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ABSTRACT 
 
In Eukaryotic cells, the packaging of genomic DNA into chromatin has important 
consequences for all DNA-dependent transactions.  Chromatin structure is highly 
regulated by a variety of complex processes that are not well understood.  These include 
nucleosome remodeling and post-translational modification of histone proteins (Dunn & 
Kingston, 2007; Kouzarides, 2007; Workman, 2006).  An additional mechanism for 
chromatin regulation is the replacement of conventional histones with specific non-allelic 
variants.  H2AZ, a highly conserved variant of histone H2A, is of particular interest 
because it is essential for viability in multicellular organisms and it has been implicated 
in many distinct and even contradictory functions.  Despite extensive evidence 
implicating H2AZ in maintenance of genome stability, centromere structure and function, 
and chromosome segregation, a role for  H2AZ in meiosis has not been investigated.  The 
budding yeast Saccaromyces cerevisiae, a classical model for cell division studies, 
constitutes a highly amenable system in which to approach this question.  In this study, 
deletion of the S. cerevisiae H2AZ homologue, Htz1, resulted in classical meiotic defect 
phenotypes such as reduced sporulation efficiency, impaired spore viability, and 
displayed a reduced ability to progress through meiosis.  Htz1 deletion strains also 
showed an increase in chromosome nondisjunction during both meiosis I and II and 
premature sister chromatid separation during meiosis I.  These results suggest a novel 
role for H2AZ in regulating meiotic chromosome segregation and possibly in centromeric 
protection and kinetochocore co-orientation and further illustrate how defects in H2AZ 
function may contribute to human diseases such as cancer. 
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ABBREVIATIONS 
 
 
ATP - Adenosine TriPhosphate 

bp - Base pairs (DNA sequence length) 

BUB1 - Budding Uninhibited by Benzimidazoles 1 

CEN - Centromere 

CenH3 - Centromere-specific variant of histone H3 

CPC - Chromosome Passenger Complex 

DAPI - 4',6-diamidino-2-phenylindole 

H2AZ -  H2A histone family, member Z 

H3K9 - Lysine 9 of histone 3 

HTZ1 - Histone Two A Z 1 (Budding yeast H2AZ homolog) 

IPL1 - Increase in PLoidy 1 (Budding yeast Aurora B kinase homolog) 

GFP - Green Fluorescent Protein 

kb - Kilobases (DNA sequence length) 

PHT1 - Pombe Histone Two A Z 1 (Fission yeast H2AZ homolog) 

SAC - Spindle Assembly Checkpoint 

SPO11 - SPOrulation 11 

SGO - ShuGOshin 

Tet - Tetracycline 

TetO - Tet operon 

TetR - Tet repressor 

TetR::GFP - Tet repressor/GFP fusion protein 

 
 
NOTE: Standard S. cerevisiae gene notation is followed throughout the text:   

• Fully capitalized names denote genes or DNA loci (e.g. HTZ1, SPO11); 

• Lower case with a capitalized initial denotes protein (e.g. Htz1, Spo11);  

• Italicized names indicate gene deletions (e.g. htz1, spo11). 
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INTRODUCTION 

 

Chromatin structure and organization 

In eukaryotic nuclei, the basic subunit of chromatin is the nucleosome, comprising ~146 

base pairs of DNA wound around an octameric protein core that is composed of two 

copies each of histones H2A, H2B, H3, and H4.  Nucleosomes are interspersed with 

histone H1-bound linker DNA and can be further compacted to form progressively higher 

order chromatin structures.  Chromatin structure is non-randomly organized within the 

nucleus into specialized structures such as euchromatin and heterochromatin, regions of 

less and more densely packaged chromatin, respectively (Schneider & Grosschedl 2007; 

Polo & Almouzni, 2006; Fraser & Bickmore, 2007).  Rather than serving a purely 

structural role, the regulation of chromatin structure can profoundly influence DNA-

dependent processes by modulating the accessibility of the underlying genomic sequence.  

This sequence-independent ‘epigenetic’ regulation is therefore critical for DNA 

replication and repair, gene expression, and genome integrity.  

 

Chromatin structure and organization can be modulated by a number of different 

mechanisms that together specify an epigenetic code for genome regulation (Goldberg  et 

al., 2007; Bernstein et al., 2007).  For example, ATP-dependent remodeling complexes, 

such as SWI/SNF superfamily members, can alter chromatin organization and 

nucleosomal DNA accessibility (Varga-Weisz & Becker, 2006; Choudhary & Varga-

Weisz, 2007).  In addition, histones are subject to a variety of covalent post-translational 

modifications, including methylation, acetylation, phosphorylation, ubiquitination, ADP-
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ribosylation and SUMOylation.  Such modifications can directly impact chromatin 

structure or act to recruit other regulatory factors and distinct patterns of histone 

modifications can be found to correlate with gene activity and mark regions of 

euchromatin vs. heterochromatin  (Kouzarides, 2007; Cosgrove et al., 2004).  Another 

important mechanism for chromatin regulation is the replacement of conventional 

histones within the nucleosome with non-allelic variants (Kamakaka & Biggins, 2005, 

Bernstein & Hake, 2006; Eirín-López & Ausió, 2007).  While conventional histones are 

transcribed from multi-copy gene loci at the onset of S phase, replacement histones are 

encoded by evolutionarily conserved single genes and are transcribed in a cell cycle 

independent manner.  Histone variants can vary widely in their amino acid sequence as 

compared to the major histones and their incorporation can affect nucleosome structure 

and stability.   Interestingly, variants are generally localized to discrete genomic loci, 

unlike canonical histones which are randomly distributed throughout the genome (Polo & 

Almouzni, 2006; Krogan et al., 2003; Mizuguchi et al., 2004).  Therefore, histone 

variants likely also contribute to the organization of structurally and functionally distinct 

chromatin domains.   Collectively, these epigenetic processes function together with 

genetic factors and form the basis of  a highly intricate network for genome regulation 

and function.  

 

The histone variant H2AZ 

H2AZ, a variant of H2A, is highly conserved from yeast to man (Iouzalen et al., 1996).  

