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Abstract 
 
Ecological processes at deep-sea hydrothermal vents on fast-spreading mid-ocean ridges 
are punctuated by frequent physical disturbance. Larval dispersal among disjunct vent 
sites facilitates the persistence of sessile invertebrate species in these geologically and 
chemically dynamic habitats despite local extinction events. Regional population 
extension and rapid recolonization by the siboglinid tubeworm Riftia pachyptila have 
been well documented along the East Pacific Rise and the Galápagos Rift. To analyze 
spatial and temporal population genetic patterns and the processes governing them at 
ephemeral and disjunct habitats, a suite of 12 highly variable microsatellite DNA markers 
were developed for this species. Eight of these loci were used to assess the regional and 
within-ridge genetic structure of recent colonists and resident adults collected from nine 
sites in the eastern Pacific Ocean over period of three to seven years. A significant 
seafloor eruption during the seven-year sampling period allowed investigation into the 
role of local extinction in population genetic diversity at the Tica vent site at 9˚N EPR, 
while collections within two and five years of an eruption that created the Rosebud vent 
field at 86˚W GAR provided insights into genetic diversity input over population 
establishment. 
 
For the first time, this thesis demonstrated significant genetic differences between Riftia 
populations on the East Pacific Rise and Galápagos Rift. Moreover, the separate 
treatment of colonist and resident subpopulations revealed a high potential for local larval 
retention at vent sites. This mechanism for recruitment likely sustains disjunct 
populations and supports the recolonization of locally extinct areas after disturbance 
events, while episodic long-distance dispersal maintains genetic coherence of the species. 
Temporal population genetic consideration at the Tica site on the East Pacific Rise 
suggests that the 2005-2006 seafloor eruption had little to no discernable effect on local 
population genetic composition. Yet local populations appear to exhibit a small degree of 
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genetic patchiness, with a high degree of relatedness (half-sibs) among subsets of 
individuals within both colonist and resident cohorts. This thesis broadens the application 
of recently developed molecular techniques to study the effect of ridge-crest processes 
and offers new perspectives into marine dispersal, gene flow, and population 
differentiation. 
 
 
 
 
Thesis Supervisor:  Timothy M. Shank 
Title:  Associate Scientist, Biology Department 

Woods Hole Oceanographic Institution 
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Chapter 1 
 

Introduction 

1.1 Overview 

This thesis addresses population genetic structure at deep-sea hydrothermal vents with 

new molecular tools and experimental design. Despite multiple attempts to reconcile the 

apparently homogenous population genetic structure of the siboglinid tubeworm Riftia 

pachyptila Jones, 1980 over more than 2000 km with inferences suggesting larval 

dispersal on the order of 100 to 200 km (Marsh et al. 2001), results from various genetic 

markers have been inconsistent (Bucklin 1988, Black et al. 1994, Hurtado et al. 2004). A 

recent pilot study explored the genetic diversity of R. pachyptila (a monospecific genus 

hereafter be referred to as Riftia) using amplified fragment length polymorphisms 

(AFLPs) at a range of spatial scales and found individuals clustered by sampling location 

(Shank & Halanych 2007). As microsatellites have been useful in revealing high levels of 

genetic patchiness among siboglinids at cold hydrocarbon seeps in the Gulf of Mexico 

(McMullin 2003), the suggestion of discrete genetic groups in Riftia prompted the 

development of highly polymorphic microsatellite loci (Fusaro et al. 2008). Not only do I 

consider spatial scales of meters to thousands of kilometers, but I also incorporate multi-

year sampling of populations and collections of recent colonist and resident adult cohorts 

in order to separate the genetic contribution of different generations. An archived time-

series collection of individuals at multiple vent sites along the East Pacific Rise and 

Galápagos Rift over the past decade provides the first opportunity for high-resolution 

genetic investigations of vent population structure, taking into account known 

disturbances in the vent environment. With these tools and samples, I address 

fundamental questions involving spatial and temporal processes that influence population 

genetic patterns in ephemeral and disjunct habitats. 
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1.2 Utility of population genetic studies 

The genetic structure of populations reflects the history of demographic and selective 

forces operating upon them, which ultimately determine their observed genetic 

configuration at a given locality and moment in time. The present composition of alleles 

within a population establishes its future course of persistence or extinction, adaptation 

and speciation, and its genetic influence on the species as a whole. Rather than focusing 

on any one stage in an organism’s life, a dynamic view of its ecology, encompassing 

reproductive mode and dispersal scale through time and space in a particular 

environment, provides the means to predict future patterns (Hughes et al. 1999). As an 

example, documenting variation in recruitment among sites may not directly translate to 

levels of adult abundance at different locations due to different demographic processes 

(e.g., post-settlement mortality) acting upon them (Sale 1999). Moreover, if recruitment 

rates vary between years, inferences about the genetic diversity of a population may lead 

to over- or underestimates of its larval input, depending on the time of sampling. An 

integrated understanding of dispersal, recruitment, and reproductive success is required to 

accurately infer population genetic structure. 

 

By examining the extent of allele exchange between populations, the consequent effects 

of balancing selection and genetic drift can be approximated (Balloux & Lugon-Moulin 

2002). In Nei’s (1972) model of genetic differentiation, the number of genetic changes at 

a locus allows one to estimate genetic distance and in return (assuming constant 

substitution rates and/or certain migration models) is linearly related to geographic 

distance and divergence times between populations. Thus, understanding the makeup of a 

population at a single place and time and of collections of populations over their 

spatiotemporal existence can allow molecular ecologists to make inferences into the past 

and predictions of future population structure. 
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1.3 The metapopulation approach to temporal genetics 

In many marine systems, spatiotemporal genetic variation in larval cohorts has been used 

to investigate the variation observed in adult populations (Weinmayr et al. 2000, Gilg & 

Hilbish 2003). Metapopulations can be generalized as a collection of local populations 

inhabiting discrete and recognizable habitat patches (Smith & Green 2005). These 

patches are largely independent of each other but exhibit limited ties, as initially defined 

by Levins (1969). By definition, it can also be assumed that within a metapopulation, 

habitat patches support local breeding populations with limited dispersal of individuals 

such that no single population is large enough to ensure long-term local survival. 

Dispersal mode or realized dispersal distance may be inconsequential to metapopulation 

dynamics. Instead, the discrete nature of groups living an ephemeral existence plays a 

more important role than spatial patchiness when defining a metapopulation (Pannell & 

Obbard 2003). Thus, it can be predicted that without continuous genetic contributions to 

ensure the survival of a patch, metapopulations are prone to local extinction. 

Furthermore, according to Levins’ (1969) definition, patches within a metapopulation are 

not so geographically or genetically isolated as to prevent recolonization and local 

dynamics are sufficiently asynchronous that simultaneous extinction of all local 

populations is unlikely. In addition to physical habitat fluctuations over time, available 

habitat for colonizers may also be in flux due to the distributions of superior competitors 

through space and time (Keymer et al. 2000). Extinction and colonization throughout a 

metapopulation’s range maintain its existence as a group of subdivided populations 

(Pannell & Obbard 2003). 

 

Metapopuluation approaches have been used to address fundamental ecological questions 

at deep-sea hydrothermal vents (Neubert et al. 2006, Jollivet et al. 1999). Vents provide 

spatially disjunct and temporally ephemeral habitats along mid-ocean ridges, separated 

by expanses of non-venting, and subject to interruptions and cessation of flow. 

Additionally, local vent populations have transient lifespans on the same timescale as 

faunal lifespans, resulting from frequent extinction and recolonization processes 
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(Thiébaut et al. 2002). Geophysical and geochemical instability at vents may serve to (1) 

create population bottlenecks—increasing genetic drift and reducing metapopulation 

effective size—and to (2) increase genetic differentiation between vent populations 

towards the fixation of alleles. Given these characteristics, hydrothermal vents are likely 

candidates for metapopulation approaches. Additionally, existing population models do 

not explain inconsistencies in genetic structure/lack of structure and dispersal capabilities 

inferred for hydrothermal vent fauna (Jollivet et al. 1999). Metapopulation genetic 

models may offer alternative ways—to island, stepping-stone (Kimura & Weiss 1964), or 

isolation by distance (Wright 1940) models—of explaining observed patterns and can be 

best studied on a range of spatial and temporal scales with high-resolution molecular 

markers (Vrijenhoek 1997, Pannell & Obbard 2003, Freckleton & Watkinson 2002, 

Segelbacher & Storch 2002). 

 

1.4 Physical and biological setting 

Hydrothermal vents are ephemeral regions of geothermally heated and chemically altered 

seawater emitted from the seafloor along mid-ocean ridges, frequently venting highly 

toxic fluids at temperatures greater than 350˚C. These vents often support a large and 

endemic biomass dependent upon the chemosynthetic processes of bacteria and archaea 

converting chemical energy into fixed carbon. Biological processes at vents are 

intrinsically linked to the spreading systems on which they are found, including to the 

tectonic and magmatic instability of being located on an active spreading center, variable 

hydrothermal fluid flux and composition, and strong temperature and chemical gradients. 

It is assumed that if hydrothermal vents were continuously distributed along an 

unfractured mid-ocean ridge, fauna would be similar worldwide (Mironov et al. 1998). 

However, the global mid-ocean ridge system is constructed with faults and fractures that 

segment these seafloor mountain chains. A patchy distribution of venting habitats 

facilitates distinct biogeographic patterns in separate ocean basins and in different 

regions. Important questions remain regarding finer scale biogeographic patterns within a 
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region that can help define the scale of disturbance (geographic or otherwise) impacting 

population genetic structure. 

 

The East Pacific Rise (EPR), with its north-south orientation, northward currents along 

the eastern edge of the ridge, and strong eastward currents near the Equator extending out 

along the perpendicularly intersecting Galápagos Rift (GAR), was dubbed by Tunnicliffe 

(1988) a model setting in which to study clinal patterns of vent community development 

and genetic variance. This ridge became geographically isolated from the Juan de Fuca 

Ridge (once the mid-Tertiary Pacific-Farallon Ridge) about 35 Mya, while the Galápagos 

Rift began spreading from the EPR about 20-25 Mya (Hey 1977, Tunnicliffe 1988). In 

addition to differences in geologic age, the EPR has a faster maximum full spreading rate 

(up to 16 cm/year) than the GAR (6.5-7.0 cm/yr); higher rates of spreading have been 

correlated to higher rates of disturbance and habitat turnover due to greater magmatic 

activity (Klaus et al. 1991, Ballard et al. 1982, Van Dover et al. 2002). Hydrothermal 

vents are also more abundant on the EPR than on the GAR (Baker & German 2004). 

 

As of 1997, an 800 km area of the EPR between 7˚ and 14˚N had been explored, yielding 

the discovery of 198 vents, averaging 3-5 km between them, except in clusters at known 

as 9˚N and 13˚N, where vents are spaced an average of 500 m apart (Chevaldonné et al. 

1997). Between 12˚38’ and 12˚54’N, a cluster of twenty-two vents occur within a linear 

stretch roughly 8 km long, with two additional vents separated by massive sulfides 7 km 

away. Fourteen active vents lie within a 30 km range around 21˚N, with a solitary black 

smoker 6.5 km afield (Grassle 1985). Additionally, thirty kilometers of the Galápagos 

Rift were surveyed in the late 1970s with the discovery of hydrothermal vents and 

revealed nine active vent areas, spread by a maximum distance of 8 km, and three extinct 

vents identified by remnant shell debris (Grassle 1985). More recently, black smokers 

have been located on the GAR between 91˚ and 95˚W (Haymon et al. 2007). In general, 

vents on the GAR may be more geographically isolated than vents on the EPR but could 

provide more geochemically stable habitats for endemic populations. 
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1.5 History of local extinction, colonization, and succession on 

the East Pacific Rise and Galápagos Rift 

Since their discovery in 1977, local extinction and recolonization events have been 

recorded at hydrothermal vents (Haymon et al. 1993; Shank et al. 1998, 2003). On the 

EPR, the 21˚N area has supported growing Riftia populations dating back to Clam Acres’ 

discovery in 1979, including recovery from over-sampling in 1982 (Spiess et al. 1980, 

Hessler et al. 1985, Desbruyères 1998). This ridge segment has been active for at least 

300 years with a spreading rate of 60 mm/yr, but a short shift in activity likely occurred 

over the past century, followed by several decades of continuous flow (Desbruyères 

1998).  

 

Vents at 13˚N EPR were discovered in 1981 (Hekinian et al. 1983) and subject to fluid 

instabilities between 1982 and 1990 (Fustec et al. 1987, Desbruyères 1998). Since then, 

this region has experienced a resurgence of hydrothermal activity, with a large “sulfide 

mound” discovered in 2003 (Voight et al. 2004). It is believed that two centuries ago the 

13˚N segment was relatively stable, but more recently, the black smoker lifespan has 

been observed to be less than 5 to 10 years (Desbruyères 1998). 

 

The 9˚N vents were first observed from a towed camera system (ARGO) in 1989 (Fornari 

et al. 1990) and concentrated international efforts have monitored this area and tracked 

changes ever since (Figure 1.1). A 1992 Biologic-Geologic Transect along 1.37 km of the 

axial summit cauldera (ASC) between 9˚49.61’N and 9˚50.36’N at depths of 2500 m, 

mapped the robust venting communities that arose after an eruptive event in 1991. This 

volcanic eruption disrupted the mature tubeworm and mussel communities observed in 

1989 images of the region and provided a “zero” time point from which to follow the 

development of hydrothermal vent communities (Haymon et al. 1991, 1993). Photo- and 

videographic transects were subsequently established in March 1992, December 1993,  
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Figure 1.1 Timeline of select disturbances resulting in population and habitat turnover 
within the 9˚N East Pacific Rise vent field. 
 

October 1994, and November 1995 (Shank et al. 1998). Successional changes following 

the eruption were observed as follows:  

1) initially, white bacterial mats blanketed the venting area;  

2) within a year, mobile vent fauna colonized 17 newly-formed active vent  

1989 Discovery of 9°50'N venting areas 
 Tubeworm Pillar active 

1991 Eruption 
 Dominance of snowblowers and mats 
 Dead Riftia at Tubeworm Barbeque 
1992 Secondary eruption 
 Dominance of Tevnia 
1993 Magmatic diking 
 Tubeworm Pillar black smoker 
 Dominance of Riftia 
1994 Emergence of Bathymodiolus & serpulids 

1995 Cracking event 
 Serpulid worms & brachyuran crabs 
 Overgrowth of Riftia by mussels 
 Rusty Riftia area 
1997 Ty/Io black smokers emerge 
 Tica diffuse flow, few Riftia 

2002 Rusty Riftia fauna absent 
2003 Tica black smoker emerges 
 Tubeworm Pillar flow cessation 
2004 Mussel Bed waning 
 Tubeworm Pillar inactive 

2005 Eruption 
2006 Extinction of Alvinellid Pillar, M Vent, Q Vent, & Tica smoker 
 New areas of diffuse flow 

2007 Extensive Tevnia colonization 
 Limited Riftia presence 
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areas, microbial mat coverage underwent significant reduction, and Tevnia 

jerichonana tubeworms began to settle in regions of intense diffuse flow;  

3) over the subsequent months, Riftia tubeworms established hardy populations,  

    fostering the arrival of additional vent-endemic species;  

4) by the end of the second year following the eruption, sulfide chimneys 

    developed and provided substrate for the colonization of alvinellid polychaetes; 

5) a third year saw Bathymodiolus thermophilus mussels arrive on the scene;  

6) within four years, galatheid crabs and serpulid polychaetes became more  

    abundant and mussels started to recruit to Riftia tubes;  

7) by year six, vesicomyid clams and enteropneusts entered the vent community. 

 

Since that study, new high-temperature (>360°C) vents formed and established areas 

declined (Von Damm et al. 2004). Lepetodrilid limpets heavily colonized the region and 

mussels overgrew previously robust Riftia aggregations as flow diminished. Seismic 

sensors also detected a major fracture event in 1995 that likely reinvigorated vents in the 

northern region of the Transect known as the Hole-to-Hell (Sohn et al. 1998). The Tica 

site became active with diffuse flow and a nascent Riftia population around 1997, with its 

high temperature black smoker emerging by 2003 (Fornari et al. 2004). 

 

In 2005-2006, following a period of increased microseismicity another eruption at 9˚N 

EPR devastated 18 km of vent communities (Tolstoy et al. 2006, Cowen et al. 2007, 

Soule et al. 2007). Where fauna had been paved over with fresh lava, new communities 

began to develop in the months thereafter as they did following the 1990-1991 eruptions, 

with T. jerichonana replacing microbial mats and subsequent settlement of solitary Riftia 

individuals (Shank et al. 2006). These events and recorded changes in community 

structure, coupled with extensive cross-disciplinary sampling since the 1991 eruption 

through to after the 2005-2006 eruption distinguish the 9˚N EPR hydrothermal region 

from other less-studied vent fields and afford the opportunity for spatiotemporal studies. 
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Colonization events have also been well documented along the Galápagos Rift at 86˚W 

and 2470 m depth (Shank et al. 2003). Prior to the discovery of Galápagos vents, there 

was evidence of a 1972 eruption in the 86˚W area (Macdonald & Mudie 1974). The high 

flow Rose Garden site, thought to have originated in the early 1970s and last visited in 

1990, was not found in 2002 (Childress 1988, Shank et al. 2003). Vent fluid flux at Rose 

Garden had been consistent across observations from 1979 to 1990; however, between 

1979 and 1985, Riftia almost disappeared from this site, with a single cluster remaining 

atop a large mussel bed (Desbruyères 1998). Dives of the submersible Alvin in 2002 on 

what was once Rose Garden revealed that a recent volcanic eruption (no more than 2.5 

years prior) had paved over the populations of tubeworms, mussels, and other vent fauna 

last seen thriving in a large fissure at that location in 1990 (Shank et al. 2003). While this 

flow of fresh seafloor eliminated a known, well-established community and changed the 

venting terrain and subsurface plumbing, a few hundred meters northwest, a new 

hydrothermal community was observed with juvenile tubeworms, mussels, and clams 

colonizing a nascent vent field—Rosebud, a low temperature (24˚C) site about 60 m by 

50 m with four main venting areas. One remarkable finding in this young community was 

a deviation from previously hypothesized successional steps on the EPR—mussels, 

tubeworms, and clams of similar (young) ages and small size co-occurred in diffuse 

venting regions at Rosebud instead of transitioning gradually from early colonizing 

species (Riftia) to later vent stage inhabitants (Bathymodiolus and Calyptogena) (Shank 

et al. 2003). Also notable was the finding of roughly one-third of the species formerly 

sampled at Rose Garden thirteen years prior, suggesting a major shift in community 

composition occurred. 

 

Rosebud and the surrounding area were visited again in May 2005 in an attempt to 

document changes to the community structure and water chemistry since its discovery. In 

three years, mussel and tubeworm communities had grown more robust and continued to 

inhabit discrete habitat patches while additional regions of diffuse flow remained 
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available for colonization; the successional stages of vent organisms appeared to be 

developing simultaneously at this site (Nevala 2005). 

 

The Garden of Eden vent site, last observed in the 1990s was also rediscovered in 2005. 

Its contemporary Riftia population can be assumed to have been present at least since the 

discovery of hydrothermal vents in 1977 (Corliss et al. 1979) and may have been 

unaffected by the eruption that created Rosebud 14 km distant. Extensive Riftia 

assemblages at Garden of Eden contained the largest documented tubeworms (> 2 m, 

pers. obs. T. Shank) in 2005, adding credence to their existence as part of a long-lived, 

robust population at this site.  

 

Comparing the changes at vent fields in the eastern Pacific and the genetic structure of 

species found at both areas will provide insight into how physical dynamics translate to 

genetic signal. Ecological mechanisms structuring the development of the Galápagos vent 

communities are predicted to markedly differ from the faster spreading East Pacific Rise.   

 

1.6 Target species: life history and general biology 

It was expected in the early days of vent biology that in order to colonize new vents 

hundreds of kilometers away, vent fauna must undergo strong selection for high growth 

rates, high fecundity, and efficient dispersal (Grassle 1985). Larval behavior, as well as 

geographic barriers, may restrict long-distance dispersal that would otherwise connect 

populations (Darling et al. 2004). The details of life-history strategies at vents, although 

phylogenetically conservative (no common dispersal strategy, yet most appear to be 

subject to transport on ocean currents and/or vent plumes, Tunnicliffe 1988), may have 

evolved to deliver dispersive propagules to and ensure colonization of disjunct vent sites 

(Tyler & Young 1999). From larval life-span investigations, hydrodynamic conditions, 

direct larval collection, and respiration research over the past few decades, some 

comparisons between species can now be made (Table 1.1).   
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Table 1.1 Studies of gene flow, larval type, and inferred dispersal distances in eastern Pacific hydrothermal 
vent species. These studies were conducted at northern East Pacific Rise (NEPR) and Galápagos Rift 
(GAR). Modified from (Vrijenhoek 1997; Tyler & Young 1999; Hurtado et al. 2004).  
 

* Number of allozyme loci, followed by DNA-based markers: (m) mtDNA restriction haplotypes; (n) nDNA loci; and (c) cytochrome 

oxidase I mtDNA sequences.  HT  is a measure of total genetic diversity. †, equivalent to the average observed heterozygosity per 

population. ‡, not reported.  References: (1) France et al. 1992; (2)  Black et al. 1994; (3) Black et al. 1998; (4) Craddock et al. 1995b;  

(5) Vrijenhoek et al. 1994; (6) Karl et al. 1996; (7) Craddock et al. 1997; (8) Jollivet et al. 1995a (9) Marsh et al. 2001; (10) inferred 

from shell morphology (Lutz 1988); (11) Desbruyères & Laubier 1986; (12) Chevaldonné & Jollivet 1993; (13) Hurtado et al. 2004; 

(14) from congener B. seepensis in Tyler & Young 1999. 

 
 
Of these species, the siboglinid tubeworm Riftia is a dominant macrofaunal component of 

deep-sea hydrothermal vent communities in the eastern Pacific Ocean with a range of 

approximately 7000 km. This species was selected as a focal species to address spatial 

and temporal population dynamics in ephemeral habitats for three main reasons: (1) its 

 

Species 

 

Ridge system 

Range 

sampled (km) 

No. of 

total loci* 

 

HT 

Isolation 

by 

distance 

 

Dispersal stage 

Inferred 

dispersal 

distance 

 Amphipods        

Ventiella sulfuris NEPR, GAR 3,340 14 0.296 Yes1 brooder1 short 

 Vestimentiferans        

Riftia pachyptila  NEPR, GAR 3,960 17,n,m 0.135 Yes2 trochophore9 moderate 

Tevnia jerichonana  NEPR 340 15,n,m 0.068 Yes3 ? moderate 

Oasisia alvinae  NEPR 1,330 15,n,m 0.120 Yes3 ? moderate 

 Bivalves        

Bathymodiolus 

thermophilus  

NEPR, GAR 2,370 26,n,m,c 0.017 No4 planktotrophic10 long 

Calyptogena magnifica  NEPR, GAR 3,340 17,n,c 0.016 No5,6 nonplanktotrophic10 short 

 Gastropods        

Eulepetopsis vitrea  NEPR, GAR 3,340 10 0.059 No7 nonplanktotrophic10 short 

Lepetodrilus pustulosus  NEPR, GAR 2,370 16 0.046 No7 nonplanktotrophic10 short 

Lepetodrilus elevatus  NEPR, GAR 1,360 16 0.066 Yes7 nonplanktotrophic10 short 

Lepetodrilus galriftensis NEPR 1,360 16 0.051 Yes7 nonplanktotrophic10 short 

 Polychaetes        

Paralvinella grasslei NEPR ~4,000 18 0.237† No8 lecithotrophic11 short 

Alvinella caudata NEPR ~900 18 0.118† No8 lecithotrophic11 short 

Alvinella pompejana NEPR ~900 18,m 0.107† Yes8 lecithotrophic12 short 

Branchipolynoe 

symmytilida 

NEPR, GAR n/a m unk.‡ Yes13 lecithotrophic14 short 
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high occupancy at EPR and GAR vent sites, (2) extensive collections from throughout its 

species range over the past decade, (3) a rich but unresolved history of larval and genetic 

research. 

 

Riftia has separate sexes (Jones 1980), with a nearly equal ratio of males to females 

(Thiébaut et al. 2002), and is highly fecund (Cary et al. 1989); up to 700,000 mature eggs 

have been observed in Riftia’s ovisac (Young 2003). Eggs are small, yolky, lipid-rich 

(Cary et al. 1989), and near-neutrally buoyant (Marsh et al. 2001). Sperm released into 

the water column are then stored in ovarian spermatheca, and imperfect (< 100%) 

fertilization occurs internally before oocyte release (Hilário et al. 2005). Riftia embryos 

presumably undergo initial development at depth, as it has been demonstrated that they 

require ambient pressure in order to progress to the larval stage (Marsh et al. 2001). 

 

This tubeworm species possesses a free-swimming, non-feeding (lecithotrophic) 

trochophore larvae believed to facilitate limited transport between disjunct areas of 

suitable habitat (Jones & Gardiner 1989, Marsh et al. 2001). The larval lifespan of Riftia 

is estimated at about 38 days, including 3 weeks of embryonic development and 2 weeks 

of ciliary movement (Marsh et al. 2001). While the trochophore larva has no mouth, gut 

or anal opening, after settlement stage, juveniles may feed by ciliary action (Southward 

1988). However, following horizontal endosymbiont transfer through the skin of newly 

settled tubeworms, Riftia develop a trophosome and lose their juvenile mouth and anal 

openings (Nussbaumer et al. 2006). 

 

Natural and experimental colonization observations have been unable to determine the 

biotic or abiotic cue for Riftia settlement (Shank et al. 1998, Hunt et al. 2004, Mullineaux 

et al. 2000). As colonization occurs within a year or two of newly available habitat, it is 

considered likely that a pool of larvae is maintained in the water column above vents 

(Shank et al. 1998, Govenar et al. 2004). Recruitment lacks periodicity and is 

discontinuous, but settlement events can be frequent (e.g., 8 to 20 d) (Thiébaut et al. 
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2002). Once established, tube growth rates may exceed 85 to 160 cm/yr (Lutz et al. 1994, 

Thiébaut et al. 2002). While large worms may only inhabit one to two thirds of their total 

tube length (Govenar et al. 2004), Riftia is still considered one of the fastest growing 

organisms on Earth, out-competing or over-growing the smaller tubeworm species, 

Tevnia jerichonana, that is first to colonize new vents (Shank et al. 1998). 

 

Despite multiple attempts to resolve Riftia’s apparently homogenous population genetic 

structure with inferences suggesting limited larval dispersal, results from various genetic 

markers have been inconsistent (Bucklin 1988, Black et al. 1994, Hurtado et al. 2004). A 

recent pilot study explored the genetic diversity of Riftia using amplified fragment length 

polymorphisms (AFLPs) at a range of spatial scales and found individuals clustered by 

sampling location (Shank & Halanych 2007). As microsatellites have been useful in 

revealing high levels of genetic patchiness among siboglinids at cold hydrocarbon seeps 

in the Gulf of Mexico (McMullin 2003), the suggestion of discrete genetic groups in 

Riftia prompted the development of highly polymorphic microsatellite loci (Fusaro et al. 

2008). 

 

1.7 Rationale for a DNA microsatellite approach 

Examples of the application of molecular markers to determine population structure 

pervade marine, freshwater, estuarine, and terrestrial literature (Avise 2004). Each 

generation of population geneticists attempts to make use of a new technology, more 

sensitive to genetic differences than previous techniques, in order to reveal cryptic levels 

of genetic structure in populations. In the case of the intertidal copepod Tigriopus, 

allozyme data revealed strong genetic differentiation between populations, but mtDNA 

cytochrome oxidase subunit I (COI) sequences were able to resolve this structure to a 

phylogeographic break and define interpopulation relationships (Burton & Lee 1994). 

Before the advent of affordable and reliable DNA sequencing, mtDNA was also analyzed 

using restriction endonuclease digests to reconstruct the ancestral history of intraspecific 

lineages (Avise et al. 1979). Since then, sequencing techniques have become accessible 
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to investigators even in the smallest of labs. However popular, nuclear and mitochondrial 

DNA markers are considered to be better suited for intraspecific phylogeography and 

systematics than they are to population genetics (Sunnucks 2000). Methods continue to 

evolve and develop, such that it is now possible to isolate patterns in population arrays 

with more power and sensitivity. 

 

Over the past decade, DNA microsatellites—rapidly evolving, tandemly repeated 

sequences of non-coding DNA randomly distributed throughout an organism’s genome—

have become another valuable tool in the population geneticist’s toolbox (Selkoe & 

Toonen 2006). Microsatellite markers are well-implemented in the fields of conservation 

biology, invasive species, disease mapping, and forensic science. As co-dominant 

Mendelian alleles with mutation rates of 10-2 to 10-6 per generation (up to 10,000 times 

that of other molecular markers), polymorphic microsatellite loci offer increased 

resolution to investigations of reproductive and recruitment success, current and historic 

gene flow, and population structure and persistence (Jarne & Lagoda 1996, Balloux & 

Lugon-Moulin 2002). At their inception, the characterization and isolation of 

microsatellites required extraction of large amounts of DNA, restriction enzyme 

digestion, gel fragment purification and vector insertion, DNA cloning, colony picking 

and sequencing. Today, more targeted methods are available, and microsatellites are 

becoming a primary tool in modern population genetics (Sunnucks 2000). Using 

magnetic beads bound with (TG) repeats, for example, DNA fragments can be enriched 

and cleaned for those containing complementary repeats only. Specific fragments are 

amplified in the polymerase chain reaction (PCR) using primers matching the flanking 

regions of these microsatellites, which can then be tested for polymorphism and 

adherence to expectations in the population of interest. 

