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Abstract

Accurate spectroscopy has driven advances in chemistry, materials science, and
physics. However, despite their importance in the study of highly correlated
systems, two-dimensional systems (2DES) have proven difficult to probe spec-
troscopically. Typical energy scales are on the order of a millielectron volt
(meV), requiring high resolution, while correlated states of interest, such as
those found in the integer and fractional quantum Hall effect, are destroyed by
excessive electron heating. Approaches based on tunneling have been hampered
by problems such as ohmic heating and low in-plane conductivity, while optical
approaches probe long-wavelength excitations which can be difficult to interpret.

Here we present a refined spectroscopic technique, time domain capacitance
spectroscopy (TDCS), with which we measure the single particle density of states
(DOS) of a 2DES with temperature-limited resolution. In TDCS, sharp voltage
pulses disequilibrate a metallic contact from a nearby 2DES, inducing a tunnel
current. We detect this current by monitoring the image charge of the tunneled
electrons on a distant electrode. No ohmic contact to the 2DES is required. The
technique works when the 2DES is empty or has vanishing in-plane conductivity,
as frequently occurs in studying the quantum Hall effect.

Using TDCS, we perform unprecedentedly high resolution measurements of
the DOS of a cold 2DES in GaAs over a range from 15 meV above to 15 meV
below the Fermi surface. We provide the first direct measurements of the width
of the single-particle exchange gap and single particle lifetimes in the quantum
Hall system. At higher energies, we observe the splitting of highly excited
Landau levels by spin polarization at the Fermi surface, demonstrating that the
high energy spectrum reflects the low temperature ground state in these highly
correlated systems. These measurements bring to light the difficult to reach and
beautiful structure present far from the Fermi surface.

Thesis Supervisor: Raymond C. Ashoori
Title: Professor
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Chapter 1

Introduction

Accurate spectroscopy has frequently transformed our understanding of key

scientific problems. From the development of quantum mechanics to describe the

hydrogen spectrum to the use of emission spectra to determine the makeup of

distant stars, many of the great advances of the last hundred years have resulted

from asking the simple question: at what energies can this system be excited?

It is then no coincidence that many of our theoretical frameworks for describ-

ing the world around us, from a classical Hamiltonian to the most complicated

Feynman diagram, provide as their most direct result the excitation spectrum of

a system.

However, the two-dimensional electron gas (2DEG), which in the last 40 years

has displayed a rich variety of phases and phenomena[1], has proven difficult to

probe spectroscopically. Extensive measurements of its conductivity[2], magnetic

moment[3], compressibility[4], and even its interaction with nuclear spins[5] have

built up an impressive theoretical and experimental understanding of its rich

features. However, these measurements only tell us about excitations of the 2DEG

within a few kbT, typically a few tens of microvolts, of the Fermi surface. The

entire range of energies from the most tightly bound electrons tens of millielectron

volts (meV) below the Fermi energy, to the breaking point where the 2DEG

becomes three dimensional hundreds of meV above the Fermi surface remains

essentially unexplored. Our basic question, “at what energies can this system be
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excited?” goes largely unanswered. There are many reasons for this.

Approaches based on optical excitations have difficulty dealing with the small

energy scales, on the order of a meV or less, that characterize the 2DEG. Raman-

like techniques[6] can still be used, but the wavelength of light at useful energies is

enormously long compared to the characteristic length scales of a 2DEG, making

it difficult to generate excitations that carry interesting information out of the

system.

Tunneling measurements, as discussed in detail in the next chapter, can

measure at which energies electrons can enter or leave a system. However, in

steady state measurements, electrons must both enter and leave the system. This

is tricky to arrange with a 2D system, but there are two possibilities. The current

could flow out through the plane of the 2DEG, but this is only possible if the

2DEG has a high conductivity. However, the conductivity of the 2DEG at high

magnetic field falls to zero in quantum Hall states. Alternatively, one can have

electrons enter the 2DEG from below its plane, and exit above. Because there is no

lateral current flow in this configuration, the vanishing conductivity of the 2DEG

is not an issue. However, there are now two separate tunneling events; one when

the electron enters the 2DEG, and a second when the electron leaves. Trying to

separate the effects of these two events without changing the 2DEG’s density by

allowing excess electrons to accumulate has proven difficult. Furthermore, the

electrons relax on a timescale of picoseconds once they have entered the 2DEG; if

they are injected at high energies, unacceptable heating can occur.

In this thesis, we present a tunneling measurement technique that allows us to

measure the tunneling spectrum of a 2DEG with temperature-limited resolution

over a 30 meV range of energies yet still maintain good control over the density

of the 2DEG. We open up a new direction of exploration in this rich system:

energy from the Fermi surface. We do this by moving away from steady-state

measurements; this allows us to tunnel electrons into the 2DEG without providing

a path for the current to exit. Not only does this remove the confounding artifacts

discussed above, but it permits us to inject electrons at arbitrarily high energies
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while performing our measurement before significant heating has occurred.

The spectra that we measure show in a beautiful and concise way the physics

of the integer quantum Hall effect in an electron gas. Using them, we provide

simple and direct measurements of the exchange-enhanced spin gap and the finite

lifetime for excited electrons. We see, for the first time, the behavior of states far

from the Fermi energy as we vary the electron density. We answer the basic

question, “at what energies can this system be excited?”

1.1 Organization

In the next chapter, we introduce the relationship between the single-particle

spectrum and many-body theories in somewhat more detail and review 2D

systems and the quantum Hall effect with special attention to energy spectra.

In Chapter 3, we introduce our measurement technique, time domain capacitance

spectroscopy (TDCS), and briefly discuss its capabilities and limitations. Enough

detail is given to understand our results, but important details of the calibration

and implementation are left to later for the sake of clarity. In Chapter 4 we provide

copies of most of our data printed together at the same scale for easy comparison.

We then discuss, in chapters 5-8, some of the physical phenomena we observe in

these spectra.

In chapters 9-12, we revisit TDCS in much more detail, with a specific empha-

sis on calibration of the axes of our spectra and on systematic errors. Finally, in

the appendices, we discuss the details of our simulations and experimental setup.

17



18



Chapter 2

Background

The physics of a single quantum-mechanical particle in isolation is well under-

stood and typically dealt with easily. However, when two or more particles are

allowed to interact, they can form correlations between each other which have

no analogue in classical mechanics. As the number of particles is increased, the

number of possible configurations of the system quickly grows unmanageably

large.

To approach these difficult problems, we describe the system in terms of the

available excitations away from its ground state. Some of these excitations are

long-lived. Because these long-lived excitations give near-singular contributions

to the response of the system to external perturbations, they dominate the

observable physics[7].

In a complex system, many different types of excitations are possible. One

of the simplest is the quasiparticle, which describes the system with an extra

particle added and the screening response of the many body ground state. In the

case of an electron gas, we can imagine a quasiparticle as consisting of an extra

electron plus a screening cloud of virtual plasmons that create a localized pocket

of positive charge around it[8]. Because we have attached this screening cloud, the

quasiparticles of a system will have different properties from the bare particles,

including different dispersion relations and energy spectra. Although our system

may have strong interactions, the residual interactions between two of these
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A(k,E)
k > kF

E0

2Γk

εk

Figure 2-1: Simple spectral function (Schematic) probability Ak of finding an
electron injected with wavevector k at an energy E. Adapted from [7]. The
quasiparticle is identified as the peak at ε, with lifetime Γ. This spectral function
is that for an electron, at a wavevector k > k f .

quasiparticles (electrons + screening clouds in the case of the electron gas) tend

to be weak. This allows us to use these quasiparticles to describe our complex,

interacting system in terms of simple single particle physics [9, Chapter 0].

Other long-lived excitations can describe, for example, neutral collective

modes of the system. One well known example for an electron gas would be

the plasmons we have already mentioned (a propagating charge density wave).

However, a wide variety of other collective excitations exist.

The Green’s function provides a powerful tool for locating and describing

these quasiparticles. It allows us to ask questions like, “if I excite this system from

its ground state by injecting an electron at a wavevector k, what is the probability

of finding the new N+1 particle system at an energy E?” That is, if |0, N〉 is the

ground state of the N particle system, |n, N + 1〉 are the exact eigenstates of the

N+1 particle system with energies En,N+1, and ck is the single-particle creation

operator with wavevector k,

A(k, E) = ∑
n
〈n, N + 1|ck|0, N〉 δ(E− En,N+1) (2.1)

This probability distribution is called a spectral function, and denoted by A(k, E).

Although the full probability distribution gives the most accurate description of

our many-body system, it tends to be dominated by a number of approximately

Lorentzian peaks. We can locate the peaks in this probability by A(k, E), and

identify them as quasiparticles; see Figure 2-1. Furthermore, we can identify
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Figure 2-2: Spectral function for holes with multiple quasiparticles: A
calculated spectral function for a two-dimensional electron gas in GaAs, adapted
from [11]. The lower (more negative) energy peak is a plasmaron, while the higher
(closer to zero) energy peak is a conventional quasiparticle. This spectral function
is that of a hole with k = 0.

the half-widths Γk of these peaks as the quasiparticle lifetimes, as discussed in

Chapter 7.† We can then extract the properties of these quasiparticles from the

behavior of the peaks in the spectral functions; for example, the dispersion of the

energy εk of the peak with k vector can be used to compute an effective mass.

Notice that we are neglecting the long, smooth background of excitations in

the probability distribution. This background is made up of more complicated

excitations, such as creating an electron plus some distribution of plasmons

or phonons. Typically, the coupling between the injected electron and these

other excitations are weak. These complex excitations will then carry very little

spectral weight because there they are almost orthogonal to the single electron at

wavevector k.

In some cases there can be strong coupling which mixes the electronic state

with these collective excitations. If this occurs, there may be additional quasi-

particle peaks; see Figure 2-2. In particular, this has been predicted to occur in

electron gases when there is resonant coupling between plasmons and electrons

[12]. This quasiparticle, consisting of an electron screened by real plasmons[8], is

called a “plasmaron” to distinguish it from the more conventional quasiparticle

state.†

†More typically, the quasiparticles are identified using the poles in the self-energy function; see
references [9] and [10].

†This name is sometimes also applied to a strongly coupled plasmon and phonon, particularly
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Almost any measurable property of an interacting system can be calculated

approximately using quasiparticles[14, 15], or more precisely using full Green’s

functions and spectral functions. However, some measurements can give direct

access to these spectral functions and thereby the energies and lifetimes of

quasiparticles in a system. These measurements provide a powerful probe as they

can be directly compared to the most basic results in our many-body theories.

Conceptually, these measurements work by attempting to inject (or eject) an

electron with a specific energy E and wavevector k. The spectral function A(k, E)

is then the probability that this attempt will succeed. If we perform many

attempts and examine the number that succeed, this number will be proportional

to A(k, E). Because the spectral function is strongly peaked at the quasiparticle

energies, when we inject an electron at an energy where the spectral function is

peaked, we interpret this as having created that quasiparticle.

2.1 Observing Quasiparticles: The Single Particle

Density of States

Perhaps the simplest measurement that can access these spectra in detail is x-ray

photoemission spectroscopy (XPS)[16]. A high energy x-ray of known wavelength

is used to excite electrons out of the material being studied into the vacuum.

These electrons are then focused into a spectrometer and their energies are

measured. The difference between the energy of the x-ray and the energy of

the electron gives the energy needed to create a quasi-hole in the material being

studied. In these simplest photoemission measurements, the k-vector of the quasi-

hole left behind is not measured. These measurements average across all possible

k-vectors, giving an electron yield as a function of energy proportional to

g(E) ∝
∫

dNkA(k, E) (2.2)

within the body of literature regarding electron energy loss spectroscopy. Care must be taken to
identify which excitation is being referred to; compare, for example, references [12] and [13].
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Figure 2-3: Sample ARPES spectrum adapted from [18], showing the k-vector
dispersion of the valence band in graphite. The horizontal axis is wavevector, the
vertical axis is energy, and the color is the electron yield. Note that only quasi-
hole states are detected; the conduction band is missing. Also notice the coarse
energy scale; the full range is several eV.

where N is the dimensionality of the system. g(E) is referred to as the single-

particle density of states, and can be thought of the density of single-electron like

excitations of the system. We will refer to the single-particle density of states

as the density of states (DOS) and will be more specific when referring to other

densities of states.

In semiconductor systems, ultraviolet light is typically more appropriate to

the energy range of the conduction band, leading to ultraviolet photoemission

spectroscopy (UPS). Angularly resolved photoemission spectroscopy (ARPES)

builds on this technique by measuring both the energy and the momentum of the

emitted electron, allowing it to directly measure the k-dependent hole spectral

function[17]. This allows the direct imaging of semiconductor band structure, as

illustrated in Figure 2-3.

While these techniques are powerful, they have several limitations. Because

they need to eject electrons, they can only investigate filled states. That is,

they probe quasi-hole states, not quasi-electron. (Other techniques, including

inverse photoemission spectroscopy, allow probing of only the empty states. It is
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Figure 2-4: Schematic of a tunneling measurement between a metal and a
superconductor. gl is the DOS of the left electrode, and gr is the DOS of the
right electrode.

possible to measure the entire density of states at the expense of combining several

techniques; however, at present the energy resolution of inverse photoemission

spectroscopy is significantly worse than that of ARPES[19]) Because the electron

must escape the material being studied, photoemission spectroscopy cannot

be used to study structures buried deep within a sample where the highest

mobility heterostructures currently available are located. Finally, while the

energy range and resolution are excellent for studying band structure, they are

presently inadequate for the µeV energy scales that dominate correlated physics

in semiconductor structures.†

An alternate approach to measuring these spectral functions is through tun-

neling measurements. Here, two electrodes are separated by a barrier sufficiently

thin to allow electron tunneling, but thick enough that the electrodes do not

interact with each other appreciably; see Figure 2-4. If there is a potential

difference V1 − V2 between the electrodes, we can calculate the tunnel current

using Fermi’s golden rule;

I ∝
∫ V2

V1

gl(v)gr(v) |M(v)|2 dv (2.3)

where M(v) is a matrix element that describes the coupling between the elec-

†However, the energy resolution of ARPES is improving rapidly as spectrally pure photon
sources become available, with sub-meV resolutions becoming possible today[20].
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Figure 2-5: Tunneling measurement of the superconducting gap adapted
from [21]. The vertical axis is dI/dV, proportional to the single particle density
of states g(v). The strong suppression of the density of states near zero energy is
evidence for the existence of the quasiparticle gap.

trodes; methods for calculating M are discussed in Chapter 10. Intuitively, this

means the contribution to the tunnel current by electrons of energy v is just

proportional to the density of electron states in the left electrode at v times the

density of hole states in the right electrode at the same energy.

In a typical tunneling measurement, the tunnel barrier and the left electrode

are selected to be uninteresting in the sense that they have neither energy nor

wavevector dependence; in this case, we can pull them out of the integral;

I ∝ gl |M|2
∫ V2

V1

gr(v) (2.4)

Differentiating then gives
∂I
∂V

∝ gr(v) (2.5)

Tunneling measurements have been key in understanding superconductors,

providing the first direct experimental confirmation of the existence of the quasi-

particle gap, as illustrated in Figure 2-5[21]. Despite the fact that tunneling

measurements cannot directly measure the k dependence of the spectral function,

the existence of a gap gives a distinctive, strong feature in the DOS. In general,
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the DOS is most useful as a probe when there are gaps or peaks in the DOS; a

spectrum like that shown in Figure 2-3 would be fairly uniform and uninteresting

as a function of energy without the wavevector dependence.

In more general circumstances, there can be rich quasiparticle structure in

the k-dependent spectra which is unobservable using tunneling because there are

no forbidden ranges of energies; that is, the momentum-averaged DOS can be

featureless.

Notice that the single particle density of states, as defined above, is a distinct

quantity from the thermodynamic density of states, dµ/dN where µ is the

chemical potential. The single particle density of states tells us about the energy

of excitations of the system away from its ground state, while the thermodynamic

density of states tells us how much the ground state energy changes when an

additional particle is added to the system. These can look very different; for

example, in superconductors the thermodynamic density of states is flat while

the tunneling density of states is gaped.

2.2 Semiconductors and MOSFETs

Semiconductor systems have proven to be powerful environments for studying

the interactions in many-particle systems. At low electron densities the Coulomb

interaction between electrons is poorly screened, so interactions strongly modify

electrical properties; this is in sharp contrast to metals, where electron-electron

interactions are heavily screened. There are a wide variety of mature techniques

for probing the electrical properties of semiconductors, making sophisticated

measurements possible. Finally, there is expertise in creating highly pure semi-

conductors, reducing the role of impurities that might mask many-body effects.

In three-dimensional semiconductors, electrons† are placed in the system by

doping the semiconductor, intentionally introducing charged impurities to the

†One can substitute electrons for holes and valence band for conduction band in this discussion;
we concentrate on electrons for simplicity
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Figure 2-6: A silicon metal oxide semiconductor field effect transistor
(MOSFET) In a MOSFET, an electric field applied by biasing a nearby gate
electrode causes electrons to accumulate at the interface between a semiconductor
(silicon, in this case) and an insulator (silicon dioxide). Because no donors are
needed to generate these electrons, higher mobilities than those found in bulk
materials can be achieved. Silicon is a popular material system for forming
MOSFETs because of the relative ease and high quality of SiO2 formed by
thermally oxidizing the surface of silicon in an oxygen environment. Doped
regions (blue) act as conductors to allow charge to flow into and out of the channel
region (red).

crystal. These dopants are selected to have small ionization energies, so they

will tend to give up an electron to the conduction band of the crystal while the

atom left behind forms a charged impurity.‡ Thus, there is a randomly placed

impurity for electrons to scatter off for every electron in the conduction band.

This scattering tends to dominate the electrical properties of three-dimensional

semiconductors, making it difficult to study electron-electron interactions.

However, in fewer than three dimensions, it is possible to sidestep this

problem. In devices like field-effect transistors (FETs), an electric field is generated

using a distant electrode which is used to “pull” electrons up to an insulating

interface, creating a sheet of charge in a semiconducting layer in the absence

of donors (Figure 2-6). The higher mobilities possible in these devices allow the

observation of a number of important effects, including Shubnikov-de Hass (SdH)

oscillations[2].

These SdH oscillations originate with the formation of Landau levels by the

electrons in the semiconductor. Classically, when a charged particle is placed

‡At low temperatures or high magnetic fields, the donors will recapture their electrons, and
will form a Mott insulator unless the donor density is large enough to form an impurity band[22]
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in a magnetic field B, its motion can be separated into the direction parallel

to the magnetic field, in which it moves with fixed velocity, and the direction

perpendicular to the magnetic field, in which it describes cyclotron orbits. For

now we will neglect the velocity parallel to the magnetic field; we will return to

this point later when we discuss in more detail how to construct an effectively

two-dimensional system. These cyclotron orbits have a radius Rc = v/ωc, such

that the Lorentz force on the particle provides the centripetal force needed to

keep the particle on its circular path. Here v is the particle’s velocity, and ωc

is the cyclotron frequency eB/m, with e the particle’s charge, and m its mass.

Regardless of the particle’s velocity, it completes one orbit in a time 2π/ωc.

Semi-classically, we can argue that these cyclotron orbits will have to contain

an integer N number of de Broglie wavelengths; that is, 2πRc = Nh/mv. This

requirement will discretize the available velocities vN = Nh̄ωc/m, and create

a discrete energy spectrum, with states only at energies EN = Nh̄ωc/2. This

qualitative argument gives a slightly incorrect constant; a full treatment gives

EN = (N + 1/2)h̄ωc. For any given N, we can have electrons with orbit centers

at many different points in the space; because of this, each of these energy levels

will be massively degenerate. Detailed treatment shows the degeneracy is eB/h,

which corresponds to one electron for each quantum of magnetic flux. For each

N and point in space, we can also have one of two spin states, giving rise to

another factor of two in the degeneracy. These massively degenerate, discrete

energy levels are known as Landau levels, and they are referred to by their orbital

level index N (Figure 2-7a). At each orbit center, each orbital level N corresponds

to a different, orthogonal wavefunction; see Figure 2-7b. Each of these Landau

levels gives rise to a δ function in the density of states.

When the effects of disorder are included, each of these δ function peaks in

the density of states is broadened into a series of narrow peaks (Figure 2-7c). The

tails of these peaks are made up of localized states, unable to carry current, while

the main bodies of the peaks are made up of delocalized states; see Figure 2-7d.

Only the states near the Fermi surface of the channel of the MOSFET carry
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Figure 2-7: Landau levels in an empty system: a) The Landau spectrum for an
empty system, neglecting disorder. Each evenly-spaced δ-function in the density
of states has the same degeneracy. b) The orbital wavefunctions associated with
the first four Landau levels, shown in the Landau gauge. c) The presence of
disorder broadens the δ function density of states associated with each Landau
level into a narrow peak. d) The states that make up the middle of each peak are
delocalized, and can carry charge across a sample. Those in the tails are localized,
and cannot carry current.
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current. If density of the MOSFET is such that the Fermi energy lies in the tails

of the Landau level peaks, those states will be localized and it will have a high

resistance. If, on the other hand, it falls in a region of high density of states, it will

have a low resistance. This gives rise to the SdH oscillations seen in these devices.

2.3 Heterostructures

The interface between the semiconductor and oxide in a MOSFET is a messy

place; it is the boundary between a crystal and a glass, and tends to be full of

crystalline faults and charged impurities. This limits the electron mobility in these

devices. However, there are semiconductors available with a wide variety of band

gaps and lattice constants. By selecting two which have approximately the same

lattice constant but very different bandgaps, it is possible to create barriers to

electrons that do not suffer from these difficulties. This approach can be realized

using molecular beam epitaxy, which allows deposition of atomically thin layers

of material with precisely controlled stoichiometry. Barriers can be constructed

by abruptly varying the material composition during growth, switching from one

semiconductor to another.

GaAs and AlxGa1−xAs (AlGaAs) are a popular choice in these heterostruc-

tures; the bandgap widens smoothly as the Aluminum concentration is increased

in the AlGaAs, and they are almost precisely lattice matched across the entire

range x = [0, 1]. In a simple device, a thin layer of GaAs might be surrounded by

AlGaAs on both sides. Donors placed in one or both of the barriers ionize, and

the electrons they give up can lower their energy by moving out of the AlGaAs

and into the GaAs; see Figure 2-8a-b. Much as with the MOSFET, we can have

electrons without nearby donors, giving high mobilities.

So far, we have not concerned ourselves with the electron’s motion perpen-

dicular to the oxide in the case of the MOSFETs or perpendicular to the well

in the heterostructures. The electrons are confined to a thin volume along the

barrier; their wavefunction perpendicular to the barrier will look like a standing
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Figure 2-8: Heterostructures and quantum wells: a) A thin layer of GaAs in
grown in between barriers of AlGaAs. Donors are placed inside one or both of
the AlGaAs barriers. b) The electrons from the donors are able to lower their
potential energy by moving out of the AlGaAs and into the GaAs. They create a
pool of free electrons able to move freely in two dimensions, and widely separated
from the donors. c) In single interface wells, one of the barriers is eliminated. The
potential well created from the charged electrons themselves confines them to
near the barrier.

wave. If the confinement in these structures is sufficiently tight, the energy

separation between the lowest energy standing wave state (bound state) and the

next highest can be large compared to other energy scales of interest, notably the

temperature, the Fermi energy of the electrons, and Coulomb potential between

nearest neighbor electrons in the 2DEG; sample bound states and energies are

shown in Figure 2-8. In this case, all of the electrons will be confined in this

lower bound state of the quantum well, and excitations, real and virtual, to the

next bound state will be negligible. It is this inability to change the electronic

wavefunction in one direction that leads us to describe these systems as two-

dimensional electron gases.

One consequence of this confinement is a simplification of the energy spectrum

for the case of a magnetic field applied perpendicular to the plane of the

2DEG. The electrons have no accessible degrees of freedom in the direction

parallel to the magnetic field. There are now only four energy scales of note

in these devices; the Coulomb energy, which we can tune through the electron
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density, the cyclotron energy, tunable through the magnetic field, the Zeeman

energy, which we can adjust by applying fields in the plane of the quantum

well, and the disorder potential. Three of the four energy scales of note are

easily experimentally controllable in-situ, allowing us to easily adjust the relative

importance of different effects.

2.4 Quasiparticles and 2D Systems

With the discretization of the spectrum by the combination of vertical confinement

and the application of a large magnetic field, the non-interacting density of states

is split into a series of discrete peaks, as shown in Figure 2-7. Because of this

splitting, there is the potential to be able to observe quasiparticle energies and

lifetimes in the spectrum, even without momentum resolution. However, the

spectrum shown in Figure 2-7 is that for non-interacting electrons. Because we

expect the quasiparticles to have similar properties to the bare electrons, it is

useful to assume the interacting spectrum will be similar and to qualitatively

discuss what changes we expect to see as a function of density. This will provide

a ready-made nomenclature for labeling quasiparticle states in the interacting

electron gas. This does not result in an exact description of the quasiparticle

spectrum but gives us a qualitative idea of what to expect.

Conventionally, the density of a two-dimensional electron gas is described

in terms of the filling fraction ν = σ/(eND), where ND is the Landau level

degeneracy. Because of the additional spin degree of freedom, the filling fraction

is ν = 2 when the first orbital level is filled, ν = 4 when the second level is filled,

etc. We will use ν exclusively to refer to the density of the electron gas.

At ν = 0, there are no electrons in the 2DEG, so the DOS is just that of

noninteracting particles (Figure 2-9a). We expect there to be a series of disorder-

broadened peaks corresponding to putting an electron into each orbital Landau

level, N = 0, 1, 2, .... Because the quantum well is empty, all of these lie above

the Fermi energy. Neglecting the Zeeman splitting, each of these levels carries
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Figure 2-9: Cartoons of the density of states of an interacting electron gas at
filling fractions ν = 0 to 5.
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degeneracy 2ND because of spin and orbit center.

However, at ν = 1 (Figure 2-9b), a more complicated picture emerges. We

have put in enough charge to fill one spin-state of the N = 0 Landau level. These

states are degenerate before we turn on electron-electron interactions, but even

weak interactions can be expected to lift this degeneracy. The dominant effect is

the formation of an exchange-enhanced spin gap. If two electrons in the quantum

well have the same spin wavefunction, they must have an antisymmetric orbital

wavefunction. This antisymmetry tends to keep the electrons apart, minimizing

their Coulomb interaction. If the overall Coulomb energy of the electrons

is removed, as by a uniform static positive background charge as considered

in the jellium approximation, this results in a slightly attractive interaction

between electrons of like spins. As we fill the quantum well, this attractive

interaction causes the electrons to spin-align.† The Zeeman energy provides a

slight symmetry breaking, and sets a preferred direction for the electron spins

that we will label spin up. As we fill the spin up states, the electrons become

closer together, increasing their net attraction, and the spin up states are pulled

down in energy relative to the spin down. At ν = 1, the spin up states of N = 0

are completely filled and lie below the Fermi energy, while the spin down states

are completely empty and lie above the Fermi energy. The higher orbital Landau

levels are similarly split; although their wavefunctions are orthogonal with those

in N = 0, the exchange matrix elements do not vanish.

If we raise the density to ν = 2 (Figure 2-9c), the spin up and spin down

states become symmetric again, and the spin gaps vanish. Aside from a possible

change in the quasiparticle effective mass and broadening due to finite lifetimes,

we expect the spectrum to look similar to ν = 0 again.

We can continue raising the density, filling successive orbital Landau levels,

and see similar splitting and recombining of the orbital Landau levels. In each

of the DOS spectra, it is possible to identify the electron density, and assign a

unique Landau level index and spin to each of the peaks, without reference to

†This can also be understood as a special case of Hund’s rule filling
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any information outside of the spectrum. The spectra are almost self-calibrating,

which will make them easier to understand in the more complicated scenarios we

will encounter in real samples.
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Chapter 3

Time Domain Capacitance

Spectroscopy

Tunneling spectroscopy of two-dimensional systems poses unique difficulties. In

order to probe the bulk states of the two-dimensional system, it is necessary to

tunnel into the middle of the sample, not the edge where the potential barrier that

forms the edge will modify the physics. Because of this, the tunneling current

must be injected perpendicular to the plane of the 2D system.

In principle, the measurement could be quite simple. One can grow a 2D

system in close proximity to a 3D one, with a thin tunneling barrier in between.

After making separate contact to the 2D and 3D systems, one could connect

a voltage source and a current meter, and simply proceed to take I-V curves

or, with a bit more sophistication, use a lock-in amplifier to take dI/dV curves

(Figure 3-1a).

There are two basic problems with this approach. One is technological;

in practice, the tunneling barrier is around 100 Å thick. Even the thinnest

semiconductor ohmic contacts penetrate several thousand angstroms, and the

contacts typically have poor repeatability on depth. It is virtually impossible

to contact the 2D system without also shorting through to the 3D layer beneath

it. This problem can be circumvented by clever sample design. For example,

tunneling between two 2D systems, as opposed to between a 2D and a 3D system,
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Figure 3-1: Different possible designs for a measurement to determine the single
particle density of states.
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Figure 3-2: Solid trace: Conductivity of a two-dimensional electron gas at 20 mK
(Rokhinson, Su, and Goldman, 1995)[24].

can be studied by using selective gating to break the short circuit (Figure 3-1b)[23].

However, in so doing one has replaced the “simple” 3D system with a complex

2D one. While the physics of tunneling between two correlated 2D systems in

these quantum Hall bilayers is rich, it does not provide a simple probe of the

single particle density of states.

The second problem is more fundamental; once charges have tunneled into

the 2D system, they need to flow in the plane to a distant contact in order to exit.

If the 2D system has any electrical resistance to in-plane current flow, this means

a voltage will be dropped across its plane. Because of this voltage drop, electrons

tunneling into the 2D system at different locations will tunnel in at different

energies, blurring the energy scale of the measurement. This problem becomes

more difficult as the injection energy grows, increasing the tunnel current.

Unfortunately, when studying the quantum Hall system, the in-plane conduc-

tivity of samples is always low and is frequently zero (Figure 3-2). This has limited
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approaches which use a local contact to the 2D to low injection energies and filling

fractions, such as ν = 1/2, where the conductivity of the 2D is comparatively large.

Alternatively, one can construct a measurement where the current exits the 2D

system perpendicular to the plane, on the opposite side from where it tunneled in;

a broad class of measurements including double barrier resonant tunneling and

resonant tunneling diodes (RTDs) fall into this category (Figure 3-1c). Because

these devices are translationally symmetric in the plane of the 2D, they induce

no in-plane currents. This allows them to continue to measure when the in-plane

conductivity of the 2D system drops to zero and at high energies. These devices

have been used to study 2DEGs in the past[25, 26]. However, varying the injected

electron energy in these devices involves applying a voltage across the entire

structure. This voltage in turn gates the 2D system, so it is impossible to vary

the injected electron energy without also varying the 2D density. Furthermore,

in these structures the tunneling barriers form a resistive voltage divider that

controls the chemical potential of the 2D system. As the tunnel current fluctuates,

so does the chemical potential of the 2D. The resulting density fluctuations in the

2D are difficult to measure or remove.

Ultimately, all of these techniques suffer from a final problem that limits their

applicability to small injection energies: heating. Quasiparticle lifetimes at even

small energies away from the Fermi surface are on the order of a few picoseconds,

so a tunneled electron or hole essentially instantaneously transfers its energy to

the 2D system as heat. At low temperatures, electron-phonon coupling vanishes,

so dissipating this heat is a slow process.

3.1 Constructing a Tunnel Capacitor

In order to circumvent these difficulties we have introduced time domain capac-

itance spectroscopy (TDCS) [27, 28]. In TDCS, the 2D system to be studied is

sandwiched inside of a tunnel capacitor (Figure 3-3). One plate of the capacitor

is separated from the 2D system by a thin tunneling barrier; we will refer to this
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Figure 3-3: A simplified schematic of time domain capacitance spectroscopy.

plate as the tunnel electrode. The other plate is separated by a much thicker,

insulating, blocking barrier. We will refer to this plate as the isolated electrode.

The tunnel voltage is capacitively coupled to the 2DEG across the tunnel capacitor,

while the tunnel current is measuring by monitoring its image charge on the

isolated electrode. Because both the excitation voltage and charge detection are

capacitively coupled, there is no need for a direct contact to the 2D system; this

leads to very simple fabrication.

Like the RTD, this device has translational symmetry; we induce no in-plane

currents in the 2DEG. TDCS continues to function, even when the 2DEG is fully

depleted or insulating.

We believe the TDCS technique can be easily extended to many material

systems, however, the results in this thesis are restricted to two-dimensional

electron gases in GaAs. The maturity of the sample growth and preparation

technology in this material system make it relatively easy to work with, while the

outstanding mobilities available make it ideal for many-body physics.

Within this material system, we construct our tunnel capacitor using a het-

erostructure, with AlxGa(1−x)As tunneling and blocking barriers (Figure 3-4). We

use n+ doped 3D regions of GaAs as our isolated and tunnel electrodes. The band

diagram in the inset is qualitatively accurate; we have no intentional donors in the

blocking barrier. Such donors are a major source of scattering within quantum
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Figure 3-4: A simplified TDCS sample in GaAs.

wells; unlike the donors in the electrodes, there are no free electrons to screen their

potential fluctuations[29, 30, 31]. In addition, our measurement is very slow, so

we need to minimize any sources of drift within the sample. In δ doped samples,

donors within the barrier often capture electrons out of the 2DEG and reionize

on long time scales in response to applied voltages and temperature changes, as

they tend to be close to the Fermi energy[32].

Electrical contact is made to the tunneling electrode by means of a planar

ohmic contact to the back side of the substrate, while the isolated electrode is

contacted from the front side of the sample. We then etch the sample (Section D.4)

to isolate a section of 2DEG approximately 100 µm in radius. Our measurement

averages across this entire 100 µm disc; it is intrinsically a bulk measurement.

There are sparsely distributed defects in the substrate that short the tunnel and

isolated electrodes together; without the isolation step, these would destroy our

tunnel capacitors. Typically, we find around 90% of our devices are not shorted.

This “mesa isolation” step also reduces the capacitance of our devices to around

6 pF; this is important because we need to be able to apply sharp voltage steps

across the tunnel capacitor using a 50 Ω line, so we need to keep the RC time

formed by the series combination of the sample capacitance and a 50 Ω source
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short.

3.2 Time Domain Capacitance Spectroscopy

Once we have our tunnel capacitor, we can begin to measure I-V characteristics

for tunneling into and out of the 2DEG. We begin by applying a DC bias to set the

2DEG density by field effect gating; we can vary the density continuously from

0 to approximately 4× 1011cm−2. Starting with the sample fully equilibrated, we

apply a sudden voltage step to the tunnel electrode, disequilibrating it from the

2DEG (Figure 3-5a,b). At the first instant after the step is applied, the tunnel

and blocking barriers form a capacitive voltage divider. The voltage between

the 2DEG and the tunnel electrode, δV, is just a geometric lever arm times the

total step height (Figure 3-6). We monitor the charge as a function of time on

the isolated electrode. At the instant the voltage step is applied, a large current

pulse from the geometric capacitance of the tunnel capacitor (the capacitance the

structure would have in the absence of the 2DEG) results in a step in the charge

on our charge sensor. This is followed by a long, slow rise from the image charge

of electrons tunneling from the tunnel electrode onto the 2DEG. The charge step

from the geometric capacitance is typically five times larger than the relaxation

signal (this ratio is set by the geometric lever arm). In order to avoid saturating

our amplifier, we subtract it by applying a pulse of the opposite sign to a standard

capacitor Cstd, also connected to the charge amplifier.

