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Abstract

This paper proposes a new market-based distributed planning algo-
rithm for multi-agent systems under uncertainty, called MIRA (Market-
based Iterative Risk Allocation). In large coordination problems, from
power grid management to multi-vehicle missions, multiple agents act
collectively in order to optimize the performance of the system, while
satisfying mission constraints. These optimal plans are particularly
susceptible to risk when uncertainty is introduced. We present a dis-
tributed planning algorithm that minimizes the system cost while en-
suring that the probability of violating mission constraints is below a
user-specified level.

We build upon the paradigm ofrisk allocation[13], in which the plan-
ner optimizes not only the sequence of actions, but also its allocation
of risk among each constraint at each time step. We extend the concept
of risk allocation to multi-agent systems by highlighting risk as a good
that is traded in a computational market. The equilibrium price of risk
that balances the supply and demand is found by an iterative price
adjustment process calledtâtonnement(also known asWalrasian auc-
tion). The simulation results demonstrate the efficiency and optimality
of the proposed distributed planner.

1 Introduction

1.1 Motivation

There is an increasing need for multi-agent systems that perform optimal planning un-
der uncertainty in multi-agent system. An example is planning and control of power
grid systems [3][15][21]. A power grid consists of a numbers of generators and elec-
tric transformers whose control should be carefully planned in order to maximize ef-
ficiency. A significant issue in power grid planning is the uncertainty in demand for
energy by consumers. As the use of renewable energy, such as solar and wind power,
become more popular, uncertainty in supply increases due to weather conditions.

Another example is the Autonomous Ocean Sampling Network (AOSN) [7][17],
which consists of multiple automated underwater vehicles (AUVs), robotic buoys, and
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aerial vehicles. AOSN should maximize science gain while being exposed to external
disturbances, such as tides and currents.

To deal with such problems, we developedMarket-based Iterative Risk Allocation
(MIRA), a multi-agent optimal planning algorithm that operates within user-specified
risk bounds.

1.2 Scope of this Paper

We address the problem of planning in continuous state space with time-evolved goals,
which are expressed as Qualitative State Plans [10][8]. This paper considers the prob-
lem in which effects have stochastic distribution such as Gaussian, goals are convex
regions on state space, and sequence of actions are planned cooperatively by multiple
agents.

1.3 Overview

Planning under uncertainty, and risk allocation When planning actions under un-
certainty, there is always a risk of failure. However, in many cases, performance can
be improved only by taking extra risk. We can reach a destination faster by driving
at a faster speed and accepting a higher risk of an accident. Hannibal, a Carthaginian
military commander in the third century B.C., was able to frustrate the Roman army
by taking the great risk of crossing the Alps with 50,000 troops. As seen in these ex-
amples, risk and performance are in a trade-off relationship. In other words, risk is a
resource that can be spent to improve the performance of the system.

Without taking any risk, nothing can be done; however, no one dares to take un-
limited risk. Although the sensitivity for risk varies from person to person, everyone
somehow balances risk and performance to find the optimal plan.

There are three main ways to formulate the trade-off problem of risk and perfor-
mance; the first is to set a negative utility for failure (i.e. penalty), and maximize the
expected total utility (the utilitarian approach, such as embodied in MDP); the second
is to set upper bound on risk and maximize performance within this bound; the third is
to set lower bound on performance and minimize risk. It is up to the system operator
to choose which formulation to use according to her needs and requirements.

Our focus is on the second approach: performance maximization with an upper-
bound on risk. An example problem is to drive a car as fast as possible while limiting
the probability of a crash to 0.01%. This formulation is particularly useful for planning
problems that involve high-impact low-probability risk such as loss of life.

With this formulation, [13] showed that the planner should plan not only the se-
quence of actions but also therisk allocation in order to maximize the performance
under a risk bound .