 

Microsatellites have been applied to populations where previous methods have yielded 

low levels of polymorphism, including marine studies on the slipper snail Crepidula 

fornicata (Dupont & Viard 2003), the invasive brown mussel Perna perna (Holland 
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2001), Atlantic salmon Salmo salar (Tessier & Bernatchez 1999), and the tube-building 

polychaete Pectinaria koreni (Weinmayr et al. 2000); and to terrestrial populations in the 

case of the garden snail Helix aspersa (Arnaud & Laval 2004). Highly polymorphic (i.e. 

having many alleles) and sensitive enough to amplify small amounts of source DNA from 

larvae and ethanol-preserved samples, microsatellites can also be applied to the study of 

cohort arrival and differential survival across the lifespan of individuals and populations 

(Weinmayr et al. 2000). They are often species-specific and can identify individuals in 

mixed plankton samples (Morgan & Rogers 2001). However, their power of genetic 

resolution has seen only limited application to the study of deep-sea populations 

(gorgonian octocorals, Baco et al. 2006; hydrocarbon seep tubeworms, McMullin et al. 

2004; and hydrothermal vent scale worms, Daguin & Jollivet 2005, Plouviez et al. 

submitted), and in particular, of the effect ridge-crest processes have on vent-endemic 

species. The application of microsatellites to ecological questions in other environments 

suggests that these sensitive markers can be used to resolve conflicting larval and genetic 

results from previous vent studies.  

 

1.8 Organization of the current study 

This dissertation research begins by developing the tools necessary for multi-locus 

Mendelian population genetic analysis of ecological processes at deep-sea hydrothermal 

vents. Microsatellite loci are developed and characterized in Chapter 2 in order to 

facilitate further studies in the eastern Pacific. Chapter 3 incorporates these markers into a 

regional scale population genetic study of recent colonist and resident adult Riftia from 

five major vent fields on the East Pacific Rise and Galápagos Rift, comparing and 

contrasting these findings with those using a more traditional design. In Chapter 4, 

population genetic research is extended to fine-scale spatial comparisons within two ridge 

segments and temporal comparisons over two to seven years at sites on separate mid-

ocean ridge systems. The temporal population genetic study on the East Pacific Rise 

fortuitously spanned an eruption in 2005-2006, allowing inferences to be made about 

subsequent recolonization. Ultimately, this thesis demonstrates the added interpretive 
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power that temporal genetic approaches contribute to understanding dispersal 

mechanisms. Moreover, it suggests that local larval retention dominates the settlement 

pool at deep-sea hydrothermal vents and encourages future researchers to design their 

studies in a manner that addresses this hypothesis. 
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Chapter 2 
 

Development and characterization of 12 
microsatellite markers from the deep-sea 
hydrothermal vent siboglinid Riftia 
pachyptila 
 

Reprinted with permission from: 
 
Fusaro AJ, Baco AR, Gerlach G, Shank TM (2008) Development and characterization of 
12 microsatellite markers from the deep-sea hydrothermal vent siboglinid Riftia 
pachyptila. Molecular Ecology Resources, 8, 132-134. 
 
 2007 The Authors 
Journal compilation  2007 Blackwell Publishing Ltd 
 

Abstract 
Ecological processes at deep-sea hydrothermal vents on fast-spreading mid-ocean ridges 

are punctuated by frequent physical disturbance, often accompanied by a high occurrence 

of population turnover. To persist through local extinction events, sessile invertebrate 

species living in these geologically and chemically dynamic habitats depend on larval 

dispersal. We characterized 12 polymorphic microsatellite loci from one such species, the 

siboglinid tubeworm Riftia pachyptila. All loci conformed to Hardy-Weinberg 

expectations without linkage (mean HE = 0.9405, mean NA = 20.25). These 

microsatellites are being employed in the investigation of spatial and temporal population 

genetic structure in the eastern Pacific Ocean. 

 
Keywords: deep sea, hydrothermal vent, microsatellite, polychaete annelid, Riftia 
pachyptila, vestimentiferan tubeworm 
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2.1 Introduction 

The sessile siboglinid tubeworm Riftia pachyptila Jones, 1980 is a dominant megafaunal 

component of eastern Pacific Ocean deep-sea hydrothermal vent communities spanning 

approximately 7000 km of mid-ocean ridge (Hurtado et al. 2004). Riftia pachyptila 

disperses via a free-swimming trochophore larva that, when coupled with hydrodynamic 

models, is predicted to be retained within a ridge segment (Marsh et al. 2001). However, 

allozyme and mitochondrial DNA studies to assess population genetic structure in 

relation to larval dispersal potential in this species have not observed segment-scale 

structure among ephemeral, disjunct vent habitats (Bucklin 1988; Black et al. 1994; 

Hurtado et al. 2004). Using genomic fingerprinting to explore genetic diversity, a recent 

pilot study (Shank & Halanych 2007) suggested the potential for previously undetected 

genetic structure in R. pachyptila populations. We report the isolation and 

characterization of 12 highly polymorphic microsatellite loci for R. pachyptila, intending 

to capitalize upon genome-wide genetic signal in the resolution of spatiotemporal 

population dynamics. 

 

2.1 Methods 

Four microsatellite loci were obtained using enriched genomic libraries created from two 

R. pachyptila individuals following the protocol outlined in Baco et al. (2006). Eight 

additional loci were developed from a third R. pachyptila individual. For the latter, 

approximately 10 µg of genomic DNA was digested with DPNII (New England Biolabs) 

enzyme to construct CA and CA, AAC, and AGAT repeat-enriched libraries as described 

in the Molecular Markers: Tools for Developing Enriched Microsatellite Libraries 

handbook (Interdisciplinary Center for Biotechnology Research 2004). For these, the 

whole-genome polymerase chain reaction (PCR) libraries were denatured and hybridized 

to biotinylated CA or CA/AAC/AGAT probes, respectively. The hybridized repeat-

containing fragments were recovered with a 2-mL preparation of Dynabeads M-280 

Streptavidin (Dynal Biotech) and a Dynal MPC-S magnetic particle concentrator. 
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Positive clones from the TOPO TA Cloning Kit (Invitrogen) were identified using the 

Phototope-Star Chemiluminescent Detection Kit (New England Biolabs). 

 

A total of 257 CA and 38 CA/AAC/AGAT repeat-containing plasmid inserts were 

sequenced using the M13F primer on an ABI 3730xl DNA Analyzer (Applied 

Biosystems). Reverse M13R sequences were later generated for 98 of these plasmid 

inserts. Manual (SEQUENCHER version 4.6, Gene Codes; SEQUENCING ANALYSIS, Applied 

Biosystems) and automated (MSATCOMMANDER, Faircloth 2007) examination of the 

resulting sequence data revealed 31 inserts containing tandem repeats with sufficient 

flanking regions for primer design. Primer pairs were developed using PRIMER3 (Rozen & 

Skaletsky 2000). 

 

In total, 12 variable microsatellite loci were used in genotyping. Genomic DNA was 

isolated from the vestimentum of 30 R. pachyptila individuals larger than 10 cm from the 

Tica hydrothermal vent site (9˚50.41’N, 104˚17.50’W) on the East Pacific Rise using 

either the DNeasy Tissue (Qiagen) extraction kit or a Chelex 100 protocol (as used in 

Roy & Sponer 2002). Amplification conditions were optimized for each locus, and 

forward primers were labelled on the 5’ end with FAM, TAMRA, or HEX fluorophores, 

allowing for the pooling of similarly sized PCR products before capillary electrophoresis 

(see Table 1). PCRs carried out in a volume of 25 µL consisted of 50−200 ng of DNA, 1× 

GeneAmp PCR buffer (Applied Biosystems) with final concentration of 1.5 mM MgCl2, 

0.25 µM each of a forward and a reverse primer (MWG Biotech), 0.2 mM of each dNTP 

(Eppendorf), and 0.625 U of AmpliTaq Gold (Applied Biosystems). The thermal profile 

on Mastercycler ep gradient, Mastercycler personal (Eppendorf), and GeneAmp PCR 

System 9700 (Applied Biosystems) thermocyclers included an initial denaturation at 

95˚C for 10 min followed by 30 cycles (40 cycles for R2E14) of 95˚C for 45 s, a primer-

specific annealing temperature (Table 1) for 30 s, and 72˚C for 45 s, with a final 

extension of 72˚C for 30 min to favor complete addition of a plus-A tail. PCR products 

were pooled before capillary electrophoresis as in Table 1. Products labelled with 6-FAM  
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and TAMRA were pooled in equivalent volumes, while HEX-labelled products were 

pooled in a 2:1 volume ratio with FAM-labelled products to account for differences in 

signal intensity. 

 

Fragment length was analysed on an ABI PRISM 3730 DNA Analyzer using the 

GeneScan-500 LIZ standard and GENEMAPPER version 3.7 (Applied Biosystems) with 

manual electropherogram inspection. PCR products from the same individuals were 

replicated between separate runs to monitor and control for genotyping inconsistencies. 

Raw allele sizes were binned using the automated FLEXIBIN (Amos et al. 2007) program 

and manually reviewed for ambiguities. Because of nonconformity to stepwise bins of 
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allele lengths according to the sequenced repeat motif, four loci were excluded from 

subsequent analyses (Rpa10CA03, Rpa10CA05, Rpa10CA08, Rpa10CA09). The 

remaining loci were screened for the presence of null alleles using MICRO-CHECKER (van 

Oosterhout et al. 2004). Nonbiased expected and observed values for heterozygosity were 

determined using GENETIX (Belkhir et al. 2004), while tests for deviation from Hardy-

Weinberg equilibrium and genotypic linkage were performed in FSTAT (Goudet 2001) 

(Table 1). 

 

2.3 Results and Conclusions 

All twelve loci were highly variable; the total number of alleles sampled from 30 

individuals ranged from 10 to 37. Null alleles were not detected among any of the loci, 

nor were heterozygote deficiencies significant for any locus. There was no evidence for 

linkage disequilibrium at the 5% significance level. A test for cross-genus amplification 

at Riftia-optimized PCR conditions for the 12 loci in the most closely-related sister taxon 

Tevnia jerichonana (based on COI sequence phylogeny; Black et al. 1997) yielded no 

products. 

 

These loci are currently being applied to a spatiotemporal investigation of population 

genetic structure of R. pachyptila in the eastern Pacific Ocean.
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Chapter 3 

Influence of local larval retention on 
deep-sea hydrothermal vent population 
structure 
 

 

Abstract 
Organisms in disjunct and ephemeral habitats rely on various dispersal strategies to 

maintain genetic connectivity with other populations and persist as a species. In species 

with sessile adults, dispersal often occurs during a pelagic larval phase. Traditionally, the 

extent of larval dispersal is inferred from the genetic structure of adult populations, but 

such studies do not account for processes occurring on timescales relevant to individual 

life spans. Hydrothermal vents present a model environment in which the contributions of 

different cohorts to discrete populations may be measured with high-resolution genetic 

markers. This study employs eight polymorphic DNA microsatellite loci to population 

genetic considerations of the dominant tubeworm Riftia pachyptila at five hydrothermal 

vent regions in the eastern Pacific. Small but significant differences were found between 

Riftia populations on the East Pacific Rise and Galápagos Rift. The importance of 

considering cohorts in population genetic studies becomes apparent, as colonist 

subpopulations were most similar to residents sampled at the same and next proximate 

site. Within a ridge system, colonists were also more like other colonists than residents 

were to other residents. These results suggest that local larval retention plays a key role in 

establishing and maintaining Riftia populations, while limited gene flow exists on longer 

timescales between ridge systems in the eastern Pacific. Genetic comparisons of 

populations must therefore not only consider adults but also be mindful of larval and 

early juvenile stages, which can lead to different inferences about recruitment and gene 

flow. 
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3.1 Introduction 

There is a biological need in all species that dispersal be balanced with retention. Below, 

various strategies for evaluating this balance are presented, the experimental setting is 

described, and key attributes of the model organism chosen for this study are discussed. 

 

3.1.1 Biological impetus for larval dispersal and local retention 

Organisms with sessile adults often rely upon a larval or juvenile phase to disperse and 

colonize new areas. This phase in a complex life history is important for coping with 

crowding and resource limitation, locating a mate outside of kin groups, and persisting as 

a species beyond local disturbance events. The movement of individuals from one 

location and subsequent development into successful reproductive adults in another 

location facilitates the exchange of genetic material. The extent of this exchange or gene 

flow determines both the genetic connectivity among populations and the range potential 

of a species.  

 

In the marine environment, both biological and physical features influence larval 

dispersal potential and species realized gene flow. For example, unless there are 

mechanisms that occasionally allow for exchange, geographically isolated populations of 

species that brood or otherwise retain their young locally may diverge and speciate over 

evolutionary time. On the other hand, species with planktonic larvae may be able to travel 

far from their natal population before settlement (Thorson 1950). This strategy is 

especially useful for maintaining genetic connectivity across patchily distributed habitats.  

 

Recent evidence from oceanographic models on scales of 10-100 km (e.g, Cowen et al. 

2006) and direct observations (e.g., Swearer et al. 1999, Thorrold et al. 2002, Becker et 

al. 2007) suggests recruitment of planktonic larvae from local populations rather than 

long-distance larval dispersal (Thorson 1950, Scheltema 1986, Caley et al. 1996) may 

dominate marine population dynamics. While retention of larvae on small scales (e.g., < 
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1 km) may be advantageous for population maintenance in disjunct habitats by ensuring 

the seeding of new progeny in a suitable location, it also makes a population more 

vulnerable to local extinction by limiting dispersal to an isolated location (Wood & 

Gardner 2007). In coastal systems, year to year mean current variability has been shown 

to increase retention of iteroparous species by oscillating between conditions that favor 

short- and long-distance larval dispersal (Byers & Pringle 2006). Species must balance 

along-current transport with remaining close to their natal population in order to persist in 

a region. The advantages of larval retention (e.g., reduced predation, ensured food 

availability) may be afforded irrespective of larval duration in the water column and 

without significant ecological tradeoffs (Strathmann et al. 2002, Levin 2006, Teske et al. 

2007). 

 

With rare exceptions (e.g., Annis 2005), larvae are difficult to locate and track in open 

marine systems. Scientists often rely upon multigenerational genetic comparisons of 

realized species dispersal reflected in adult populations. Classically, dispersal has been 

described in two ways—via the island model of discrete populations contributing to a 

mixed gene pool that is redistributed to those populations irrespective of their spatial 

arrangement (Wright 1931), or by the stepping-stone model, in which migration is more 

likely to occur between neighboring populations along a linear path (Kimura & Weiss 

1964, Wright 1940). These approaches overlook the actual mechanisms of dispersal, 

focusing on patterns that resulted from many generations of genetic exchange. 

 

High-resolution molecular markers (e.g., microsatellites) have been more recently 

employed to identify important links among adults, juveniles, and larvae of marine 

populations and to ascertain the genetic influence of each cohort on the population at 

large (Morgan & Rogers 2001). As an established cohort ages, mortality and selection 

can have a cumulative effect and significantly shrink genetic effective population sizes of 

recent colonists (Cassista & Hart 2007). Age classes may become differentiated from 

each other (Planes & Lenfant 2002). Genetic variation in larval cohorts can be then used 
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to investigate the genetic mixture observed in adult populations (Weinmayr et al. 2000, 

Gilg & Hilbish 2003). Not all individuals in a population may contribute uniformly to the 

next generation and not all local populations exchange individuals on contemporary 

timescales (Jehle et al. 2005). As a result, integrated adult-colonist genetic studies have 

the power to provide a more mechanistic understanding and to consider the effects of 

larval retention, demographic bottlenecks, and chaotic genetic patchiness (e.g., 

Hedgecock et al. 2007). The challenge is to implement population genetic comparisons 

within rather than across generations (Levin 2006). 

 

3.1.2 Proposed genetic barriers structuring eastern Pacific 
hydrothermal vent populations 

Deep-sea hydrothermal vents provide an ideal setting at which to examine larval dispersal 

and retention. Vents occur primarily along mid-ocean ridge spreading centers, giving 

them a roughly linear distribution. Biological processes at vents are intrinsically linked to 

the spreading systems on which they are found, including ties to the tectonic and 

magmatic instability of active spreading centers, variable hydrothermal fluid flux and 

composition, and strong temperature and chemical gradients. The chemosynthetic 

communities hosted at sites on fast-spreading ridges are particularly subject to frequent 

disturbance and local extinction (Haymon et al. 1993, Shank et al. 1998, Shank et al. 

2003). Tectonic and volcanic events not only disrupt conduits for hydrothermal fluids but 

may also pave over existing vents and their associated fauna. Without reinvigoration, 

mineralization of particular vents will change their chemical composition and eventually 

block fluid flow completely. The cessation of flow and the chemical depletion of 

hydrogen sulfide have both been implicated in vent community death (Shank et al. 1998). 

Moreover, the global mid-ocean ridge system is ridden with faults and fractures, breaking 

up ridge chains into segments and isolating venting habitats by 10s to 100s of km. 

Because of these environmental features, vent-endemic fauna must be able to colonize 

distant habitat in order to persist as coherent species. 
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Processes controlling dispersal and colonization at vents have been inferred primarily 

from patterns of species distribution. Early research turned from larval shell proxies 

(summarized in Lutz et al. 1986) to genetic tools, typically generalizing gene flow as 

being high along mid-ocean ridge systems. Given the topographically influenced 

hydrodynamic mechanisms inferred for the ridge axis, larval retention may well be 

promoted at vents; this remains a fertile area for research (Ridge2000 2008 Program 

Review). Judging from recent and historical genetic studies (including France et al. 1992, 

Jollivet et al. 1995, Craddock et al. 1997, Won et al. 2003, Matabos et al. 2008), five 

bathymetric or hydrographic features (discussed below) are potentially important to vent 

population genetic structure in the eastern Pacific (Hurtado et al. 2004). In particular, the 

East Pacific Rise (EPR), a seafloor mountain chain stretching north to south along the 

divergent tectonic boundary of the Pacific plate with the Cocos and Nazca plates, is 

broken up into over a dozen segments by ridge offsets. Extending perpendicular to the 

EPR, the east-west Galápagos Rift (GAR) marks the spreading region between the Nazca 

and Cocoas plates; the region in which these two plates meet the Pacific plate is referred 

as the Galápagos Triple Junction. The Easter Microplate interrupts the EPR at its 

southern end, south of which the Pacific-Antarctic Ridge begins. 

 

1) Flanked between 18˚and 20˚N, the Rivera Fracture Zone (RFZ) is the longest 

transform fault on the EPR. An east-west ridge offset 240 km long, the RFZ lacks 

hydrothermal venting and is thus a major discontinuity to the EPR ridge system. 

Species with short larval lives and dependent upon intermediate habitat may not 

be able to cross by this feature. A strong westward current runs through the RFZ 

(Reid 1997), capable of transporting pelagic larvae from southern vents along the 

ridge to those north of the fracture. However, this current could also prevent 

northern originating larvae from dispersing to vents to the southeast. 

 

2) The Galápagos Triple Junction occurs at the intersection two mid-ocean ridges 

(EPR and GAR), bounded by three tectonic plates: the Pacific Plate to the west, 
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the Cocos Plate to the northeast, and the Nazca Plate to the southeast. Hess Deep 

extends as a 5.4 km deep, 25 km long, 15 km wide depression at the propagating 

tip of the GAR (Searle & Francheteau 1986, Lonsdale 1988) and may trap or 

impede larvae from transport between the EPR and GAR. 

 

3) Aside from Hess Deep, the 5˚N region of the East Pacific Rise is associated with 

oceanic gyres and deep eastward currents from the passage of an equatorial 

countercurrent (Reid 1997). Surface gyres spin north and south of the triple 

junction, potentially entraining buoyant larvae and advecting them away from the 

ridge crest. However, eastward currents could facilitate transport from the EPR to 

the GAR system or deter passage between the northern and southern EPR. 

 

4) The region from 17˚ to 23˚S along the Southern East Pacific Rise (SEPR) is 

marked by an ultra-fast spreading rate (Sinton et al. 2002). Habitat turnover may 

be especially great in this region due to heightened seismic and volcanic activity, 

increasing the occurrence of local extinctions and genetic bottlenecks. The SEPR 

is also intersected by cross-axis currents at 15˚S. Together, high turnover and a 

boundary current could interrupt along-axis gene flow from populations north and 

south of these features. 

 

5) The Easter Microplate between 23˚ and 27˚S on the EPR is flanked by transform 

faults on the north and south and seamount chains on the east and west (Searle et 

al. 1989). Cross-axis currents are entrained across the plate (Fujio & Imasato 

1991), which may create a barrier across which planktonic larvae are limited or 

unable to navigate. This region is also coincident with a biogeographic boundary 

defined by the Antarctic Circumpolar Current as recent as 20 Mya (Mironov et al. 

1998, Vinogradova 1979) and therefore may represent historical species isolation. 
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3.1.3 Observed genetic patterns across two ridge features 

With concentrated sampling efforts in the northern EPR and GAR, this study is well 

poised to explore the first two postulated barriers in the context of recent colonist arrival 

and resident populations. Two species that occur on either side of the RFZ, the tubeworm 

Oasisia alvinae and amphipod Ventiella sulfuris, have also been demonstrated to exhibit 

restricted gene flow across this region (France et al. 1992). Species diversification across 

the Rivera Fracture Zone may also be present in several limpets, including lepetodrilids 

(Lepetodrilus and Gorgoleptis McLean 1988, Neolepetopsis McLean 1990) and 

peltospirids (McLean 1989; Warén & Bouchet 1989, 1993, 2001). The RFZ marks the 

northern extent for Tevnia jerichonana tubeworms (Black et al. 1998), Bathymodiolus 

thermophilus mussels (Grassle 1985, Craddock et al. 1995, Van Dover 2000, Won et al. 

2003), and Branchipolynoe symmytilida scaleworms (Hurtado et al. 2004). While 

collections are limited, various molluscs have also not been reported north of this major 

ridge discontinuity (Desbruyères et al. 2006), including the coiled snail Bathymargarites 

symplector (Warén & Bouchet 1989), limpets Lepetodrilus pustulosus (Craddock et al. 

1997), several neomphalids (Hickman 1984, Warén & Bouchet 1993), and predatory 

snail Phymorhynchus major (Warén & Bouchet 2001), as well as the scallop Bathypecten 

vulcani (Schein-Fatton 1985). 

 

The Galápagos Rift Triple Junction and Hess Deep are associated with limited dispersal 

between the GAR and EPR not only in B. symmytilida, and potentially B. thermophilus 

(Grassle 1985, though not according to Craddock et al. 1995 and Won et al. 2003), but 

also in Calyptogena magnifica (Hurtado et al. 2003), V. sulfuris (France et al. 1992), and 

Paralvinella grasslei (Jollivet et al. 1995). Alvinella pompejana, T. jerichonana, and two 

species of bythograeid crabs are not found on the GAR (Guinot & Hurtado 2003). A third 

bythograeid species as well as many copepods are endemic to the GAR (Guinot & 

Hurtado 2003, Huys & Conroy-Dalton 1997, Conroy-Dalton & Huys 1999, Ivanenko & 

Ferrari 2003, Desbruyères et al. 2006). 
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3.1.4 Biological model, Riftia pachyptila 

To examine the role of physical oceanographic barriers to the dispersal of vent organisms 

along the northern EPR and GAR, I turned my attention to the well studied siboglinid 

tubeworm Riftia pachyptila Jones, 1980 (a monospecific genus hereafter referred to as 

Riftia), a dominant macrofaunal component of deep-sea hydrothermal vent communities 

in the eastern Pacific Ocean. This species has separate sexes (Jones 1980), with roughly 

equal ratio of males to females (Thiébaut et al. 2002), and is highly fecund (Cary et al. 

1989); up to 700,000 mature eggs have been observed in Riftia’s ovisac (Young 2003). 

Eggs are small, yolky, lipid-rich (Cary et al. 1989), and near-neutrally buoyant on the 

seafloor (Marsh et al. 2001). Sperm released into the water column are then stored in 

ovarian spermatheca, and imperfect (< 100%) fertilization occurs internally prior to 

oocyte release (Hilário et al. 2005). Riftia embryos develop at depth (Marsh et al. 2001). 

 

This tubeworm species possesses a free-swimming, non-feeding (lecithotrophic) 

trochophore larvae believed to facilitate limited transport between disjunct areas of 

suitable habitat (Jones & Gardiner 1989, Tyler & Young 1999, Marsh et al. 2001). Both 

along-axis currents and entrainment into the buoyant hydrothermal plume (Kim & 

Mullineaux 1998) may disperse Riftia larvae during its larval lifespan of about 38 days 

(Marsh et al. 2001); this dispersive phase includes 3 weeks of embryonic development 

and 2 weeks of ciliary movement before settlement and symbiont acquisition (Southward 

1988, Nussbaumer et al. 2006). Natural and experimental colonization observations have 

been unable to determine the biotic or abiotic cue for Riftia settlement (Shank et al. 1998, 

Hunt et al. 2004, Mullineaux et al. 2000). As colonization occurs within a year or two of 

newly available habitat, it is considered likely that a pool of larvae is maintained in the 

water column above vents (Shank et al. 1998, Govenar et al. 2004). Recruitment lacks 

periodicity and is discontinuous, but settlement events can be frequent (e.g., 8 to 20 d) 

(Thiébaut et al. 2002). Once established, Riftia grows quickly and out-competes or over-

grows the smaller tubeworm species, Tevnia jerichonana, first to colonize new vents 

(Lutz et al. 1994, Thiébaut et al. 2002, Shank et al. 1998). 
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As measured by traditional genetic markers (allozymes, mtDNA), Riftia has been found 

to lack population genetic structure along much of its 7000 km range, with the exception 

of subdivision across the Easter Microplate in the southern Pacific (Bucklin 1988, Black 

et al. 1994, Hurtado et al. 2004). This pattern is similar to that found in bathymodiolid 

mussels across the same region (Won et al. 2003). North of this plate, dispersal appears to 

be unimpeded. Riftia’s low mitochondrial DNA variability suggests the influence of 

metapopulation processes: a strong bottleneck or selective sweep, likely maintaining this 

species out of mutation-drift equilibrium as a result of continuous population reductions 

and expansions. However, Hurtado and colleagues (2004) recommended that further 

assessment be conducted to determine the extent such phylogeographic patterns are 

reflected genome-wide. A recent pilot study explored the genetic diversity of Riftia using 

amplified fragment length polymorphisms (AFLPs) at a range of spatial scales and found 

individuals clustered by sampling location (Shank & Halanych 2007), prompting the 

development of highly polymorphic microsatellite loci (Fusaro et al. 2008), also useful in 

resolving genetic patchiness in siboglinids of other habitats (McMullin 2003). 

 

In addition to genetic inferences of population structure, scientists have recently modeled 

oceanographic current interactions with the neutrally buoyant hydrothermal plume in 

order to understand how discrete populations may exchange individuals (Marsh et al. 

2001, Won et al. 2003, Young et al. 2008). Coupling Riftia metabolic larval lifespan 

estimates of about 38 days with in situ measurements of current flow at two regions on 

the northern East Pacific Rise predicts maximum potential dispersal of 100 to 200 km 

without larvae being lost off the ridge axis (Marsh et al. 2001). However, given frequent 

flow reversals, it is much more likely for larvae to be retained within a few tens of 

kilometers of their source population (Marsh et al. 2001). Local retention of Riftia larvae 

would limit gene flow among distant locations, but metapopulation processes may serve 

to maintain apparent genetic homogeneity. The discrepancies in population genetic 

patterns, larval life history, and modeled dispersal potentials remain to be resolved. 
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3.1.5 Objectives 

Limited transport potential, metapopulation processes, and contrasting patterns of 

juvenile and adult population structure in other systems have led to the present 

examination of new microsatellite DNA evidence for local retention in Riftia. To capture 

the consequences of variable reproductive success and settlement, this research extends 

genetic comparisons of adults to earlier stages by including collections of recent colonists 

and resident adults (as in Hedgecock et al. 2007). The specific objectives of this study are 

to: 1) evaluate the consistency of proposed larval barriers across the Rivera Fracture Zone 

and Galápagos Triple Junction with fine scale genetic markers, 2) analyze variation 

between discrete cohorts within a site to consider intergenerational population genetic 

structure at vents, and 3) examine processes of recruitment to provide insights into 

population homogeneity observed with traditional markers. 

 

3.2 Materials and methods 

3.2.1 Sample collection 

Riftia individuals were collected using the submersible DSV Alvin operating from the R/V 

Atlantis on the East Pacific Rise (EPR) and Galápagos Rift (GAR) (Figure 3.1). Attempts 

were made to sample sites within the same year (2002) to avoid confounding results that 

can arise from temporal genetic variance (Gilg & Hilbish 2003, Pedersen et al. 2000). 

After preliminary screening of sites through time revealed stable patterns of population 

structure at a single site through time (see Chapter 4 for details), the decision was made 

to include a third EPR site visited in 2003 and a second GAR site sampled in 2005 in 

order to increase sample number and provide additional power to hierarchical AMOVA 

groups. Within each site, specimens were collected within several days of each other. 
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Figure 3.1 Locations of 

sampling efforts on the 

East Pacific Rise (1: 21˚N, 

2: 13˚N, 3: 9˚N) and on the 

Galápagos Rift (4: 

Rosebud, 5: Garden of 

Eden). 

 

 

 

 

 

 

 

 

 

 

Tubeworms from specific assemblages within sites along these mid-ocean ridges were 

placed in sealed, insulated boxes until Alvin recovery. Within hours, individual specimens 

were removed from their chitinous tubes and measured for total body length (tip of plume 

to tip of opisthosome) to the nearest 0.5 cm or estimated when the body was severed 

(e.g., > 250 mm, > 500 mm,  < 5 mm, < 20 mm). Worms were categorized and sorted 

either as “recent colonists” (body length < 30 mm) or as “resident adults” (body length > 

100 mm), ignoring intermediate size classes (with the exception of 13˚N EPR, see 

below). Whole animals or individual tissues were frozen at -80˚C and transported on dry 

ice. Further molecular processing was conducted in a shore-based laboratory at Woods 

Hole Oceanographic Institution. 
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Recent colonists were inferred to be less than one year old, while resident adults likely 

spanned many years of recruitment (as in Grassle 1985). This body length binning 

scheme was selected to ensure the sampling of discrete recruitment events, maximizing 

differences in age between the two “cohorts” and avoiding “short, fat” morphologies 

whose relative age would be difficult to assign. In addition to providing a more holistic 

sample of populations, the inclusion of different size classes facilitates tests of 

“generational stability” in population genetic structure (as in Purcell et al. 2006). 