It is more highly conserved than the canonical H2A, suggesting a functionally important 

role for this variant in all eukaryotes (Jackson & Gorovsky, 2000).  Accordingly, H2AZ  
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Figure 1:  Epigenetics overview  
The basic subunit of chromatin consists of nucleosomes (blue spheres), comprising ~146 
base pairs of DNA wound about an octameric protein core.  Nucleosomes associate to 
form progressively higher order chromatin structures, compacting the genome into a 
suitable volume and organizing the nucleus into specialized structures such as 
euchromatin and heterochromatin.  Factors that contribute to and help regulate this 
compaction and structural organization include ATP-dependent nucleosome remodeling, 
deposition of post-translational modifications (represented by green and orange spheres) 
onto histones, and targeted replacement of conventional histones with specialized 
variants (shaded). Collectively, these epigenetic processes function together with genetic 
factors and form the basis of a highly intricate network for genome regulation and 
function. 
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is essential for viability in Tetrahymena thermophila, Drosophila melanogaster, Xenopus 

laevis, and mouse (Liu et al., 1996; van Daal & Elgin, 1992; Ridgway et al., 2004; Faast 

et al., 2001).  H2AZ has been implicated in a wide variety of distinct and even 

contradictory functions.  For example, H2AZ has been connected to processes such as 

DNA replication, genome stability, cell cycle progression (Dhillon et al., 2006) and in 

both gene activation and repression  (Allis et al., 1980; Santisteban et al., 2000, 

LaRochelle & Gaudreau, 2003; Swaminathan et al., 2005; Sarcinella et al., 2007), as well 

as in heterochromatin formation and in preventing the spreading heterochromatin 

domains (Swaminathan et al., 2005; Babiarz et al., 2006; Rangasamy et al., 2004; 

Meneghini et al., 2003). The extent to which these various functions are organism-, cell-

type-, or context-specific remains unclear (Zlatanova & Thakar, 2008; Guillemette & 

Gaudreau, 2006;).  

 

Epigenetic control of cell division and chromosome segregation 

Faithful chromosome segregation during cell division is critical for genome integrity and 

stability, as segregation errors are irreversible and result in aneuploidy (Marston & 

Amon, 2004; Uhlmann, 2003; Ekwall, 2007).  After DNA replication, sister chromatids 

are held together by cohesin complexes.  Upon subsequent cell division, whether 

conservative (Mitosis) or reductional (Meiosis), spindle microtubules attach to 

chromosomes through kinetochore complexes assembled at the centromere.  During 

mitosis and meiosis II, sister kinetochores attach to a different spindle pole, which results 

in proper chromatid segregation upon loss of cohesion.  In contrast, meiosis proceeds by 

a stepwise loss of cohesion along the chromosome. meiosis I segregation of homologous 



 
11 

 

chromosomes requires loss of cohesion at the chromosome arms.  Retention of cohesion 

at centromeres along with sister kinetochore co-orientation (attachment to the same 

spindle pole) ensures that sister chromatids co-segregate to the same daughter cell so that 

they can segregate properly during subsequent meiosis II (Figure 2; reviewed in Marston 

& Amon, 2004; Revenkova & Jessberger, 2005; Uhlmann, 2003).  Accordingly, cell 

division is very tightly regulated, and several redundant and mutually reinforcing 

mechanisms are in place to prevent aberrant segregation events (Reviewed in Marston & 

Amon, 2004; Ruchaud et al., 2007; Musacchio & Salmon, 2007). 

 

Centromeres are specialized chromatin domains that constitute the sites of kinetochore 

assembly and microtubule attachment (Reviewed in Ekwall, 2007; Black & Bassett, 

2008; Vagnarelli et al., 2008).  Centromeric DNA sequences, while believed to favor 

centromere assembly and stabilization, are not substantially conserved between species 

and are not sufficient for de novo centromere formation (du Sart et al., 1997).  Rather, 

centromeres are primarily defined by the presence of the histone variant CenH3 in place 

of conventional H3.  CenH3 is highly conserved and essential in all eukaryotes, and is 

sufficient to help establish and maintain centromeric domain identity (Kamakaka & 

Biggins, 2005; Ekwall, 2007).  The distribution of CenH3-containing nucleosomes 

throughout the centromeric region (Blower et al., 2002; Sullivan & Karpen, 2004) 

nucleates assembly of the kinetochore complex (Reviewed in Cheeseman & Desai, 2008; 

Westermann et al., 2007).  Different kinetochore components and subcomplexes are 

responsible for microtubule attachment, quality control checkpoints, and even help to 

stabilize the centromere by reinforcing CenH3 incorporation (Okada et al., 2006).  Thus, 
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the major determinants of centromere identity and function are primarily epigenetic in 

nature (Gieni et al., 2008; Morris & Moazed, 2007). 

 

Centromere formation in fission yeast (Schizossacharomyces pombe) and vertebrates also 

depends on flanking pericentric heterochromatin.  This region is characterized by histone 

modifications such as tri-methylated lysine 9 of histone 3 (H3K9me3), an epigenetic 

mark that serves to recruit heterochromatin protein 1 (HP1), and its formation has been 

shown to require HP1 and the RNA interference machinery (Grewal & Jia., 2007; Verdel 

& Moazed, 2005).  Preventing pericentric heterochromatin formation by interfering with 

H3K9 methylation, HP1 function, or RNAi impairs CenH3 deposition and kinetochore 

assembly, resulting in defects in  chromosome cohesion and segregation and increased 

chromosome loss (Folko et al., 2008; Grewal & Jia, 2007; Durand-Dubief & Ekwall 

2008; Pidoux & Allshire, 2005; Kanellopoulou et al., 2005).  Thus, the establishment and 

maintenance of pericentric heterochromatin in S. pombe and metazoans by epigenetic 

factors constitutes another example of the importance of chromatin modulation in 

regulating the process of cell division.  

 

Centromeres and kinetochores are the platforms for microtubule attachment and for the 

maintenance of cohesion, critical cell division processes in which Shugoshin (Sgo) 

proteins play a regulatory role (Kawashima et al., 2007; Lee et al., 2008; Watanabe, 2005 

and references therein).  Sgo proteins are structurally and functionally conserved from 

yeast to mammals; while budding yeast and Drosophila melanogaster have a single copy 

of Sgo (Sgo1 in S. cerevisiae), fission yeast, plants and mammals have two family 
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members which divide the two functions.  Sgo proteins help ensure proper spindle 

attachment by recruiting Aurora B kinase to improper kinetochore-microtubule 

attachments (Kawashima et al., 2007; Vanoosthuyse et al., 2007; Indjeian et al., 2005, 

2007).  Aurora B (Ipl1 in S. cerevisiae) constitutes the enzymatic component of the 

Chromosome Passenger Complex (CPC), a master regulator of cell division (Reviewed in 

Vader & Lens, 2008; Ruchaud et al., 2007).  Upon its recruitment, Aurora B causes 

improper connections to sever, triggering the Spindle Assembly Checkpoint (SAC) to 

arrest cell division progression until proper attachments are formed (Pinsky et al., 2006).  