The example shown in Figure 1 illustrates the concept of risk allocation. A race car
driver wants to plan a path to get to the goal as fast as possible. However, crashing into
the wall leads to a fatal accident, so he wants to limit the probability of a crash to 0.01%.
An intelligent driver would plan a path as shown in Figure 1, which runs mostly in the
middle of the straightaway, but gets close to the wall at the corner. Why? It is because
taking a risk (i.e. approaching the wall) at the corner results in a greater time saving
than taking the same risk along the straightaway; in other words, the utility of taking
risk is greater at the corner than the straightaway. Therefore the optimal plan allocates
a large portion of risk to the corner, while allocating little to the straightaway. As
illustrated by this example,risk allocationneeds to be optimized across the constraints,
in order to maximize the performance.
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Figure 1: Risk allocation in a race car path planning scenario. A large portion of risk
is allocated to the corner, since taking a risk (approaching the wall) at corner results in
greater time saving than taking the same risk along straightaway.

Forest fire

Water tanker

Reconnaissance vehicle

Figure 2: Risk allocation for multi-UAV fire-fighting system. The water tanker is al-
lowed to fly low since it is allocated larger risk than the reconnaissance vehicle.

The planner then needs to generate an optimal action sequence that abides to the
allocated risk at each constraint.

Distributed risk allocation for multi-agent system The concept of risk allocation
can be naturally extended to multi-agent systems. Figure 2 shows an example of a
multi-agent system with two unmanned air vehicles (UAVs), whose mission is to extin-
guish a forest fire. A water tanker drops water while a reconnaissance vehicle monitors
the fire with its sensors. The loss of either vehicle results in a failure of the mission.
Two vehicles are required to extinguish the fire as efficiently as possible, while limiting
the probability of mission failure to a given risk bound, say, 0.1%. The water tanker
can improve efficiency by flying at a lower altitude, but it involves risk. The reconnais-
sance vehicle can also improve the data resolution by flying low, but the improvement
of efficiency is not as great as the water tanker. In such a case a plausible plan is to
allow the water tanker to take a large portion of risk by flying low, while keeping the
reconnaissance vehicle at a high altitude to avoid risk. This is because the utility of
taking risk (i.e. flying low) is greater for the water vehicle than for the reconnaissance
vehicle.

Then, the question is how to find the optimal risk allocation between multiple ve-
hicles in a distributed manner.
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Figure 3: Market-based risk allocation in a system with two agents. Note that we
followed the economics convention of placing the price on the vertical axis. The equi-
librium price isp?, and the optimal risk allocation is∆?

1 = D1(p?) for Agent 1 and
∆?

2 = D2(p?) for Agent 2.

Tâtonnement: market-based risk allocation Our approach is to use the market-
based mechanism to optimize the risk allocation between agents. In a computational
market each agent demands for risk in order to improve its own performance. However,
it cannot take risk for free; it has to purchase it from the market at a given price. It
demands more risk when the price is low. On the other hand, the supply of risk is
constant, since the upper-bound of total risk is given.

Agents are price takers. Therefore the demand is a function of the price of risk
(demand curve). Each agent has a different demand curve according to its sensitivity
to risk. This setting corresponds to the perfectly competitive economy, where no agent
has monopoly power.

The price must be adjusted so that the total demand (aggregate demand) becomes
equal to the supply. The equilibrium price can be found by a simple iterative process
as follows:

• Increase the price if the aggregate demand exceeds the supply,

• Decrease the price if the supply exceeds the aggregate demand,

• Repeat until the demand and the supply are balanced.

This iterative price adjustment process is calledtâtonnementor Walrasian auction[16].
Figure 3 gives the graphical interpretation of the market-based risk allocation in a

system with two agents. In this example Agent 2 has higher demand for risk than Agent
1, since Agent 2 has more utility of taking risk than Agent 1. The aggregate demand
curve is obtained by adding the two demand curves horizontally. The supply curve is a
vertical line since it is constant. The equilibrium pricep? lies at the intersection of the
aggregate demand curve and the supply curve. The optimal risk allocation for the two
agents are their demands for risk at the equilibrium price (∆?

1 and∆?
2 in Figure 3).

It is proven in a later section that the performance of the entire system is maximized
at the equilibrium price, although each agent only maximizes its own utility. The only
information that needs to be exchanged between agents is price and demand. These are
desirable features for distributed systems.
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Figure 4: Structure of Market-based Iterative Risk Allocation (MIRA) algorithm.A:
System operator specifies the risk bound for system.B: It is broken down to the risk
bounds for each agent.C: Each agent optimizes internal risk allocation.D: Each agent
optimizes the action plan according to the risk allocation.

