
6.450 Principles of Digital Communications September 18
MIT, Fall 2002 Handout #12

Lecture 5: Sources with Memory and the Lempel-Ziv Algorithm

1 Markov Sources

In previous lectures, we developed the basic coding results for discrete memoryless sources.
Many of the results, in particular the Kraft inequality, the entropy bounds on expected
length for uniquely decodable codes, and the Huffman algorithm, do not depend on the
independence of successive source aymbols.

In this section, we extend these results to sources defined in terms of finite state Markov
chains. We use the state of a Markov chain to represent the “memory” of the source,
and use the transitions between states to represent the next symbol out of the source.
Thus, for example, the state could be the previous symbol from the source, or could be
the previous 300 symbols. We will be able to model as much memory as we choose, while
still staying in the regime of finite state Markov chains.

Example 1: Consider a binary source with outputs X1, X2, Assume that the
output probabilities at time n depend on the outputs at times n − 1 and n − 2. These
previous two outputs are modeled by a state Sn−1. In Figure 1, the states are repre-
sented as the nodes of the graph representing the Markov chain, and the source outputs
as the transitions of the graph. Note, for example, that from the state Sn−1=01 (repre-
senting Xn−2=0, Xn−1=1), the output Xn=1 causes a transition to Sn=11 (representing
Xn−1=1, Xn=1). For convenience, we view the chain as starting at time 0 in a state S0

given by some arbitrary pmf.

�
��00
@R �
��01

�
��10 �
��11

-

�
�
�
�
�
�
��3�
�
�

�
�
�

��+
?

�

6

@I

0; 0.5
1; 0.5

1; 0.1

1; 0.5

0; 0.1 1; 0.9

0; 0.9

0; 0.5

Figure 1: Markov source: Each transition s′ → s is labelled by the corresponding source
output and the transition probability Pr{Sn = s|Sn−1 = s′}.

Note that this particular source is characterized by long strings of zeros and long strings
of ones interspersed with short transition regions. For example, starting in state 00, a
representative output would be

00000000101111111111111011111111010100000000 · · ·
Note that if sn = (xn−1xn) then the next state must be either sn+1 = (xn0) or sn+1 =
(xn1); i.e., each state has only two transitions coming out of it.

1

We now generalize the example above to an arbitrary discrete Markov source.

Definition: A finite state Markov chain is a sequence S0, S1, . . . of discrete chance vari-
ables from a finite alphabet, S. There is a pmf q0(s), s ∈ S on S0, and for all n ≥ 1 and
all s ∈ S, s′ ∈ S,

Pr(Sn=s|Sn−1=s′) = Pr(Sn=s|Sn−1=s′, . . . , S0=s′′) = Q(s|s′) (1)

There is a transition from s′ to s, denoted s′ → s, if Q(s|s′) > 0.

Note that (1) says, first, that the probability of a state depends only on the previous
state, and second, that these probabilities do not change with time.

Definition: A Markov source is a sequence of discrete chance variables X1,X2, . . . with
a common alphabet X which is based on a finite state Markov chain S0, S1, Each
transition (s′ → s) in the Markov chain is labelled with a symbol from X ; each symbol
from X can appear on at most one outgoing transition from each state.

Note that the state alphabet S and the source alphabet X are in general different. Since
each source symbol appears on at most one transition from each state, the initial state
S0=s0, combined with the source output, X1=x1, X2=x2, . . . , uniquely identifies the state
sequence, and, of course, the state sequence uniquely specifies the source output sequence.
If x ∈ X labels the transition s′ → s, then the conditional probability of that x is
given by P (x|s′) = Q(s|s′). Thus, for example, in the transition 00 → 01 in Figure 1,
Q(01|00) = P (1|00).

The reason that we distinguish the Markov chain alphabet from the source output alpha-
bet is that we want the state to represent an arbitrary combination of past events rather
than just the previous source output. It is this feature that permits Markov source models
to reasonably model both simple and complex forms of memory.

A state s is accessible from state s′ in a Markov chain if there is a path in the corresponding
graph from s′ → s, i.e., if Pr(Sn=s|S0=s′) > 0 for some n > 0. The period of a state s is
the greatest common divisor of the set of natural numbers n for which Pr(Sn=s|S0=s) > 0.
A finite state Markov chain is ergodic if all states are accessible from all other states and
if all states are aperiodic, i.e., have period 1.