The contribution of Shugoshin varies between species:  S. pombe Sgo2 is essential for 

sensing improper connections whereas S. cerevisiae Sgo1 seems to provide only a minor 

contribution (Kiburz et al., 2008; Monje-Casas et al., 2007).  In contrast, the role of Sgo 

in protecting centromeric cohesion is critical and highly conserved.  Aurora B and the 

CPC are required for proper Sgo localization, by regulating the kinetochore and SAC 

component Bub1 (Fernius & Hardwick, 2007) and possibly also through a direct 

interaction between Sgo the CPC component INCENP (Resnick et al., 2006). Aurora B 

also contributes to stabilizing the association of protein phosphatase 2A, with whom 

Sgo1 interacts to maintain centromeric cohesion (Yu & Koshland, 2007; Tang et al., 

2006).  Thus, while Sgo has a critical role in promoting maintenance of cohesion, its 

function is dependent on interactions with Aurora B. 

 

While their function depends on kinetochore components and on chromatin structure, 

more direct interactions of Sgo and Aurora B with pericentric heterochromatin have been 

reported.  In S. pombe and mammals, HP1 has recently been shown to recruit Sgo directly  



 
14 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Meiotic chromosome segregation and GFP dot assay 
(A) Schematic of metazoan and budding yeast (S. cerevisiae) centromeres, indicating differences 
in size and in the number of microtubules attached (black lines). (B)  Overview of meiotic 
chromosome segregation: after DNA replication, sister chromatids remain associated.  Following 
recombination, homologous chromosomes align and, upon loss of arm cohesion, segregate apart; 
protection of centromeric cohesion leads sister chromatids to co-segregate (meiosis I). Upon the 
subsequent loss of centromeric cohesion, the sister chromatids separate (meiosis II).  (C) GFP dot 
patterns resulting from different meiosis I & II chromosome segregation events. GFP-labeled 
centromeres are represented in green; cartoon schematics are as used in Figures 6, 7.  
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and to be required for subsequent centromeric protection (Yamagishi et al., 2008).  

Aurora B kinase regulates heterochromatin stability by phosphorylating H3 and 

interfering with HP1 binding (Hirota et al., 2005; Fischle et al., 2005). Complementarily, 

CenH3 phosporylation by another Aurora kinase, Aurora A, promotes enrichment of 

Aurora B at the inner centromere  (Kunitoku et al., 2003).  The interactions between Sgo, 

Aurora B, and pericentric heterochromatin illustrate the intricate nature of cell division 

regulation and the prominent role of epigenetic factors in the process. 

 

A role for H2AZ in cell division? 

Several lines of evidence indicate that H2AZ may be important for chromosome 

segregation and genome integrity.  Loss of H2AZ in budding and fission yeast and in 

mammals leads to chromosome segregation defects and genome instability (Krogan et 

al., 2004; Carr et al., 1994; Ahmed et al., 2007; Rangasamy et al., 2004; Greaves et al., 

2006).  Furthermore, acetylation of the S. cerevisiae homolog, Htz1, by the NuA4 

complex  has been shown to be important for proper chromosome transmission (Keogh et 

al., 2006).  The fission yeast homolog (Pht1) is required for suppression of a temperature-

sensitive CenH3 mutation, possibly by recruiting kinetochore components (Ahmed et al., 

2007), also supports a functional role for H2AZ in cell division. Further genetic and 

biochemical interactions have been reported between kinetochore and spindle checkpoint 

components and Htz1, NuA4 complex components, and members of the H2AZ-dedicated 

loading complex SWR-C (Krogan et al., 2004; Keogh et al., 2006; Daniel et al., 2006; 

Uetz et al, 2000; Tong et al., 2004).  Evidence for an interaction between mammalian 

H2AZ and the Chromosomal Passenger Complex component INCENP has also been 
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reported (Rangasamy et al., 2003), suggesting a functional connection between this 

histone variant and Aurora B function.  H2AZ localizes to centromeric chromatin in 

yeast, mouse and human (Krogan et al., 2004; Greaves et al., 2007; Millar & Grunstein, 

2006) and has been suggested to contribute to proper centromere structure (Greaves et 

al., 2007).  In Drosophila and differentiating mouse embryos, proper HP1 localization 

and pericentric heterochromatin formation require H2AZ (Swaminathan et al., 2005; 

Greaves et al., 2006; Rangasamy et al., 2004), suggesting a role for this variant in proper 

centromere formation (Bernard & Allshire, 2002; Durand-Dubief & Ekwall, 2008) and 

centromeric cohesion (Bernard et al., 2001; Nonaka et al., 2002).  Interestingly, H2AZ 

over-expression has been reported in various human cancers (Hua et al., 2008; Rhodes et 

al., 2004; Dunican et al., 2002), further supporting a role for the histone variant in 

maintaining genome stability. Thus, H2AZ appears to have a conserved role in 

contributing to stable genomic transmission.  

 

Despite the extensive evidence across several organisms implicating H2AZ in the 

maintenance of genome stability and in centromere and kinetochore function, a possible 

function for the histone variant in meiosis has not been investigated.  The budding yeast 

Saccaromyces cerevisiae provides a good model system for cell division studies, 

combining a wealth of genetic and molecular tools with the ability to independently 

observe all four products of meiosis.  Therefore, I sought to investigate the meiotic 

function of the sole H2AZ homolog in S. cerevisiae, Htz1.   
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While the role of H2AZ in cell division appears to be conserved from mammals to yeast, 

some caveats must be considered. S. cerevisiae lacks H3K9 methylation, HP1, or RNAi, 

and therefore H2AZ-dependent pericentric chromatin akin to that in S. pombe and 

metazoans (Grewal & Jia, 2007; Morris & Moazed, 2007).  Furthermore, despite a strong 

degree of conservation, Htz1 structure differs from that of mouse H2AZ in its N- and C-

termini (Redon et al., 2002).  Finally, in contrast with H2AZ in metazoans, Htz1 is 

dispensable for budding yeast viability (Santisteban et al., 2000; Krogan et al., 2004).  

These arguments seem to suggest that functional connections between H2AZ and cell 

division are not conserved in budding yeast.  Htz1 deletion, however, results in mitotic 

chromosome segregation defects and genome instability phenotypes similar to those seen 

upon H2AZ deletion in other organisms (Krogan et al., 2004; Carr et al., 1994; 

Rangasamy et al., 2004; Keogh et al.,  2006).  Mutations in components of the deposition 

complex Swr1 and the histone acetyltransferase complex NuA4 responsible for 

acetylation of Htz1 replicate these phenotypes (Krogan et al., 2004).  The function of 

these complexes is conserved through mammals, as the human Tip60 complex has 

recently been shown to be the functional equivalent of these two complexes (Auger et al., 

2008).  A conserved role is further supported by the full rescue of Htz1 deletion 

phenotypes upon expressing T. thermophila H2AZ in budding yeast (Jackson & 

Gorovsky, 2000).  The functional conservation and phenotypic similarities argue that 

Htz1 shares at least some cell-division-related functions with other H2AZ homologs.  