MIRA Our proposed algorithm, MIRA (Market-based Iterative Risk Allocation), op-
timizes risk allocation between agents, internal risk allocation of each agent, and action
sequences of each agent concurrently in a distributed manner. Figure 4 shows the struc-
ture of MIRA. The risk bound is given by the system operator (A). At the top level of
the algorithm it optimizes the risk allocation between agents by tâtonnement (B). At
the middle level each agent optimizes internal risk allocation (C). At the bottom level
the action sequence is optimized according to the risk allocation (D).

The next section presents the related work. The following three sections explains
MIRA algorithm in bottom-up order.

1.4 Related Work

The basis of this work is the model-based plan executive calledSulu [10]. It takes a
high-level plan (Qualitative State Planor QSP) as an input, and outputs a low-level
continous action sequence. Two limitations of Sulu are that it does not consider uncer-
tainty, and it is a centralized planner. Our final goal is to create a distributed model-
based plan executive for multi-agent systems under uncertainty. The work in this paper
is an important stepping stone to the goal.

Planning under uncertainty with risk bound (calledchance constraint) is intensively
researched in the robust model predictive control (RMPC) community [2]. Due to the
difficulty of handling the chance constraint analytically, past work used either a very
conservative bound that resulted in large suboptimality [18][6][12], or a sample-based
method [4] that is computationally inefficient. We introduced the concept of risk allo-
cation that decomposes the chance constraint into multiple atomic chance constraints
[13], and developed Iterative Risk Allocation (IRA) algorithm that can optimize risk
allocation efficiently, with substantially smaller suboptimality than the past work [14].

Market-based approach has recently been recognized as an effective tool for de-
centralized multi-agent systems in AI community [20][11]. Although tâtonnement has
drawn less attention than auctions, it has been successfully applied to various problems
such as the distribution of heating energy in an office building [19], and resource allo-
cation in communication networks [9]. The convergence of tâtonnement has been an
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issue in economics for a long time; with a simple linear price update rule, it can only
be guaranteed under a quite restrictive condition [16]. Fortunately, since we are work-
ing in a computational economy, we do not have to stick to the simple price update
rule that is natural in a real-world economy; instead, we use Brent’s method, which is
guaranteed to converge with superlinear convergence rate [1].

2 Risk Allocation for a Single-agent System

We will first briefly review the mathematical formulation of risk allocation. Our focus
on this paper is a problem with continuous state space, although the concept of risk
allocation can be used for discrete/hybrid systems [13]. This section corresponds to
the bottom and middle level optimization of MIRA (Figure 4).

2.1 Formulation

Action planning under uncertainty Time evolved goals in Qualitative State Plan
can be encoded into a set of linear constraints, and the optimal sequence of actions are
found by solving a mixed integer linear programming [10]. Based on this work, we
formulate the probabilistic planning problems with chance constraints as constrained
convex optimization problems as follows:

min
u1:T

J(u1:T ) (1)

s.t. ∀t xt+1 = Axt + But + wt (2)

∀t umin ≤ ut ≤ umax (3)

Pr

[
T∧

t=0

Nt∧
n=1

gt,n(xt) ≤ 0

]
≥ 1−∆ (4)

wherext, ut, andwt are the state vector, action (control input) vector, and disturbance
respectively. The subscript indicates the time step. The probabilistic distribution of the
disturbancewt is known, and the distribution of the initial statex0 is also given.

We assume a discrete-time linear dynamic system defined by Eq.(2) with con-
straints on actions Eq.(3). We consider a fixed planning window1 ≤ t ≤ T . In
each time step there areNt constraintsgt,n(xt) ≤ 0. Eq.(4) is the chance constraint.
Since violation of any constraint at any time step is regarded as a mission failure, the
probability of satisfying all constraints at all time steps must be1−∆, where∆ is the
upper bound of the probability of failure (risk bound).

The problem is to find the optimal sequence of actionsu1:T := [u1 · · ·uT ]T that
minimizes the costJ(Eq.(1)).

