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Abstract

This thesis concerns two classes of photonic crystal that differ from the
usual solid-state dielectric photonic crystals studied in optical physics.

The first class of unconventional photonic crystal consists of atoms bound
in an optical lattice. This is a “resonant photonic crystal”, in which an
underlying optical resonance modifies the usual band physics. I present a
three-dimensional quantum mechanical model of exciton polaritons which
describes this system. Amongst other things, the model explains the reason
for the resonant enhancement of the photonic bandgap, which turns out to be
related to the Purcell effect. An extension of this band theoretical approach
is then used to study dark-state polaritons in Λ-type atomic media.

The second class of unconventional photonic crystal consists of two di-
mensional photonic crystals that break time-reversal symmetry due to a
magneto-optic effect. The band theory for such systems involves topological
quantities known as “Chern numbers”, which give rise to the phenomenon
of disorder-immune one-way edge modes. I describe a system in which time-
reversal symmetry is broken strongly enough for experimental observation of
the one-way edge modes. In addition to numerical studies of this photonic
crystal, I develop an analytical effective theory, based on the symmetry of
the lattice, that accurately describes its bandstructure.
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Introduction

Since the pioneering work of John1, it has been recognized that systems with

optical properties that vary at optical length-scales—now known as photonic

crystals—possess remarkable properties that can be used to manipulate the

flow of light. The conventional theory of photonic crystals proceeds by ap-

plying Maxwell’s equations for the electromagnetic field to a “meta-material”

with an index of refraction that varies periodically in space. It is then shown

that these equations reduce to a Hermitian eigenproblem, analogous to the

Schrödinger equation with a periodic Hamiltonian2. Due to the partial break-

ing of continuous translational symmetry induced by the periodic variation

in the refractive index, the normal modes of the electromagnetic field are sep-

arated into discrete bands, similar to electronic bands in crystalline solids3.

At the length-scale of the lattice spacing, the optical dispersion can deviate

significantly from its character in bulk media, leading to diverse phenomena

such as photonic stop-bands (complete bandgaps): frequencies around which

no modes exist at any wave-vector4.

In this thesis, I will study two types of photonic crystal that deviate from
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12 INTRODUCTION

the conventional mold in interesting and quite different ways. The first con-

sists of cold atoms bound in an optical lattice5, within the “Mott insulator”

regime where atomic hopping between lattice sites is negligible6. Such sys-

tems have been intensively studied within the atomic physics community,

though not usually from the point of view, originally explored by Deutsch,

Spreeuw, Rolston, and Phillips7, which I will adopt: that they are a type of

“resonant photonic crystal” in which the lattice spacing falls near the wave-

length of an underlying resonance—in this case, the Rabi frequency of the

atoms. In such systems, the photonic bandgap, which is determined by the

lattice spacing, can be enhanced by matching the bandgap frequency to the

resonance frequency. (Resonant photonic crystals have also been realized in

other contexts, such as meta-materials made of polaritonic media8 or peri-

odic arrays of quantum dots9–11.) In Chapter 1, I will briefly review previous

analyses of the cold-atom system, which treat the electromagnetic field clas-

sically and the atoms as classical point dipoles7,12, and then present a simple

quantum mechanical model based on two-level atoms and a quantized elec-

tromagnetic field. In this model, the elementary excitations are polaritons:

coherent quantum superpositions of atomic excitations and photons. Like the

electromagnetic modes in conventional photonic crystals, the polaritons are

divided into bands. The model reproduces several key features of the classi-

cal models; in particular, the interaction between the lattice spacing and the

atomic resonance causes an enhancement of the polaritonic bandgap, and we

shall see how this process can be viewed as a generalization of Rabi splitting
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in a microcavity13. In Chapter 2, I will examine the polaritons arising from

Λ-type atoms, in which each atom possesses an additional metastable state.

Unlike two-level atoms, the optical properties of Λ-type atoms can be tuned

by the application of “control beams” resonant with the transition to the

metastable state14. As Fleischhauer and Lukin have shown, this leads to the

existence of a “dark-state polariton” whose dispersion properties are deter-

mined by the control beams15. I will present a derivation of the polaritonic

bandstructure in such systems.