Because of the superposition principle, we know the amount of image charge

Q must be proportional to the total amount of charge that has tunneled, so dQ/dt

will be directly proportional to the tunnel current as a function of time between

the tunnel electrode and the 2DEG.† At the very first instant after the step is

applied, we know the voltage on the 2DEG, δV, and can measure I = dQ/dt;

†Because our device is two terminal and charge-neutral, we could in fact apply the pulse and
measure the charge on whichever electrode is more convenient with only a sign change in the
pulse amplitude. Typically, we will measure the charge on whichever electrode has been etched
in the mesa isolation step to minimize shunt capacitance on our charge sensor.
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Figure 3-5: Applying a single step: A single step applied across a TDCS
sample. a) Charge and voltage as a function of time for a single step applied
across the sample. b) The sample starts with the 2DEG and tunnel electrode
fully equilibrated. c) We suddenly apply a voltage step (blue line in a) to the
tunnel electrode, dis-equilibrating it and the 2DEG. We monitor the current flow
by measuring the image charge on the isolated electrode (red line in a). d) After
a long period of time has elapsed, the 2DEG reequilibrates at a new density.
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Figure 3-6: The geometric lever arm: At short times, the voltage between
the 2DEG and the tunnel electrode is given by the applied step height times a
geometric lever arm.

together, these give us a single point on an I-V curve. A very long time after the

voltage step has been applied, the sample would reequilibrate at a new density;

because we only need dQ/dt, we typically truncate the voltage step into a brief

pulse just long enough to perform this measurement.

We can repeat this measurement while varying the pulse height to trace out

a single I-V curve. Because we can vary both the sign and the magnitude of

our voltage pulse, we can examine both the ejection and injection of electrons,

measuring the DOS for both electrons and holes in the 2DEG.

This leads us to our procedure for measuring I-V characteristics using TDCS

(Figure 3-7). We apply a single pulse across the sample while measuring the

charge on the isolated electrode (Figure 3-7a). Because the bandwidth of our

measurement is large and the charges involved are small, the thermal Johnson

noise of our room temperature amplifiers dominates this measurement. To

overcome this, we average together the response from on the order of 250,000

pulses, giving a clean measurement of charge as a function of time (Figure 3-7b).

We fit the slope of this curve in the first instant (typically within the first 100 ns)
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Figure 3-7: Measuring an I-V characteristic with TDCS: a) A single pulse is
applied across the sample. Because of the small magnitude of the signal, we only
measure noise. b) The response from ∼250,000 pulses is averaged together, giving
a charge versus time trace. The initial slope is fit to extract the tunneling current,
which, together with the known pulse height, gives us a single point on an I-V
characteristic. c) The pulse sign and magnitude are varied to give a complete I-V
characteristic. d) The I-V curve is corrected for matrix element variations (see
Section 3.4) and numerically differentiated, giving the single particle density of
states. e) The DC bias across the tunnel capacitor is varied to change the 2D
density and the process is repeated to build up a color scale plot.
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after the pulse is applied, which together with the height of the voltage pulse

Vp times the geometric lever arm λ gives us a single point on an I-V curve.

Because the Vpλ gives us the voltage difference between the Fermi energy of the

2DEG and the tunneling electrode, this technique will automatically reference all

energies to the Fermi energy; a zero-height pulse corresponds to tunneling at the

Fermi energy. We then change the pulse height slightly and repeat the procedure,

averaging together another 250,000 pulses. This gives us a second point on the I-V

curve. Repeating this with several hundred pulse heights allows us to build up

a complete I-V curve (Figure 3-7c). We then apply an approximate correction for

the variation of the tunneling matrix element (see Chapter 10) and numerically

differentiate this curve, giving the single particle density of states (Figure 3-7d).

In the absence of any context, it is difficult to interpret this single DOS curve.

We provide context by varying the DC bias across the sample, which varies the

carrier density in the quantum well, and repeating the entire process. Combining

several hundred such traces, we can construct a color-scale plot of the DOS, with

electron density as one axis, energy from the Fermi energy as the second, and

intensity giving the single particle density of states (Figure 3-7e). We use bright

colors to represent high DOS regions and dark colors to represent low DOS

regions. Typically we will present the spectra rotated 90◦ from their presentation

in Figure 3-7e in order to put high energy states at the top of the figure and low

energy states at the bottom.

3.3 Getting Oriented on a TDCS Spectrum

One of the more striking features of these spectra is that once we have applied

a magnetic field, there are enough distinctive features to roughly determine both

the energy and density scale without any additional information. In Figure 3-8,

the vertical (y) axis is energy; E = 0 at the center corresponds to tunneling at the

Fermi energy. Moving upwards corresponds to injecting electrons at increasingly

large energies, while moving downwards corresponds to ejecting electrons from
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Figure 3-8: The energy axis: Interpreting the energy axis; at zero pulse height, we
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Figure 3-9: The density axis: Interpreting the density axis; at the left edge of the
plot, the quantum well is fully depleted. As we move right, we begin to lower the
lowest bound state energy in the quantum well with the applied DC field, and
pull electrons into the quantum well. Each bright stripe corresponds to a single
orbital Landau level, so we can count up the density by counting the number of
Landau levels that have crossed the Fermi surface.

increasingly deep in the quantum well. Because the injection or ejection energy is

linearly proportional to the pulse height with a fixed scale factor, we can measure

relative energies on this plot by simply comparing vertical distances. We always

pulse away from equilibrium, measuring all energies relative to the Fermi energy.

The horizontal (x) axis is the applied DC voltage, with the far left of the figure

corresponding to depleting voltages large enough to completely empty the well,

and the far right of the plot corresponding to a large enhancing voltage. The

structure as a whole acts like a field effect transistor, and the electron density in

the well is roughly proportional to the applied DC voltage.

Each bright stripe in the figure is a single orbital Landau level. As we apply
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a negative voltage to the blocking electrode, we push more electrons into the

quantum well, and pull the Landau levels downward towards the Fermi energy.

Each time a Landau level reaches the Fermi energy, we must fill it completely

before the chemical potential changes appreciably; this results in a flat plateau in

the plot. Once the Landau level is filled completely, the next Landau level must

be pulled down to the Fermi energy before we can put the next electron into the

well, resulting in a sharp downward jump in the spectra. This alternation between

pinning levels at the Fermi surface and the chemical potential jumps results in

the staircase appearance of the spectrum[33, 34]. As shown in Figure 3-9, we can

determine the density in the 2DEG simply by counting the number of Landau

levels that have crossed the Fermi surface.

3.4 Adding Value: Calibrating the Axes

One of the chief advantages of TDCS is that we can make the calibration on all

three axes of the figure quantitative. The simplest axis to calibrate absolutely

is the energy axis. While in principle we could determine the geometric lever

arm from the as-designed device geometry, the spectra provide a convenient

way to calibrate it experimentally. When the well is completely depleted, we are

exploring the spectrum of a non-interacting electron gas; there are no electrons

for the injected electrons to interact with. Because of this, the spacing between the

orbital Landau levels is just given by h̄ωc. We use the measured spacing between

the Landau levels to calibrate the geometric lever arm, and find λ = 0.267 for

PF-6-19-98-1, the wafer used for the bulk of the measurements in this thesis. This

is in excellent agreement with the calculated lever arm for this structure. The

result of this energy calibration is shown in Figure 3-10a (compare to Figure 3-8).

As we apply biases to the structure, the electrodes deplete somewhat and the

z-wavefunction of the 2DEG in the quantum well gets pulled from side to side,

resulting in some small variation of the geometric lever arm. We estimate the

resulting energy error to be less than 1%; see Chapter 12 for details.
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Figure 3-10: Calibrating the axes: a) TDCS Spectrum taken at 2 Tesla, with the
(trivially) calibrated energy scale on the y axis. b) The same TDCS spectrum from
a, with the tunneling matrix element correction applied to the color scale. c) The
same TDCS spectrum as a and b, with the x axis distorted to show density rather
than gate voltage, along with the matrix element correction.

51



Examining Figure 3-10a carefully, we notice that while the total number of

states in each Landau level is identical, The Landau levels near the Fermi surface

and slightly below it are quite bright, while those near the top-right corner of each

plot are substantially dimmer. This reveals the error in one of our assumptions in

deriving Equation 2.5; the tunneling matrix element and 3D density of states are

not actually fixed.

There are a number of sources for the variation of each of these; the same

polarization of the quantum well that changed our geometric lever arm pulls

the z-wavefunction either into or away from the tunneling barrier, modifying the

tunneling matrix element. This electric field also changes the effective barrier

height and shape (Figure 3-11a). The matrix element also varies because electrons

in the 3D electrode with short wavelengths in the z direction penetrate deeper

into the tunneling barrier. Finally, unlike the 2D density of states at zero field,

the 3D density of states is not flat.† We develop a detailed analytic model of

this matrix element and density dependence in Chapter 10, and use it to convert

our dI/dV spectra to single particle density of states (see Figure 3-10b). In the

top-right corner of each plot, we are attempting to tunnel electrons into the 2DEG

from below the 3D band edge, so the 3D density of states vanishes and our matrix

element correction diverges. We substitute a black band in this region. This cutoff

limits the energy range of our measurements to the 3D Fermi energy.‡

This correction is approximate, not exact. However, because it is smoothly

varying, it neither changes the position nor width of features in our spectra;

we use it to normalize contrast across the image and thus simplify fitting and

visual inspection. Therefore, this “matrix element correction” should be thought

of as an aesthetic decision with a physical motivation, and heights and spectral

weights should not be quantitatively compared when they are separated by large

distances in the spectra.

†Actually, kx and ky are fixed by momentum conservation, so the density of states that enters
into Fermi’s golden rule is a 1D density of states.

‡We can eject electrons at arbitrarily high energies, so, more precisely, our injection range is
limited by the 3D Fermi energy, and our ejection range by the 2D Fermi energy. The second
sub-band of the quantum well provides a way to sidestep this restriction; see Section 8.5
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Figure 3-11: Tunneling matrix element corrections: Origins of the corrections to
the tunneling matrix element. a) The applied electric field polarizes the quantum
well, pulling the bound state closer to and farther from the tunneling barrier.
This modifies the barrier penetration. In addition, the shape and height of the
tunneling barrier vary with the applied field. b) Electrons leaving the 3D with
higher momentum towards the barrier penetrate more easily than those with
lower momentum towards the barrier. c) The density of states in the 3D is not flat,
so there are differing numbers of electrons available to tunnel at differing energies.
Transverse momentum is conserved, so the remaining degree of freedom, kz, gives
a 1D density of states.
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Finally, because our structure is sandwiched inside of a capacitor, it is possible

to keep track of the amount of charge entering and leaving the quantum well.

This allows us to distort the x axis of our plot to transform it from applied DC

bias to charge density in the quantum well. This is shown in Figure 3-10c. The

DC bias is almost directly proportional to the density. However, near the chemical

potential jumps between Landau levels and the region where the quantum well

depletes a finite range of DC bias is used to pull down the quantum well bound

state energy relative to the 3D electrode rather than to charge the quantum well.

In these regions, we increase the DC bias without also increasing the density.

Thus, when we transform to density rather than DC bias on the x axis, we find

somewhat steeper steps between Landau levels. This calibration method and the

errors intrinsic to it are discussed in Chapter 11.

3.5 Signal Generation and Detection Concerns

Although in principle TDCS is a very simple technique, there are a number

of experimental difficulties in practice. The voltage at which we are tunneling

(the voltage across the sample) is set by the height of our pulse in the first

moments after the pulse is applied. This means that to keep the voltage noise

small, we need to have spectacularly flat pulses. This problem is compounded

when we differentiate our I-V curve to get dI/dV; errors in V get moved up

to the numerator during this step. Commercial pulse generators are available

that provide pulses with very sharp transitions, but typically not very flat

tops. Furthermore, they generally only provide coarsely tunable ( 1%) pulse

amplitudes. We circumvent these problems through the use of a piece of custom

hardware that flattens the top of the pulses and modulates their amplitude; this

is discussed in Appendix A.

Once a sharp and flat pulse is generated, it needs to reach the sample itself.

If we want to measure at energies up to 15 meV (our current typical range) with

temperature limited resolution (about 10 µeV), we need our pulses to be flat to
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Figure 3-12: Cryogenic cabling: A schematic of the experimental setup showing
the locations of the amplifiers and 50 Ω cabling

about 1 part in 1000. This means a reflection of -60 dB in one of our cables is

enough to limit our resolution. That is, it will directly change the value of the

excitation by enough to swap the order of two successive points on the measured

I-V curve. In practice, we need to fit a rise of less than 1/100th of the step height

immediately after the pulse, so we are sensitive to ringing at less than -80 dB,

although under many circumstances if the ringing is fixed we can ignore it at this

level. This means the utmost care must be taken at every point in the experimental

setup to limit and to attenuate reflections. This includes the presence of 50

Ω cables leading directly to the sample in the mixing chamber of our dilution

refrigerator (Figure 3-12). While this substantially increases the base temperature

of our fridge, it is necessary for the experiment. Some details of the measures

taken can be found in Appendix A.
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Finally, in order to measure the slope of our charging pulse in the first instants

after it is applied, we need an amplifier able to drive this miniscule signal up to

room temperature. To this end, we have designed a HEMT based amplifier with

a 50 Ω output, a voltage gain of almost unity, and 10 µW of power dissipation.

Although the voltage gain is non-existent, the power gain is substantial; it matches

a 10 pF source (typically a few kΩ to a few MΩ at the frequencies of interest) to

a 50 Ω line. The design of this amplifier is detailed in Section A.4.

3.6 Balancing

As introduced above, we balance the large geometric capacitance of the sample in

order to remove an inconveniently large charge step immediately after applying

the pulse. There is also a more pressing need for balancing the charge. The

“balance point” at the input to our amplifier is a high impedance point (R >

100 MΩ, C ∼ 6 pF). When the geometric capacitance of our sample dumps a

large chunk of charge onto the balance point, the voltage there jumps. The series

combination of the sample and the shunt capacitance of the balance point forms,

at short times, a capacitive voltage divider, reducing the voltage across the sample.

Applying the balancing pulse keeps the balance point of the bridge a virtual

ground. This not only holds the amplifier at a fixed bias point, minimizing gain

drifts, but also guarantees the full amplitude of the applied pulse is applied across

the tunnel capacitor. Because the quality of the balance feeds back into the pulse

height across the tunnel capacitor, errors in the balance result in noise on the

measured dI/dV trace. We balance by fitting a straight line through the trace a

few tens of nanoseconds after the pulse, and adjusting the pulse height on the

standard capacitor until the line passes through zero at the moment the pulse is

applied; this allows us to reject any transients at the moment the pulse is applied.

As a rule of thumb, we try to guarantee that the error in this “short-time” balance

corresponds to a voltage change of less than 1% of the voltage resolution of the

dI/dV trace we are taking; at that level, it contributes a DOS noise of less than
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1%.

3.7 The Coulomb Gap

At large magnetic fields, we find there is a gap in the density of states at the

Fermi energy. This gap is known as the Coulomb gap, and has been discussed

extensively elsewhere[35, 36, 27, 37, 38, 28, 39]. It is closely related to the linear

Coulomb gap in disordered, localized 2D systems [40]. As suggested by the fact

that it is pinned to the Fermi energy, the Coloumb gap reflects a many-body

effect. When a tunneling electron enters the 2DEG, the surrounding electrons

need to move away for the system to reach its new ground state. In a strong

magnetic field, they are curved back towards the tunneled electron by the Lorentz

force, preventing them from doing so (Figure 3-13a). This gives rise to a gap in

the density of states when tunneling in at low energies (Figure 3-13b,c). The gap

manifests itself in our spectra as a wide, dark band centered about E = 0. The

gap becomes broader and deeper as the magnetic field is increased.

3.8 Measuring the Initial Slope

We have said that we need to measure the “initial slope” of the charge versus time

trace. Clearly, we need to fit the signal over some range of times to measure the

slope; we will refer to this as our “measurement window.” There is a tradeoff

inherent in the amount of time we include in this measurement window. On one

hand, if we include more time in the window, we will be able to fit the slope

more accurately. This will allow us to make the same measurement with less

averaging. On the other hand, if we include too much time in our measurement

window, the chemical potential difference between the tunnel electrode and the

2DEG will relax noticeably, and we will blur our spectrum.

A practical criterion for how much blurring is too much is that the energy

relaxation that occurs during the measurement window should be less than the
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Figure 3-13: The linear Coulomb gap a) A tunneled electron (red) tries to repel
the surrounding electrons to reduce its Coulomb energy, but in a magnetic field
the Lorentz force causes its neighbors to spiral back in. b) A TDCS spectra taken
at 4 Tesla magnetic field, showing the Coulomb gap. c) Several line cuts taken
through b, all with the same vertical and horizontal scales, showing the Coulomb
gap at the origin.
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Figure 3-14: Non-linear decay at 2 Tesla: Charge response to a 34 mV pulse at
2 Tesla applied field, taken on a sample with a thin (fast) tunnel barrier. As the
2DEG and the tunnel electrode equilibrate, fewer Landau levels are available to
tunnel into, resulting in a distinctive piecewise-linear relaxation curve.

energy step between adjacent measurements. For a temperature limited spectrum

taken out to an energy of 15 meV, this means that only the first part in one

thousand of the re-equilibration may be allowed to occur during the measurement

window. That is, the energy relaxation must be limited to less than 1 part in

1000 of the total change that would occur if the structure were allowed to relax

completely. For example, at zero field, the DOS is nearly constant with energy,

so the relaxation is exponential in time. If the time constant of the relaxation

is around a millisecond, we need to fit the initial slope in the first microsecond.

As we raise the magnetic field, the relaxation time constant for small pulses will

grow because of the Coulomb gap. However, the DOS is no longer constant, and

the relaxation is no longer exponential. In fact, the relaxation becomes essentially

piecewise linear at large excitations (Figure 3-14), with the slope proportional to

the number of Landau levels able to discharge. As we turn up the magnetic

field and increase the degeneracy of the Landau levels, the peaks in the DOS
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become large leading to larger currents than those at zero field for some excitation

voltages. Because of this, we need to use a very short measurement window

despite the long time constant for equilibration at small excitations.

Our measurement window is typically 50-300 nanoseconds long, depending

on the thickness of the tunnel barrier of the sample. There is some tradeoff

between the initial rise time of the pulse and the quality of it at long times (see

Appendix A), so we only use the shortest windows when absolutely necessary.

Our sample has a relaxation rate at zero field of a few milliseconds, so this is a

very conservative range. Immediately after the pulse is applied, it takes a few

tens of nanoseconds for the ringing from reflections and the signal generator to

die down, so we actually fit a time period starting 20-75 nanoseconds after the

pulse is applied, and ending 50-300 nanoseconds after the pulse is applied.

As can be seen in Figure 3-14, in only using the initial slope of the Q-t trace, we

throw out an enormous amount of information; in principle, the entire decay tells

us about the tunneling density of states for varying amount of disequilibrium

between the 2DEG and the tunnel barrier. One could thus extract a complete

tunneling I-V curve by looking at the detailed response to a single pulse (averaged

appropriately). There are several reasons why we do not actually do this. First,

once the 2DEG and the tunnel electrode have begun to equilibrate, calculating

the potential difference between them requires a detailed and exact knowledge

of the geometry of the sample. As we discuss in Chapters 9-11, the positions of

the 2DEG and the electrodes are dynamic quantities that change in response to

the AC and DC signals we apply to the structure, making it virtually impossible

to know the potential difference between the 2DEG and the electrode with any

precision after a significant amount of relaxation has occurred. Second, as we

inject electrons into the 2DEG at energies far from the Fermi surface, we heat

it up. Immediately after the pulse is applied, we are tunneling into a cold

electronic system. We then inject highly excited electrons which give up their

energy to the electrons already present in the 2DEG in a few picoseconds (see

Chapter 7), heating it. By limiting ourselves to the first few electrons to tunnel in,
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we minimize the amount of heat delivered to the 2DEG during our measurement.

We are able to see effects of the low-energy ground state of the system even in the

high-energy DOS.

We can reassure ourselves that our measurement interval is adequately short

by doubling it and ensuring the spectra do not change. This can be done without

repeating the measurement since we acquire far more of the charge vs. time trace

than we actually use. If the measurement interval is too long, features at high

energies tend to move farther from the Fermi energy, as some relaxation of the

applied pulse is occurring during the measurement. In addition, sharp features

blur, while regions of low conductivity stretch, emphasizing dark regions in the

spectra.

3.9 Discharge Pulses

After a single pulse in which we inject (or eject) some charge, we need to wait for

the sample to re-equilibrate (Figure 3-15). Charge returning to the 2DEG after we

remove our pulse sees roughly the same spectra as the charge exiting does†, so

any gap near the Fermi energy will tend to slow re-equilibration of the 2DEG and

the 3D electrode. Because of the linear Coulomb gap, as we raise the magnetic

field, this relaxation takes an increasingly large amount of time. At even moderate

magnetic fields (& 2 Tesla), the time it takes for the sample to relax dominates the

acquisition time.

We can help matters somewhat by, instead of applying a long step as shown

in Figures 3-14 and 3-15, removing the AC voltage as soon as our measurement

window has elapsed. Assuming the pulse is already short enough that the DOS

is relatively flat across the amount of relaxation that occurs, the amount of charge

that tunnels into the 2DEG is linearly proportional to the pulse length. When

we wait for the sample to relax, assuming the amount of charge we allowed to

tunnel in was small, the relaxation will be exponential with a time constant set

†The 2DEG has been heated slightly by the injected charge, which may modify the spectra.
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Figure 3-15: Relaxation after a pulse is applied After application of a single
pulse, the sample must be allowed to re-equilibrate before the next pulse can be
applied

by the small density of states at the bottom of the Coulomb gap. Thus, an n-

fold reduction in the pulse width reduces the length of time we need to wait

for relaxation by τ ln n where τ is the time constant of the exponential decay.

Reducing the pulse width reduces the relaxation time, but only logarithmically.‡

Fortunately, we can resolve this issue. It is important to realize that this long

relaxation time is not an intrinsic property of the 2DEG. The time constant is given

by τ = RC, where R is the (large) tunnel resistance at equilibrium, and C is the

capacitance of the 2DEG to the outside world (C is dominated by the capacitance

between the 2DEG and the tunnel electrode, which is about four times larger

than the geometric capacitance of our structure as a whole). If we could develop

the technology to perform our measurement on a structure with a much thinner

tunnel barrier, and thus a much smaller R, we could reduce this relaxation time.

This solution does not scale well with magnetic field. As we raise the magnetic

field, we need to make our measurement window shorter because the peaks in

the DOS become larger. At the same time, we would like to make our tunnel

‡There are other benefits to reducing the pulse width; most notably, we keep the overall
magnitude of the charge signal smaller, allowing us to use more gain on our charge amplifier
without overloading our detectors, and also it allows us to use smaller coupling capacitors after
the amplifier.
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Figure 3-16: Discharge pulse sequence: a) Charge versus time response for a
voltage step applied to the sample, showing the long, slow natural relaxation. b)
Charge versus time response to the same step, cut short and immediately followed
by a pulse of the opposite polarity to discharge the 2DEG. c) As b, but the pulse
and discharge pulse are shortened to a length typical of the actual measurement.

barrier thinner to reduce the relaxation time, once again forcing us to make the

measurement window even shorter. We are already pushing our capabilities on

the width of the measurement window, so this solution is untenable.

However, this line of thought suggests an answer. If despite the tunnel barrier

we could force the correct amount of charge back into the 2DEG, then we would

only need to wait for internal relaxation to return the 2DEG to its ground state

before applying the next pulse. The resistance of our tunnel barrier is only large

at small biases, so all we need to do is arrange to discharge the 2DEG at large

bias instead of near equilibrium. We do this by applying a second “discharge

pulse” of the opposite polarity immediately after the pulse we use to measure

the tunnel current. We then carefully tune this pulse to return the 2DEG to its

original density. Figure 3-16 shows the general idea. Figure 3-16a shows the step

response of the 2DEG, including the long, slow decay caused by the Coulomb

gap. In Figure 3-16b, we apply a short pulse of the opposite polarity immediately

after the first pulse, rapidly forcing the charge out of the 2DEG. Note that we can

tell our discharge pulse is returning the structure to the correct density because
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the charge is not changing as a function of time long after the discharge pulse. In

Figure 3-16c, we show the same measurement, with the pulse’s widths reduced

to values comparable to what we use in collecting our spectra. Note that both the

signal amplitude and the total measurement time are much smaller, allowing us

to use a higher gain and a higher repetition rate in our measurement.

Our criteria for the discharge pulse width is that the measured charge be

constant as a function of time (dQ/dt = 0) long after the discharge pulse is

done, not that the total charge on the 2DEG be the same before and after the

measurement. The reason for this is that we repeat the measurement as part of a

steady stream of several million equally spaced pulses. Regardless of whether or

not our discharge pulse has forced the sample back to equilibrium, the structure

will reach a steady state quickly (quite probably one where the 2DEG and the

electrode never equilibrate). Examination of the tunnel current long after the

discharge pulse is the only means we have to determine if equilibration has

occurred. As we increase the magnetic field and the Coulomb gap becomes deep,

we need to measure this tunnel current over a long time with enormous precision

because relatively large disequilibria between the 2DEG and the electrode will

result in small currents.

We now have to decide what about the discharge pulse to tune to force dQ/dt

to zero, returning the structure to equilibrium. As we already need excellent

amplitude control over our pulses to acquire our spectra, it would seem natural

to tune the amplitude of the discharge pulse. As we vary the amplitude of the

discharge pulse, the tunnel current in response to it will change. Since we are

only trying to remove a small amount of charge, we can approximate the tunnel

current as constant as a function of time. We will thus remove an amount of

charge Q = I(Vdischarge)t where t is the width of the discharge pulse, and Vdischarge

is its height. The I-V curve for the discharge pulse will be almost identical to the I-

V curve for the charging pulse. A sample of such a curve is shown in Figure 3-17.

Because of the plateaus created by the gaps between Landau levels, for wide

variations of pulse height, the tunnel current, and hence the charge removed by
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Figure 3-17: Sample I-V curve: Because of the highly non-linear density of states,
this I-V curve, taken at 2 Tesla, has a series of plateaus separated by sharp jumps.

the discharge pulse, varies only slightly. In other regions, the current, and thus

the charge, jumps suddenly as the pulse brings the next Landau level into play.

While we are tuning the discharge pulses we do not yet have access to this I-

V curve, so we must use a nonlinear optimization method, such as the secant

method[41, Chapter 9]. These techniques do not deal well with the almost step-

function nature of the I-V curve; they tend to change the pulse height by far too

much when they are sampling one of the flat regions. Even if we find the correct

pulse height to discharge the 2DEG, if it occurs in one of the quick steps between

Landau levels our discharge pulse will tend to be sensitive to very small amounts

of noise and drift.

Instead, we pick a fixed height for the discharge pulse, and vary its length.

This way, the amount of charge we extract is almost exactly linear in our control

variable (time). The step-like nature of the I-V curve helps us; usually the

discharge pulse will fall on one of the plateaus, rendering us insensitive to small

amounts of drift and noise in the 2D chemical potential and the discharge pulse
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height.

We still must simultaneously adjust the balancing pulse for the measurement

pulse and the width of the discharge pulse. Fortunately, the ratio of the excitation

pulse height to the balancing pulse height is the ratio of the geometric capacitance

of our sample to the capacitance of our standard capacitor. Because this quantity

is almost fixed, we can generate a good initial guess for our balancing algorithm.

Similarly, we can use the width of discharge pulses from similar excitations to

generate a good guess for the width of discharge pulse to use. We are now

left with an optimization problem where we are trying to zero two parameters

(the discontinuity at the start of the measurement pulse, ∆Q and the slope long

after the pulses have been applied, mdischarge) using two controls; the height of

the balancing pulse sent to the standard capacitor, Vbalance and the width of the

discharge pulse w. With a good initial guess, we can linearize this, and represent

the response of the system with a 2x2 matrix A and a two element offset vector~o;

 ∆Q

mdischarge

 = A

 Vbalance

w

+~o (3.1)

At low fields, we can frequently go further and neglect the off-diagonal

elements of A, and even at intermediate fields we can usually neglect the impact

of the balancing pulse on the discharge of the sample A21. We can then take 3 (or

4, depending on how many elements of A we set to zero) traces, systematically

varying Vbalance and w away from our initial guess by small steps to generate an

initial guess for A. For the case where we neglect the off diagonal elements

of A, the discharge pulse and balance pulse heights separate, and we apply

the secant method to them individually. Otherwise, we can either assume A

is fixed and update ~o with each added observation to zero in on the correct

balance and discharge point, or we can try to update both A and ~o using a

solver appropriate for over-determined systems, such as a least-squares fitter.

In general, multi-dimensional nonlinear zero finding is as much art as science,

and algorithmically determining the balance pulse height and the discharge pulse
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width is no exception.

Once we have successfully taken a trace using discharge pulses, we still need

to guarantee that we have allowed sufficient time for the 2DEG to relax internally,

as well as discharge. We do so by increasing the amount of time between pulses,

and ensuring the spectrum does not change. We need to measure the charge

versus time trace for a long time (tens of microseconds) to ensure no current is

flowing after the pulses; even with our fastest pulse repetition rate there is a long

delay between pulses. Thus, we have never seen a change in our spectrum upon

increasing the period of the measurement. However, we do sometimes see the

current through the device fluctuate on a timescale of microseconds immediately

after the discharge pulse. We believe these fluctuations reflect chemical potential

fluctuations in the quantum well as it cools.

3.10 Heating

As we saw earlier, one advantage to only using the initial slope of the charge

versus time trace is that we minimize heating effects. We are essentially using

a very short duty cycle measurement to allow our 2DEG to have time to cool.

Given that this short duty cycle provides TDCS with one of its chief advantages,

the ability to measure at high energies with negligible heating, it is natural to ask

if we could similarly use a short duty cycle with a RTD or a quantum Hall bilayer.

In designing a short duty cycle experiment with a RTD, one needs to ensure

that the applied pulse is long enough to establish a well-defined tunneling voltage

between the 2D and 3D systems. In practice, this means the RC circuit formed by

the tunneling barrier must be allowed to relax (Figure 3-18). However, this very

relaxation requires that a substantial amount of charge tunnel into the system.

In other words, establishment of the steady-state situation required to perform a

traditional RTD-style measurement requires injection of a large quantity of charge

prior to the measurement, heating the 2D system. Similar arguments hold for the

quantum Hall bilayers, except that the charging is now spatially inhomogeneous
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Figure 3-18: The RC circuit formed by a tunnel barrier.

as well as time varying.

3.11 Summary

TDCS allows us to study both electron and hole quasiparticle spectra with

temperature limited resolution. Because of its pulsed nature, we can tunnel into

cold electron systems at energies of tens of millivolts, equivalent to hundreds of

degrees Kelvin. It provides a beautiful and intuitive probe of the physics of two-

dimensional electron systems. The sample geometry allows concrete and quanti-

tative calibration of the energy and density axes, while analytic corrections for the

tunneling matrix elements and 3D density of states allows us to understand and

partially compensate for differences between dI/dV and the quasiparticle density

of states.
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Chapter 4

Spectra

Figure 4-1: TDCS Spectra (following pages)
The main results of our measurement are tunneling density of states spectra at
fields from zero to four Tesla. While the next several chapters analyze in detail the
features in these spectra, they are collected here for ease of comparison. They are
all plotted with the same X and Y scales, although the contrast has been adjusted
individually for each. Because density calibration data is only available for some
of these spectra, they are shown here as a function of DC bias.
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Left: At zero field, the 
step in the density of 
states associated with 
filling the well is clearly 
visible.  The plasmaron 
mode forms a general 
haze below the bottom of 
the band.  The logarith-
mic gap in the density of 
states is visible at low 
densities and zero 
energy.

Right: At ½ Tesla, the 
ripples in the density of 
states from Landau levels 
become clear.  Lifetime 
broadening blurs away 
the Landau levels at high 
energies and low densi-
ties.    

Left: At ¾ Tesla, the 
ripples in the density of 
states from Landau levels 
become more clear, 
especially at zero density, 
and a slight stair-step 
pattern from pinning of 
the Landau levels to the 
Fermi energy becomes 
visible.  

Right: At 1 Tesla, the 
Landau levels become 
distinct and a slight 
exchange splitting is 
visible. 
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Figure 4-2: 8 Tesla TDCS Spectrum, on a different scale from the prior plots. The
jaggedness visible in the lower spin state of N=0 between filling factors ν = 0 and
ν = 1 are a measurement artifact from poor discharge pulses, as are the speckled
regions at the extreme edges of the energy range. The “sash” is clearly developed
on both sides of ν = 1.
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Chapter 5

Exchange Splitting

As each Landau level crosses the Fermi surface in our spectra, we see the exchange

gap open up, splitting it in two. This splitting reaches a maximum at half-

filling, with one spin state completely filled. As we continue to raise the density,

this exchange enhanced spin-splitting collapses, and the Landau level becomes

a single peak again. We will, by careful analysis of our spectra, examine the

quantitative dependence of the exchange splitting on magnetic field and filling

fraction and develop an understanding of the detailed structure of the exchange

splitting as Landau levels cross the Fermi energy.

5.1 Energy Scales

At even-integer ν, the cyclotron energy, h̄ωc characterizes the separation between

the orbital Landau levels. At odd-integer ν the Coulomb interaction between two

nearest neighbor electrons in the same Landau level, e2/(εlb) ∝
√

B, characterizes

the exchange enhanced spin-splitting. The Zeeman energy, gµbB, is negligible by

comparison in GaAs. These quantities are plotted in Figure 5-1 for electrons in

GaAs.

Over the bulk of the magnetic field range accessible in our experiment, the

exchange energy is larger than or comparable to the cyclotron energy. We will see

that the cyclotron splitting will limit the exchange splitting, and at low fields will
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Figure 5-1: Magnetic energy scales in GaAs: The magnetic field dependence
of three important energy scales at high magnetic fields in GaAs: the cyclotron
energy h̄ωc = 1.73 meV/T × B (solid red), the inter-electron Coulomb energy

(“Exchange Energy”) e2/(εlb) = 4.43 meV/T1/2 ×
√

B (dashed green), and the
Zeeman splitting gµbB = 0.026 meV/T× B (dotted blue).

give rise to a B-linear magnetic field dependence of the exchange splitting.

5.2 Prior Measurements

The width of the exchange gap, at its maximum, has been measured in many

different ways before. Perhaps the simplest way to measure the width of the

exchange gap is to examine the depth of the σxx conductivity minima in the

integer quantum Hall effect as a function of temperature[42, 43, 44, 45, 46]. At

temperatures much less than the exchange splitting, this conductivity is small and

dominated by hopping. As the temperature becomes comparable to the exchange

splitting, large k-vector thermally generated excitons with the electron and hole

in different spin states or different Landau levels (Figure 5-2) and a seperation

proportional to k× l2
b , begin to seperate and contribute to the conductivity.