We will consider only Markov sources for which the Markov chain is ergodic. An important
fact about ergodic Markov chains is that the chain has steady-state probabilities q(s) for
all s ∈ S, given by the unique solution to the linear equations

q(s) =
∑
s′∈S

q(s′)Q(s|s′); s ∈ S (2)∑
s∈S

q(s) = 1

These steady-state probabilities are approached asymptotically from any starting state,
i.e.,

lim
n→∞

Pr(Sn=s|S0=s′) = q(s) for all s, s′ ∈ S (3)

2

1.1 Coding for Markov sources

The simplest approach to coding for Markov sources is that of using a separate prefix-free
code for each state in the underlying Markov chain. That is, for each s ∈ S, select a prefix-
free code whose lengths l(x, s) are appropriate for the conditional pmf P (x|s) > 0. The
codeword lengths for the code used in state s must of course satisfy the Kraft inequality∑

x 2−l(x,s) ≤ 1. The minimum expected length, Lmin(s) for each such code can be
generated by the Huffman algorithm and satisfies

H(X|s) ≤ Lmin(s) < H(X|s) + 1 (4)

where, for each s ∈ S, H(X|s) =
∑

x∈X −P (x|s) logP (x|s).
If the initial state S0 is chosen according to the steady-state pmf {q(s); s ∈ S}, then, from
(2), the Markov chain remains in steady-state and the overall expected codeword length
is given by

H(X|S) ≤ Lmin < H(X|S) + 1, (5)

where

Lmin =
∑
s∈S

q(s)Lmin(s) and (6)

H(X|S) =
∑
s∈S

q(s)H(X|s) (7)

We assume that at time 0, the encoder first transmits the initial state s0. If M ′ is the
number of elements in the state space, then this can be done with dlogM ′e bits, but
we ignore this since it is done only at the beginning of transmission and does not effect
the long term expected number of bits per source letter. The encoder then successively
encodes each source symbol xn using the code for the state at time n − 1. The decoder,
after decoding the initial state s0, can decode x1 using the code based on state s0. The
decoder can then determine the state s1, and from that can decode x2 using the code
based on s1. The decoder can continue decoding each source symbol, and we see that
the overall code is uniquely decodable. We next must understand the meaning of the
conditional entropy in (7).

1.2 Conditional Entropy

It turns out that the conditional entropy H(X|S) plays the same role in coding for Markov
sources as the ordinary entropy H(X) plays for the memoryless case. We can rewrite (6)
as

H(X|S) =
∑
s∈S

∑
x∈X

q(s)P (x|s) log
1

P (x|s)

We see that this is the expected value of the random variable log[1/P (X|S)].

3

An important entropy relation, for any discrete random variables, is

H(XS) = H(S) +H(X|S). (8)

To see this,

H(XS) =
∑
s,x

q(s)P (x|s) log
1

q(s)P (x|s)

=
∑
s,x

q(s)P (x|s) log
1

q(s)
+
∑
s,x

q(s)P (x|s) log
1

P (x|s)

= H(S) +H(X|S)

Recall that in exercise 2.5(b), it was shown that

H(XS) ≤ H(S) +H(X)

Comparing this and (8), it follows that

H(X|S) ≤ H(X). (9)

Eqn. (9) is an important inequality in information theory. If we view entropy H(X) as
a measure of mean uncertainty, then we should view conditional entropy H(X|S) as a
measure of mean uncertainty after the observation of the outcome of S. If X and S are
not statistically independent, we would hypothesize that the observation of S reduces the
mean uncertainty in X, and this equation indeed verifies this.

Example 1 continued: From Figure 1, it is clear from symmetry that, in steady state,
pX(0) = pX(1) = 1/2. Thus H(X) = 1 bit. Conditional on S=00, X is binary with pmf
{0.1, 0.9}, so H(X|00) = −0.1 log 0.1− 0.9 log 0.9 = 0.47 bits. Similarly, H(X|11) = 0.47
bits, and H(X|01) = H(X|10) = 1 bit. Solving the steady-state equations in (2), we
find that q(00) = q(11) = 5/12 and q(01) = q(10) = 1/12. Thus, the conditional entropy
averaged over the states is H(X|S) = 0.558 bits.

For this example, it is particularly silly to use a different prefix-free code for the source
output for each prior state. The problem is that the source is binary, and thus the
prefix-free code will have length 1 for each symbol no matter what the state. As with
the memoryless case, however, using fixed-to-variable length codes is a solution to these
problems of small alphabet sizes and integer constraints on codeword lengths.

