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Abstract problem and shed new light on recent algorithms. What
§ are the key challenges and what are the important compo-
nents that make blind deconvolution possible? Additignall
which aspects of the problem should attract further re$earc
efforts?

One of the puzzling aspects of blind deconvolution is
the failure of the MAP approach. Recent papers empha-
size the usage of a sparse derivative prior to favor sharp im-
ages. However, a direct application of this principle has
not yielded the expected results and all algorithms have
required additional components, such as marginalization
across all possible images€, 4, 14], spatially-varying
terms [/, 19, or solvers that vary their optimization en-
ergy over time [9. In this paper we analyze the source
of the MAP failure. We show that counter-intuitively, the
most favorable solution under a sparse prior is a blurry im-
age and not a sharp one. Thus, the global optimum of the
MAP approach is the no-blur explanation. We discuss so-
lutions to the problem and analyze the answers provided by
existing algorithms. We show that one key property mak-
. ing blind deconvolution possible is the strong asymmetry
1. Introduction between the dimensionalities efandk. While the number

Blind deconvolution is the problem of recovering a sharp of unknowns inz increases with image size, the dimension-
version of an input blurry image when the blur kernel is ality of £ remains small. Therefore, while a simultaneous
unknown [L0]. Mathematically, we wish to decompose a MAP estimation of bothx andk fails, a MAP estimation of
blurred imagey as k alone (marginalizing ovet), is well constrained and re-

y=k®x (1) covers an accurate kernel. We suggest that while the sparse
wherex is a visually plausible sharp image, ahds a non prior is helpful, the key component making blind deconvo-
negative blur kernel, whose support is small compared tolution possible is not the choice of prior, but the thought-
the image size. This problem is severely ill-posed and thereful choice of estimator. Furthermore, we show that with

Blind deconvolution is the recovery of a sharp version o
a blurred image when the blur kernel is unknown. Recent
algorithms have afforded dramatic progress, yet many as-
pects of the problem remain challenging and hard to under-
stand. The goal of this paper is to analyze and evaluate re-
cent blind deconvolution algorithms both theoreticallydan
experimentally. We explain the previously reported failur
of the naive MAP approach by demonstrating that it mostly
favors no-blur explanations. On the other hand we show
that since the kernel size is often smaller than the image
size a MAP estimation of the kernel alone can be well con-
strained and accurately recover the true blur.

The plethora of recent deconvolution techniques makes
an experimental evaluation on ground-truth data important
We have collected blur data with ground truth and com-
pared recent algorithms under equal settings. Additionall
our data demonstrates that the shift-invariant blur assump
tion made by most algorithms is often violated.

is an infinite set of pairéz, k) explaining any observegl a proper estimation rule, blind deconvolution can be per-
For example, One undesirable solution that perfectly satis formed even with a weak Gaussian prior.
fies eq. 1 is the no-blur explanatiohis the delta (identity) Finally, we collect motion-blurred data with ground

kernel andr = y. The ill-posed nature of the problem im- truth. This data allows us to quantitatively compare re-

plies that additional assumptions eror £ must be intro-  cent blind deconvolution algorithms. Our evaluation sug-

duced. gest that the variational Bayes approachZyfqutperforms
Blind deconvolution is the subject of numerous papers all existing alternatives. This data also shows that th& shi

in the signal and image processing literature, to name a fewinvariance convolution model involved in most existing al-

consider[, 8,22,15, 17 and the survey in1(]. Despitethe  gorithms is often violated and that realistic camera shake

exhaustive research, results on real world images argrarel includes in-plane rotations.

produced. Recent algorithms have proposed to address the . ) o

ill-posedness of blind deconvolution by characterizings- 2. MAP,, ;. estimation and its limitations

ing natural image statistics.§, 4, 14, 6, 7, 3, 2(]. While In this papery denotes an observed blurry image, which

this principle has lead to tremendous progress, the resultss a convolution of an unknown sharp imagevith an un-

are still far from commercial standards. Blind deconvolu- known blur kernek, p|u5 noisen (this paper assumes ii.d.

tion algorithms exhibit some common building principles, Gaussian noise):

and vary in others. The goal of this paper is to analyze the y=k®z+n. 2)



Using capital letters for the Fourier transform of a signal: — oranal | — orignal
Yw = Kwa + Nw- (3)
The goal of blind deconvolution is to infer bothandx
given a single inpuy. Additionally, k£ is non negative, and
its support is often small compared to the image size. )
The simplest approach is a maximum-a-posteriori T 0
(MAP,. ;1) estimation, seeking a paif, k) maximizing: (@)

p(x, kly) o< p(ylz, k)p(z)p(k). (4) : [ = oo ! [= |
For simplicity of the exposition, we assume a uniform prior N
on k. The likelihood termp(y|z, k) is the data fitting term
logp(ylz, k) = —A||k ® 2 — y||*>. The priorp(x) favors
natural images, usually based on the observation that their
gradient distribution is sparse. A common measure is

log p(z) = — Z 192,i(2)|* + |gy.i(x)|* +C  (5)
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whereg, ;(z) andg, ;(x) denote the horizontal and vertical
derivatives at pixet (we use the simplé-1 1] filter) and

C'is a constant normalization term. Exponent valaes 1

lead to sparse priors and natural images usually correspond .
to a in the range 0f0.5, 0.8] [21]. Other choices include a e 5
Laplacian priota. = 1, and a Gaussian prier = 2. While ©
natural image gradients are very non-Gaussian, we examine?iigure 1. The MAR ;, score evaluated on toy 1D signals. Left:
this model because it enables an analytical treatment. sharp and blurred signals. Right: sum of gradienteg p(z) =

The MAP, ;. approach seek@, k) minimizing > lgi(x)|* as a function ofx.

5 19,00 *

1 2
o

iy . 2 RS T
(3, k) = argmin Al @2 = yI* + 3 7 lgea (@) + lgy.i(@)|"
(6)

Eq. (6) reveals an immediate limitation:

Claim 1 Letx be an arbitrarily large image sampled from
the priorp(z), andy = k ® x. The pair(z, k) optimizing
the MAR, ;, score satisfiege| — 0 and|k| — oo.

RN 4 AN AN
15 x 15 windows 25 x 25 windows 45 x 45 windows
Proof: For every pair(z, k) we use a scalas to define a _ 3% ) 1% _ 0% _
new pairz’ = s -z, k' = 1/s - k with equal data fitting Figure 2. MAR, ;. failure on real image windows. Windows in
k@ x— y”z = ke — yHQ While the data fitting term which the sharp ex_plana}tlon is favored are marked in red. The
is constant, the prior term improvesas- 0. D percent of windows in which the sharp version is favored eleses

This observation is not surprising. The most likely image with window size.
under the prior in Eq.5) is a flat image with no gradients.

One attempt to fix the problem is to assume the meaninten- |y contrast, Fig1(b) presents a narrow peak. Blurring
sity of the blurred and sharp images should be equal, andreduces the peak height, and as a result, the Laplacian prior
constrainthe sumdf: >, k; = 1. This eliminates the zero o — 1 favors the blurryz (k is delta) because the absolute
SOlUtion, but Usua”y the no-blur solution is still favored sum of gradients is lower. Examining F|g(b_r|ght) sug-

To understand this, consider the 1D signals Fig. 1 gests that the blurred explanation is winning for smadler
that were convolved with a (truncated) Gaussian kekiel  yalues as well. The sharp explanation is favored only for
of standard deviation pixels. We compare two interpreta- |ow alpha values, approaching a binary penalty. However,
tions: 1) the true kernely = k* ® z. 2) the delta kernel  the sparse models describing natural images are not binary,
(no blur)y = k° ®y. We evaluate the- log p(x, k|y) Score  they are usually in the range€ [0.5,0.8] [21].

(Eq. (). while varying then parameter in the prior. The last signal considered in Fidyc) is a row cropped

For step edges (Fig(a)) MAP,  usually succeeds. The  from a natural image, illustrating that natural images con-
edge is sharper than its blurred version and while the Gaus+ajn a Iot of medium contrast texture and noise, correspond-
sian prior favors the blurry explanation, appropriate spar  ng to the narrow peak structure. This dominates the statis-
priors ( < 1) favor the correct sharp explanation. tics more than step edges. As a result, blurring a natural

1We keep estimation variables in subscript to distinguistween a Image FGQUCGS the overall contrast an_da as in Kig), even
MAP estimation of bothr andk, to a MAP estimation of; alone. sparse priors favor the blurryexplanation.




papers which exploit a MAP;, approach avoid the delta so-
lution using other assumptions which are less applicalle fo
real world images. For example,][assumes: contains an
object on a flat background with a known compact support.

