bound) @ecution of additional PHP scripts. Third, we perform an

user navigate in gweb site. When thg exploration gncountg omated analysis to minimize the size of failure-indgcin
HTML forms, VeriWeb usesSmartProfiles SmartProfiles are inputs

user-specified attribute-value pairs that are used to aanem We created a tool, Apollo, that implements the analysis.
cally populate forms and supply values that should be pEII'j"dWe evaluated Apollo on 6 open-source PHP web applications.

?S '”pulzs' hAlthOUQh VenWe(;o can autom?tlcalh/ fill in th?Apollo’s test generation strategy achieves over 50% lineco
orms, the human tester needs to pre-popu ate the userssro ng. Apollo found a total of 302 faults in these applicati@?
with valyes tha}t a user would provide. In _contrast, Apo"%xecution problems and 218 cases of malformed HTML.
automatically discovers input values by looking at the bhan gy Apollo also minimizes the size of failure-indugin
conditions along an execu.tlon path. Benedittal. do not inputs: the minimized inputs are up to &3maller than the
report any faults found, while we report 302. unminimized ones

Dynamic analysis of string values generated by PHP web '
applications has been considered ireactivemode to prevent
the execution of insidious commandmtfusion preventioh
and to raise an alerintrusion detectiop[25], [34], [38]. As [1] S.Anand, P. Godefroid, and N. Tillmann. Demand-driven cosiiional

. . . symbolic execution. IMTACAS 2008.
far as we know, our work is the first attemptmbactivefault 51 5™ artzi, A. Kiezun, 3. Dolby, F. Tip, D. Dig, A. Paradkaand M. D.
detection in PHP web applications using dynamic analysis. Ernst. Finding bugs in dynamic web applications. IBSTA pages
i i i i 261-272, 2008.

Finally, our W(.Jr.k '? related tomplementatlo_n basedas [3] M. Benedikt, J. Freire, and P. Godefroid. Veriweb: Autoimally testing
opposed tospecification basece.g., [35]) testing of web dynamic Web sites. IWWW 2002,
applications. These works abstract the application behnhavij4] D. Brumley, J. Caballero, Z. Liang, J. Newsome, and D. Sdfmyvards

using a) client-side information such as user requests and ¢ automatic discovery of deviations in binary implementatiorithvap-
plications to error detection and fingerprint generatianPtoceedings

responding application responses [12], [15], or b) sesie- of 16th USENIX Security Symposium on USENIX Security Syamos
monitoring information such as user session data [13],,[37] 2007.

REFERENCES

16

(5]

(el
(7]
(8]
El
(20]

(11]

(12]

(13]

[14]
(15]

[16]
(17]

(18]
(19]
(20]
[21]
(22]

(23]

[24]

(25]
(26]
(27]
(28]

[29]

(30]

(31]
(32]

[33]
(34]

(35]
(36]
(37]
(38]

(39]

C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unassisteti artomatic
generation of high-coverage tests for complex systems prograln
OSD]|, 2008.

C. Cadar and D. R. Engler. Execution generated test ca$es to
make systems code crash itself. 3RIN 2005.

C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. Rader.
EXE: automatically generating inputs of death. G€S 2006.

H. Cleve and A. Zeller. Locating causes of program fakir InICSE
2005.

C. Csallner, N. Tillmann, and Y. Smaragdakis. DySy: Dynagyimbolic
execution for invariant inference. ICSE 2008.

D. Dean and D. Wagner. Intrusion detection via statialgsis.
Symposium on Research in Security and Priyadgsy 2001.

C. Demartini, R. losif, and R. Sisto. A deadlock deteatitool
for concurrent Java programsSoftware — Practice and Experience
29(7):577-603, June 1999.

S. Elbaum, K.-R. Chilakamarri, M. Fisher, and G. Rotherm&Veb
application characterization through directed requdstS¥ODA 2006.
S. Elbaum, S. Karre, G. Rothermel, and M. Fisher. Leverggiser-
session data to support Web application testinBEE Trans. Softw.
Eng, 31(3), 2005.