These thermal-activation based measurements consistently measure smaller

exchange gaps than any of the other techniques we will examine. There are a

number of possible reasons for this. First, it is unclear that the activation energy

required to allow current to flow is the same as the width of the single particle

exchange gap[48, 49]. Secondly, these experiments measure the width of the gap
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Figure 5-2: The formation of excitons gives rise to a temperature dependence in
the conductivity minima at integer filling fractions. This temperature dependence
can be used to learn about the width of the gaps between Landau levels. We use
the names in common use in inelastic scattering measurements of quantum wells
for different “magnetic” excitons[47]. a) A spin flip mode, in which an electron
has its spin flipped but keeps the same orbital quantum number. These excitations
dominate the temperature dependence of the conductivity. b) A spin wave, in
which the electron flips its spin and is promoted to the next orbital Landau level.
These modes are important in extracting exchange energies from long-wavelength
collective excitations.
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by convolving it with a Fermi function; because of this, they require a detailed

a-priori model of the shape of the Landau level peaks in order to account for the

narrowing of the gap because of the Landau level width. Finally, the width of

the exchange gap depends on temperature; as thermally activated carriers begin

to populate the upper spin-band, they narrow the gap. The measurements look

only at the very low temperature tail of the conductivity, so the last effect may

not be important, but this low temperature tail is also changed the most by finite

Landau level widths.

A second approach that has been used is a variant on photoemission spec-

troscopy, discussed in Chapter 2. Photoemission spectroscopy is typically difficult

to apply in 2DEGs as they are buried deep within a semiconductor and electrons

are unable to escape. Kukushkin et al. overcame this problem by placing a

layer of acceptors very close to the 2DEG; excited electrons recombine with these

acceptors, and emit a photon[50]. This indirect luminescence technique effectively

moves the electron detector into the sample. Line-widths are wider than the

exchange splitting using this technique, but by manipulating selection rules, only

one of the two spin states can be made visible. The exchange splitting can then

be extracted by examining the deviation of the observed energy from B-linear

as it is swept through the Fermi energy by varying the magnetic field[51]. The

exchange gap is only published at one filling fraction and one magnetic field for

this technique; this gap is somewhat larger than that found by thermal activation.

Interactions between the emitted electron and the localized acceptor complicate

and distort spectra obtained by this technique.

Inelastic light scattering[52] also has access to magnetic excitons. Like Raman

scattering, inelastic light scattering measures the energy and momentum carried

off by phonon-like excitations created during virtual excitations of carriers in a

semiconductor. Because of the relatively long wavelength of light of relevant

energies compared to length scales in GaAs, in the absence of impurities, only

long wavelength modes can be excited. As described by Kohn’s theorem, the

long wavelength excitation spectrum of an ideal 2D system cannot depend on
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interactions[53, 54, 55]. This can be overcome in several ways. One can rely

on residual disorder to break momentum conservation[6]. One can, by heroic

measures, prepare a structure with low enough density to make lb comparable

to the wavelength of the light used (n ∼ 109cm−2) [56, 57]. Alternatively, with

the realization that excitations that combine a spin-flip with an orbital change

can depend on electron-electron interactions, one can measure long wavelength

“spin wave” modes[47]. Although all of these measurements give a quantity

which depends on electron-electron interactions and can be expressed, in Hartree-

Fock, in terms of the exchange integral, none of them directly measure the single

particle exchange splitting. Nonetheless, this elegant technique complements

tunneling measurements in its capabilities. While tunneling measures localized,

charged excitations, inelastic scattering observes long-wavelength, neutral collec-

tive excitations.

Finally, capacitance measurements of tunnel capacitors, similar or identical to

our TDCS structure, can be used to measure the chemical potential jump as the

density is swept across the exchange gap[33, 48, 58]. The swept-density nature of

this measurement is worrisome. The single particle exchange gap is a measure

of the amount of energy it takes to add suddenly a single electron in an empty

Landau level above the Fermi surface. The chemical potential jump, on the other

hand, measures how much the energy it takes to add a single electron to an N

particle system once the N+1 particle system has been allowed to relax completely

varies as one slowly tunes the density from the center of one Landau level to

the center of the next. One of these is a function of the single particle density

of states, the other of the tunneling density of states. There is no guarantee

that these densities of states are the same; for example, in the superconductors

discussed in Chapter 2, the single particle density of states is gapped, while the

thermodynamic density of states is continuous.

A second concern with the capacitance measurements is an experimental

difficulty. These measurements rather indirectly measure the chemical potential.

First, one calculates the amount of charge that has accumulated in the quantum
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well by comparing the capacitance of the structure at low and high frequencies;

we examine this process in some detail in Chapter 11. Because of approximations

made in this process, one expects errors on the order of 5% in the calculated

densities. Second, one calculates the total electric field in the structure and then,

using the extracted density, the amount screened by the 2DEG. Multiplying the

remaining electric field by the distance between the center of the bound state

of the quantum well and the edge of the tunneling electrode gives the chemical

potential difference between the quantum well and the electrode. This subtraction

process involves subtracting two very large electric fields to get a small one; only

around 10% of the electric field penetrates the quantum well. Even after the

electric field has been extracted, extraordinarily precise knowledge of the distance

between the quantum well and the tunnel barrier is necessary, even though these

structures move with applied bias. Finally, one needs to correct for the change

in the bound state energy of the quantum well as the DC bias across it is varied

in order to remove this component of the variation in the chemical potential. All

told, these difficulties make extraction of the size of the chemical potential stepts

with any precision impractical.

To circumvent these difficulties, the authors experimentally calibrate the total

contribution of all these factors using one or both of the known Landau level

degeneracy and the splitting between orbital Landau levels at even-integer ν.

This makes the (justifiable) assumption the distance and field corrections involved

in calculating the DOS are approximately fixed across small ranges of density.

However, it also assumes prior knowledge of the orbital splittings; the authors

assume they are h̄ωc. While this is true at zero density, it is not exactly true

at nonzero density. As we will examine in Section 8.3, the exchange interaction

modifies splittings at even-integer ν. Thus, although the ratios of the chemical

potential jumps at even and odd-integer ν extracted by capacitance measurements

can be precise, their absolute magnitudes may be incorrect.
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5.3 Measurements using TDCS

Because we have a precisely calibrated energy scale and can directly measure the

exchange splittings as a function of B and ν in our spectra, we can easily extract

the magnitude of the exchange splittings at their maximum values. Although

we can see the exchange-split Landau levels separating and recombining in our

spectra, as the exchange splitting shrinks it becomes confused with the Coloumb

gap. As the filling fraction is raised from an even-integer ν to odd-integer ν + 1,

the gap at the Fermi surface changes from being dominated by the Coulomb gap

to the exchange gap. As the density is raised further, back to even-integer ν + 2,

the gap at the Fermi surface becomes dominated by the Coulomb gap once more.

While some theoretical work has been done on the evolution of the combined

Coulomb and exchange gap at the Fermi surface, it is only applicable at very

large densities and filling fractions[59]. We do not achieve these conditions in

our experiments. Without a good model for the line-shape of our peaks when

the Coulomb gap and exchange splitting are both important, we restrict our

quantitative analysis of the width of the exchange splitting to exactly odd-integer

ν where this confusion is minimized.

For each of the spectra in Chapter 4 at fields greater than or equal to 1 Tesla, we

fit the location and width of each Landau level at each density. With the exception

of levels that cross the Fermi surface, and as such have a triangular Coulomb gap

cut out of them, we find that superpositions of Lorentzians fit our spectra well. At

each odd-integer filling, we extract the exchange enhanced spin-splitting EJ as the

energy difference between the lower and upper spin state of the orbital Landau

level at the Fermi energy (see Figure 5-3).

Figure 5-4a plots the set of measured splittings as a function of B and ν. We

will develop an empirical formula to describe the magnitudes of these splittings.

At each magnetic field, there are measurements at several filling fractions, while

at each filling fraction there are measurements at several magnetic fields. This

overlap ensures that we can separately extract the dependence of the exchange
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Figure 5-3: Measuring the exchange splitting at 3 T: a) As each Landau level
crosses the Fermi surface, it splits apart as the exchange splitting grows. The
high and low energy spin states jump downward at the chemical potential step at
odd-integer filling while maintaining the same separation, and then the exchange
splitting shrinks again, allowing the levels to recombine. b) We measure the
exchange splitting at odd-integer filling by extracting individual columns from
our spectra, as in c, and fitting the centers of the Landau levels using Lorentzians
(not shown). The centers are illustrated using vertical green lines in the line cuts.
The exchange splitting is the distance between the peak centers, shown as light-
green vertical lines in a. c) TDCS spectra at 2 Tesla, showing a wide variation of
the exchange enhanced spin-splittings at the Fermi surface.
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enhanced spin-splitting on both filling fraction and magnetic field. We begin by

looking at the exchange splitting at fixed filling fraction as a function of magnetic

field. This means that as we raise the magnetic field, we increase the density

of the sample to keep the fractional occupation of the Landau levels fixed.† As

shown in Figure 5-4b, we find that the exchange splitting at fixed filling fraction

EJ is proportional to magnetic field. This is initially surprising in light of the
√

B dependence of the exchange energy scale. However, as we saw in Figure 5-1,

the cyclotron energy is smaller than the exchange energy scale in the range of

magnetic fields discussed here.

We can think about the observed behavior in terms of screening of the electron-

electron interactions or in terms of avoided crossings and Landau level mixing.

In terms of screening, at high magnetic fields the electron gas at integer ν is

unable to screen the Coulomb potential that gives rise to the exchange splitting

because doing so would require high energy excitations to the next orbital Landau

level. At lower magnetic fields screening becomes energetically favorable as

the Coulomb energy is larger than the orbital energy associated with these

excitations. Calculations based on simple screening models have successfully

modeled a B-linear change in the cyclotron gap caused by the exchange interaction

in GaN/AlGaN devices, as measured by thermal activation[60].

In terms of level mixing, we can imagine what the Landau energy spectrum

would look like if we sat at fixed filling fraction, and slowly turned on the

exchange interaction; physically, we could imagine placing a metal electrode

near the 2DEG to screen the electron’s potential, then moving it away slowly.

For the moment, we ignore any splitting of Landau levels away from the Fermi

surface. As the exchange interaction becomes stronger, the exchange-enhanced

spin splitting of the Landau level at the Fermi surface becomes large enough

that it begins to cross the next higher and lower orbital Landau levels, as shown

in Figure 5-5a. However, there is no special symmetry that prevents mixing of

†By contrast, the bulk of the measurements described in Section 5.2 are performed at fixed
density, not fixed filling fraction.
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Figure 5-4: Exchange-enhanced spin splittings measured at a variety of magnetic
fields and densities. a) Exchange enhanced spin-splittings as a function of filling
fraction at different magnetic fields. There is substantial overlap between our
data sets; we measure the splitting at at least 3 magnetic fields for each 1 ≤ ν ≤ 7.
b) Exchange splitting as a function of magnetic field for different filling fractions.
Note the clear linear dependence of the exchange splitting on magnetic field.
c) Plotting the exchange splitting as a function of filling fraction, we can collapse
the data onto a single curve by scaling out the magnetic field dependence. We

find this curve fits ν−
1/2. d) To check our ν−

1/2 dependence for invariance as a
function of magnetic field, we plot the exchange splitting versus magnetic field,
scaling out the ν dependence. Although some deviation begins to show at 4 Tesla
applied field, we find excellent agreement at lower fields.

82



N=2

Exchange Interaction Strength

En
er

gy
 (ħ

ω
)

½

³⁄₂

⁵⁄₂

⁷⁄₂

⁹⁄₂

EFermi

Exchange Interaction Strength

En
er

gy
 (ħ

ω
)

½

³⁄₂

⁵⁄₂

⁷⁄₂

⁹⁄₂

EFermi
Exchange

Splitting
Measured

Splitting

ν=5 ν=5

N=4

N=0

N=1

N=2

N=3

N=4

N=0

N=1

N=3

a) b)
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exchange interaction, then slowly turning it on. a) If we neglect any level mixing,
as the exchange interaction reaches full strength, the spin split Landau level at the
Fermi energy crosses the next higher and lower orbital Landau levels. b) Level
repulsion between the different orbital Landau levels causes an avoided crossing,
limiting the apparent exchange splitting to a value comparable to the cyclotron
energy.

different orbital Landau levels by the Coulomb interaction. There will be an

avoided crossing, which in this simplistic picture limits the exchange splitting

to a value on the order of the cyclotron energy; see Figure 5-5b. It is worth

noting that within this simple model, on the far side of the avoided crossing, the

nature of the orbital wavefunctions has changed. For small exchange splittings,

the states just above and below the Fermi energy have orbital wavefunctions that

look like N = 2. For large splittings (the far right of Figure 5-5b), the state

just above the Fermi energy has an orbital wavefunction that looks like the non-

interacting N = 3 state, while the state just below the Fermi energy has an

orbital wavefunction that looks like the N = 1 state. Aside from some small

modification of the tunneling matrix element, this wavefunction switch should

not have observable consequences in TDCS. However, it may be possible to detect

it in the magnetoplasmon dispersion curve, as measured by inelastic scattering

spectroscopy.

Detailed calculations for specific devices[61] have shown B-linear exchange

splittings, and a general calculation only valid for ν = 1 gives EJ = h̄ωc/2[62].
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Our observed splitting at ν = 1 of 0.7 h̄ωc is somewhat larger that this value.

Having examined our B-linear exchange gap at small magnetic fields, we now

turn to the filling fraction dependence. We can divide each observed splitting

by the magnetic field at which it was observed, leaving us with only the filling

fraction dependence; see Figure 5-4c. We find a clear ν−
1/2 dependence once the

magnetic field dependence has been removed. Finally, we check for deviations

from this dependence with applied field by replotting our splittings as a function

of magnetic field, with the ν−
1/2 dependence scaled out (Figure 5-4d). The

resulting data fall onto a straight line with remarkable precision; however, we

see that at 4 Tesla it begins to deviate slightly. We attribute this deviation to

the beginnings of the breakdown of our level mixing argument. The Coulomb

energy scale is becoming comparable to the cyclotron energy, and we begin to see

a crossover from our B-linear dependence to an expected (not yet observed)
√

B

dependence of the exchange gap.

Overall, it is not surprising that the exchange gap shrinks as we increase the

filling fraction. We know that at extremely high densities (not attained here),

our results must be identical to those for a non-interacting gas, so the exchange

splitting must vanish at large filling fraction. Within the screening picture, at

large filling fractions there are more electrons available to screen the Coulomb

interaction, so the exchange splitting will shrink. In addition, as we move to

higher orbital Landau levels, the wavefunctions become more spread out spatially

and have more oscillations, so the magnitude of the exchange matrix element

begins to shrink[63].

However, this result directly contradicts thermal activation data on the size of

the exchange gap, where no filling fraction dependence is observed[42]. Given

the relatively complex origin of the transport phenomena in quantum Hall

systems, it is hard to interpret this difference. Capacitive measurements of the

thermodynamic exchange gap do show some filling fraction dependence [48],

but beyond questions about accuracy, these measurements are only available at

relatively high fields and low filling fractions.
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We fit the slope of the points in Figure 5-4d, forcing the fit through zero at zero

field (doing so does not change the slope by of the fit by more than our statistical

error). Combining this with our ν dependence, we find

EJ = (1.2± 0.03mV/Tesla) · ν−1/2B (5.1)

= (0.70± 0.02)h̄ωc · ν−
1/2 (5.2)

To date, no theory predicts this dependence of the splitting on filling fraction and

field.

One remaining potentially contentious question regards our ability to distin-

guish between the Coulomb gap and the exchange splitting. There are theoretical

predictions that, even at densities much higher than ours and magnetic fields

much lower than ours, there is a range of filling fractions in the vicinity of odd-

integer filling fractions where the exchange interaction sets the width of the gap

at the Fermi surface[59, 64]. Beyond this, we observe that the gap at odd-integer

filling is substantially larger than Coulomb gap we observe at filling fractions

just greater than even-integer ν, where there is a Landau level lying at the Fermi

surface. The Coulomb gap does not have a strong filling fraction dependence,

suggesting the exchange gap dominates the Coulomb gap near odd-integer ν.

5.4 Evolution of the Exchange Splitting with Filling

Fraction

Beyond understanding the magnitude of the exchange gap at its maximum, we

would like to understand the way the exchange splitting grows and shrinks as the

system evolves from a paramagnet at, for example, ν = 0 to a ferromagnet at ν = 1

and back to a paramagnet again at ν = 2. Because the Coulomb gap partially

obscures the evolution of the exchange enhanced spin-splitting, we will have to

extrapolate somewhat near even-integer filling. We will refer to the evolution of

the positions of the spin up and spin down states within the orbital Landau level
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that straddles the Fermi energy as the “shape” of the exchange gap, as outlined

with dashed-blue lines in Figure 5-3a.

This shape is generated by interplay between disorder, pinning of the quantum

well chemical potential to the Landau level energies, and the exchange interaction.

In order to approach it, we will start with a simple, noninteracting system, and

imagine turning on each of these one at a time until we arrive at an accurate

description of our system. We will begin by imagining varying the filling fraction

of a well filled with uncharged electrons; see Figure 5-6a. Because there are no

interactions and no Coulomb energy, the energy of the N = 0 Landau level does

not change as we vary the filling fraction.

We can now turn on the exchange interaction, while neglecting the capacitive

energy associated with the accumulation of charge in the quantum well. We

can imagine this as being in the jellium approximation, where a uniform static

positive background is spread throughout the well canceling the net charge from

the electrons while still allowing them to interact with each other. We will then

vary the electron density by varying the charge density of this background. In

this case, as we begin to fill the N = 0 orbital state by putting in the first electron,

the spin up and spin down states are degenerate. Neglecting the Zeeman energy,

there is perfect symmetry between these states. For the sake of concreteness, we

will label the spin of this first electron as spin down.† However, when we put in a

second electron, it can interact with the first. The attractive exchange interaction

reduces the amount of energy it takes to inject a spin down electron, while the

energy it takes to inject a spin up electron remains fixed. As we continue to fill the

Landau level, the increasing density of electrons to interact with continues to pull

the spin down level to lower energies. As discussed in the next section, in simple

models of the exchange splitting this interaction energy is directly proportional

to the Landau level occupation, so we draw the energy of the spin down level as

decreasing linearly with filling fraction (Figure 5-6b). Once the spin down state

†In reality, the Zeeman energy will break this degeneracy; however, the Zeeman energy is too
small for us to measure directly in the face of the exchange interaction.
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has been completely filled with electrons at ν = 1, we are forced to begin putting

electrons into the higher energy spin up state. Just as with the spin down state,

the exchange interaction between the tunneling electron and those already in the

spin up state pull the spin up state down in energy as we fill it, until at ν = 2 we

restore the symmetry between the spin up and spin down electrons and the levels

become degenerate again.

In reality, we do not control our electron density using a uniform positive

background of charge; we gate it by using a distant electrode to vary the electron

density. This gate pulls the bound state energy of the quantum well down relative

to the tunneling electrode, which pulls with it the energies of all of the Landau

levels. When the chemical potential lies inside of a Landau level, it is pinned

there by the high density of states; we need to fill the level completely before we

can pull the next Landau level down to the chemical potential. The electrostatics

of this pinning are discussed in somewhat more detail in Chapter 11 and the

associated references. Because of this pinning, as we fill the spin down states

between ν = 0 and ν = 1, the energy of the spin down states are pinned to the

chemical potential. This pinning forces the spin up states to move upward in

energy; see Figure 5-6c. Once we have filled the spin down states completely,

in order to put the next electron into the system, we have to pull the spin up

states down to the chemical potential (Figure 5-6d); this results in the chemical

potential jumps between Landau levels. Finally, as we fill the spin up states in

between ν = 1 and ν = 2, the pinning of those states to the chemical potential

pulls the spin down states up in energy until they reach the chemical potential.

This combination of exchange splitting and pinning gives us a distinctive bow-tie

shape.

Of course, our real sample has some disorder. This broadens our levels so the

density of states in between Landau levels is not exactly zero. Because of this, our

chemical potential jumps do not occur instantaneously, but rather over a small

range of densities, slanting the edges of the chemical potential jumps somewhat

(Figure 5-6e).
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This simple model captures the basic shape that we see repeatedly, each time

an orbital Landau level crosses the Fermi surface (Figure 5-6f).

5.5 The Exchange Splitting and Disorder

The cartoon picture we have developed qualitatively explains the evolution of the

exchange splitting in our data. However, we vastly simplified the role of disorder

in this picture. In reality, because of the finite width of the Landau levels, we

do not fill one spin state up completely, and then begin filling the other; we fill

them both simultaneously. When the exchange splitting is small, we may put

nearly equal numbers of electrons into both spin states; in this case, the exchange

splitting may grow very slowly at first, and then suddenly “open up” once it is

comparable to the disorder induced level width.

We can construct a very simple model for the exchange splitting after Ando

and Uemura [65];

EJ ∝
(
n↑ − n↓

)
(5.3)

where n↑ and n↓ are the occupations of the spin up and spin-down sub-bands,

respectively. In the case that the Landau levels are infinitely narrow, this will give

us our earlier cartoon model. If the Landau levels are broadened, we will have to

calculate self-consistently the populations of the levels and the exchange splitting.

Based on our observed lineshapes, we represent the Landau levels as Lorentzians

of half-width half-maximum Γ, where Γ is the disorder-induced width of the

Landau levels. For simplicity, we assume Γ is not a function of filling fraction. We

compute the occupation of each Landau level as

N↑,↓i =
ND

π

(
arctan

(
µ− E↑,↓i

Γ

)
+

π

2

)
(5.4)

where ND is the degeneracy of a spin-split Landau level, E↑i and E↓i are the

energies of the centers of the ith orbital Landau level’s spin up and spin down
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states, and µ is the chemical potential. Given N↑,↓i , we compute the energies of

the centers of the Landau levels as

E↑,↓i = h̄ωc(i + 1/2)− JiiN
↑,↓
i (5.5)

where Jii gives the maximum possible magnitude of the exchange splitting of the

ith Landau level. We self-consistently solve Equation 5.4 and 5.5 using a non-

linear root finder. In order to generate a simple simulated map of the DOS, we

calculate the occupations of the Landau levels as a function of chemical potential,

and compute a simplified DOS spectrum for each chemical potential as

D(ε) = ∑
i

N↑i
π

Γ(
ε− E↑i

)2
+ Γ2

+
N↓i
π

Γ(
ε− E↓i

)2
+ Γ2

 (5.6)

In constructing this DOS, corresponding to placing a Lorentzian at the center

of each of our Landau levels, we have assumed the tunneling density of states

is identical to the thermodynamic density of states, neglecting both the finite

quasiparticle lifetime and any renormalization of the cyclotron energy as a

function of density or quasiparticle energy. However, this simple model is still

adequate to illustrate that a simple occupation-dependent exchange splitting

survives in the presence of disorder, and does not introduce additional features

not seen in our spectra.

On doing so, a difficulty arises with the attractive nature of the exchange

interaction. The total density, Ntotal, as a function of the chemical potential is

multi-valued; this is a consequence of the regions of negative compressibility of

the electron gas[66, 67]. This does not actually result in bistability of the density

in real samples; we have not included the capacitive energy of the structure in

our calculation of the chemical potential. Because we only measure energies

relative to the chemical potential in our experiment, we have no direct access

to this capacitive energy; neglecting it has no measurable consequences. One

solution to this difficulty is to perform the calculation of the spectral function as
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Figure 5-7: a) Calculated exchange DOS at 3 Tesla using Equation 5.6. Values
of Jii are extracted from our experiment. b) Measured DOS spectrum at 3 Tesla.
Note the good agreement on the overall shapes formed by the spin-split Landau
levels, neglecting the Coulomb gap.

a function of density rather than chemical potential[63]. However, we eventually

intend to combine this density of states with our numeric models of the structure

(Appendix C); it would be difficult to rework this large body of code in terms of

the density rather than the chemical potential.

Rather than do this, we use an approach motivated by the capacitive energy

we neglected earlier. We transform from the real energies and chemical potentials

to variables than include a “fake” capacitive energy, E
′↑,↓
i = E

′↑,↓
i + CNtotal and

µ′ = µ + CNtotal, where C is a parameter that characterizes this energy. Note that

for any given solution, we have just offset our energy scale by a fixed amount, so

there is a one-to-one mapping between solutions µ, N↑,↓i , E↑,↓i and solutions using

our modified energies µ′, N↑,↓i , E
′↑,↓
i . The advantage of working in terms of the fake

energies is that if C is large enough, there is only one solution to our equations

for any given µ′. In fact, in the limit where C goes to infinity, working in terms

of µ′ is equivalent to working in terms of density. In Figure 5-7, we show the

calculated DOS spectrum at 3 Tesla, with a single Γ taken from our experimental

data near the Fermi energy and Jii taken from our experimental splittings.
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Comparing to actual data in Figure 5-7b, we see that not only does the

realistic inclusion of disorder not invalidate our cartoonish model of exchange,

but it also brings the evolution of the splittings into even better agreement with

our experimental results. Because the shapes formed depend only on the ratio

between the level width Γ, taken here to be 500 µeV, and the exchange energy

Jii, the array of shapes in Figure 5-7 can be taken to be representative of the

different shapes we should expect to see in our data at all magnetic fields. This

value of γ is taken to be roughly the minimum observed Landau level width,

roughly approximating our peak-to-peak disorder. Comparing these shapes to

those in Chapter 4, we see excellent agreement in the general shape, ignoring the

Coulomb gap.

5.6 Summary

Using our DOS spectra, we directly extract the exchange enhanced spin-splitting

at odd-integer ν at fields up to 4 Tesla. We develop an empirical formula to

describe this splitting and briefly discuss its general form. The evolution of the

splittings as the filling fraction is varied originates with the interplay between

disorder, pinning of the Landau levels to the chemical potential, and the exchange

splitting. We describe a simple model that explains the shape in our spectra and

use a more detailed numerical model to examine its robustness in the face of

disorder.
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Chapter 6

Indirect Exchange Splittings

In the previous chapter, we examined the way the exchange splitting splits the

orbital Landau level closest to the chemical potential. If we look at our higher

field spectra (see Figure 4-1) in the vicinity of odd-integer filling fractions, we

notice a peculiar feature in the empty states in the Landau levels above the Fermi

energy and in the filled states in the Landau levels below the Fermi energy. They

split apart in a way similar to the Landau level at the Fermi surface. There is

no net spin polarization in either of these Landau levels; they are completely

empty and completely filled, respectively. The states in these levels are orthogonal

to those that we are filling and emptying as we vary the density. Naively we

might not expect to see these completely empty and completely filled levels split

as we vary the filling fraction. However, the exchange splitting involves matrix

elements of the Coulomb interaction e2/(r1 − r2); these matrix elements do not

vanish between Landau levels with different orbital indices. In Figure 6-1, we

illustrate the magnitude of these exchange matrix elements relative to that for two

electrons of like spin in the N = 0 orbital state, as calculated in [63]. We denote

the exchange matrix element between an electron in N = m and an electron in

N = n by Xmn. The diagonal elements of this X matrix, Xii give the usual exchange

matrix elements between two electrons in the same orbital Landau level.

We will refer to this splitting as the “indirect exchange splitting” in order to

distinguish it from the more familiar splitting at the Fermi surface. Indirect refers
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Figure 6-1: Relative magnitudes of exchange integrals, as calculated in [63].
The sizes of the circles depict the magnitude of the exchange matrix element
between an electron in N = m and N = n, normalized to the interaction between
two electrons in N = 0. Note that the matrix element is always largest between
electrons in the same orbital Landau level, where the wavefunction overlap is the
largest, and becomes smaller as N increases and the orbital wavefunctions become
spread out.

94



to the fact that it is a splitting induced by electrons in one orbital state on electrons

in a different orbital state. Our spectra are, to the best of our knowledge, the first

experimental observations of these indirect splittings. Much as with the direct

exchange splittings, we can try to understand the shape of these splittings and

their relative magnitudes.

6.1 A New Probe of Many-Body Ground States

In Figure 6-2, we examine the indirect splittings at 3 Tesla in some detail. As

shown in b and e, when the 2DEG is at even-integer filling, all of the orbital

Landau levels, including those above and below the Fermi surface, appear as a

single, well defined peak. As we begin to fill one spin state of a given orbital level,

the filled Landau levels above (c) and below (f) the Fermi surface begin to split

apart due to the indirect exchange splitting, and continue to grow farther apart

as we approach odd-integer filling.

The exchange enhanced spin-gap is a relatively delicate, low temperature

phenomenon. The gap at the Fermi surface is typically on the order of a few

hundred microvolts, or a few Kelvin in temperature units. If the temperature is

raised to on the order of the exchange splitting, thermal occupation of the upper

and lower spin states will equalize their populations and collapse the exchange

gap. In injecting electrons or holes into excited orbital states, we are probing the

2DEG at energies on the order of ten millivolts, equivalent to one hundred Kelvin.

The observation of this indirect splitting shows that the high energy spectra can

reflect the low temperature many-body ground state of the electron liquid. This

high energy spectrum constitutes a new and unexplored probe of the nature of

the many-body ground state of the 2DEG.

Injecting electrons at energies equivalent to 100 Kelvin into a low temperature

system is not equivalent to measuring equilibrium properties in a 100 Kelvin

system. The persistence of these indirect exchange gaps at high energies is further

evidence of the non-invasive nature of TDCS; if we were substantially heating the
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Figure 6-2: Indirect exchange at 3 Tesla: a) 3 Tesla TDCS spectrum, showing
both direct exchange at the Fermi surface, and indirect exchange in Landau levels
above and below the Fermi surface. b-g) Line cuts from a showing indirect
exchange splittings. Exchange-split peaks far from the Fermi energy are indicated
with dashed black lines. Data without matrix element correction is included in
the line cuts as a lighter line. When the indirect exchange splitting occurs near the
region where the correction becomes singular, the splitting can be clearer before
the correction is applied.
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electron gas, these gaps would collapse. Because we perform our measurement at

the first instants of our applied pulse, before a significant amount of heating has

occurred, we probe a cold electron gas, even at the highest energies at which we

measure.

We consistently find that the spin-state closest to the Fermi surface is brighter

and sharper than that farther away in these indirect-split levels. For example,

continuing to call the lower energy spin-state “spin down” and the higher energy

spin state “spin up”, we see that at filling fractions 3 < ν < 4, the spin up state

of N = 0 and the spin down state of N = 2 are bright and easy to see. By

comparison, the spin down state of N = 0 and the spin up state of N = 2 are dim

and broad features; on the line-cuts through the spectra, they often contribute a

small shoulder rather than a separate well defined peak. In many places, it is not

possible to resolve these states at all. The difference appears to involve both a

broadening of the farther state and a reduction of its spectral weight. At present,

the reason for this disparity between the spin state closer to the Fermi surface and

that farther away is not understood. It prevents us from accurately assessing the

magnitude of the indirect exchange splitting at its maximum. Because of this, we

will restrict ourselves to qualitative discussions of the size of the indirect exchange

splitting, unlike our detailed fitting of the direct splitting.

6.2 Evolution of the Indirect Exchange Splitting with

Filling Fraction

Just as with the direct splitting, we can develop a physical model for the unusual

shape the indirect exchange splitting takes. The situation is somewhat more

complicated now; we now have two energy scales: the magnitude of the direct

exchange gap and that of the indirect exchange gap. We will consider two

rough cases in parallel; the indirect splitting can be smaller than the direct (as

illustrated in the top row of Figure 6-3), or larger (as illustrated in the bottom
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Figure 6-3: The shape of the indirect exchange gap, built up by considering
a simplified system of uncharged electrons, and adding effects one at a time.
We consider both the case where the indirect gap above the Fermi surface
is smaller than the direct gap (a-c), and the case where it is larger (d,e).
a) Interacting electrons with uniformly charged background b) Charged electrons
in tunnel capacitor c) Charged electrons with disorder d) Interacting electrons
with uniformly charged background e) Charged electrons in tunnel capacitor
f) Actual data at 4 Tesla for comparison.

row of Figure 6-3). In panels a and d, we show the energies of two adjacent

orbital Landau levels as we proceed from even to odd and back to even integer

filling fractions. Without loss of generality, we take these to be ν = 0, 1, 2, and

consider injecting electrons into an orbital level above the Fermi energy. The

shape generated by injecting holes into a level below the Fermi energy is similar.

At zero density, both the N = 0 and the N = 1 Landau levels are spin

degenerate. As before, we begin to fill the lower spin state, spin down, of N = 0

by increasing the DC bias. If we now tunnel an electron into the spin down state

of N = 0, it feels an attractive exchange interaction to the electrons already in

98



the well. This lowers the energy of the spin down N = 0 state on our spectrum.

If we consider tunneling an electron into the empty spin-down state of N = 1,

there are no other electrons in N = 1 with which it can interact. However, it has

a weak attraction to the electrons already in N = 0; referring to Figure 6-1, the

matrix element is half the size of that for an electron tunneling into N = 0. This

weak attraction pulls down the energy of the spin down state of N = 1, just as

it pulls down the spin down state of N = 0. As we continue filling the 2DEG,

the N = 0 states and N = 1 states continue to evolve similarly, and in the same

fashion as discussed in Section 5.4. From the viewpoint of the bare exchange

matrix elements, we only expect the situation in panel a to be observed; panel d

apparently shows more attraction between an electron in N = 1 and N = 0 than

between two electrons in N = 0.

As before, to include the effects of Landau level pinning we distort the

diagrams so that the Landau level being filled is always at the same energy.

This is illustrated in panels b and e. In the case where the indirect splitting is

smaller than the direct splitting, this will cause the N = 1 spin down state to

apparently move upwards in energy as we fill the well from ν = 0 to ν = 1 (panel

b). This is a manifestation of the negative compressibility of the quantum well in

this region; neglecting the external capacitive energy of the 2DEG, the chemical

potential of the well drops as we raise its density. This is characterized by the

tendency of the well to over-screen in these regions; it will pull in more charge

than it needs to screen applied electric fields, and the capacitance of our tunnel

capacitor will exceed what would be observed if the 2DEG were replaced by a

perfect metal[66, 49]. If the indirect splitting were larger than the direct splitting,

as in e, the spin-down state of the N = 1 orbital level will move downward in

energy.

Because of disorder, the Landau levels will have finite width. As we raise the

density, the centers of the Landau levels move downwards as we fill the lowest

energy states in them first and then fill the higher energy states. This is illustrated

in c. In extreme cases, this slope may be large enough that the N = 1 states will
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both move downward in energy, even when the indirect splitting is smaller than

the direct. This is the case near ν = 1 at lower magnetic fields; see Figure 4-1.

Putting together all of these effects, we find a bow-tie shape for the Landau level

nearest the Fermi surface, while the Landau level farther away can form either a

bow-tie or a wave-like shape. We find examples of both of these shapes in our

data.