All these examples highlight the fact that the prior alone
does not favor the desired result. The source of the problem
0 oturwiay is that for all values, the most likely event of the prior
in Eq. (6) is the fully flat image. This phenomenon is ro-
bust to the exact choice of prior, and replacing the model
Figure 3. (a) Comparison of gradient histograms for blumad in Eq. () with higher order derivatives or with more so-
unblurred images sampled frop? (). Blur reduces the aver-  phisticated natural image priorsd, 23] does not change
age gradient magnitude. (b) Expected negative likelihelices the result. We also note that the problem is present even if
(probability increases) with blur. the derivatives signal is sampled exactly frpfa:) and the

prior is perfectly correct in the generative sense.
] ] ) In the next section we suggest that to overcome the
To confirm the above observation, we blurred the image MAP,, ;. limitation one should reconsider the choice of es-

in Fig. 2 with a Gaussian kernel of standard deviatiqpix- timator. We revisit a second group of blind deconvolution
els. We compared the sum of the gradients in the blurredg|gorithms derived from this idea.

and sharp images using = 0.5. For 15 x 15 windows

thg blurred image _is favored 0\_/97%_ of the v_vindows, and 3. MAP, estimation

this phenomenon increases with window size. Foix 45

windows, the blurred version is favored at all windows. An-  The limitations of MAP estimation in the case of few
other observation is that if the sharp explanation does win,measurements have been pointed out many times in esti-
it happens next to significant edges. mation theory and statistical signal processiag4]. In-

To understand this, note that blur has two opposite ef- deed, in the MAR ;. problem we can never collect enough
fects on the image likelihood: 1) it makes the signal less Mmeasurements because the number of unknowns grows with
sparse, and that reduce the likelihood. 2) It reduces thethe image size. In contrast, estimation theory tellsds [
derivatives variance and that increases its likelihoodr Fo that given enough measurements MAP estimators do ap-
very specific images, like ideal step edges, the first effect Proach the true solution. Therefore, the key to success is
dominants and blur reduces the likelihood. However, for t0 exploit a special property of blind deconvolution: the
most natural images the second effect is stronger and blustrong asymmetry between the dimensionalities of the two
increases the likelihood. To illustrate this, lét be a se-  unknowns. While the dimensionality of increases with
quence sampled i.i.d. frop(20) e 717", 2¢ a se-  theimage size, the support of the kernel is fixed and small
guence obtained by convolving with a width ¢ box fil- ~ relative to the image size. The imageloes provide a large
ter (normalizing the kernel sum 1), andp’ its probability number of measurements for estimating As we prove
distribution. The expected negative log likelihood (effec  below, for an increasing image size, a MABstimation of
ing the MAP, ;) of 2 under the sharp distributiopl is: k alone (marginalizing over) can recover the true kernel
Ee[~logp°(z")] = — [ p'(x)log p°(v)dx. Fig.3(a) plots with an increasing accuracy. Th|s_ result stands in contrast
p’ for a = 0.5, and Fig.3(b) the expected likelihood as a to Claim1, stating that a MAR ;, estimator continues to fail

function of /. The variance is reduced by convolution, and €VeN as the number of measurements goes to infififtis
hence the negative log-likelihood reduces as well. leads to an alternative blind deconvolution strategy: use a

Revisiting the literature on the subject, Ferguisl. [4] MAP, estimator to recover the kernel and, given the kernel,

report that their initial attempts to approach blind deeasnv solve forz using a non blind deconvolution algorithm.
lution with MAP,, ;, failed, resulting in either the original

p(x)
E-logpog]

X

(@)p! fora = 0.5 (b) E,i [~ log p°(2!)]

blurred explanation or a binary two-tone image, depending ] "
on parameter tunings. x " =
Algorithms like [7, 6] explicitly detect edges in the im- \ = \ B
age (either manually or automatically), and seek a kernel .
which transfers these edges into binary ones. This is mo- k K
tivated by the example in Fi@, suggesting that MAP, @ p(z, kly) ®)p(kly1) © p(klyr, -yn)
could do the right thing around step edges. Another algo- Figure 4. A toy blind deconvolution problem with one scajar
rithm which makes usage of this property is’]. It opti- kz + n (replotted from P]). (a) The joint distributiorp(z, k|y). A

mizes a semi-MAR . score, but explicitly detects smooth  maximum is obtained far — 0, & — oco. (b) The marginalized
image regions and reweights their contribution. Thus, the scorep(k|y) produce an optimum closer to the tri&. (c) The
MAP,. ;. score is dominated by edges. This algorithm is dis- uncertainty ofp(k|y) reduces given multiple observatiops =
cussed in detail in the appendix. Earlier blind deconvoluti ~ kz; + n;.



Before providing a formal proof, we attempt to gain an Proof: We divide the image into small disjoint windows
intuition about the difference between MARNd MAP; ;. {y!,...,y"} and treat them as i.i.d. samplgs~ p(y|k*).

scores. A MAR estimator selecté = argmax; p(kly), ~ We then seleck™” = argmaxy, [T, p(y’|k). Applying
wherep(kly) = p(y|k)p(k)/p(y), andp(y|k) is obtained the standard consistency theorem for maximum likelihood

by marginalizing overr, and evaluating the full volume of ~ estimators{] we know that given enough samples, the ML
possibler interpretations: approaches the true parameters. That is, when co

p(ylk) = / p(, ylk)de. @) pRME (g ny™}) = k) — L. (10)

To see the role of marginalization, consider the scaladblin Due to the local form of the priop(z) (Eq. 6)), tak-
deconvolution problem illustrated i?]. Suppose a scalar  ing sufficiently far away disjoint windows will ensure that

y is observed, and should be decomposegl ask - « + n. p(ylk) = [1; p(y’|k). Thus,p(y|k) is maximized by "
Assume a zero mean Gaussian prior on the noise and S|gna14\|so if we select am times larger image/, p(y'|k) =
~ N(0,0%), n~ N(0,7%). Then p(ylk)™. Thus, ifp(y|k) < maxy p(y|k) thenp(y|k) — 0.
. Finally, ifp(k*) > 0, thenkMAP ML gre equal on large
Pz, kly) x e~ Pl (8) images sincearg maxy p(y|k) = argmaxy p(y|k)p(k),

_ _ - and thusg™AP — k*. Similarly, if max;, p(y|k) is unique,
E”S'Sgly’ ']i's.’ Tﬁx'mt'zed ?W - Olic k _>I oo t_On the other Fig. 4(c) plotsp(y|k) for a scalar blind deconvolution
and,p(y|k) is the integral over alk explanations: task withV observationg; = kz; + n;, illustrating that as
L2 N increases, the uncertainty around the solution decreases
Pylk) / e = 9)  (compare with Fig4(b)).

This integral is not maximized by — oco. In fact, if we 3.1. The loss function perspective

1 2
consider the first term only e 2> "0 g, it clearly fa- As another way to understand the difference between the
vors k. — 0 values because they allow a larger volume MAP,. ;. and MAP, estimators, we return to the definition
of possiblex values. To see that, note that for evéry 4 5 Bayesian estimator. A Bayesian estimator involves a
and everye > 0 the size of the set aof values satisfying | < functionL (& — =, k — k) on both parameters, specify-

[kx —y| < eis 2¢/k, maximized as — 0. Combining ;46 price for an estimation error. The expected loss is
the two terms in ) leads to an example in the middle of minimized by:

the range, and we show in Sex2.1thatxz ~ o, which
make sense becausenow behaves like a typical sample
from the prior. This is the principle of genericity desciibe (2, k) = arg min //p(% kly)L(z — x, k — k)dzdk. (1)
in Bayesian terms by’]. Fig. 4(b) plots P(y|k), which is
essentially summing the columns of Fitfa). , i i o