Moreover, in a genomic fingerprint cluster analysis, Shank & Halanych (2007) found that 

Riftia individuals smaller than 100 mm grouped in unresolved polytomies by sample site, 

suggesting that these small individuals comprised recent settlement cohorts. 

 

Recent colonists and resident adults were collected in 2002 on expedition AT7-06 from 

the 21˚N EPR Clam Acres site (21˚ 51’N, 109˚ 7’W, 2615 m deep) during Dive 3747 and 

from the 9˚N EPR Tica site (9˚ 50’N, 104˚ 18’W, 2511 m deep) during Dives 3754 and 

3769 (Table 3.1). The 86˚W GAR Rosebud site (0˚ 48’N, 86˚ 14’W, 2451 m deep) was 

also sampled in 2002 on expedition AT7-13 during Dives 3789 and 3790. A fourth 

hydrothermal vent region, 13˚N EPR “sulfide mound” (12˚ 43’N, 103˚ 55’W, 2573 m 

deep), was sampled in late 2003 on expedition AT11-01 during Dive 3957. No 

individuals within the “recent colonist” size class were available from the 13˚N site; 

therefore, to increase sample size, the resident population at 13˚N EPR includes 

individuals > 70 mm. A second 86˚W GAR site 10 km away from Rosebud, the Garden 

of Eden site (0˚48’N, 86˚8’W, 2489 m deep), was visited in 2005 on expedition AT11-27 

during dives 4120 and 4121. 

 

For the purpose of this paper, samples collected at a site are collectively referred to as a 

pooled population, while recent colonists and resident adults from each site are 

designated as a particular subpopulation or cohort.  
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3.2.2 Genetic analyses 

Genomic DNA was isolated from the frozen vestimentum (and from one opisthosome) of 

202 Riftia individuals using either the DNeasy Tissue (Qiagen) extraction kit or the 

Chelex 100 procedure (Roy & Sponer 2002). The polymerase chain reaction (PCR) was 

used to amplify these samples at eight highly polymorphic microsatellite loci (R2D12, 

R2E14, R3B6, R3D3, Rpa10CA02, Rpa10CA06, Rpa10CA07, Rpa10All01) previously 

developed for genotyping (Fusaro et al. 2008). Allele fragment length was analyzed on an 

ABI 3730 DNA Analyzer using the GeneScan 500 LIZ standard and GENEMAPPER 

version 3.7 (Applied Biosystems) with manual electropherogram inspection. PCR 

products from a subset of individuals were replicated between separate runs to monitor 

and control for genotyping inconsistencies. Raw allele sizes were binned into whole 

number allele lengths (number of base pairs) using the automated FLEXIBIN (Amos et al. 

2007) program and manually reviewed for ambiguities. Allele lengths were then 

translated to number of repeats based on sequenced clones from Fusaro et al. (2008). 

 

Input files for analyses were created from a MS Excel spreadsheet in the 3-digit MICRO-

CHECKER version 2.2.3 (van Oosterhout et al. 2004) and 6-digit GENETIX version 4.05.2 

(Belkhir et al. 2004) formats. Data from the latter file-type were reformatted by GENETIX 

to create input files for FSTAT version 2.9.3.2 (Goudet 2001), ARLEQUIN version 3.11 

(Excoffier et al. 2005), and GENEPOP ON THE WEB version 3.4 (Raymond & Rousset 

1995). The GENEPOP file format was implemented in BOTTLENECK version 1.2.02 

(Cornuet & Luikart 1996). The FSTAT file format was used in PCA-GEN version 1.2 

(Goudet 1999). These data were formatted for 2-digit allele length (FSTAT, GENEPOP, 

BOTTLENECK), 3-digit allele length (MICRO-CHECKER, GENETIX), and repeat number 

(ARLEQUIN). The 3-digit allele length data were manually formatted for subsequent 

analyses in STRUCTURE version 2.2 (Pritchard et al. 2000; Falush et al. 2003, 2007). 
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3.2.3 Single locus statistical analyses and conformance to Hardy-
Weinberg equilibrium 

MICRO-CHECKER was used to screen loci in each subpopulation for scoring errors—null 

alleles, large allele dropout, and stuttering—that would result in departure from Hardy-

Weinberg equilibrium expectations (run at the default 95% CI, 1000 permutations). The 

probabilities for observed homozygote size-class frequencies were calculated by a 

cumulative binomial distribution (Weir 1996) and by ranking the observed frequency in a 

distribution of randomized genotypes (van Oosterhout et al. 2004). These P values were 

then combined to identify deviations from Hardy-Weinberg proportions (van Oosterhout 

et al. 2004). Once alleles were established to be reliably scored, the number of alleles, 

allelic richness (normalized to the smallest subpopulation size; El Mousadik & Petit 

1996), allele size range, and size and frequency of the most common allele(s) were 

calculated per subpopulation and across all subpopulations in the programs GENETIX and 

FSTAT.  

 

Nonbiased expected and observed heterozygosity values were determined in ARLEQUIN 

following Nei (1987). Fisher-type exact tests of HWE per locus per cohort, comparing HE 

and HO, were also conducted in ARLEQUIN with a recommended Markov chain of 

2,000,000 steps and 200,000 dememorization steps for reproducibility (L. Excoffier, 

Genetic Software Forum pers. comm.). To assess locus conformance to HWE 

expectations of random mating, FIS-based estimates were calculated in the program 

FSTAT (Weir & Cockerham 1984) using 2000 permutations (recommended value for < 10 

loci = 1000 permutations; however, it took 2000 randomizations to result in little 

variation in significant values among multiple runs). The data were analyzed for linkage 

disequilibrium (Weir 1996) using a probability test on all locus-specific contingency 

tables under the null hypothesis of independence (Cockerham & Weir 1979). Parameter 

values in GENEPOP ON THE WEB consisted of 5000 dememorization steps, 500 batches, and 

2000 iterations per batch—at which level variation in P value magnitude among multiple 

runs did not alter the level of pairwise significance. In order to correct for multiple 
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comparisons, all significance tests were run at a nominal alpha level of 0.05 with 

sequential Bonferroni correction (Rice 1989). 

 

3.2.4 Estimates of population and cohort structure 

In order to detect heterogeneity among and between pooled populations and cohorts, 

exact tests of differentiation in allele (genic) and genotype (genotypic) distributions 

between sample pairs were conducted in GENEPOP ON THE WEB using 5000 

dememorization steps, 500 batches, and 2000 iterations per batch, as described for tests 

of linkage disequilibrium. A principal components analysis (PCA) based on FST 

comparisons was used to identify clusters of subpopulations from genotypic data using 

PCA-GEN. Significance of each axis in the PCA was determined using 10,000 

randomizations. 

 

Overall population structure was estimated using hierarchical analysis of molecular 

variance (AMOVA, ARLEQUIN) with 20,000 permutations. This allowed quantification of 

the magnitude of genetic variation (by partitioning total variance into covariance 

components) among geographic regions (ΦCT) relative to other sources of genetic 

variation among populations (ΦSC), within cohorts (ΦIS), and within individuals (ΦIT). 

Significant differences from zero in Wright’s fixation indices at these four levels were 

tested for departure from HWE by comparing observed values to a null distribution 

estimated by randomly permuting the populations, individuals, or haplotypes among 

groups of populations defined by ridge system (EPR or GAR), cohorts, or individuals, 

respectively. 

 

All samples were further explored for underlying genetic structure among one another 

and between ridge systems using an admixture model of ancestry and correlated allele 

frequencies in STRUCTURE (burnin of 20000, followed by 20000 MCMC replicates; tested 

for K=1 through K=5). This algorithm assigns individuals to groups assuming that loci 

62



 

are at HWE within each group and estimates the population of origin for each individual 

from the observed genotypes (Pritchard et al. 2000). The calculated membership 

coefficient (Q) for each individual displays its estimated affinity to a given group. The 

posterior probability of the data (PPD) was plotted as in Garnier et al. (2004) to 

determine the best number of population groups (K) given the results. In order to 

determine the origin of overall population structure, among-colonist and among-resident 

subpopulation structure was explored using the same parameters. 

 

Estimates of Weir & Cockerham’s (1984) allele frequency-based θWC (estimates Wright’s 

1951 FST), assuming the infinite alleles model of mutation, and Slatkin’s (1995) allele 

repeat-based RST, assuming the stepwise model of microsatellite mutation, were 

calculated between population and cohort pairs in ARLEQUIN. Significance was tested 

using 20,000 permutations—pairwise significance levels were consistent among runs at 

this number of permutations—with a sequential Bonferroni correction for multiple tests. 

FST was also calculated and tested for significance per locus over all populations in 

FSTAT. These FST-based comparisons considered genetic variability within and between 

populations, while the previous tests of genic and genotypic differentiation were based on 

contingency tables of the distribution of alleles or genotypes among populations. 

 

Genetic isolation by geographical distance was evaluated for significance using the 

Mantel test implemented in GENEPOP ON THE WEB (500,000 permutations). As 

recommended when the distance between populations is greater than habitat width, 

Slatkin’s (1995) linearized FST, FST/(1-FST) or RST/(1-RST), was plotted against 

geographical distance to determine the significance of the relationship (Rousset 1997). 

The linear distance between sites was calculated as the shortest route between given 

coordinates of latitude and longitude using a great circle calculator with the WGS84 

model (available at http://williams.best.vwh.net/gccalc.htm). 
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3.2.5 Effective migration, population bottlenecks, and colonist 
assignment 

The effective number of migrants among populations or cohorts (Nm) was estimated 

using the rare alleles method implemented in GENEPOP ON THE WEB (Slatkin 1985, Barton 

& Slatkin 1986). This overall estimate of gene flow is based on the average frequency of 

alleles found in only one population. 

Populations and cohorts were tested for the presence of a recent genetic bottleneck using 

the program BOTTLENECK with the two-phased mutation model parameters of 30% 

variance and 70% SMM (Di Rienzo et al. 1994), 10000 iterations, and a Wilcoxon sign-

test, recommended for suites of more than 4 loci and any sample size (n=15-40 has most 

power). 

 

The program WHICHRUN version 4.1 (Banks & Eichert 2000) was used to assign colonists 

to populations of resident adults. Because the both colonists and residents were sampled 

at three different locations in 2002, 78 colonists from 9˚N EPR, 21˚N EPR, and 86˚W 

GAR were chosen for assignment to one of those three resident adult populations. The 

base 10 logarithm of odds (LOD score)—the log10 of the ratio of the likelihood of 

assignment to the most likely population to the second most likely population—was used 

to discriminate among assigned and unassigned individuals. 

 

3.3 Results 

3.3.1 Genetic variability 

Two-hundred and two Riftia individuals were analyzed from five populations (nine 

subpopulations) at eight polymorphic microsatellite loci. Within subpopulations, the 

number of individuals genotyped at each locus ranged from 10 to 46, due to sampling 

effort and specimen availability at specific vent sites. All except three individuals were 

genotyped at all loci. A subset of individuals was replicated per plate and between runs to 

promote consistent allele scoring. Among subpopulations, the number of alleles per locus 
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varied from 7 (Rpa10CA06) to 28 (Rpa10CA02), with a mean allele count of 16.25; over 

all populations, the total number of alleles per locus showed high variability, ranging 

from 18 to 38 (same loci respectively). Allelic richness normalized to a minimum of 10 

individuals per sample ranged from 6.8 (Rpa10CA06, 86WMQ05j) to 16.7 (R3B6, 

13NSM03) per locus and population (mean = 12). In addition, allelic richness on the EPR 

was significantly greater than that on the GAR in an unpaired t-test (P = 0.0023), 

particularly in locus Rpa10CA06. Allele lengths ranged from 146 bp (Rpa10CA02) to 

277 bp (R2D12). Most common alleles and their frequencies within subpopulations are 

provided in Table 3.2. 

 

3.3.2 Hardy-Weinberg equilibrium 

Non-biased expected heterozygosities (gene diversity) were also high and ranged from 

0.7895 (Rpa10CA06, 86WRb02a) to 0.9804 (R3B6, 13NSM03) (mean = 0.9289) across 

subpopulations. Observed heterozygosity ranged from 0.5714 (Rpa10CA06, 21NCA02a) 

to 1.000 (numerous). MICRO-CHECKER suggested the potential excess of homozygotes due 

to null alleles at three loci (R3D3, Rpa10CA06, Rpa10CA07) in some subpopulations 

(seven of 72 tests), but significant departure from HWE in single locus exact tests in 

ARLEQUIN only supported three heterozygote-deficient subpopulations at a Bonferroni- 

corrected nominal significance level of 0.05 (Table 3.2). In FSTAT, all except one 

(Rpa10CA06, 21NCA02j) single locus FIS-based exact test with Bonferroni correction 

were consistent with Hardy-Weinberg equilibrium expectations in the absence of 

inbreeding (Table 3.3). FIS values calculated over all loci were significantly different 

from Hardy-Weinberg expectations for 21˚N EPR colonists and resident adults and for 

9˚N EPR resident adults (FIS = 0.068, 0.094, and 0.040, respectively). Resident adults at 

13˚N EPR and Garden of Eden GAR also could be suspected of inbreeding, at P = 

0.0069. 

 

All pairs of loci were found to be in genotypic equilibrium. 
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Table 3.3 FIS per locus and subpopulation (FSTAT). P values in parentheses (1440 randomizations). 
Significant values are italicized and bolded values are significant with sequential Bonferroni-correction. 
           

  Subpopulation                 
Locus 21N02j 21N02a 13N03a 9N02j 9N02a 86W02j 86W02a 86W05j 86W05a All 

D12 0.073 0.090 0.012 -0.032 0.002 -0.026 -0.091 0.061 -0.010 0.003 

  (0.2028) (0.2111) (0.5785) (1.0000) (0.5611) (0.8236) (1.0000) (0.2375) (0.7028)  

                     

E14 -0.050 0.156 -0.010 0.003 -0.027 0.002 0.106 -0.009 -0.007 0.004 

  (1.0000) (0.0764) (0.7083) (0.6472) (0.8729) (0.5813) (0.2951) (0.7201) (0.6722)  

                     

R3B6 0.072 0.164 0.103 0.025 0.054 0.017 0.036 -0.014 0.055 0.050 

  (0.2090) (0.0424) (0.0361) (0.4896) (0.1083) (0.4118) (0.4938) (0.7396) (0.3021)  

                     

R3D3 0.118 0.101 0.080 0.013 0.101 0.093 -0.139 0.000 0.112 0.073 

  (0.0958) (0.1514) (0.1618) (0.5813) (0.0090) (0.0250) (1.0000) (0.6306) (0.0819)  

                     

CA02 0.028 0.032 0.023 0.039 0.074 0.001 -0.029 -0.064 0.102 0.028 

  (0.4569) (0.4688) (0.5049) (0.3632) (0.0521) (0.6083) (1.0000) (1.0000) (0.0813)  

                     

CA06 0.304 0.383 0.184 0.042 0.140 0.044 0.119 -0.065 0.119 0.127 

  (0.0007) (0.0014) (0.0299) (0.4521) (0.0132) (0.2799) (0.3500) (0.8188) (0.1694)  

                     

CA07 -0.014 -0.071 0.191 -0.045 -0.009 0.013 -0.065 -0.008 -0.027 0.001 

  (0.7236) (1.0000) (0.0104) (1.0000) (0.7069) (0.4528) (1.0000) (0.6958) (0.7993)  

                     

All01 0.016 -0.103 -0.108 -0.085 -0.016 0.013 0.030 -0.019 0.156 -0.005 
  (0.5528) (1.0000) (1.0000) (1.0000) (0.7243) (0.4451) (0.5069) (0.7340) (0.0278)  

                     

All loci 0.068* 0.094* 0.060 -0.005 0.040 0.019 -0.006 -0.014 0.061 0.035 

  (0.0035) (0.0021) (0.0069) (0.6549) (0.0021) (0.1174) (0.6111) (0.7299) (0.0069)   

           

*These populations’ over all loci FIS are significant in ARLEQUIN with 20022 permutations and Bonferroni correction 
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3.3.3 Allelic and genotypic variation 

Exact tests of genic and genotypic variation in pairwise population comparison 

(GENEPOP) detected limited genetic exchange between Galápagos Rift and East Pacific 

Rise subpopulations, with 16 of 36 tests of genic and genotypic differentiation 

significant, respectively (not shown). Loci R2D12, R2E14, R3D3, Rpa10CA06, and 

Rpa10CA07 contributed with Bonferroni-corrected significance to both types of 

differentiation over all subpopulations when colonists and residents were considered 

separately, while almost all loci contributed to differentiation when samples were pooled 

by location (Table 3.4a-b). The Rpa10CA06 locus was most likely to have null alleles in 

MICRO-CHECKER, was least variable and least heterozygous, had the strongest per locus 

FST over all populations, and resulted in the highest FIS value. When this anomalous locus 

was excluded, pairwise comparisons with the 86˚W GAR Rosebud recent colonist 

subpopulation emerged as having the greatest number of significant genic and genotypic 

differentiation tests. Overall allelic and genotypic tests of population differentiation were 

significant both with and without the Rpa10CA06 locus. Using all loci but with Rosebud 

colonist subpopulation excluded, the exact test for overall population differentiation was 

still significant at P < 0.001, although Bonferroni-corrected significance at the 5% 

nominal level across loci was lost for R2D12, R2E14, and Rpa10CA07. Among the 

pooled EPR populations alone (i.e. GAR Rosebud and Garden of Eden populations 

excluded), there is significant overall genic (but not genotypic) evidence of population 

differentiation; however, this stems primarily from the Rpa10CA07 locus and disappears 

when colonists and residents were considered separately. Galápagos subpopulations do 

not significantly differ from each other in genic and genotypic comparisons (despite 

locus-specific differentiation in six loci). 
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Table 3.4 Differentiation over all populations (GENEPOP ON THE 
WEB: 5000 dememorization steps, 500 batches, 2000 iterations 
per batch). Bold P values are significant with sequential 
Bonferroni correction for 8 tests at a level of 5%. 
      
a. Pooled populations 
  Genic (allelic)  Genotypic 
Locus P value S.E.  P value S.E. 
R2D12 0.00131 0.00045  0.0005 0.0003 
R2E14 < 0.00001 0.00000  < 0.0001 0.0000 
R3B6 0.00068 0.00027  0.0127 0.0022 
R3D3 < 0.00001 0.00000  0.0001 0.0001 
CA02 0.00132 0.00054  0.0047 0.0012 
CA06 < 0.00001 0.00000  < 0.0001 0.0000 
CA07 0.00001 0.00001  < 0.0001 0.0000 
All01 0.00471 0.00075  0.0019 0.0006 
All loci highly sig    < 0.0000   
      
b. Separate colonists and residents cohorts  
  Genic (allelic)  Genotypic 
Locus P value S.E.  P value S.E. 
R2D12 0.00358 0.00084  0.0026 0.0016 
R2E14 0.00059 0.00034  0.0009 0.0006 
R3B6 0.06931 0.00601  0.2912 0.0147 
R3D3 0.00042 0.00027  0.0020 0.0010 
CA02 0.02229 0.00284  0.0481 0.0062 
CA06 < 0.00001 0.00000  < 0.0001 0.0000 
CA07 0.00163 0.00083  0.0022 0.0010 
All01 0.07436 0.00563  0.0304 0.0052 
All loci highly sig    < 0.0001   
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3.3.4 Overall population structure 

PCA of pairwise FST values was used to determine how colonist and resident 

subpopulations clustered with one another (Figure 3.2). The first two axes of the PCA 

explained 42% and 11% of the variation in FST, respectively, differentiating the EPR 

subpopulations from the GAR subpopulations. Variation along the first axis of the PCA 

(PC1) was significant (P = 0.0001), but not along the remaining 7 axes (P > 0.05). 

Visually apparent were the close clustering of colonists with residents from the same 

sampling location (except at 21˚N EPR), and the more distant arrangement of 13˚N from 

21˚N EPR subpopulations. 

 

FST-based AMOVA tests in ARLEQUIN revealed significant genetic variation in pooled 

populations at the within populations and within individuals levels (ΦIS = 3.2%, ΦIT = 

5.0%; Table 3.5). When colonists and residents were treated as separate cohorts, 

significant covariance components were detected from comparisons among 

subpopulations, within cohorts, and within individuals in the FST-based tests (ΦCT = 

1.4%, ΦIS = 3.2%, ΦIT = 4.3%). RST-based AMOVA tests also supported significant 

genetic structure at the among subpopulations level (ΦCT = 2.7%). The majority of 

microsatellite allele frequency variation was found within populations or cohorts and 

within individuals (>95%). 
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Figure 3.2 Principal components analysis of genetic differentiation among nine Riftia 
subpopulations, showing significant isolation between the Galápagos Rift and East 
Pacific Rise (encircled when FST comparisons were not significantly different). PC1 and 
PC2 explain 42% and 11% of the genetic variation among samples, respectively. 
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Table 3.5 Analysis of molecular variance testing groupings: EPR (21˚N, 
13˚N, 9˚N) and GAR (86˚W Rosebud, Garden of Eden). Bold values are 
significant at 5% nominal alpha level (ARLEQUIN: 20022 permutations) 
     

Source of Variation df Variance % F 
Among regions 1 0.06901 1.83 FCT = 0.01830 

     
Among populations 3 0.00081 0.02 FSC = 0.00022 

within regions     
     

Within populations 197 0.11720 3.11 FIS = 0.03166 
     

Within individuals 202 3.58416 95.04 FIT = 0.04959 
     

Total 403 3.77117 - - 
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Figure 3.3 (opposing page) Results from STRUCTURE with K = 2 populations (20,000 
burnin, 20,000 MCMC reps, admixture model, correlated allele frequencies, no 
probability calculation for K). Each individual, scored at 8 microsatellite loci, is 
represented by a vertical line broken into two segments representing the estimated 
proportion of the individual's genome originating from each inferred cluster. Two clusters 
were clearly evidenced among the East Pacific Rise and Galápagos pooled populations 
and resident cohorts, but not among the colonist cohorts. Top = all individuals, middle = 
residents only, bottom = colonists only. 
 

 

 

 

 

 

When treated as components of two groups, STRUCTURE showed that EPR and GAR 

individuals were well defined by ridge (Figure 3.3). However, STRUCTURE was unable to 

resolve samples into five distinct groups according to specific sampling locations (21˚N, 

13˚N, 9˚N EPR; Rosebud, Garden of Eden 86˚W GAR). Plotting the posterior 

probabilities of the data for K = 1 through K = 5 confirmed that the maximum ln(PPD) 

was reached when individuals were constrained to two populations. When colonists and 

residents were analyzed separately, the colonists displayed no genetic structure between 

ridges or among populations, while the residents were partitioned into two distinct groups 

as in the pooled population. A second optimum was occasionally found in this analysis, 

but the two-group optimum had a better (less negative) likelihood score. Removal of the 

Rpa10CA06 locus resulted in a similar pattern, though not as visually striking as with all 

eight loci. Analysis using one locus at a time revealed variation in only the Rpa10CA06 

locus but no clear separation into two groups. 

76



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EPR GAR Q
 (m

em
be

rs
hi

p 
co

ef
fic

ie
nt

) 

Individuals 

Q
 (m

em
be

rs
hi

p 
co

ef
fic

ie
nt

) 

Individuals 
EPR GAR 

Q
 (m

em
be

rs
hi

p 
co

ef
fic

ie
nt

) 

EPR GAR 
Individuals 

77



 

3.3.5 Pairwise genetic differentiation 

Per locus FST values over all populations were greatest at the Rpa10CA06 locus (4%), 

with an over all loci and all populations FST of 1% (no significance test available; Table 

3.6). Pairwise FST and RST estimates in ARLEQUIN were as great as 3% and 8%, 

respectively. Tests of multi-locus estimates of FST (θˆ) found significant differences, with 

sequential Bonferroni correction, between the pooled Galápagos Rift and East Pacific 

Rise colonist and resident subpopulations (Table 3.7a). Multi-locus estimates of pairwise 

population RST (ρˆ) trended in the same direction, with significant differences found 

between the GAR and EPR populations. 

 

When recent colonists and resident adults at a given location were treated as separate 

cohorts, the basic pattern of small but significant genetic structure between the two ridge 

systems as measured by FST and RST is upheld without correction for multiple 

comparisons (Table 3.7b). When a sequential Bonferroni correction is applied to the 

nominal alpha value of 0.05, the Rosebud GAR resident adult subpopulation differs 

significantly in FST from the 21˚N and 9˚N EPR resident adult subpopulations. In 

contrast, the Garden of Eden GAR resident and 21˚N EPR colonist cohorts were not 

different when subpopulations were considered. Colonists did not differ from residents 

when comparisons were restricted to single locations and represented the smallest degree 

of pairwise FST estimates (range = -0.00727 to 0.00134, mean = -0.00258). Within a ridge 

system, colonists were more similar to one another (mean colonist FST = -0.00172) than 

residents were to other residents (mean resident FST = 0.00104). Using a nonparametric 

van der Waerden (1956) test to compare mean colonist FST values with local (same 

location and next nearest, FST mean = 0.00065) versus more distant (three furthest, FST mean 

= 0.0129) resident source populations, colonists were further evidenced to be most 

similar to nearby residents (Z = 3.2, df = 1, P = 0.0013). 

 

Removing the Rpa10CA06 locus from pairwise FST estimations had no effect on the 

significant pattern of population structure between the EPR and GAR pooled populations
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Table 3.6 FST per locus over all 5 populations (FSTAT). Significant values are 
italicized with bolded values significant at sequential Bonferroni-correction. 
           
R2D12 R2E14 R3B6 R3D3 CA02 CA06 CA07 All01 All loci 
0.003 0.008 0.004 0.010 0.002 0.035 0.009 0.005 0.009 

 

 

 

 

Table 3.7 Genetic differentiation between populations (FST, above diagonal) and 
respective P values (below diagonal). Sequential Bonferroni corrected significant values 
are bolded  (ARLEQUIN, 20022 permutations) 
      

a. Pooled populations 
  21N02 13N03 9N02 86W02 86W05 

21N02 - 0.00476 0.00105 0.01907 0.01832 
13N03 0.15108 - 0.00009 0.01991 0.02047 

9N02 0.36218 0.57868 - 0.01857 0.01890 
86W02 < 0.00001 < 0.00001 < 0.00001 - -0.00044 
86W05 < 0.00001 < 0.00001 < 0.00001 0.62513 - 

 
b. Colonist and resident subpopulations separated 
  21N02j 21N02a 13N03a 9N02j 9N02a 86W02j 86W02a 86W05j 86W05a 
21N02j - 0.00134 0.00389 -0.00310 -0.00098 0.01347 0.01012 0.01545 0.00722 
21N02a 0.59487 - 0.00636 0.00171 0.00440 0.02491 0.02583 0.02926 0.02509 
13N03a 0.30820 0.17780 - -0.00268 0.00028 0.01897 0.01712 0.02182 0.01781 

9N02j 0.84513 0.46696 0.83074 - -0.00277 0.01434 0.01394 0.01606 0.01396 
9N02a 0.75119 0.15892 0.57764 0.88808 - 0.01727 0.02118 0.02104 0.01714 

86W02j 0.00005 < 0.00001 < 0.00001 0.00015 < 0.00001 - -0.00727 -0.00034 -0.00075 
86W02a 0.08990 0.00025 0.00654 0.01044 0.00005 0.97228 - -0.01031 -0.00686 
86W05j 0.00055 < 0.00001 < 0.00001 0.00010 < 0.00001 0.55192 0.96544 - -0.00163 
86W05a 0.08480 < 0.00001 0.00010 0.00190 < 0.00001 0.67857 0.93492 0.70314 - 
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(not shown). However, exclusion of this locus resulted in the loss of significant 

population differentiation between the 21˚N EPR resident cohort and both GAR resident 

cohorts, between the 21˚N EPR and Garden of Eden GAR colonist cohorts, between the 

9˚N EPR colonist cohort and all GAR cohorts, and between the 9˚N EPR and Rosebud 

GAR resident cohorts. 

 

3.3.6 Isolation, migration, and population bottlenecks 

The resident subpopulations exhibited weak isolation-by-distance in FST data as shown in 

the plotted trendline (Figure 3.4), but this trend was not apparent among the pooled 

populations or the colonist subpopulations. Isolation by distance eroded when the 

Galápagos populations were excluded (not shown). When the Rpa10CA06 locus was 

excluded, however, the observed pattern of IBD among residents was upheld. 

 

Estimation of the number of migrants per generation (Nm) using the private allele method 

implemented by GENEPOP ON THE WEB and corrected for sample size suggested moderate 

gene flow of approximately 11 migrants per generation when populations consisted of 

individuals pooled by location. The estimated number of colonist migrants per generation 

was lower (~6) than that of the resident adults (~9); greater estimated migration in the 

adult subpopulation is consistent with what would be expected from combining the 

ecological history of multiple generations and colonizing cohorts. 

 

BOTTLENECK analyses revealed heterozygosity excess across all subpopulations except 

21˚N EPR colonists, suggesting recent demographic bottlenecks. These excesses were 

limited to 5 loci (R2D12, R2E14, Rpa10CA02, Rpa10CA06, Rpa10All01). 