The risk bound∆ is a constant specified by the system operator. The system mini-
mizes the cost (i.e. maximizes the performance) within this given risk bound. In other
words, the system operator can adjust the risk averseness of the system by tuning the
risk bound∆.

We assume thatJ(·) andg(·) are convex functions. A problem with non-convex
feasible state space can also be formulated in this framework by introducing integer
variables, and solved by branch-and-bound algorithm.

Decomposition of chance constraint The chance constraint Eq.(4) is hard to be eval-
uated since it involves a probability defined on a multi-dimensional distribution. It
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can be decomposed into multiple atomic chance constraints that only involve single-
dimensional distribution using the following Boole’s inequality or union bound:

Pr

[∪
i

Ai

]
≤
∑

i

Pr [Ai] (5)

Observe that, using Boole’s inequality Eq.(5), following condition Eq.(6), together with
Eq.(7), implies the original chance constraint Eq.(4).

∀(t,n) Pr [gt,n(xt) ≤ 0] ≥ 1− δn
t (6)

T∑
t=1

Nt∑
n=1

δn
t ≤ ∆ (7)

Therefore, the original chance constraint Eq.(4) can be replaced with Eq.(6) and
Eq.(7). Since we have introduced new variablesδn

t , the costJ in Eq.(1) needs to be
optimized overδn

t as well as the sequence of actionsu1:T :

min
δ,u1:T

J(u1:T ) (8)

where

δ =
[
δ1
0 δ2

0 · · · δNT−1
T δNT

T

]T
.

We now have the revised constrained optimization problem defined by Eq.(8) with
constraints Eq.(2)(3)(6)(7).

2.2 Risk allocation

What is the meaning behind these mathematical manipulations? Here is the answer: the
newly introduced variableδ is the mathematical representation ofrisk allocation. Now
each single constraint at each time step has its own risk boundδn

t (Eq.(6)); in other
words,δn

t is the amount of risk allocated tonth constraint attth time step. Eq.(7) states
that the total amount of risk is upper-bounded by the original risk bound∆; therefore
risk is regarded as a resource with total amount∆. In order to obtain the maximum
performance (minimum cost), the risk allocation needs to be optimized(Eq.(8)), just
like the resource allocation problem.

The risk allocation optimization problem can be solved efficiently by a two-stage
optimization algorithm called Iterative Risk Allocation [14]. Alternatively it can also
be solved by single shot optimization [5]. We employ the latter approach in this work.

3 Distributed Risk Allocation for Multi-agent Systems

This section formulates the top level optimization in MIRA, shown in Figure 4.
We will first formulate the planning problem under uncertainty for multi-agent sys-

tems in a centralized manner, and then derive the distributed formulation from there
using KKT conditions. We will then observe that the economical concepts such as
price, demand, and supply naturally show up through the mathematical manipulation.
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3.1 Formulation

Planning under risk for multi-agent system In a multi-agent system such as the
UAV fire fighting system illustrated in Figure 2, a failure of one agent leads to a fail-
ure of entire system. In a manned system, loss of one crew member is regarded as a
failure of mission. Therefore the system operator wants to set an upper-bound on the
probability of having at least one agent fail.

With the same discussion as in the previous section, the following bound is obtained
by using Boole’s inequality Eq.(5):

I∑
i=1

∆i ≤ S (9)

where∆i is the upper bound on the probability of failure of theith agent,I is the
number of agents in the system, andS is the upper bound on the probability of failure
of the entire system (i.e. total amount of risk the entire system can take). Note that
∆ was a given constant in the single-agent case (Eq.(4) or (7)), but now each∆i is a
decision variable, whileS is the new given constant, which is specified by the system
operator.

Then how is the performance of the entire system defined? We consider a simple
case where the performance (cost) of the system is the sum of the performance (cost)
of all agents:

Jsys =
∑

i

Ji(ui,1:T ) (10)

Therefore the planning problem under risk for multi-agent systems is formulated
as the constrained optimization problem to minimize Eq.(10), subject to the constraints
Eq.(2)(3)(6)(7), and (9).