 

Here we show that the S. cerevisiae H2AZ homologue Htz1 is required for proper 

meiotic chromosome segregation, and that its deletion leads to a significant increase in  
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chromosome nondisjunction during both meiosis I and II.  Htz1 deletion also results in 

premature sister chromatid separation, implicating the histone variant in centromeric 

protection and kinetochocore co-orientation.  Although the deletion phenotype observed 

is significant, Htz1 in is not essential for meiosis indicating that its function is likely 

redundant with other factors.  This part belongs in the discussion. While further 

investigation is required to fully understand the contribution of Htz1, these results 

suggest a novel role for H2AZ in regulating chromosome segregation during meiosis.  

 

 

MATERIALS AND METHODS  

 

Strain construction 

HTZ1 (YOL012C) was deleted by homologous recombination in a SK1 background 

(Amon Lab strain 4842: MATα, ho::LYS2, lys2, ura3, leu2::hisG, his3::hisG, 

trp1::hisG). The open reading frame was fully replaced with a KanMX6 cassette by a 

one-step PCR-based gene replacement method (Longtine et al., 1998). 

 Primers (HTZ1 homology regions capitalized; KanMX6 homology regions in lower 

case): 

 LB68f: 
AATTTCGCACTATAGCCGCACGTAAAAATAACTTAACATAcggatccccgggttaattaa  
 
LB68r: 
AGGGAGAATTACGGGAAATGGGAAAGAAAAACTATTCTTCgaattcgagctcgtttaaac  
 

Transformants were selected on G418 (100ug/mL on YPD-Agar) and back-crossed to 

dot-containing strain 18026 (MATa, ho::LYS2, ura3, leu2::hisG, his3::hisG, trp1::hisG, 
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leu2::LEU2::tetR-GFP::TetO-HIS3).  The diploids were sporulated, and haploid strains 

of the desired genotypes were obtained from mating independent transformants.  These 

haploids were subsequently crossed, and the diploids obtained were screened for GFP 

‘dot’ signal to noise prior to being used in synchronous meiosis assays.  See Supplement 

6 for a complete list of strains used. 

 

Sporulation conditions  

Budding yeast sporulations were performed essentially as described in Lee et al., 2004. 

Briefly, cells were grown to saturation in YPD (YEP+2% dextrose) for 24 hours at 24ºC 

(all subsequent cultures were at 30ºC).  Cultures were diluted into YPA (YEP+2% 

KOAc) to OD600= 0.2-0.3, grown overnight, washed with sterilized water, and 

resuspended in SPO medium (0.3% KOAc, pH 7.0) to induce sporulation.  

 

Sporulation efficiency was determined by scoring cells for the number of spores under 

light microscopy, 24 hours post-SPO medium addition.  3- and 4-spore cells were 

combined in a single category, due to the difficulty in distinguishing true 3-spore cells 

from 4-spore ones in which a spore is obscured due to depth or perspective.  

 

Fluorescence imaging 

SPO culture samples (700uL) were collected at 2 hour timepoints from 0 to 12 hours 

post-induction, fixed in 2.5% formaldehyde in Gomori buffer (KPi) pH6.4, washed twice 

in KPi pH6.6, and resuspended in KPi pH7.4.  Immediately prior to imaging, cells were 

incubated in 80% ethanol for 10 minutes, stained with DAPI (1mg/mL final), and 
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sonicated.  Cells were then scored for the number of DAPI-stained nuclear masses and 

for the distribution of GFP dots therein using a Zeiss Axioplan 2 microscope equipped 

with an Alpha-Plan-Fluar 100x/1.45 Oil M27 objective). Images were acquired on a 

Hamamatsu ORCA-ER C4742-80 CCD camera and processed for contrast adjustment 

and false color using OpenLab 4.0.2 (Improvision). Cells for which the GFP dot 

distribution could not be confidently determined were termed ‘no calls’ and were scored 

for nuclear masses alone.  

 

Spore viability 

24 hours after SPO induction, cells were collected from 250uL of SPO culture/sample, 

resuspended in zymolyase solution (Seikagaku), and digested at 37ºC for 10-15 minutes.  

Tetrads were dissected as per standard procedures, and spores were grown at 37ºC and 

scored after 2-3 days. 

 
 

RESULTS 
 

In order to investigate whether H2AZ plays a role in meiotic chromosome segregation, 

we investigated the effect of loss of its homolog in budding yeast Saccharomyces 

cerevisiae, a system amenable to cell division studies.  We constructed mutant strains in 

which we deleted HTZ1 (YOL012C), the sole budding yeast H2AZ homolog, by targeted 

homologous recombination.  In subsequent experiments, a wild-type strain1 and an 

                                                
1 Throughout, ‘wild-type’ refers to the genotype of the loci for which deletions are being 
studied (HTZ1, SPO11).  The wild-type strains are otherwise genotypically identical to 
the mutant strains, particularly with regard to the GFP dots and to nutritional markers. 
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analogous strain homozygous for a deletion of the homologous recombination-inducing 

endonuclease Spo11 served as negative and positive controls for meiotic defects, 

respectively.  Deleting Spo11 precludes crossing over and therefore prevents homologous 

chromosomes from pairing but not from attaching to the spindle.  This results in near-

random chromosome segregation and significantly reduced viability without significantly 

impacting spore formation (Klein et al., 1999). 

 

Htz1 deletion leads to reduced sporulation efficiency and impaired spore viability  

To investigate a role for the histone variant Htz1  in meiosis, we measured the effects of 

loss of Htz1 on sporulation efficiency and spore viability, classical meiotic defect 

phenotypes. Approximately two-fold less sporulation products were observed in the htz1 

homozygous deletion strain compared to  the wild-type and Spo11 control strains 24 

hours post-induction of sporulation (Figure 3).   This difference was primarily due to a 

significantly lower number of 4-spore asci (31% vs. 69% for the wild-type), as the 

proportion of 2-spore asci was unchanged.  Htz1 is therefore required for proper 

sporulation.  