 

3.3.7 Colonist assignment to resident populations 

To explore the possible assignment of colonists to resident adult populations 78 colonists 

from 21˚N EPR (n = 17), 9˚N EPR (n = 15), and 86˚W GAR (n = 46) were used. Two 
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Figure 3.4 Genetic distance of residents (FST/1-FST) plotted against geographic distance 
(km) (GENEPOP ON THE WEB: 500000 permutations; y-intercept = -0.0060993, slope = 
0.00000946, P = 0.03294) 
 

colonists from 21˚N, 0 from 9˚N but 40 from 86˚W were correctly assigned with a 

probability threshold of 1% (i.e, an LOD score ≥ 2) to their resident adult population; 

therefore, despite low genetic differences among locations, 53.8% of colonists could 

rightly be assigned to the resident population at the same location. Individuals with an 

LOD score of less than two were considered “unassigned.” 

 

3.3.8 Summary of results 

In summary, using highly variable loci, I found high heterozygosity within and among 

Riftia populations on the East Pacific Rise and Galápagos Rift. There were more alleles 

represented on the EPR than on the GAR. Few locus-specific homozygous excesses were 
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detected for any subpopulation, but over all loci, inbreeding could be suspected in several 

resident populations. No locus or subpopulation controlled the marked population 

differentiation observed between the EPR and GAR. Allelic distribution is similar among 

GAR populations but not among pooled EPR populations. 

 

When considering all subpopulations included in this study, the EPR and GAR fall as two 

entities, with the signal differentiating the two groups stemming from resident genetic 

structure. There may be stepping stone dispersal further creating weak isolation by 

distance, but the observed trend was not conclusive. Migration is moderate and sufficient 

for gene flow to counter genetic drift at local populations. Recent bottlenecks were 

detected in all but the 21˚N EPR colonist cohort. 

 

Colonists were most similar to residents sampled at the same and next proximate 

location. Within a ridge system, colonists were also more similar to other colonists than 

residents were to other residents. Furthermore, colonists were correctly assigned to their 

co-sampled resident population on the GAR but not at 9˚N EPR. 

 

3.4 Discussion 

3.4.1 High levels of genetic variation 

The level genetic variation observed within and among populations was greater in these 

microsatellite data than previously reported for Riftia (Bucklin 1988, Black et al. 1994, 

Hurtado et al. 2004, Shank & Halanych 2007). Three plausible explanations for this 

genetic diversity can be proposed. First, high genetic variability has been attributed to 

increased fitness for invasive marine species in spatially and temporally heterogeneous 

habitats (e.g., Holland 2001). The same advantage could be conferred upon Riftia’s 

gregarious settlement and overgrowth of other hydrothermal vent species soon after new 

habitat becomes available. Second, while many species experiencing frequent bottlenecks 

exhibit few rare alleles (discussed in Spencer et al. 2000), successful metapopulation 
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properties (recolonization after extinction and habitat creation) have been suggested to 

influence the retention of genetic diversity more than extensive migration (Vrijenhoek et 

al. 1998, Born et al. 2008). In that context, Riftia’s ability to rapidly establish itself as an 

early colonizer and continue to persist at new vents may maintain high genetic diversity. 

Lastly, species occurring at a large percentage of sampled sites, as is Riftia, are also 

predicted to have higher levels of genetic diversity than more rare species (Vrijenhoek 

1997). Although it is not possible to discriminate between them, the genetic diversity 

found in this study is consistent with conditions predicted by all three of these 

hypotheses. 

 

3.4.2 Excess homozygosity in relation to null alleles and Hardy-
Weinberg equilibrium 

It is unlikely that null alleles were present in this data set. Of all the individuals analyzed, 

only three locus-specific genotypes were missing, most likely due to errors in 

electrophoresis. If null alleles were present, one would expect to have a substantial 

proportion of null homozygotes (in the form of unamplified products) at a given locus. 

This not being the case, the potential for population admixture (Wahlund effect) can be 

considered. If deviations from HWE were the result of population substructure or 

inbreeding, heterozygote deficits should be present across all or most loci. However, 

heterozygote deficiency is limited to two of the eight loci considered herein and spread 

between three subpopulations. Elevated FIS values were unlikely the result of initial 

Wahlund effects that may be created by rapid colonization from several divergent source 

populations, as those effects would be eliminated at individual loci after one generation 

of random mating (Vrijenhoek 1997). It is possible that differential selection for 

homozygotes in resident or colonist cohorts could be the cause of heterozygote 

deficiencies (Zouros & Foltz 1984, Raymond et al. 1997). Though not all elevated FIS 

values were statistically significant, four of the five subpopulations with heterozygote 

deficiencies were resident cohorts, potentially suggesting that homozygous residents 

confer elevated fitness over more heterozygous colonists. As neither null alleles nor 
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Wahlund effects alone explain these departures from HWE, it is possible that a 

combination of effects and perhaps selection or nonrandom mating may be the cause 

(Dupont et al. 2007). 

 

3.4.3 Regional population structure 

Multi-locus estimates of FST and RST for population and cohort pairs were small but 

displayed significant structure over broad spatial scales. Low pairwise estimates of 

population differentiation are typical of highly polymorphic markers applied to questions 

of genetic structure in many large marine populations. In fact, estimates of FST in most 

marine invertebrates and fishes fall well below the theoretical maximum of 1 for 

completely genetically isolated populations, owing more to microsatellite allele 

homoplasy than to the level of locus polymorphism (O’Reilly et al. 2004). High rates of 

extinction and colonization at vents have also been predicted to reduce pairwise levels of 

FST by shrinking the overall effective population size (Vrijenhoek 1997). Moreover, if the 

number of Riftia’s reproductively successful individuals was limited, the absolute 

magnitude of genetic differentiation may be low among and between populations as 

observed. Therefore, though maximum differention between populations was on the order 

of a few percent, this could still indicate significant ecological isolation. 

 

The present study provides the first evidence for a dispersal barrier between the EPR and 

GAR Riftia populations. However, the level of individual resolution to distinct EPR 

subpopulations found when Shank & Halanych (2007) employed AFLP fingerprinting 

was not observed. Using multilocus microsatellite markers, gene flow instead appeared to 

be extensive within a ridge system, with non-significant but roughly 1% genetic 

differentiation (patchiness) between 21˚N EPR and more southern EPR populations. 

Gene flow between ridges was less pronounced, with significant differentiation between 

the majority of established resident subpopulations on the East Pacific Rise and 

Galápagos Rift. While the 13˚N EPR and Rosebud GAR residents were not significantly 

different at the nominal level adjusted for multiple comparisons, allele frequencies in 

84



 

these populations indicated some level of differentiation. Vents at 13˚N experienced 

instabilities in fluid flux between 1982 and 1990 (Fustec et al. 1987, Desbruyères 1998) 

and a resurgence of hydrothermal activity in the 1990s (Voight et al. 2004), but it is 

hypothesized that two centuries ago the 13˚N segment was relatively stable. Less 

punctuated disturbance could have prevented the settlement of early colonists like Riftia, 

thus precluding significant gene flow from other areas. The remaining signal may be 

weak because of more recent black smoker turnover less than every 5 or 10 years 

(Desbruyères 1998). 

  

Colonist cohorts were also distinct between ridge systems, as were EPR residents from 

GAR colonists. However, EPR colonists were less distinct from GAR residents (with the 

exception of 9˚N EPR colonists and Garden of Eden GAR residents), potentially 

suggesting unidirectional gene flow in establishing historical populations. The lack of 

significance in some of these tests may be due to loss of power to discriminate among 

small sample sizes (e.g., Rosebud residents) as in O’Reilly et al. (2004; see also Ruzzante 

1998). All the same, small sample sizes and large numbers of alleles do not reduce the 

FST estimates themselves (Ruzzante 1998). Moreover, low FST values do not necessarily 

imply high gene flow, as they may be characteristic of loci with high allele counts or of 

recently founded populations (Ruzzante et al. 2001). 

 

Considering processes in the geological past, the EPR became geographically isolated 

from the Juan de Fuca Ridge (once the mid-Tertiary Pacific-Farallon Ridge) about 35 

Mya, while the GAR began spreading about 20-25 Mya (Hey 1977, Tunnicliffe 1988). 

Greater allelic richness in the EPR populations than in GAR populations coupled with 

significant differentiation between these two regions suggests that there may be relict 

geological isolation between these ridges. Recently, it has been proposed that the NEPR 

is the center of historical vent dispersal (Bachraty et al. 2008). Bachraty and colleagues 

(2008) suggest that species on the fast-spreading EPR in the oldest extant ocean benefit 

from increased dispersal capabilities and higher diversity. 
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However, contemporary population demographics and gene flow may be more relevant. 

Broad spatial homogeneity and significant differentiation at only on the largest 

geographic scale has also been found in surf clams (Cassista & Hart 2007). In that case, 

however, the level of migration between populations needed to homogenize allele 

frequencies between them is much lower than that needed to replenish exploited 

populations by dispersal. Likewise, Riftia populations that experience contraction or local 

extinction may be able to be recolonized by small larval input. Historical population 

expansion can also mask low levels of migration and give an upward bias to gene flow 

estimates. Thus, a lack of regional population genetic differentiation does not necessarily 

mean that the number of migrants is high. 

 

Galápagos Rift hydrothermal vent sites may occasionally be colonized by long-distance 

larvae originating from the East Pacific Rise, but these populations are primarily self-

seeding. The Rosebud GAR site was first observed as a nascent Riftia population in 2002, 

when the nearby Rose Garden site could not be located; it is presumed that the 2000 

eruptive event that created Rosebud also wiped out the older Rose Garden community 

(Shank et al. 2003). A young population such as Rosebud may be founded by a stochastic 

dispersal event from an EPR-like population—and perhaps one that was not sampled or 

was otherwise undetected—leaving that signal in the original residents; recent colonists 

will more likely arrive from nearby GAR populations, with a genetic signal distinct from 

the EPR. Vents on these two ridge systems provide a similar chemical milieu, though 

focused black smoker flow is not present in the 86˚W GAR region. As such, the cue for 

larval settlement may be weaker and more localized at the GAR than at the EPR, favoring 

recruits from nearby (undetected) vents. 

 

Meanwhile, the Garden of Eden population has had time to assemble itself and 

differentiate from the EPR. In 2005, extensive Riftia assemblages at Garden of Eden 

contained the largest recorded tubeworms (> 2 m, pers. obs. T. Shank), suggesting they 
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might be part of a long-lived, robust population, first observed at this site in 1977 (Corliss 

et al. 1979). Garden of Eden’s similarity to 21˚N EPR colonists may be the residual effect 

from a subset of individuals of similar origin or suggest back-seeding from the GAR to 

the EPR. Vents at 21˚N EPR have also supported growing Riftia populations dating back 

to Clam Acres’ discovery in 1979, including recovery from over-sampling in 1982 

(Spiess et al. 1980, Hessler et al. 1985, Desbruyères 1998). This ridge segment has been 

active for at least 300 years with a spreading rate of 60 mm/yr, but a short shift in activity 

likely occurred over the past century, followed by several decades of continuous flow 

(Desbruyères 1998). As such, there has been time to receive limited input from distant 

vent populations to the south, though genetic similarity to other populations on the EPR 

could also be a relict of historic dispersal processes predating the Rivera Fracture Zone. 

 

Stepping-stone dispersal has often been invoked for hydrothermal vent species (Black et 

al. 1994, Jollivet et al. 1995, Matabos et al. 2008). In Riftia, I found that the pattern of 

genetic isolation by geographical distance hinges upon inclusion of the distant Galápagos 

populations. It is expected that some IBD to be retained on the EPR if distance was a 

dominant factor in population structure, especially if larvae tend to recruit to their natal 

population, but it is also important to note that less than half of Riftia’s known range has 

been considered. Stepping-stone dispersal does not seem to be the mechanism for 

maintaining genetic cohesiveness across northern EPR and GAR Riftia populations over 

evolutionary time but may be responsible for biologically important genetic differences 

with ecological significance (as in Purcell et al. 2006). The absence of significant IBD 

could also be attributed to bottleneck/non-equilibrium dynamics or insignificant 

statistical power with too few populations and loci (Jehle et al. 2005). Future studies 

should consider the complete range of Riftia from 27˚N to 32˚S EPR in order to test the 

remaining proposed genetic barriers, namely the equatorial region, 17-23˚S EPR, and the 

Easter Microplate. 
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3.4.4 Colonist assignment 

Assignment tests for the source populations of individuals were performed despite low 

population differentiation (~2%), where assignment may not be appropriate (pers. comm. 

G. Gerlach). Assignment tests revealed that about 54% of colonists could be assigned to 

the resident adults from the same location where the colonists were sampled. This 

suggests that the majority of colonist cohorts originated from the same populations where 

they settled and is of the same magnitude as predicted in other marine habitats (Cowen et 

al. 2006, Becker et al. 2007). The majority of self-assigned colonists were found in the 

GAR population, suggesting particular fidelity at the Rosebud site. The 21˚N and 9˚N 

EPR assignments were less dramatic, perhaps owing to mesoscale eddy mixing, but 

suggest that some recruits are nevertheless retained. All the same, colonists at each 

location were found to be most similar to the closest sampled resident populations, 

further supporting the case for local larval retention (Gilg et al. 2007). If this moderate 

level of self-recruitment is observed in multiple samples over time, it could lead to stable 

genetic patchiness among populations (Wood & Gardner 2007). 

 

Had this study found evidence for significantly divergent adult and juvenile cohorts (e.g., 

Hedgecock et al. 2007), such differences would have been consistent with “sweepstakes” 

reproductive success, whereby successful colonists originate from only a few adults 

despite large reproductive output. While this mechanism is consonant with the observed 

excess heterozygosity, neither reduced allelic diversity among colonists as compared to 

residents nor gametic phase disequilibrium was found. Therefore, the possibility of 

reproductive sweepstakes cannot entirely be discounted, though it is remarkable that 

genetic diversity remains high within populations given local retention. 

 

The low genetic differentiation observed within ridge systems, with significant isolation 

between ridges, is consistent with the predominance of local retention and periodic 

among “island” migration (Rivera et al. 2004). In fact, most recent evidence for self-

recruitment comes from island populations (Johnson & Black 2006), and the vent 
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environment appears to provide another example. These results demonstrated that 

realized larval dispersal cannot necessarily be inferred from life history characteristics, as 

is often proposed (Kinlan & Gaines 2003, Grantham et al. 2003, P. Krug 2008 OSM). 

Currents and environmental discontinuities ultimately have more of a structuring effect 

on regional lineages (Teske et al. 2007). Larval behavior may also promote retention 

within an oceanographic regime (North et al. 2008). It will be important to determine 

whether colonist input is similar over a period of multiple years in order to evaluate the 

retention hypothesis with more certainty. 

 

3.4.5 General population structuring mechanisms  

Understanding the processes behind population maintenance and new habitat 

colonization has proven to be one of the most challenging aspects of vent biology (Tyler 

& Young 2003). Several mechanisms may be implicated in the observed between-ridge 

Riftia population structure. These factors include metapopulation dynamics, large-scale 

oceanographic currents, along-axis flow reversals, periodic mesoscale eddy passage, 

buoyant plume entrainment, and larval behavior, and are discussed below. 

 

Due to a slower tectonic plate spreading rate, eruptions are expected to be less frequent 

on the Galápagos Rift than on the East Pacific Rise, perhaps facilitating longer-lived and 

more stable populations (Fouquet 1997). Stochastic events (e.g., eruptions, rearrangement 

of subsurface plumbing, clogging of conduits, instability of hydrothermal convection), 

especially at 13˚N and 9˚N EPR, constrain the temporal evolution of these vent 

communities and favor fast-growing species like Riftia (Desbruyères 1998). Higher 

spreading rates have also been implicated in accelerated loss of genetic diversity in other 

vent populations (Young et al. 2008), though that is not seen here. Support for recent 

population bottlenecks across all Riftia populations in the present study may result from 

recent foundation of populations, but immigration could confound this interpretation 

(Cornuet & Luikart 1996). Because many hydrothermal vent sites are influenced by local 
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extinctions and recolonizations, it is likely that Riftia populations are not at migration-

drift equilibrium (Jollivet et al. 1999). 

 

Hydrographic regimes may be a main isolating force between present day East Pacific 

Rise and Galálpagos Rift populations. In general, flow is anticyclonic crossing the EPR 

around 11-13˚N and vertically rather uniform with depth (Fujio & Imasato 1991). While 

the trade winds cause currents to flow westward at about 20˚N on the eastern side of the 

Pacific, imbedded in between are the equatorial counter currents (ECC) flowing eastward 

(Sverdrup 1941, 1947). The countercurrent is located north of the equator and further to 

the north in the summer than in the winter. It should be sufficient to act as a barrier 

between the ridge systems, but it will be important to include populations from the 

southern EPR to discriminate between a current- or ridge-created (e.g., Hess Deep) 

discontinuity. 

 

Deep current models on the East Pacific Rise have predicted that along-ridge flow 

reversals likely retain most larvae within tens of kilometers of their source population, 

while larvae that remain longer in the water column have a greater likelihood of being 

swept off-axis and lost to the ridge system (Marsh et al. 2001, Thiébaut et al. 2002, 

Mullineaux et al. 2002). Larvae that remain near the EPR’s ridge axis may be dispersed 

by tidal reversals on the order of 100 km (SSE, half as much to NNW) along axis, except 

for at 13˚N, where sustained SSE flows and a longer larval lifespan could extend Riftia’s 

potential dispersal up to 245 km (Marsh et al. 2001, Mullineaux et al. 2002). Outside the 

axial rift valley, larvae are likely transported away from their natal vents by tidal currents, 

in which mixing could homogenize larval abundance on scale of 100s m (Mullineaux et 

al. 2005). However, recent tracer experiments have followed plume advection 80 km off-

axis and subsequently returned to the ridge crest (Jackson et al. in prep).  

 

Correlations of strong along-axis flow with daily larval supply support the prediction of 

primary larval supply from local sources (1-2 km) in other hydrothermal vent taxa, while 
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entrainment by mesoscale eddies (apparently generated along distant storm tracks; 

Palacios & Bograd 2005) may facilitate transport between vents hundreds of kilometers 

apart two to three times a year (Adams 2007, Adams & Mullineaux 2008). At vents in the 

northeast Pacific (on the Juan de Fuca, Explorer, and Gorda ridges), strong flow enables 

larger population sizes, greater genetic diversity, and greater immigration into 

downstream populations (Young et al. 2008). Mesoscale eddies have also been predicted 

to be important to stochastic dispersal in other marine systems (Siegel et al. 2008). For 

instance, Halanych et al. (OSM 2008) attribute some Antarctic invertebrates’ lack of 

range limits across major circumpolar currents to entrainment and transport in mesoscale 

eddies. Therefore, the combined factors of along-axis flow with periodic reversal and 

stochastic eddy passage could primarily retain larvae at a local scale while preserving 

high genetic heterozygosity in the eastern equatorial Pacific, as evidenced by the present 

Riftia microsatellite results. 

 

Observed and modeled current entrainment have been coupled with biological samples in 

the field in order to test these predictions. Using larval collection observations and plume 

model data, Kim et al. (1994) estimated mean vertical flux at EPR black smokers to be 

100-1000 vent larvae/hour, translating into an expected mean abundance of 2 to 10 vent 

larvae/1000 m3 in the neutrally buoyant plume. This could also provide a mechanism for 

vertical transport and long-range horizontal advection, as vent larvae have been reported 

within and outside of buoyant hydrothermal plumes (Mullineaux et al. 1995). Plume-

level dispersal of vent larvae could be important for initial colonization and the 

maintenance of species between distant vent habitats, while local recruitment from 

nearby populations may be more important to the growth of new populations and the 

maintenance of those already in existence (Kim & Mullineaux 1998, Mullineaux et al. 

2005). As the populations included in the present study were established years before the 

time of sampling, it is unlikely that larval inputs stemming exclusively from plumes were 

sampled. 
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Lastly, species-specific processes—such as discontinuous spawning, differential survival, 

aggregative behavior, or interrupted dispersal—may drive variation and heterogeneity in 

larval supply, such that non-uniform delivery of colonists may represent only a subset of 

regional genetic diversity (Mullineaux et al. 2005). Settlement events at vents may be 

frequent, but larval supply in Riftia has been demonstrated to vary spatially (Thiébaut et 

al. 2002). The present genetic results are consistent with the hypothesis of local colonist 

retention dominating settlement within a site, but it is apparent that some genetic 

exchange occurs along the ridge system. In the case of large effective populations in 

which even a large number of migrants is proportionately small, local dynamics are likely 

to be independent and favor self-seeding within most populations (Purcell et al. 2006). 

 

3.4.6 Larval availability 

Vents are irregularly spaced along the mid-ocean ridge axis, differ in fluid chemistries 

that may provide weak or strong settlement cues, and produce larval outputs relative to 

local population size. These characteristics may explain why the flux of larvae to specific 

sites varies with respect to input from proximate source vents (Adams 2007, Adams & 

Mullineaux 2008). Colonization studies have previously attributed differences in 

vestimentiferan composition at a vent to changes in the regional larval pool or site-

specific temporal colonization patterns (Hunt et al. 2004 but not Mullineaux 2000). Given 

that larval supply is not uniform, it was expected that colonist cohorts would differ 

among distant sites and from their co-sampled resident populations. However, the 

smallest degree of genetic differentiation (FST~0) was found between colonists and 

residents collected at the same site, and colonists within a ridge were very similar to one 

another as compared to residents to other residents. The similarity of populations on the 

northern EPR is especially surprising. 

 

An alternative explanation to local larval retention could be that post-settlement selection 

is acting on colonists so that they most represent the genetic composition of their resident 

population of collection. Differential mortality of settlers can select against immigrants 

92



 

from outside populations, as evidenced in high self-recruitment of estuarine fish 

(Bradbury et al. 2008). In contrast, an overall high level of genetic diversity in Riftia 

might be linked to selection for living in a heterogeneous environment (Vrijenhoek 

1997). Previous authors (Thiébaut et al. 2002) have suggested that there may be high 

post-settlement mortality (e.g., predation or competition, physical instabilities of 

environment/low individual survivorship) in Riftia that could also explain the subsequent 

genetic differentiation observed among adult populations. 

 

There is little evidence for selection at the loci considered in this study, even though this 

process is unlikely to reduce diversity at all loci (Hedgecock et al. 2007). The results 

presented here are unlike those of Planes and Lenfant (2002), who found significant 

divergence of cohorts of young individuals due to random larval genetic drift and initial 

family structure, and homogeneity among older developmental stages resulting from 

random adult movement. Instead, the consistency of Riftia’s allelic distribution with 

localized genetic heterogeneity might reflect different rates of population turnover and 

degrees of patchiness, with genetically homogeneous cohorts and recruits encompassing 

less variation than adults among sites (Watts et al. 1990). These processes could support 

the case for local retention presented earlier, in that larvae tend to settle at their natal 

population but occasionally travel longer distances, as observed in the heterogeneity of 

adult cohorts. 

 

3.4.7 Consistency with previous vent population genetic patterns 

This study had the capacity for comparison with two previously proposed larval barriers: 

1) Rivera Fracture Zone, and 2) the Galápagos Rift Triple Junction. My findings were 

consistent with the structure associated with these features, specifically among 

populations of polychaetes and bivalves across the RFZ (Hurtado et al. 2004) and other 

vestimentiferans and a common vent endemic amphipod (France et al. 1992) across the 

Galápagos Triple Junction. Additional Riftia samples will be needed from the southern 
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EPR in order to consider the remaining three potential genetic barriers using 

microsatellite loci. 

 

Grassle (1985) presented the only other known vent genetic study in the Eastern Pacific 

to consider different size classes separately. In contrast to Riftia colonists, she found that 

small mussels on GAR exhibited significant heterozygote deficiencies (Grassle 1985). 

Rose Garden and Mussel Bed mussels within a given size class were highly similar, but 

different cohorts collected within a single vent site had low genetic similarity; large 

mussels between the GAR and 13˚N EPR were even less similar. Grassle (1985) 

concluded that small RG and MB mussels likely came from multiple distinct source 

populations, providing consistent genetic diversity to the vents over time, but the 

contribution of recruits from most populations are infrequent or low. In the case of Riftia, 

the evidence presented above suggests that cohorts are well mixed within a ridge system 

and constant through time. This remains to be explicitly tested with multiple years of 

colonists collected at single site. 

 

3.5 Conclusions 

In summary, using highly variable loci and multi-cohort sampling, genetic differentiation 

was observed between Riftia populations on the East Pacific Rise and Galápagos Rift. 

Stepping stone dispersal may create weak isolation by distance, but the observed trend 

was not conclusive. Migration is likely moderate and sufficient for gene flow to counter 

genetic drift at local populations. Recent bottlenecks were detected in most 

subpopulations as is consistent with their ephemeral environment. 

 

Colonist subpopulations were most similar to local and neighboring residents, suggesting 

that although limited gene flow exists on longer timescales between ridge systems in the 

eastern Pacific, local larval retention plays a key role in establishing and maintaining 

Riftia populations. The importance of considering cohorts in population genetic studies 

becomes apparent, as this signal of retention would not have been detected if samples had 
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been pooled irrespective of size or if only large individuals had been considered. If local 

selection instead of retention were to create the observed patterns, the adult genetic 

baseline might have been able to be simulated (e.g., via a mixture analysis); this method 

is suitable for populations of low divergence (I. Bradbury, OSM 2008). 

 

This study has demonstrated that future studies of population genetics at hydrothermal 

vents will have to consider both juvenile and adult cohorts in order to understand 

dispersal and local processes more completely. For instance, census estimates would 

provide insights into Riftia’s population density and mean dispersal distances (O. Puebla, 

OSM 2008). Models of dispersal in all marine habitats should integrate larval retention 

by local currents as well as occasional long-distance transport. A simulation of larval 

dispersal coupled with circulation would be useful to further infer the number of migrants 

and number of genetic groups from these and future data (e.g., GENELAND, J. Watson, 

OSM 2008). To further test temporal stability of larval supply in the presence of 

metapopulation dynamics (Jollivet et al. 1999), colonists collected at multiple years at a 

given site will need to be considered. In light of the high probability for local retention in 

Riftia, especially on the GAR, this process should be examined in other vent species and 

types of mid-ocean ridges by including rigorous adult and juvenile sampling. 
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Chapter 4 

Intra-ridge segment and temporal 
population genetic patchiness at 
hydrothermal vents 
 

 

Abstract 
Hydrothermal vent habitats and the populations that depend on them exhibit spatial, 

temporal, and demographic heterogeneity. This environment is non-continuously 

distributed at a range of spatial scales, from meters within a vent field to hundreds of 

kilometers between active vent clusters. Vents are also temporally transient, with fluid 

chemistry shifts occurring on timescales of less than a year and episodic seafloor 

eruptions at fast-spreading ridge segments occurring roughly every 10 to 20 years. These 

characteristics influence the distributions of vent fauna in space and time. The dynamics 

and patchiness of the vent habitat suggest that studying the ecology of component species 

may be well suited to a metapopulation approach (cf. Section 1.3). The siboglinid 

tubeworm Riftia pachyptila presents a well-characterized organism through which to 

consider the genetic signature of vent populations at fine spatial and temporal scales with 

respect to their history of colonization and turnover. Here I examine population genetic 

differentiation at ridge segment spatial scales of 10s of kilometers (9˚N EPR, 86˚W 

GAR) and over multi-year sampling of single populations on two different ridge systems, 

spanning an eruptive event. Despite variations in vent chemistry and fluid flow and recent 

local extinctions, I found that Riftia populations remain genetically similar over a period 

of seven years. Proximity to other populations and the ability to settle as related cohorts 

through local retention and along-axis dispersal likely allows this high degree of genetic 

connectivity on ecologically and demographically relevant scales. 
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4.1 Introduction 

The geographic distribution of a species is often patchy, reflecting the heterogeneity of 

suitable habitat and the varied historic and contemporary events acting on its populations. 

Patchiness can occur on a range of spatial scales, even for species with a high dispersal 

potential. The genetic and demographic structure of populations often reflect the realized 

degree of movement of individuals among populations, but may represent the cumulative 

effect of various processes that have occurred over time, such as colonization, extinction, 

and selection. The microevolutionary consequences of these processes and a species’ 

ability to cope with changing conditions play an important role in establishing future 

populations. Although traditional population genetic studies have focused on regional 

spatial patterns that result from many generations of historic gene flow, analysis of fine 

spatial and temporal genetic variation can establish the processes responsible for 

contemporary population structure developed over much shorter timescales. Temporal 

variations may be particularly important to species living in ephemeral environments. 

Variable genetic markers (e.g., DNA microsatellites) enable investigation into the relative 

importance of fine-scale and temporal variation in ephemeral and patchy habitats. 

 

Three main challenges in population ecology currently face the marine ecology 

community (R. Cowen, OSM 2008): determining (1) the explicit processes that create 

spatial and temporal distribution patterns, (2) the shape and influence of dispersal on 

those patterns, and (3) the role of rates in population and community dynamics. 

Moreover, the issue of scale in demographic and genetic processes continues to be 

important. This chapter investigates potential ecological processes (e.g., self-recruitment, 

cohort fidelity, local larval retention) responsible for the population genetic patterns 

observed in Riftia pachyptila (a monospecific genus hereafter be referred to as Riftia) at 

hydrothermal vents in the eastern Pacific. In order to extend the regional-scale findings 

presented in Chapter 3, I consider spatial scales of meters to 10s of kilometers, genetic 

similarity among cohorts, and interannual temporal genetic stability. This approach 

especially targets the processes of larval dispersal may influence the observed 

110



 

distribution of population genetic patterns in this system. Based on my results, future 

studies may be able to provide further insights into the rates of these processes. 