Now consider blur in real images: for the delta kernel ON€ Simple choice of loss function yielding the MAPso-
there is only a single solution = y satisfyingk ® = = v. lution is the Dirac delta loss function:(& — x,k — k) =
However, while the delta spectrum is high everywhere, the1 — § ((@’ /2;) — (z,k)). The limitations of this loss have
true kernel is usually a low pass, and has low spectrum Val'been pointed out many times,[2]. This “all or nothing”

ues. Referring to the notation of E@)(if K, = 0, an loss is too harsh for many signal processing applicatias, a
infinite subspace of possible explanations is available as;; completely ignores all information around the mode. In-
X, can be arbitrary (and with noise, any Iqi(.,| val- 004 it is common to use loss functions that increase more

ues increase the uncertainty, even if they are not exaitly ooy with estimation error, such as the mean squared
Hence, the true kernel gets an advantage inthé:) score. error (MSE) loss:L(z, k) — |& — &[2 + |k — k|2, or a ro-

We prove that for sufficiently large images(k|y) is bustified loss like the MLM]
guaranteed to favor the true kernel. '

CIaim.2 Letx be an arbitrarily large image, sampled fr.om Claim 3 If p(k|y) has a unique maxima, then for large im-
the priorp(z), andy = k ® x + n. Thenp(k|y) is maxi-  ages a MAR estimator followed by &7 SE, image es-

mized by the true kernéf". Moreover, ifarg max; p(y|k) timation, is equivalent to a simultaneous MMSEestima-
is uniquep(k|y) approaches a delta functién tion of bothz and k5.

’Note that Claim2 does not guarantee that the MARs unique. For
example, if the kernel support is not constrained enoughtipteispatial SIf multiple solutions with equal probability exist, MMSE; and
shifts of the kernel provide equally good solutions. Thebfem can be MAP,, are not fully equivalent, and MMSE,, leads to undesired averag-

easily avoided by a weak prior dn(e.g. favoring centered kernels). ing. On the other hand, MAPavoids the problem by picking one solution.



Proof: The mean squared error is minimized by the mean,
and in our case MMSE;, provides

//p(x, kly)x dedk

//p(k‘\y)p(w\y, k)x dxdk
/p(kly)u(’“)dk

z

12)

whereu® = [ p(z|y, k)zdz, is a “non blind” MMSE,
estimation ofz givenk. From Claim2, p(k|y) is a delta
function and thuss = ") ]

3.2. Examples of MAR. estimation

Claim?2 reduces to a robust blind deconvolution strategy:
use MAR, estimator to recovet™ 4" = arg max;, p(kly),
and then usé&*4” to solve forz using some non blind
deconvolution algorithm. To illustrate the MARpproach,
we start with the simple case of a Gaussian priop@n),
as it permits a derivation in closed form.

3.2.1 The Gaussian prior

The prior onX in Eq. () is a convolution and thus diago-
nal in the frequency domain. &,, G, denote the Fourier
transform of the derivativeg,, g, then:

X ~ N(0,diag(02)) 0% = B(|Gewl* +I1Gyul®) . (13)

Note that since a derivative filter is zero at low frequencies
and high at higher frequencies, this is similar to the ctzsi
1/ % power spectrum law for images. Denoting noise vari-
ance by, we can expresg(X,Y; K) = p(Y|X; K)p(X)

as:

1 21 2
—ﬁ“KuXu—YwH T 302 [[Xewll

p(X,Y;K) oxe (14)

(see the appendix for details). Conditionedigrthe mean
and mode of a Gaussian are equal:

MAP
xMAP

7\
(\wa + —2> KXY.. (15)
Uw

Eq. (15) is the classic Wiener filter5]. One can also in-
tegrateX and expresg(Y |K) analytically. This is also a
diagonal zero mean Gaussian with

Y ~ N(0,diag(¢2)), ¢5=o0o|Ku]>+n°.  (16)

EqQ. (16) is maximized whemy? = |Y,,|?, and for blind
deconvolution, this implies:

2 2
P = mas (0, Ileiﬂ)
a,

w

7

The image estimated usirfg satisfieg X, |2 ~ 02. There-
fore MAP, does not result in a triviaK = 0 solution as
MAP, i would, but in a solution whose variance matches

the prior variancer?, that is, a solution which looks like a
typical sample from the prigs(X).
Another way to interpret the MAR is to note that

MAP <. 1 Ko 1
log p(Y|K) = log p(X ,Y,K)—g;log( = +—

J+e

Referring to Eq. 14), the second term is just the Iog(%jSe)ter-
minant of the covariance ¢f( X |Y; K'). This second term
is optimized whenk,, = 0, i.e. by kernels with more blur.
That is, log p(Y'|K) is equal to the MAR ;. score of the
mode plus a term favoring kernels with blur.

The discussion above suggests that the Gaussiany,MAP
provides a reasonable solution to blind deconvolution. In
the experiment section we evaluate this algorithm and show
that, while weaker than the sparse prior, it can provide ac-
ceptable solutions. This stands in contrast to the complete
failure of a MAP, ;, approach, even with the seemingly bet-
ter sparse prior. This demonstrates that a careful choice of
estimator is actually more critical than the choice of prior

Note that Eq. {7) is accurate if every frequency is esti-
mated independently. In practice, the solution can be fur-
ther constrained, because the limited spatial suppoft of
implies that the frequency coefficienfd<,,} are linearly
dependent. Another important issue is that Edy) (pro-
vides information on the kernel power spectrum alone but
leaves uncertainty about the phase. Many variants of Gaus-
sian blind deconvolution algorithms are available in the im
age processing literature (e.g, 1.5]) butin most cases only
symmetric kernels are considered since their phase is known
to be zero. However, realistic camera shake kernels are usu-
ally not symmetric. In the appendix we describe a Gaussian
blind deconvoltion algorithm which attempts to recover non
symmetric kernels as well.

3.2.2 Approximation strategies with a sparse prior

The challenge with the MAPapproach is that for a general
sparse priorp(kly) (Eq. (7)) cannot be computed in closed
form. Several previous blind deconvolution algorithms can
be viewed as approximation strategies for MARIthough
the authors might not have motivated them in this way.

A simple approximation is proposed by Levii/], for
the 1D blur case. It assumes that the observed deriva-
tives of y are independent (this is usually weaker than
assuming independent derivatives ©f. logp(ylk) =
> logp(g2,i(y)|k). Sincep(gs,i(y)|k) is a 1D distribu-
tions, it can be expressed as a 1D table, or a histogram
The independence assumption implies that instead of sum-
ming over image pixels, one can expregg|k) by sum-
ming over histogram bins:

log p(y|k) = Zlogp(gx,i(y)lk) = Z hjlog(h})  (19)

whereh denotes the gradients histogram in the observed im-
age and is a binindex. In a second step, note that maximiz-
ing Eq. (L9) is equivalent to minimizing the histogram dis-



tance between the observed and expected histogdtfis
This is because the Kullback Leibler divergence is equal to

the negative log likelihood, plus a constant that does not de \ /\ /_\

pend onk (the negative entropy): el widn Kemel width Kemel widn Kemel widh

Exact Zero sheet MAR MAP . 4 +edge reweight

Dicr(h, h®) Zh log(h Zh log(h (20) : : / \
_

Since the KL d|vergence is non-negatlve, the likelihood is

—log likelihood
—\og_hkelif\cod'
~log likelihood

~log likelihood

~log likelihood
—Ingilik‘elihood
—!n_g Iikelih:.:md) )
~log likelihood

_/

maximized when the histogramsh” are equal. This very el Kemmel i ' el el
S|mp|e approach |S already able tO a.VO'd the delta Solutlon . Gaussian prior mdependemappr(?x \fanal\onalapprox - .ﬁmnet. al. .
but as we demonstrate in Seiclit is not accurately identi-  Figure 5.1og p(y|k) scores using various approximation strategies
fying the exact filter width. on 1D image signals. Successful algorithms locate the mimim