 

We next analyzed spore viability by tetrad analysis and found that loss of Htz1 led to a 

marked reduction in four spore asci and a marked increase in the number of tetrads with 

only two or three viable spores.  In contrast, all four spores were viable for the vast 

majority of wild-type tetrads analyzed, while spo11 spores were inviable as expected 

(Figure 4; Supplement 2).  htz1-deleted spores also displayed a slight growth defect 

compared to wild-type spores, in agreement with previously reported observations (Adam  
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Figure 3: Htz1 deletion leads to reduced sporulation efficiency 
Cells undergoing synchronous meiosis were scored for the number of spores under light 
microscopy, 24 hours after induction of sporulation.  ‘SK1’ is the parental strain, without 
centromeric GFP dots.  n=500 for each count; the ‘Dot’ and ‘Dot/htz1’ genotypes were 
performed in duplicate, with diploid strains resulting from two independent matings (and 
distinct htz1 deletion transformants).  See Supplement 1 for tabulated data.  
 

Dot/spo11 Dot/htz1 
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Figure 4: Htz1 deletion leads to impaired spore viability  
(A)  Cells were collected 24 hours after sporulation, zymolyase-treated, and tetrads were 
dissected.  Spores were grown at 37ºC for 2-3 days and scored for viability.  Unless 
otherwise noted, all strains are homozygous for centromeric GFP dots; all deletions are 
homozygous.  The htz1Δ strains display a marked increase in tetrads with only 1, 2, and 
particularly 3 viable spores.  This defect, however, is not so severe as that of the spo11Δ 
strain, which is defective in homologous recombination.  See Supplement 2 for data in 
tabulated form.  
(B)  Representative tetrads.  Note that a substantial proportion of htz1Δ spores is delayed 
in growth compared with the wild-type control.  
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et al., 2001; Jackson & Gorovsky, 2000).  The milder phenotype compared with that of 

the spo11Δ strain indicates that Htz1 either is not essential for meiosis or that it is 

redundant with other factors.  Nonetheless, the significant reduction in sporulation 

efficiency and spore viability upon Htz1 deletion clearly suggests a role for the histone 

variant in meiosis. 

 

Htz1 deletion causes a defect in progression through meiosis 

The sporulation and viability phenotypes observed upon Htz1 deletion constitute 

endpoint readouts of meiosis.  We therefore sought to investigate a specific meiotic 

defect more directly by monitoring the ability of the Htz1 deletion strain to progress 

through the cell division stages of meiosis.  Wild-type and Htz1-deletion strains were 

induced to undergo synchronous meiosis, and cells were scored for the number of nuclear 

masses at regular time points (Figure 5).  The wild-type and spo11 control strains 

displayed a similar progression: two-cell (binucleate) meiosis I products accumulated and 

peaked around 6 hours.  Four-cell (tetranucleate) meiosis II products appeared around 4-6 

hours and accumulated steadily, reaching 50-60 % of the total by 12 hours.  In contrast, at 

6 hours the htz1Δ strain displayed only half as many binucleates as the control strains and 

the peak accumulation of binucleates was delayed to ~ 8-10 hours.  By 12 hours only ~30 

% of total cells were tetranucleates, compared with 50-60% for the controls. The lack of 

the histone variant may be causing a delay in progression through meiosis I, as indicated 

by the 2-hour lag in reaching maximal binucleate accumulation, yet, the number of htz1Δ 

binucleates remained lower as compared to wild-type.  The overall accumulation of total 
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cell division products is also drastically reduced (Figure 5B).  Thus, absence of Htz1 

results in a partially penetrant phenotype of impaired meiosis I completion. 

 

Htz1 deletion results in increased nondisjunction events during meiosis I and 

meiosis II  

Since Htz1 has been implicated in chromosome segregation and because loss of Htz1 

resulted in a defect in the progression through meiosis, we sought to measure 

nondisjunction events directly in mutant and control strains.  To do so we utilized strains 

expressing a tetracycline repressor-GFP fusion protein (TetR::GFP), along with a Tet 

operon array inserted near the centromere of chromosome V (Marston et al., 2004).   The 

TetR::GFP fusion binds the array, fluorescently labeling the centromere.  This allowed 

monitoring of chromosome segregation in vivo by tracking these GFP ‘dots’ throughout 

cell division via fluorescent microscopy (Figure 2).   Strains homozygous for the GFP 

dots (Dot wild-type), for dots and htz1 deletion (Dot/htz1), and for dots and spo11 

deletion (Dot/spo11) were generated for this study.  The wild-type dot strains showed 

sporulation efficiency similar to that of the background strain that did not contain GFP 

dots (Figure 3), and htz1 strains homo- and heterozygous for the GFP dot displayed 

similar tetrad viabilities (Figure 4), indicating that neither the Tet operon array nor the 

TetR::GFP fusion impacted either sporulation efficiency or spore viability. 

 

To assay for chromosome nondisjunction events, diploid strains homozygous for the GFP 

dots and for the respective deletions were induced to undergo synchronous meiosis (Lee 

et al., 2004) and, twelve hours after sporulation, cells were scored for the number of  
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Figure 5: Htz1 deletion leads to a defect in progress through Meiosis 
Diploid strains homozygous for centromeric GFP dots were collected at 2-hour intervals 
after induction of sporulation, fixed, and subsequently scored for the number of nuclear 
masses per cell as determined by DAPI staining.  Two independent strains/genotype were 
assayed; for each sample, n ~ 100.  (A)  The proportion of binucleate meiosis I products 
is indicated in dashes, and that of tri/tetranucleate meiosis II products, in solid lines.  The 
remaining percentage consists of mononucleate cells that presumably have not 
sporulated. (B)  The lower panel represents the combined cell meiosis I and meiosis II 
products, ie, the total of bi- and tri/tetranucleate cells per strain/timepoint.. See 
Supplement 3 for tabulated data. 

B 
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nuclear masses and for the distribution of GFP dots (Figure 6).  The majority of wild-

type tetranucleate meiosis products (96%) displayed four distinct GFP dots, one in each 

nuclear mass.  This is as expected upon proper chromosome segregation, as all four 

chromosome V sister chromatids have their centromeres tagged with a GFP dot.  Also as 

expected, in the spo11Δ control strain GFP dots distributed randomly in the nuclear 

masses.  In contrast, the htz1Δ  strain displayed a marked increase in asci containing GFP 

dots in three out of four nuclear masses relative to wild-type (22.4% vs. 2.2%) and asci 

containing dots in only two out of four nuclear masses (8.4% vs. 1.4%).  These dot 

segregation patterns correspond to meiosis II and I nondisjunction products, respectively 

(Figure 2).  These results implicate Htz1 in proper meiotic chromosome segregation.  

Furthermore, the increase in both meiosis I and II nondisjunction products upon Htz1 

deletion indicates that the histone variant’s role is not specific to either meiotic stage.  A 

role for Htz1 in proper centromere structure and/or kinetochore assembly would explain 

these observations. 