 

4.1.1 Fine-scale spatial and temporal population genetic variation 

In marine systems, spatiotemporal genetic variation in larval cohorts has been used to 

investigate the variation observed in adult populations. Diverse findings of these studies 

range from consistent along-current settlement patterns of mussel larvae over a two-year 

period (Gilg & Hilbish 2003a) to rapid changes in the genetic structure of sea bream 

populations (Planes & Lenfant 2002). In cases of small populations with stochastic 

fluctuations in allele frequencies, observed spatial variation in adults comes as the result 

of spatial variation in settling larval cohorts (Gilg & Hilbish 2003b). These transient, 

non-equilibrium states can result in population divergence over time, though not directly 

due to temporal variation or selective pressures (Newman & Squire 2001). Multiple non-

exclusive scenarios for the establishment and maintenance of such chaotic genetic 

patchiness can be posed, including local recruitment with homogenizing selection, local 

recruitment with low-level long-distance dispersal, and widespread dispersal with site-

specific post-settlement selection (Wood & Gardner 2007). Temporal habitat variability 

could alternatively drive fine-scale genetic differentiation in species with sporadic, 

geographically discontinuous dispersal and limited gene flow, as in the estuarine sea 

anemone Nematostella vectensis (Darling et al. 2004). 

 

Even on fine spatial scales (10s of meters), populations of highly dispersive terrestrial 

and marine species—such as rain forest trees, copepods, sea palms, or sea urchins—may 

become genetically isolated (Born et al. 2008a, Burton & Lee 1994, Kusumo et al. 2006, 

Palumbi 1996). In some systems, dispersal may predominantly occur between 

neighboring demes. However, not all populations in close geographic proximity exchange 

individuals at contemporary timescale and yet they may still appear to be genetically well 

connected (Jehle et al. 2005). Episodic long distance transport (gene flow) can be 

countered by regional genetic drift, as observed in sea urchins from the Indo-West Pacific 
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(Palumbi 1996). If demography plays a greater role than habitat suitability, gene flow can 

also be asymmetric. A new allele may arise and become confined to one population, 

resulting in high levels of differentiation among populations and low levels of variation 

within populations (Burton & Lee 1994). Sampling populations across a spectrum of 

spatial scales from neighboring sites to those across the species range can elucidate the 

processes governing their genetic structure. Moreover, highly variable molecular markers 

(e.g., microsatellites) are expected to be able to provide additional resolution into these 

population genetic patterns, when previous approaches have hidden subtle ecological 

processes. 

 

4.1.2 Sweepstakes reproductive success 

In cases of “sweepstakes” reproductive success, whereby the progeny of a small number 

of adults successfully recruit despite large reproductive output, individuals of a 

population do not all uniformly contribute to the next generation (Jehle et al. 2005). 

Variability in habitat quality or larval transport can create recruit-limited regions, 

increasing local reproductive success and population retention in other areas (Pringle & 

Wares 2007). As a result, partial inbreeding is possible in species with large populations 

and dispersive planktonic larvae (Hedgecock et al. 2007). Within a species complex, 

these variable settlement patterns—in combination with post-settlement selection—can 

also create temporal genetic heterogeneity (Pedersen et al. 2000, Watts et al. 1990), as 

may be suspected for benthic invertebrates at deep sea hydrothermal vents. Heritably 

early spawners may create distinct cohorts reproductively isolated from later spawners 

and result in temporal genetic heterogeneity (Hendry & Day 2005). 

 

As these types of isolation by time (IBT) patterns can be greater in magnitude than 

geographic components of genetic differentiation (Maes et al. 2006), considering 

populations irrespective of time could lead to inappropriate conclusions about their 

genetic structure. Temporally heterogeneous sampling design may suggest patterns of 

isolation by distance (IBD) when IBT is more likely. The scale and duration of 
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observations are therefore important considerations. For instance, within a spawning 

season, variable adult reproductive success in European eels might not create an IBT 

trend, but such genetic sweepstakes over several years can result in isolation (Maes et al. 

2006). Improper sampling would either miss the cumulative outcome of variable 

reproduction or misattribute its cause. These processes can be better understood by 

sampling multiple cohorts over time at a range of spatial scales, as conducted in the 

population genetic study presented here. 

 

4.1.3 Metapopulation processes 

Species in ephemeral habitats can be more sensitive to changes over time and to patch 

lifespan than to spatial components (Keymer et al. 2000). Temporal habitat variability 

can control genetic patterns more than spatial heterogeneity especially if genetic 

divergences are extreme within a site (Darling et al. 2004). In fragmented habitats as 

found at deep sea hydrothermal vents, rapid colonization and survival at new vent sites 

has been proposed to have a greater impact on genetic diversity than migration 

(Vrijenhoek et al. 1998). The effects of extinction/colonization on genetic differentiation 

of populations, bound as a single unit or alternately with independent trajectories, hinge 

upon how groups of colonizers to vacant sites are formed and the proportion of migrants 

(at extant sites) to colonists (Wade & McCauley 1988). Specifically, for extinction and 

colonization dynamics to reduce population differentiation (i.e., homogenize a 

metapopulation), there must be many more colonists than migrants. 

 

While global hydrothermal vent biogeography has been considered (Van Dover 2002) 

and the emerging faunal distribution hypothesized to be established by the decadal and 

high frequency variability of the venting source (Christiansen 2000), ridge-scale genetic 

structure of vent populations has received little attention. Population disturbance and 

turnover have been well documented at the vent and vent field scale, especially at 9˚N on 

the EPR. Between 1989 and 2008, this ridge segment has experienced two major seafloor 

eruptions and numerous shifts in hydrothermal venting and community composition 

113



 

(Shank et al. 1998, Tolstoy et al. 2006). Most recently in 2005-2006, following a period 

of increased microseismicity, 18 km of vent communities were paved over by fresh lava 

(Tolstoy et al. 2006, Cowen et al. 2007, Soule et al. 2007). New communities began to 

develop in the months thereafter as they did following the 1990-1991 eruptions, with 

Tevnia jerichonana replacing microbial mats and the subsequent re-settlement of solitary 

Riftia individuals (Shank et al. 2006). These events and recorded changes in community 

structure, coupled with extensive cross-disciplinary sampling since the 1991 eruption 

through to after the 2005-2006 eruption distinguish the 9˚N EPR hydrothermal region 

from other less-studied vent fields and afford the opportunity for spatiotemporal studies. 

 

Vent communities at 86˚W GAR have also experienced significant shifts and eruptions 

over the past few decades (Shank et al. 2003). Before the discovery of Galápagos vents, 

there was evidence of a 1972 eruption in the 86˚W area (Macdonald & Mudie 1974). The 

high flow Rose Garden site, thought to have originated in the early 1970s and last visited 

in 1990, was not found in 2002 (Childress 1988, Shank et al. 2003). Venting at Rose 

Garden had been active in observations made from 1979 to 1990; however, between 1979 

and 1985, tubeworms all but disappeared from this site, a single cluster remaining atop a 

large mussel bed (Desbruyères 1998). Dives of the submersible Alvin in 2002 on what 

was once Rose Garden revealed that a recent volcanic eruption (no more than 2.5 years 

prior) had paved over the populations of tubeworms, mussels, and other vent fauna last 

seen thriving in a large fissure at that location in 1990 (Shank et al. 2003). While this 

flow of fresh seafloor eliminated a known, well-established community and changed the 

venting terrain and subsurface plumbing, a few hundred meters northwest, a new 

hydrothermal community was observed with juvenile tubeworms, mussels, and clams 

colonizing a nascent vent field. This new low temperature (24˚C) site, about 60 m by 50 

m with four main venting areas, was named Rosebud. Rosebud and the surrounding area 

were visited again in May 2005 in an attempt to document changes to the community 

structure and water chemistry since its discovery. In three years, mussel and tubeworm 

communities had grown substantially and continued to inhabit discrete habitat patches 
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while additional regions of diffuse flow remained available for colonization (Nevala 

2005). Fourteen kilometers east on the GAR, the Garden of Eden vent site supports a 

robust vent community discovered in 1977 (Corliss et al. 1979) and revisited throughout 

the 1980s. Extensive Riftia assemblages at Garden of Eden in 2005 contained the largest 

recorded tubeworms (> 2 m, pers. obs. T. Shank) in 2005, suggesting the might be part of 

a long-lived population unaffected by the Rose Garden eruption.  

  

As components of communities dependent on the fleeting existence and disjunct 

locations of hydrothermal vents as discussed above, vent species should exhibit genetic 

variability and phenotypic plasticity within local populations, while facilitating gene flow 

among populations on a ridge scale. Metapopulation processes involving patch-network 

displacements and transient contact zones may therefore be able to predict genetic 

structure in this environment (Jollivet et al. 1999). Variation in genetic structure over 

time and space is likely driven by the interactions of populations coping with a variety of 

productivity, recruitment, and disturbance regimes. Temporal instability and habitat 

constraints at hydrothermal vents may provide a more connected network of patches than 

suggested at any given time when considered in respect to historical venting, explaining 

the persistence of fauna in these habitats (Chevaldonné et al. 1997). Genomic flexibility 

could also facilitate vent faunal adaptation to an ever-fluctuating supply of nutrients and 

temperatures. 

 

4.1.4 Biological model and objectives for present study 

The siboglinid tubeworm Riftia presents a well-characterized system in which to consider 

the genetic signature of vent populations at fine spatial and temporal scales with respect 

to their history of colonization and turnover (see Section 1.6). These tubeworms are early 

vent colonizers and are dependent on diffuse hydrothermal fluids for survival. Riftia has a 

trochophore larval stage potentially retained within 100-200 km of their natal habitat by 

along-axis currents (Marsh et al. 2001, Mullineaux et al. 2002). However, population 

genetic homogeneity evidenced by protein and single locus DNA-based analyses suggests 

115



 

that gene flow in Riftia is high across much of its range (Black et al. 1994, Hurtado et al. 

2004). Recent genomic fingerprinting revealed the potential for greater genetic 

differentiation among populations on the EPR and for settlement as related larval cohorts 

(Shank & Halanych 2007). 

 

High-resolution microsatellite loci have already been developed (Chapter 2) and applied 

to a regional population genetic investigation at an inter-ridge scale, consistent with local 

larval retention within some vent fields (Chapter 3). Now, within-ridge segment samples 

and time-series archival material is available to explore the subtler genetic connections 

among local populations, allowing for their foundation and persistence. An historical and 

contemporary view of population structure on these metapopulation scales can provide 

the context for processes responsible for observed genetic patterns and help make 

predictions for future scenarios at vents. In this paper, population genetic differentiation 

is examined at within ridge segment spatial scales (9˚N EPR, 86˚W GAR) and over 

multi-year sampling of single populations on two different ridge systems, spanning an 

eruptive event. 

 

4.2 Materials and methods 

4.2.1 Sample collection 

Riftia individuals were collected using the submersible DSV Alvin operating from the R/V 

Atlantis on the East Pacific Rise (EPR) and Galápagos Rift (GAR) (Figures 4.1-4.3). In 

order to maximize temporal genetic variance among samples, month-long field 

excursions to each ridge segment constrained the fine-scale sampling program. 

 

Tubeworms from specific assemblages within sites along these mid-ocean ridge segments 

were placed in Alvin’s sealed, insulated boxes on the seafloor. Within hours of Alvin 

recovery, individual specimens were removed from their chitinous tubes and measured  
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Figure 4.1 Location of 2000 
sampling efforts at 9’N on the 
East Pacific Rise (East Wall, 
Tica, Choo Choo). 
 
 

 

 

 

 

 

 

 

 
 

Figure 4.2 Location 
of 2005 sampling 
efforts at 86˚W on 
the Galápagos Rift 
(Rosebud Markers J 
and N, Garden of 
Eden Marker Q). 
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Figure 4.3 Location of temporal efforts on the EPR and GAR (Tica: 2000, 2002, 2004, 
2005, 2007; Rosebud: 2002, 2005). 

118



 

for total body length (tip of plume to tip of opisthosome) to the nearest 0.5 cm or 

estimated (e.g., > 250 mm, > 500 mm,  < 5 mm, < 20 mm). Worms were categorized and 

sorted either as “recent colonists” (body length < 30 mm for intraregional samples, < 45 

mm for temporal samples) or “resident adults” (body length > 100 mm for temporal and 

9˚N EPR intraregional samples, > 75 mm for 86˚W intraregional samples), ignoring 

intermediate size classes. Whole animals or individual tissues were frozen at -80˚C. 

Further molecular processing was conducted in a shore-based laboratory at Woods Hole 

Oceanographic Institution. 

 

Recent colonists were inferred to be less than one year old, while resident adults likely 

represented many years of recruitment (as in Grassle 1985). As in Chapter 3, the chosen 

body length bins for colonists and residents were selected to maximize differences in age 

between the two “cohorts” and to avoid “short, fat” morphologies whose relative age 

would be difficult to assign. Resident adults collected from successive expeditions were 

binned per site when sample number was low, but colonist samples were limited to those 

collected on a single research expedition in order to avoid mixing discrete cohorts. 

 

For the first intra-segment, fine-spatial scale component, resident adults were collected in 

2000 from three sites along the 9˚N East Pacific Rise ridge segment on expeditions AT3-

50 and AT3-51: East Wall (9˚50.53’N, 104˚17.51’W, 2505 m deep), Tica (9˚ 50.41’N, 

104˚ 15.50’W, 2511 m deep), and Choo Choo (9˚49.66’N, 104˚17.37’W, 2500 m deep) 

(Table 4.1). Along the Galápagos Rift, both recent colonists and resident adults were 

collected in 2005 on expedition AT11-27 from three additional sites: Rosebud Marker F 

(0˚48.36’N, 86˚13.67’W, 2451 m deep), Rosebud Marker N (0˚48.35’N, 86˚13.65’W, 

2452 m deep), and Garden of Eden Marker Q (0˚47.68’N, 86˚7.71’W, 2489 m deep) 

(Table 4.1). 

 

To examine the stability of genetic diversity at sites over multiple years spanning an 

eruption on a fast-spreading ridge, the 9˚N East Pacific Rise Tica site was sampled for 
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recent colonists and resident adults in 2000 (AT3-50, AT3-51), 2002 (AT7-06), 2004 

(AT11-09, AT11-10, AT11-21), 2005 (AT11-26), and 2007 (AT15-15) (Table 4.2). As 

two Tica resident individuals collected in December 2004 (AT11-21) were considered 

large enough to have also been residents earlier that year when the remainder of that 

year’s Riftia were collected, they were included in order to increase sample size; 

exclusion of these individuals did not have a significant effect on subsequent analyses. 

The Rosebud population at 86˚W on the intermediate-spreading Galápagos Rift was 

sampled two and five years following estimated establishment, in 2002 (AT7-13) and 

2005 (AT11-27), respectively (Table 4.2). Based on the concurrent results of the 86˚W 

GAR intra-segment analyses, samples from two proximate Rosebud Riftia patches were 

pooled for 2002 (Markers B and F) and 2005 (Markers J and N). 

 

For the duration of this chapter, samples collected from a given site or year are 

collectively referred to as a pooled population, while the recent colonists and resident 

adults from each site or year are designated as a subpopulation or cohort. 

 

4.2.2 DNA extraction, genotyping, and data preparation 

Genomic DNA was isolated from the frozen vestimentum (and from one opisthosome 

and one body wall) of 421 Riftia individuals using either the DNeasy Tissue (Qiagen) 

extraction kit or the Chelex 100 procedure (Roy & Sponer 2002). Samples were 

amplified at eight highly polymorphic microsatellite loci (R2D12, R2E14, R3B6, R3D3, 

Rpa10CA02, Rpa10CA06, Rpa10CA07, Rpa10All01) previously developed for 

genotyping (Fusaro et al. 2008). Allele fragment length was analyzed on an ABI 3730 

DNA Analyzer using the GeneScan 500 LIZ standard and GENEMAPPER version 3.7 

(Applied Biosystems) with manual electropherogram inspection. PCR products from a 

subset of individuals were replicated between separate runs to monitor and control for 

genotyping inconsistencies. Raw allele sizes were binned into whole number allele 

lengths (number of base pairs) using the automated FLEXIBIN (Amos et al. 2007) program 
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and manually reviewed for ambiguities. Allele lengths were then translated to number of 

repeats based on sequenced clones from Fusaro et al. (2008). 

 

Input files for analyses were created from a MS Excel spreadsheet in the 3-digit MICRO-

CHECKER version 2.2.3 (van Oosterhout et al. 2004) and 6-digit GENETIX version 4.05.2 

(Belkhir et al. 2004) formats. Data from the latter file-type were pasted into GENETIX to 

create input files for FSTAT version 2.9.3.2 (Goudet 2001), ARLEQUIN version 3.11 

(Excoffier et al. 2005), and GENEPOP ON THE WEB version 3.4 (Raymond & Rousset 

1995). The GENEPOP file format was also implemented in BOTTLENECK version 1.2.02 

(Cornuet & Luikart 1996). The FSTAT file format was used in PCA-GEN version 1.2 

(Goudet 1999). These data were formatted for 2-digit allele length (FSTAT, GENEPOP, 

BOTTLENECK), 3-digit allele length (MICRO-CHECKER, GENETIX), and repeat number 

(ARLEQUIN). The 3-digit allele length data were manually formatted for analysis in 

STRUCTURE version 2.2 (Pritchard et al. 2000; Falush et al. 2003, 2007). 

 

4.2.3 Single locus statistical analyses and conformance to Hardy-
Weinberg equilibrium 

The number of alleles, allelic richness (normalized to the smallest subpopulation size; El 

Mousadik & Petit 1996), allele size range, and size and frequency of the most common 

allele(s) were calculated per subpopulation and across all subpopulations in the programs 

GENETIX and FSTAT. Nonbiased expected and observed heterozygosity values were 

determined in ARLEQUIN following Nei (1987). MICRO-CHECKER was used to screen loci 

in each subpopulation for scoring errors—null alleles, large allele dropout, and 

stuttering—that would result in departure from Hardy-Weinberg equilibrium (HWE) 

expectations (run at the default 95% CI, 1000 permutations). The probabilities for 

observed homozygote size-class frequencies were calculated via a cumulative binomial 

distribution (Weir 1996), ranking the observed frequency in a distribution of randomized 

genotypes (van Oosterhout et al. 2004). These P values were then combined to identify 

deviations from Hardy-Weinberg proportions (van Oosterhout et al. 2004). Fisher-type 
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exact tests of HWE comparing HE and HO per locus and cohort were also conducted in 

ARLEQUIN with a recommended Markov chain of 2,000,000 steps and 200,000 

dememorization steps for reproducibility (L. Excoffier on the Genetic Software Forum 

pers. comm.). To examine deviation from HWE expectations due to non-random mating, 

FIS-based estimates were calculated in the program FSTAT (Weir & Cockerham 1984) 

using 2000 permutations (recommended value for < 10 loci = 1000 permutations; 

however, it took 2000 randomizations to allow for little variation in significant values 

among multiple runs). The data were analyzed for linkage disequilibrium (Weir 1996), 

using a probability test on all locus-specific contingency tables under the null hypothesis 

of independence (Cockerham & Weir 1979). Parameter values in GENEPOP ON THE WEB 

consisted of 5000 dememorization steps, 500 batches, and 2000 iterations per batch—at 

which level pairwise significance was consistent among multiple runs. In order to correct 

for multiple comparisons, all significance tests were run at a nominal alpha level of 0.05 

with sequential Bonferroni correction (Rice 1989). 

 

4.2.4 Estimates of population and cohort structure 

To detect heterogeneity among pooled populations and cohorts, exact tests of 

differentiation in allele (genic) and genotype (genotypic) distributions between 

population pairs were conducted in GENEPOP ON THE WEB using 5000 dememorization 

steps, 500 batches, and 2000 iterations per batch, as described for tests of linkage 

disequilibrium. Estimates of Weir & Cockerham’s (1984) allele frequency-based θWC 

(estimates Wright’s 1951 FST), assuming the infinite alleles model of mutation, and 

Slatkin’s (1995) allele repeat-based RST, assuming the stepwise model of microsatellite 

mutation, were calculated between population pairs in ARLEQUIN. Significance was tested 

using 20,000 permutations—pairwise significance levels were consistent among runs at 

this number of permutations—with table wide sequential Bonferroni correction for 

multiple tests. FST was also calculated and tested for significance per locus over all 

populations in FSTAT. 
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Population structure was estimated using hierarchical analysis of molecular variance 

(AMOVA, ARLEQUIN) with 20,000 permutations. These estimates allowed quantification 

of the magnitude of genetic variation (by partitioning total variance into covariance 

components) among geographic regions or sampling years (ΦCT) relative to other sources 

of genetic variation among populations (ΦSC, inter-population), within cohorts (ΦIS, inter-

individual), and within individuals (ΦIT, intra-individual). Significant differences (from 

zero) in Wright’s fixation indices at these four levels were tested for departure from 

HWE by comparing observed values to a null distribution estimated by randomly 

permuting the populations (or years), individuals, or haplotypes among groups of 

populations defined by sample site (or year), demes, or individuals, respectively. 

 

All populations were further explored for underlying genetic structure within ridge 

segments or given years at a single site using an admixture model of ancestry and 

correlated allele frequencies in STRUCTURE (burnin of 20000, followed by 20000 MCMC 

replicates; tested for K=1 through K= total number of subpopulations). This algorithm 

assigns individuals to groups assuming that loci are at HWE within each population and 

estimates the population of origin for each individual from the observed genotypes 

(Pritchard et al. 2000). The calculated membership coefficient (Q) for each individual 

displays its estimated affinity to a given population. The posterior probability of the data 

(PPD) was plotted to determine the best number of populations (K) given the results 

(Garnier et al. 2004). In order to determine the origin of overall population structure, 

among-colonist and among-resident subpopulation structure was explored using the same 

parameters. 

  

A principal components analysis (PCA) was used to identify clusters of subpopulations 

based on FST and was performed on the genotypic data using PCA-GEN. Significance of 

each axis in the PCA was determined using 10,000 randomizations. 
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Genetic isolation by geographical distance and by time was evaluated for significance 

using the Mantel test implemented in GENEPOP ON THE WEB (500,000 permutations). 

Slatkin’s (1995) linearized FST, FST/(1-FST) or RST/(1-RST), was plotted against 

geographical distance or time to determine the significance of the relationship (Rousset 

1997). The linear distance between sites was calculated as the shortest route between 

given coordinates of latitude and longitude using a great circle calculator with the 

WGS84 model (available at http://williams.best.vwh.net/gccalc.htm). Time was 

calculated as the number of years between sample collections. 

 

4.2.5 Effective migration, population bottlenecks, and cohort 
relatedness 

For within-ridge spatial samples, the effective number of migrants among populations 

(Nm) was estimated using the rare alleles method implemented in GENEPOP ON THE WEB 

(Slatkin 1985, Barton & Slatkin 1986). This overall estimate of gene flow is based on the 

average frequency of alleles found in only one population. 

 

Populations and cohorts were tested for the presence of recent genetic bottlenecks using 

the program BOTTLENECK with the two-phased mutation model parameters of 30% 

variance and 70% SMM (Di Rienzo et al. 1994), 10000 iterations, and the Wilcoxon 

sign-test, recommended for suites of greater than 4 loci and any sample size (n=15-40 has 

most power). 

 

Relatedness estimates were calculated using a method described originally by Blouin et 

al. (1996) and extended by Gerlach et al. (2001). In detail, the allele sharing coefficient, 

Mxy, was calculated pairwise between individuals x and y of a subpopulation. To evaluate 

whether this observed Mxy value was significantly different from an expected value based 

on the frequency of alleles of the total population, the computer program randomly 

generated 200 pairs of individuals based on the allele frequency of the total population 

(combined subpopulations from a specific site). This value was considered the expected 
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allele sharing coefficient of unrelated individuals. The expected allele sharing value of 

full-sibs was generated by randomly generating pairs and calculating the allele sharing 

coefficient of two of their offspring. The expected allele sharing coefficient of half-sibs 

was calculated by generating an individual with two potential mating partners and 

assessing how many alleles two randomly generated half-sibs would share. Using a 

logistic regression analysis (SAS Institute Inc. 1995), the probability of belonging to each 

of the three different groups (unrelated, half-sibs or full-sibs) was calculated for each 

Mxy. This resulted in threshold values for full- and half sibs and unrelated individuals. To 

correct for type I error (unrelated animals which were misclassified as half- or full sibs 

and vice versa), the distribution of Mxy of unrelated individuals and full- and half sibs was 

simulated. This analysis ran 1000 simulations based on the gene frequency of the total 

population at the same site. A G-test was performed to determine whether the observed 

number of half- and full-sibs were greater than in a randomly created subpopulation of 

the same size. 

 

4.3 Results 

4.3.1 Genetic variability within ridge segments 

Four-hundred twenty-one Riftia individuals were analyzed from 12 populations (22 

subpopulations) at eight polymorphic microsatellite loci. Within subpopulations, the 

number of individuals genotyped at each locus ranged from 31 to 38 along the 9˚N EPR 

segment and 9 to 25 along the 86˚W GAR segment, due to sampling effort and habitat 

occupancy at specific vent sites. A subset of individuals was replicated per plate and 

between runs. All except two individuals at the Garden of Eden site were genotyped at all 

loci. Among subpopulations, the number of alleles sampled ranged from 13 

(Rpa10CA06) to 30 (Rpa10CA02) and 7 to 20 (same loci) at 9˚N and 86˚W, respectively, 

with mean allele counts of 21.9 and 13.5.  
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Over all within-EPR and -GAR segment subpopulations, the total number of alleles per 

locus ranged from 17 (Rpa10CA06) to 42 (Rpa10CA02). Allelic richness normalized to a 

minimum of 9 individuals per sample ranged from 6.4 (Rpa10CA06, 86WGoE05a) to 

14.2 (Rpa10CA02, 9NCC00) per locus and subpopulation (mean = 10.8). As was found 

previously for these two mid-ocean ridges (Chapter 3), allelic richness within the 9˚N 

EPR segment was significantly greater than that in the 86˚W GAR region in an unpaired 

t-test (two-tailed P < 0.0001). 

 

Allele lengths ranged from 143 bp (Rpa10CA02) to 277 bp (R2D12). The most common 

alleles and their frequencies within subpopulations are provided in Table 4.3. 
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4.3.2 Temporal genetic variability within sites 

Within subpopulations, the number of individuals genotyped at each locus ranged from 4 

to 42 at Tica and from 10 to 54 at Rosebud, due to sampling effort and habitat occupancy 

in various years. A subset of individuals was replicated per plate and between runs. All 

except one Tica 2002 individual were genotyped at all loci. Among subpopulations, the 

number of alleles sampled ranged from 5 (Rpa10CA06) to 28 (R3B6, Rpa10CA02) at 

Tica and 7 (Rpa10CA06) to 27 (Rpa10CA02, Rpa10CA07) at Rosebud, with mean allele 

counts of 15.8 and 16.3, respectively. 

 

Over all cohorts, the total number of alleles per locus ranged from 18 (Rpa10CA06) to 42 

(Rpa10CA02) at Tica and 14 to 32 (same loci) at Rosebud. Tica allelic richness 

normalized to a minimum of 4 individuals per sample ranged from 5 (Rpa10CA06, 

9NTI05j) to 8 (Rpa10CA02, 9NTI04j) per locus and subpopulation (mean = 6.63); 

Rosebud allelic richness normalized to a minimum of 10 individuals per sample ranged 

from 7 (Rpa10CA06, 86WRb02a) to 15 (Rpa10CA02, 86WRb02a) per locus and 

subpopulation (mean = 10.910). Where the most samples were collected over time, mean 

allelic richness in Tica juveniles tended to be greater in colonists than in residents. Allele 

lengths ranged from 143 bp (Rpa10CA02) to 277 bp (R2D12). Most common alleles and 

their frequencies within subpopulations are provided in Table 4.4. 
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4.3.3 Hardy-Weinberg equilibrium 

Non-biased expected heterozygosities were high across the intra-EPR segment (range = 

0.9007 to 0.9716, mean = 0.9422) and intra-GAR segment (range = 0.7923 to 0.9673, 

mean = 0.9132) subpopulations. Expected heterozygosity was also high across all cohorts 

at Tica (range = 0.8571 to 1.000, mean = 0.9440) and at Rosebud (range = 0.7895 to 

0.9737, mean = 0.9152) in the temporal samples. Observed heterozygosity within the 9˚N 

EPR segment subpopulations ranged from 0.6842 to 1.000 (mean = 0.9029) and across 

the 86˚W GAR segment subpopulations ranged from 0.5833 to 1.000 (mean = 0.9025). 

Observed heterozygosity across all temporal cohorts at Tica ranged from 0.4667 to 1.000 

(mean = 0.9164) and across Rosebud temporal samples ranged from 0.7000 to 1.000 

(mean = 0.9079). Mean heterozygosities (expected and observed) tended to be greater in 

colonist than in resident subpopulations (Tables 4.3 & 4.4). 

 

MICRO-CHECKER suggested the potential excess of homozygotes at four loci (R3D3, 

Rpa10CA06, Rpa10CA07, Rpa10All01) in some subpopulations (5 of 72 tests in the 

within ridge segment spatial subpopulations and 7 of 144 tests in the temporal 

subpopulations suggested the presence of null alleles), but significant departure from 

HWE in single locus exact tests in ARLEQUIN only supported four heterozygote 

deficiencies (9˚N EPR Choo Choo, 86˚W GAR Rosebud Marker J residents, and 9˚N 

EPR Tica 2002 residents at locus R3D3; and 9˚N EPR Tica 2007 residents at locus 

Rpa10CA06) at a Bonferroni-corrected nominal significance level of 0.05 (Tables 4.3 & 

4.4). In FSTAT, all except three (Rpa10CA06, 9NEW00; R3D3, 9NCC00; Rpa10CA06, 

9NTI07a) single locus FIS-based exact tests with Bonferroni correction were consistent 

with Hardy-Weinberg equilibrium expectations in the absence of inbreeding (Tables 4.5-

4.8). 