In general, then, we look at the use of fixed-to-variable length codes, using a different such
code for each prior state. First, however, we must find how to evaluate H(X1 · · ·Xn|S0),
assuming that S0 is chosen according to the steady state pmf {q(s)}. Carrying out this
computation (which we omit), the result is that

H(X1 · · ·Xn|S0) = nH(X|S) (10)

It follows, as in the discussion of fixed-to-variable length coding for memoryless sources,
that the minimum expected codeword length per source symbol for n-to-variable-length
source coding, with a separate code for each prior state, satisfies

H(X|S) ≤ Lmin,n < H(X|S) + 1/n (11)

4

The asymptotic equipartition property also holds for Markov sources. Here, however,
there are1 approximately 2nH(X|S) typical strings of length n, each with probability ap-
proximately equal to 2−nH(X|S). It follows as in the memoryless case that H(X|S) is the
minimum possible rate at which source symbols can be encoded subject either to unique
decodability or to fixed-to-fixed length encoding with small probability of failure. The
arguments are essentially the same as in the memoryless case.

We have not carried out all the details of the Markov source analysis, but there are few
new ideas that have not already been discussed in the memoryless source case. This is
an interesting situation where many real sources can be reasonably modeled as Markov
sources, and very few real sources can be reasonably modeled as memoryless sources.
However, the understanding of source coding comes primarily from the study of memory-
less sources - Markov sources are a simple extension given some familiarity with Markov
chains.

2 Lempel-Ziv universal data compression

The Lempel-Ziv data compression algorithms are source coding algorithms which differ
from those that we have previously studied in the following ways:

• They use variable-to-variable-length codes in which both the number of source sym-
bols encoded and the number of encoded bits per codeword are variable. Moreover,
the code is time-varying.

• They do not require prior knowledge of the source statistics, yet over time they
adapt so that the average codeword length L per source letter is minimized. Such an
algorithm is called universal.

• They have been widely used in practice; although newer schemes improve upon them,
they provide a simple approach to understanding universal data compression algo-
rithms.

Lempel and Ziv developed two universal data compression algorithms in 1977-78 that were
widely used for many years. The first, LZ77, uses string-matching on a sliding window;
the second, LZ78, uses an adaptive dictionary. LZ78 was implemented many years ago in
the UNIX compress algorithm, and in many other places. Implementations of LZ77 are
somewhat more recent (Stac Stacker, Microsoft Windows). LZ77 compresses better, but
is more computationally intensive.

In this lecture, we describe the LZ77 algorithm. We will then give a high-level idea of
why it works. Finally, we will give an upper bound on its data compression performance
for Markov sources, showing that it is effectively optimal.

1There are additional details here about whether the typical sequences include the initial state or not,
but these differences become unimportant as n becomes large.

5

2.1 The LZ77 algorithm

The LZ77 algorithm compresses a sequence x = x1, x2, . . . from some given discrete
alphabet X of size M = |X |. At this point we do not assume any probabilistic model for
the source, so x is simply a sequence of symbols, not a sequence of chance variables. We
will denote a subsequence (xm, xm+1, . . . , xn) of x by xnm.

The algorithm keeps the w most recently encoded source symbols in memory. This is
called a sliding window of size w. The number w is large, and can be thought of as being
in the range of 210 to 217, say. The parameter w is chosen to be a power of 2. Both
complexity and performance increase with w.

Briefly, the algorithm operates as follows. Suppose that at some time the source symbols
up to xP have been encoded. The encoder looks for the longest match, say of length n,
between the not-yet-encoded n-string xP+n

P+1 and a stored string xP+n−u
P+1−u in the window

of length w. The clever algorithmic idea in LZ77 is to encode this string of n symbols
simply by encoding the integers n and u; i.e., by pointing to the previous occurrence of
this string in the sliding window. If the decoder maintains an identical window, then it
can look up the string xP+n−u

P+1−u , decode it, and keep up with the encoder.

More precisely, the LZ77 algorithm operates as follows:

(a) Encode the first w symbols in a fixed-length code without compression, using dlogMe
bits per symbol. (Since wdlogMe will be a vanishing fraction of the total number of
encoded bits, we don’t care how efficiently we encode this preamble.)

(b) Set the pointer P = w. (This indicates that all symbols up to and including xP have
been encoded.)

(c) Find the largest n ≥ 2 such that xP+n
P+1 = xP+n−u

P+1−u for some u in the range 1 ≤ u ≤ w.
(Find the longest match of a string of n ≥ 2 not-yet-encoded symbols starting with
xP+1 with a string of n recently encoded symbols starting u symbols earlier, where
u ≤ w. The string xP+n

P+1 will be encoded by encoding the integers n and u.)

If no match exists for n ≥ 2, then set n = 1 and encode a single source symbol xP+1

without compression.

Here are two examples. In the first, there is a match of size n = 3 with a string
starting u = 7 symbols prior to the pointer. In the second, there is a match of size
n = 4 with a string starting u = 2 symbols prior to the pointer. (This illustrates the
possibility of overlap between the string and its matching string.)