A stronger approximation is the variational Bayes mean- score at the true kernel width, denoted by the dashed line.
field approach taken by Ferges al. [4]. The idea is to
build an approximating distribution with a simpler paramet

ric form: exactly even for a sparse prior. The signals were convolved
with a 5-tap box filter (cyclic convolution was used) and
p(, kly) =~ q(z, k) Hq 9i,2(2))a(gi.y( Hq -2y an i.i.d. Gaussian noise with standard deviatiohl was

added. We explicitly search over the explanations of all
Sincegq is expressed in the gradient domam this does not box filters of size/ = 1,..,7 taps (all filters normalized
recoverz directly. Thus, they also pick the MAPkernel to 1). The explicit search allows comparison of the score
from ¢ and then solve for: using non blind deconvolution.  of different blind deconvolution strategies, without foid
A third way to approximate the MAPis the Laplace  in optimization errors. (In practice optimization errors d

approximation 7], which is a generalization of Eql§): have a large effect on the successes of blind deconvolution
. algorithms.)
log p(y|k) ~ logp(:vMAP,y;k) —glgldl+C (22 The exact—logp(y|k) score is minimized by the true
box width¢ = 5.
A= p 8 -log p(z,y; k)| p—prrar. (23) We tested the zero sheet separation (€.4)[an earlier

image processing approach with no probabilistic formula-
tion. This algorithm measures the Fourier magnitudeg aff

he zero frequencies of each box filter If the image was
ndeed convolved with that filter, low Fourier content is ex-
pected. However, this approach considers the zero frequen-
cies alone ignoring all other information, and is known to

The Laplace apprOX|mat|on states thdy|k) can be ex-
pressed by the probability of the moaé& A” plus the log
determinant of the variance around the mode. As discusse
above, higher variance is usually achieved whenon-
tains more zero frequencies, i.e. more blur. Therefore, the

Laplace apprOX|mat|c_>n suggests thay|k) IS the MAF, be noise sensitive. It is also limited to kernel familiesnfro
score plus a term pulling toward kernels with more blur. Un-  qjnyp1e narametric form and with a clear zeros structure.
fortunately, in the non Gaussian case the covariance matrix Supporting the example in Se2, a pure MAR. . ap

t fI:,k -

isn’'t diagonal and exact inversion is less trivial. Some ear MAP
> . . proach (y|k) ~ p(z™*",y|k)) favors no-blur { = 1).
lier blind deconvolution approachess 17] can be viewed Reweighting the derivatives penalty around edges can im-

as simplified forms of a blur favoring term. For example, AR . ; X
they bias towered blurry kernels by adding a term penaliz- prove the situation, but the delta solution still provides a
noticeable local optimum.

ing the high frequencies of or with an explicit prior on o . . L
the kernel. Another approach was exploit by Bronstin The correct minimum is favored with a variational Bayes
al. [3]. They note that in the absence of noise and with in- @PProximation {] and with the semi Laplace approxima-
vertible kernelg(k|y) can be exactly evaluated for sparse 10N Of [3]. The independence approximatian] is able to
priors as well. This reduces to optimizing the sparsity efth OVercome the delta solution, but does not localize the solu-

image plus the log determinant of the kernel spectrum. ~ tON very accurately (minimum dt = 4 instead oft = 5.)
Finally, the correct solution is identified even with the poo
4. Evaluating blind deconvolution algorithms image prior provided by a Gaussian model, demonstrating

that the choice of estimator (MAR, v.s. MAP;), is more
critical than the actual prior (Gaussian v.s. sparse).

Since claim2 guaranties success only for large images,
) we attempt to evaluate how large an image should be in
4.1. 1D evaluation practice. Fig.6 plots the uncertainty ip(k|y) for multi-

As a first test, we use a set ti00 signals of size 0 x 1 ple random samples @¥ 10 x 1 columns. The probability
cropped from a natural image. These small 1D signals al-is tightly picked at the right answer for as little &5 = 20
low us to evaluate the marginalization integral in Eg) (  columns. The search space in Figs limited to the single

In this section we qualitatively compare blind deconvo-
lution strategies on the same data. We start with a synthetic
1D example and in the second part turn to real 2D motion.
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Figure 6. The uncertainty in kernel estimation decresels mibre
samples. For as little av = 20 columns it is already tightly
picked at the true answer.

(b)

Figure 7. Ground truth data acquisition. (a) Calibratiorage.
(b) Smear of points at 4 corners, demonstrating that theatyat
uniform blur model is violated.

parameter family of box filters. In real motion deblurring 719ure 8. Ground truth datatimages and blur kernels, resulting
in 32 test Images

one searches over a larger family of kernels and a larger
uncertainty is expected.

r -Fergu;
4.2. 2D evaluation | @l shan [
[ Ishan, sps deconv
To compare blind deconvolution algorithms we have col- I I MAP
lected blurred data with ground truth. We capture a sharp Il Gaussian prior

9e

version a planar scene (Fig(a)) by mounting the camera
on a tripod, as well as a few blurred shots. Using the sharp
reference we solve for a non-negative kerh@hinimizing
|k®z—y||2. The scene in Figi(a) includes high frequency

Percenta

noise patterns which helps stabilizing the constrainté.on 0
The central area of the frame includes four real images used 2L
as input to the various blind deconvolution algorithms. .
We first observed that assuming a uniform blur over the 15 2 B o ratios 35 aboved

Image 1s not realistic even for planar SCcenes. For_exam'Figure 9. Evaluation results: Cumulative histogram of thean-

ple Fig.7(b) shows traces of points atcorners of an iM- " \olution error ratio across test examples.

age captured by a hand-held camera, with a clear variation

between the corners. This suggests that an in-plane rota-

tion (rotation around the z-axis) is a significant component g 32 test images displayed in Fig.and available onlirfe

of human hand shake. Yet, since a uniform assumption isThe kernels’ support varied froi to 25 pixels.

made by most algorithms, we need to evaluate them on data \y\e can measure the SSD error between a deconvolved
which obeys their assumption. To capture images with spa-qytpyt and the ground truth. However, wider kernels result
tially invariant blur we placed the camera on a tripod, lock- i |arger deconvolution error even with the true kernel. To

ing the Z-axis rotation handle of the tripod but loosening normalize this effect, we measure the ratio between decon-
the X andY handles. We calibrated the blur ®such im-

ages and croppet 255 x 255 windows from each, leading 4www.wisdom.weizmann.ac.il/ levina/papers/LevinEtaRRO9Data.zip




volution error with the estimated kernel and deconvolution image statistics, this paper suggests that better estimato
with the truth kernel. In Fig9 we plot the cumulative his-  for existing priors may have more impact on future blind
togram of error ratios (e.g. bin= 3 counts the percentage deconvolution algorithms. Additionally, we observed that
of test examples achieving error ratio belgyvEmpirically, the popular spatially uniform blur assumption is usually un
we naoticed that error ratios above 2 are already visually im- realistic. Thus, it seems that blur models which can relax
plausible. The dataset and all deconvolution results arethis assumption40] have a high potential to improve blind
included at the end of this manuscript. deconvolution results.

We have evaluated the algorithms of Fergtial. [4] and Acknowledgments: We thank the Israel Science Foun-
Shanet al [19] (each using the authors’ implementation), dation, the Royal Dutch/Shell Group, NGA NEGI-1582-
as well as MAR estimation using a Gaussian prior (de- 04-0004, MURI Grant NO0014-06-1-0734, NSF CAREER
scribed in the appendix), and a simplified MAPapproach  award 0447561. Fredo Durand acknowledges a Microsoft
constraining) _ k; = 1 (we used coordinate descent, iterat- Research New Faculty Fellowship and a Sloan Fellowship.
ing between holding: constant and solving fat, and then

holding i constant and solving far using the sparse de- 6. Appendix A: Blind deconvolution with a

convolution algorithm of [ 2]). The algorithms of [ 4, 7, 3] Gaussian prior
were not tested because the first was designed for 1D mo- _ ) )
tion only, and the others focuses on smaller blur kernels. To complete section 3.2.1 of the main paper, we provide

We made our best attempt to adjust the parameters ofd detailed derivation of a MA;PeStimation algorithm USing
Shanet al. [19], but run all test images with equal parame- @ Gaussian prior. The simple analytic treatment of a Gaus-
ters. Ferguet al. [4] used Richardson-Lucy non blind de- Sian prior is attractive both from a computational viewpoin
convolution in their code. Since this algorithm is a source and from aresearch viewpoint, as it affords intuition. hil
for ringing artifacts, we improved the results using the-ker the algorithm is not as powerful as sparse deconvolution al-
nel estimated by the authors code with the (non blind) gorithms, it gets quite close to the solution using second
sparse deconvolution of P]. Similarly, we used sparse de- Order statistics alone.
convolution with the kernel estimated by Shetral. To derive the Gaussian algorithm, we rewrite the gener-

The bars in Fig9 and the visual results in the appendix ative model explicitly for a Gaussian prior and, to simplify
suggest that the Fergus algorith#] ignificantly outper- ~ notation use the frequency domain.
forms all other alternatives. Many of the artifacts in the
results of f]] can be attributed to the Richardson-Lucy non ] . . . .
blind deconvolution artifacts, or to non uniform blur in the .p(.Y|XE K): The spatial i.i.d. Gaussian observation noise
test images. Our comparison also suggests that applying® invariant to the frequency basis change. Therefore
sparse deconvolution using the kernels outputted by Shan 9
et al. [19] improves their results. As expected, the naive (Vo Xors Kur) ~ N (Ko Xo,m7) (24)
MAP., ;. approach outputs small kernels approaching the yhere;; denotes the noise variance.
delta solution.