 

All pairs of loci were found to be in genotypic equilibrium. 
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Table 4.7 Rosebud temporal FIS per locus and subpopulation, with cohorts separated by marker B, J=F, and N (FSTAT). 
P values in parentheses (1280 randomizations). 
  Population             All 
Locus RbB02j RbB02a RbJ02j RbJ02a RbF05j RbF05a RbN05j RbN05a pops 
D12 -0.062 -0.091 0.006 -0.063 0.030 0.041 0.015 0.015 -0.005 

 (1.0000) (1.0000) (0.5766) (1.0000) (0.4898) (0.4836) (0.6344) (0.5070)   
                   

E14 0.049 0.200 -0.054 0.014 0.030 0.036 0.038 0.027 0.017 
 (0.2875) (0.4563) (0.8828) (0.6922) (0.4914) (0.5125) (0.5766) (0.4578)   
                   

R3B6 0.038 0.200 0.007 -0.050 -0.010 0.036 -0.134 0.069 0.016 
 (0.3797) (0.5992) (0.5586) (1.0000) (0.7109) (0.5008) (1.0000) (0.2109)   
                   

R3D3 0.032 -0.200 0.099 -0.120 0.115 0.246 -0.075 -0.036 0.044 
 (0.3727) (1.0000) (0.0672) (1.0000) (0.1258) (0.0391) (1.0000) (0.8539)   
                   

CA02 0.038 0.000 -0.038 -0.024 0.130 -0.053 0.045 -0.065 0.002 
 (0.3070) (1.0000) (1.0000) (1.0000) (0.0602) (1.0000) (0.5016) (1.0000)   
                   

CA06 0.063 0.111 0.084 0.167 -0.080 -0.052 0.059 -0.016 0.030 
 (0.3336) (0.5859) (0.1852) (0.2789) (0.9203) (0.8070) (0.5219) (0.6734)   
                   

CA07 0.071 -0.091 -0.052 -0.063 0.004 0.047 -0.036 0.085 0.015 
 (0.1547) (1.0000) (1.0000) (1.0000) (0.6266) (0.4563) (1.0000) (0.0984)   
                   

All01 -0.006 0.000 0.035 0.089 -0.136 -0.233 0.059 -0.003 -0.019 
 (0.6445) (1.0000) (0.3484) (0.3891) (1.0000) (1.0000) (0.4227) (0.6359)   
                   

All loci 0.027 0.012 0.010 -0.008 0.012 0.013 -0.004 0.010 0.012 
  (0.1219) (0.5570) (0.3398) (0.6734) (0.3570) (0.4000) (0.6242) (0.3586)   
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Table 4.8 Rosebud temporal FIS per locus and subpopulation, with 
cohorts designated by year and sampling markers combined  (FSTAT). 
P values in parentheses (640 randomizations). 
  Population     All 
Locus Rb02j Rb02a Rb05j Rb05a pops 
D12 -0.031 -0.091 0.038 0.020 -0.007 

 (0.8734) (1.0000) (0.3359) (0.4734)   
           

E14 -0.004 0.106 0.022 0.026 0.018 
 (0.6172) (0.2938) (0.4406) (0.3891)   
           

R3B6 0.024 0.036 -0.039 0.054 0.020 
 (0.3438) (0.5016) (0.8766) (0.2281)   
           

R3D3 0.069 -0.139 0.048 0.045 0.043 
 (0.0656) (1.0000) (0.275) (0.2844)   
           

CA02 -0.004 -0.029 0.118 -0.053 0.007 
 (0.6594) (1.0000) (0.0203) (1.0000)   
           

CA06 0.077 0.119 -0.049 -0.028 0.025 
 (0.1250) (0.3469) (0.8094) (0.7125)   
           

CA07 0.002 -0.065 -0.011 0.077 0.014 
 (0.5594) (1.0000) (0.7297) (0.0766)   
           

All01 0.015 0.030 -0.064 -0.056 -0.019 
 (0.4391) (0.5719) (0.9313) (0.8984)   
           

All loci 0.018 -0.006 0.009 0.011 0.012 
  (0.1109) (0.6594) (0.3438) (0.3250)   
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4.3.4 Allelic and genotypic variation 

The three resident subpopulations considered within the 9˚N EPR ridge segment were 

homogenous in terms of genic and genotypic variation (Table 4.9a). Among populations 

within the 86˚W GAR region, genic differentiation over all loci was significant (P = 0.03 

for pooled populations, P = 0.02 for subpopulations), with the largest contribution 

coming from locus Rpa10CA02; the level of genotypic variation over all loci was similar 

(P = 0.07 for pooled populations, P = 0.04 for subpopulations; Tables 4.9b-c). 

 

Temporally, only genic differentiation over all loci was significant among Tica pooled 

populations (P = 0.04), with the largest contribution coming from loci Rpa10CA06 and 

Rpa10All01 (Tables 4.10a-b). There was no differentiation detected among years at 

Rosebud, with populations or subpopulations pooled by year or separated as discrete 

patches by their collection marker and year (Tables 4.10c-e). 

 

4.3.5 Pairwise genetic differentiation 

Per locus FST estimates over all populations within a ridge segment or over time were 

very small, ranging from -0.004 to 0.004 on the 9˚N EPR segment (overall = -0.001),        

-0.006 to 0.009 on the 86˚W GAR segment (overall = 0.002), from -0.005 to 0.004 at 

Tica (overall = 0), and from -0.008 to 0.005 at Rosebud (overall = -0.001) (Tables 11a-d). 

 

Pairwise FST and RST values for 86˚W GAR pooled populations as estimated in ARLEQUIN 

were as large as 0.004 and 0.03, respectively—the latter being significantly greater than 0 

(between Rosebud Markers J and N). 

 

Pairwise FST of resident populations ranged at 9˚N EPR from -0.00037 to 0.00008 and of 

pooled populations at 86˚W GAR from 0.00197 to 0.00420. Subpopulation pairwise FST 

estimates at 86˚W GAR ranged from -0.00336 to 0.01277 (P = 0.05354). Between 

colonists and residents at the same site, genetic differences at 86˚W were smaller than

143



 

 

 
Table 4.9 Spatial differentiation over all populations (GENEPOP ON THE 
WEB: 5000 dememorization steps, 500 batches, 2000 iterations per 
batch).  Bold P values are significant with sequential Bonferroni 
correction for 8 tests at a level of 5%. 
a. Within the 9˚N EPR segment 
  Genic (allelic)  Genotypic 
Locus P value S.E.  P value S.E. 
R2D12 0.82234 0.00427  0.7849 0.0051 
R2E14 0.68636 0.00563  0.6953 0.0058 
R3B6 0.83553 0.00423  0.9176 0.0031 
R3D3 0.09710 0.00356  0.1717 0.0044 
CA02 0.75646 0.00534  0.8593 0.0042 
CA06 0.32288 0.00505  0.5596 0.0057 
CA07 0.64616 0.00563  0.6070 0.0063 
All01 0.64188 0.00566  0.7490 0.0051 
All loci 0.82485    0.9504   
     
b. Within the 86˚W GAR segment, pooled populations 
  Genic (allelic)  Genotypic 
Locus P value S.E.  P value S.E. 
R2D12 0.07815 0.00335  0.0687 0.0029 
R2E14 0.57583 0.00514  0.3874 0.0058 
R3B6 0.82525 0.00425  0.8813 0.0033 
R3D3 0.26343 0.00574  0.3995 0.0064 
CA02 0.00387 0.00062  0.0090 0.0009 
CA06 0.46769 0.00542  0.5499 0.0049 
CA07 0.16319 0.00467  0.3925 0.0067 
All01 0.24350 0.00478  0.2295 0.0048 
All loci 0.02883    0.0738   
     
c. Within the 86˚W GAR segment, separate subpopulations 
  Genic (allelic)  Genotypic 
Locus P value S.E.  P value S.E. 
R2D12 0.05146 0.00372  0.0345 0.0036 
R2E14 0.83541 0.00528  0.7510 0.0092 
R3B6 0.58746 0.00915  0.7143 0.0099 
R3D3 0.13824 0.00598  0.2017 0.0088 
CA02 0.00199 0.00049  0.0028 0.0011 
CA06 0.55796 0.00735  0.6819 0.0079 
CA07 0.24172 0.00802  0.3609 0.0118 
All01 0.42492 0.00811  0.4166 0.0109 
All loci 0.02096    0.0361   
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Table 4.10 Differentiation over all temporal populations (GENEPOP ON THE WEB: 5000 dememorization steps, 500 
batches, 2000 iterations per batch). Bold P values are significant with sequential Bonferroni correction for 8 tests at 
a level of 5%. 
a. Tica pooled populations  c. Rosebud pooled populations, sites separate 
  Genic (allelic) Genotypic      Genic (allelic Genotypic   
Locus P value S.E. P value S.E.  Locus P value S.E. P value S.E. 
R2D12 0.96340 0.00258 0.9005 0.0066  R2D12 0.15683 0.00506 0.1616 0.0057 
R2E14 0.30906 0.00883 0.2408 0.0105  R2E14 0.84853 0.00435 0.8273 0.0052 
R3B6 0.55450 0.00967 0.6491 0.0121  R3B6 0.58250 0.00764 0.6249 0.0080 
R3D3 0.31876 0.00888 0.5507 0.0121  R3D3 0.86067 0.00441 0.9465 0.0031 
CA02 0.26573 0.00935 0.5977 0.0123  CA02 0.08188 0.00366 0.1394 0.0062 
CA06 0.01595 0.00146 0.0858 0.0052  CA06 0.24274 0.00603 0.2115 0.0052 
CA07 0.27119 0.00859 0.3996 0.0121  CA07 0.12227 0.00478 0.2272 0.0082 
All01 0.02367 0.00242 0.0932 0.0061  All01 0.21039 0.00556 0.1544 0.0051 
All loci 0.04246   0.3456    All loci 0.19556   0.2779   
           
b. Tica subpopulations  d. Rosebud subpopulations, sites separate 
  Genic (allelic) Genotypic      Genic (allelic) Genotypic   
Locus P value S.E. P value S.E.  Locus P value S.E. P value S.E. 
R2D12 0.32471 0.01177 0.3825 0.0170  R2D12 0.35420 0.01013 0.2717 0.0124 
R2E14 0.43509 0.01316 0.3151 0.0155  R2E14 0.70262 0.00925 0.7025 0.0115 
R3B6 0.75556 0.01122 0.8519 0.0116  R3B6 0.91745 0.00498 0.9145 0.0075 
R3D3 0.78111 0.01024 0.9131 0.0086  R3D3 0.99165 0.00110 0.9955 0.0013 
CA02 0.59525 0.01417 0.8431 0.0126  CA02 0.06197 0.00515 0.0663 0.0068 
CA06 0.03798 0.00327 0.1570 0.0106  CA06 0.70042 0.00865 0.7410 0.0094 
CA07 0.24547 0.01090 0.3945 0.0170  CA07 0.46013 0.01078 0.5656 0.0148 
All01 0.19514 0.01000 0.3196 0.0155  All01 0.50274 0.00979 0.4584 0.0136 
All loci 0.28860   0.6785    All loci 0.7320   0.7282   
           
      e. Rosebud subpopulations, by year 

   Genic (allelic) Genotypic   
  Locus P value S.E. P value S.E. 
      R2D12 0.07884 0.00364 0.0346 0.0025 
      R2E14 0.84381 0.00439 0.8068 0.0058 
      R3B6 0.97988 0.00138 0.9617 0.0025 
      R3D3 0.99990 0.00004 0.9999 0.0001 
      CA02 0.47112 0.00851 0.4987 0.0097 
      CA06 0.25715 0.00622 0.2096 0.0056 
      CA07 0.30901 0.00734 0.3260 0.0090 
      All01 0.56545 0.00650 0.4809 0.0080 
      All loci 0.66017   0.4914   
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Table 4.11 FST per locus over all subpopulations (FSTAT). 
a. 9˚N EPR segment       
R2D12 R2E14 R3B6 R3D3 CA02 CA06 CA07 All01 All loci 
-0.004 -0.001 -0.002 0.004 -0.002 0.002 -0.003 -0.001 -0.001 
         
b. 86˚W GAR segment       
R2D12 R2E14 R3B6 R3D3 CA02 CA06 CA07 All01 All loci 
0.008 -0.006 0.002 0.001 0.009 0.000 0.002 -0.001 0.002 

         
c. 9˚N EPR Tica temporal      
R2D12 R2E14 R3B6 R3D3 CA02 CA06 CA07 All01 All loci 
0.001 -0.000 -0.003 -0.005 -0.003 0.002 0.001 -0.000 -0.003 

         
d. 86˚W GAR Rosebud temporal      
R2D12 R2E14 R3B6 R3D3 CA02 CA06 CA07 All01 All loci 
0.002 -0.003 -0.001 -0.008 0.005 -0.001 0.001 -0.002 -0.001 
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0.00447 (mean = 0.00050) (Tables 4.12a-c).  

 

While there is a suggestion of genetic variation between pooled years at Tica (pairwise 

FST range = 0.00009 to 0.00596, mean = 0.00219), no pairwise temporal values were 

significant (Table 4.13a). When cohorts were treated as separate subpopulations, the 

largest difference was detected between 2004 and 2007 residents. Between Tica colonists 

and residents collected in the same year, pairwise genetic differences were smaller than 

0.00065 (mean = -0.00241) (Table 4.13b). Moreover, all colonist-to-colonist comparisons 

were effectively equal to 0; while non-significant, nearly all resident-to-resident 

comparisons possessed FST values greater than 0 and tended to grow in magnitude as the 

time between samples increased. 

 

In spite of a 2005-2006 eruption that paved over 18 km of vent communities at 9˚N EPR, 

including decimation of the Tica Riftia population, the 2005 and 2007 samples displayed 

no change in genetic composition. A subset of individuals (n = 7) in the Tica 2007 

resident subpopulation was identified by their placement around the vent periphery as 

potential survivors of the 2005 eruption; when they were removed from pairwise 

analysis, the magnitude of FST comparisons with the Tica 2007 residents increased but 

remained non-significant. 

 

Rosebud pooled populations were similar between years (0.008, Table 4.13c). Between 

Rosebud colonists and residents collected in the same year, pairwise genetic differences 

were -0.00773 and -0.00051 in 2002 and 2005, respectively (Table 4.13d). To test the 

influence of pooling samples from proximate markers for given years, each marker’s 

subpopulation was also considered separately; non-significant pairwise FST comparisons 

ranged from -0.01376 to 0.01003 (P = 0.10698) (Tables 4.13e-f). 
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Table 4.12a Genetic differences between populations at 9˚N EPR (FST, 
above diagonal) and respective P values (below diagonal). Sequential 
Bonferroni corrected significant values are bolded  (ARLEQUIN, 20022 
permutations). 

    
  EW00 TI00 CC00 

EW00 - -0.00031 0.00008 
TI00 0.65844 - -0.00037 

CC00 0.59786 0.67607 - 
 
 

Table 4.12b Genetic differences between populations at 86˚W GAR (FST or RST, above 
diagonal) and respective P values (below diagonal). Sequential Bonferroni corrected 
significant values are bolded  (ARLEQUIN, 20022 permutations). 

FST:   RbN05 RbJ05 GoE05 
 RbN05 - 0.00420 0.00273 
 RbJ05 0.06158 - 0.00197 
 GoE05 0.11522 0.21745 - 

RST:   RbN05 RbJ05 GoE05 
 RbN05 - 0.02992 0.00299 
 RbJ05 0.00874 - -0.00091 
 GoE05 0.32203 0.48414 - 

 

 

Table 4.12c Genetic differences between subpopulations at 86˚W GAR (FST, above diagonal) and 
respective P values (below diagonal). Sequential Bonferroni corrected significant values are 
bolded  (ARLEQUIN, 20022 permutations). 
       
  86WRbJ05j 86WRbJ05a 86WRbN05j 86WRbN05a 86WGoE05j 86WGoE05a 

86WRbJ05j - 0.00447 0.00796 0.00182 0.00363 0.00023 
86WRbJ05a 0.22999 - 0.01277 0.00327 0.00340 0.00639 
86WRbN05j 0.12476 0.05354 - -0.00336 0.00996 0.00191 
86WRbN05a 0.33222 0.25006 0.71043 - 0.00160 0.00036 
86WGoE05j 0.17984 0.21980 0.04859 0.29686 - 0.00040 
86WGoE05a 0.56090 0.14743 0.45722 0.52000 0.49558 - 
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c. Rosebud pooled e. Rosebud temporal, pooled by site 

  Rb02 Rb05    RbB02 RbF02 RbJ05 RbN05 
Rb02 - 0.00083  RbB02 - 0.00089 0.00082 0.00222 
Rb05 0.25146 -  RbF02 0.35529 - 0.00248 0.00158 

    RbJ05 0.40334 0.14723 - 0.00304 
    RbN05 0.10676 0.22649 0.12935 - 

 
 
 
 

d. Rosebud temporal subpopulations 
  Rb02j Rb02a Rb05j Rb05a 

Rb02j - -0.00773 0.00055 -0.00008 
Rb02a 0.98277 - -0.00455 -0.00169 
Rb05j 0.40693 0.81931 - -0.00051 
Rb05a 0.53633 0.63837 0.57744 - 

 
 
 
 

f. Rosebud temporal subpopulations, by site 
  RbB02j RbB02a RbF02j RbF02a RbJ05j RbJ05a RbN05j RbN05a 
RbB02j - -0.00925 -0.01190 -0.00013 -0.00180 0.00413 0.00302 -0.00037 
RbB02a 0.80308 - -0.00954 0.00172 0.00309 -0.00462 0.00166 0.00090 
RbF02j 0.98482 0.69006 - -0.01376 -0.00930 0.00167 -0.00799 -0.00725 
RbF02a 0.54273 0.44199 0.99660 - 0.00169 0.00306 0.00597 -0.00199 
RbJ05j 0.71887 0.43760 0.92758 0.30580 - 0.00194 0.00514 0.00089 
RbJ05a 0.25226 0.65480 0.41008 0.27149 0.38466 - 0.01003 0.00168 
RbN05j 0.31923 0.45013 0.77496 0.12481 0.21460 0.10698 - -0.00336 
RbN05a 0.57774 0.47520 0.86955 0.77431 0.42017 0.38591 0.70834 - 
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4.3.6 Fine spatial and temporal population structure 

FST-based AMOVA in ARLEQUIN revealed significant genetic variation in 9˚N EPR 

resident populations at the within populations and within individuals levels (ΦIS = 4.2%, 

ΦIT = 4.1%; Table 4.14a). There was no significant structure at any level of comparison 

among the 86˚W GAR populations (Tables 4.14b-c). 

 

In comparisons among the different years’ subpopulations at Tica, significant genetic 

structure was found among years, within cohorts, and within individuals (ΦCT = 0.4%, 

ΦIS = 3.3%, ΦIT = 3.3%; Table 4.14d). When possible survivors of the 2005 eruption 

were removed from the 2007 Tica resident subpopulation, FST-based AMOVA variance 

remained significant (ΦCT = 0.3%, ΦIS = 3.0%, ΦIT = 3.0%). There was no significant 

variance at any level of comparison among different years at the Rosebud population 

(Tables 4.14e-f). 

 

STRUCTURE was unable to resolve fine spatial samples or temporal samples into distinct 

populations within a ridge segment or across multiple years at a single site, respectively. 

 

PCA of pairwise FST values was used to determine how colonist and resident 

subpopulations clustered with one another. No population structure was visually 

apparent, nor was there significant variation along any principal component axis, within 

ridge segments or among subpopulations through time. 

 

4.3.7 Isolation, migration, and population bottlenecks 

No isolation by distance pattern was apparent at the within ridge segment spatial scale at 

9˚N EPR or at 86˚W GAR. There was no isolation by time trend at the Tica site. Because 

the Rosebud temporal samples only consisted of two time points, the Mantel test was not 

applied. 
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Table 4.14 FST-based analysis of molecular variance. Bold values are significant at 
5% nominal alpha level (ARLEQUIN: 20022 permutations). 

      
a. Group 1 = TI00, EW00, CC00 

Source of Variation df Variance % F   

       
Among populations 2 -0.00309 -0.08 FST = -0.00082 
       
Within populations 99 0.15947 4.23 FIS = 0.04227  
       
Within individuals 102 3.61275 95.85 FIT = 0.04149  
       
Total 203 3.76913 - -   
      
b. Group 1 = RbJ05j & a, 2 = RbJ05j & a, 3 = GoE05j & a 

Source of Variation df Variance % F   

       
Among populations 2 0.00956 0.26 FST = 0.00262 
       
Within populations 100 0.05243 1.44 FIS = 0.01440  
       
Within individuals 103 3.58738 98.30 FIT = 0.01699  
       
Total 205 3.64937 - -   

 
c. Group 1 = RbJ05, RbN05, GoE05 

Source of Variation df Variance % F   

       
Among populations 2 0.00942 0.26 FCT = 0.00258  
       
Among "cohorts" 3 0.00027 0.01 FSC = 0.00007  
     within populations      
       
Within "cohorts" 97 0.05230 1.43 FIS = 0.01437  
       
Within individuals 103 3.58738 98.30 FIT = 0.01699  
       
Total 205 3.64937 - -   
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d. Group 1= TI00j & a, 2 = TI02j & a, 3 = TI04j & a,  
 4 = TI05j & a, 5 = TI07j & a 

Source of Variation df Variance % F   

       
Among years 4 0.01339 0.36 FCT = 0.00355 
       
Among "cohorts" 5 -0.01313 -0.35 FSC = -0.00349 
  within years      
       
Within "cohorts" 171 0.12299 3.26 FIS = 0.03260 
       
Within individuals 181 3.64917 96.73 FIT = 0.03267 
       
Total 361 3.77242 - -   

 
e. Group 1= Rb02, Rb05  

Source of Variation df Variance % F   

       
Among years 1 0.00281 0.08 FST = 0.00077  
       
Among individuals 121 0.04079 1.11 FIS = 0.01112  
  within years      
       
Within individuals 123 3.62602 98.81 FIT = 0.01188  
       
Total 245 3.66961 - -   
      
f. Group 1= Rb02j & Rb02a, 2 = Rb05j & Rb05a 

Source of Variation df Variance % F   

       
Among years 1 0.01053 0.29 FCT = 0.00287  
       
Among populations 2 -0.01255 -0.34 FSC = -0.00343  
  within years      
       
Within populations 119 0.04555 1.24 FIS = 0.01241  
       
Within individuals 123 3.62602 98.81 FIT = 0.01186  
       
Total 245 3.66955 - -   
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Estimation of the number of migrants per generation (Nm) along the 9˚N EPR ridge 

segment using the private allele method implemented by GENEPOP ON THE WEB and 

corrected for sample size suggested moderate gene flow of approximately 9 migrants per 

generation among the resident populations. Along the 86˚W GAR ridge segment, this  

method also suggested moderate gene flow among populations of approximately 9 

migrants per generation. The estimated number of Galápagos colonist migrants 

exchanged per generation was equivalent to that of the residents (~4). 

 

BOTTLENECK analyses revealed heterozygosity excess across all 9˚N EPR ridge segment 

scale populations and within the 86˚W GAR Rosebud Marker N and Garden of Eden 

subpopulations but not within the Rosebud Marker J demes. Upon closer examination, 

heterozygote excess particularly in 3 loci (R2D12, R2E14, and Rpa10CA07) contributed 

to the overall pattern. 

 

At the temporal scale, each year’s sample at Tica and Rosebud had significant 

heterozygote excess. 

 

4.3.8 Cohort relatedness 

Pairwise allele sharing coefficients were generated for colonists and residents sampled at 

the same location and time as the pairwise FST values between subpopulations collected at 

the same location (e.g., Tica, 9˚N EPR; Rosebud, 86˚W GAR) showed non-significant 

differences ranging from (-0.00727 to 0.00134) (Table 4.13). All animals of the same 

location were used to generate the expected values of the allele sharing coefficient (Table 

4.15). For Tica these values were for half-sibs 0.19 for full-sibs 0.43, for Rosebud half-

sibs 0.24 and full sibs 0.47.  

 

In 4 out of 10 subpopulations at Tica significantly more half-sibs were found than in a 

randomly generated group of the same size. At Rosebud, all 6 subpopulations showed 

significantly more half-sibs than in a randomly generated group. The number of full sibs  
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Table 4.15 Relatedness within subpopulations. Observed number of pairwise 
comparisons that exceeded the expected value of  Mxy exp of a group of 
randomly generated half sibs. Mxy exp for 9˚N EPR = 0.19 and for 86˚W GAR = 
0.24. The value for full sibs was 0.43 and 0.47 for 9˚N EPR and 86˚W GAR.  
 

Subpopulation Sampling 
period Stage n Observed pairs 

of half sibs P 

9NTI00j 2000 colonists 18 10 0.012 * 
9NTI00a 2000 residents 31 44 0 *** 
9NT02j 2002 colonists 15 33 0 *** 
9NT02a 2002 residents 42 94 0.357 
9NT04j 2004 colonists 7 0 1 
9NT04a 2004 residents 26 25 0 *** 
9NT05j 2005 colonists 4 0 1 
9NT05a 2005 residents 16 6 0.103 
9NT07j 2007 colonists 7 0 1 
9NT07a 2007 residents 15 6 0.069 

86WRb02j 2002 colonists 54 281 0 *** 
86WRb02a 2002 residents 10 14 0 *** 
86WRbJ05j 2005 colonists 17 30 0 *** 
86WRbJ05a 2005 residents 10 13 0.001 ** 
86WRbN05j 2005 colonists 9 8 0.016 * 
86WRbN05a 2005 residents 23 63 0 *** 

      
Significance at 5% (*), 1% (**), and 0.1% (***) 

 

was not significantly different in any subpopulation at any location. The increased degree 

of relatedness was not only found in subpopulations consisting of colonists but also in 

resident adults. 

 

4.3.9 Summary of results 

In summary, all loci were in HWE for all populations. Greater allelic diversity was 

present at 9˚N on the East Pacific Rise than at 86˚W on the Galápagos Rift, consistent 

with previous inter-ridge comparisons (Chapter 3). Though non-significant, colonist 

cohorts tended to be more genetically diverse than were mixed resident cohorts. 

155



 

Moreover, cohorts sampled at the same site or in the same year along a ridge segment 

were undifferentiated. 

 

Variation was minimal among populations within ridge segments in the eastern Pacific 

and had no isolation by distance signal, suggesting high gene flow at a spatial scale of 

10s to 100s of meters, though allele frequencies showed subtle variation at 86˚W GAR. 

Comparison between the Rosebud Marker N colonists and two other subpopulations were 

responsible for this signal. Bottlenecks were suggested in all subpopulations at 9˚N EPR 

and 86˚W GAR, with the exception of at Rosebud Marker J. 

 

Temporal variation was also minimal at the Tica 9˚N EPR and Rosebud 86˚W GAR vent 

sites. While allele frequencies may differ among years over all populations at Tica, 

stemming from small non-significant variation between the 2004 and 2007 residents, 

there was no differentiation detected between Rosebud samples. Colonists sampled at 

Tica were more similar to one another regardless of sampling year than were residents 

collected at different years. Resident populations grew more distinct from each other as 

time progressed, although comparisons between them were non-significant. There was no 

genetic signal detected among populations collected before and after the extensive 2005-

2006 9˚N EPR seafloor eruption, though all subpopulations displayed evidence of recent 

bottlenecks. 

 

Estimates of relatedness were high among samples at a single site and consistent 

throughout the sampling period of 2 to 7 years. In particular, there were more half-sibs at 

Tica and Rosebud than expected by chance in both resident and colonist cohorts. 
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4.4 Discussion 

4.4.1 Higher genetic diversity on fast-spreading ridge 

As found in Chapter 3, Riftia exhibits high genetic diversity throughout the sampled 

locations and years. Allelic richness is consistently greater on the 9˚N East Pacific Rise 

segment than along the 86˚W Galápagos Rift segment. Less variation on the GAR could 

be accounted for by smaller effective population size (Ne), fewer and less diverse source 

populations, a more recent founder event, greater selection against alleles that are rare on 

the EPR, or more infrequent habitat perturbations for which greater genetic diversity 

would be advantageous to population recovery (Reusch et al. 2005, Hughes et al. 2008). 

Differences in effective population size and in the frequency of habitat turnover are 

suspected to be the most reasonable explanations, as venting is less robust and the 

spreading rate is slower on the GAR, though more work will have to be conducted to test 

these hypotheses. 

 

4.4.2 Low level patchiness within ridge segments and among 
sampling years 

In species with long-distance planktonic dispersal, fine-scale chaotic genetic patchiness 

(i.e. variation in allele frequencies among populations at scale of tens of meters that is 

inconsistent among loci, sites, or years) can result from temporal variation in numbers 

and genotypes of recruits (Johnson & Black 1982). Levels of temporal habitat variability 

as found in estuaries can also drive fine-scale genetic differentiation (Darling et al. 2004). 

Contrary to the expectations of Riftia population subdivision on scales of 410 m to 19 km 

evidenced by Shank and Halanych (2007) on the EPR, there were no significant FST 

differences found among populations at the 86˚W GAR segment. However, overall genic 

and genotypic variation suggests that there is an underlying stochastic genetic patchiness 

to this system, with alleles and genotypes unevenly distributed. Within the 9˚N EPR 

segment, genetic variance was greatest within populations and within individuals. If more 
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colonists had been sampled from the 9˚N EPR segment, variation among those 

populations may have also been recognized. 

 

Shank and Halanych (2007) used very few individuals from their two 9˚N EPR sites and 

their primary subpopulation clusters were later recognized to consist of individuals < 10 

cm in length. This level of genetic variation in arriving cohorts could be accounted for by 

the fact that each 9˚N EPR site was sampled a year apart in their study. However, even 

within the same year’s sample at the East Wall site, their four smallest individuals 

clustered separate from their two individuals > 10 cm, indicating between-cohort 

structure that should have been detected in the present study. Colonist cohorts from Tica, 

Choo Choo, and East Wall should be collected for future microsatellite analysis in order 

to fully compare these results to those of Shank and Halanych (2007). 