-�
w = window

P
Match

�
u = 7

n = 3

b c d a c b a b a c d b c a b a b d c a · · ·

6

-�
w = window

P
Match

�
u = 2

n = 4

a b a a c b a b a c d a b a b a b d c a · · ·

(d) Encode the integer n into a codeword from the so-called unary-binary code. The
positive integer n is encoded into the binary representation of n, preceded by a prefix
of blog2 nc zeroes; i.e.,

1→ 1, 2→ 010, 3→ 011, 4→ 00100,
5→ 00101, 6→ 00110, 7→ 00111, 8→ 0001000, etc.

Thus the codewords starting with 0n1 correspond to the 2n integers in the range
2n ≤ m < 2n+1 − 1. This code is prefix-free (picture the corresponding binary tree).
It can be seen that the codeword for integer n has length 2blog nc+ 1; we discuss the
significance of this later.

(e) If n > 1, encode the positive integer u ≤ w using a fixed-length code of length logw
bits. (At this point the decoder knows n, and can simply count back by u in the
previously decoded string to find the appropriate n-tuple, even if there is overlap as
above.)

If n = 1, encode the symbol xP+1 ∈ X without compression, i.e., use a fixed-length
code of length dlogMe. (In this case the decoder decodes a single symbol.)

(f) Set the pointer P to P + n and go to step (c). (Iterate.)

3 Why LZ77 works

The motivation behind LZ77 is information-theoretic. The underlying idea is that if the
AEP holds for the source, then a sliding window of length w will contain most of the
typical strings that are likely to be emitted by the source up to some length n∗ that
depends on w and the (unknown) source statistics. Therefore, in steady state the encoder
will usually be able to encode (at least) n∗ source symbols at a time, using a number of
bits which is not much larger than logw (as all parameters become large). The average
number of bits per source symbol will therefore be L ≈ (logw)/n∗.

Assume that the source is a Markov source (although, of course, the algorithm just stated
is not based on any knowledge of those source statistics). We will then argue that L will
be close to the conditional entropy H(X|S) of the source. There are two essential parts to
the argument. First, as noted earlier, a Markov source satisfies the AEP, and thus typical
strings of length n have probability approximately equal to 2−nH(X|S). Second, given a

7

string xP+n
P+1 , the expected length back in the sequence to the previous appearance of that

string can be shown to approximate 1/Pr(xP+n
P+1) with equality in the limit P →∞).

This means that if we choose an n such that 2nH(X|S) << w, the the typical sequences
of length n will typically have many appearances within the window. Conversely, if
2nH(X|S) >> w, the the typical sequences of length n will only rarely have an appearance
within the window. The conclusion is that the typical match will be for some n∗ for which

2n
∗H(X|S) ≈ w.

Thus

n∗ ≈ logw

H(X|S)
.

Each encoder operation therefore encodes a string of about n∗ source symbols, and requires
about logw ≈ n∗H(X|S) bits to encode the match location u. The number of bits required
by the unary-binary code to encode n is logarithmic in n and thus negligible compared
to logw, which is roughly linear in n. Note that we cannot optimize the code used to
encode n, since the source statistics are not known. However, making it logarithmic in
n guarantees that it will be negligible for large enough w. Thus, the algorithm requires
roughly L ≈ H(X|S) bits per source symbol, which, as we have seen, is optimal even if
the source statistics are known.

This argument can be made precise, but we will not do so here.

4 Discussion

Let us recapitulate the basic ideas behind the LZ77 algorithm:

(a) Let Nx be the number of occurrences of symbol x in a window of size w. The WLLN
asserts that the relative frequency Nx/w of appearances of x in the window will
satisfy Nx/w ≈ pX(x) with high probability. Similarly, let Nxn be the number of
occurrences of xn which start in the window. The relative frequency Nxn/w will then
satisfy Nxn/w ≈ pXn(xn) with high probability for very large w. This association
of relative frequencies with probabilities is what makes LZ77 a universal algorithm
which needs no prior knowledge of source statistics.2

(b) Next, as explained in the last section, the probability of a typical source string xn

for a Markov source is approximately 2−nH(X|S). If w >> 2nH(X|S), then, according
to the previous item, Nxn ≈ wpXn(xn) should be large and xn should occur in the
window with high probability. Alternatively, if w << 2nH(X|S), then xn will probably
not occur. Consequently the match will usually occur for n ≈ (logw)/H(X|S) as w
becomes very large.

2As Yogi Berra said, “You can observe a whole lot just by watchin’.”

8

(c) Finally, it takes about logw bits to point to the best match in the window. The unary-
binary code used to encode the length n of the match usually requires a negligible
number of bits relative to logw.

Consequently, LZ77 requires about logw encoded bits for each group of about
(logw)/H(X|S) source symbols, so it nearly achieves the optimal efficiency of L =
H(X|S) bits/symbol, as w becomes very large.

9