5. Discussion p(X): The prior onX uses a convolution and is diago-

This paper analyzes the major building blocks of recent @l in the frequency domain. &, &, denote the Fourier
blind deconvolution algorithms. We illustrate the limita- transformof the derivative filters,, g,,, the convolution and
tion of the simple MAR.;, approach, favoring the no-blur ~ Parseval's theorems result I, |g..i()|* + |gy.4(2)|* =
(delta kernel) explanation. One class of solutions inelve 2., [GzwXw|? + |Gy wXu|?. ThereforeX follows a zero
expncit edge detection_ A more princip'ed Strategy e)dls|0i mean Gaussian dlStI’IbUtIOh W|th d|agonal covariance:
the dimensionality asymmetry, and estimates MA#hile , ) 5 ) _—
marginalizing over:. While the computational aspects in- X ~ N(0,diag(ov)) o6 = B([|Gaw | +[|Gyw ) (25)
volved with this marginalization are more challenging, ex-
isting approximations are powerful.

We have collected motion blur data with ground truth
and quantitatively compared existing algorithms. Our com-
parison suggests that the variational Bayes approxima
tion [4] significantly outperforms all existing alternatives.

The conclusions from our analysis are useful for direct-
ing future blind deconvolution research. In particular, we
note that modern natural image priofis3[ 23] do not over- MAP . estimation:
come the MAR ;, limitation (and in our tests did not change
the observation in Se@). While it is possible that blind x4 — argmax p(X,Y; K) = arg max p(Y | X; K)p(X).
deconvolution can benefit from future research on natural (26)

(the scales was fitted based on the derivative histogram in
a natural image). Note that since a derivative filter is zero
at the low frequencies and high at the higher frequencies,
this is very similar to the classical/ f> power spectrum
“law (and our algorithm produced very similar results with
an explicit1/ f2 prior).



(a) Ground truth (b) Independent estimation (c)SmoothiésP (d) Compact support constraint
Figure 10. Power spectrum estimation and the compact stippastraint. Top: power spectrum, Bottom: kernel in prichainain

Therefore, solving for the MAP (using Eqs. 24,25)) is a filter estimated using Eq30). The estimation nicely resem-

least square minimization: bles the overall shape and power spectrum of the true filter
(Fig. 10(a)) but is far too noisy to be acceptable. This noise
XMAP algmm HK Xy~ Y|+ —HX (®7) is not surprising as every componentfwas estimated
op from a single measurement.
VAP ) 2N The signal processing Iiter_atur_e] [addresses the prob-
X (K | > K.Y. (28)  lem of power spectrum estimation (also known as the
w

pariodogram), suggesting that the power spectrum of the
Eq. (29) is essentially the famous Wiener filtes]] The observed signal” should be smoothed before applying
prior term in Eq. 28) pulls the estimation toward zero, EQ. 30). While such smoothing operation increases the
pulling stronger at high frequencies where the expected sig bias of the estimation, it significantly reduces its varmnc
nal magnitude is smallo{, — 0) and noise contribution ~ Fig. 10(c) demonstrates the estimation from a smoothed
is higher. When the filter valug&, = 0, the signal value ~ power spectrum. One can note that as smoothing reduces
cannot be recovered and the prior leads the estimation tathe fluctuation in the frequency domain, the support of the
X, =0. filter in the primal domain becomes more compact. This
leads to another important property of the problem that was
ignored so far: while Eq.30) estimate every Fourier coef-
ficient independently, the number of free parameters te esti
mate inK is much smaller than the image size, since a typ-
Y ~ N(0,diag(¢?)), &2 =0c2|K.|>+n>  (29) ical filter is assumed to have only a small compact support.
Fig. 10(d) presents the estimated kernel, once a compact
support was enforced (according to the algorithm described
below). This constraint significantly increases the stigbil
of the estimation.

p(Y): One can also integraté and express(Y'|K) an-
alytically. This is also a diagonal zero mean Gaussian with

Given Egs. 24-29), we can return to blind deconvolu-
tion. If we were to estimate every frequen&y, indepen-
dently, we could differentiate Eq29) and conclude it is
maximized wheny? = |Y,,|2, which results in:

6.1. Phase estimation

While Eqg. 30) defines the power spectrum af, it

: : leaves us with a complete ambiguity regarding its phase.
Eq. 30) essentially states that the optimél leads to an
qugmge power sgectrum equals thepexpected power specln fact, for every solutiori, X such thatt,, = [g »X, and
trumo?. However, for frequencies in which the observed ~ for any phase vectaf.,, the pairk,, = K¢, X, =
signal value is below the noise variance (i|¥,,|?> < n?), X,e "« is an equally valid solution, satlsfym@;’w =
the estimator acknowledges that, cannot be recovered K. X.. The prior onX does not help resolving this am-
and outputs 0. Below we make usage of this point to de- biguity — as the Gaussian prior in EQ5) depends only
rive a coarse-to-fine algorithm. In Fig0(b) we show the  on the power spectrurp(X) = p(X). However, while ev-

Yo* = n?
\K| = max(0, T) (30)
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Figure 11. Coarse to fine kernel estimation. (a) Ground trilttf) estimated kernels with decreasingalues

proceed with an EM algorithm. The E-step computed the
expected mean and variance for the deblurred indag€he
M-step uses the second order statisticsXoto solve for

k, enforcing two constraints: the finite support constraint
discussed above, plus the simple requirement that the blur
kernelk (in the spatial domain) is non negative.

- Ths £y E-step: Applying Eqg. £98):
(a) Deconvolution with correct filter ~ (b) Deconvolution Wwitirrored filter

Figure 12. Mirroring ambiguity with second order statistic
< Xy >

2 —1
(Kﬁ + ’7—2> KTy, (31)
g

w

ery phase can maintain the convolution model, most random < X2 X, >
phase choices destroy the finite supporfofThe question
of estimating the signal phase given the power spectrum has
a long history in signal processing?][states that for most  M-step Transform< X > and< XX > to the spatial
of kernels, a finite support constraint uniquely defines the domain and solve fok minimizing < k ®  — y > subject
signal phase, up to (1) shift and (2) flipping (mirroring). to finite support and non negativity.
While a shift ambiguity in deconvolution is reasonable and  To express this minimization, suppose thés anl x |
does not effect the visual quality of the deconvolved image, filter. We denote byz,,, thel x I window around the’th
deconvolving the image with the mirrored filter leads to no- pixel, such thay; = Zjewv kjz;. Let A be anm x > ma-
ticeable artifacts, as illustrated in Fij2. For the imple- trix whose rows are the Wlindowswﬂ andm is the number
mentation in this paper we escape this ambiguity by notic- of windows included in the image. If,y are known, the
ing that while the original image (in the spatial domain)is  pest filterk is the one minimizind| Ak(:) — y(})||? = k(:
non negative, deconvolvingwith the mirrored filter often YITAT Ak(:) —2y(:)T Ak(:) +y(:)Ty(:) s.tk > 0. Note that
leads to negative: values. Yet, this ambiguity highlights  the number of unknowns in this system is equal to the ker-
one of the weaknesses of second order statistics. Whilene| sizel?, which is much lower than the number of pixels
the second order statistics of the images in Efa,b) are in the image. In practice we do not precisely knowbut
equal, it is clear that every simple sparse measure will fa- from theE-stp we have access ta AT A > and< A4 >.
vor Fig.12(a). Nevertheless, we show that the second order  Thijs is a quadratic minimization subject to linear con-
statistics plus finite support constraint can get us sWpris straints, and thus a convex problem that can be solved using
ingly close to the true solution. quadratic programming.