 

The absence of isolation by distance at the intra-segment spatial scale reflects the lack of 

isolation at the ridge scale (see Chapter 3). As observed in other species, detection of IBD 

in Riftia appears to hinge upon the scale of individual dispersal behavior in concert with 

other population processes (O. Puebla, OSM 2008; North et al. 2008; also see Denny et 

al. 2004 for discussion of scale in ecology). The scale of 10s to 100s of meters considered 

here does not appear to be large enough for an IBD pattern to emerge in Riftia. 

 

Chaotic genetic patchiness from large variance in reproductive success (e.g., high 

fecundity and stochastic oceanographic conditions) can lead to rapid changes in 

population genetic composition (Planes & Lenfant 2002), but that was not observed in the 

present Riftia dataset. In the Tica samples, divergence among subpopulations (genic 

differentiation) and among sample years (AMOVA) was detected. Rosebud populations 

were genetically homogeneous on the temporal scale considered. Additional Rosebud 

sample years would be useful to further test the stability of its population diversity. As in 

the pre- and post-eruption samples from the Tica site, multiple marine studies found no 

temporal genetic differentiation between cohorts within a population, despite 
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demographic population reduction (Ruzzante et al. 2001, Cassista & Hart 2007, Derycke 

et al. 2007, Kusumo et al. 2006). A small but significant difference among years 

(AMOVA) suggests that cohorts may be differentiated from each other within a region, 

but specific cases were restricted to a subset of year classes. 

 

Homogeneity in genetic composition can result from high gene flow among populations 

or from historical patterns of colonization from a common source (if time since 

separation has not been sufficient for drift or accumulation of novel mutations). However, 

genetic homogeneity does not necessarily imply that a population is panmictic or is 

acting as a single demographic unit and can therefore be replenished by individuals from 

any part of the population; so called “sink” populations are maintained only by 

immigration from up-current (Pringle & Wares 2007). It can also be the result of 

extinction-colonization dynamics—with frequent extinctions and mixed-stock founders 

or recurrent dispersal from a common source (Newman & Squire 2001). Non-equilibrium 

(gene flow-genetic drift) dynamics can set up conditions under which populations appear 

genetically homogenous but actually have a low migration rate, as in the gag grouper in 

the tropical Atlantic (E. Sotka, OSM 2008). These non-equilibrium conditions are likely 

to be highly influential in Riftia. 

 

It is alternately possible that regional-scale genetic homogeneity overwhelmed a weak 

contribution of among-cohort genetic variation to population structure (Cassista & Hart 

2007). Although the sampling design of colonists restricted collections to the smallest 

and presumably youngest individuals, it is also possible that spatial and temporal 

variation was confounded with some degree of uncaptured post-settlement selection (Gilg 

& Hilbish 2003b). The high mutation rates in Riftia’s microsatellite markers may further 

limit resolution of weak genetic structure due to increased allele size homoplasy 

(O’Reilly et al. 2004), as discussed in more detail in the Chapter 5. 
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4.4.3 Influence of seafloor eruptions and metapopulation dynamics 

Given the instability of hydrothermal vent habitats, it is not surprising that bottlenecks 

can be inferred for all populations. A recent eruption on the GAR in 2000 created the 

Rosebud community and two eruptions on the EPR in 1991 and 2005 similarly affected 

the 9˚N communities. However, a reduction in allele number or elimination of rare alleles 

was not observed coincident with these events. High levels of disturbance similarly have 

no impact on the genetic structure of a pioneer rainforest tree, where gene flow was 

inferred not to be limiting (Born et al. 2008b). Again, mutation-drift disequilibrium can 

be created by the observed population expansion in Riftia quickly following population 

reduction (Busch et al. 2007). As a result, populations may have high genetic variation 

within them and negligible subdivision between them. Specifically, allelic diversity can 

be maintained by a variety of processes, including single genetically diverse larval influx 

from multiple source populations, influx from one genetically diverse source population, 

or multiple introduction events (Holland 2001). Higher reproductive success in smaller 

populations is another mechanism by which less genetic diversity is lost during 

population bottlenecks (Jehle et al. 2005). Collections of embryos and larvae will be 

necessary to evaluate reproductive success directly in the future. Nevertheless, it is 

predicted that as all sampled Riftia resident populations exhibited high allelic variability, 

parental diversity is likely to influence the composition of future colonist cohorts, 

regardless of the particular reproductively successful adults. 

 

An alternative expectation would be that if sites within a ridge segment experienced 

different rates of turnover, they would exhibit heterogeneity at short spatial scales (Watts 

et al. 1990). That not being evidenced in Riftia suggests that the metapopulation 

processes often invoked in hydrothermal vent systems (Jollivet et al. 1999) may not 

substantially reduce neutral genetic diversity (Jehle et al. 2005). Instead, under a 

heterogeneous or changing set of selective conditions, a highly variable assortment of 

genotypes is predicted to be adaptively and evolutionarily stable, increasing the 

probability of successful establishment (Holland 2001). 
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Lastly, if significant divergences had arisen between adult and juvenile cohorts (e.g., 

Hedgecock et al. 2007), such differences could have been consistent with “sweepstakes” 

reproductive success. This mechanism of reproductive success by a small number of 

adults is consistent with the finding of excess heterozygosity, but neither less allelic 

diversity within nor more heterogeneity among colonist cohorts as compared to resident 

populations was evident in Riftia. Moreover, loci were in gametic phase equilibrium. In 

order to investigate this discrepancy with expectations, the proportions of full- and half-

sib relationships in recent colonists were next examined. 

 

4.4.4 Settlement as related larval cohorts 

The elimination of excess homozygotes in a population could result from a temporal 

Wahlund effect—young settlers originate from only a couple families, while older 

individuals come from a mix of several families (Planes & Lenfant 2002). In the system 

presented here, the combined factors of (1) low FST values between colonists and resident 

adults collected at the same site, (2) modeled currents that transport advective particles 

(larvae) back to the ridge crest (Jackson et al. in prep), (3) extensive heterozygote excess, 

(4) strong assignment of colonists to their collection location especially at the 86˚W GAR 

site (Chapter 3), and (5) the previous genomic fingerprinting which found unresolved 

polytomies in the smallest Riftia cohorts (Shank & Halanych 2007), motivated us to 

consider the possibility of siblingship within settling cohorts. By analysing the allele 

sharing coefficient Mxy, it was revealed that many subpopulations sampled at the same 

location and time consisted of half sibs. Individuals in 10 out of 16 subpopulations shared 

significantly more alleles than had they been derived from randomly generated groups. 

Such a result is consistent with a subset of “clouds” of larvae spawned and released at the 

same time remaining together as a coherent group during their mobile stage and settling 

next to each other. 

 

If a high level of relatedness is maintained at vent sites, heterozygote deficiencies and a 

greater potential for inbreeding would be expected, as is common to species with 
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planktonic gametes (Addison & Hart 2005). In contrast, the heterozygote excess found in 

the present study leads to the hypothesis that despite the close proximity of relatives and 

several groups of related cohorts that may be transported together as larvae, mating is still 

likely to be random. 

 

Low genetic differentiation found within ridge segments, with significant isolation 

between ridges (Chapter 3), is also consistent with the predominance of local retention 

and periodic among “island” migration (Rivera et al. 2004). Short-distance dispersal of 

woody tree seeds has also been reported to result in the presence of half-siblings near 

their parents (Born et al. 2008b). At 9˚N EPR, assignment tests had not been as strongly 

suggestive of retention as at 86˚W GAR, suggesting that EPR larval cohorts may be more 

widely dispersed or preserve the genetic signature of more historical mixing events than 

GAR cohorts. However, both EPR and GAR subpopulations exhibit more relatedness 

within subpopulations than expected under random conditions. Dispersal and settlement 

as aggregated sibling cohorts was also suggested in the preliminary genomic 

fingerprinting study which led to the more spatially and temporally constrained work 

discussed here (Shank & Halanych 2007). Allele frequencies among colonist cohorts are 

remarkably consistent over time, which could indicate a stable source population (Gilg & 

Hilbish 2003b). Yet the marked genetic diversity and history of metapopulation dynamics 

at these vents may make traditional island or stepping-stone models of dispersal obsolete 

(Hellberg 2006). 

 

4.5 Conclusions 

Considering local and temporal patterns, subtle genetic variation with underlying 

homogeneity and high diversity were found among Riftia populations along a ridge 

segment and through time. The prevalence of larval retention (on scale of 10s to 100s 

meters) and dispersal in discrete related cohorts ensures that a network of populations are 

maintained and ecologically connected in spite of frequent local extinctions and a 

disjunct habitat (metapopulation dynamics). 
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Future work should consider Riftia post-settlement mortality in order to determine its 

timing and influence on cohorts. On the sampling scales of this study, selective processes 

that occur soon after settlement may have been missed; if present, these will be important 

to quantify with respect to the hypothesis of local retention. Coupling high-resolution and 

dynamic modeling of currents from small to large scales will further inform the delivery 

mechanisms of larvae to vents. Lastly, the role of non-equilibrium dynamics at vents 

requires further investigation. The incorporation of historical coalescence and simulation 

of other non-equilibrium processes may be useful in tracking the emergence of current 

patterns (E. Sotka, OSM 2008). 
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Chapter 5 
 

Concluding remarks 

The general goal of this thesis was to analyze spatial and temporal population genetic 

patterns and the processes governing them at ephemeral and disjunct habitats. To do this, 

I considered cohorts of a dominant macrofaunal species at deep-sea hydrothermal vents 

in the equatorial eastern Pacific, the siboglinid tubeworm Riftia pachyptila, for which a 

time series of samples was available. Samples were also collected on two ridge systems 

over spatial scales of tens of meters to hundreds of kilometers, enabling examination of 

the effect of distance on population genetic structure. A significant seafloor eruption 

during the seven-year sampling period allowed investigation into the role of local 

extinction in population genetic diversity at the Tica vent site at 9˚N EPR, while Riftia 

collections within two and five years of an eruption that created the Rosebud vent field at 

86˚W GAR provided insights into genetic diversity input over population establishment. 

 

5.1 Summarized findings 

This thesis has developed a suite of 12 hypervariable neutral molecular markers 

presumed to be representative of Riftia’s entire genome and capturing high levels of 

genetic diversity within the northern portion of its species range (Chapter 2). Eight of 

these microsatellite loci were applied to a regional scale population genetic study of 

recent colonist and resident adult cohorts at five sites. For the first time, genetic 

differences between Riftia populations on the East Pacific Rise and Galápagos Rift could 

be shown (Chapter 3). More importantly, the separate treatment of colonist and resident 

subpopulations revealed a high potential for local larval retention at vent sites. This 

mechanism for recruitment likely sustains disjunct populations and supports the 

recolonization of locally extinct areas after disturbance events, while episodic long-

distance dispersal maintains genetic coherence of the species. Building on the hypothesis 
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of local recruitment, population genetic analysis was extended to fine-scale spatial 

comparisons at three sites within each of the 9˚N EPR and 86˚W GAR segments and to 

temporal comparisons over two to seven years the 9˚N EPR Tica and 86˚W GAR 

Rosebud vent sites (Chapter 4). Temporal population genetic consideration at the Tica 

site on the East Pacific Rise spanned a 2005-2006 seafloor eruption, which had little to no 

discernable effect on local population genetic composition. Local populations appear to 

exhibit a small degree of genetic patchiness, with a high degree of relatedness among a 

subset of individuals within both colonist and resident cohorts (half-sibs). 

 

5.2 Barrier to gene flow between the East Pacific Rise and 

Galápagos Rift 

A potential barrier to gene flow in Riftia (e.g., larval dispersal barrier) exists between the 

East Pacific Rise and the Galápagos Rift populations considered in this thesis. EPR and 

GAR Riftia populations consistently fell as two entities, with the resident genetic signal 

primarily acting to differentiate the two groups. Exact tests of genic and genotypic 

differentiation, variation along the first principal component axis of a PCA, individual 

partitioning in STRUCTURE analysis, and multi-locus estimates of FST and RST revealed 

significant differences between the two ridge population assemblages. Small (less than 

3% FST) but significant genetic distance between Riftia populations on the EPR and GAR 

may indicate that long-distance larvae originating from one ridge may occasionally 

colonize hydrothermal vent sites along the other ridge, but the preponderance of evidence 

here suggests that populations on each ridge system are primarily self-seeding on a 

mesoscale level (as in Johansson et al. 2008) and that gene flow between them is a relict 

of historic processes. 

 

Within a ridge system, however, low genetic differentiation suggests that cohorts are well 

mixed and gene flow is extensive. The pooled EPR populations displayed significant 

overall genic differentiation; yet, this signal disappeared when colonists and residents 

were considered separately. Non-significant, but roughly 1%, genetic differentiation 
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(patchiness), existed between 21˚N EPR and other EPR populations to the south. Visually 

apparent from the PCA, but also non-significant, was the more distant arrangement of 

13˚N from 21˚N EPR subpopulations. The 9˚N EPR ridge segment populations were 

homogenous in terms of genic and genotypic variation, but overall significant genic 

variation was present on the 86˚W GAR segment. No significant FST differences were 

found among intra-segment populations, nor was IBD apparent on that scale. 

 

I propose the following scenarios for establishing the genetic patterns described above: 

• A young population such as Rosebud may be founded by a stochastic dispersal 

event from an EPR-like population—and perhaps one that was not sampled or 

was otherwise undetected—leaving that signal of genetic similarity in the original 

residents; recent colonists will more likely arrive from nearby GAR populations, 

which have already established a genetic signal distinct from the EPR. Although 

vents on these two ridge systems provide a similar chemical milieu, focused black 

smoker flow is not present in the 86˚W GAR region. As such, the cue for larval 

settlement may be weaker and more localized at the GAR than at the EPR, 

favoring recruits from nearby vents. 

• Meanwhile, the Garden of Eden population has had time to assemble itself and 

differentiate from the EPR. In 2005, extensive Riftia assemblages at Garden of 

Eden contained the largest recorded tubeworms (> 2 m, pers. obs. T. Shank), 

suggesting they might be part of a long-lived, robust population, first observed at 

this site in 1977 (Corliss et al. 1979). At ~20 years old, this population may be at 

a stage in development in which it is likely to act as a source population for 

nearby and nascent sites. 

• The 21˚N ridge segment has been active for at least 300 years with a spreading 

rate of 60 mm/yr, but a short shift in activity likely occurred over the past century, 

followed by several decades of continuous flow (Desbruyères 1998). As such, 

there has been time to receive limited input from distant vent populations to the 
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south, though genetic similarity to other populations on the EPR could also be a 

relict of historic dispersal processes predating the Rivera Fracture Zone. 

• Vents at 13˚N experienced instabilities in fluid flux between 1982 and 1990 

(Fustec et al. 1987, Desbruyères 1998) and a resurgence of hydrothermal activity 

in the 1990s (Voight et al. 2004), but it is hypothesized that two centuries ago the 

13˚N segment was relatively stable. Less punctuated disturbance could have 

prevented the settlement of early colonists like Riftia, thus precluding significant 

gene flow from other areas. 

 

5.2.1 Influence of larval transport on oceanographic currents 

Coupled with these genetic findings and predictions of population establishment and 

persistence based on geological observations, the physical oceanographic setting requires 

consideration in respect to larval transport among vents. Correlations of strong along-axis 

flow with daily larval supply support the prediction of primary larval supply from local 

sources (1-2 km) in other hydrothermal vent taxa, while entrainment by mesoscale eddies 

(apparently generated along distant storm tracks; Palacios & Bograd 2005) may facilitate 

transport between vents hundreds of kilometers apart two to three times a year (Adams 

2007, Adams & Mullineaux 2008). Moreover, deep current models on the East Pacific 

Rise have predicted that along-ridge flow reversals likely retain most larvae within tens 

of kilometers of their source population, while larvae that remain longer in the water 

column have a greater likelihood of being swept off-axis and lost to the ridge system 

(Marsh et al. 2001, Thiébaut et al. 2002, Mullineaux et al. 2002). Larvae that remain near 

the EPR’s ridge axis may be dispersed by tidal reversals on the order of 100 km (SSE, 

half as much to NNW) along axis, except for at 13˚N, where sustained SSE flows and a 

longer larval lifespan could extend Riftia’s potential dispersal up to 245 km (Marsh et al. 

2001, Mullineaux et al. 2002). Outside the axial rift valley, larvae are likely transported 

away from their natal vents by tidal currents, in which mixing could homogenize larval 

abundance on scale of 100s m (Mullineaux et al. 2005). However, recent tracer 

experiments have followed plume advection 80 km off-axis and subsequently returned to 
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the ridge crest within 50 km of the site of origin (Jackson et al. in prep). The combined 

factors of along-axis flow with periodic reversal and stochastic eddy passage could 

primarily retain larvae at a local scale while preserving high genetic heterozygosity in the 

eastern equatorial Pacific, as evidenced in our results. 

 

Plume-level dispersal of vent larvae could be important for initial colonization and the 

maintenance of species between distant vent habitats, while local recruitment from 

nearby populations may be more important to the growth of new populations and the 

maintenance of those already in existence (Kim & Mullineaux 1998, Mullineaux et al. 

2005). As the populations included in the present study were established years before the 

time of sampling, it is unlikely that larval inputs stemming exclusively from buoyant vent 

plumes were sampled. 

 

5.2.2 Moderate migration rates versus non-equilibrium dynamics 

Homogeneity in genetic composition can result from high gene flow among populations 

or from historical patterns of colonization from a common source (if time since 

separation has not been sufficient for drift or accumulation of novel mutations). However, 

genetic homogeneity does not necessarily imply that a population is panmictic or is 

acting as a single demographic unit and can be the result of extinction-colonization 

dynamics—with frequent extinctions and mixed-stock founders or recurrent dispersal 

from a common source (Newman & Squire 2001). 

 

As the estimated level of Riftia larval migration in this study is moderate (~10 

migrants/generation), it could be sufficient for gene flow to counter genetic drift at local 

populations. Yet similar broad spatial homogeneity and significant differentiation at only 

on the largest geographic scale of a study’s consideration has also been found in surf 

clams (Cassista & Hart 2007). In that case, the level of migration between populations 

needed to homogenize allele frequencies between them is much lower than that needed to 

replenish exploited populations by dispersal. Likewise, Riftia populations that experience 
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contraction or local extinction may be able to be recolonized by small larval input and 

still maintain genetic homogeneity. 

 

This variety of non-equilibrium (gene flow-genetic drift) dynamics can establish 

conditions under which populations appear genetically homogenous but actually have a 

low migration rate, as in the gag grouper in the tropical Atlantic (E. Sotka, OSM 2008). 

Historical population expansion is able to mask low levels of migration and give an 

upward bias to gene flow estimates. Such non-equilibrium conditions are likely to be 

highly influential in Riftia given its environmental setting of frequent habitat turnover. 

Thus, the level of genetic polymorphism and its spatial distribution is predicted to vary 

over time and blur the signature of past demographic events with present gene flow. The 

necessary approach to interpreting contemporary genetic structure must include 

consideration of these complex ecological interactions. 

 

5.3 Local larval retention and transport with related individuals 

This thesis suggests that local larval retention (10s-100s meter scale) plays a key role in 

establishing and maintaining Riftia populations, while limited gene flow exists on longer 

timescales between ridge systems in the eastern Pacific. Colonists were most genetically 

similar to residents sampled at the same (and next proximate location), as were cohorts 

sampled in the same year within a ridge segment (FST; nonparametric van der Waerden 

test comparing mean FST of colonists with local versus more distant resident populations; 

PCA clustering of colonists with residents from the same sampling location). Within a 

ridge system, colonists are also more similar to other colonists than residents are to other 

residents (FST). The majority of self-assigned colonists (53.8% overall colonist 

assignment to the resident adult subpopulation at the same location) were found in the 

GAR population, suggesting particular fidelity at the Rosebud site, while the 21˚N and 

9˚N EPR assignments were less dramatic, perhaps owing to mesoscale eddy mixing, but 

suggest that some recruits are nevertheless retained. 
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Considered in summation, the consistency of these results with localized genetic 

heterogeneity might reflect different rates of population turnover and degrees of 

patchiness, with genetically homogeneous cohorts and recruits encompassing less 

variation (seen in STRUCTURE‘s lack of recruit partitioning) than adults among sites 

(Watts et al. 1990). These processes support the case for local retention, in that larvae 

tend to settle at their natal population but occasionally travel longer distances, creating 

the low differentiation observed among adult cohorts. I propose that the larval cohorts 

lack genetic signatures unique to their site of origin due to the evolutionarily well-mixed 

genetic composition of standing populations. 

 

Beyond evidence for high genetic similarity between colonists and resident adults at the 

same site, extensive heterozygote excess, strong assignment of colonists to their 

collection location especially at the 86˚W GAR site, previous genomic fingerprinting 

which found unresolved polytomies in the smallest Riftia cohorts (Shank & Halanych 

2007), and modeled currents that transport advective particles (larvae) back to the ridge 

crest (Jackson et al. in prep), “clouds” of larvae spawned and released at the same time 

may remain together as a coherent group during their mobile stage and settle next to each 

other upon metamorphosis. Estimates of relatedness were high among samples at a single 

site and consistent throughout the sampling period of 2 to 7 years (4 out of 10 Tica 

subpopulations and all 6 Rosebud subpopulations had significantly more half-sibs were 

found than in a randomly generated group of the same size), but the number of full sibs 

was not significantly different in any subpopulation at any location.  

 

Dispersal in discrete larval cohorts that include aggregated siblings ensures that a 

network of populations are maintained and ecologically connected in spite of frequent 

local extinctions and a disjunct habitat (metapopulation dynamics). Weak assignment at 

9˚N EPR was not as strongly suggestive of retention as at 86˚W GAR, suggesting that 

EPR larval cohorts may be more widely dispersed or preserve the genetic signature of 

more historical mixing events than GAR cohorts. The heterozygote excess found in the 
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present study leads to the hypothesis that despite the close proximity of relatives and 

larval transport as related cohorts, mating is still likely to be random (contrast with 

Addison & Hart 2005). I propose that like pioneer rainforest trees in Africa, a high 

proportion of Riftia adults contribute to colonist establishment within a vent site or 

segment, thereby creating stable heterozygosity and allelic richness (Born et al. 2008). 

Such absence of a founder effect despite metapopulation dynamics can be accomplished 

through a combination of local retention and aggregated cohort dispersal, coupled with 

high fecundity and contributions of overlapping generations. 

 

5.4 Ecological and evolutionary genetic connectivity 

Proximity to other Riftia populations and the ability to settle as related cohorts through 

local retention and along-axis dispersal likely allows a high degree of genetic 

connectivity on ecologically and demographically relevant scales. Despite variations in 

vent chemistry and fluid flow and recent local extinctions, Riftia temporal variation was 

also minimal at the Tica 9˚N EPR and Rosebud 86˚W GAR vent sites over periods of 

three to seven years. There was no differentiation detected among years at Rosebud, with 

populations or subpopulations pooled by year or separated as discrete patches by their 

collection marker and year. However, in the Tica samples, divergence among 

subpopulations & pooled years (genic differentiation), and also among sample years 

(AMOVA), was detected. Pairwise temporal FST values were not significant, but the 

largest difference was detected at Tica between 2004 and 2007 residents. Allele 

frequencies among colonist cohorts were remarkably consistent over time, which could 

indicate a stable source population (Gilg & Hilbish 2003). Stepping-stone dispersal does 

not seem to be the mechanism for maintaining genetic cohesiveness across northern EPR 

and GAR Riftia populations over evolutionary time but may be responsible for 

biologically important genetic differences with ecological significance (as in Purcell et al. 

2006). It is more likely that the marked genetic diversity and history of metapopulation 

dynamics at these vents may make traditional island or stepping-stone models of 

dispersal obsolete (Hellberg 2006).
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Figure 5.1 Conceptual model of Riftia dispersal and colonization on the East Pacific Rise and 
Galápagos Rift. Gene flow and population genetic connectivity are proposed to be higher on the 
EPR due to a higher rate of habitat and population turnover (metapopulation dynamics of 
extinction and colonization promoting genetic diversity) and longer-range dispersal via periodic 
mesoscale eddy passage driven by distant storms, and hydrothermal buoyant plume entrainment 
from more prevalent black smokers. Mean flow reversals and along-axis currents serve to 
transport larvae short to intermediate distances, sometimes returning related colonists to their 
populations of origin. Meanwhile, on the GAR, the notable paucity of storm tracks and black 
smokers, combined with a longer life expectancy of vent fluid sources due to few magmatic and 
tectonic disturbances, are proposed to favor larval retention. Stochastic or historical long-distance 
dispersal events preserve species genetic coherence among EPR and GAR populations. MPT, 
metapopulation turnover, LDD, long-distance dispersal (> 200 km), MSD, mesoscale dispersal 
(50-200 km), SDD, short-distance dispersal (10-50 km), R, retention (< 10 km). 
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5.5 Conceptual model of Riftia dispersal and colonization 
In order to visualize the complex interplay of processes influencing the population 

genetic structure of Riftia at vents, I have outlined a conceptual model for dispersal, 

retention, and colonization (Figure 5.1). This model highlights the proposed dominance 

of larval retention within the GAR and mechanisms for population genetic connectivity 

along the EPR. Future studies should investigate the relative importance of each 

hypothesized process in establishing and maintaining the overall population genetic 

structure observed within these ridge systems. Additionally, the effect of gamete release 

and larval behavior at a local scale should be considered in relation to these larger scale 

processes. 

 

5.6 Comparisons with historical study design and previous 

genetic patterns in Riftia 

The traditional markers (allozymes, mtDNA) selected for historical population genetic 

studies of Riftia exhibited low levels of variability and subsequently concluded high gene 

flow exists through most of Riftia’s species range. Black et al. (1994) observed slight 

isolation by distance with an intermediate rate of gene flow (Nm = 10), but the greatest 

genetic distances between populations were not in EPR-GAR comparisons, as found in 

this dissertation. These previous authors included samples from multiple years and 

pooled tubeworms both larger and smaller than 30 cm, which may have blurred their 

results. They found no significant differences between observed and expected 

heterozygosities resulting from violation of random mating, and observed heterozygosity 

decreased from north (Guaymas Basin) to south (Galápagos Rift), resulting from higher 

FIS in the south and higher gene diversity (HE) in the north (Black et al. 1994). In the 

current work, I found opposite trends, with higher observed heterozygosity and lower FIS 

in populations to the south; gene diversity is higher on the EPR than on the GAR, but 

there was no apparent trend with latitude along the EPR itself. The pattern discrepancy 

may be due to the markers chosen for each study. Perhaps allozymes tend to be more 
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diverse in stable environments, while microsatellite diversity is favored in regions of high 

population turnover. That said, Black et al. (1994) found few rare alleles (< 10%) in any 

population, consistent with frequent population bottlenecks and rapid population growth. 

However, rare alleles were prevalent my study. Higher mutation rates in microsatellite 

DNA predispose these loci to greater allele diversity than found in other molecular 

markers. Rare alleles are more likely to arise on shorter time scales in microsatellites and 

therefore have the potential to be maintained and dispersed despite demographic 

contractions. 

 

In a study ten years following Black and colleagues’ that also pooled samples collected 

over a number of years, population subdivision was found only across the Easter 

Microplate in the southern Pacific Ocean (Hurtado et al. 2004). A third allele was limited 

to the Galápagos Rift, but because most individuals from the EPR were screened with a 

restriction enzyme that cuts at a particular assumed diallelic polymorphism, that third 

sequenced allele may have been missed. Hurtado and colleagues (2004) invoke a strong 

bottleneck or selective sweep as an explanation for reduced genetic variability. As 

discussed in more detail in the following section, this thesis found high levels of genetic 

variation within populations, suggesting that there is another process compensating for 

demographic bottlenecks in Riftia, potentially local retention and metapopulation 

dynamics. 

 

Recently, Shank & Halanych (2007) demonstrated that discrete cohorts of related 

individuals could be identified in Riftia. These authors hypothesized that previous studies 

have used genetic markers insensitive to ecological scale processes (e.g., larval dispersal, 

habitat turnover), thereby under-sampling genetic diversity. Using unique genomic 

fingerprints, they found significant differences among EPR populations (Shank & 

Halanych 2007). However, their non-Mendelian fingerprinting data were unable to 

distinguish homozygous from heterozygous individuals and cannot be compared directly 

to my results. Ongoing work with autonomous nuclear loci, nuclear introns, and mtDNA 
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by Coykendall and others (2007 IRTI) is consistent with the genetic differences we found 

between EPR and GAR populations, but also is suggestive of IBD. Microsatellite markers 

developed for the current study were able to capture the unique genetic composition of 

individuals but could not differentiate among populations at the ridge-scale. These new 

loci likely belong to a class of hypervariable loci, whose utility is partially compromised 

by extreme diversity and high mutation rates. 

5.7 Microsatellite markers and genetic variation 

5.7.1 Application of hypervariable loci 

A highly variable locus is defined as one with more than 25 alleles, greater than 85% 

heterozygosity, greater than 92% expected heterozygosity, or greater than 84% mean 

within population heterozygosity (Hs) (Selkoe & Toonen 2006; Beck et al. 2003; Olsen et 

al. 2004). Low to moderate polymorphism in a locus is defined as less than 60% mean Hs 

(Olsen et al. 2004). Highly variable loci have more power to distinguish close relatives 

and to assign individuals to a source population than less variable loci, but FST estimates 

may likewise be dampened due to a high occurrence of allele homoplasy or higher 

heterozygosity (Selkoe & Toonen 2006; Olsen et al. 2004). Loci of similar heterozygosity 

should be grouped in analyses in order to limit the negative correlation between FST and 

heterozygosity (Selkoe & Toonen 2006; Olsen et al. 2004). Moreover, it is recommended 

to use FST of binned alleles or RST estimates to infer population genetic structure when 

FST appears underestimated by highly polymorphic loci (Olsen et al. 2004; Buonaccorsi 

et al. 2001). Pairwise estimates of FST can also be stratified by spatial scale in comparison 

to theoretical expectations to avoid incorrect inferences of migration rates (Olsen et al. 