  

Htz1 deletion causes premature sister chromatid separation during meiosis I 

Because the observations implicate Htz1 in meiosis 1 and Meiosis II, we sought to further 

investigate its contributions to each stage.  In order to examine a role for Htz1 in meiosis 

I, we investigated the effects of a homozygous htz1 deletion in the context of a strain 

heterozygous for the GFP ‘dot.’ In this and an analogous wild-type control strain, only 

one of the two chromosome V homologues is tagged at its centromere.  Centromeric 

cohesion should be maintained through meiosis I in order for sister chromatids to co-

segregate and only separate at Anaphase II.  Thus, if the homologues are properly 
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segregated a single GFP dot should be visible in the binucleate meiosis I products.  The 

dot heterozygous strains underwent synchronized meiosis, and the GFP dot distribution in 

binucleates was scored at the end of meiosis I (6 hours post-sporulation for wild-type 

control, 8 hours for Htz1; Figure 7).  Accordingly, 92% of wild-type meiosis I products 

displayed a single GFP dot corresponding to properly cosegregating sister chromatids.  

This proportion was reduced to 64% upon HTZ1 deletion, as the mutant strains displayed 

a greater than five-fold increase in nondisjunction products with two distinct bi-oriented 

GFP dots.  Furthermore, a significant proportion of htz1 binucleates (14%, vs. 4% of  

wild-type) contained two distinct GFP dots which, rather than being fully bi-oriented, 

were either co-segregating or displayed one dot remaining at the cell equatorm indicating 

a lagging chromosome (Ekwall et al., 1995; Rangasamy et al., 2004).  This significant 

increase in binucleates with two distinct GFP dots indicates an increased frequency of 

prematurely separated sister chromatids in the absence of Htz1.  Htz1 may therefore be 

required for proper centromeric cohesion, sister kinetochore mono-orientation, or both. 

 

 

DISCUSSION  

 

Htz1 is necessary for proper meiotic chromosome segregation 

The faithful transmission of genetic information is crucial for species viability.  Given the 

body of evidence implicating H2AZ in maintenance of genome stability, centromere 

structure and function, and chromosome segregation in a variety of organisms, we 

investigated a potential role for H2AZ during meiosis in budding yeast.  Ablation of the 
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S. cerevisiae H2AZ homologue Htz1 resulted in reduced sporulation efficiency, impaired 

spore viability, and a defect in meiotic progression, indicating that Htz1 function is 

necessary for proper meiosis.  Loss of the histone variant resulted in increased meiosis I 

and meiosis II nondisjunction products, indicating that Htz1 also may play a role in 

chromosome segregation.  Consistent with this, premature separation of sister chromatids 

was also observed upon Htz1 abrogation, implicating the histone variant in maintaining 

centromeric cohesion and/or kinetochocore co-orientation during meiosis I. 

 

Htz1 may be required to establish proper chromatin architecture at the centromere and 

surrounding areas and thereby impacting kinetochore assembly.  The mis-segregation 

phenotypes observed upon Htz1 deletion indicate defects in spindle attachment, 

chromosome cohesion, or kinetochore attachment, all of which can result from impaired 

centromere structure and kinetochore function.  The increased nondisjunction events 

observed during both meiosis I and meiosis II upon Htz1 loss, as well as the impaired 

sister kinetochore co-orientation, further support a role for the histone variant at the 

centromere.  Thus, Htz1 may be contributing to the formation of functional centromeric 

structure in a role similar to that of H2AZ in establishing pericentric heterochromatin 

formation in S. pombe and metazoans.   

 

H2AZ function during meiosis may extend beyond a purely structural role.  Htz1 deletion 

does not substantially impact the centromeric recruitment or distribution of various 

kinetochore components and cohesins during mitosis (Keogh et al., 2006).  The finding 

that loss of S. pombe heterochromatin abolishes centromeric cohesion but does not affect  
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Figure 6: Htz1 deletion leads to increased meiosis I & meiosis II nondisjunction  
(A) Homozygous strains containing centromere-proximal GFP ‘dots’ underwent synchronous 
meiosis. 12 hours post-sporulation, cells were collected, fixed, and subsequently DAPI-
stained and scored by fluorescent microscopy for the number of nuclear masses and the 
distribution of GFP dots.  The wild-type and htz1-deleted strains were assayed in duplicate, 
with diploids resulting from independent htz1Δ transformant strain matings.  For simplicity, 
multiple dots within a same nuclear mass are represented as a single dot in legend cartoons. 
See Supplement 4 for tabulated data. (B)  Microscopy images illustrating representative 
samples; asci of interest and individual meiotic progeny are outlined in the GFP and DAPI 
panels; arrowheads indicate individual dots.   
Proper segregation results in one GFP dot localizing to each nuclear mass (blue).  htz1-
deleted strains displayed an increase in both meiosis I (yellow) and meiosis II (red) 
nondisjunction products relative to wild-type control: 8.4% vs. 1.4% for the former and 
22.4% vs. 2.2% for the latter. GFP dots distributed near-randomly in the spo11Δ strain, a 
positive control for mis-segregation, in agreement with previously reported results (Keeley et 
al., 1997).  
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monopolar attachment (Kitajima et al., 2003) further supports this argument.  

Furthermore, the premature sister chromatid separation we observed in the absence of 

Htz1 suggests impairment of the Monopolin complex, whose function is sufficient to 

promote kinetochore co-orientation (Monje-Casas et al., 2007; Marston & Amon 2004).  

Therefore, in addition to a structural contribution by contributing to proper centromere 

and kinetochore formation, H2AZ likely plays a more direct role in recruiting specific 

meiosis regulators or otherwise modulating their function.  

 

Sgo1 as a primary effector of Htz1 meiotic function  

Among the potential interaction partners for Htz1, Sgo1 and Ipl1 are prime candidates.  

Nocodazole-treated htz1-deleted strains can bypass the Spindle Assembly Checkpoint, in 

contrast with wild type strains and reminiscent of sgo1 and ipl1 mutants (Keogh et al., 

2006; Ruchaud et al., 2006).  Furthermore, Monopolin and Sgo1 both depend on the 

same gene, Spo13 for proper localization and function (Monge-Casas et al., 2007; Lee et 

al., 2004).  Spo13, in turn, depends in part on Ipl1 and the CPC for its own localization.  

Finally, the nondisjunction and loss of chromatid cohesion phenotypes we observed upon 

Htz1 deletion strongly resemble those resulting from ablating Ipl1 or Sgo1 (Monge-Casas 

et al., 2007):  nondisjunction frequencies are similar in htz1- or Ipl1-deleted strains but 

not as severe as those in Sgo1-deleted strains, indicating that Sgo1 is epistatic to both. 