This formulation is a little messy. To clean it up, we define a functionJ?
i (∆i),

which is equal to the minimized cost for theith agent obtained by solving the con-
strained optimization problem for a single agent Eq.(8)(2)(3)(6)(7) given∆i:

J?
i (∆i) = J(u?

i,1:T ) (11)

whereu?
1:T is the solution to the single agent optimization problem) given∆i.

UsingJ?
i (∆i), the optimization problem can be rewritten in a simple form as fol-

lows:

min
∆1:I

I∑
i=1

J?
i (∆i) (12)

s.t.
∑

i

∆i ≤ S (13)

An important fact is that functionJ?
i (∆i) is a convex function if the original cost

functionJ(u1:T ) is convex (which is our assumption) and the distribution of the dis-
turbancewt is quasi-concave with its maximum at the mean, such as Gaussian distri-
bution. See Appendix for the proof.

This formulation describes a centralized planning problem since the action se-
quences and risk allocations of all agents are planned in one optimization problem.
We will next derive the distributed formulation using KKT conditions.
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Distributed planning The KKT conditions of the optimization problem Eq.(12)(13)
are1

dJ?
i

d∆i

∣∣∣∣
∆?

i

+ p = 0 (14)∑
i

∆?
i ≤ S (13)

p ≥ 0 (15)

p

(∑
i

∆?
i − S

)
= 0 (16)

wherep is the Lagrange multiplier corresponding to the constraint Eq.(13). This is the
necessary and sufficient condition for optimality sinceJ?

i (∆i) is convex.
Observe that Eq.(14) is also the optimality condition for the following uncon-

strained optimization problem:

min
∆i

J?
i (∆i) + p∆i (17)

Therefore solving the optimization problem Eq.(12) and (13) is equivalent to solv-
ing I independent optimization problems Eq.(17) with common parameterp, which is
determined by Eq.(13), (15), and (16). Since Eq.(17) contains only the variables related
to ith agent, it can be solved by each agent in a distributed manner.

Note: It is often not possible, and not necessary as well, to obtain the functionJ?
i (∆i)

in a closed form; in practiceJ?
i (∆i) is evaluated simply by solving the optimization

problem Eq.(8)(2)(3)(6)(7), with an extra termp∆i added to the objective function
Eq.(8).

3.2 Economic Interpretation

The interpretation of these mathematical manipulations becomes clear by regarding the
Lagrange multiplierp as theprice of risk. Each agent can reduce the cost (i.e. improve
the performance) by taking more risk∆i, but not for free. Note that a new termp∆i is
added to the cost function Eq.(17). This is what the agent has to pay to take the amount
of risk ∆i. The agent must find the optimal amount of riskDi(p) to minimize the cost
plus payment, by solving the optimization problem Eq.(17) with a given pricep:

Di(p) = arg min
∆i

J?
i (∆i) + p∆i.

In other words,Di(p) is the amount of risk theith agent wants to take given the
price of riskp. ThereforeDi(p) can be interpreted as theith agent’sdemand for risk.
On the other hand, the total amount of riskS can be interpreted as thesupply of risk.

In order to obtain the optimal plan, we need to find the optimal pricep? that satisfies
the KKT conditions Eq.(13), (15), and (16), with the optimal demands at the price
∆?

i = Di(p?). Such pricep? is also called as the equilibrium price.
The condition Eq.(16) illustrates the relation between the optimal price, demand,

and supply; in the usual case where the optimal price is positivep? > 0, the aggregate
1We assume the differentiability ofJ?

i (∆i) here; in fact, sinceJ?
i (∆i) is a convex function, it is contin-

uous on C and differentiable at all but at most countably many points; we can obtain the same result for the
point where it is not differentiable by using extended KKT condition with subgradient.
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demand
∑

i ∆?
i must be equal to the supplyS; in a special case where the supply

always exceeds the demand for allp ≥ 0, the optimal price is zerop? = 0. If the
aggregate demand always exceeds the supply for allp ≥ 0, there is no solution that
satisfies the primal feasibility condition (13), and hence the problem is infeasible. See
Figure 3 for the graphical interpretation.

The next section discusses how to find such equilibrium pricep?.

4 Tâtonnement: Price adjustment mechanism

This section provides the algorithm that solves the top level optimization in MIRA,
shown in Figure 4.