6.3 The Indirect Exchange Splitting and Disorder

When we add disorder to the indirect exchange splitting, we have interplay

between three energy scales: the direct exchange splitting, the indirect exchange

splitting, and the disorder amplitude. The simple cartoon developed above

includes only a rough approximation of the disorder. We can see if our simple

model of Section 5.5 can reproduce the range of shapes we see in our actual

data by extending it to include these indirect exchange splittings. We do so by

continuing to use our experimentally observed exchange-enhanced spin splittings

near the Fermi surface, but using the ratio of the elements of Xmn to approximate

the indirect exchange splittings. we will replace Equation 5.5 with

E↑,↓i = h̄ωc(i + 1/2)−∑
j

Jii
Xij

Xii
N↑,↓j (6.1)

This form for the energy dependence is, aside from the use of the experimentally

extracted on-diagonal exchange splittings, that derived by MacDonald et al. in

the absence of Landau level mixing[63].

The resulting spectrum is illustrated in Figure 6-4. We find the variety of

indirect exchange splitting shapes in our simple model (a) mirror those we see in

our data (b). However, substantial and qualitative differences are visible.

Because the off-diagonal elements of Xmn are smaller than the on-diagonal

elements in the same row and column, in the simulation the indirect splittings

are always smaller than the splittings at the Fermi surface. This is in general true
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Figure 6-4: a) Calculated exchange DOS at 3 Tesla using Equation 5.6. Values of
Jii are extracted from our experiment, while the ratio between Jii and Jij are taken
from those in [63] (Figure 6-1). b) Measured DOS spectrum at 3 Tesla. Note the
good agreement on the overall shapes, and the disagreement on the magnitude
of the indirect exchange splitting. Inset; a graphical representation of the relative
sizes of the exchange matrix elements, as in Figure 6-1, for reference.
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Figure 6-5: Indirect Exchange Splittings at 2 Tesla, with the splittings
emphasized by blue ovals. In regions where one spin state is not easily visible, the
ovals have been placed assuming the splitting to be symmetric. Yellow ellipses
mark the direct exchange splitting at the Fermi energy. b) has the ovals removed
for clarity.

in our spectra; see Figure 6-5. However, at any given density, the N = 0 Landau

level is always split by as much as or more than every other level in the spectrum.

For most orbital levels, the nearby energy spectrum is symmetric; there

are Landau levels that lie above and below, separated by (approximately) h̄ωc.

However, for the N = 0 Landau level, there is no lower level. This special position

in the spectrum gives it markedly different properties.

Avoided crosses limit the indirect exchange gaps just as they limit the exchange-

enhanced spin gap at the Fermi surface. However, the N = 0 state’s unique

position in the spectrum means that there is no lower Landau level for it to mix

with, as shown in Figure 6-6. Its exchange splitting can grow larger than any
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Figure 6-6: Special role of the N = 0 Landau level: a) neglecting Landau
level mixing, the exchange interaction causes the energies of Landau levels with
different orbital indices to cross near odd-integer filling. Energies shown neglect
the capacitive energy of charging the well, as per the jellium panels of Figure 6-3.
b) While avoided crossings limit the indirect exchange splittings of levels with
orbital indices N > 0, N = 0 has no lower lying level to mix with, and is able to
grow without bound.

other in the spectrum can.†

6.4 Alternative Approaches to Level Mixing

Some success has been had in treating Landau level mixing at intermediate fields

by replacing the usual Coulomb interaction with the screened interaction present

in a zero field 2D electron gas[60, 68, 62]. Conceptually, this deals with the

Coulomb interaction first and then approximately adds Landau quantization on

top. This approach neglects the orbital energy required to introduce a charge

density change in a quantum Hall system relative to the Coulomb interaction

strength, an approximation appropriate in the low-field limit. We choose to speak

in terms of mixing Landau levels instead both because of the intuitive insight it

can give, especially in explaining the limiting the splittings to the order of h̄ωc,

and because in those terms we are able to discuss special cases such as the N = 0

†The spin down state of the N = 0 level also has a fairly narrow line-width and high spectral
weight; this is suggestive that the asymmetry of the peaks in the spin-split Landau levels may be
related to mixing between Landau levels
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Landau level.

The framework for including Landau level mixing has been laid out and used

in the calculation of thermodynamic and electrical properties of two-dimensional

electron gases[61, 63]. However, there are no published calculations of the detailed

high energy spectra of an interacting 2DEG, nor are there analytic calculations of

splittings in this intermediate field range.

6.5 Summary

Spin-polarized Landau levels at the Fermi surface induce exchange splittings in

empty orbital states above the Fermi surface and filled orbital states below the

Fermi surface. These “indirect” exchange splittings have been observed, for the

first time, using time domain capacitance spectroscopy. The spectrum of these

highly excited states reflects correlations formed in the many-body ground state

of the electron liquid. With the ability to measure this high energy spectrum

comes a unique new probe of the many-body ground state.

We develop an understanding of the general shape and magnitude of the

indirect exchange splitting, and provide a qualitative interpretation of the special

role of N = 0 in the spectrum. A quantitative measurement of these splittings

is hampered by an unexplained imbalance between the spectral weight in the

two branches of the splitting; the state closest to the Fermi energy is sharper and

carries more spectral weight than the state farther away.
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Chapter 7

Quasiparticle Lifetimes

For the past three chapters, we have discussed quasiparticle energies in the integer

quantum Hall effect; we have asked, and answered the question “at what energies

can we insert and remove electrons from our system, creating quasi-electrons

and quasi-holes?” However, that is only part of the information contained

in our spectra; another important question is “given that we have injected a

quasi-electron or quasi-hole, how long does it live in the electron gas?” These

quasiparticles are not true eigenstates of the many-body system; their lifetimes

are finite due to electron-electron interactions.

These finite lifetimes lead to observable broadenings of the line-widths in our

spectra. There are also contributions to the broadening from the disorder present

in our samples. Our task, then, is to extract the line-widths from our spectra, to

separate the contributions from disorder and from the quasiparticle lifetime, and

to understand the origins of both sources of broadening.

7.1 Lifetimes and Energy Broadening

Consider a state |ψ〉 which is “almost” an eigenstate of a system with energy

h̄ω0, such that it has a long lifetime Γ−1 � ω−1
0 . That is, if |Ψ(t)〉|t=0 = |ψ〉 is a
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solution to Schrödinger’s equation H |Ψ(t)〉 = ih̄ ∂|Ψ(t)〉
∂t ,

〈Ψ(t)|ψ〉 = eiω0te−Γt , t > 0 (7.1)

In calculating the tunneling rates, we need to know what the overlap M(E) of

|Ψ(t)〉 is with a state |ε〉 of definite energy E due to the contribution from |ψ〉;

M(E) =
∫ ∞

0
ei(ω0−E/h̄)te−Γt 〈ε|ψ〉 (7.2)

∝
1

Γ + i(ω0 − E/h̄)
(7.3)

Our differential tunnel current is proportional to |M(E)|2,

|M(E)|2 ∝
1

Γ2 + (ω0 − E/h̄)2 (7.4)

Thus, if we consider the contribution to our spectra of a state of energy h̄ω0

and lifetime Γ, we expect to see a Lorentzian peak in our spectrum with a half-

width half-maximum (HWHM) of Γ. Note that our definition of Γ in terms of the

amplitude decay rate, rather than the probability decay rate, is consistent with

that typically used in many-body theories, and the Γ shown in Figure 2-1.

7.2 Electron-Electron Interactions and Finite

Lifetimes

Figure 7-1 shows a TDCS spectrum taken at low field. If we look at the zero

and low density region of the spectrum, we can see clear Landau levels all the

way from the Fermi energy to 15 meV (dashed red box in Figure 7-1b). However,

as we begin to raise the density in the quantum well, we see the high energy

levels broaden and disappear near ν ∼ 0.5 (right edge of red box). As we

continue to raise the density, these high energy levels reappear as they approach

the Fermi surface (dashed blue box in Figure 7-1b). The overall high DOS in the
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Figure 7-1: Line-widths and lifetimes at 1 Tesla: a) TDCS Spectrum taken at 1
Tesla, provided for reference. b) At zero density and low density, clear Landau
levels are visible from the Fermi surface all the way up to 15 meV (dashed red
box). However, as the density is raised, the high energy levels disappear. They
become visible again as they approach the Fermi surface (dashed blue box).
c) Imaginary contours of constant visibility for the Landau levels are roughly
parabolic in shape.
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Figure 7-2: Lifetimes of quasiparticles near the Fermi surface: a) An injected
electron can decay by scattering off electrons already in the Fermi sea. b) As the
energy of the injected electron increases, the number of different ways it can excite
electron hole pairs increases, decreasing the electron’s lifetime. Both the energy
lost by the injected electron (different black boxes), and the distance from the
Fermi surface of the scattered electron (different cartoons within the same black
box) can vary.

region where the Landau levels have disappeared shows they disappear due to

broadening rather than a reduction of their amplitude; this is borne out by an

examination of the high energy Landau levels at higher magnetic fields, which

show a large spectral weight but increased broadening.

The strong density dependence of this broadening indicates that it originates

with many-body effects. This leads us to a well-known result from Landau’s

Fermi-Liquid theory[14, 15, 69] that the lifetime of quasiparticles near the Fermi

surface is a strong function of their energy from the Fermi surface. Conceptually,

injected quasiparticles can decay by scattering off electrons in the Fermi sea. As

we raise the energy of the injected electron, we increase the number of possible

electron hole pairs we can excite (Figure 7-2). This increase in the number of

potential decay channels decreases the electron lifetime.

This energy dependence can be quantitatively understood by examining the

phase space available for electron-electron scattering[70]. At zero temperature,

consider an injected electron (or more strictly speaking, quasiparticle) an energy

ε away from the Fermi surface, where ε is small enough that the single-particle

density of states at ε can be approximated with that at the Fermi energy. The

electron can decay by scattering off an electron already in the Fermi sea, creating

an electron-hole pair; see Figure 7-3. When the injected electron scatters, it will

lose an amount of energy ∆. Because of the Pauli exclusion principle, the electron
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Figure 7-3: Phase space for scattering near the Fermi surface: An electron
injected with energy ε can scatter, losing any amount of energy ∆ < ε. The
generated electron-hole pair will also have energy ∆. Because the electron must be
above the Fermi surface and the hole must be below, the hole must be generated
from an energy 0 ≤ δ ≤ ∆.

must scatter to an energy above the Fermi surface, so 0 ≤ ∆ ≤ ε. Similarly, the

electron scattered out of the Fermi sea must be scattered into a state above the

Fermi surface; it can be drawn from any energy 0 ≤ δ ≤ ∆ beneath the Fermi

surface. Thus, neglecting momentum conservation, the phase space Ω available

for scattering is given by

Ω ∝
∫ ε

0

∫ ∆

0
dδd∆ (7.5)

∝
∫ ε

0
∆d∆ (7.6)

∝ ε2 (7.7)

If ε is small enough that the variation of the scattering matrix element is

negligible, the lifetime τ is simply proportional to Ω−1. The only remaining

energy scale is EF, so, using dimensional analysis,

h̄
τ

∝
ε2

EF
= EF

(
ε

EF

)2

(7.8)

Detailed examinations[9] confirm this result in the limit of small ε but rely

on momentum conservation; with care, it can be derived in the absence of

momentum conservation[71, Section 5.2].
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At low magnetic fields, the Fermi energy is roughly proportional to the charge

density, or equivalently the filling fraction ν. With this approximation, curves of

constant lifetime are curves of constant ε2ν−1, or ν ∝ ε2; these are parabolas

oriented along the x-axis of our plots. In Figure 7-1c we superimpose such

parabolas on our 1 Tesla data. On qualitative examination, these parabolas do

seem to describe contours of constant Landau level visibility, as we would expect

if electron-electron scattering were the origin of our disappearing Landau levels.

Of course, at zero energy our Landau levels have finite line-widths. Fermi

liquid theory tells us that lifetimes diverge near zero energy, indicating there is a

second source of broadening in our spectrum.

7.3 Disorder and Screening

This second source of level broadening in our structures is disorder. Charged

impurities can locally modify the electrostatic potential in the quantum well,

broadening the Landau levels[72]. Fluctuations in the width of the quantum well

and variations in the Aluminum concentration in our AlxGa1−xAs barriers also

lead to variation in the confinement energy in our quantum well. In either case,

the energy of the bottom of the 2D band will vary as a function of position. For

simplicity of language, we can combine these effects into an effective electrostatic

potential.

If the thermodynamic density of states in the quantum well is large, the local

electron density in the quantum well can change in response to long length-scale

disorder. These density fluctuations will tend to reduce the magnitude of the

disorder potential (Figure 7-4a). If the density of states is infinite, the 2DEG

is able to screen the disorder perfectly and the potential is constant across the

entire 2D plane; this is the familiar case of a metal sheet placed in a non-uniform

electrostatic potential.

As we sweep the density in the quantum well, the density of states fluctuates.

When the chemical potential falls inside of a Landau level, we can locally add
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Figure 7-4: Screening of disorder by the 2DEG: a) When the density of states
at the Fermi surface is large, potential fluctuations induce changes in the carrier
density, which reduce the magnitude of the potential variation. The observed
DOS spectrum shows little broadening. b) When the density of states at the
Fermi surface is small, the 2DEG is unable to screen potential fluctuations. The
observed DOS spectrum is heavily broadened.
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electrons to the quantum well to screen disorder potentials. We expect in these

regions to observe narrower line-widths due to disorder. On the other hand, when

the chemical potential is between two Landau levels, it would take a potential

fluctuation on the order of h̄ωc to locally add electrons. Screening of disorder by

the quantum well will be negligible, and the observed line-widths will reflect the

unscreened disorder in the quantum well (Figure 7-4b).

7.4 Extracting Low-Field Lifetimes

Starting with the 1 Tesla spectrum, we can fit the position and width of each

distinguishable Landau level; see Figure 7-5a. We are left with an irregularly

spaced mesh of line-widths that are difficult to visualize or compare with theory.

We simplify the presentation of this data by fitting a fifth order polynomial

through each column of our data, and using these fits to interpolate a continuous

scalar field of broadenings. We then plot contours of constant broadening using

this field (Figure 7-5b).

If we look along the Fermi surface at E = 0, we see the broadening oscillates.

The levels are very broad at even-integer ν, and narrower elsewhere. This is

indicative of disorder broadening, as discussed above. At even-integer ν, the

2DEG is incompressible and unable to screen disorder. At odd-integer ν, the

density of states is high (the exchange splitting is smaller than the level width at

these fields), and disorder is screened effectively.

If we want to find regions where lifetime broadening dominates our spectra,

we should go to odd-integer ν where the disorder broadening is minimized, and

move out to higher energies where we expect shorter lifetimes.

Detailed calculations of the lifetime due to electron-electron scattering in a 2D

system at zero temperature have been performed by Chaplik[73, 74];

h̄
τee

(E) '
E f

4π

(
E
E f

)2 [
ln
(E f

E

)
+

1
2

+ ln

(
2qTF

k f

)]
(7.9)
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Figure 7-5: Fitting lifetimes at 1 Tesla: a) 1 Tesla TDCS spectrum with fitting
results superimposed. Each marked point corresponds to the center of a Landau
level, while the error-bars denote the FWHM of the fit. In b, we interpolate this
irregularly spaced grid vertically across our data using 5th order polynomials, and
plot contours of constant line-width. c) Comparison of extrapolated contours of
constant line-width to Equation 7.9 (dashed lines).
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where qTF is the Thomas-Fermi screening wave vector 2me2h̄−2. This is a zero

field result that is only valid near the Fermi energy. We expect that at adequately

small fields this result will hold, and the half-widths of our levels will be given

by h̄/τee + Γ0, where Γ0 is the broadening due to disorder. We approximate

the Fermi energy by the energy of the most tightly bound Landau level, and

the quasiparticle mass by the bulk electron mass in GaAs, m∗ = 0.067m0; this

leaves no adjustable parameters in determining τee. In Figure 7-5c, we plot this

result against our contours of constant line-width. At high energies and odd-

integer ν, where we expect lifetime broadening to dominate our disorder-induced

line-widths Γ0, we find excellent quantitative agreement between our measured

widths and this first principles result. The useful range of comparison covers the

range of rs = qTF√
2k f

from around 1.5 to 4.5, testing the logarithmic dependence on

rs.

Perhaps the most remarkable feature of this measurement is that we find this

agreement holds out to energies comparable to the Fermi energy, well outside the

expected range of validity of this result. This measurement shows experimentally

that even in the presence of strong Coulomb interactions, quasiparticles with well

defined energies and long lifetimes exist over the full range of energies from

0 . E . 2EF.

The lifetime due to electron-electron scattering has been probed experimen-

tally before. In transition metals, it contributes a region of T2 temperature

dependence of the resistivity [70]. In two-dimensional systems, the phase de-

coherence length has been measured as a function of energy using an electron

interferometer[75]. Unlike our measurement, this was done at zero field, allowing

more precise comparisons with Equation 7.9. These measurements of the phase

decoherence length cover a single density and a narrow range of energies (up

to approximately 25% of the Fermi energy). Zero-field double well tunneling

experiments have been used to probe the temperature dependence of the electron-

electron scattering lifetime[76], which takes a similar form to that of the energy

dependence[77]. These measurements are over a narrow range of energies and
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densities, and there is a large unexplained multiplicative factor between the

results and theory. Our measurements represent the first available at high

energies, and probe the quasiparticle lifetime directly, rather than the phase or

momentum scattering time. They also provide the first tests of the logarithmic

corrections to Equation 7.9.

7.5 Choice of Dataset

There is an unavoidable compromise in our choice of the 1 Tesla data set for

measuring line-widths. Although we would like to measure lifetimes at zero field

for easy comparison with currently available theories, the zero field spectrum

is relatively featureless. We need to apply a magnetic field to discretize the

spectrum, providing sharp features whose line-width we can measure. We need

these features to be a distance comparable to the line-width apart in order to

resolve them. As we increase the magnetic field, we are able to measure shorter

lifetimes, and our fitting accuracy increases as our peaks become better separated.

However, these increased fields move us further out of the domain of Equation 7.9,

and we sample the lifetime at more widely spaced intervals as the energy spacing

between the Landau levels increases. Finally, the emergence of direct and indirect

exchange-enhanced spin gaps at higher magnetic fields makes it difficult to extract

accurate widths; in regions where the gap is not wide enough to resolve it appears

as extra broadening in our levels.

We have several datasets available to choose between to measure the electron-

electron lifetimes, shown in Figure 7-6. At 1/2 Tesla, we find that although we

are able to see several Landau levels, their separation is much smaller than their

line-width. The DOS does not come close to zero in between the Landau levels,

even near the Fermi surface.

At 3/4 Tesla, the dip between the Landau levels near the Fermi surface becomes

pronounced, dropping to approximately 50% of the peak value, but we are still

not able to resolve levels very far from the Fermi surface.
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Figure 7-6: Choice of spectrum for lifetime fits: The 1 Tesla spectrum was
selected as a compromise for fitting the quasiparticle lifetime. A low magnetic
field, closely approximating zero-field theories, allows tightly spaced lifetime
measurements in energy. Higher magnetic fields give good separation between
adjacent peaks, allowing accurate fitting, but exchange splitting and the Coulomb
gap can modify line-widths. Representative line cuts near even-integer filling are
shown for each spectrum. The red line is the zero of the line cut, and is drawn at
the point in the spectrum from which the line cut was taken.
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By 1 Tesla, we are able to resolve Landau levels at a large range of energies

around the Fermi surface, and the DOS is dropping to near zero in between the

levels at the Fermi surface. Some exchange splitting is becoming visible near the

Fermi surface, but we can separate the levels there with the aid of the Coulomb

gap.

At 11/2 Tesla, the exchange splitting is becoming large enough to be a serious

problem, with the indirect exchange splitting becoming noticeable in the excited

states that are important for our lifetime fits.

On this basis, we choose to use the 1 Tesla data for our lifetime fits. In the

future, with more data acquisition, we could use sweeps at fields near 1 Tesla to

provide lifetime data in the gaps between Landau levels in our current spectra. It

may also be possible to relate the peak-to-valley visibility of the Landau levels to

their width in a simple and robust way, allowing us to use much lower field data

for lifetime fitting. Any such approach would rely on the quantitative accuracy of

our matrix element correction, which at this point would lead to systematic errors

in the measured lifetimes.

7.6 Summary

Although the resolution of our spectra is only limited by temperature and

acquisition time, the Landau levels we observe are substantially broadened.

At energies near the Fermi surface, disorder dominates the broadening, and

we see clear oscillations in the observed level width as the 2DEG transitions

between compressible and incompressible regions. At higher energies, finite

lifetimes due to electron-electron scattering dominate. We find good agreement

with no adjustable parameters between our observed line-width and theoretical

predictions, even substantially outside of the strict domain of applicability of

those theories. Quasiparticles in the 2D electron gas remain a useful construct

even at energies comparable to EF away from the Fermi surface.

When we move to very low density, there are no electrons off which the
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injected electrons can scatter. Here, we recover the physics of non-interacting

electrons, and are able to resolve Landau levels at the highest energies we

measure. As we transition to finite densities, we see Fermi liquid theory “turn

on”. This happens somewhat suddenly near ν ∼ 1/2 . It is unclear why this

occurs at a finite density rather than at zero density.
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Chapter 8

New Features

Even with the current capabilities of TDCS, much remains to be explored in the

2DEG. There are several unidentified and tentatively identified features in the

spectra that need to be examined with more care. There are also simple ways to

extend the measurement that we expect to reveal new phenomena. We explore

these opportunities here.

8.1 Plasmarons

As we discussed in the introduction, in 2D systems there is predicted to be

a second type of quasiparticle, a plasmaron, much more tightly bound than a

normal quasi-hole[12]. To our knowledge, this quasiparticle has not been directly

observed despite extensive efforts to identify it in X-ray spectra[80, 81]. Efforts

to identify plasmarons in 3D may have been in vain. There are suggestions

that in 3D the plasmarons result from approximations used in solving Dyson’s

equation[82, 83], and in reality the excitations are too heavily damped to observe.

However, these excitations are expected to be real in 2D systems[11]. Furthermore,

they are expected to contribute a distinctive peak or sharp shoulder of substantial

spectral weight[84, 79], suggesting they should be easily visible in tunneling

experiments in 2DEGs. There is, however, substantial disagreement as to the

exact structure in the DOS[12, 11, 84, 79, 78].
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Figure 8-1: Calculated DOS at zero magnetic field, in different approximations.
a) Hedin [12], 3D electron gas diagram. The peak/shoulder structure below zero
energy originates with the plasmaron modes. b) von Allmen[78], 2D electron
gas, n = 2.2, 7.1, 12 × 1011 cm−2 moving from right to left. c) Guillemot
and Clérot[11], 2D electron gas, n = 1011 cm−2. The Fermi energy is given
by the vertical dashed line. d) Guillemot and Clérot[11], 2D electron gas,
n = 6 × 1011 cm−2. The Fermi energy is given by the vertical dashed line. e)
Jalabert and das Sarma [79], 2D electron gas, n = 1011 cm−2 for the dashed lines,
2× 1011 cm−2 for the solid, and 1012 cm−2 for the dash-dotted lines. Bold lines
include phonon coupling. Energy is in units of four times the Fermi energy, with
the shaded region corresponding to filled states for non-interacting electrons. The
same basic shoulder structure is present in all the spectra, at an energy a few times
the Fermi energy.
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However, the basic prediction is consistent. There is expected to be a sharp

shoulder or peak in the DOS substantially below the most tightly bound con-

ventional quasiparticle, owing to simultaneous generation of a strongly bound

plasmon and quasi-hole (Figure 8-1). Even at zero field, these quasiparticles

appear as a peak in the DOS as they have a peaked contribution at long k-vectors.

This band occurs at an energy roughly proportional to EF, and is a few times EF

below the Fermi surface.

Examining our 0 T data carefully (Figure 8-2), we see a shoulder of states below

the 2D band bottom that seems consistent with these predictions, and tentatively

identify it as due to plasmarons. This shoulder becomes peak-like at zero density,

but is never well resolved from the tail of the main band. We can emphasize this

feature by examining the derivative of our data, d(DOS)/dE, which will show a

peak each time there is a step in the data. We encounter the same difficulties as

we have in taking dI/dV. In this case, we overcome them by low pass filtering the

data on a column-by-column basis, convolving it with a σ = 500 µeV Gaussian,

although this solution is less than ideal.

At higher magnetic fields, this shoulder sharpens into a well defined peak

roughly h̄ωc below the lowest Landau level. Although there are no predictions we

are aware of for the energy spectrum of magnetic plasmarons, this seems consis-

tent with the zero field result. At high fields, the magnetoplasmon is broken into

bands associated with excitations between Landau levels with different orbital

indices. In particular, at long wavelengths the plasmon energies tend towards h̄ωc

as predicted by Kohn’s theorem[55, 85]. If we think of the magnetic plasmaron as

an N = 0 quasiparticle bound to a long-wavelength magnetoplasmon, we expect

it to be about h̄ωc below the N = 0 Landau level. The plasmarons appear and

disappear as the filling fraction is varied, typically appearing strongest at even-

integer filling. This may be because of suppression of the lower energy spin-flip

plasmon modes at these filling fractions. These modes tend to the Zeeman energy

at long wavelengths, and we would not resolve a plasmaron mode separated from

the lowest Landau level by only Zeeman energy.
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Figure 8-2: Plasmarons at zero field and 2 Tesla. a) Zero field TDCS spectra,
with the contrast adjusted to show clearly the plasmaron band below the main
quasiparticle band. Moving from the bottom of the figure towards zero energy,
there are two steps in brightness, the first corresponding to the plasmarons,
and the second to the conventional quasiparticles. b) ∂DOS

∂E , where the steepest
points in the two steps of a appear as peaks. The numeric differentiation
introduces high frequency noise. c) ∂DOS

∂E , with each column low-pass filtered in
energy. The steps associated with the quasiparticles and the plasmarons become
peaks. Blue lines illustrate the band edges. The plasmaron line is drawn at
−(2|Equasiparticle|+ 2)meV, where Equasiparticle is the normal quasiparticle energy.
Some quantization artifacts from the measurement are visible in the bottom-right
corner. d) Plasmarons at 2 Tesla. The plasmarons are visible as an additional faint
line approximately h̄ωc below the lowest lying Landau level.
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Figure 8-3: Fine structure near ν = 1: a) A sash (dashed blue box) appears in
the high field data extending down and to the right from ν = 1 (-300 mV DC
bias) at 100 mK. b) Although heavily broadened, the sash is still visible at 900 mK
(dashed blue box). c) At 8 Tesla, the sash becomes stronger, and several similar
lines (dashed blue and green boxes) appear extending upward and to the left of
ν = 1. Systematic measurement artifacts due to inaccuracies in the discharge
pulse are visible on the hole side of 0 ≤ ν ≤ 1.

Positive identification of these bands as the plasmaron would be aided by

lower noise data at zero field that could be compared more precisely to theory,

lower disorder samples which might tend to sharpen the shoulder into a peak,

and more extensive theoretical work on plasmarons in high magnetic fields.

8.2 Fine Structure Near Filling Fraction 1

As shown in Figure 8-3a, in our higher field data, extra structure begins to appear

near ν = 1 (-300 mV DC bias at 4 Tesla). We observe both extreme broadening of

the spin-up and spin-down peaks in the vicinity of ν = 1, and the appearance of
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an extra sash (dashed blue box) of states extending approximately linearly from

roughly E = 0 at ν = 1 downward in energy towards the center of the cyclotron

gap at ν = 2 (-450 mV DC bias at 4 Tesla). This feature becomes stronger at higher

magnetic fields, and survives but is heavily broadened at temperatures as large

as 900 mK (Figure 8-3b).

At the highest fields we measure at a second sash appears extending upward

in energy from ν = 1 (dashed blue box, Figure 8-3c), with approximately the same

slope, towards ν = 0. There may be additional lines beginning to appear at the

highest fields (dashed green box). We never observe this sash around any filling

fraction aside from ν = 1, but it may simply not appear at higher filling fractions

except at fields and densities we cannot attain in this structure.

The location of the line in the vicinity of ν = 1 is suggestive of skyrmions[86],

long wavelength spin waves with properties controlled by the ratio of the Zeeman

to exchange energies predicted to be the low-lying excitations near ν = 1 at

low magnetic fields. We find the structure survives at temperatures as high

as 900 mK. Prior measurements of tunnel rate structure because of the spin

bottleneck associated with skyrmions found the bottleneck disappeared at around

400 mK at similar fields[27]. It is not clear if these temperature scales are directly

comparable.

Application of tilted fields should indicate if these sashes are associated with

skyrmions; by effectively varying the Zeeman energy relative to the exchange,

tilted fields allow shifting of the skyrmion energy relative to a simple spin flip.

8.3 Effective Mass Renormalization

As discussed in the introduction, quasiparticles can have effective masses that

are a function of both the electron density and the quasiparticle energy. In the

context of our Landau spectra, these mass variations can appear as variation of the

cyclotron energy at even-integer filling. While thermal activation measurements

have provided accurate mass measurements at E = 0[87], we believe TDCS is
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Figure 8-4: Cyclotron energy at ν = 2 and ν = 0 at 4 Tesla applied field, showing
the enhancement of the cyclotron splitting by the exchange interaction.

unique in its ability to measure mass away from the Fermi energy.

Indeed, some evidence of this mass variation is already present at higher

magnetic fields; the orbital gap at ν = 2 in the 4 Tesla data is nearly 30% larger

than the cyclotron energy at zero density (Figure 8-4). This can be understood

either in terms of effective mass renormalization, or in terms of the exchange

interaction; as a result of the direct and indirect exchange interaction between

ν = 0 and ν = 2, both the N = 0 and N = 1 orbital levels are pulled down in

energy. However, the N = 0 level is pulled down in energy substantially more

than the N = 1 due to larger exchange matrix elements. This results in a gap

larger than h̄ωc between N = 0 and N = 1 at ν = 2.

However, this effect is much smaller at the low magnetic fields that would

ideally be used to approximate the zero field mass renormalization. Systematic

studies require higher resolution, lower noise spectra. Achieving this will require

moderate improvements in our signal generation apparatus, especially in long

term drift of the pulse height. A new generation of DC voltage source is in

preparation to replace the one currently used to select the pulse heights. Thermal
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drift in the pulse shaper may also have to be addressed (see Appendix B).

8.4 Future Prospects: Fractional Quasiparticles

Tunneling measurements of excitations in a fractional Hall liquid have the po-

tential to provide direct and intuitive demonstrations of hierarchy. There are

predicted to be strict selection rules as to what fractionally charged states can be

excited using a normal electron tunneled out of a metallic electrode[88]. These

selection rules potentially provide a second channel of information in tunneling

spectra; there will be information on both quasiparticle energies, and on their

symmetries.

Most fractional excitations are expected to fall inside of the Coulomb gap.

They may still be visible but strongly suppressed, or may be pushed outside of

the gap altogether. Regardless, there may also be high energy states that reflect

the fractional quantum Hall ground state. Exploring this possibility suggests two

directions; moving to higher magnetic fields and lower temperatures to enter the

domain of the fractional quantum Hall effect, and moving to samples with thinner

tunneling barriers to ease looking for substructure in the Coulomb gap.† We are

well positioned for both of these changes in the near future.

8.5 Future Prospects: Measuring the Chemical

Potential

The chemical potential of a quantum well is a difficult number to measure

experimentally. Electric field transparency measurements[66] and single electron

transistors[89] provide direct measurements, but the structures required are

not compatible with TDCS. However, accurate measurements of the chemical

†Such substructure has been observed in the vicinity of the fractional quantum Hall effect in
equilibrium tunneling; see [27]. We have not yet replicated these features in non-equilibrium
tunneling.
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potential would ease comparison with theoretical predictions of the DOS and help

understand the shape of our spectra in regions that show negative compressibility.

Chemical potential measurements may also help us understand the sash near

ν = 1 by allowing us to measure its dispersion in absolute energy rather than

relative to the Fermi energy. Finally, having measurements of both the chemical

potential jump in the thermodynamic density of states and the single particle

exchange-enhanced spin gap in the same sample under the same conditions

would help understand the differences between these two measurements of the

exchange splitting.

At zero density, the energy difference between the Fermi energy and the lowest

energy state we can tunnel into is a direct measure of the chemical potential.

However, as we raise the density, electron-electron interactions will tend to modify

the energy of this lowest energy state, and we can no longer use it as a direct

measure of the chemical potential (although it is still a useful rough estimate).

Ideally, we would measure the chemical potential relative to an imaginary bound

state energy for an uncharged electron in our well. Unfortunately, uncharged

electrons are difficult to acquire experimentally.

There is a set of states that we expect electron-electron interactions to affect

less; the second sub-band of the quantum well. For a square quantum well,

the second sub-band wave functions in the z direction are odd under inversion,

while those of the first sub-band are even. Because of this, the exchange matrix

elements between states in the first sub-band and those in the second will vanish.

This inversion symmetry will be broken once we apply DC biases to the well, but

we still expect that effects of interactions between the first and second sub-bands

will be small. Thus, one could imagine tracking the energy of the lowest state in

the second sub-band relative to the Fermi energy, and using it trace out chemical

potential changes in the quantum well.

Unfortunately, this faces some technological difficulties. The second sub-band

is at a very high energy in our structure, and reaching it requires modifying our

setup to generate large pulses. We can do so at the expense of increased reflections
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Figure 8-5: DOS of the second sub-band calculated (a) and measured (b). The
origin of the multiple peaks in the experimental trace is unclear. Due to the large
currents and pulses used, exact energies should not be trusted in the experimental
trace. The lever arm in the simulated structure is λ = 0.267, so pulse heights in
the simulated structure can be converted into energies in the measurement by
dividing by 3.7 ≈ 4.

due to removed attenuators and increased quantization noise on our pulse height

control. These introduce large systematic errors into our measurement. In

addition, because of the enormous bias on the structure when we reach the second

sub-band and the large penetration of the bound state wavefunction into the

barriers, we expect the tunnel currents in the second subband to be approximately

an order of magnitude larger than the currents in the first sub-band (Figure 8-5a).

They apparently are (Figure 8-5b).† These currents require shorter measurement

intervals to avoid systematic distortions of our spectra.

Nonetheless, we have several individual traces that reach the second sub-band.

†Because kx and ky are zero once again at the bottom of the second sub-band, the tunneling
matrix element is finite even at these large energies; by comparison, tunneling out of the first
sub-band has stopped due to momentum conservation.
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We find the second sub-band at a somewhat higher energy than our calculations

and simulations predict, but because the bound state energy is quadratic in

the inverse well width, small variations in the grown structure will give large

variations in the sub-band splitting.

Somewhat more disturbing, we see a multiplet of peaks at approximately the

same energy, rather than a single peak. Field and density dependence may help

identify these peaks. Coupling to the LO phonon mode may give at least some of

the peaks; the LO phonon energy (≈ 36.8 meV[84]) and the second sub-band are

at a similar energy in our current structure.

We hope to grow a new structure with a wider quantum well. This will

increase energy errors because of lever arm changes by making our 2DEG easier

to polarize, but will also allow us to reach this second sub-band more easily and

characterize it with care.