Thus, impaired Sgo1 function seems to be the principal cause for the meiotic phenotypes 

observed upon deletion of Htz1, which may be acting parallel to or with Ipl1 upstream of 

Sgo1.   
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Several observations in budding yeast and other organisms support functional interactions 

between H2AZ and Sgo1 and argue for its conservation across species.  While 

mammalian H2AZ and Sgo have both been shown to bind the Chromosome Passenger 

Complex member INCENP (In mammals and Drosophila, respectively; Rangasamy et al., 

2003; Resnick et al., 2006), INCENP mutations in Drosophila result in defects in 

Shugoshin localization and in maintenance of meiotic sister chromatid cohesion.  

Defective Sgo function would also result in mitotic segregation defects such as those 

reported upon RNAi-mediated knockdown of mammalian H2AZ (Rangasamy et al., 

2004), by impairing Aurora B localization and function.  Accordingly, the unequal 

distribution of H2AZ in mitotic daughter nuclei upon knockdown is reminiscent of biased 

sister chromatid segregation towards the old spindle pole body upon Ipl1 deletion in yeast  

(Monje-Casas et al., 2007; Pereira et al., 2001; Tanaka et al., 2002).   

 

The interactions of pericentric heterochromatin with both Shugoshin and H2AZ provide 

further support for a functional connection between the two.  In fission yeast, the 

meiosis-specific Sgo1 binds Swi6/HP1, and maintaining centromeric cohesion requires 

heterochromatin (Yamagishi et al., 2008).  HP1 localization and pericentric 

heterochromatin formation, in turn, are dependent on H2AZ.  Although budding yeast 

lacks such an H2AZ-dependent, H3K9me- and HP1-containing chromatin domain, S. 

cerevisiae Sgo1 as well as Htz1 have been shown to localize to a 50kb region 

surrounding centromeres - the former presumably to maintain cohesion in face of the 

force exerted by microtubules (Kiburz 2005, He et al. 2000).  Thus, these data together 
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with a number of observations in organisms ranging from yeast to man support a 

conserved link between Shugoshin and H2AZ function.  

 

Future Directions 

Our observations open several potential avenues of future inquiry.  Primary among them 

is to investigate whether Sgo1 is responsible for the observed phenotype.  This can be 

addressed by investigating whether Htz1 is necessary for centromeric localization of 

Sgo1 in meiosis I-arrested cells, and also whether overexpression of Sgo1 or Ipl1 in an 

htz1-deleted background rescues the phenotype.  Furthermore, testing whether an htz1Δ 

/ipl1Δ double mutant exhibits a synthetic phenotype will clarify whether they act in 

concert or in parallel to promote Sgo1 function.  It will be of further interest to ask 

whether Htz1 associates with Sli15, the S. cerevisiae INCENP homolog.  If so, this 

avenue of investigation could provide mechanistic insight into the interactions of Htz1 

and Ipl1 in regulating meiosis or cell division.  

 

Another mechanistic approach is to investigate what structural features of Htz1/H2AZ are 

required for its function in meiosis.  The dot segregation assay, using strains carrying 

point mutations or partial deletions rather than a full deletion, would provide an ideal 

system to test this.  For example, the Htz1 C-terminal acidic patch is essential for 

viability in Drosophila and Xenopus laevis (Clarkson et al., 1999;  Ridgway et al., 2004), 

and likely serves as a binding platform for trans-acting factors (Larochelle & Gaudreau, 

2003).  Lysine 14, a site of acetylation by the NuA4 complex, is also of particular 

interest. Point mutations preventing such acetylation fully recapitulate chromosome loss 
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and benomyl sensitivity phenotypes of a Htz1 deletion strain (Keogh et al., 2006).  It 

would therefore be expected that these mutants would display similar nondisjunction 

events as observed in this study.  In addition to providing further mechanistic insight 

regarding the functions of Htz1 in meiosis, such structural investigations may also 

indicate the extent to which these functions are conserved across different species. 

 

Conclusions 

With the sequencing of various genomes complete, the importance of epigenetics in gene 

expression and other essential cell processes has increasingly come to the fore (Reviewed 

in Bernstein et al., 2007; Goldberg et al., 2007). We report results implicating H2AZ in a  

novel role regulating meiosis in budding yeast, linking histone variant function with the 

fidelity of chromosome segregation during cell division.  We propose a model by which 

H2AZ functions in meiosis by promoting the proper function of the cohesion protector 

Shugoshin.   While further experiments are required to elucidate the role of the histone 

variant, this model provides a mechanistic explanation for various H2AZ-related 

phenotypical observations in multiple organisms.  Despite the differences between 

budding yeast and metazoans regarding H2AZ and pericentric heterochromatin, this 

suggests that the relationship is conserved throughout.  Finally, the misregulation of cell 

division is a major source of genome error and instability.  The link between H2AZ and 

cell division may therefore provide important insights into how defects in chromatin 

organization and function may contribute to human disease processes such as 

malignancy. 
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Figure 7: Htz1 deletion leads to premature sister chromatid separation  
during meiosis I 
Strains heterozygous for GFP dots underwent synchronous meiosis, and dot number and 
distribution was scored in binucleate meiosis I products (6h post sporulation for wild-
type, 8h for htz1 deletion).  The experiment was performed in duplicate with independent 
strains. Microscopy images illustrate representative samples. 
92% of wild-type meiosis I products displayed a single GFP dot corresponding to 
properly co-segregating sister chromatids (     ).  This proportion was reduced to 64% 
upon htz1 deletion.The mutant displayed a substantial increase in nondisjunction (     ; 
22% vs 4%) and also a significant proportion (14%) of  lagging or co-segregating yet 
distinct GFP dots (     ). See Supplement 5 for tabulated data.   
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Supplement 1:  
Table: Htz1 deletion leads to reduced sporulation efficiency  
 
Cells underwent synchronous meiosis, and asci were scored for their number of spores 
under light microscopy, 24 hours after induction of sporulation.  3- and 4-spore cells were 
combined in a single category, due to the difficulty in distinguishing true 3-spore cells 
from 4-spore ones in which one is obscured due to depth or perspective. ‘SK1’ is the 
parental strain, without centromeric GFP dots.  n=500 for each count. Two strains each of 
‘Dot’ and ‘Dot/htz1’ genotypes, obtained from two independent matings (and distinct 
htz1 deletion transformants), are represented. Frequencies are in italics below absolute 
count values. 
Tabulation of data illustrated in Figure 3 

 
 
 
 
 

 
 
 
 
 
 

Single 
Cells 

Binucleate 
asci 

Tri, Tetra 
nucleate 

Asci 

Bi/Tri/Tetra 
nucleate 

Asci  
(Sporulation 
Efficiency) 

85 79 336 415 
Sk1 

17.00% 15.80% 67.20% 83.00% 
63 64 373 437 Dot w.t.  