In the real world economy the demand for a good is a monotonically decreasing
function of price (people want more if price is less). This is also the case in our com-
putational economy. By differentiating Eq.(14),

dp

dDi
= −d2J?

i

d∆2
i

∣∣∣∣
∆i=Di

≤ 0 (18)

We used the fact thatJ?
i (∆i) is a convex function. (See Appendix for the proof.)

This decreasing monotonicity of demand curve justifies the use of tâtonnement;
iteratively increase the price if the aggregate demand exceeds the supply and decrease
the price if the supply exceeds the aggregate demand, until the demand and supply are
balanced.

Algorithm 1 shows the flow of t̂atonnement. At the begging of each iteration, the
price is announced by an auctioneer (Line 4). Then each agent bids the quantity of risk
they would like to purchase (i.e. demand for risk) at the price. Auctioneer adjusts the
price according to the excess demand (supply) (Line 9 and 11), and announces it at the
beginning of the next iteration. This process is repeated until the demand and supply are
balanced (Line 7). Mathematically tâtonnement can be seen as a root-finding process.

Then what should the specific price update rule be? In the following subsections
we will investigate two update rules: linear increment and Brent’s method [1].

Algorithm 1 Tâtonnement (fixed supply)
1: Fix S; //Total supply of risk
2: Initialize p; //Price of risk
3: loop
4: Auctioneer announcesp;
5: Each agent submits its demand for riskDi(p);
6: if |

∑
i D?

i (p)− S| < ε then
7: break;
8: else if

∑
i D?

i (p)− S > 0 then
9: Increasep;

10: else if
∑

i D?
i (p)− S < 0 then

11: Decreasep;
12: end if
13: end loop

10



4.1 Linear Price Increment

The following simple price update rule is most intensively researched in economics
context:

pk+1 = max

{
pk + λ

(∑
i

Di(pk)− S

)
, 0

}
(19)

The price is guaranteed to converge forsufficiently smallλ > 0, if a condition
called gross substitutability is satisfied [16]. In our case where there are only two
goods exchanged in the market (risk and money), gross substitutability is implied by
the decreasing monotonicity of the demand function. However, practically, the bound
for λ is very hard to obtain a priori. Its slow convergence is also a serious issue for our
purpose.

4.2 Brent’s method

As far as we know there is no research that applies standard root-finding algorithms
such as Newton’s method or Brent’s method for tâtonnement. This is probably because
the price adjustment with such complex methods is not a natural model of the real-
world economy. Nonetheless, we do not have to care about such limitation in our
computational economy, since our objective is to obtain the optimal plan, not to model
the real-world economy!

We use Brent’s method for its quick and guaranteed convergence [1]. Another
important feature of Brent’s method is that it does not require the derivativeDi(p),
which is very hard to obtain.

4.3 MIRA algorithm

We have finished explaining all pieces of the MIRA algorithm shown in Figure 4.
At the top level the risk allocation between agents is optimized through tâtonnement.
We use Brent’s method to update the price in each iteration of tâtonnement. Each
agent submits its demand at a given price in each iteration; the demand is computed
by solving optimization problem Eq.(17), or equivalently, Eq.(8)(2)(3)(6)(7), with an
extra termp∆i added to the objective function Eq.(8). The solution of the optimization
problem gives the risk allocation in each agent and the action sequence (middle and
bottom level of Figure 4).

5 Simulation

5.1 Validity

To check the validity of the proposed algorithm, we tested it on the multi-UAV fire-
fighting scenario (Figure 2). Figure 5 shows the simulation result. Two vehicles fly
at the constant horizontal speed, starting fromd = 0 at altitude0.5. The mission is
to extinguish the fire atd = 6, 7. Both vehicles minimize the flight altitude above the
fire, although the water tanker is given 100 times more penalty (cost) of flying at high
altitude than the reconnaissance vehicle. Both have uncertainty in altitude, so flying at
lower altitude involves more risk. The total risk must be less than 0.1%.