8.6 Future Prospects: Other Materials

Three ingredients are needed to apply TDCS to a two-dimensional system; a

uniform, thin tunnel barrier; a constant thickness, highly resistive blocking

barrier; and two metallic or nearly metallic electrodes. With various forms of

epitaxial growth, there is the potential to extend this technique to other systems

of interest, allowing examination of monolayers of high Tc material at different

doping densities, or the bizarre structure of the Landau levels in quasi-relativistic

materials such as graphene[90, 91]. The latter would be of special interest as direct

confirmation of the unusual Landau level spacing in these materials, including the

presence of an E = 0 Landau level and easy access to both band electron and band

hole states.
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8.7 Summary

TDCS has already provided spectra that provide unique insight into the integer

quantum Hall effect in a stunning fashion. In the next few months, as we

continue to raise the magnetic field, lower the temperature, and increase the

energy resolution of our spectra, we expect to resolve some of the open questions

in our current spectra, and begin to discern features associated with the fractional

quantum Hall effect.
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Chapter 9

Polarizability of a Two-Dimensional

Electron Gas

“Be patient, for the world is broad and wide.”

I call our world Flatland, not because we call it so, but to make its

nature clearer to you, my happy readers, who are privileged to live in

Space.

Flatland: A Romance of Many Dimensions, Edwin A. Abbott, 1884

While it is a convenient approximation to speak of a two-dimensional electron

gas, the reality is it lives in a three-dimensional sample. The approximations

we make in speaking of it as two-dimensional are very good, but sometimes the

three-dimensional nature rears its ugly head; most notably in the case of this

experiment through the 2DEGs polarization in response to applied voltages. Our

main goal in this section will be to develop simple approximate results for this

polarizability, but we will also explore several exactly soluble problems to help

understand the limitations of these results.
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Figure 9-1: Confining potential of a simple quantum well

9.1 Three Dimensions into Two

We will start with a simplified model of a quantum well in which an electron is

bound in a quantum well perpendicular to the ẑ direction in a potential field

V(~r) =


V0 z < −w/2

0 if −w/2 ≤ z ≤ w/2

V0 w/2 < z

(9.1)

where w is the width of the well (Figure 9-1).

H =
~p2

2m∗
+ V(~x) (9.2)

The x̂ and ŷ directions decouple, leaving us free to solve the ẑ component of the

problem separately.

In GaAs, for an x = .325 barrier, V0 will be 251 meV. By comparison, typical

Fermi energies will be a few meV; this suggests we can begin by approximating

our quantum well by an infinite well. For the moment, we also neglect electro-
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Effect Energy Scale
Quantum Well Barrier Height 251 meV

Sub-band Energy Spacing 55 meV (1st and 2nd sub-bands)
Applied Electric Field (|~E|we) 45 meV (at n = 3× 1011 cm−2)

Fermi Energy 6.2 meV (at n = 3× 1011 cm−2)
Coulomb Energy Scale ( e2

4πεlb
) 4.4 meV (at B = 1 Tesla)

Cyclotron Energy 1.7 meV (at B = 1 Tesla)

Figure 9-2: Typical energy scales in our GaAs 2DEG

static self-consistency; we will not consider the effect of the electronic distribution

on the potential in the well. We will revisit both these approximations later.

In this case, the problem reduces to a “particle in a box”, and the eigenfunc-

tions and eigenvalues of the 1D problem are given by

φn(z) =
√

2
w

sin ((z− w/2)kn) , kn = nπ/w (9.3)

En =
h̄2k2

n
2m∗

(9.4)

For a 17.5 nm thick quantum well, this gives sub-band energies of about 18 meV ×n2,

and the second sub-band is a full 55 meV in energy above the first. If this energy

is very much larger than any other energy scale in our problem, mixing between

these sub-bands will be small, and we can neglect motion in the ẑ direction.

Figure 9-2 shows typical energy scales for our samples. While we find the

Fermi, cyclotron, and Coulomb energies are safely small, the applied electric field

is non-negligible.

The “Applied Electric Field” term is the electrostatic energy associated with

the electric field we apply to the structure; it can be approximated as Vdc ×w/W,

where Vdc is the largest DC field we will use to gate the structure, and W is the

width of the entire tunnel capacitor. The finite z extent of the well will allow

it to polarize slightly in response to the electric field, both changing the lever

arm λ and adding an additional term to the chemical potential calculation. This

gives important contributions both to the energy scale calibration (Chapter 12)
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and to the density calibration (Chapter 11). In addition, with a finite well this

polarization will change the penetration of the wavefunction into the barriers,

modifying the tunneling matrix element. We will have to consider this in the

DOS calibration (Chapter 10).

Given that this polarizability of the quantum well results in corrections on all

three axes of our spectra, it is essential that we examine it carefully.

9.2 Polarizability of an Infinite Well

With the addition of a potential term V′(z) = eEz, we can represent our

Hamiltonian inside the well as

εψ(z) =

(
h̄2

2m∗
∂2

∂z2 + eE(z)

)
ψ(z) (9.5)

subject to the boundary condition that ψ is zero at the well edges. Changing

variables to the dimensionless

z̃ =
(

2m∗eEh̄−2
)

z ≡ αz (9.6)

ε̃ = 2m∗h̄−2α−2/3ε (9.7)

our new differential equation is

ε̃ψ(z̃) = ψ̈(z̃) + (z̃)ψ(z̃) (9.8)

Which, with the final change in variables z̄ = ε̃− z̃, gives us the Airy equation

z̄ψ(z̄) = ψ̈(z̄) (9.9)

and affords the solution

ψ(ε̃− z̃) = c1Ai(ε̃− z̃) + c2Bi(ε̃− z̃) (9.10)
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Figure 9-3: Exact eigenenergies of the first two bound states of an infinite square
well as a function of applied electric field. Energies shown are for a 21.15 nm
square well in GaAs. Also shown is Equation 9.12, the energy of the lowest
bound state in 2nd order perturbation theory, and the energy of an approximately
equivalent (see Section 9.3) 17.5 nm finite well with x = .325 AlGaAs barriers,
calculated using a numeric model (Appendix C).

The boundary condition at z = −w/2 is trivially satisfied if we take c1 = Bi(ε̃ +

w̃/2) and c2 = −Ai(ε̃ + w̃/2); we can now numerically find the zeroes of ψ(w̃/2)

as a function of ε̃ to extract the bound state energies. Note that the first order

bound state energy shift is zero; we can confirm this by noting that 〈φ1|eEz|φ1〉

is zero; φ1 is symmetric about z = 0. Exact and approximate (see below) bound

state energies are plotted in Figure 9-3.

In the electrostatic calculations that enter the density calibration, we also care
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Figure 9-4: Exact polarization 〈z〉 of the first bound state of an infinite square
well. Polarizations are calculated for a 21.15 nm infinite well, both exactly and
in first order perturbation theory, and for an approximately equivalent 17.5 nm
finite well with x = .325 barriers. The motion is approximately 7.7 Å per mV/nm
applied electric field, or about 8 nm/volt in our structure.

about the center-of-charge of the wavefunction. The integral can be found in [92]:

∫
y2zdz =

1
3

(
y′y− zy′2 + z2y2

)
(9.11)

where y is any linear combination of Ai and Bi. Once we have found ε̃, we can

use this to calculate the location of the center-of-charge, as shown in Figure 9-4.

For the purposes of estimating errors and corrections in our spectra, a closed-

form expression is more useful than the exact result. As noted above, if we expand

this using stationary perturbation theory, the first order shift vanishes. The second

order shift has terms coming from all φn with n even, but the energy denominator

grows as n while the matrix element shrinks as n−3, so the contributions from

n > 2 are small, and we neglect them. It is worth noting that in the actual
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well, the states corresponding to n > 2 are not bound, and we expect the error

associated with our approximate treatment of the finite barrier height in the well

is larger than the error from neglecting these states.

Using the matrix element 〈φ1|z|φ2〉 = −16w
9π2 and (E2 − E1)−1 = 2m∗w2

3π2h̄2 we

quickly arrive at the result

δE ≈
(

16wEe
9π2

)2 2m∗w2

3π2h̄2 (9.12)

Similarly, using the same approximations and matrix element the first order

wavefunction change is

δφ = −16w
9π2

2m∗w2

3π2h̄2 Ee|φ2〉 (9.13)

giving a first-order center of mass shift

〈z〉 =
(

16w
9π2

)2 4m∗w2

3π2h̄2 Ee (9.14)

Both the exact and approximate results are plotted in Figure 9-3 and Figure 9-4.

Note that the in this approximation the first-order energy shift is in fact equal to

Ee〈z〉, as we might expect from simple electrostatic arguments.

9.3 Finite Well; Corrections

In our actual structure, the barriers on the quantum well are large but finite. This

results in a softening of the confinement potential, making the corrections to the

polarizability and bound state-energy shift slightly larger. We will approximate

the electrostatic potential as flat outside of the well (Figure 9-5), and neglect the

Fermi energy and variation in the bound state energy as compared to the barrier

height; as we noted before, the barrier height is very large compared to these,

and, because the decay constant κ of the wavefunction in the barrier goes as

√
2m∗

h̄2

√
V0 − ε ≈

√
2m∗V0

h̄2 (1− ε/(2V0)) (9.15)
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Figure 9-5: Approximate potential used for examining finite well. Shown with
an (exaggerated) electric field of 0.1V0/w applied.

we will at most underestimate the decay length by a few percent. (Strictly, this is

only true if eE
κ � V0, but if this is not the case, we have applied enough electric

field that our quantum well is beginning to field emit into the electrodes, and the

sample is probably melting.)

Because the potential is finite at the interface, 1
m∗

∂Ψ
∂z is continuous.† Matching

it between the wavefunction and the decaying exponential in the barrier gives

1
m∗well

∂ψ(z)
∂z
|z=±(w/2−ε) =

1
m∗barrier

∂ψ(z)
∂z
|z=±(w/2+ε) =

1
m∗barrier

∓ κψ(z)|z=±(w/2+ε)

(9.16)

It is possible, although somewhat messy, to apply the boundary condition of

Equation 9.16 to Equation 9.10 (or even to use the exact potential outside the

well and match to decaying Airy functions in the barriers). We will instead

introduce an approximate method that gives very good solutions, has a nice

physical meaning, and will prove useful in estimating the magnitude of the matrix

element corrections when extracting the DOS from our I-V curves.

†m∗ in GaAs is 0.067; m∗ in Al.3Ga.7As is 0.088. We need to include the possibility that the
effective mass is different in the barriers and in the electrodes in our results.
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Figure 9-6: Real confining potential and wavefunction, showing the replacement
of the potential barrier with an infinite barrier a distance δw inside of the real
barrier.

Notice that the bound state energy and eigenfunction inside of the well are

identical to those inside of a wider well, with finite wavefunction amplitude at

the real barrier. If the amplitude of the wavefunction just inside the barrier is

sufficiently small, we can use a linear approximation to find the location of its

zero, where the barrier would be in a fictitious wider well (Figure 9-6). This zero

will be at a location w/2 + δw, with

δw = ψ(z)

(
∂ψ(z)

∂z

∣∣∣∣
z=±(w/2−ε)

)−1

= ∓mbarrier

mwell
κ−1 (9.17)

In other words, we can account approximately for the penetration of our

wavefunction into a finite barrier by replacing our quantum well with an infinite

well 2 mbarrier
mwell

κ−1 + O((k/κ)−2) wider than the actual one. (In fact, for a well with

no electric field applied, the wavefunction inside the well is sinusoidal, and the
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first correction is O((k/κ)−3).)

Notice that we have made no assumptions about the form of the wavefunction

inside of the well; this is true for all of the bound states of the well as long as the

amplitude at the barrier is small.

For the lowest bound state, ∂ψ(z)
∂z will be of the order π/w, so the wavefunction

amplitude at the interface will be of the order π
κw times its peak value. For

x = .325 AlxGa1−xAs, κ−1 ≈ 1.5 nm, and with a 17 nm quantum well, this

gives an amplitude at the barrier of around 3% of its peak value; we expect this

approximation to work very well in our samples. A 17.5 nm finite well is, in this

approximation, equivalent to the 21.15 nm infinite well we have considered in this

section. Exact results for a 17.5 nm finite well are plotted in each of the earlier

plots in this section for comparison.

9.4 Self-Consistent Solutions

In all of this, we have neglected the effect of the electrons in the well on the

potential profile in the well. However, the details of the exact process being

simulated become very important when including self-consistency. In a DC bias

sweep, the total charge in the well is determined by the bound state energy

relative to the electrodes, while the electric field is nearly completely screened

by the 2DEG before it reaches the tunneling electrode. On the other hand, when

considering the instantaneous response to an applied pulse, no charge can enter

or exit the well, and the additional applied field is not screened at all (although

the detailed potential distribution inside of the well can change dramatically; in

extreme cases, the 2DEG can slosh back and forth between the two edges of the

well quite suddenly).

Thus, aside from a few notes, we will leave detailed discussion of self-

consistency to Chapter 11 and Chapter 12.

In general, the applied electric field will tend to pull the charge distribution

towards one end of the well through the well polarizability, while self-consistency
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will tend to flatten the applied field at the far end. We can think of self-consistency

as adding a small attractive perturbation in the unoccupied end of the well (with

an appropriate choice of boundary conditions for the electric field). Because the

perturbation from self-consistency is largest exactly where the wavefunction is

smallest, we do not in general expect it to dramatically change the above results.

Nonetheless, where appropriate, we will refer to self-consistent simulations as

described in Appendix C.

9.5 Summary

We have established that although our well is largely two-dimensional from the

point of view of the intra-well physics we are interested in, its three-dimensional

nature becomes evident with applied electric field. We have evaluated exactly, for

non-interacting electrons, the bound state energy and charge center-of-mass for

the lowest few bound states in an infinite quantum well as a function of applied

electric field, and developed a very simple technique for dealing with finite barrier

height in real quantum wells.

Finally, it is worth noting that the largest energies from the Fermi surface that

we typically examine in this work are about 15 meV, well short of the energy of

the second bound state. We do not usually expect to see it directly in any of

our spectra, so the only contribution from the three-dimensional nature of the

quantum well in our experiment will be the somewhat confounding effects it has

on putting precise scales on the density, energy, and DOS scales of our spectra.
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Chapter 10

Calibrating the Density of States

In Chapter 3, we presented a quick argument that the conductivity dI
dV should

be proportional to the tunneling density of states. However, a more detailed

examination of our structure shows that this is wrong in several non-trivial ways.

We will examine corrections to this simple idea, and develop ways to correct for

variations in the tunneling matrix element.

10.1 Correcting for Matrix Elements

For the sake of simplicity, we consider only zero temperature.

Recall from Fermi’s golden rule that the tunneling rate through our barrier out

of any given state in the well is given by

r =
2π

h̄
∣∣〈φi|M|φ f

〉∣∣2 ρ f
(
E f
)

(10.1)

where r is the transition rate, M is the matrix element connecting the initial states

to the final states, 〈φi| is the initial state,
∣∣φ f
〉

is the final state, and ρ f is the density

of final states.

At finite bias, our quantum well actually has a continuum of initial states, and

we can integrate across them using the initial density of states ρi to get the total
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transition rate R:

R =
2π

h̄

∫ eV

0

∣∣〈φi|M|φ f
〉∣∣2 ρ f (ε) ρi (ε) dε (10.2)

where V is the applied voltage between the 2DEG and the electrode and we

measure energies with respect to the Fermi energy of the tunneling electrode.

In our simplified discussion, we assumed that the “uninteresting” part of this

expression,
∣∣〈φi|M|φ f

〉∣∣2 ρ f (ε) was constant, and thus found

dI
dV

= e
dR
dV

∝ ρi (eV) (10.3)

However, in our real sample, our pulses are comparable in energy to the 3D

electrode’s Fermi energy, and the 3D density of states varies appreciably. Fur-

thermore, we will find that the tunneling matrix element M changes significantly

both with the momentum of the carriers in the 3D system, and as the quantum

well polarizes itself in response to applied electric fields. In this case, we can no

longer simply use the derivative to remove the integral when computing dI
dV , but

must apply Leibniz’s rule, giving

dI
dV

=
2πe

h̄

(∣∣〈φi|M|φ f
〉∣∣2 ρ f (eV) ρi (eV) +

∫ eV

0

∂

∂V

[∣∣〈φi|M|φ f
〉∣∣2 ρ f (ε) ρi (ε)

]
dε

)
(10.4)

The first term in this is just proportional to the density of initial states, times

our usual “uninteresting” matrix element and density of final states, and gives us

the change in current because of electrons that are now able to tunnel because of

the change in voltage. The second term, however, is an integral over the change

in the “uninteresting” matrix element, and both densities of states. It gives the

contribution in current due to electrons that were already able to tunnel, but now

tunnel at a different rate because of the applied voltage. This second term is

especially worrying; it mixes the actual DOS with a phase-shifted copy of itself,

which could lead to substantial pulling of peaks and offsets in the spectra.

As discussed in Chapter 9, the 2DEG itself has no direct sensitivity to the
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applied electric field, so ∂
∂V ρi (ε) = 0, but all of the remaining elements in this

term can and do vary with the applied voltage. In trying to deal with this, we

will initially assume our 2DEG is an ideal, noninteracting 2DEG with no applied

magnetic field. This will allow us to simplify the problem we face.

10.2 Momentum Conservation and the 3D Density of

States

One of the chief advantages of TDCS is that the structure used in it has transla-

tional symmetry in the x̂ŷ plane, rendering it insensitive to the in-plane conductiv-

ity of the 2DEG. This translational symmetry also implies that the transverse mo-

mentum h̄k⊥ is a conserved constant of motion in tunneling, which enormously

restricts the states into and out of which electrons can tunnel[93]. Assuming that

the effective mass is the same in the well and the electrode, conservation of energy

then gives us, with δV the energy offset between the bottom of the 2D band and

the bottom of the 3D band,

Ei = E f (10.5)

h̄2k2
⊥

2m∗
+ δV =

h̄2

2m∗
(

k2
⊥ + k2

z

)
(10.6)

2m∗δV

h̄2 = k2
z (10.7)

Thus, the band offsets between the 2D and 3D system uniquely determine the

wavevectors kz in the 3D that can tunnel. Notice that all of the particles able to

tunnel out of the 2DEG for a given density and applied voltage tunnel at the same

kz, regardless of k⊥.

This suggests a geometric representation of the conserved quantities in tun-

neling. We begin by plotting the Fermi surface of the 3D electrode in the

kx, ky, kz basis. On top of this, we can plot the 2D Fermi surface, assigning to

it a fictitious kz = 2m∗δV
h̄2 . With this choice, states that occupy the same point in
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this diagram can tunnel between each other while conserving both energy and

momentum. States that are in the same kx, ky but different kz would have to

violate energy conservation to tunnel, while those in different kx, ky, but the same

kz would have to violate momentum conservation. Thus, the question of “how

many states can tunnel (into/out of) the 2DEG without violating conservation

laws” can be mapped to the question “what is the area of overlap between the

(unoccupied/occupied) states of the 2D disc with the (occupied/unoccupied)

states in the 3D sphere”.

When the 2DEG and 3D are at equilibrium, the edge of the occupied Fermi

disc will be the intersection between the disc and the sphere, and only the states

along this edge can tunnel; this is shown in Figure 10-1.

If we then disequilibrate the 2D and 3D (Figure 10-2) by an energy ∆, we will

translate the Fermi disc up or down in kz by 2m∗∆/h̄2, and the band of occupied

states outside the Fermi sphere or unoccupied states inside the Fermi sphere will

be able to tunnel. Notice that regardless of the relative densities of the 2D and

3D or the sign or magnitude of any applied pulse, all of the electrons able to

tunnel will tunnel from the same value of kz in the 3D. This will greatly simplify

our tunneling problem. We now have enough information to determine ρ f in

Equation 10.2; kx and ky are conserved, so we are left with the 1D density of

states in kz in the 3D; ρ f ∝ 1/kz, with kz as above. Note that this means ρ f does

not depend on ε, so we can take it out of the integral in Equation 10.4.

It is worth noting that for any dispersion relation other than E = h̄2k2/(2m∗)

with m∗ the same in the 2D and the 3D (such as when a magnetic field is

applied and the energy spectrum breaks up into discrete Landau levels), there

will no longer be a single unique kz for the entire electron gas. This will “warp”

the Fermi disc (Figure 10-3a). Further, because our quasiparticles have a finite

lifetime, the Fermi disc will also acquire some width, as shown in Figure 10-3b.

Of course, in a fully interacting theory, there is an incoherent background as well

as the quasiparticle peaks, and our DOS is better thought of as a cloud of states

which are eigenstates of neither energy nor momentum (Figure 10-3c). We cannot
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a) b) c)

d) e) f)

z

y

x

Figure 10-1: The 3D Fermi sphere and 2D Fermi disc at equilibrium: a) The 3D
Fermi sphere, shown with the axes labels. We take the plane of the 2D to be the
x− y plane. b-e) The Fermi sphere, with an equilibrium Fermi disc superimposed
at a variety of increasing densities. For clarity, only filled states are shown in the
2D. States able to tunnel are highlighted in green. f) Once the Fermi wavevector in
the 2D becomes larger than the Fermi wavevector in the 3D, equilibrium tunneling
is no longer possible unless momentum or energy conservation is broken.
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a) b) c)

d) e) f)

Figure 10-2: The 3D Fermi sphere and 2D Fermi disc out of equilibrium: The
band of states able to tunnel for a variety of injecting (a-c) and ejecting (e-f) pulses.
Note that if the injecting pulse in a were any larger, the 2D would be pulled down
in kz through the origin of the sphere, and it would no longer be possible to
simultaneously conserve energy and momentum. This is the region we substitute
a black bar for in our matrix-element corrected plots. In addition, notice that in
f, all of the states in the 2DEG are able to tunnel, and further increases in the
pulse height will not change the number of states able to tunnel. This situation
corresponds to the band edge in our DOS plots.
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a) b) c)

Figure 10-3: The 3D Fermi sphere and 2D Fermi disc with interacting electrons:
a) The 2D Fermi disc will not be flat in our diagrams if the 2D dispersion relation
is not the same as the 3D relation. b) Finite lifetimes create some spread in
energy in the 2DEG, and a corresponding spread in the fictitious kz we assign
to the 2DEG. c) The full quasiparticle spectral functions are not described by a
single peak and lifetime, but by a cloud of probability, sharply peaked at the
quasiparticle energies.

directly image this momentum dependence in our experiment. For the purposes

of our matrix-element correction, which is approximate anyway, we will assume

the dispersion of the electrons is similar to that for the zero field non-interacting

electron gas. This approximation will become progressively worse as we raise the

magnetic field.

Finally, we assume the 3D density of states is featureless here. In high

magnetic fields, the 3D will actually form “Landau tubes”, resulting in substantial

variation of the DOS with k⊥. However, the donors in the 3D provide strong

sources of scattering, and we do not expect these Landau levels in the 3D to

become well resolved until lb ∼ N−
1/3

d , at a field of around 16 T in the current

sample.

10.3 Transfer Matrix Formalism

Next, we need to deal with the tunneling matrix element. Fermi’s golden rule is

a perturbational result, with M a small correction to the Hamiltonian H. In our
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Figure 10-4: Regions and eigenstates for the transfer matrix formalism

case, although we can easily find the eigenstates of our two systems in isolation, it

is less than obvious how to construct a small perturbation that joins them together

through a tunneling barrier. One could imagine separating them by an infinite

barrier and lowering that barrier as a perturbation, but the resulting correction to

the Hamiltonian would be divergent, not small. Fortunately, Bardeen considered

this problem in the context of metal-insulator-superconductor tunneling. He

provides a simple formalism calculating tunneling matrix elements [94]. Because

the result is unfamiliar to many readers, and we must deal with a position

dependent m∗, we provide a brief derivation here.

Assume we have a Hamiltonian H = ~∇ · 1
m∗

~∇ + V(x) that describes the

combined well and electrode system, and have already found a state vector |φl,0〉
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which is an eigenstate of the quantum well with energy E0, meaning that inside

of the quantum well and barrier (regions I and II in Figure 10-4),

Hφl,0 = E0φl,0 Inside regions I and II (10.8)

and that deep inside region III φl,0 drops to zero. We further assume we have

an orthonormal set of states |φr,j〉 with energy Ej, which are similarly good

eigenstates of the electrode and barrier in regions II and III, but not in region I.

We will examine the time evolution of these states, and construct an approximate

matrix element Mj which, if applied as a perturbation to a system whose

eigenstates are exactly |φl,0〉 and |φr,j〉 with energies E0 and Ej, will reproduce

the time evolution of the actual states.

We begin by constructing a time-dependent wavefunction

Ψ(t) = a(t)e−iω0t|φl,0〉+ ∑
i

bi(t)e−iωit|φr,i〉 (10.9)

where a(0) = 1 and bi(0) = 0.

Substituting into the time-dependent Schrödinger equation,

a(t)H|φl,0〉+ ∑
i

bi(t)H|φr,i〉 =

ih̄

{(
a′(t)− iw0a(t)

)
|φl,0〉+ ∑

i

(
b′i(t)− iwibi(t)

)
|φr,i〉

}
(10.10)

Projecting this result onto 〈φr,j|, using 〈φr,i|φr,j〉 = δij, and evaluating at t = 0, we

find

b′j(t) =
a
ih̄
〈φr,j|H − E0|φl,0〉 − a′(t)〈φr,j|φl,0〉 (10.11)

The term proportional to a′ is there because |φr,j〉 and |φl,0〉 are not quite

orthogonal, and so as the occupation of |φl,0〉, changes, there is a small change

in the expected occupation of |φr,j〉. For an adequately thick barrier, this term is

negligible. What remains can be compared with the standard result from time
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dependent perturbation theory, giving a perturbational matrix element M

Mj = 〈φr,j|H − E0|φl,0〉 (10.12)

This result alone is somewhat disturbing; it depends on an integral over all

space, but each of our wavefunctions is only well defined in a small region. If

we are to believe it has any physical significance, it should only depend on the

value of the wavefunctions in regions in which they are well defined. Writing out

H explicitly gives a hint as to how to accomplish this; it is possible to imagine

using the divergence term in it in the divergence theorem, to reduce our volume

integral to a surface integral.

Mj =
∫∫∫

φr,j
∗
(

~∇ · 1
2m∗

~∇+ V(~x)− E0

)
φl,0dV (10.13)

Note that because of Equation 10.8, this integral vanishes except inside of

region III, allowing us to take it only over region III and an arbitrary part of

region II. We can attempt to remove the dependence on the potential by noting

that, using our definition of |φr,j〉, that (H− Ej)φr,j = ((H− Ej)φr,j)∗ = 0 inside

of regions III and II, and subtracting it times φl,0 from the integrand, leaving

Mj =
∫∫∫

II,III
φr,j
∗
(

~∇ · h̄2

2m∗
~∇+ V(~x)− E0

)
φl,0 −

φl,0

(
~∇ · h̄2

2m∗
~∇+ V(~x)− Ej

)
φr,j dV (10.14)

=
∫∫∫

II,III
φr,j
∗~∇ · h̄2

2m∗
~∇φl,0 − φl,0~∇ ·

h̄2

2m∗
~∇φr,j dV (10.15)

=
∫∫∫

II,III
~∇ ·
(

φr,j
∗ h̄2

2m∗
~∇φl,0 − φl,0

h̄2

2m∗
~∇φr,j

)
dV (10.16)

=
∫∫

S

h̄2

2m∗
(

φr,j
∗~∇φl,0 − φl,0~∇φr,j

)
· dS (10.17)

where S is any surface passing through region II, and we have used E0 ≈ Ej in

the energy range of interest for Fermi’s golden rule.
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This result is pleasing in that it resembles the familiar current operator, and it

only depends on the values of the wavefunction inside of the tunneling barrier.

For the case of a 1D potential, we can separate out the x − y dependence of the

wavefunctions by taking φ(lr),i(~x) = φ(lr),i(z)ei(klr,xx+klr,yy)(2π)−2, and perform the

integral immediately, giving [95]

Mi =
h̄2

2m∗

(
φl,0

∂φr,i
∗

∂z
− φr,i

∗ ∂φl,0

∂z

)∣∣∣∣
z=z0

δ(kr,x − kl,x)δ(kr,y − kl,y) (10.18)

reconfirming our momentum selection rules from earlier in the chapter.

10.4 Tunneling Matrix Elements

Just as in Section 9.3, the tunneling barrier is infinitely high compared to the

bound state energies, the applied voltage, and the offset of the 2DEG band bottom

from the 3D band bottom, so we can do quite well in approximating it as square.

For the sake of concreteness, we put our barrier in the region (−W, 0), and give

it height V0 above the bound state energy of our well . In this case, inside of the

barrier,

φl = Ale−κ(z+W)φr = Areκ(z) (10.19)

where κ =
√

2m∗V0
h̄2 , and Alr is the amplitude of the wavefunction of the 2DEG

and 3D where they enter the barrier. Substituting into Equation 10.18, this gives

us our tunneling matrix element

M = Al A∗r
h̄2κ

m∗barrier
e−κW (10.20)

Before we turn our attention to calculating Al and A∗r , we need to revisit our

neglect of the variation in κ. Although the fractional changes in κ due to the

applied electric are small, the product κW is quite large in our structure (about

10), and we are exponentially sensitive to variations in κW in the last term of

Equation 10.20. This demands a more careful treatment of our tunneling barrier;
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Figure 10-5: The trapezoidal tunnel barrier we use in approximating our matrix
element

it is both slightly different in height from V0, and it is trapezoidal due to the

applied electric field (Figure 10-5).

With this small variation in the barrier shape, we can write our decay constant

κ as

κ =

√
2m(V0 + δV + Eez)

h̄2 ≈

√
2mV0

h̄2

(
1 +

δV

2V0
+

Eez
2V0

)
(10.21)

We will deal with these two corrections separately. Taking κ → κ + κδV/(2V0),

and assuming κWδV/(2V0)� 1,

e−κW → e−κWe−
κδVW

2V0 ≈ e−κW(1− κW
δV

2V0
) (10.22)

For the trapezoidal barrier top, we use the WKB approximation inside of the
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barrier, and under the same assumptions,

ψ(z) =
1√
κ(z)

exp
(
−
∫

κ(z)dz
)

(10.23)

=
1√

κ + κ Eez
2V0

exp
(
−
∫

κ + κ
Eez
2V0

dz
)

(10.24)

=
1− Eez

4V0√
κ

e−κze−κ Eez2
4V0 (10.25)

=
1− Eez

4V0√
κ

e−κz
(

1− κ
Eez2

4V0

)
(10.26)

ψ(W)
ψ(0)

=
(

1− EeW
4V0

)
e−κW

(
1− κW

EeW
4V0

)
(10.27)

= e−κW
(

1− (κW + 1)
EeW
4V0

)
(10.28)

Notice that if κW � 1 and κWδV/(2V0) � 1, the transmission of the trapezoidal

barrier is just equal to the transmission of a barrier whose height is the average

height of the barrier.

Using this approximation and putting these together, we get a revised matrix

element:

M = Al A∗r
h̄2κ

m∗barrier

(
1− (κW)

eEw + eEW
4V0

)
eκW (10.29)

In the 3D, outside of the barrier, our wavefunctions are given by

φr =
1

4π
sin(kz(z + z0)) (10.30)

For an infinite barrier, z0 is zero, and we simply have a standing wave near the

wall. As the barrier is lowered, z0 becomes very slightly positive, and the first zero

of the wavefunction is moved slightly towards the barrier. Matching boundary

conditions as in Equation 9.16, we find

Ar =
1

4π

kz

κ

m∗barrier
m∗3d

(10.31)

z0 =
1
κ

m∗barrier
m∗3d

(10.32)
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Once again, just as for the quantum well, the finite but tall barrier is equivalent to

an infinite barrier positioned a distance z0 inside of the actual barrier.

Inside of the quantum well, we can use the first order perturbational result

Equation 9.13 to approximately evaluate Al; inside of the well

φl ≈
√

2
w′

[
sin
(πz

w′
)
− Ee

32m∗wellw
′3

27π4h̄2 sin
(

2πz
w′

)]
(10.33)

with w′ = w + 2
κ

m∗barrier
m∗well

is the effective width of our quantum well. We have already

approximated the derivative ∂z
∂φl

as constant over the distance w′ − w;

∂φl
∂z

∣∣∣∣
z=0

=

√
2π2

w′3

(
1− Ee

64m∗wellw
′3

27π4h̄2

)
(10.34)

This gives an amplitude at the interface a distance (w− w′)/2 away of

Al =
1
κ

m∗barrier
m∗well

∂φl
∂z

(10.35)

=
1
κ

m∗barrier
m∗well

√
2π2

w′3

(
1− Ee

64m∗wellw
′3

27π4h̄2

)
(10.36)

Substituting Al and Ar into Equation 10.20 gives

M =
h̄2kz

κm∗wellm
∗
3D

√
8w′3

(
1− Ee

64m∗wellw
′3

27π4h̄2 − (κW)
eEw + eEW

4V0

)
e−κW(10.37)

∝ kz

(
1− Ee

64m∗wellw
′3

27π4h̄2 − (κW)
eEw + eEW

4V0

)
(10.38)

where in Equation 10.38 we have only included terms we expect to vary within

a measurement. The term in this proportional to E, the applied electric field,

deserves some comment. The DC applied field we use to gate the sample will

typically be screened by the 2DEG, and very little of it will reach the tunneling

barrier. Because of this, we expect it to have very little impact on the tunneling

matrix element (we can, and will, include this screening in numeric models of the
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structure; see Appendix C). For now, we neglect the DC applied field, and replace

E with VAC/d, where d is the width of the entire structure, and VAC is the applied

pulse height. Note that M does not depend on ε, so it can also be pulled out of

the integral in Equation 10.2.

We can now substitute our 3D density of states and tunneling matrix element

into Fermi’s golden rule (Equation 10.2), giving

R ∝

[
kz

(
1− VACe

d
64m∗wellw

′3

27π4h̄2 − (κW)
eEw + eEW

4V0

)]2

×

1
kz

∫ eV

0
ρi (ε) dε (10.39)

∝ kz

(
1− VACe

d
64m∗wellw

′3

27π4h̄2 − (κW)
eEw + eEW

4V0

)2

×

∫ eλVAC

0
ρi (ε) dε (10.40)

∝
√

VAC −Valign

(
1− VACe

d

64m∗wellw
′3 − (κW) eEw+eEW

4V0

27π4h̄2

)2

×

∫ eλVAC

0
ρi (ε) dε (10.41)

where Valign is the density dependent AC voltage that precisely aligns the band

bottoms of the 2DEG and 3D electrode. Note that because both of these terms

depend on VAC, if we attempt to differentiate our signal and then correct dI
dV the

correction will be quite complicated. We will have to both subtract off the second

term in Equation 10.4, and divide the remaining term by the matrix element and

3D density of states. However, R
|M|2ρ f

is proportional to just
∫ eV

0 ρi (ε) dε, and if we

differentiate this, we are left with exactly what we want: the density of states in

the quantum well.