1 12.60% 12.80% 74.60% 87.40% 
81 100 319 419 Dot w.t. 

2 16.20% 20.00% 63.80% 83.80% 
Dot w.t.  

Avg. 
14.40% 16.40% 69.20% 85.60% 

126 136 238 374 
Dot/spo11 

25.20% 27.20% 47.60% 74.80% 
232 64 204 268 Dot/htz1 

1 46.40% 12.80% 40.80% 53.60% 
297 96 107 203 Dot/htz1 

2 59.40% 19.20% 21.40% 40.60% 
Dot/ htz1 

Avg. 
52.90% 16.00% 31.10% 47.10% 
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Supplement 2 
Table: Tetrad viability - spore survival counts 
 
Cells were collected 24 hours after sporulation, zymolyase-treated, and tetrads were 
dissected.  Spores were grown at 37ºC for 2-3 days and scored for viability.  “Het” and 
“Hom” indicate hetero- and homozygosity, respectively, for the GFP dots; all deletions 
are homozygous.  
 
Tabulation of data illustrated in Figure 4.  
 
 
 
 
 

                 Viable Spores 

 0 1 2 3 4 
0 0 2 3 45 Dot  

w.t.  0% 0% 4% 6% 90% 
8 0 2 0 0 Dot/ 

spo11 80% 0% 20% 0% 0% 
2 3 6 16 23 Dot (Hom)/ 

htz1 4% 6% 12% 32% 46% 
0 2 1 10 7 Dot (Het)/ 

htz1 0% 10% 5% 50% 35% 
 
 
 



Supplement 3
Table: Progression Through Meiosis - Nuclear Division Timecourse

Fixed cell samples along a synchronized meiosis timecourse were scored for the number of 
nuclear masses per cell as determined by DAPI staining.   Two independent strains of each 
genotype were assayed; n ~100 for each sample. Timepoint’ refers to hours after induction of 
sporulation.  Tri & tetranucleates were combined in a single category due to the difficulty in 
distinguishing true trinucleates from tetranucleates from which one product cell is obscured 
due to depth or perspective.  
Tabulation of data illustrated in Figure 5. 

Mono Bi Tri/Tetra Sporul'n

Mono Bi
Tri/

Tetra
(Error) (Error) (Error) (Error)

100 0 0
100% 0% 0%
97 3 0
97% 3% 0%
95 4 1
95% 4% 1%
98 2 0
98% 2% 0%
86 14 0
86% 14% 0%
91 8 1
91% 8% 1%
59 34 7
59% 34% 7%
57 39 4
57% 39% 4%
55 29 16
55% 29% 16%
63 24 23
57% 22% 21%
61 12 27
61% 12% 27%
64 19 24
60% 18% 22%
28 8 67
27% 8% 65%
20 16 64
20% 16% 64%

65% 76%

2 4% 4% 1% 4%
12

1 24% 12%

25% 40%

2 1% 3% 2% 1%
10

1 60% 15%

18% 44%

2 1% 4% 2% 1%
8

1 56% 25%

6% 42%

2 1% 3% 2% 1%
6

1 58% 37%

11% 1% 12%

2 3% 3% 1% 3%

3% 1% 4%

2 2% 1% 1% 2%

2% 0% 2%

2 2% 2% 0% 2%

D
o

t 
 w

il
d

-t
y
p

e
  

0
1 99%

2
1 97%

4
1 89%

Combined Frequencies
(Frequency)     Time 

point 
(h) S

tr
a
in

Raw Counts,      
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Supplement 3
Table: Progression Through Meiosis - Nuclear Division Timecourse

Mono Bi Tri/Tetra Sporul'n

Mono Bi
Tri/Te

tra
(Error

)
(Error

)
(Error) (Error)

99 1 0
99% 1% 0%
100 0 0
100% 0% 0%
91 17 1
83% 16% 1%
93 7 0
93% 7% 0%
84 16 0
84% 16% 0%
92 7 1
92% 7% 1%
57 33 12
56% 32% 12%
68 24 9
67% 24% 9%
54 27 20
53% 27% 20%
62 23 16
61% 23% 16%
33 31 36
33% 31% 36%
43 27 23
46% 29% 25%
41 7 54
40% 7% 53%
43 13 44
43% 13% 44%

Tabulation of data illustrated in Figure 5. 

48% 58%

2 1% 3% 4% 1%
12

1 42% 10%

30% 60%

2 7% 1% 6% 7%
10

1 40% 30%

18% 43%

2 4% 2% 2% 4%
8

1 57% 25%

10% 38%

2 6% 4% 1% 6%
6

1 62% 28%

1% 12%

2 4% 5% 1% 4%
4

1 88% 12%

0% 12%

2 5% 4% 0% 5%
2

1 88% 11%

1% 1% 0% 1%

Combined Frequencies

(Frequency)     

D
o

t 
/

 s
p

o
1

1
  

  

0
1 100% 1% 0% 1%

2

Time 
point 
(h) S

tr
a
in

Raw Counts,      
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Supplement 3
Table: Progression Through Meiosis - Nuclear Division Timecourse

Mono Bi Tri/Tetra Sporul'n

Mono Bi
Tri/Te

tra
(Error

)
(Error

)
(Error) (Error)

99 1 0
99% 1% 0%
100 0 0
100% 0% 0%
96 4 0
96% 4% 0%
99 2 0
98% 2% 0%
95 5 0
95% 5% 0%
96 2 2
96% 2% 2%
82 15 3
82% 15% 3%
73 21 5
74% 21% 5%
66 26 8
66% 26% 8%
60 32 8
60% 32% 8%
74 17 9
74% 17% 9%
61 25 14
61% 25% 14%
72 11 17
72% 11% 17%
51 13 36
51% 13% 36%

Tabulation of data illustrated in Figure 5. 

27% 39%

12% 33%

2 6% 4% 3%

11%
12

1 62% 12%

2 11% 1% 10%

7%
10

1 68% 21%

8% 37%

2 3% 3% 0% 3%
8

1 63% 29%

4% 22%

2 4% 3% 1% 4%
6

1 78% 18%

1% 5%

2 1% 2% 1% 1%
4

1 96% 4%

0% 3%

2 1% 1% 0% 1%
2

1 97% 3%

1% 1% 0% 1%

Combined Frequencies

(Frequency)     

D
o

t 
/

 h
tz

1
  

  

0
1 100% 1% 0% 1%

2

Time 
point 
(h) S

tr
a
in

Raw Counts,      
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