M. Emmi, R. Majumdar, and K. Sen. Dynamic test input generafor
database applications. IBSTA 2007.

M. Fisher, S. G. Elbaum, and G. Rothermel. Dynamic charaetéon
of Web application interfaces. IRASE 2007.

P. Godefroid. Compositional dynamic test generationP@PL, 2007.
P. Godefroid, A. Kigun, and M. Y. Levin. Grammar-based whitebox
fuzzing. InPLDI, 2008.

P. Godefroid, N. Klarlund, and K. Sen.
random testing. IiPLDI, 2005.

P. Godefroid, M. Y. Levin, and D. Molnar. Automated whitx fuzz
testing. INNDSS 2008.

W. G. J. Halfond and A. Orso. Improving test case genenafor Web
applications using automated interface discoveryESEC-FSE2007.

K. Havelund and T. Pressburger. Model checking Javgnaros using
Java PathFinderSTTT 2(4):366-381, 2000.

G. J. Holzmann. The model checker SPINSoftware Engineering
23(5):279-295, 1997.

Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D. T. Lee, andYs.-
Ku. Verifying Web applications using bounded model checkirlg.
Proceedings of International Conference on Dependablde8ys and
Networks 2004.

K. Inkumsah and T. Xie. Evacon: a framework for integrgtievolu-
tionary and concolic testing for object-oriented programsASE 2007.

M. Johns and C. Beyerlein. SMask: preventing injecttacks in Web
applications by approximating automatic datale separation. I8AG
2007.

N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A statica@yrsis tool for
detecting Web application vulnerabilities (short papen)Security and
Privacy, 2006.

A. Kiezun, P. Guo, K. Jayaraman, and M. Ernst. Automatic creation
of SQL injection and cross-site scripting attacks. Rroceedings of
International Conference of Software Engineering (ICSE)09.

R. Majumdar and K. Sen. Hybrid concolic testing. IIBSE 2007.

R. Majumdar and R.-G. Xu. Directed test generation usgmbolic
grammars. IPASE 2007.

S. McAllister, E. Kirda, and C. Kruegel. Leveraging useteractions
for in-depth testing of web applications. IRAID '08: Proceedings
of the 11th international symposium on Recent Advancestmsion
Detection pages 191-210, Berlin, Heidelberg, 2008. Springer-‘derla
Y. Minamide. Static approximation of dynamically genedtWeb
pages. InWWW 2005.

G. Misherghi and Z. Su. HDD: hierarchical delta debumgiln ICSE
2006.

R. O'Callahan. Personal communication, 2008.

T. Pietraszek and C. V. Berghe. Defending against tigacattacks
through context-sensitive string evaluation. RAID, 2005.

F. Ricca and P. Tonella. Analysis and testing of Web aailbns. In
ICSE 2001.

K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unittieg engine
for C. In FSE 2005.

S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock. Autecheeplay
and failure detection for Web applications. ASE 2005.

Z. Su and G. Wassermann. The essence of command injectamksat
in Web applications. IlPOPL, 2006.

W. Visser, C. S. Rsareanu, and R. Pahek. Test input generation for
java containers using state matching.|85TA 2006.

[40]
[41]

[42]

[43]

[44]
In
[45]

DART: Directedt@mated

17

G. Wassermann and Z. Su. Sound and precise analysis of Web
applications for injection vulnerabilities. IRLDI, 2007.

G. Wassermann and Z. Su. Static detection of cross-sitptisig
vulnerabilities. InICSE 2008.

G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamarad Z. Su.
Dynamic test input generation for web applications.Pimceedings of
the ACMSIGSOFT International Symposium on Software Testing and
Analysis (ISSTA 2008pages 249-260, 2008.

Y. Xie and A. Aiken. Static detection of security vulabilities in
scripting languages. IVSENIX-SS2006.

A. Zeller. Yesterday, my program worked. Today, it does. Why? In
FSE 1999.

F. Zoufaly. Web standards and search engine optimizggeo) — does
google care about the quality of your markup?, 2008.