This gives the following procedure for extracting the DOS from the raw tunnel

current:

1. For each density, estimate Valign. Except for where it diverges, our correction

is only weakly dependent on this number, so the estimate does not have to
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be terribly good. Typically, we pick the value of VAC at which I → 0 as

an estimate of Valign. After finding this point for two different DC biases,

we extrapolate linearly to other densities, although we can also use first-

principles estimates or fits to the zero field data with similar results.

2. The remaining terms in the correction are all known from the sample geom-

etry and the lever arm calibration to within a few percent(see Chapter 12).

Substitute these in, and prepare a “corrected” current

I′ =
I√

VAC −Valign

(
1− VACe

d
64m∗wellw

′3

27π4h̄2 − (κW) eEw+eEW
4V0

)2 (10.42)

≈ I√
VAC −Valign (1− 5.4VAC)2 (10.43)

where we have evaluated the constant for a 175 nm quantum well with

x = 0.325 barriers 13 nm thick and a total capacitor thickness of 100 nm,

and VAC is measured in volts.

3. The correction diverges as VAC → Valign; set I′ to zero when these numbers

become close enough together that uncertainty in Valign renders the correc-

tion meaningless. Typically, the tunneling current is close enough to zero at

this point that the only points we are removing from the spectra are pure

noise anyway. This step results in the black band in the high energy, high

density corner of our corrected spectra.

4. Differentiate I′ to get a number proportional to the single-particle density of

states in the 2DEG.

The results of this correction at zero field are shown in Figure 10-6. Note that

while it normalizes the contrast and makes the data much easier to understand,

it does not add any new features, nor does it substantially move any features that

are already present. Fundamentally, this correction should be thought of as a

best-effort attempt at normalizing the spectra in a fashion that makes them easier

to examine and fit, not as a quantitative or exact process.
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Figure 10-6: Example of matrix element correction: Zero field data
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Figure 10-7: Fitting the matrix element at zero field

We can check this result by attempting to fit this current to our experimental

data at zero field (Figure 10-7). There are three degrees of freedom in this

fit; an overall current scale, Valign, and the 2D Fermi energy. As one might

expect, we see substantial deviations at large pulse height, where higher order

corrections become important, and at large density, where self-consistency cor-

rections become significant. Nonetheless, we find good enough agreement to

be confident applying the correction described above will largely remove matrix

element effects from the data.

10.5 Extrinsic Errors

In addition to the systematic corrections from the 3D density of states and

tunneling matrix elements, there are errors extrinsic to the sample originating

from our pulse and amplifier quality.
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During the measurement interval, within the first few hundred nanoseconds

of the applied pulse, there are noticeable deviations of our pulse from perfectly

flat. Although they are not large enough to substantially change the applied bias

across the tunneling barrier, they couple through to our charge amplifier through

the geometric capacitance of the sample, where they are indistinguishable from

the signal from the displacement current. The largest deviations can be placed

into two basic categories: those independent of the pulse height from our signal

generator, and those proportional to the pulse height.

The pulse height independent deviations are mostly from direct coupling of

the input to the pulse shaper to the output, and are thus an attenuated copy of

the ringing from the HP signal generator. Those proportional to the pulse height

come from reflections in the cables, and “droop” in the top of the pulse due to

the bias tee. It is difficult to eliminate either of them completely, but we will see

it is easy to remove them from the data in post-processing.

Linear fits of functions have properties that are very convenient in considering

the consequences of these signals; if we have a set of sample points (xi, yi), all

of which have the same standard deviation, the least-squares fit to the slope m is

given by m = 〈xy〉−〈x〉〈y〉
〈x2〉−〈x〉2 , where 〈q〉 is the average value of q.

If we replace the points yi with a set of points y′i = yi + δi where δi is the signal

from the deviation of our pulse from flatness, we can use the fact that expectation

value is linear to write

m′ =
〈x(y + δ)〉 − 〈x〉〈y + δ〉

〈x2〉 − 〈x〉2 (10.44)

=
〈xy〉+ 〈xδ〉 − 〈x〉〈y〉 − 〈x〉〈δ〉

〈x2〉 − x2 (10.45)

= m + mδ (10.46)

where mδ is the least squares fit to the slope of the noise signal.

Using this, we can see that our measured current will be given by

I′ = I + mconstant + Vmproportional (10.47)
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where mconstant is the slope (with respect to time in the measurement interval)

of the deviation signal that is constant with respect to the pulse height, and

mproportional that which is proportional to pulse height.

In the absence of matrix element correction, the constant term does not appear

in the dI/dV spectrum, while the proportional term appears as an offset in the

measured density of states. (Actually, the constant term tends to reverse sign

when the sign of the pulse is changed, so it appears as a sharp spike at zero bias).

However, the matrix element correction mixes them into the DOS spectrum in

strange ways, and they are worth removing. This is easily done by emptying the

well entirely by applying a large DC bias, fitting each polarity of the remaining

I-V curve with a straight line, and subtracting this from the measured spectra

before matrix element correction. We find this correction drifts very little; we use

the same straight lines for months at a time, only repeating the fitting procedure

when the wiring or pulse shaper are modified.

10.6 Summary

The spectra we take cover a range of energies and densities large enough that the

2D Fermi energy, the applied voltage across the tunneling electrode, the 3D Fermi

energy, and the excitation energy to the next bound state are all of the same

order. Because of this, there are substantial variations of the tunneling matrix

element and 3D density of states over the range of the measurement. For a non-

interacting electron gas in zero field, these are the same for all of the electrons

able to tunnel at any given bias and density, and so they are easily corrected for

before differentiation.
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Chapter 11

Calibrating the 2D Density

The second axis that we need to calibrate to make TDCS a quantitative technique

is the 2D density. Typically, densities in 2DEGs are calibrated using the locations

of the integer and fractional quantum Hall plateaus, which are easily found within

our spectra. Thus, roughly, even a raw spectrum with no labels on the x-axis can

be thought of as having a fairly good density calibration. Using the Landau level

crossings, we can locate integer filling fractions, and we can simply interpolate

between these points.

However, the compressibility of the 2DEG is non-uniform. Inside of the

chemical potential jumps between Landau levels, applied DC voltages change the

density very little, but instead go towards changing the chemical potential. Inside

of the Landau levels where the density of states is large, applied DC voltages

cannot change the chemical potential without adding a large amount of charge,

and instead change the density in the nearly metallic 2DEG. We are interested

in knowing the density with sub-Landau level precision. This is important, for

example, in determining the variation of the exchange gap with density within a

Landau level.

Thus, if we are interested in measuring the 2DEG density accurately in-

between the integer quantum Hall plateaus, we need to turn to more sophisticated

techniques. The density, as a function of the applied DC voltage, is dependent on

the 2DEG’s thermodynamic density of states, and through that, on the applied
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magnetic field and the electron temperature. As such, we must perform separate

density calibrations for each condition under which we measure.

11.1 Extracting Density from Capacitance

Much work has been done on extracting chemical potential and density data

from equilibrium capacitance data[33, 48]. Here we present a vastly simplified

discussion of this problem in which we only concern ourselves with measuring

the density in the 2DEG, and closely examine the errors inherent in the technique.

The mechanisms that determine the total charge density in the quantum well

are quite complicated. As we vary the electric field, the bound state energies in

the quantum well shift and the 3D doped electrodes form depletion regions. In

addition, the thermodynamic density of states of the electrons in the well can be

complex, even showing counterintuitive and difficult to deal with features such

as negative compressibility.

However, instead of dealing with all of these complexities we can think of

the structure as a “black box,” which changes density with applied voltage. We

concern ourselves with the purely electrostatic problem of what capacitance we

will measure, given the positions of the electrodes and the charge density and

position of the 2DEG as a function of applied voltage. We will take advantage of

the fact that any finite charge distribution is, from the outside, indistinguishable

from a sheet charge layer at its center of charge,

〈x〉 =
∫

ρ(x)xdx∫
ρ(x)dx

(11.1)

This allows us to replace our somewhat messy structure with an idealized

capacitor with a sheet of charge between two perfect metallic electrodes, although

both electrodes and the charge sheet will move around a little bit with applied

field (Figure 11-1). Note that we are not making any approximations (yet); we are

simply abstracting the physics we do not want to deal with into the positions and
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Figure 11-1: Idealization of the device as a sheet of charge inside a metallic
capacitor

charge densities functional dependences.

Given the distances and electric fields as described in the diagram, we can

write the total voltage across the structure as

V = Ewxw + Ebxb (11.2)

Using the result σ = ε∆E for the change in electric field across a sheet of charge

and the fact that the E field vanishes in the electrodes, we can rewrite the electric

fields in terms of charge densities and solve for σb

σb = −εV + σwxw

xb + xw
(11.3)

Recall that C = ∂σ
∂V , where we use italicized C to denote capacitance per unit area.

The charge on the blocking electrode is the total charge on that plate of our tunnel
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capacitor, so

C =
∂σb
∂V

(11.4)

=
d

dV

(
εV + σwxw

xb + xw

)
(11.5)

=

Geometric Capacitance︷ ︸︸ ︷
ε

xb + xw
+

Lever Arm︷ ︸︸ ︷
xw

xb + xw

∂σw

∂V
+

εV
d

dV

(
1

xb + xw

)
+ σw

d
dV

(
xw

xb + xw

)
︸ ︷︷ ︸

“Motional” Capacitance

(11.6)

Equation 11.6, with its dependence on ∂σw
∂V forms the basis by which we extract

the density from our capacitance measurements.

The first two terms are just the geometric capacitance of our structure, without

the quantum well, and a charging term from charge entering and leaving the

quantum well, which is the term of interest to us. The final two terms have been

coined as the “motional capacitance” terms [33], and originate with the motion of

charge already in the structure as the plates move around. (These are similar in

nature to the well-known Kelvin probe signal, where two metallic objects with a

potential between them are moved closer together and farther apart, resulting in

a current proportional to the voltage between them.) We can quickly estimate the

magnitude of these terms: for the first,

εV
d

dV

(
1

xb + xw

)
=

(
− εV

xb + xw

)( ∂xb+xw
∂V

xb + xw

)
(11.7)

= −CgeomV
∂w
∂V
w

(11.8)

where w is the width of the structure. In the full-depletion approximation, we

treat the 3D electrodes as if they are completely depleted up to a distance t

into the electrodes [96], at which point they become charge neutral (Figure 11-2).
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Figure 11-2: Depletion of 3D electrodes: Charge density and conduction band
edge in a partially depleted electrode, showing the full-depletion approximation,
the Thomas-Fermi approximation, and a fully self-consistent solution to the
coupled Schrödinger and Poisson equations (Appendix C). Note the similar
depletion depths in all three approximations, and that for a depleted electrode
the Thomas Fermi approximation is quite good.

Although this is only a good approximation if the depletion width is much wider

than the Fermi wavelength, it is sufficient to estimate the order of magnitude of

these motional terms. In this limit, t = σ/Nd, where Nd is the donor density.

Thus, ∂w
∂V = 2 ∂σ

∂V /Nd = 2Cgeom/Nd. Using this, we find the contribution from this

term to be

δC = −C
(

2CV
Ndw

)
= C

t
w

(11.9)

Thus, the fractional change in capacitance is just the fractional change in the width

of the capacitor due to the applied voltage, which for a 3D density of about

1018 cm−3 and a 2D density of about 1011 cm−2, is about a 1 nm depletion width

on a 100 nm structure, or about 2% of the capacitance.

Using our results for the polarizability of the quantum well, we can show the

second term to be of similar order.
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Figure 11-3: High and low frequency capacitances measured at 3 Tesla, showing
the decrease in the low frequency capacitance in regions where the density of
states is low, so the well does not charge effectively. The overall slope to the high-
frequency capacitance is from depletion of the electrically isolated electrode as
the well is charged.

These terms are neglected in all prior work on extracting carrier density from

equilibrium capacitance measurements[48, 33]. We do so for the moment, but will

revisit this approximation later.

In a typical measurement, the capacitance is measured at each DC voltage both

at low frequencies, where the well has time to equilibrate fully , and at very high

frequencies, where no charge has time to enter or leave the well (Figure 11-3).
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Figure 11-4: Motion of electrodes as a voltage is applied: As the voltage across
the tunnel capacitor is changed, the 2DEG, the tunnel electrode, and the blocking
barrier tend to move together, in the same direction.

Neglecting motional terms,

Clow =
ε

xb + xw
+

xw

xb + xw

∂σw

∂V
(11.10)

Chigh =
ε

xb + xw
(11.11)

(11.12)

Note that for each applied voltage, we have two measurements, but 3 un-

knowns; xb, xw, and ∂σw
∂V . While it would be in principle possible to construct a

sophisticated model for these to attempt to extract them from the observed data,

there are several simplifying assumptions that typically cause errors smaller than

the assumptions introduced by neglecting the motional terms.

Ashoori notes that typically, as we apply a voltage across the structure, the

quantum well and the 3D spacer both move in the same direction at about the

same rate (for our structure, the 3D depletes at a rate of about 3 nm/V, while

the quantum well polarizes at a rate of about 8 nm/V Figure 9-4). Based on this,

we treat xw as fixed as a function of voltage, while xb varies. Using this, Chigh
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becomes a measurement of xb + xw, and we can write

∂σw

∂V
=

(
Clow
Chigh

− 1

)
ε

xw
(11.13)

By comparison, Dolgopolov [48] assumes the geometric lever arm
xw

xb + xw
is

fixed, giving the simple result

∂σw

∂V
=

xb + xw

xw

(
Clow − Chigh

)
(11.14)

This approximation is somewhat hard to justify, but has the advantage that the

lever arm is a simple quantity to discuss, and that it provides the simple result

that the change in charge density is proportional to the area between the low and

high frequency capacitance curves.

Each of these leaves two parameters to be calibrated. One is just the density

at a single bias point to establish where “zero density” is. The other is, in the

case of Equation 11.13, ε
xw

, and in the case of Equation 11.14, xb+xw
xw

. These are just

simple constants of proportionality for extracting the density. These are easily

calibrated by forcing the density at the chemical potential dips in the spectrum

to have densities that differ by the known Landau level degeneracy D = eB/h ≈

B · 2.54× 1010cm−2, either over the entire range of the capacitance spectrum, or

using a piecewise linear calibration inside each Landau level.

Unfortunately, on using either of these calibration approaches, we find that the

density at large depleting voltages is negative (Figure 11-5). A first thought on

explaining this discrepancy might be to examine the motional capacitance that we

neglected. We estimated its magnitude at a few percent of the total capacitance,

so although it would be a stretch to explain a 10% error in the total charge of

ν = 1, it is conceivable for our rough estimate to be off by a factor of 5.
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11.2 Corrections due to Motional Capacitance

To examine this possibility, we simulate the low and high frequency capacitances

of our structure using our self-consistent simulation code (Appendix C). Because

we have access to the charge density as a function of position in these simulations,

they provide us with a test-bed for different algorithms for extracting density from

capacitance measurements, including algorithms that have “oracular” knowledge

of the depletion of the electrodes we have no access to in the real experiment.

To extract the low frequency capacitance, we simulate the structure at equi-

librium at a variety of DC bias voltages, and compute dσ/dV on the electrically

isolated electrode. To extract the high frequency capacitance, for each bias in

the DC simulation, we allow the chemical potential in the quantum well to float

while holding the charge density fixed, and simulate the structure again with

a slightly different applied bias. Recomputing dσ/dV then gives us the AC

capacitance of the structure. Alternatively, we can compute the center of charge-

locations of the two electrodes and the quantum well, and evaluate Equation 11.10

and Equation 11.11 to find the capacitance neglecting the motional terms. The

difference between these results shows the relative importance of the motional

capacitance at different points in the density sweep (Figure 11-6).

Notice the motional capacitance is quite small where the DOS in the well is

small, between Landau levels. In these regions, the tunneling and electrically

isolated electrodes will tend to shift together so the separation between the plates

of the capacitor only changes slowly. On the other hand, where the well screens

the applied electric field effectively, the motional capacitance gives a large positive

contribution. The net effect of this will be to tend to overestimate slightly the

amount of charge in each Landau level when neglecting the motional terms. At

large depleting voltages there is also a sizable contribution from the motional

terms; in this region, the location of the tunnel electrode has been pulled up to

and pinned against the tunnel barrier. The isolated electrode continues to move,

so the overall width of the capacitor changes rapidly. Here, the tunnel capacitor
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acts like a heavily biased abrupt varactor [96], and neglecting the motional terms

gives large errors. Fortunately, the error is largely a uniform shift of the AC and

DC capacitances.

As one might expect from our analysis of the magnitude of the motional

capacitance, it is most important where the sample is under large bias (notice that

the gap between the curves with and without the motional capacitance grows

at larger bias voltages). Because of this, we will assign anomalously small total

densities to high numbered Landau levels, and approximately correct densities to

low level numbered Landau levels. When we then calibrate the lever arm using

the entire spectrum, this will result in the total density in the lower Landau levels

exceeding the Landau degeneracy, and give us the kind of error we see in our

extracted densities.

We can check this idea by extracting densities from our simulated capacitance

data, and comparing the resulting densities to the known density in the quantum

well from the simulation. In order to simplify calibration of the lever arm and

density offset, we simply pick them to set the density error to zero at two points.

Note that we could substantially improve our calibration by using a different

value for these parameters in each Landau level, but this choice will suffice for the

purposes of comparison. Figure 11-7 shows the error in the extracted densities.

The black trace is extracted using Equation 11.6, and full knowledge of the

positions of both electrodes and the quantum well provided by a hypothetical

oracle. The variation in this trace from zero reflects the finite precision of

the simulation. In the blue trace, we once again use oracular knowledge of

the positions of the electrodes, but neglect the motional terms. Finally, in the

red and green traces we use Equation 11.13 and Equation 11.14 respectively,

with no oracular knowledge. Interestingly, the errors introduced by Ashoori’s

assumptions partially cancel the errors from neglecting the motional terms, and

it gives noticeably better results than even the “oracular” case.

The most striking feature of this plot is the scale of the errors; they are at most

5× 109/cm2, or an error of about 0.06 of a Landau level, even using this simple-
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minded calibration of the density offset and lever arm. This is some three times

smaller than our observed error. We are forced to conclude that while motional

corrections are noticeable, they are not large enough to explain our “negative”

filling fractions.

11.3 Calibration Errors

Thus, we conclude that given a moderately good calibration of the lever arm and

density offset, either of the approaches described should give much better results

than we find in our data. It then behooves us to consider the assumptions that

went into this calibration.

First, we assumed that the minima our capacitances traces correspond to the

points where the chemical potential lies midway between two Landau levels. One

could imagine this assumption not being met because, for example, the motional

capacitance systematically pulls the minima in the capacitance slightly to one

side of the DOS minima. This would be surprising given that we know the

contribution of the motional capacitance is small in the dips in the capacitance. We

nonetheless examine the possibility by once again taking advantage of our ability

to extract parameters from our simulation that we cannot physically measure. In

this case we plot the capacitance versus the chemical potential in the quantum

well µ (Figure 11-8), and find the capacitance minima do correspond to the

minima in the DOS.

Secondly, we assumed that the density changes by the Landau degeneracy,

D = B · 2.54× 1010/(cm2 Tesla), in between each one of these dips. Assuming

Lorentzian line-shapes for the Landau levels with reasonable widths for our

Landau levels, we can easily integrate our DOS to find the total density as a

function of chemical potential (Figure 11-9).

On so doing, we notice that at high densities, the densities at the chemical

potential minima do indeed correspond to densities that are an integer multiple

of D. However, at low densities, the actual density in the well can be significantly
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larger; in this case, at filling fraction ν = 2, the density is almost 10% more than

2D. The cause is clear; the long tails of the higher Landau levels are substantially

raising the density. At large filling fractions, the missing density from the high

energy tails of the lower Landau levels is equal to the extra density contributed

from the low energy tails of higher Landau levels. As we reduce the filling

fraction, the amount of “missing” density decreases, as there are fewer low-lying

Landau levels whose tails are being lost, while the amount of extra density stays

the same, resulting in higher densities than expected. Ultimately, when µ = 0,

only the extra density from the tails of the Landau levels remains, and we are left

with finite density at the last (imaginary) Landau level minimum at µ = 0.

This means that the actual density change in going from ν = n to ν = n + 1

is, in fact, larger than the Landau level degeneracy. Because we fix our density

offset by assuming the density at these dips is given by νD, this means should

expect to extract a negative density for a heavily depleted well; the last Landau

level has a substantial amount of “extra” charge. This effect has the correct sign

to explain our offset, and the correct magnitude. We expect this effect to become

small at large magnetic fields where the cyclotron energy separates the Landau

levels well, but we have very little high field data yet.

11.4 Applying the Calibration to the Spectra

It is now a straightforward matter to distort our spectra so that the x axis is linear

in density instead of voltage (Figure 11-10). In general, the compressibility of

the 2DEG is high, so the density is a linear function of gate voltage, and the two

spectra are quite similar. However, the density calibration makes the transitions

between Landau levels substantially steeper, as well as the region where the well

is initially filled. This calibrated data is more useful than the uncalibrated for

quantitative comparisons with theory, especially when considering the shape of

the exchange gap as a function of filling.
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11.5 Implications

The periodic structure imposed by Landau levels is the current accepted “gold

standard” for determining the density in 2D systems. Landau level broadening

tends to cause this technique to underestimate the 2D density at low filling

fractions. This may be of some importance in determining the density of very

low density samples where only a few SdH oscillations are visible. However,

most measurements are performed at fixed density by varying magnetic field,

and averaging across many quantum Hall plateaus should greatly reduce the

impact of this effect, as will the fact that the lowest Landau levels are only visible

at high magnetic fields, where the densities should be similar to those expected

in the limit of infinitely sharp Landau levels.

Within TDCS, however, it introduces an interesting ambiguity. We could

choose to label our plots with absolute densities, using measured line-widths to

estimate the actual density at each minimum of the DOS. However, the physics we

are concerned with is largely a function of which Landau level we are populating,

not the exact density. As such, we choose to label the density axis of our plots in

filling fraction ν, with a scale that is linear in density. This captures the density

dependence of our data, marking the most important points nicely. This does

cause our data to extend to slightly negative ν at some points, reflecting the fact

that the density in the lowest Landau level exceeds D slightly.

11.6 Stability

Typically, we accumulate DOS spectra under any given set of conditions for a few

weeks or even months. As such, a substantial amount of time can pass between

the acquisition of the spectrum and the acquisition of the capacitance traces for

density calibration. During this time, any drift in the sample, perhaps through

changes in donor ionization, drift in the DC bias supplies, or even changes in the

sample leakage or gate leakage of our cryogenic amplifier can change the density
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of the 2DEG for any given bias voltage applied at room temperature. If such

drifting has occurred, it is visible as an offset between the compressibility dips

as seen in the capacitance traces and the chemical potential jumps in the pulsing

traces. In general, with the feedback on the drain current on, our setup appears

to be remarkably stable as long as the sample space temperature is constant.

Thermally cycling the sample space, even just up to 1K and back, seems to cause

a noticeable drift. It is unclear if this drift is related to sample leakage, changes in

donor ionization, or changes in the cryogenic amplifier. However, our refrigerator

is highly reliable and easily able to maintain a constant temperature over several

months, so this is not a serious concern.

11.7 Summary

We have established a calibration technique for transforming the DC bias axis of

our spectra to density. It has systematic errors of order 5%, largely from the

neglected motional capacitance terms. Close examination of the density as a

function of bias has revealed an unexpected increase in the total change in charge

density between filling fractions at low Landau level indices that originates with

the long Lorentzian tails of high-lying levels.
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Chapter 12

Calibrating the Energy

The voltage difference between the 2DEG and the nearby electrode is, at the

moment the pulse is applied, given by the height of the applied voltage pulse

times a geometric lever arm given by the ratio of the distance from the quantum

well to the tunnel electrode to the total thickness of the structure (Figure 3-6).

The real world is never quite so simple. Because the Fermi wavevector in the

electrodes is finite, there is no sharp edge from which to measure the thicknesses.

Instead, there is a finite 1D charge distribution. As we learned in Chapter 9,

the 2D electron gas has a bound state energy and center-of-charge that both shift

noticeably with applied voltage. Even putting aside these variations of the lever

arm, we need to find a feature in the spectrum whose energy spacing we know

with enough precision to use it to calibrate our energy scale; a “standard candle.”

In this chapter, we will briefly discuss our choice for this standard candle.

We will then quantitatively estimate the magnitude of the variation of the lever

arm within the range of our experiment. Finally, we will present some numeric

modeling of the geometric lever arm that will provide a more accurate estimate

of the lever arm variability.
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12.1 A Standard Candle

In astronomy, the use of standard candles provides a simple way of determining

the distance to an object. If one has, a priori, a good estimate of the brightness of

an object, one can use its observed brightness at the Earth to estimate the distance

to it. The stellar bodies for which good a-priori estimates are available are known

as standard candles. However, this leaves the difficult problem of identifying

objects whose brightnesses are accurately known.

Similarly, in our spectra we see a complex interplay between screening,

disorder, interactions, and simple single-particle physics. As of this writing, there

are no theories that accurately reproduce all the features we see in our spectra;

there are very few features whose spacing we know from first principles.

Historically, the cyclotron energy has been used to calibrate measurements

of chemical potential and energy spacings in thermally activated conductivity

and capacitance measurements [33, 48, 42]. However, as we have learned, the

exchange interaction modifies the cyclotron gap between Landau levels separated

by changes in the orbital quantum number (for example, between ν = 2 and

ν = 3) substantially. Because of these many body effects, we cannot use these

cyclotron gaps to calibrate our energy scale.

However, in TDCS we have a region of spectrum available that is inaccessible

in traditional capacitance and conductivity measurements: the area where the

quantum well is empty. In this region, we have effectively turned off electron-

electron interactions; there are no carriers with which the injected charge can

interact. In this region, we do expect the cyclotron gap to be equal to h̄ωc. This

part of the spectrum forms our standard candle.

We use relatively low magnetic fields to calibrate our lever arm. This allows

us to see many Landau levels in the empty well, and provides a good baseline

for fitting. We find the Landau levels to be evenly spaced over the range from 0

to 55 meV that we can measure, to within experimental precision (Figure 12-1).

While there is some question that the experimentally available cyclotron mass
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Figure 12-1: Fitting the cyclotron energy in an empty well

m∗ = 0.067 is applicable when injecting carriers into a completely empty band[61],

this at worst renormalizes our energies by a few percent, on the same order as

our expected systematic errors. For our current sample, we extract a lever arm

λ = 0.267.

12.2 Variations in the Lever Arm; The Quantum Well

Everything in our structure squishes around as we apply AC and DC voltages

across it. We will find that motion of the 3D electrodes dominates lever arm

variations, although the polarization of the quantum well also gives noticeable

corrections.

We only care about shifts in the bound state energy in response to DC voltages

to the extent to which they change the response to AC voltages. Unlike attempts

to extract the chemical potential from equilibrium capacitance measurements [33],
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we do not need to keep track of the change in the bound state energy as we vary

the DC bias. This simplifies our problem enormously, as the DC response is

complicated by the screening of the applied voltage by the 2DEG itself.

We have already calculated the bound state energy shift of the quantum well

with applied electric fields (Chapter 9). Recall that by measuring energies from

the center of the quantum well, the linear shift vanished, and we were left with

a quadratic term. The largest AC field we apply is ∼55 mV/100 nm, giving us

a bound state energy shift of 100 µeV. Since our lever arm is about one quarter,

this is equivalent to changing the pulse height by .4 meV, or an energy error of

less than 1%. Note that this bound state energy shift includes the polarization

of the quantum well. This AC shift does not depend on the density of states

in the quantum well; it occurs before any charging happens. Finally, because it

originates with a quadratic correction, this error vanishes as we approach the

Fermi energy; at energies of 5 meV, it will give a contribution of less than a

part in a thousand. Because our tunneling matrix elements typically vanish well

before we reach a full 15 meV above the Fermi energy, we have substantially

overestimated the practical importance of this error.

We apply DC fields substantially larger than the (55 mV)/(100 nm) AC fields

we typically use; we bias until the sample starts to leak appreciably at around 300

mV applied voltage. Neglecting screening by the 2DEG, this DC field moves us

to a region on the bound state energy curve in which we are much more sensitive

to applied electric field (Figure 12-2). This is not surprising; the quantum well is

symmetric, so we know that the bound state energy shift as a function of electric

field must have a local extrema at zero electric field. We see that at 300 mV, the

bound state energy shift from a 0 mV pulse to a 55 mV pulse is around 1.2 meV.

This bound state energy shift can be linearized in the AC pulse height, so we can

interpret it as an effective 8% increase in the lever arm caused by the applied DC

bias. A simple intuitive explanation of this increase is that the applied DC bias

tends to pull the 2DEG closer to the isolated electrode, increasing xw in calculating

the geometric lever arm. It will turn out that we have enormously overestimated
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this number; we have neglected the screening of the DC field by carriers in the

well, which tends to make the quantum well look rectangular, and as such flatten

the parabola in Figure 12-2. This screening becomes more complete as the DC bias

and density in the quantum well are increased. This will be treated more exactly

numerically at the end of this chapter. It will also turn out that, as discussed in

Chapter 11, the quantum well and the tunneling electrode tend to shift together

and in the same direction. Because of this, the depletion of the 3D electrode will

partially cancel the lever arm shift due to the polarization of the quantum well.

12.3 Variations in the Lever Arm; DC Motion of the

Electrodes

If we examine the high frequency capacitance of our tunnel capacitor, we typically

find that it is peaked at around zero bias, and drops steadily off as we both

enhance and deplete the 2DEG (Figure 12-3). This high frequency capacitance

is, neglecting motional terms, a measure of the total thickness of the structure

from the isolated electrode to the tunneling electrode. The quantum well itself is

unimportant in the high frequency capacitance.

At large enhancing (negative in Figure 12-3) voltages, the high density of states

in the quantum well screens the tunnel electrode from the applied DC electric

field, so that electrode is stationary as we vary the DC voltage. The isolated

electrode, on the other hand, feels the entire applied electric field, and moves as

we vary the voltage. In this domain, changes in the high frequency capacitance

reflect motion of the isolated electrode.

Similarly, at large depleting voltages (near zero volts in Figure 12-3), the 2DEG

is completely empty, and so it no longer screens the electric field. Because of

this, the tunnel electrode depletes as we vary the applied voltage. This electric

field also enhances (increases the negative charge on) the isolated electrode. This

enhancement, however, does not actually change the effective position of the
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Figure 12-3: High frequency capacitor of one of our samples at 100 mK, 0 T.
At large negative voltages, the 2DEG has finite density and screens the electric
field from reaching the tunneling electrode, so changes in capacitance reflect the
donor density in the isolated electrode. Similarly, near zero voltage, the isolated
electrode begins to enhance near the blocking barrier and is unable to move, so
changes in capacitance reflect the donor density in the tunneling electrode.
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isolated electrode; it is pinned approximately 1/4 Fermi wavelength away from

the blocking barrier. Thus, for depleting voltages, changes in the high frequency

capacitance reflect motion of the tunnel electrode.

We can use the slope, dC/dVDC of the high frequency capacitance curve to

extract experimentally the donor density in the electrodes. Recall that in the full

depletion approximation the depletion thickness t is given by t = σ/Nd, where

Nd is the donor density and σ is the induced sheet charge. As the donor density

increases, it takes a larger sheet charge to move the edge of the electrode the same

distance; this makes the electrode “stiffer”, and dC/dVDC smaller.

More precisely, working in capacitances per unit area (C̃), and assuming we

are considering small changes in capacitances away from a value C̃0 = ε/d caused

by a change in the capacitor thickness d→ d + δd,

C̃(V) =
ε

d + δd
(12.1)

=
ε

d
1

1 + δd/d
(12.2)

= C̃0

(
1− δd

d

)
(12.3)

= C̃0

(
1− σ

Ndd

)
(12.4)

= C̃0

(
1− C̃0V

Ndd

)
(12.5)

∂C̃
∂V

=
−C̃2

0
Ndd

(12.6)

Nd =
C̃0

∂C̃/C̃0
∂V d

(12.7)

=
ε

∂C̃/C̃0
∂V d2

(12.8)

giving us our desired expression for the doping density. For a 100 nm thick

structure in GaAs, this works out to Nd = 7.2 × 1016 cm−3/ ∂C̃/C̃0
∂V , with V

measured in volts. For the data in Figure 12-3 taken on our sample, this gives

densities of 7× 1017 cm−3 for our isolated electrode and 9× 1017 cm−3, very close
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to the designed density of 1× 1018 cm−3.

As these electrodes enhance and deplete in response to the DC bias, the lever

arm changes. Because of the asymmetry in the structure, we are much more

sensitive to the motion of the tunnel electrode than we are to the motion of the

isolated electrode (Figure 12-4). Over a 300 mV range of DC bias, an electrode

with a donor density of 1× 1018 cm−3 will move by about 2 nm. If we assume

the 2DEG screens the applied bias perfectly, in the enhancing direction only the

blocking electrode moves. The 2 nm of motion results in a decrease of the lever

arm by about 2% in response to the DC bias. In the depleting direction, the

2DEG will no longer screen the DC bias, and the same 300 mV would increase

the separation between the 2DEG and the tunnel electrode by 2 nm, resulting in a

massive 10% increase in the lever arm. Fortunately, once the 2DEG is empty, we

stop applying DC bias, so in practice we never measure in this regime.

Thus, over our measurement range, we expect an approximately 2% variation

of the geometric lever arm from the depletion of the isolated electrode. Note that

while the polarization of the quantum well tended to increase our geometric lever
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arm by pulling the 2DEG closer to the isolated electrode, the isolated electrode

tends to move away at the same time. This partial cancellation will tend to reduce

the change in the geometric lever arm to less than 6% over the range of our

measurement.

12.4 Variations in the Lever Arm; AC Motion of the

Electrodes

In response to AC pulses, the 2DEG is unable to screen the applied electric field.

Because of this, both the isolated and tunneling electrode tend to shift together

and by approximately the same amount when the pulses are applied. (Note that

this assumes that the tunnel electrode is not has not moved so far that it is pinned

against the tunneling barrier. In practice, our simulations show the large spacer

between the barrier and the doped region ensures this is not the case.)

As discussed above, the motion of the tunnel electrode is around 4 times more

important than the motion of the isolated electrode. Focusing on this, in response

to our 55 mV AC pulse, we expect around 4 Å of motion, resulting in a 2% change

in the bound state energy of the quantum well. For enhancing pulses, this will

tend to decrease the lever arm as we pull the electrode closer to 2DEG, while

for depleting pulses, we push the electrode further from the 2DEG, increasing

the lever arm. Note that this motion actually tracks well with both the direction

and order of magnitude of the motion of the quantum well. Because the degree

of polarization of the quantum well varies with DC bias both because of self-

consistency and because it originates with a quadratic correction, the exact degree

of cancellation will vary, but it gives us some confidence that this effect will reduce

our current energy error estimate of around 6%. A more exact understanding of

this reduction can be found by numeric simulation of the structure.
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12.5 Numeric Simulations

Because our structure is essentially one-dimensional, it is easy to simulate its

behavior numerically (Appendix C). In Chapter 11 we took advantage of this

to provide a model sample in which it was possible to know exactly what was

happening in one of our structures in response to applied DC biases and small AC

excitations. We can easily extend this to simulate the response to large AC pulses.