While a bounded support constraint removes most phase )
ambiguity, recovering the phase algorithmically is not a ©6-3. Coarse-to-fine
trivial question. A popular gradient based optimization = Ferguset al. [4] estimated the kernel in a coarse-to-fine
scheme is the Gerchberg-Saxt®r] algorithm. Thisalgo-  scheme. In our case, EQY) provides an easy way to im-
rithm initializes the kernel phase randomly, and then alter plement this. We initialize the optimization with a high
nates between primal-frequency transformations, enfgrci  noise variance). As a result all frequencies with observa-
the finite support constraint in the primal domain and the tion below the noise variance (usually the high frequercies

2
(sz - Z—2> + < X, >T< X432)

w

required power spectrum in the frequency domain. are set to zero, and we mostly optimize the low frequencies
o of the kernel. Once the low frequency optimization starts
6.2. EM optimization to converge we gradually reduce the noise variapcal-
Applying the Gerchberg-Saxton algorithi, [?] to the lowing more and more bands of frequencies to nail down.
independent power spectrum estimated from E§) pro- The kernels estimated with varyingvalues are illustrated

vides a reasonable initialization for our algorithm. Werthe in Fig. 11
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S gi(@)[08 =539 S |gi(@)|08 =415 3 |gi(x)|0-8 = 398 Figure 15. -MAR, ;. scores as a function of likelihood weight
and kernel width (dark values favored).

Figure 13. Non blind deconvolution using a delta kernel Yomd
the true kernel (bottom), with increasing likelihood (déitéing

term) weight. The estimated image is piecewise constaifitloit A . .
likelihood weight, while fine details are added as the weight lterative likelihood update: ~Another important compo-

creases. The true kernel achieves a lower score with lowhiyeig Nent in [L9] is to start the optimization with a rather low

but realistic likelihood weight is favoring the delta satut. likelihood weight\, and gradually increase it during subse-
guentiterations. To understand this, Fi§shows an image

deconvolved with two kernels - the true kernel and a delta

7. Appendix B: Shanet al.’s algorithm kernel. We have performed the deconvolution with a set of
A values and compared the sum of gradients in the decon-
volved image. Examining Figl3 we note that for low\
values, there is no need to explain all low contrast texture i
y. These low contrast details are interpreted as noise, and
the resulting latent image is piecewise constant with step

_ul? oo ()@ o () edges. Given the piecewise constant structure, the deriva-
M =l + 3 wilgea(@)I" + wilgua@®. - (33) tives response is low. Therefore, for lowvalues the true
blur is indeed favored over the delta kernel. However, the
situation is usually inverted when the likelihood weight is
increased to a realistic level, and a delta kernel wins.

The fact that the true kernel is favored when the like-
lihood weight is low can help steer the algorithm toward
Edge rewighting: One main component that prevents the desired solution. As suggested hyZ][ we have ini-
Eqg. (33) from outputting the delta solution is the usage of tialized our coordinate decent algorithm with a lowalue
non uniform weightsw; on the gradient penalty. The au- and gradually increased it during iterations. Sinds ini-
thors explicitly detect low contrast image regions and in- tially low the algorithm is steered toward the true kernel an
crease their smoothness penalty. when)\ is increased, the algorithmis already trapped in a lo-

To test this idea, we have implemented a simplified coor- cal minimum and does not move significantly away from it.
dinate decent variant of the algorithm. We attempt to mini- Some iterations from our coordinate decent implementation
mize the cost in Eq.33), alternating between minimization are available in Figl4. To evaluate this, Figl4(f) illus-
with respect tor and minimization with respect to (hold- trates the likelihood changes during optimization. While
ing the other constant). We uae= 0.8 for the sparse prior, is updated during optimization, at the end we traced back
and solve forz using iterative reweighted least squares, as the kernels estimated in previous iterations, and evaluate
in [17]. Gradients are reweighted using an edge detector.their score using the final realistic (high)alue. Fig.14(f)

We emphasize that the goal of our implementation is to testplots the scores with this final. The interesting observa-
the basic idea of a MAP;, approach with edge reweight- tion is that the score of the solution is increasing during
ing, and not to reproduce the algorithm ] exactly. This optimization and the score of the first iteration (a delta ker
algorithm involves a sophisticated number of additional de nel) is actually better than the final one. That is, by chang-
tails which affect the final output. Our observation is that ing likelihood weight during optimization, the algorithis i
while edge reweighting helps in avoiding the delta solution steered toward kbbcal minimumof the cost in Eq.$3), but
edge rewighting alone is not always sufficient. this local minimum often happens to be the desired one.

We discuss the blind deconvolution algorithm ©fJand
try to understand how it is working. This algorithm attempts
to optimize a semi-MAR;, score, seeking a solution x
that minimizes:

There are two main components that distinguish this algo-
rithm from a naive MAR ;, optimization: edge reweighting
and iterative update of the likelihood weight.



(a) input (b) ground truth (c)iter1 (d) iter 5 (e) iter 25

(f) Energy
Figure 14. coordinate decent Kernel optimization with agesgtweighted MAR ;, score. Likelihood weight is increased during optimiza-
tion.

As another way to evaluate this, we blurred the image in [14] Anat Levin. Blind motion deblurring using image statis

Figs13,14 with a box kernel of widthl3 pixels. We have tics. InAdvances in Neural Information Processing Systems
computed the MAR , score for this image, varying two pa- (NIPS) 2006.1, 5,6, 8

rameters: the kernel (running over box filters of sizeo ~ [15] A. C. Likas and N. P. Galatsanos. A variational approch

15 pixels) and the likelihood weight. The 2D surfaces of bayesian blind image deconvolutiolEEE Trans. on Signal

Processing2004.1, 5
[16] J. W. Miskin and D. J. C. MacKay. Ensemble learning for
blind image separation and deconvolution. Advances in
Independent Component Analysspringer, 20001
[17] R. Molina, A. K. Katsaggelos, J. Abad, and J. Mateos. A
bayesian approach to blind deconvolution based on ditichle
distributions. INCASSP1997.1, 6

scores is visualized in Figl5. Two ridges are observed,
and one can also notice that while the minima with the delta
solution is much lower, the ridge from the lowvalues is
leading toward the true kernel local minima, and not toward
the delta solution.
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SSD err=32.2, err ratio=1
Ground truth Deconvolution with ground truth kernel

i

SSD err=38.4, err ratio=1.19 SSD err=83.5, err ratio=2.59 SSD err=69.2, err ratio=2.14
Ferguset al. Shanet al. Shanet al. kernel, sparse deconv

SSD err=188.5, err ratio=5.84 SSD err=211.9, err ratio=6.57 SSD err=162.5, err ratio=5.04
MAP,, 1., edges reweighting MAP_, 1, no edges reweighting Gaussian

Figure 16. Comparing deconvolution algorithms, im 1, kéfne



SSD err=37.0, err ratio=1
input Ground truth Deconvolution with ground truth kernel

i 'j-.

SSD err=39.3, err ratio=1.06 SSD err=72.0, err ratio=1.94 SSD err=53.6, err ratio=1.44

Ferguset al. Shanet al. Shanet al. kernel, sparse deconv
- .
SSD err=166.4, err ratio=4.49 SSD err=264.7, err ratio=7.14 SSD err=168.5, err ratio=4.54

MAP,, 1., edges reweighting MAP_, 1, no edges reweighting Gaussian

Figure 17. Comparing deconvolution algorithms, im 1, kéénhe



SSD err=25.3, err ratio=1
input Ground truth Deconvolution with ground truth kernel

SSD err=28.7, err ratio=1.13 SSD err=41.6, err ratio=1.64 SSD err=38.7, err ratio=1.52
Ferguset al. Shanet al. Shanet al. kernel, sparse deconv

.
SSD err=82.7, err ratio=3.26 SSD err=122.1, err ratio=4.81 SSD err=39.6, err ratio=1.56
MAP,, 1., edges reweighting MAP_, 1, no edges reweighting Gaussian

Figure 18. Comparing deconvolution algorithms, im 1, keéfhe



SSD err=59.9, err ratio=1
input Ground truth Deconvolution with ground truth kernel

SSD err=135.5, err ratio=2.26 SSD err=604.5, err ratio=10.08 SSD err=583.2, err ratio=9.72
Ferguset al. Shanet al. Shanet al. kernel, sparse deconv