The optimal plan allocates 99.2% of the total risk to the water tanker while only
0.8% to the reconnaissance vehicle. This is because the utility of taking risk (i.e. flying
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Figure 5: Simulation result of flight altitude planning problem for multi-UAV fire-
fighting scenario (see Figure 2).Upper graph: The water tanker is allocated 99.2%
of the total risk; as a result, it is allowed to fly lower than the reconnaissance vehicle.
Lower graphs: Both vehicles take most of the allocated risk above the fire (d = 6, 7);
they fly as high as possible before and after the fire, since there is no benefit of taking
risk at those places .

low) is larger for the water tanker than for the reconnaissance vehicle. As a result, the
water tanker flies at lower altitude.

Both vehicles optimize the internal risk allocation as well. For example, the water
tanker takes 99.9% of the allocated risk above the fire, atd = 6 and7 (the middle graph
in Figure 5).

The optimal action sequence is planned according to the risk allocation; both vehi-
cles dive before the fire, and climb as fast as possible after they pass the fire (the top
graph in Figure 5). This is because there is no merit of conducting risky low-altitude
flight before and after the fire.

These results conform with the intuition. The resulted total cost is 53.77, which is
within 0.01% difference compared to the cost computed by the centralized algorithm.

5.2 Efficiency

In order to evaluate the efficiency of the MIRA algorithm, the computation time of the
following three algorithms are compared:

1. Centralized optimization

2. Distributed optimization (tâtonnement) with linear price increment
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Table 1: Comparison of the computation time of three optimization algorithms. Values
are the average of 10 runs with randomly generated constraints.

Computation time [sec]
Number of

agents Centralized
Distributed

(linear increment) MIRA

2 13.9 80.6 6.4
4 63.8 540.5 18.1
8 318.5 797.8 37.5

3. MIRA: distributed optimization (t̂atonnement) with Brent’s method

Table 1 shows the result. The three algorithms are tested with different problem
sizes - two, four, and eight agents. Each algorithm is run 10 times for each problem
size with randomly generated constraints. The average running time is shown in the
table.

The computation time of the centralized optimization algorithm quickly grows as
the problem size increases. Distributed optimization with linear price increment is even
slower than the centralized algorithm, although the growth rate of computation time is
slower.

MIRA, the proposed algorithm, outperforms the other two for all problem sizes.
The advantage of MIRA becomes clearer as the problem size increases.

A counterintuitive phenomenon observed in the result is that the distributed algo-
rithms (MIRA and distributed optimization with linear increment) also slow down for
large problems, although not as significantly as the centralized optimization. This is
mainly because the iterations of tâtonnement must be synchronized among all agents.
When each agent computes its demand for risk by solving the non-linear optimization
problem, the computation time diverges from agent to agent, and from situation to sit-
uation. In each iteration of tâtonnement, all agents must wait until the slowest agent
finish computing its demand. As a result, tâtonnement process slows down for large
problems as the expected computation time of the slowest agent grows.

5.3 Used Parameters

The horizontal speed of the vehicles is 1 per time step. Hence,d = t. The planning
window is1 ≤ t ≤ 10. Other parameters are set as follows:

A =
[

1 1
0 1

]
,B =

[
0.5
1

]
, x0 =

[
0.5
0

]
,

umin = −0.2, umax = 0.2, gt(xt) = − [1 0]xt + lt

wt is sampled from zero-mean Gaussian distribution with variance

Σw =
[

0.001 0
0 0

]
.

lt is the ground level att. It is set at zero in the fire-fighter UAV scenario, and randomly
generated for the evaluation of computation time. The cost functions are

JW = E [[100 0] (x6,W + x7,W )]
JR = E [[1 0] (x6,R + x7,R)]
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for the fire-fighter UAV scenario (subscriptW andR indicate the water tanker and the
reconnaissance vehicle respectively), and

Ji = E

[[
1 0

]
(

10∑
t=1

xt,i)

]
.

for the evaluation of computation time. Note that the expectation ofxt is a function of
u1:t−1. ThereforeJ is a function ofu1:T .

5.4 Computation and Programming Environment

The program was written in Matlab, and the middle and bottom level optimization
problems were solved by SNOPT. The top level optimization (Brent’s method) is solved
by Matlab fzero function. Simulations were conducted on a machine with Intel(R)
Core(TM) i7 CPU clocked at 2.67 GHz and 8GB RAM.