In extracting the lever arm from the structure, it is important to include the effects

of donor migration during the epitaxial growth process[97, 98]. We approximate

this migration by, instead of suddenly dropping the donor density from 1× 1018

to zero in the tunnel electrode, tapering it off in several steps approximating an

exponential decay with a decay constant of 8 nm. This is appropriate for a 655◦

Celsius growth temperature.

We first simulate the structure at each DC bias at equilibrium, building up a

table of 2D density in the quantum well as a function of bias. With the aid of

this table, we are now ready to simulate the structure far out of equilibrium. For

each DC bias, we change the bias across the structure by the pulse height being

simulated while modifying the chemical potential in the quantum well to keep the

2D density constant at the equilibrium value we computed earlier. This allows us

to model accurately the situation in the moment after the pulse is applied but

before any charge has had time to tunnel.

Because the 2D density of states in the well is the same before and after

the pulse, the difference between the lowest bound state energy and chemical

potential in the well is fixed; we can compute the geometric lever arm using

either. In practice, we will use the bound state energy because this quantity also

enters into attempts to extract the well chemical potential from AC capacitance

traces[33].

In Figure 12-5a, we show the bound state energy as a function of AC pulse

height and DC bias over a range comparable to our experiment. Figure 12-5d

shows a simulated dI/dV spectrum to allow the readers to orient themselves on
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Figure 12-5: Calculated Lever Arm Errors: 0 Tesla (previous page) a) Calculated
bound state energy as a function of DC bias and pulse height. Note the bound
state energy changes quite rapidly as a function of DC bias when the well is
empty, and the 2DEG is unable to screen the applied electric field. TDCS is
not sensitive to this overall shift in the bound state energy, however; only to the
change in the bound state energy in response to applied pulses. 2.5 meV contours
are superimposed for clarity. b) Change in the bound state energy in response to
the applied pulse; this is obtained by subtracting the bound state energy after the
pulse is applied from the bound state energy before the pulse is applied. 1 meV
contours are superimposed; the uniformity of the lever arm can be seen in the
even spacing of the contours, however, some narrowing of the contour interval,
caused by an increase in the lever arm, can be seen at the far left edge where
the well is fully depleted. c) Calculated deviations in the bound state energy
from an assumed constant λ = 0.272 lever arm. Note the maximum deviation is
1.5%, while in the region of interest where there is charge in the well deviations
from ideality are much smaller. d) Calculated dI/dV on the same scale as a-c), to
provide some basis for comparison.
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Figure 12-6: Calculated Lever Arm Errors: 3 Tesla (previous page) a) Calculated
bound state energy as a function of DC bias and pulse height. Note the bound
state energy changes quite rapidly as a function of DC bias when the well is empty
or in the chemical potential jump in between Landau levels, preventing the 2DEG
from screening the applied electric field. TDCS is not sensitive to this overall shift
in the bound state energy, however; only to the change in the bound state energy
in response to applied pulses. 2.5 meV contours are superimposed for clarity.
b) Change in the bound state energy in response to the applied pulse; this is
obtained by subtracting the bound state energy after the pulse is applied from the
bound state energy before the pulse is applied. 1 meV contours are superimposed;
the uniformity of the lever arm can be seen in the even spacing of the contours,
however, some narrowing of the contour interval, caused by an increase in the
lever arm, can be seen at the far left edge where the well is fully depleted. Some
small wiggles are also present near the chemical potential jumps. c) Calculated
deviations in the bound state energy from an assumed constant λ = 0.272 lever
arm. Note the maximum deviation is 1.5%, while in the region of interest where
there is charge in the well deviations from ideality are much smaller. There is
much more fine structure for the 3 Tesla case than there is in the zero field case;
this fine structure exemplifies the difficulties in trying to account more accurately
for the variations of the lever arm. d) Calculated dI/dV, on the same scale as a-c),
to provide some basis for comparison.
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this plot. At the far left of the spectrum, the 2DEG is fully depleted and is no

longer able to screen the applied DC bias, resulting in a rapid change in the

bound state energy. This reflects a changing “DC” lever arm; where the quantum

well is able to charge, very little electric field penetrates it, so it takes large applied

voltages to create small changes in chemical potential. The enormous fluctuations

in this “DC” lever arm make it difficult to accurately extract the chemical potential

from equilibrium capacitance measurements; for this reason we do not do so.

However, if we are only interested in the distance from features in the

spectrum to the chemical potential, we need only worry about the difference

between the chemical potential (or bound state energy) before and after the pulse

is applied. Figure 12-5b shows this quantity. The evenness of the contour intervals

reflects the accuracy of our fixed lever arm approximation. Only a very slight

narrowing of the interval at the left edge of the figure where the well is depleted,

reflecting the increase of the lever arm discussed above, is visible.

In our actual experiment, we fit the Landau level spacing in the region where

the well is fully depleted to extract the geometric lever arm. We approximate

that procedure by fitting the plane plotted in Figure 12-5c over the DC bias range

from 50 mV to 100 mV to the form Ebound state = λVPulse. We extract λ = 0.272;

this a-priori calculation from the as-designed structure is in excellent agreement

with the experimental value λ = 0.267. In our experiment, we approximate

this lever arm as constant across the entire range of measurement. Doing the

same, we extend this plane and plot the difference between the fit and the actual

bound state energy in Figure 12-5c. Here, we plot the error in the bound state

energy, Ebound state − λVPulse as a percentage of the full scale range of bound

state energies, taken to be 15 mV. Contours are plotted at 0.1%, 0.25%, 0.5%, and

1%. With the exception of a small region in the bottom left corner corresponding

to trying to eject electrons from an already empty well, the errors are all much

less than 1%, and in the region within a few millivolts of the Fermi surface where

we perform the bulk of our measurements, the errors are less than 0.1%.

One possible cause for concern is that the further application of a magnetic
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field creates additional regions where the 2DEG is unable to screen. In these re-

gions we expect the quantum well polarization and the tunnel electrode depletion

to both change quickly; this results in a rapid change in the bound state energy

and the lever arm, just as in the fully depleted region at zero field. However, the

average density of states in the quantum well remains fixed, so while this should

cause some local perturbation in the lever arm, we do not expect this to result

in global distortions. Furthermore, because the bound state energy changes very

quickly in these regions, it only takes very small changes in the DC bias to move

through them, minimizing their effect. This is evident in the small and narrow

dips in the simulated and real capacitance traces in Figures 11-3 and 11-6.

We can demonstrate this by repeating our simulation, substituting a Landau

level density of states for the flat density of states used in Figure 12-5; this is

shown in Figure 12-6. We neglect all many body effects (including exchange

splitting and negative compressibility) in this simulation. Note that although we

see more fine structure in the lever arm, the errors are similar in magnitude and

direction to those at zero field. This fine structure demonstrates the difficulty in

attempting any higher order correction of the lever arm; any such correction is

dependent on the physics of the quantum well.

It is possible to include some short-time capacitance experimental data to give

an idea of how far the electrodes have depleted as a function of both DC bias

and pulse height. However, the lever arm we observe comes from the partial

cancellation of the well and electrode polarization, so using such data to generate

higher order corrections would require using a detailed model of the entire

structure similar to our simulations. We are hesitant to include such detailed

corrections as part of our measurement.

12.6 Summary

The lever arm that enters into the TDCS energy calibration depends only on the

distances between electronic states in our structure. By comparison, attempts
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to extract chemical potential jumps from capacitance data depends on a DC lever

arm that incorporates screening by the 2DEG, while RTD’s are sensitive to voltage

drops across two separate barriers. Because the energy calibration in TDCS

depends only on geometric factor, it is comparatively simple and insensitive to

the detailed physics of the structure being studied. This gives well calibrated

and undistorted energy scales in TDCS spectra compared to other electronic

techniques.

We estimate energy errors of a few percent using qualitative arguments;

detailed simulations showed that inclusion of the screening of the applied electric

field by the 2DEG reduce these lever arm variations to around 150 µeV, or less

than 1% of full scale. Errors in the region of the most interest near the Fermi

surface are even smaller.

Reducing these errors further by accounting for the variability of the lever

arm seems unlikely; even though we have some information about the depletion

of the electrodes from the short time capacitance, the polarization of the quantum

well is an important term in the lever arm. We have no direct measure of this

polarization.

One interesting question is how to design a sample to reduce the lever arm

variation. Such an attempt would have to simultaneously narrow the quantum

well, reduce its polarization, and modify the donor density in the 3D electrodes

to improve the cancellation between the polarization of the quantum well and the

depletion of the electrodes. While it would be tedious, the simulation software

developed in Appendix C would provide an invaluable tool in such attempts.
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Appendix A

Signal Generation and Transmission

Careful attention needs to be paid to both the generation of the pulses used to

excite the sample and their transmission into the sample space in order to meet the

strict requirements on the pulse shape and amplitude control needed to acquire

accurate and noise-free spectra. Many of the traditional tricks used in RF design

only work over a narrow range of frequencies, and do not carry over well to time

domain measurements. Here, we discuss what has been done and what options

are available for improving the quality of the pulse arriving at the sample.

A.1 The Pulse Shaper

Commercial signal generators are available with extremely short rise-times: times

much faster than 100 picoseconds are readily available. However, this rise time is

typically the 10% - 90% value; we find the pulses generated continue to ring on

the order of a few percent, typically for several microseconds, after generation.∗

For TDCS, we only need moderately good rise times; the 50 Ω cable driving

our 10 pF sample limits us to a 2 ns rise time (to 99%). However, we do need

our pulses to be flat to within our energy resolution over the entire pulse width

after the first few nanoseconds, and flat to around 100 times better than that

∗Pulse generators designed for time domain reflectometry are available with much better
characteristics, but typically do not provide amplitude control.
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during the measurement interval to allow accurate slope determinations. We also

need unusually precise amplitude control to allow accurate balancing and energy

determination.

We achieve these using a device we call a “pulse shaper.” This is a high

gain amplifier designed to saturate sharply at an adjustable voltage. We use a

commercial pulse generator to generate a signal that drives it into saturation,

where the few percent ringing causes a negligible change in its output voltage.

The current pulse shaper features some refinements over that discussed in [99] to

maintain a better 50 Ω fixed output impedance.

The saturation voltage is adjustable by a DC control input. Currently our

amplitude resolution is limited by the quantization of the voltage source used to

generate this input, while the pulses generated are flat to within better than we

can directly measure after 1 nanosecond has passed by. Subtracting two pulses

from each other, we see some high frequency components on the order of one

part in ten-thousand; this results in direct capacitive feed through of ringing from

our signal generator to the output of the pulse shaper. It could be further reduced

by chaining two pulse shapers, or by careful filtering of the signal generator’s

output. However, such filtering would have to be done with care; asymmetries in

the threshold voltages of the amplifiers in the pulse shaper can turn slow input

rise times into offsets in time of the generated pulses.

A.2 There and Back Again; Reflections

Of course, the quality of the pulse generated is irrelevant if we are unable to

transport it to the sample without distortion. Every component between the

pulse shaper and the sample introduces an additional source of reflection and

attenuation, and deserves careful consideration. On the excitation half of the

bridge, the AC component is of the order 50 mV, but all but approximately a part

in one thousand of that will be balanced off by the bridge, so distortions of the

order of a part in one-hundred thousand will be clearly visible in the experiment;
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ZL ZR

Incoming Pulse Tranmitted Pulse

V0

Reflected Pulse
RV0

(1-R)V0

Figure A-1: Single impedance mismatch: When a step is sent through a single
impedance mismatch, it is attenuated but not distorted.

even the smallest reflections are critical.

The simplest way to distort a pulse is with an impedance mismatch. Recall that

if there is a sudden discontinuity in the characteristic impedance of a transmission

line, there is a reflection, with the voltage reflection and transmission coefficients

for a right-going wave given by[100]

R =
ZR − ZL

ZR + ZL
≈ δZ

2Z
(A.1)

T = 1 + R ≈ 1 +
δZ
2Z

(A.2)

Assume, for the moment, that the source and load in the experiment are

correctly terminated. In that case, a single impedance mismatch will generate

a reflection that will propagate backwards towards the signal generator where it

will be absorbed. The net effect, then, is to slightly reduce the amplitude of the

pulse arriving at the sample (Figure A-1), which will be automatically absorbed

into our lever arm and density calibrations. Thus, a single reflection is not a

problem.

If we introduce a second impedance mismatch, the situation becomes more

complicated. Consider, for example, inserting a short section of cable of length l

with an impedance Z1 in the center of a section of cable of impedance Z2. This

can be used as a simplistic model of a damaged or dented cable, a connector, or
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even a poorly designed strip-line on a circuit board.

Typically, our reflection coefficients will be small enough that it will be

adequate to consider only the first few reflections. For the case of our short

mismatched segment of line, noting that the reflection coefficient for entering the

mismatched section of line has the opposite sign and the same magnitude R as

the reflection coefficient on exiting it, and taking for concreteness Z1 > Z2, we

can consider terms of up to order R2 and easily reason through the shape of the

reflected and transmitted pulses (Figure A-2).

Imagine the step incident on the mismatch arrives at the front surface at

t = 0. A small, negative step of magnitude R is reflected back towards the signal

generator, while a slightly attenuated pulse of magnitude 1− R travels onward

towards the back surface of the mismatch. At time t = l (using units where

c = 1), the attenuated pulse reaches the back surface. Here, a small positive step

of magnitude (1− R)R ≈ R is reflected back towards the signal source, while a

step of total magnitude (1− R)(1 + R) = 1− R2 is transmitted on in the cable.

At a time t = 2l, the positive reflected step reaches the front surface of the

mismatch again. The portion transmitted through the front surface, back towards

the signal source, has an amplitude R(1 + R) ≈ R, and cancels the original

reflected step. The net reflection from the mismatch is, to order R, a pulse of

length 2l and amplitude R.

On the other hand, the portion reflected by the front surface, back towards

the output, has an amplitude of R2 + O(R3). At a time t = 3l, this reaches the

back surface of the mismatch again. The transmitted portion has an amplitude

of R2 + O(R3). This is enough to restore, to order R3, the pulse to its original

amplitude.

Thus, the net effect of a short, small mismatch of length l is to take a little

“mouse bite” of length 2l out of the leading edge of a step, and to reflect a pulse

of length 2l back towards the signal generator.

Our experiment has several connectors and a bias tee on the path from the

signal generator to the sample. Roughly speaking, each of these take a mouse
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Z1 Z2

Incoming Pulse Tranmitted Pulse

V0

Reflected Pulse
RV0

(1-R2)V0

Figure A-2: A double impedance mismatch: The reflections off the front and
back surface of the mismatch nearly cancel, so a double mismatch takes a short
nibble out of the front of a transmitted pulse, and reflects a short pulse back
towards the signal generator.

bite out of the front of the pulse, but because they are all small ( typically ∼ 100

ps long), the direct effect on the pulse is negligible.

However, our transmission line is not terminated in the cryostat; the power

consumption of doing so would be unacceptable. Our sample is approximately

a 10 pF capacitor to ground; although it can store some power, it cannot absorb

any. Thus, at long times, it gives a reflection coefficient of +1; at short times, it

looks like a short to ground, and gives a reflection coefficient of -1. When a step

of amplitude V impinges on the sample, a reflected “glitch” that swings from -V

to +V over the RC time of a few nanoseconds is reflected back towards the signal

generator.

If our cables were perfect and the signal generator were an exact 50 Ω

source, the signal generator would absorb this reflection and it would not matter.

However, each connector and bias tee on the way back towards the signal

generator acts as a short mismatched section. When this reflected glitch hits

them, they reflect short, attenuated copies of the glitch back towards the sample.

If they occur a distance d down the sample, these glitches arrive at the sample

at a time 2d. The first of these mismatches is the SMA connector at the top of

the cryostat, approximately 1 m from the sample. Thus, after we apply a pulse,

we see a few nanosecond rise time, then approximately 10 ns of very clean pulse,
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Incoming Pulse Transmitted Pulse Arriving Pulse

Reflected Pulse

Secondary Reflections

t

2t Net Pulse Seen By Sample

Figure A-3: Net pulse: On the way to the sample, multiple short mismatches
created by connectors and the bias tee create a slight stoop at the front of the
pulse. The RC time of the line charging the sample smoothes this stoop into an
approximately exponential rise. However, the reflection caused by the charging
of the sample has twice the peak-to-peak amplitude of the arriving pulse. This
reflection travels back towards the signal generator, and additional power is
reflected back towards the sample at each of the impedance mismatches. Because
of the cable length, these arrive long after the initial pulse transient has died away,
and provide a sizable contribution to our detected signal.

then we see a series of glitches corresponding to this connector, a bias tee, and

the first attenuator on our cables, spanning the period from roughly 10 ns to 20

ns (Figure A-3).

We keep the magnitude of these attenuated glitches small by careful impedance

matching, using high quality carefully tightened SMK connectors, and using

semi-rigid coaxial cables manufactured with tight tolerances. With these efforts,

only the first reflection off each connector is visible; pulses that reflect off the

sample, off an imperfection, back off the sample again, and off an imperfection

again are not visible when the apparatus is adjusted well.

The contribution from later connectors is usually negligible; there is a 20 dB

attenuator immediately before the bias tee. A reflection off an imperfection on

the far side of this attenuator passes through it twice: once on the way from the
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sample to the imperfection, and a second time on the way from the imperfection

back to the sample. This 40 dB attenuation is typically enough to render the

already-small reflection imperceptible. Careful placement of attenuators improves

the quality of the pulse seen by the sample enormously.

For very fast samples, we can work in the relatively flat period between the

initial transient and the arrival of the first reflections. However, there is some

global distortion in this region from the RC rise time of the sample and the

frequency-dependent attenuation of our cryogenic coaxial cables. For slower

samples, we typically work after the reflected glitches have mostly died away

and rely on the differentiation step to remove any systematic bias introduced by

them.

A.3 Detection

The problem in getting the signal back out of the cryostat again is enormously

easier; the lion’s share of the pulse has been cancelled by the balancing, so

reflections on the order of a part in a thousand that would be a concern on

the signal generation side are unimportant on the detection side. Our cryogenic

amplifier has an approximately 50 Ω output impedance, but this does not have

to be maintained with very much care as each of the later stages of amplification

has a fairly good 50 Ω input and generates very little reflection.

With carefully selected low-pass filters to match the output bandwidth to our

sampling rate, we see approximately 1 nV/
√

Hz noise rated to the input of our

cryogenic amplifier. This noise is dominantly from the thermal noise of our first

room temperature amplifier. It is necessary to use constant-phase low pass filters

to avoid distorting the received signal. It is also important to remember that most

low-pass filters use LC circuits to provide the filtering; these do not absorb high

frequency power, but reflect it back towards the source. Such a filter cannot be

put directly on the output of the cryogenic amplifier; its poor impedance match

will result in high frequency ringing; rather, it must be placed between two room
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temperature gain stages or directly on the input of the averager.

A.4 Amplifier Design

... and that if any one fhould doubt, whether the ele�rical matter paffes through 
the fubftance of bodies, or only over and along their furfaces, a fhock from an 
ele�ricfied large glafs jar, taken through his own body, will probably convince 
him.

Watson, Wm. and Franklin, Benjamin.  An Account of  Mr. 
Benjamin Franklin's Tratife, lately publifhed, intituled, 
Experiments and Obfervations on Ele�ricity, made at 
Philadelphia in America; by Wm. Matfon, F.R.S..  
Philisophical Transa�ions (47):202-211, June 1751.

Charge amplifiers sufficient to detect somewhat smaller charges than were used

in Mr. Watson and Franklin’s experiments are needed to detect the image charge

of the displacement currents we use in our measurements. We use an amplifier

based closely off a design with a long history in AC capacitance measurements

[101, 33, 29]. The amplifier used in the past is a current-biased single or multiple

stage common-source HEMT based amplifier. It has a power dissipation of a few

µW, a gain of order 5, an input capacitance of around 300 fF, and a bandwidth

of about a megahertz. We will sacrifice input capacitance and gain to extend the

bandwidth to a few gigahertz.

The basic idea behind this tradeoff is the observation made in Gary Steele’s

thesis[29]; increasing the gate width increases the transconductance of the ampli-

fier. In the bulk of our capacitance measurements, we are measuring very small

capacitances, so the increase in the transconductance of the transistor is balanced

by the decreased signal at the gate because of the shunting capacitance of the

amplifier. In this case, the advantages of a wider gate amplifier are negligible.

However, in our case, the sample capacitance is large, so we can afford a very

wide gate. We do not have the ability to fabricate our own HEMTs; however, we

can effectively create a wide-gate amplifier by placing many HEMTs in parallel.

Given that we expect the transconductance to increase linearly with the
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number of HEMTs we use, it would seem to make sense to use enough to get the

input capacitance of our amplifier to be about equal to our sample capacitance; in

our case, this would mean using about 30 in parallel. Besides being impractical

and unreliable, such a choice would give our cryogenic amplifier an unreasonably

low output resistance.

This suggests a simple choice for the number of HEMTs; we can put enough in

parallel to set the output resistance to 50 Ω , giving us an enormous bandwidth

improvement over the 1 kΩ output impedance more typically used.

In order to pick the number of HEMTs to use, we need to choose an operating

point, in terms of a drain current and voltage for our amplifier. Once we have

selected that point, we can reach it by tuning the gate voltage of the HEMT and the

current source used to bias the transistor. The main constraint on the operating

point of our amplifier is power; if we want to consume 3 µW of power, it limits us

to the set of points on the I-V curve of the transistor where I×V = 3 µW; a single

line. We can then examine that line and, for any given number of amplifiers, pick

the point where the gain of the amplifier peaks. Finally, we look at the output

impedance ∂Idrain
∂Vdrain

. for any number of HEMTs, and pick the number of HEMTs

that makes the output impedance closest to 50 Ω ; this is 3 or 4 for FHX35Xs

depending on the batch of transistors. With our typical settings, the amplifier has

a voltage gain of about one when driving a 50 Ω load.† Although the resulting

amplifier is simplistic, we find it compares favorably in bandwidth and power

consumption, if not gain, to those reported elsewhere[102].

Once we have cooled our amplifier, we measure the output impedance of our

amplifier as a function of gate bias, and fine tune the gate bias to set the output

impedance to exactly 50 Ω .

Our amplifier slowly drifts over time. The origin of this drift is not completely

clear, but it seems to originate with DC leakage off the input of the amplifier

slowly changing the bias point. In order to compensate for this drift, we

continuously monitor the drain voltage on the HEMT, and feed back the DC gate

†This is, however, an enormous power gain.
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bias to keep it fixed at the value that gave us a 50 Ω output impedance we found

at the start of the cool down.

A.5 Summary

A mixture of careful cabling, judicious use of attenuators, and a carefully designed

pulse shaper allow us to deliver steps of unparalleled fidelity and amplitude con-

trol to a cryogenic load. Reflections off cables and direct capacitive feed-through

dominate distortions in the voltage step delivered to the sample. Improvements

are possible at all stages.
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Appendix B

Experimental Setup

An 8131A two-channel pulse generator (a) is set to generate pulses with a high

repetition rate; typically 10 to 100 kHz. Each repetition is used to generate one

complete pulse sequence, so averages are typically accumulated at the rate of

10,000–100,000 per second. The trigger output (T1) is optionally coupled through

a hand-wound balun (b) to isolate the ground, and passed to the trigger in on

the repetitive signal averager (c). Channel 1 is set to generate the gate signal for

the measurement pulse (P1), typically a few µs after the trigger to allow time for

any transients from the trigger pulse to die down. It is sent as a complementary

pair to the pulse shaper (d). The pulse shaper uses a complementary pair of

fixed amplitude gate pulses combined with DC control inputs to generate a

very flat, continuously variable amplitude pulse. The 8131A only provides 1%

control over pulse width; this is inadequate for the discharge pulse. A DG535 (e),

providing better than 1 ns resolution with a 1 ns rise time, is used to generate

the gate signal for the discharge pulse. It generates high frequency noise while

timing (in between being triggered and generating the falling edge of the last

pulse it generates); this is acceptable during the discharge pulse, but generates

excessive interference if the DG535 is running during the measurement pulse. To

circumvent this, Channel 2 on the 8131A is set to generate a trigger pulse (T2) at

the end of the measurement pulse. This DG535 begins the discharge pulse gate

signal (P2) immediately after being triggered.
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Four DC input voltages (V1−4
P ) are used by the pulse shaper to control the

heights of the measurement pulse on the excitation, the discharge pulse on the

excitation, the measurement pulse on the standard, and the discharge pulse on

the standard. These are generated by 20 bit unipolar D/A converters based

around AD760s. At present, the quantization error in these outputs dominates

our pulse amplitude control errors. The pulse shaper has unipolar outputs; in

order to generate negated pulses, we reverse the duty cycle on the pulses. This

introduces a DC offset that is removed later by AC coupling. The 8131A is able to

complement its outputs, but the DG535 cannot. Four 50 Ω relays (g) are used to

optionally swap the outputs of the DG535, effectively complementing them. The

control coil is electrically isolated from the signal path; this does not connect the

computer’s ground to the experiment’s.

In order to preserve the flatness of the pulses generated by the pulse shaper,

the cabling from this point out is done with care, using semi-rigid coaxial cables.

Immediately before entering the cryostat, 3 to 30 dB of broadband attenuators

(h) are used to reduce the impact of any reflections. RF leakage from the large

amplitude (2.5 V) gate pulses can interfere with the low level detected signals. A

separate Faraday cage surrounds the signal-generation portion of the apparatus

to minimize this leakage (i). A stripline RC bias tee (j) is used to add the sample

bias VDC. This bias is generated by an independent set of D/A converters (k)

to reduce any stray coupling between the signal generation apparatus and the

sample excitation.

A cryogenic amplifier (Section A.4, l) provides somewhat less than unity

voltage gain to match the high-impedance sample to the 50 Ω cabling leaving

the cryostat. It is current biased through RD2, which is integrated with the AC

coupling on the first stage of room temperature amplification. RD1 is used to

allow easy adjustment of the effective bias voltage and low pass filter the output

of the low-drift +10 VDC fixed-output voltage source (m). A voltage meter (n) is

used to monitor the DC drain voltage of the transistor, and thus the drain current,

through a large isolation resistor Rm. This signal is used to continuously and
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slowly tune the gate voltage of the cryogenic amplifier VGate to maintain a fixed

output impedance despite small drifts in the cryogenic transistors.

Two to three series Mini-Circuits Gali amplifiers (o) are used to provide 44-66

dB of gain from 100 Hz to 1 GHz. This bandwidth is limited on the low end by AC

coupling capacitors and the high end by room temperature amplifier selection.

Our overall noise is limited by the input noise of these amplifiers; typically

approximately 1 nV/
√

Hz referenced to the gate of the cryogenic transistor. The

apparatus as a whole is grounded through these amplifiers.

The signal averager is grounded to the (otherwise floating) computer through

a USB connection. Current-generation USB isolators do not support the transfer

rate needed by this experiment. This is unfortunate, but unavoidable. Noise

contributions from the computer are minimized by removal of the video card.

Digital dithering ([27]) is accomplished using the input offset circuitry internal to

the signal averager.
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Figure B-1: Block Diagram of Experiment:

a Two channel pulse generator, used to control the pulse sequence and generate
the gate for the measurement pulse

b Balun, only used sometimes, to break the ground loop between the 8131A and
the signal averager

c Digital signal averager

d Pulse shaper; generates variable height pulses from fixed-height gate pulses
(complementary pairs) and DC control voltages

e Delay generator, used to generate discharge pulses with precisely controlled
widths

f DC Voltage source, generates control voltages for the pulse shaper

g 4-Relay controllable swap to allow complementing of the delay generator
output

h 3 – 30 dB attenuation to limit the impact of reflections off the sample

i Copper mesh Faraday cage to prevent RF leakage from the gate signals from
interfering with the experiment

j Bias tee, approximately 100 Hz low frequency cutoff.

k DC voltage source, isolated from f to prevent RF coupling

l Cryogenic amplifier, approximately unity gain, 50 Ω output; see Section A.4

m 10 VDC fixed DC voltage source

n DC voltage meter, monitors drain current for feedback to VGate

o Room-temperature amplifiers
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Appendix C

Computer Simulations

Numeric simulations of our structure have provided essential insight into TDCS;

not only have they helped us understand the limitations of our density calibration

(Chapter 11) and the error bounds on our energy calibration (Chapter 12), but

they provide a basis for rational sample design, in which we can start from

the desired properties of our structure in terms of tunneling rate, energy range,

energy accuracy, density range, and sub-band separation, and develop a structure

to suit. The ability to extract quantities that we cannot physically measure, such

as the chemical potential in the quantum well or the center of charge in one of

the electrodes, makes these simulations useful in testing ideas for new ways to

analyze the data TDCS provides. We can ask questions like “if we were able

to extract or guess the electrode positions, how much more accurate would our

density calculations be if we still ignored motional capacitance?”

The simulations need to be used carefully; they do not attempt to include

all of the physics of our structure, nor do they directly include the uncertainties

of sample growth and inhomogeneity. They also need to be used in parallel

with a well developed physical intuition as to what is actually happening in the

structures; without that intuition, it is difficult to detect when something has gone

wrong with the simulation code, causing it to pursue unphysical or even incorrect

solutions, and it is also difficult to choose how to modify a structure to alleviate a

problem. This last concern is responsible for the bulk of Chapters 9- 12; although

217



we could simply simulate the structure in its totality to extract the desired results,

we would not trust the simulations (or learn very much) without deriving the

results, at least in order of magnitude, by hand.

The simulations discussed in this chapter are straightforward extensions of

those possible with G. L. Snider’s 1dpoisson [103, 104]. Our own simulation code is

able to simulate much larger structures, and provides some unusual features well

suited to the non-equilibrium situations that arise in simulating our structures,

as described below. We will discuss the basis of the simulations in order to

understand the limitations and capabilities of this kind of approach and explain

the differences between our code and prior work, and then discuss approaches

for applying these simulations to our experiment.

C.1 Poisson’s Equation in One Dimension

We are trying to solve two coupled problems; one is, given a charge distribution

ρ(~x) and dielectric constant ε(~x), what potential field V(~x) satisfies the macro-

scopic version of Poisson’s equation,

∇ ·
(

ε (~x) ~∇V
)

= ρ (~x) (C.1)

In one dimension, we can replace ∇ by ∂/∂z. We solve this problem by first

discretizing our fields on a series of lattice points zi with such that Vi = V(zi),

and approximating our derivatives using finite differences

∂ f (zi+0.5)
∂z

≈ f (zi+1)− f (zi)
zi+1 − zi

(C.2)

where zi+0.5 is a reminder that we have evaluated the derivative half-way between

lattice points, not at a lattice point.

We can now rewrite our differential equation as a vector equation

A~V = ~ρ (C.3)
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In one dimension, using the discretization above, the matrixA is band tridiagonal,

as the value of ρ at any point only depends on the value of V at that point and

its two neighbors. This makes the 1D version of this problem easy compared

to the problem in higher numbers of dimensions; Crout reduction[41, Chapter

2] can generate V for any ρ in both linear time and memory.† This is not

surprising; one can imagine picking a random electric field at one end of the

problem, integrating Poisson’s equation to the opposite end, and then, using the

superposition principle, adding a uniform electric field to the entire solution to

match the boundary conditions. Crout reduction uses some clever bookkeeping

to do essentially this for a somewhat more general circumstance. In higher

dimensions one needs to move to complicated relaxation techniques and/or much

higher order computations[105, 29].

C.2 Nonlinear Materials

In semiconductors, the charge distribution ρ is not fixed, but is actually a function

of the potential V. Let us assume we have a model for our semiconductor in

the form of a function ρ(V); that is, the charge density at any point in the

semiconductor is only a function of the potential at that point. We can iteratively

attempt to find V(z) by linearizing the charge density about our last guess at the

potential. Defining R as the matrix whose diagonal elements Rii are given by
∂ρ(Vi)

∂Vi for the ith iteration Vi(z),

A~Vi+1 = ρ
(
~Vi
)
R(~Vi+1 −~Vi) (C.4)

(A−R)~Vi+1 = ρ
(
~Vi
)
−R~Vi (C.5)

For non-pathological charge functions, this will converge in only a few iterations;

on a modern computer, a structure that consumes all available memory to store

will typically converge within a few seconds.

†We cannot generate A−1 in linear time or memory; it is not sparse.
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One oft-used ρ(V) is that given by the Thomas-Fermi approximation[32].

Essentially, the charge density at any point is the same as it would be in an infinite

semiconductor subject to the same chemical potential µ. This approximation

does not include any consideration of confinement energy, but is quite good if

the potential variation is smooth on the scale of the Fermi wavelength. In this

approximation, in a single band 3D semiconductor with a conduction band edge

Ec, an effective mass m∗, and with E = eV

ρ = Θ(E− Ec)e
(2m∗(E− Ec))

3/2

3π2 (C.6)

where Θ(x) is the Heaviside step function.

Using this approximation, with a position dependent value of Ec and m∗, we

can easily simulate 1D semiconductor heterostructures. However, the heterostruc-

tures of interest for us have quantum wells in them, where we know the confine-

ment energy is of utmost importance. In the Thomas-Fermi approximation, we

not only overestimate the charge density substantially due to the neglect of the

bound state energy relative to the band edge, but we will tend to move all of

the charge density to the edges of the well where the electric field is strongest

(Figure C-1). In this region, we will need to solve the coupled Schrödinger-

Poisson equations. For all of our simulation work, the only accounting we

make of many-body effects in to use a self-consistent electrostatic potential when

modeling our structures; no exchange or correlation effects are included. Much

like the Poisson equation, when the Schrödinger equation is rewritten as finite-

difference equations, the Schrödinger equation is band tridiagonal[104]. In fact,

with an appropriate choice of unitary transformation, it can be made symmetric

tridiagonal. There exist a large number of efficient eigenvector and eigenvalue

solvers for matrices of this form[41, 106].

We will partition our problem into the region inside of the quantum well,

where we know solving Schrödinger’s equation is crucial, and the region outside

where the Thomas-Fermi approximation may be appropriate. We will begin by
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Figure C-1: Different approximations to ρ(z) inside the quantum well: a) The
quantum well simulated in the Thomas-Fermi approximation. b) The quantum
well simulated using the coupled Schrödinger and Poisson equations, with the
leads simulated using the Thomas-Fermi approximation.

finding a trial solution using the Thomas-Fermi approximation everywhere. We

will then continue iterating using the Schrödinger equation in the well. After each

iteration where we have generated a trial potential ~Vi, we will solve for the set of

N, where N is the number of zi inside of the quantum well, eigenvalues λj and

eigenvectors Ψj(zi) that solve Schrödinger’s equation inside of the quantum well.

We can then evaluate the charge density in this region as

ρ(zi) = e
N

∑
j=0

∣∣Ψj(zi)
∣∣2 N2d(Efermi − λj) (C.7)

N2d(E) =
m∗E
πh̄2 Θ(E) (C.8)

We will once again linearize the nonlinear part of the charge density. We will

neglect the off diagonal coupling of the potential at one point in the structure to

another, and using first order perturbation theory,

∂ρ

∂Vi
= e

N

∑
j=0

∣∣Ψj(zi)
∣∣2 N2d(Efermi − λj − δE) (C.9)
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Figure C-2: The first two bound states of a simple quantum well: Only the
lowest bound state is occupied.