SSD err=497.6, err ratio=8.29 SSD err=645.4, err ratio=10.76 SSD err=315.7, err ratio=5.26
MAP,, 1., edges reweighting MAP_, 1, no edges reweighting Gaussian

Figure 19. Comparing deconvolution algorithms, im 1, keée
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SSD err=20.7, err ratio=1
input Ground truth Deconvolution with ground truth kernel

SSD err=27.1, err ratio=1.30 SSD err=45.8, err ratio=2.21 SSD err=40.6, err ratio=1.96
Ferguset al. Shanet al. Shanet al. kernel, sparse deconv

SSD err=64.3, err ratio=3.10 SSD err=110.5, err ratio=5.33 SSD err=53.78, err ratio=2.59
MAP,, 1., edges reweighting MAP_, 1, no edges reweighting Gaussian

Figure 20. Comparing deconvolution algorithms, im 1, kéEne



SSD err=15.9, err ratio=1
Ground truth Deconvolution with ground truth kernel

SSD err=44.45, err ratio=2.79 SSD err=104.8, err ratio=6.58 SSD err=94.0, err ratio=5.90
Ferguset al. Shanet al. Shanet al. kernel, sparse deconv

4

SSD err=59.4, err ratio=3.73 SSD err=202.4, err ratio=12.71 SSD err=172.9, 'err ratio=10.8
MAP,, 1., edges reweighting MAP_, 1, no edges reweighting Gaussian

Figure 21. Comparing deconvolution algorithms, im 1, kéfne



SSD err=24.3, err ratio=1
input Ground truth Deconvolution with ground truth kernel

SSD err=212.3, err ratio=8.73 SSD err=414.1, err ratio=17.04 SSD err=401.0, err ratio=16.5
Ferguset al. Shanet al. Shanet al. kernel, sparse deconv

SSD err=103, err ratio=4.2 SSD err=412, err ratio=16.9 SSD err=376, err ratio=15.5
MAP,, 1., edges reweighting MAP_, 1, no edges reweighting Gaussian

Figure 22. Comparing deconvolution algorithms, im 1, kérhe



SSD err=30, err ratio=1
input Ground truth Deconvolution with ground truth kernel

Ld

SSD err=53, err ratio=1.7 SSD err=458, err ratio=15.2 SSD err=450, err ratio=15.0
Ferguset al. Shanet al. Shanet al. kernel, sparse deconv

SSD err=327, err ratio=10.8 SSD err=458, err ratio=15.2 SSD err=559, err ratio=18.6
MAP,, 1., edges reweighting MAP_, 1, no edges reweighting Gaussian

Figure 23. Comparing deconvolution algorithms, im 1, kéfhe



SSD err=43, err ratio=1
input Ground truth Deconvolution with ground truth kernel

SSD err=55, err ratio=1.2 SSD err=162, err ratio=3.6 SSD err=150, err ratio=3.4
Ferguset al. Shanet al. Shanet al. kernel, sparse deconv
SSD err=248, err ratio=5.6 SSD err=272, err ratio=6.1 SSD err=79, err ratio=1.8
MAP,, 1., edges reweighting MAP_, 1, no edges reweighting Gaussian

Figure 24. Comparing deconvolution algorithms, im 2, kéfne



SSD err=50.6, err ratio=1
input Ground truth Deconvolution with ground truth kernel

SSD err=64.3, err ratio=1.2 SSD err=191, err ratio=3.7 SSD err=175, err ratio=3.4
Ferguset al. Shanet al. Shanet al. kernel, sparse deconv

SSD err=343, err ratio=6.7 SSD err=348, err ratio=6.8 SSD err=164, err ratio=3.2
MAP,, 1., edges reweighting MAP_, 1, no edges reweighting Gaussian

Figure 25. Comparing deconvolution algorithms, im 2, kééhe



SSD err=40, err ratio=1
input Ground truth Deconvolution with ground truth kernel

SSD err=52.7, err ratio=1.3 SSD err=88, err ratio=2.1 SSD err=84, err ratio=2.0
Ferguset al. Shanet al. Shanet al. kernel, sparse deconv

SSD err=169, err ratio=4.1 SSD err=185, err ratio=4.5 SSD err=129, err ratio=3.1
MAP,, 1., edges reweighting MAP_, 1, no edges reweighting Gaussian

Figure 26. Comparing deconvolution algorithms, im 2, keéfhe



SSD err=79, err ratio=1
input Ground truth Deconvolution with ground truth kernel

SSD err=123, err ratio=1.5 SSD err=195, err ratio=2.4 SSD err=182, err ratio=2.3
Ferguset al. Shanet al. Shanet al. kernel, sparse deconv

SSD err=481, err ratio=6.1 SSD err=574, err ratio=7.26 SSD err=189, err ratio=2.4
MAP,, 1., edges reweighting MAP_, 1, no edges reweighting Gaussian

Figure 27. Comparing deconvolution algorithms, im 2, keée



SSD err=26, err ratio=1
input Ground truth Deconvolution with ground truth kernel

SSD err=38, err ratio=1.4 SSD err=1086, err ratio=3.9 SSD err=100, err ratio=3.7
Ferguset al. Shanet al. Shanet al. kernel, sparse deconv

SSD err=141, err ratio=5.2 SSD err=161, err ratio=6 SSD err=89, err ratio=3.3
MAP,, 1., edges reweighting MAP_, 1, no edges reweighting Gaussian

Figure 28. Comparing deconvolution algorithms, im 2, keéEne



SSD err=20, err ratio=1
input Ground truth Deconvolution with ground truth kernel

SSD err=84, err ratio=4.2 SSD err=198, err ratio=9.9 SSD err=186, err ratio=9.3

Ferguset al. Shanet al. Shanet al. kernel, sparse deconv
SSD err=227, err ratio=11.3 SSD err=260, err ratio=13 SSD err=84, err ratio=4.2
MAP,, 1., edges reweighting MAP_, 1, no edges reweighting Gaussian

Figure 29. Comparing deconvolution algorithms, im 2, keéfne



SSD err=39, err ratio=1

input Ground truth Deconvolution with ground truth kernel
SSD err=153, err ratio=3.8 SSD err=322, err ratio=8.2 SSD err=315, err ratio=8.0
Ferguset al. Shanet al. Shanet al. kernel, sparse deconv
SSD err=266, err ratio=6.7 SSD err=551, err ratio=14 SSD err=296, err ratio=7.5
MAP,, 1., edges reweighting MAP_, 1, no edges reweighting Gaussian

Figure 30. Comparing deconvolution algorithms, im 2, kérhe



SSD err=43, err ratio=1

input Deconvolution with ground truth kernel

SSD err=92, err ratio=2.1 SSD err=362, err ratio=8.2 SSD err=513, err ratio=11.7
Ferguset al. Shanet al. Shanet al. kernel, sparse deconv
. ’ '
SSD err=421, err ratio=9.6 SSD err=522, err ratio=11.9 SSD err=161, err ratio=3.6
MAP,, 1., edges reweighting MAP_, 1, no edges reweighting Gaussian

Figure 31. Comparing deconvolution algorithms, im 2, keéfhe



SSD err=31.2, err ratio=1
input Ground truth Deconvolution with ground truth kernel

SSD err=37.4, err ratio=1.2 SSD err=99.9, err ratio=3.2 SSD err=83.5, err ratio=2.6
Fergus et al. Shan et al. Shan et al. kernel, sparse deconv

SSD err=101.4, err ratio=3.2 SSD err=211.2, err ratio=6.7 SSD err=110.5, err ratio=3.5
MAP,, 1., edges reweighting MAP,, ;, no edges reweighting Gaussian

Figure 1. Comparing deconvolution algorithms, im 3, kernel 1



SSD err=35.3, err ratio=1
input Ground truth Deconvolution with ground truth kernel

SSD err=39.1, err ratio=1.1 SSD err=91.9, err ratio=2.6 SSD err=64.6, err ratio=1.8
Fergus et al. Shan et al. Shan et al. kernel, sparse deconv

SSD err=254.2, err ratio=7.1 SSD err=287.9, err ratio=8.1 SSD err=223.9, e ratio=6.3
MAP,, 1., edges reweighting MAP,, ;, no edges reweighting Gaussian