2004). 

 

 In the present thesis, all or nearly all Riftia loci could be categorized as hypervariable, 

which likely dampened FST estimates across populations. However, analyses of 

relatedness and assignment were also strengthened by this extreme allelic diversity. There 

was no need to consider some loci separately, as they were all of similar heterozygosities. 
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Binning alleles into larger size ranges was not possible, given the even continuum of 

Riftia fragment lengths. The artificial division and lumping of certain alleles may not be 

appropriate in this case. I did however consider FST estimates in increments via the 

design of this study, ranging from long distance comparisons in Chapter 3 to finer 

increments in Chapter 4. Time was considered separately in Chapter 4, as well.  

 

As for the measure of population differentiation, mutation rates in hypervariable loci may 

be high enough to violate the assumptions or interpretations of population genetic 

analyses (Epperson 2005). For instance, when mutation rate is greater than or equal to 

migration rate, FST can be misinterpreted and the effective number of migrants will be 

overestimated; thus, inferences about the forces structuring populations will be incorrect 

(Olsen et al. 2004). Estimates of RST are mutation-based compared to the frequency-based 

estimates of FST, and the former account for the mutational component of microsatellites. 

Contrary to expectations, estimates of RST using these Riftia data did not reveal more 

genetic structure among population than did estimates of FST. This may be due to 

violation of equilibrium processes in systems exhibiting frequent extinction and 

recolonization. Although mutation rates were certainly high enough to generate the 

observed allelic diversity, the frequency of those alleles in populations might better 

reflect their origins. 

 

When using highly polymorphic microsatellite data, increasing the number of individuals 

sampled can decrease the coefficient of variance (and increase the precision of the 

estimate), but only to a certain point; beyond that, the returns for a larger sample size are 

diminishing, the degree determined by the extent of population differentiation 

(Kalinowski 2005). Sample size has not, however, been correlated with the proportion of 

significant comparisons (Buonaccorsi et al. 2001). The coefficient of variance can also be 

decreased by using loci with high mutation rates, but mutation rate and the level of locus 

polymorphism are independent of the contribution sample size makes (Kalinowski 2005). 

All the same, studies that include populations with small genetic divergence will need to 
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sample more individuals in order to increase the precision of estimating that 

differentiation (e.g., using 16 loci with an FST > 0.05 requires sample sizes of n~20 per 

population, while the same number of loci attempting to differentiate populations with 

FST < 0.01 will need n~100 per population to have the same precision). Deep-sea 

biologists are continuously fraught with limited access to sites and samples, but it would 

appear that there might not have been large enough sample sizes in the current work to 

routinely detect differences among populations. Finer scale structure might have been 

more apparent had more individuals been available across all sites. 

 

To make more complete use of the power and precision of these Riftia microsatellites, 

sample size should be increased to around 50 individuals per subpopulation. Future 

studies should collect more individuals so that this potential for greater resolution on the 

ridge scale can be tested. Understandably, given the dynamic nature of demographic 

bottlenecks and recolonization in vent populations, temporal studies of cohorts may not 

always have enough individuals to sample, as in case of the 2002 adult subpopulation at 

Rosebud and of both post-eruption colonists and residents in 2007 at Tica. Nevertheless, 

efforts should be taken to evenly sample representative cohorts whenever possible.  

  

5.7.2 Microsatellite variability in polychaetes 

The high proportion of hypervariable loci developed for Riftia led to the question of 

whether this may be typical of annelids or polychaetes in general. A survey of all 

published microsatellites located six other polychaete studies for comparison (Table 5.1). 

 
 
The range of observed heterozygosities in Riftia tended to be similar to that of other 

polychaetes, but mean subpopulation HO was greatest in the present study. Riftia 

expected heterozygosities all fell in the upper range of other polychaetes and its mean HE 

was similar to the tube-building, intertidal terebellid Pectinaria koreni (Weinmayr et al. 

2000). In addition, microsatellite loci in Riftia had average to above average numbers of  
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alleles. Although the mean per subpopulation allele number was low due to a few 

subpopulations with small sample sizes, total allele counts per locus were concentrated in 

the upper range of other species. The absence of low diversity loci in Riftia could have 

originated in the screening process during locus development, but the same bias for 

longer and more polymorphic loci could be similar in other studies. If it is assumed that 

highly polymorphic loci are more available in a given genome, then the likelihood for 

finding these loci increases. In that case, Riftia’s genome may be enriched in 

hypervariable microsatellite regions. The evolutionary explanation for such variability is 

unknown, but it may be that like other polychaetes from deep-sea chemosynthetic 

environments (Branchipolynoe seepensis, Seepiophila jonesi, and Lamellibrachia 

luymesi) or shallow-water estuaries (Pectinaria koreni), Riftia favors genetic diversity in 

the form of simple sequence repeats. 

 

5.7.3 Genetic variation in the survival of species 

High Riftia genetic variation, as evidenced by microsatellites, likely results from, and is a 

mechanism for, species survival in the ephemeral vent environment. Differences in 

effective population size and in the frequency of habitat turnover are suspected to be the 

most reasonable explanations for greater genetic diversity on the EPR. As a result of 

Table 5.1 Microsatellite markers variability in polychaetes. 

Polychaete species n HO HO mean HE HE mean k kmean 

Capitella capitata1 30 0.10-0.87 0.52 0.37-0.98 0.77 4-36 15.27 

Branchipolynoe seepensis2 92 0.165-0.944 0.565 n/a n/a 2-54 11.89 
Pectinaria koreni3 35 0.29-0.81 0.57 0.84-0.97 0.93 16-41 29 
Hobsonia florida4 19 0.21-0.92 0.60 0.52-0.92 0.78 6-11 8.62 
Seepiophila jonesi5 168 0.08-1.00 0.70 0.31-0.97 0.80 4-54 22.12 
Lamellibrachia luymesi5 235 0.44-0.96 0.74 0.55-0.93 0.85 12-30 20.8 
Hydroides elegans6 137 0.465-0.893 0.854 0.493-0.896 0.821 3-24 16.2 
Riftia pachyptila 469 0.4667-1.0000 0.9047 0.7895-1.0000 0.9326 18-42 15.28 

        
n, number of alleles per locus over all populations, HO and HE, observed and expected locus heterozygosities per 
subpopulation, k, number of alleles per locus over all populations. 1 Du et al. 2007 2 Daguin & Jollivet 2005 3 

Weinmayr et al. 2000  4 Olson et al. 2006 5 McMullin et al. 2004 6 Pettengill et al. 2003 
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mutation-drift disequilibrium created by population expansion quickly following 

population reduction (Busch et al. 2007), populations may have high genetic variation 

within them and negligible subdivision between them. Thus, the metapopulation 

processes often invoked in hydrothermal vent systems (Jollivet et al. 1999) may not 

substantially reduce neutral genetic diversity (Jehle et al. 2005). Instead, under a 

heterogeneous or changing set of selective conditions, a highly variable assortment of 

genotypes is predicted to be adaptively and evolutionarily stable, increasing the 

probability of successful establishment (Holland 2001). Moreover, allelic diversity can be 

maintained by a variety of processes (Holland 2001), but the standing diversity of each 

population suggests that influx from one genetically diverse source population is 

sufficient. 

 

5.8 Broader impacts 

5.8.1 Consideration of fine spatial and temporal scale patterns 

The work presented in this thesis demonstrates the importance of population genetic 

marker selection relative to the scale of ecological processes of interest. Moreover, 

heterogenous habitat landscapes are not necessarily reflected in population genetic 

structure. Coupling high-resolution and dynamic modeling of currents from small to large 

scales will likewise inform the delivery mechanisms of larvae to vents. Lastly, the role of 

non-equilibrium dynamics at vents requires further investigation. In the scale of our 

sampling, selective processes that occur soon after settlement may have been missed; if 

present, these will be important to quantify with respect to the hypothesis of local 

retention. The incorporation of historical coalescence and simulation of other non-

equilibrium processes may thus be useful in tracking the emergence of current patterns 

(E. Sotka, OSM 2008). 
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5.8.2 Multiple cohort perspective in population genetics 

Multiple cohorts are important to consider in population genetic studies, as ecological 

processes act separately on different life stages. In order for tests of population 

differentiation to be significant, care should be taken to adequately sample individuals 

from separate cohorts. Future studies of population genetics at hydrothermal vents will 

have to consider (larval,) juvenile and adult cohorts in order to understand dispersal and 

local processes more completely, as focusing only on a particular stage could lead to 

different inferences about recruitment processes and the extent of contemporary or 

historic gene flow.  

 

Sampling distinct cohorts of vent populations will ensure that the genetic signal inherent 

to recent arrivals is not lost by pooling individuals from the larger multigenerational 

population. The genetic composition of colonist cohorts records important information 

about their origins and dispersal process. The arrival of colonists from local populations 

further aids population genetic maintenance. Furthermore, Riftia post-settlement 

mortality should be considered in order to determine its timing and influence on cohorts.  

 

5.9 Final remarks and future directions 

In this thesis, I was able to develop highly polymorphic DNA microsatellites for a well-

characterized deep-sea organism. These loci had the power to distinguish EPR from GAR 

populations but found primarily intra-ridge population genetic homogeneity. Assignment 

tests and relatedness analyses revealed the tendency for local retention of Riftia larvae, 

especially on the GAR, which likely facilitates the existence of this species in an 

ephemeral and disjunct environment fraught by local population turnover. 

 

The hotspot-influenced region of the Galápagos Spreading Center from 86˚ to 95˚W may 

be particularly interesting to monitor for future hydrothermal activity. It has been 

proposed that during waxing periods of interactions with the Galápagos hotspot, 
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hydrothermal habitats will be abundant and vent fauna will easily disperse among sites; 

however, during waning times, populations will become genetically isolated on opposite 

sides of the hotspot (Haymon et al. 2007). If the region between Rosebud/Rose Bowl and 

the recently discovered Navidad black smokers 400 km to the west is chronically 

deficient in vents, Riftia populations may be more divergent than a similar distance on the 

East Pacific Rise. 

 

Ongoing development of microsatellite markers for two additional vent species (the vent 

mussel Bathymodiolus thermophilus and commensal polychaete Branchipolynoe 

symmytilida, Appendix C) with similar demographic ranges as Riftia will facilitate 

consideration of fine-scale genetic patterns resulting from different larval life histories. A 

metapopulation approach may have even greater utility with the tubeworm Tevnia 

jerichonana. Given the recent 2005-2006 eruption and subsequent colonization and 

persistence of Tevnia en masse at 9˚N EPR, it will be interesting to consider the resulting 

population genetic patterns in this species with temporal sampling and high resolution 

markers in the future. 
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Appendix A 
 

Microsatellite development in 
Bathymodiolus thermophilus and 
Branchipolynoe symmytilida 
 

A.1 Overview 

This thesis originally sought to develop DNA microsatellite markers for three 

hydrothermal vent species, each with a different life history strategy, in order to test the 

influence of different larval dispersal potentials upon a species’ realized dispersal and 

population genetic structure. If a dispersive propagule is in the water column longer, then 

it is expected to be able to disperse further than a propagule with a shorter dispersive 

stage. It is also expected that spatial genetic structure can reveal the extent of realized 

dispersal and population connectivity/gene flow. With this comes the assumption that 

microsatellites provide higher resolution into population genetic structure as compared to 

previous markers and that this structure will accurately reflect realized dispersal. If 

cohorts arriving to existing populations are genetically similar through space, then the 

network of vent sites are interconnected in one large effective population. Furthermore, if 

genetic variation between local populations is less than that between distant populations, 

then regional populations are likely to be genetically isolated and local populations are on 

their way to increased genetic differentiation (Van de Zande et al. 2000). 

 

A.2 Targeted species: distribution and life history strategy 

In addition to the siboglinid tubeworm Riftia pachyptila, which formed the bulk of this 

thesis research, preliminary microsatellite research was initiated in two other abundant 

hydrothermal vent species—the mytilid Bathymodiolus thermophilus and its commensal 

193



 

polynoid polychaete Branchipolynoe symmytilida. These three species exhibit different 

life history strategies, proposed to affect their range and population structure (Craddock 

et al. 1997). However, larval collection, larval lifespan, hydrography, and respiration 

investigations over the past few decades have led to predictions of dispersal capabilities 

inconsistent with global and regional distribution patterns and inferred levels of gene 

flow using traditional population genetic markers. Through the use of highly polymorphic 

DNA microsatellite markers to reveal fine-scale genetic patterns, insights into these 

disagreements and underlying processes determining their distribution were sought to be 

gained. Specifically, my research objectives were: 

1)  To develop and apply DNA microsatellites to a high-resolution investigation of 

genetic spatiotemporal variability in mussel-tubeworm assemblages in order to 

correlate genetic structure with colonization and habitat turnover, infer past 

processes, and predict future state;  

2)  To apply DNA microsatellites to explain discrepancies in ridge-scale population 

genetic structure and dispersal potential inferred from larval mode and current 

dynamics, and to correlate a variety of known/inferred life-history strategies and 

estimates of gene flow to understand how populations are sustained in an 

environment prone to multiple scales of disturbance;  

3)  To gain insights into the existence of vent fauna exhibiting metapopulation 

dynamics in order to predict the importance of colonization and habitat 

ephemerality to species maintenance/persistence. 

 

Bathymodiolus thermophilus and Riftia (a monospecific genus) are dominant 

macrofaunal members of hydrothermal vent communities in the Eastern Pacific from 

27˚N (Guaymas Basin) to 32˚S along the East Pacific Rise (EPR), with additional 

populations along the Galápagos Rift (GAR). Branchipolynoe symmytilida is 

codistributed with its mussel host along the same range. In contrast to Riftia (discussed in 

Section 1.6), the mussel B. thermophilus has small oocytes (50 µm) and planktotrophic 

larvae with high larval dispersal and long larval duration. Bathymodiolus thermophilus 
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spawns asynchronously as does B. symmytilda and has high fecundity as found in Riftia. 

Juvenile-biased size distribution of mussel colonists on the GAR is suggestive of 

continuous recruitment (Van Dover 1988), but age cohorts of its congeneric mussel in the 

shallow MAR predict sporadic microhabitat-based reproduction (Christiansen 2000). 

Bathymodiolus thermophilus tends to be a late arriver to a developing vent community, 

often colonizing after conditions have begun to decline for the tubeworm assemblage 

(e.g., increased diffuse flow, higher sulfide concentrations, lower temperatures). 

 

In general, the genus Bathymodiolus is one of the most widespread vent or seep genera 

(Tyler & Young 2003). Migration rates are high in this mussel, as predicted from their r-

selected life history strategy, while the extent of genetic connectivity has been shown in 

different studies (and ocean basins, see allozyme data from Jollivet et al. 1998) to vary 

and follows an island model of gene flow (Craddock et al. 1995, Tyler & Young 2003). 

Vent mussel larvae have been proposed to experience mixed sources prior to settlement, 

and may have a longer average dispersal time than Riftia (Van Dover et al. 2002). Yet, 

Mullineaux and colleagues (1998) suggest adult distributions of B. thermophilus are 

controlled by post-settlement processes, as indicated from abundant colonization of 

settlement blocks placed in warm diffuse flow. Thus, there is no real consensus on what 

drives the population genetic structure of vent mussels. 

 

The genus Branchipolynoe is known in some species (e.g., B. seepensis) to have 

lecithotrophic larvae arisen from asynchronous gametogenesis and large, yolky oocytes 

(500 µm). Males and juveniles in this scaleworm tend to be more mobile than females, 

moving frequently between their mussel hosts (Jollivet et al. 2000). Their colonization of 

a vent field is though to be tertiary, with the arrival of mussels themselves, as B. 

symmytilida has been found to infest the mantle cavity of even the smallest recovered 

mussel size classes (Britayev et al. 2003) and has a species range from 13˚N to 32˚S on 

the East Pacific Rise (EPR) and along the Galápagos Rift (GAR) coinciding with that of 

its host. Host infectivity can be up to 95% of a mussel population (Christiansen 2000). 
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While IBD gene flow is high on the EPR for B. symmytilida as indicated by high 

mitochondrial DNA (mtDNA) haplotype diversity, gene flow appears low across longer 

distances, such as between the EPR and GAR (Hurtado et al. 2004). Likewise, the 

migration rate has been found to be quite variable on different spacial scales (Hurtado et 

al. 2004). Comparatively, worldwide phylogenies based on the ribosomal DNA (rDNA) 

second interspacing transcribed subunit (ITS2) revealed generic level divergence to be 

occur more rapidly in the commensal worm than in its mussel host, yet speciation events 

do not seem to be as common in Branchipolynoe, perhaps owing to low, episodic levels 

of propagule exchange (Jollivet et al. 1998). 

 

A.3 Predicted influence of life history strategies on population 

genetic patterns 

Life history strategies at deep-sea hydrothermal vents are diverse and often inconsistent 

with global and regional distribution patterns (Chevaldonné et al. 1997). Along the 

northern and southern EPR, Riftia and B. symmytilida persist in a system of genetic 

population structure contrary to the limited dispersal expected from their respective life 

history strategies. Bathymodiolus thermophilus possesses a greater potential for dispersal, 

yet realizes a distribution similar to these other two vent species. These species’ 

population genetic structures may be influenced by potential barriers to dispersal in the 

Pacific—including genetic barriers around the Easter Microplate, between the EPR and 

GAR, around the Equator, and on either side of the Rivera Fracture Zone—that seem to 

act differently on each species (Hurtado et al. 2004).  Specifically, it was found that: 

1) Riftia populations were genetically subdivided across the Easter Microplate, 

while B. symmytilida population were not; 

2) Branchipolynoe symmytilida was fixed with respect to its genetic lineages, 

while B. thermophilus was not; 

3) Gene flow in Riftia and B. thermophilus was not restricted across the Equator; 

and 
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4) The Rivera Fracture Zone at 18˚N on the EPR forms the northern limit to B. 

symmytilida and B. thermophilus, while Riftia’s range extends to 27˚N in the 

Guaymas Basin. 

 

Variations in the life history strategies exhibited by these organisms also raise questions 

about their resulting population genetic patterns. Riftia conforms in some studies to a 

model of steady genetic change between neighboring populations (stepping stone), while 

the B. thermophilus appears to be dispersed by contributing to and sampling from a large, 

effectively single larval pool (island model) (Tyler & Young 2003). When observed 

using fine-scale genetic techniques, these patterns should be able to be viewed in higher 

resolution than previous studies. It is predicted at deep-sea hydrothermal vents based on 

differing life histories that Riftia populations are genetically more isolated from one 

another in space than mussel Bathymodiolus populations, and commensal scaleworm 

Branchipolynoe populations are genetically connected at a level lower than their host 

mussels. 

 

Temporal genetic patterns of different species may vary as a result of their larval 

dispersal strategies. It is expected based on models by Kallismanis and colleagues (2005) 

that if disturbance (e.g., water chemistry/temperature change) is localized, then larvae 

retained within aggregated habitats are at a lower risk of extinction than if the disturbance 

was more pervasive (e.g., eruption, paving of site, fissure network). Therefore, it is 

predicted that under small environmental changes, genetic diversity is maintained better 

in Riftia and Branchipolynoe than in mussels, while after a more pervasive seafloor 

eruption, Bathymodiolus populations retain more genetic diversity than polychaete 

populations. Moreover, Whitlock and McCauley (1990) purport that when local 

populations exist on a time scale not allowing gene frequencies to come to equilibrium, 

their composition instead reflects population history (e.g., founding events, progress  
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towards equilibrium, termination by extinction). It is thus expected that vent species at 

fast-spreading ridges are adapted for vent transience and habitat instability. This assumes 

that fast-spreading ridges have higher rates of habitat turnover and thus more open space 

relative to occupied habitat than more slowly spreading ridges. It is predicted that Riftia, 

which occurs along fast- and medium-spreading ridges, will have increased genetic 

diversity as compared to Branchipolynoe and Bathymodiolus, which have congeners at 

slow- and ultra-slow spreading ridges, as well as temporally-stable hydrocarbon seeps. 

 

A.4 Preliminary microsatellite development 

Tables A.1 and A.2 outline the progress made to date in development (as in Fusaro et al. 

2008) and characterization of microsatellite loci in B. thermophilus and B. symmytilida. 

B. symmytilida B. thermophlius*

Number of loci:

Targeted 11 15

Polymorphic/Labeled 4 5

With promise - -

In need of troubleshooting - 1

Unlabeled to test - -

Abandoned 5 4

Number of alleles (polymorphic):

Min 2 2

Max 19 15

Median 3, 11 4

Number of individuals:

Genotyped 28-77 11-40

For sites 7-9 5-8

For regions 9N-21˚S; 86˚W 9N-21˚S; 89-86˚W

For times 1998 to 2005 1998 to 2004

Number of populations w/ n ! 15 >17 >35

Table A.1 Summary of microsatellite development and testing status for 

Branchipolynoe symmytilida and Bathymodiolus thermophilus.
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A.5 Microsatellite Clone Sequence Data 
 
>Bsy3CA01 Clone Bsym3 CA-4-3 
GATCGTGCTTTTAGTATTGCTGCCC<CGAGACTGTGGAATGCTCTG>CCAGGATATATT
ACAGATTGTAAATATGTTGGTGCTTTTAAAAAAGGTCTTAAGACACATTTGTTTAAATC
TGCTTTTAACTAGGTGACATTTATTTTCCTGTATATTTGTTTGTTATGTAAAGCGCCTG
AGAACGGCTTGCTGGACAGGGCGCTATATAAATGC.TTTATTTATTTATTTATTTA.TT
CCACAAATCTGACCCT<ATAGGCTTTAGCAGGAACGG>GTTCTATTAAATTGCCTCAGT
ATTCCCTTCTATGTAGCAACAAATGCTTAATAATAATAAGTACATCAGTATCTAAGTCA
GATATGCCAAATCAATTCTAGATAATTGCTATGGCTTTTAAAATGTGATGCTTCGTCAA
ACTATGCAGCTTTAATGTTGCATAGCTGAATGGTTTTGAGTTTCTTTAAGTTTCTTTTG
TAAATAAATATATTACGTTGATTGTTGTAATCGCTGCTACTTC 
 
>Bsy3CA03 Clone Bsym3 CA-5-5 
GATCGGACGAGAACCGGTGATTTCAACGTGATATG<GCCGTAGATATTGGTTCCTCTG>
TATAAGCTGCTCAGATAGTCGCCAGCAGAAATTCAGGTGGGAGATTTTATTTTTAATAT
GAAAACCTTCAAGATTTATTGGTCGCTTACAATCTGTGGTGATTAGCCAGTT.ACACAG
ACACAGACACAGACACAGACACAGACACAGACACAG.AA.ACACACACACACAC.AAAG
AGTTCGGGGGGAACAACCGGAGAGACACTGACACAGTGACAGTCCCTAC<ATGTGACAC
CCAGTGACTATGC>ATATGATGCATGCAGGAGGGGCGTAGAAACGGGTCATGCTGTGGC
TTTTTTAGCCTCTCGTTAGTGTGCATGTAGCAATCTGCTAATTCATGACATGGTATTAG
TCACCAACGCCGATGTTGGGTCAGTTTTCGACTTGAAAGTGTTGAAAATCGTCTAGCAT
CTTCTGGGCTCGAGACACTCGTCCTGAGCGATAATGCAATTAAACAAGGAACATAGGCA
ACGATTT 
 
>Bsy3CA04 Clone Bsym3 CA-7-2 
GATGCGGTACCCGGGAAGCTTGGGATGCGGTACCCGGGAAGCTTGGGATGCGGTACCCG
GGAAGCTTGGGATGCGGTACCCGGGAAGCTTGGGATGCGGTACCCGGGAAGCTTGGGAT
GCGGTACCCGGGAAGCTTGGATGCGGTACCCGGGGAGCTTGGGATGCGGTACCCGGGAA
GCTTGGGATGCGGTACCCGGGAAGCTTGGGATGCGGTACCCGGGAAGCTTGGGATGCGG
TACCCGGGAAGCTTGGGATGCGGTACCCGGGAAGCTTGGGATCC<ACTTGCCGCATTCA
CATTC>ACA.TTTGCATTTGCATTTGCATTTGCATTTGCA.TTCACATTTGCATTCGCA
TTTGCATTTGCATTCGCATTCACATTCGCATTCACATTCGCATTCGCGTAACTCATACA
GCGTATATGGAATCTCAG<CTGAAGCCGACTGTGGTACA>CCCAGTCACGTGATTACAC
TTCCGGTACGGTCTATGACGCGAATAAAGCCGGTGATATATGACTGTCTTTGTTCTGTA
GGCGGCTACCTCGGCTTCCCGCACGGAGGCGGCACGGAGACTGACAGCTCCATG 
 
 
>Bth01 Clone M31 ALL A12 
CCAGAAAAGAATTATAAGGATCTAAATTGATCCTCTCTAAATGCATGCTCGAGGCGGGC
GCCAGTGTGATGGATATCTGCAGCAATTCTGCCCTTGAGGTACCCGGGAAGCTTGGGAT
CTATAATGATAAA<TGTCCCCTTCTCCATTGAAA>TTAGTAGTCACTGTGTTGAAATGA
AATAACATTATGCTGGTATGTCAAACAACGCTGGCAAGATTATTATGTTTGGTTGAAAA
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CGTGGGGGTCCAAATACAACTTGGGAAAACAGTCAGTCTTCTATAACTAAACGTTAGAG
AATACCAAAGGGCAACCCAAAAATGACAATCTAGAGAAGCTGACAACTTGGGGTACACA
AGACGAAACAAAACAAAGCAAAAACACAACACAATGTATGTTCGATACCACTATG.CAC
ACACACACACACA.GTTAA<CGTAAATAAGACATGCGCCC>TCCAACAAACAACTGATA
AAACAGGAACCAAACATAGGCTCTCTGAGATTGATGTAAACATTACAAATGGTGTGGTT
TTCTTTACACATCACGAACAATATTACATCGAAATACATGTGCAAATCTAACCTTTGCA
GTATTCATGGCTTACACAATATCAATTCATATTATAACAACATAAGCTTTGTGAATTTC
CAATATGTCTTTGTTTAAATTTCGTCCTTATTGATGACTATGCCTTTGTTTACCTGTTT
TTAATGATCCCAAGCTT 
 
>Bth02 Clone M31 CA C36 
... 
TGTTT<GTTGGAGAGCGCATGTCTTA>TTTACGTTAAT.TGTGTGTGTGTGTG.CATAG
TGGTGTCCTGCATACATTGTGTTGTGTTTTTGCTTTGCTTTATCTCGTATTGTGTATCC
TAAGTGTCAGGTTCTCTAAATTGTCATTTTTGGATTGCCCTTTGGTATTCTCTAACGTT
TAGTTATAGAAGACTGACTTTTTTCCCAAATT<GTATTTGGACCCCCACGTTT>TCAGC
CAAACATAA 
... 
 
>Bth06 Clone M31 CA D5 
... 
<GAATGGAGTGACATCGCAGA>CTGTTGTTTTCAGTGAGCAAGCACTATAAAAATCCAA
CTAAGCCTGTTGGTCTAGTACAAAGAGGACACCAGCATTATCTCATTGACAATTAAATT
GTTCTTGCCATAATATAGCTAAAATTTGATGAGTTGGTGTTAAACAACAATCACTCAAT
TACTCAATT.ACTCACTCACTCACTCACTCACTCACTCATTCATTCATT.CAACAATGA
TATCGATATGAACAGAACGAGCAAACACCTTGGAAAT<CAAAGTCCTTCCTTCGGACA>
AGCACATTAAT 
... 
 
>Bth07 Clone M31 CA F21 
... 
CATAGCCTATGTTTGGTTCCTGTTTTATCAGTTGTTT<GTTGGAGAGCGCATGTCTTA>
TTTACGTTAAT.TGTGTGTGTGTGTG.CATAGTGGTGTCCAACATACATTGTGTTGTGT
TTTTGCTTTGTTTTATTTCATCTTGTGTACCCTAAGTTGTCAGCTTCTCTAGATTGTCA
T<CTTTGGATTGCCCTTTGGTA>TTCTCTAACGTTTAGTTATAGAAGACTGACGTTTTT
CCCAAATTGT 
... 
 
>C2D25 Clone C2D25 
TACTCCAATCATACAGCATTGCAATTGACTTNTTTCGAAAATAATGTTGTT<CTTCGTC
TCGCTCCGTAGTT>CACACAACGTGGCGAGGAAATATAAACAGTCACAGTCACACTACT
GCACACATTACAGGTCAGCGGTTACACCAAAACGTTAACCC.ACACACACACACACACA
CACACGCACACACACACACACACACACACACACACACACACACACACACACACAC.AAC
AGACG<ATAGGCACGCCCAGACGT>GCATGTATCTACTGCGTTAATGCCTACTGT 
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Appendix B 
 

Microsatellite locus profiles 
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Figure B.1 Microsatellite electropherogram profile for locus R2D12. 
 
 

 
 

Figure B.2 Microsatellite electropherogram profile for locus R3B6.
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Figure B.3 Microsatellite electropherogram profile for locus R3D3. 
 
 

 
 

Figure B.4 Microsatellite electropherogram profile for locus Rpa10CA02.
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Figure B.5 Microsatellite electropherogram profile for locus Rpa10CA06. 
 
 

 
 

Figure B.6 Microsatellite electropherogram profile for locus Rpa10CA07.
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Figure B.7 Microsatellite electropherogram profile for locus Rpa10All01. 
 
 

 
 

Figure B.8 Microsatellite electropherogram profile for locus C2D25.
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Figure B.9 Microsatellite electropherogram profile for locus Bth06. 
 
 

 
 

Figure B.10 Microsatellite electropherogram profile for locus Bth07. 
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