δE = e
∣∣Ψj(zi)

∣∣2 (C.10)

Once again, convergence on iteration this process is fast for smooth densities of

states like those in Equation C.8.

As a handy side benefit, this procedure also yields the bound state eigen-

functions and eigenvalues (Figure C-2). These are useful both as a sanity check

and also in calculating tunneling rates through the structure when it is not at

equilibrium.

C.3 The Electrodes

On examining Figure C-2 with care, it becomes apparent that the Thomas-Fermi

approximation is causing some difficulties in the leads; at around 150 nm into

the structure, we see the edge of an electrode that has been enhanced somewhat
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by the electric field penetrating through the quantum well into it. In reality, we

know that the charge density will go to zero† at the edge of the tall AlGaAs

tunnel barrier; all of the wave functions in the electrode are forced to have a node

here. As shown in Figure C-3, this zero in the wavefunction forces the effective

edge of the electrode to be several nanometers away from the actual position of

the barrier. The Thomas-Fermi approximation does not capture this. For the

purposes of calculating our geometric lever arms and examining their variation

with applied voltage, we need the region very close to the tunneling and blocking

barrier to be accurately simulated.

Thus, we would like to solve the coupled Schrödinger-Poisson equations

in the electrodes, as well as the quantum well, in order to work around this

problem. The boundary condition at the edge of our simulation poses some

difficulty, however; the correct boundary condition, that the electrode “continues

on forever”, allows the wavefunction to take on any value at the last element in

the simulation. Because of this, the matrix representing the Schrödinger equation

will be singular; this reflects the fact that the real boundary condition allows an

infinite number of bound states.

On approach to this problem is to simulate the electrode as a very wide,

but finite quantum well. We will replace our continuous spectrum in the

electrode with a discrete one, but if we make the “electrode well” wide enough,

this spectrum will be densely packed and will closely resemble the continuous

spectrum. Similarly, our charge density will approach the true charge density. As

we lengthen the quantum well, we will slowly add longer and longer wavelength

eigenvectors to the simulation. In the case of the Thomas-Fermi approximation,

we had a solution that was accurate at large length scales and approximate at

short. In the case of using a finite well for an electrode, we will find solutions that

are accurate at short length scales, but which deviate at long wavelengths.

It is important not to put too much trust in the wavefunctions and detailed

†Actually, because the barrier is finite, the density will be small but finite here. See Chapter 9
for some analytic approaches to dealing with finite barriers.
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Figure C-3: Charge densities near AlGaAs barriers shown calculated near a
barrier where a depleting or enhancing electric field has been applied, using
either the Thomas-Fermi approximation or the full coupled Schrödinger-Poisson
equations. The doping in these simulations extends all the way up to the barriers.
A low donor density (1× 1017cm−3) emphasizes the importance of kinetic energy
in the screening.
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screening that come out of using wide quantum wells for the electrodes; the real

quantum well has densely packed donors that act as scattering centers, while

in our simulations we have a uniform charge density background. However, if

our simulations can capture the zero in the charge density at the edge of the

electrodes and the way the electrons nearest to the barriers move in response to

small applied voltages, it will vastly improve the accuracy of our calculated lever

arms. We typically use quantum wells 500-1000 nm thick in our calculations.

Given that our top electrode is actually only 1000 nm thick, and the scattering

length in our electrodes is on the order of 10 nm, these numbers seem more than

adequate. Halving or doubling the widths of the electrodes does not change our

results significantly.

Simulating these enormous quantum wells poses some numeric difficulties. In

order to model accurately the region near the barrier where the potential is chang-

ing rapidly, we need to use closely spaced lattice points; typical values range from

0.1 Å to 1 Å. If we extend this across our entire electrode, we will have around 105

lattice points in the electrode region, and thus 105 eigenvalues and eigenvectors.

Each eigenvector has 105 elements, for a totally memory consumption of 1010

floating point numbers, requiring around 80 GB of storage. Calculating this full

set of eigenvalues and eigenvectors would cause our modeling code to crawly to

a halt. It is perhaps in light of this consideration that 1dpoisson limits itself to a

few thousand lattice points in its Schrödinger regions.

One approach would be to use a carefully chosen non-uniform lattice, with

tightly packed points near the barriers and more widely spaced points in the bulk

of the electrode. This seems overly complicated, would require careful tuning, and

would inevitably carry with it some loss of precision. A more fruitful approach

is to realize that, while there are hundreds of thousands of eigenvectors, we only

care about the ones corresponding to occupied eigenstates, whose energies are

below the Fermi energy. Typically, there will be a few hundred of these, reducing

our CPU time and memory consumption by a factor of one thousand.

We use bisection of the secular equation [106, Chapter 8] to bracket all of the
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Figure C-4: A fully self-consistent quantum well modeled using the coupled
Schrödinger-Poisson equations. The 3D electrodes extend 500 nm off the edges
of the plot. A low donor density (1× 1017cm−3) emphasizes the importance of
kinetic energy in the screening. There are no spacers in this structure; the donors
extend right up to the edges in the AlGaAs barriers

eigenvalues below the Fermi energy, then use Brent’s method[41, Section 9.3] to

find the eigenvalue within each bracketed region. Once we have the eigenvalues,

we can use inverse iteration[41, Section 11.7] to find the eigenvectors, once again

using Crout reduction to solve the matrix equations. The net effect of this work

is that, for an n element lattice, we can find each eigenvalue and eigenvector

in O(n) time. This allows us to rapidly model large structures without using

the Thomas-Fermi approximation. For an example of such a simulation, see

Figure C-4. This capability is one of the key features that separates our simulation

code from 1dpoisson.
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C.4 Non-equilibrium Structures

The simulation techniques we have discussed are only appropriate for equilibrium

structures; we have not included any of the physics or techniques necessary to

deal with current flows or non-thermal carrier distributions. Even when our

structure is simply under a constant DC bias, it is not at equilibrium. Fortunately,

because the blocking barrier is very thick, we can neglect current flow through

the structure, and just treat it as two isolated, equilibrium systems that interact

through the Poisson equation. In order to do this, we allow different Fermi

energies in different parts of the structure, and offset our density functions by

the Fermi energy at each point in the structure. Because the resistance of the

tunnel barrier is negligible compared to that of the blocking barrier, we treat the

quantum well as being at equilibrium with the tunnel electrode when the device

is only under DC bias; see Figure C-5.

In order to accurately model the lever arm as a function of pulse height, we

need to model the structure in the moments immediately after a pulse has been

applied, but before any charge has tunneled. In order to simplify our modeling,

we assume that enough time has elapsed after the application of the pulse for

charge to flow in through the electrodes. This is true if the time after the pulse

is much greater than RCsample, where R is the sum of the impedances of the

signal source, the ohmic contacts, and any bulk material the current must flow

through, and Csample is the geometric capacitance of the sample. As long as the

ohmic contacts are of high quality, R is dominated by the 50 Ω impedance of our

signal source, and this time scale is a few hundred picoseconds. As we begin

our actual measurements after several nanoseconds have elapsed, this is a good

approximation. We also assume that the electrons in the quantum well remain in

the ground state of the quantum well during the application of the pulse. Because

our rise time is much longer than the period of Rabi oscillations between the first

and second excited state of the quantum well, we expect the application of our

pulse to adiabatically move the electrons across the well, not to excite transitions
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Figure C-5: Simulations of non-equilibrium structures modeled using a position
dependent Fermi energy. a): A simulation of PF061998-1 at zero bias. b): The
structure of a, simulated with 100 mV DC bias applied, increasing the charge
density in the quantum well. c): The structure of a, with 100 mV of DC bias
applied, simulated immediately after the application of a 50 mV injecting pulse.
d): As c, but with an ejecting instead of injecting pulse.
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to excited states in the quantum well.

Given these assumptions, both the electrodes and the quantum well will be

in equilibrium states before we perform our measurement, but will be disequili-

brated with each other. Much as with the DC bias, we can simulate the electrodes

by setting their Fermi energies to reflect the voltage (AC + DC) applied. Setting

the Fermi energy in the quantum well requires some care. We could simply

use a geometric lever arm calculated from the geometry of the structure, but we

are interested in using this model to extract accurate estimates of the lever arm

and its dependence on the response of the structure to pulses, so this would be

circular. Instead, we first simulate the structure with only the DC bias applied

(Figure C-5b). We calculate the total charge in the quantum well with this DC

bias. Then, we set the Fermi energies of the two electrodes appropriately for the

sum of the AC pulse height and DC bias applied. We allow the Fermi energy

in the quantum well to float, updating it in each iteration of the simulation to

keep the charge density in the quantum well fixed. It is important for good

convergence to remove the linearized dependence of the charge density on the

electrostatic potential from the update equation Equation C.5 in the quantum

well region; because we are allowing the chemical potential to float, ∂ρ
∂V = 0.

Approaching the simulation of the structure immediately after the pulse is

applied in this fashion allows us to realistically take into account the change in

the shape of the bound state of the quantum well in response to the AC pulse.

We can also easily extract the lever arm using the difference between the Fermi

energy of the tunnel electrode and that of the quantum well. The ability to hold

the charge density in a region fixed rather than the Fermi energy is another of the

features that distinguishes our code from 1dpoisson.

Detailed plots of lever arms extracted in this fashion can be found in Figure 12-5.
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C.5 Equilibrium Capacitance Measurements

A slightly specialized use of the ability to calculate the response of a structure

after a pulse is applied but before any charge has tunneled is to calculate the

expected response of the structure to equilibrium AC capacitance measurements.

These calculations were key to understanding the errors inherent in extracting the

quantum well density from capacitance measurements in Chapter 11.

We are now interested in the measured capacitance of our structure, ∂Q
∂V , both

at low frequencies where the quantum well and tunnel electrode have time to

fully relax, and at high frequencies where no charge has time to tunnel out of the

quantum well. Because our structure has to remain charge neutral, we know that

at all times the sum of the charges on the isolated electrode, the tunnel electrode,

and the quantum well will be zero. The charge that accumulates on the isolated

electrode comes from one lead of our device, while that in the quantum well and

on the tunnel electrode comes from the other. Thus, we could calculate Q above by

considering either the charge on the isolated electrode or the sum of the charges

on the tunnel electrode and quantum well; for convenience, we typically do the

former.

In order to extract the low frequency capacitance, we simulate the structure at a

variety of closely spaced DC biases Vi, and find the charge density on the isolated

electrode for each DC bias Qi. We then calculate the low frequency capacitance at

Vi as

CDC|Vi
=

Qi+1 −Qi

Vi+1 −Vi
(C.11)

In order to extract the high frequency capacitance, for each of the DC biases we

simulate applying a very small pulse δV, typically 1 µV, as described above, and

find the new total charge on the isolated electrode Q′i. We then simply compute

the high frequency capacitance as

CAC|Vi
=

Q′i −Qi

δV
(C.12)
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Plots of typical simulated capacitances are shown in Figure 11-6

These simple simulations calculations allow us to find equilibrium capacitance

values that reflect all of the physics of the structure, including the motional

capacitance terms arising from the depletion of the electrodes, the polarization

of the quantum well, and the depletion region near the AlGaAs barriers resulting

from finite screening wavelengths.

C.6 Non-uniform Densities of States

In order to provide contrast in our equilibrium capacitance calculations, we need

to use a non-uniform density of states in our quantum well. This will also be

useful in examining the importance of the screening of the quantum well in

examining the variability of the lever arm.

To first order, we can simply substitute any function we desire for ρ(V). For

our density of states when a magnetic field is applied, we use a superposition of

Lorentzians for ∂ρ(V)
∂V , and thus a sum of arcsin functions for ρ(V). Unfortunately,

the rapid fluctuations this causes in ∂ρ(V)
∂V slows or entirely prevents convergence

of our coupled simulation.

To overcome this, we use a fairly brute-force approach. We monitor conver-

gence of our simulation, and if we find it is converging slowly, or not at all, we

add a damping factor to our Newton’s method update of the charge density. That

is, after we have used ~Vi to find ~Vi+1, we replace the calculated value of ~Vi+1 by

γ~Vi + (1− γ) ~Vi+1, where γ is a damping factor 0 ≤ γ ≤ 1. We slowly increase

γ until the convergence improves, then reduce it again. With this addition, our

simulations converge well. For our high field simulations, we typically use this

Landau DOS in the quantum well, but a flat density of states in the electrodes.

This greatly speeds the simulations (calculating arcsin(V) is slow, even aside from

convergence issues), and can be physically motivated by the short scattering times

in the 3D (Section 10.2).

It would be interesting to perform simulations that include a simple model of

231



exchange like that used in Chapter 5. However, at present we are not able to deal

with negative compressibility; it results in a function ρ(V) that is double valued.

It should be possible to, similar to Section 5.5, use a “fake capacitance” term to

make ρ(V) single valued, and add a term that updates the chemical potential in

the simulation to remove this fake capacitance from the final results. This is left

for future work.

C.7 Calculating tunneling currents

In addition to calculate equilibrium properties of the quantum well, it is interest-

ing to calculate the expected tunnel current through the barrier as a function of

applied bias and pulse height. Because we have access to the wavefunctions in the

quantum well and in the 3D electrodes, it is simple to apply the transfer matrix

formalism discussed in Section 10.3. Our simulation code allows the regions in

which we solve Schrödinger’s equation to overlap inside of the tunnel barrier.†

The option to solve Schrödinger’s equation in multiple, overlapping regions is a

third difference between our code and 1dpoisson.

Once we have done this, we need to deal with the fact that our electrodes are

finite, and so the wavefunctions we have there do not reflect a true continuum.

In general, we will not find a wavefunction in the electrode with the same energy

as the bound state we are considering in the quantum well. To overcome this,

we linearly interpolate ψ and ψ′, evaluated at the barrier, between the two bound

states closest in energy in the electrode. This should work well as long as the

eigenfunctions in the electrode vary smoothly with energy; if we had a super-

lattice tunnel barrier creating wide fluctuations in the penetration with energy,

this would not work well‡. We then compute the density of states in the 3D

†This means we have an over-complete basis inside of the tunnel barrier. This is a requirement
for using the transfer matrix formalism, which uses the non-orthogonality of the wavefunctions
for calculating transition rates

‡Typically, the super-lattice barriers we use have a lattice constant of 11 Å. At the energies we
are interested in, this is much shorter than the wavelength of our electrons, and we will not see
such oscillations
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as the reciprocal of the energy spacing between these bound states. In order to

avoid jumps in the tunnel current as we pass from one bound state in the 3D to

another, we linearly interpolate the 3D density of states using the three bound

states nearest in energy.

Examples of computed tunneling I-V spectra can be found in Figure 12-5 and

Figure 8-5.

C.8 Summary

We have developed simulation code, similar to Snider’s 1dpoisson, able to solve

the coupled Schrödinger-Poisson equations in our structures. Our code is able

to simulate non-equilibrium structures, providing facilities convenient for the

calculations that arise in simulating the response of tunnel capacitors to sudden

pulses. We include the ability to solve Schrödinger’s equation over large regions,

allowing us to include realistic screening in our device electrodes, and to calculate

tunnel currents using the transfer matrix formalism.
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Appendix D

Fabrication

This chapter is organized in two parts; first, we describe in general terms the

steps in preparing one of our electron or hole doped samples. Then, we describe

in detail the individual fabrication steps used in the first part.

We use both clear field and dark field versions of two masks in our fabrication

of the mesa-isolated tunnel capacitors; a small area is diagrammed in Figure D-1,

along with a photo of a small section of the mask. The labels in Figure D-1 will

be used to refer to the different mask sections.

D.1 Electron doped samples

Remove Gallium Remove the gallium on the back of the sample.

This can be done by mechanical abrasion with a lapping machine.

Alternatively, the sample can be mounted with the front surface against a

glass slide using PMMA or mounting wax, and the gallium can be removed

using a 20% hydrochloric acid solution. This will etch GaAs as well as

gallium, so it is important that the entire front surface of the sample be

covered.

Backside Metallization The wafer used in the electron doped samples is degen-

erately doped all the way through, so the contact to the tunneling electrode
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a) Small
Clear Field

b) Large
Clear Field

150 µm 170 µm

c) Small
Dark Field

d) Large
Dark Field

170 µm150 µm

100 µm

e)

Figure D-1: Masks used in our fabrication processes. One mask has a clear field
(a-b), while the other has a dark field (c-d); they are otherwise identical. Each
has an array with a variety of different sizes of circles, as exemplified by a single
150 µm circle in a. The entire array is repeated with 20 µm larger diameter circles
in a different section of the mask, as exemplified by the single 170µm circle in b.
e) shows a photomicrograph of a small section of the actual mask, showing the
pattern of different sized circles. We typically only use the smallest circles.
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is made through the back side of the wafer. Mount, clean, and deposit metal

on the back side of the wafer as described in subsection D.3.2, but do not

yet anneal the sample. There will be a single anneal for all of the contacts at

the end of the processing.

Mesa Definition Using the small, clear field mask and negative (Futurex) resist,

define the mesa pattern as described in Section D.6.

Mesa Metallization Evaporate the top side contact, as described in subsection D.3.2.

It may be useful to include an additional TiAu overcoat to ease bonding to

the sample. Lift-off (Section D.8) the metal and anneal.

Mesa Isolation Etch Etch for 45 seconds (adjust, as appropriate, for the well

depth), using 1:10 30% H2O2 :0.1N NaOH; see Section D.4.

Profile Using a profilimeter, check the etch depth to ensure it isolates the quan-

tum wells from each other. Etch for longer, as needed.

Back-side contact Using H20E silver epoxy, glue the sample to a piece of GaAs

that has been completely coated with Ti-Au. This will allow wire bonds to

reach the back side contact. Be sure to stir the epoxy thoroughly before use.

D.2 Hole doped samples

The wafer used for the carbon doped samples is semi-insulating, so both contacts

to the tunnel capacitor need to be made through the front side of the sample.

The current to the “back side” of the mesas will be carried through a thin (∼

1 µm) degenerately doped layer. Because this current flow is perpendicular to the

applied magnetic field, care must be taken to reduce the distance the carriers must

travel, in order to minimize the series resistance caused by this layer. We will use

the entire sample away from the mesas to form our “back” contact, minimizing

this distance.
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We will take advantage of the undercut of the Futurex to provide a thin gap

between the metallization at the bottom of the mesas and the mesa wall, and use

the difference between the “large” and “small” masks to create a thin gap between

the edge of the mesa and the top metallization; see Figure D-2. Extreme care is

needed in alignment.

Remove Gallium Remove the gallium on the back of the sample.

This can be done by mechanical abrasion with a lapping machine.

Alternatively, the sample can be mounted with the front surface against a

glass slide using PMMA or mounting wax, and the gallium can be removed

using a 20% hydrochloric acid solution. This will etch GaAs as well as

gallium, so it is important that the entire front surface of the sample be

covered.

Top Contact Definition Using the small, clear field mask (Figure D-1a) and

negative (Futurex) resist, define the top contact pattern as described in

Section D.6; see Figure D-2b.

Top Contact (Mesa) Metallization Evaporate the top side contact, as described

in subsection D.3.2, but do not anneal yet. It may be useful to include an

additional TiAu overcoat to ease bonding to the sample. Lift-off (Section D.8)

the metal. See Figure D-2c.

Mesa Definition Use the large, dark field mask (Figure D-1d) and negative

photoresist to define the bottom contact pattern (Section D.6). Although

good alignment to the top contact mask will give a high yield, the process is

somewhat forgiving. If a small misalignment causes the resist undercut to

touch the top contact metallization, the top contact metallization will act as

a second mask, preventing most shorts.

The undercut provides the separation between the foot of the mesa and the

bottom metallization (see Figure D-2d-f). In order to get a good separation

between the foot of the mesa and the bottom contact, it is desirable to have a
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10 µm

Top Contact

a)

b)

c)

d)

e)

f)

“Back” Contact Mesa Edge Top Contact

1st  LithographyResist
Substrate

1st MetallizationResist
Substrate

Ohmic Contact

2nd Lithography
Substrate

Resist

Wet Etch
Substrate

Resist

2nd Metallization
Substrate

Resist

Top View

Side View

Figure D-2: Hole doped sample fabrication; showing a) a micrograph of the edge
of a mesa in a completed sample. b) the sample after the first lithography step.
c) the structure after the first ohmic contact metallization. Although the resist
has been removed at this point as part of lift-off, it is still shown for illustrative
purposes. d) the structure after the second lithography step. e) The structure
after the mesa isolation etch. f) The structure after the final metallization; as with
c, the resist is shown for illustrative purposes only.
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large undercut in this step. Spinning the resist at 4k RPM instead of 5k will

increase the undercut, as will reducing the exposure time to 45 seconds.

Profile In order to accurately measure the mesa etch depth, it is necessary to

measure the thickness of the photoresist before starting the etch.

Mesa Isolation Etch Etch for 45 seconds (adjust, as appropriate, for the well

depth), using 1:10 30% H2O2 :0.1N NaOH; see Section D.4.

Profile Using a profilimeter, check the etch depth to ensure it isolates the quan-

tum wells from each other. Etch for longer, as needed.

Bottom Contact Metallization Evaporate the “bottom” contact, as described in

subsection D.3.2, lift-off, and anneal.

D.3 Ohmic Contacts to GaAs

Because the high density surface states in GaAs lie in the center of its band-gap,

making low-resistance ohmic contacts to GaAs can be nontrivial. A wide variety

of recipes exists in the literature[107, 108]. Here we summarize the three that we

most commonly use in our devices.

D.3.1 n-GaAs: Ni-Au-Ge Contacts

Nickel gold germanium contacts to GaAs are reliable, simple, and provide a low

contact resistance. However, the gold in the metallization tends to form Gold-

gallium alloyed spikes deep (several microns) into the substrate[109, 110]. If

these spikes penetrate our tunnel capacitors, they will short them. Thus, use

of NiAuGe contacts on the top of the mesas in our devices gives low yields and

leaky capacitors. They are acceptable for use in the bottom contact, although in

practice we normally use Pd-Ge (subsection D.3.2) contacts on both the top and

bottom of the device for consistency.
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Mount Place a small drop of 5% PMMA on a glass slide. Dip the bottom of the

sample in the PMMA droplet and then place it on a different part of the

slide. Bake the slide on a hot plate for approximately one minute, until the

original drop of PMMA has dried. It may be useful to cut the glass slide

before doing this so it fits conveniently into small beakers.

Surface Clean Clean the sample surface by dipping in 1:10 HCl:Water by volume,

then rinsing in water. This will remove the surface oxide from the GaAs. The

oxide will reform in a matter of minutes; it is important to quickly move the

sample into the evaporator after this step. (A 5% Ammonia solution also

works well for cleaning and oxide removal).

Metallization

Material Thickness

Ni 5 nm

Ge 35 nm

Au 70 nm

Ti 5 nm

Au 200 nm

If the contact is patterned, lift-off (Section D.8) should be performed at this

point.

Anneal All of our ohmic contacts are annealed using a rapid thermal annealer.

We anneal in a constant flow of forming gas (95% N2 5%H2).

Action Temperature Time

Ramp 200◦ Celsius 30 seconds

Hold 200◦ Celsius 30 seconds

Ramp 415◦ Celsius 22 seconds

Ramp 435◦ Celsius 12 seconds

Hold 435◦ Celsius 1 minute

Cool Room Temperature
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The Ge-Au layer forms a eutectic mixture, melting during the annealing

process. The exact thicknesses of these layers can be modified more or less at

will, as long as the gold is maintained as 88% of the total structure by weight

(this corresponds to a 2:1 ratio of gold to germanium by thickness). Because this

layer actually becomes liquid during annealing, gold-germanium contacts tend to

spread and move slightly. This can be a problem if the contact is at the top of

a mesa; the motion can cause it to short to the substrate. If used in this context

(which is not recommended due to spiking), the anneal step should be performed

before the mesa isolation so that, if the contact flows, it will mask the GaAs below

it and make the mesa slightly larger instead of shorting.

The top Ti-Au layer is to ease wire bonding; the Ti layer prevents the top gold

layer from interfering in the contact chemistry. It can be omitted if wire bonding is

not necessary, and the gold can be made thicker or thinner at the user’s discretion.

D.3.2 n-GaAs: Pd-Ge-Au Contacts

Pd-Ge-Au[111] and Pd-Ge[112, 113] contacts are sintered rather than alloyed.

This solid-phase reaction gives much smoother contacts than Au-Ge, and in the

absence of gold, the Au-Ge spikes do not form. Because of this, the Pd-Ge

contact is shallow, confined to within approximately 200 Å of the surface of the

GaAs[114]. Use of Pd-Ge contacts virtually eliminates shorted devices in our

structures.

Mount Place a small drop of 5% PMMA on a glass slide. Dip the bottom of the

sample in the PMMA droplet and then place it on a different part of the

slide. Bake the slide on a hot plate for approximately one minute, until the

original drop of PMMA has dried. It may be useful to cut the glass slide

before doing this so it fits conveniently into small beakers.

Surface Clean Clean the sample surface by dipping in 1:10 HCl:Water by volume,

then rinsing in water. This will remove the surface oxide from the GaAs. The

oxide will reform in a matter of minutes; it is important to quickly move the
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sample into the evaporator after this step. (A 5% Ammonia solution also

works well for cleaning and oxide removal).

Metallization

Material Thickness

Pd 30 nm

Ge 40 nm

Au 100 nm

The thickness of the Pd-Ge layer can be varied as long as the stoichiometry

is kept fix. The thickness of the Au layer can be varied as needed to make

bonding easy; it does not participate in the contact geometry.

If the contact is patterned, lift-off (Section D.8) should be performed at this

point.

Anneal All of our ohmic contacts are annealed using a rapid thermal annealer.

We anneal in a constant flow of forming gas (95% N2 5%H2).

Action Temperature Time

Ramp 260◦ Celsius 60 seconds

Hold 260◦ Celsius 7 minutes

Ramp 425◦ Celsius 35 seconds

Hold 425◦ Celsius 30 seconds

Cool Room Temperature

D.3.3 p-GaAs: Au-Zn-Au Contacts

Zinc based ohmic contacts[115] to p type GaAs are reliable and safe. Beryllium

gold contacts are also common, but suffer from some safety concerns. The first

gold layer in this contact is essential as an adhesion layer; removing it will result

in non-uniform contacts with high resistances. The second gold layer completes

the contact, but also serves to “seal in” the zinc in the evaporator. Because zinc

has a high vapor pressure at even moderate temperatures, this step is essential in
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keeping the base pressure of the system low, and in preventing zinc from being

mixed into future depositions.

Mount Place a small drop of 5% PMMA on a glass slide. Dip the bottom of the

sample in the PMMA droplet and then place it on a different part of the

slide. Bake the slide on a hot plate for approximately one minute, until the

original drop of PMMA has dried. It may be useful to cut the glass slide

before doing this so it fits conveniently into small beakers.

Surface Clean Clean the sample surface by dipping in 1:10 HCl:Water by volume,

then rinsing in water. This will remove the surface oxide from the GaAs. The

oxide will reform in a matter of minutes; it is important to quickly move the

sample into the evaporator after this step. (A 5% Ammonia solution also

works well for cleaning).

Metallization

Material Thickness

Au 30 nm

Zn 100 nm

Au 200 nm

The thickness of the Zn and Au layers can be varied substantially without

regard to stoichiometry without noticeably changing the quality of the

contacts. A Ti-Au overcoat can make bonding to this contact easier.

If the contact is patterned, lift-off (Section D.8) should be performed at this

point.

Anneal All of our ohmic contacts are annealed using a rapid thermal annealer.

We anneal in a constant flow of forming gas (95% N2 5%H2).
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Action Temperature Time

Ramp 200◦ Celsius 30 seconds

Hold 200◦ Celsius 30 seconds

Ramp 415◦ Celsius 22 seconds

Ramp 435◦ Celsius 12 seconds

Hold 435◦ Celsius 2 minutes

Cool Room Temperature

D.4 Wet Etching of GaAs

Just as with ohmic contacts, a wide variety of etchants are described in the

literature[116].

GaAs is amphoteric, and can be etched by both acids and bases. In general, any

mixture of an oxidizing agent and an acid or base will etch GaAs at a substantial

rate. There is substantial variation of the etch rate with both Al mole fraction in

AlxGa1−xAs, and with crystallographic axis[107].

For mesa isolation etches, we typically want a very fast etch without much

selectivity; highly selective etches complicate matters when trying to etch through

the AlGaAs layers in our heterostructures. We commonly use two different

etchants. A citric acid based has the advantage that its etch rate and selectivity can

be tuned by varying the concentration of the hydrogen peroxide in it. A sodium

hydroxide based etch seems more reliable on Carbon doped samples, and less

sensitive to “dirt” on the sample surface (possibly it acts as a surfactant as well

as an etch). However, it typically does not give a flat bottom, but rather leaves a

valley that bows upwards in the center.

The etchant should be agitated with a stir bar for etches longer than a few

seconds; this guarantees that the etch rate will not drop with time as the etchant

near the substrate is consumed. It can be helpful to mount the sample on a large

glass slide using mounting wax or PMMA to prevent it from being spun around

the dish by the stir bar.
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Citric Acid and Hydrogen Peroxide[117, 118] This is a selective etch; it removes

∼200 nm/minute GaAs, 20 nm/minute Al0.3Ga0.7As

10 parts 50% by weight citric acid solution

1 part 30% Hydrogen Peroxide

Sodium Hydroxide and Hydrogen Peroxide[107, 119]

This etch is relatively non-selective, and works at about 400 nm/minute.

1 part 1 Molar Sodium Hydroxide

1 part 30% Hydrogen Peroxide

10 parts Water

D.5 Photolithography

We use both positive and negative resists in our lithography. In general, the

undercut provided by the negative resists gives better performance in lift-off,

while swelling features when used in subtractive processes. Positive resists, on

the other hand, tend to be hard to use for lift-off, but give good feature control

for etching.

D.6 Negative Resist

We use Futurex’s NR7-1000PY negative resist (“Futurex”).

Preparation Preheat a hot plate to 100◦ Celsius , and turn on the mask aligner.

Allow the aligner to warm up for at least 10 minutes before using.

Surface Clean If there are visible particles on the surface of the sample, ultra-

sound in a 2% µ90 solution for 30 seconds, followed by a rinse in DI water.

If humidity is high, pre-bake the sample on a 100◦ Celsius hot plate to

remove any moisture from the surface.
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Place the sample on the spinner chuck, and start the spinner. From squirt

bottles, spray the bottle with a steady stream of acetone for approximately

5 seconds, followed by 1 second of simultaneous acetone and isopropanol,

followed by 5 seconds of isopropanol. Allow the sample to spin until dry.

Spin With the sample stationary, apply a small drop of Futurex NR7-1000PY with

a clean dropper. There is no need to coat the entire surface of the sample.

Spin at 5000 RPM for 1 minute. (For thick metallizations, it may be useful

to spin at a lower speed. For thin metallizations, a higher spin speed may

be useful for fine features. Exposure and development times will have to be

adjusted accordingly.)

First Bake Immediately remove the sample and place it directly on the 100◦

Celsius hot plate for 60 seconds. (For thick samples, or samples with a

rough back, this may not adequately bake the resist. If the sample sticks to

the mask in the next step, increase the time to 90 seconds.)

Exposure Remove the sample, align in the mask aligner, and expose for one

minute at an intensity of 5.5 mW cm−2†

Second Bake Bake the sample directly on the 100◦ Celsius hot plate for 60

seconds.

Develop Develop in Futurex RD6 for 15 seconds. If processing many samples,

refresh the developer frequently. Rinse in two separate beakers of DI water

for 15 seconds each.

Examine Examine the pattern in the Leitz microscope with the UV filter in

place. If the sample looks underdeveloped (resist still in unexposed regions),

develop longer. The undercut can be deepened by exposing the sample for

less time or, with slightly less effect, developing for longer. The undercut can

be decreased by exposing for longer, or, with slightly less effect, developing

†This number assumes the dose calibration on our aligner is accurate. There is no reason to
assume this. Exposure times will need to be adjusted accordingly.
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for a shorter period of time. Now is a good time to take a picture of the

patterning to help resolve issues later in processing.

D.7 Positive Resist

We use Shippley’s Microposit 1813 positive resist. This resist is slower to work

with than Futurex, so it is usually undesirable to use it unless Futurex’s undercut

is untenable.

Preparation Preheat an oven to 80◦ Celsius , and turn on the mask aligner. Allow

the aligner to warm up for at least 10 minutes before using.

Surface Clean If there are visible particles on the surface of the sample, ultra-

sound in a 2% µ90 solution for 30 seconds, followed by a rinse in DI water.

If humidity is high, pre-bake the sample on a 100◦ Celsius hot plate to

remove any moisture from the surface.

Place the sample on the spinner chuck, and start the spinner. From squirt

bottles, spray the bottle with a steady stream of acetone for approximately

5 seconds, followed by 1 second of simultaneous acetone and isopropanol,

followed by 5 seconds of isopropanol. Allow the sample to spin until dry.

Spin With the sample stationary, apply a small drop of Shippley 1813 with a

clean dropper. There is no need to coat the entire surface of the sample.

Spin at 4000 RPM for 1 minute. (For thick metallizations, it may be useful

to spin at a lower speed. For thin metallizations, a higher spin speed may

be useful for fine features. Exposure and development times will have to be

adjusted accordingly.)

Bake Bake in an oven at 80◦ Celsius for one hour.
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Exposure Remove the sample, align in the mask aligner, and expose for one

minute at an intensity of 5.5 mW cm−2†

Develop Develop in Shippley MF-319 for 45 seconds. If processing many sam-

ples, refresh the developer frequently. Rinse in two separate beakers of DI

water for 15 seconds each.

Examine Examine the pattern in the Leitz microscope with the UV filter in place.

If the sample looks underdeveloped (resist still in exposed regions), develop

longer in 15 second increments. If the patterning is too poor to use, flood

expose the entire sample by putting it in the aligner with no mask. It will

make removing the resist with acetone much easier.

D.8 Lift-Off

Pattern as described in Section D.5, ideally with a negative resist and good

undercut. Evaporate the desired material on the surface of the sample.

Soak the sample in acetone for at least 5 minutes, or as long as several hours.

Do not allow the sample to dry once it has been covered in acetone; it will

redeposit dissolved resist on the surface, making it very difficult to do any further

processing. If the metal does not readily lift off the surface of the sample, several

options are available. Covering the beaker with a watch glass and putting it on a

60 degree hot plate will speed removal of the resist. Alternatively, using a syringe

to strike the surface of the submerged sample with a jet of acetone will wash

away the metal. Placing the sample in a low powered ultrasonic bath for several

minutes can also help remove the metal. As a last result, a q-tip can be used to

gently remove remaining metal.

Transfer the sample from the acetone into a beaker full of isopropanol without

allowing it to dry. Gently agitate it in the beaker for several seconds to remove

the acetone and then blow dry with dry nitrogen.
†This number assumes the dose calibration on our aligner is accurate. There is no reason to

believe this. Exposure times will need to be adjusted accordingly.
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