Figure 2. Comparing deconvolution algorithms, im 3, kernel 2



SSD err=18.8, err ratio=1
input Ground truth Deconvolution with ground truth kernel

SSD err=21.5, err ratio=1.1 SSD err=34.7, err ratio=1.8 SSD err=31.3, err ratio=1.6
Fergus et al. Shan et al. Shan et al. kernel, sparse deconv

SSD err=95.4, err ratio=5.1 SSD err=115.0, err ratio=6.1 SSD err=39.8, err ratio=2.1
MAP,, 1., edges reweighting MAP,, ;, no edges reweighting Gaussian

Figure 3. Comparing deconvolution algorithms, im 3, kernel 3



SSD err=45.2, err ratio=1
input Ground truth Deconvolution with ground truth kernel

SSD err=87.5, err ratio=1.9 SSD err=601.4, err ratio=13.3 SSD err=580.6, err ratio=12.8
Fergus et al. Shan et al. Shan et al. kernel, sparse deconv

SSD err=596.0, err ratio=13.2 SSD err=589.9, err ratio=13.0 SSD err=204.6, e ratio=4.5
MAP,, 1., edges reweighting MAP,, ;, no edges reweighting Gaussian

Figure 4. Comparing deconvolution algorithms, im 3, kernel 4



SSD err=15.2, err ratio=1
input Ground truth Deconvolution with ground truth kernel

SSD err=22.0, err ratio=1.4 SSD err=39.9, err ratio=2.6 SSD err=33.7, err ratio=2.2
Ferguset al. Shan et al. Shan et al. kernel, sparse deconv

SSD err=84.09, err ratio=5.5 SSD err=113.3, err ratio=7.4 SSD err=50.6, err ratio=3.3
MAP,, 1., edges reweighting MAP,, ;, no edges reweighting Gaussian

Figure 5. Comparing deconvolution algorithms, im 3, kernel 5



SSD err=10.6, err ratio=1
input Ground truth Deconvolution with ground truth kernel

SSD err=33.6, err ratio=3.1 SSD err=84.9, err ratio=7.9 SSD err=71.2, err ratio=6.6
Fergus et al. Shan et al. Shan et al. kernel, sparse deconv

SSD err=156.1, err ratio=14.6 SSD err=209.6, err ratio=19.6 SSD err=80, er ratio=7.5
MAP,, 1., edges reweighting MAP,, ;, no edges reweighting Gaussian

Figure 6. Comparing deconvolution algorithms, im 3, kernel 6



SSD err=16.9, err ratio=1
input Ground truth Deconvolution with ground truth kernel

SSD err=139.8, err ratio=8.2 SSD err=326.5, err ratio=19.2 SSD err=315.3, err ratio=18.6
Fergus et al. Shan et al. Shan et al. kernel, sparse deconv

SSD err=237.5, err ratio=14.0 SSD err=394.8, err ratio=23.3 SSD err=175.0, err ratio=10.3
MAP,, 1., edges reweighting MAP,, ;, no edges reweighting Gaussian

Figure 7. Comparing deconvolution algorithms, im 3, kernel 7



SSD err=29.9, err ratio=1
input Ground truth Deconvolution with ground truth kernel

SSD err=57.6, err ratio=1.9 SSD err=462.8, err ratio=15.4 SSD err=515.4, err ratio=17.2
Fergus et al. Shan et al. Shan et al. kernel, sparse deconv

SSD err=430.3, err ratio=14.4 SSD err=490.5, err ratio=16.4 SSD err=197.1, er ratio=6.5
MAP,, 1., edges reweighting MAP,, ;, no edges reweighting Gaussian

Figure 8. Comparing deconvolution algorithms, im 3, kernel 8



SSD err=27.1, err ratio=1
input Ground truth Deconvolution with ground truth kernel

SSD err=41.1, err ratio=1.5 SSD err=120.1, err ratio=4.4 SSD err=99.1, err ratio=3.6
Fergus et al. Shan et al. Shan et al. kernel, sparse deconv

N

SSD err=116.7, err ratio=4.3 SSD err=173.3, err ratio=6.3 SSD err=113.7, e ratio=4.1
MAP,, 1., edges reweighting MAP,, ;, no edges reweighting Gaussian

Figure 9. Comparing deconvolution algorithms, im 4, kernel 1



SSD err=41.5, err ratio=1
input Ground truth Deconvolution with ground truth kernel

SSD err=92.8, err ratio=2.2 SSD err=204.3, err ratio=4.9 SSD err=180.8, err ratio=4.3
Fergus et al. Shan et al. Shan et al. kernel, sparse deconv

SSD err=240.2, err ratio=5.7 SSD err=244.1, err ratio=5.8 SSD err=120.7, err ratio=2.9
MAP,, 1., edges reweighting MAP,, ;, no edges reweighting Gaussian

Figure 10. Comparing deconvolution algorithms, im 4, kernel 2



N

SSD err=14.5, err ratio=1
input Ground truth Deconvolution with ground truth kernel

SSD err=18.1, err ratio=1.2 SSD err=40.8, err ratio=2.8 SSD err=33.6, err ratio=2.3
Fergus et al. Shan et al. Shan et al. kernel, sparse deconv

SSD err=65.9, err ratio=4.5 SSD err=89.3, err ratio=6.1 SSD err=68.2, err ratio=4.6
MAP,, 1., edges reweighting MAP,, 1, no edges reweighting Gaussian

Figure 11. Comparing deconvolution algorithms, im 4, kernel 3



SSD err=42.0, err ratio=1
input Ground truth Deconvolution with ground truth kernel

SSD err=13,251, err ratio=316.8 SSD err=457, err ratio=10.9 SSD err=430, er ratio=10.3
Fergus et al. Shan et al. Shan et al. kernel, sparse deconv

SSD err=425, err ratio=10.1 SSD err=806, err ratio=19.3 SSD err=124, err ratio=2.9
MAP,, 1., edges reweighting MAP,, ;, no edges reweighting Gaussian

Figure 12. Comparing deconvolution algorithms, im 4, kernel 4



SSD err=15.3, err ratio=1
input Ground truth Deconvolution with ground truth kernel

SSD err=20.0, err ratio=1.3 SSD err=44.5, err ratio=2.9 SSD err=35.8, err ratio=2.3
Ferguset al. Shan et al. Shan et al. kernel, sparse deconv

SSD err=55.1, err ratio=3.6 SSD err=81.5, err ratio=5.3 SSD err=40.9, err ratio=2.7
MAP,, 1., edges reweighting MAP,, 1, no edges reweighting Gaussian

Figure 13. Comparing deconvolution algorithms, im 8, kernel 5



SSD err=18.6, err ratio=1
input Ground truth Deconvolution with ground truth kernel

SSD err=46.7, err ratio=2.5 SSD err=138.9, err ratio=7.4 SSD err=121.4, err ratio=6.5
Fergus et al. Shan et al. Shan et al. kernel, sparse deconv

SSD err=132.8, err ratio=7.1 SSD err=176.1, err ratio=9.4 SSD err=89.5, err ratio=4.8
MAP,, 1., edges reweighting MAP,, ;, no edges reweighting Gaussian

Figure 14. Comparing deconvolution algorithms, im 4, kernel 6



SSD err=16.3, err ratio=1

Ground truth Deconvolution with ground truth kernel
“
SSD err=504.3, err ratio=30.9 SSD err=333.6, err ratio=20.4 SSD err=318.8, err ratio=19.5
Fergus et al. Shan et al. Shan et al. kernel, sparse deconv
SSD err=288.2, err ratio=17.6 SSD err=342.9, err ratio=21.0 SSD err=301.6, err ratio=18.5
MAP,, 1., edges reweighting MAP,, ;, no edges reweighting Gaussian

Figure 15. Comparing deconvolution algorithms, im 4, kernel 7



SSD err=27.6, err ratio=1
input Ground truth Deconvolution with ground truth kernel

L i

SSD err=786.5, err ratio=28.4 SSD err=392.3, err ratio=14.1 SSD err=377.9, err ratio=13.6
Fergus et al. Shan et al. Shan et al. kernel, sparse deconv

-

SSD err=345.7, err ratio=12.5 SSD err=393.1, err ratio=14.2 SSD err=524.5, err ratio=18.9
MAP,, 1., edges reweighting MAP,, ;, no edges reweighting Gaussian

Figure 16. Comparing deconvolution algorithms, im 4, kernel 8