6 Conclusion

We have developed Market-based Iterative Risk Allocation (MIRA), a multi-agent op-
timal planning algorithm that operates within user-specified risk bounds. It was built
upon the concept of risk allocation. The three key innovations that enabled MIRA
were:

1. Extension of the concept of risk allocation to multi-agent system

2. Derivation of distributed optimization method for multi-agent risk allocation

3. Introduction of Brent’s method to tâtonnement as a price update rule.

The simulation result showed that MIRA can optimize the action sequence of the multi-
agent system by optimally distributing risk. It achieved substantial speed-up compared
to centralized optimization approach, particularly in a large problem.
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Appendix

A Proof of the Convexity of Cost as a Function of Risk

Robust model-predictive control (RMPC) with joint chance constraint is a cost min-
imization problem that applies to dynamic systems under stochastic uncertainty, and
includes a risk constraint specified as an upper bound on the probability of failure (risk
bound). The optimized cost (J?

i (∆i), defined in Eq.11) can be viewed as the function
over the risk bound. This section proves that the optimized cost is a convex function of
the risk bound.

A.1 Problem Statement

We review the original problem formulation Eq.(1)-(4), which is a RMPC with a joint
chance constraint:

min
U

J(u1:T )

s.t. ∀t xt+1 = Axt + But + wt

∀t umin ≤ ut ≤ umax

Pr

[
T∧

t=0

Nt∧
n=1

gt,n(xt) ≤ 0

]
≥ 1−∆

wherext, ut, andwt are the state vector, control input, and disturbance, respectively,
and subscripts indicate the time step. The disturbancewt and the the initial statex0

has Gaussian distributions with known mean and variance. We assume thatJ andgt,n

are convex functions.
Our past work[14] showed that this problem can be reformulated as follows:

min
U ,δ

J(u1:T ) (20)

s.t. ∀t x̄t+1 = Ax̄t + But + wt (21)

∀t umin ≤ ut ≤ umax (22)

∀t,n g′t,n(x̄t, δ
n
t ) ≤ 0 (23)∑

t,n

δn
t ≤ ∆ (24)

whereg′ is a convex function of̄xt andδn
t [14]. The following notation is used through-

out this report for convenience:

U = [u1 · · ·uT ]T , X̄ = [x̄0 · · · x̄T ]T δ =
[
δ1
1 · · · δ

Nt

T

]T
.

Let J?(∆) be the optimal value of the objective function, given the parameter∆;

J?(∆) = J(U?; ∆) (25)

whereU? is the optimal solution for∆.
The problem to solve is to show thatJ?(∆) is a convex function of∆.
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A.2 Proof of Convexity

Assume that the constrained optimization problem (20)-(24) is feasible for∆1 and∆2.
Let (U?

1, X̄
?
1, δ

?
1) and (U?

2, X̄
?
2, δ

?
2) be the optimal solution for∆1 and∆2 respec-

tively. Since (21) and (24) are linear constraints andg′t,n in (23) is a convex function,
(λU?

1 + (1 − λ)U?
2, λX̄

?
1 + (1 − λ)X̄?

2, λδ?
1 + (1 − λ)δ?

2) satisfies the constraints
(21)-(24) for∆ = λ∆1 + (1− λ)∆2 for all 0 ≤ λ ≤ 1.

Then let(U?
λ, X̄

?
λ, δ?

λ) be the optimal solution for∆ = λ∆1 + (1 − λ)∆2. Since
this is the optimal solution, it follows that,

J?(λ∆1 + (1− λ)∆2) = J(U?
λ)

≤ J(λU?
1 + (1− λ)U?

2).

SinceJ is a convex function,

J(λU?
1 + (1− λ)U?

2) ≤ λJ(U?
1) + (1− λ)J(U?

2)
= λJ?(∆1) + (1− λ)J?(∆2).

Therefore, for all0 ≤ λ ≤ 1,

J?(λ∆1 + (1− λ)∆2) ≤ λJ?(∆1) + (1− λ)J?(∆2),

and thusJ? is a convex function. Q.E.D.
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