The second type of photonic crystal that I will discuss is, like the con-

ventional photonic crystal, a classical solid-state device—but one that breaks

time-reversal symmetry. In ordinary dielectric media, time-reversal symme-

try is never violated: if we solve Maxwell’s equations to obtain the classical

field amplitudes for a given system, the complex conjugate of the solution is

an exact solution for the time-reversed system2. Time-reversal symmetry can

be broken by introducing magneto-optical materials, such as iron garnets;

such materials are employed in Faraday rotators, commonly-used devices

that reduce the backscattering of guided light by filtering out the reversed

optical modes. For several years, various authors have investigated using

magneto-optical materials in photonic crystals, for purposes such as enhanc-

ing the Faraday rotation effect. However, it was Haldane and Raghu who first

pointed out what I believe to be the most remarkable and unique consequence

of time-reversal symmetry-breaking in photonic crystals16,17: by drawing an

analogy between the quantum Hall system (a two-dimensional electronic fluid
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in the presence of a strong magnetic field18) and two-dimensional magneto-

optical photonic crystals, these authors predicted that properly-engineered

crystals can support “one-way edge modes” that lie within a photonic stop-

band and lack time-reversed companion modes. Like “chiral edge states”

in the quantum Hall effect, the existence of these edge modes is tied to the

topological properties of the time-reversal symmetry-broken bandstructure,

which cannot be altered affected by any perturbative distortion of the lattice

including the existence of (sufficiently weak) defects. In Chapter 3, I will

describe a gyromagnetic photonic crystal that provides an experimentally-

feasible system containing one-way edge modes, and present numerical sim-

ulations that demonstrate the robustness of these modes. In Chapter 4, I

investigate the bandstructure of this crystal in greater detail, by developing

an effective Hamiltonian that accurately describes the bands in the regime

where the symmetries of the crystal are weakly broken. Among other results,

the topological band properties, which are tied to the existence of one-way

edge modes, can be analytically determined within this theory.
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Chapter 1

Polaritons in a Point-dipole

Crystal

1.1 Exciton polaritons in optical lattices

The optical lattice is one of the most remarkable technologies to arise from

the field of atomic and optical physics during the last few decades5. When

interfering laser beams are applied to a system of cold atoms, the AC Stark

interaction between the atoms and the laser field induces a periodic structure

within the atomic system. At low laser intensities, the atoms exist in a su-

perfluid phase in which the number of atoms at each lattice site is ill-defined;

as the intensity increases, the superfluid undergoes a series of phase transi-

tions into Mott-insulator phases with an integral number (n = 1, 2, 3, · · · ) of

∗Y. D. Chong, D. E. Pritchard, and M. Soljačić, Phys. Rev. B 75, 235124 (2007).
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1.1. EXCITON POLARITONS IN OPTICAL LATTICES 17

atoms per site6. Such a transition was observed experimentally in 2002 by

Greiner et. al.19

Early in the development of optical lattices, Deutsch, Spreeuw, Rolston,

and Phillips7 pointed out that an optical lattice can be thought of as a kind

of photonic crystal, since the lattice spacing is one-half the laser wavelength

and thus (obviously) comparable to optical wavelengths. This led to the

following puzzle: in a photonic crystal, there is usually a photonic band gap

at wavevectors coinciding with the Brillouin zone boundary, due to Bragg

scattering. In an optical lattice, the applied laser beams fall exactly on

the Brillouin zone boundary, which seems to imply that the optical lattice

prohibits the propagation of the same light that supports its existence! As

we shall see, the situation can be resolved by noting that the optical lattice is

a special kind of photonic crystal—a “resonant photonic crystal”—in which

the underlying medium possesses an optically-active resonance. Typically,

resonant photonic crystals contain an additional band that meets the light

line at the Brillouin zone boundary. In the case of the optical lattice, the

resonance is simply the atomic transition through which the atoms interact

with the applied laser fields, and the laser fields are allowed to fill the lattice

because they fall exactly on this additional band. When the lattice spacing

is tuned to the resonance frequency, this additional band has vanishingly low

group velocity and occupies the middle of the photonic band gap.

Many authors have studied how optically-active resonances affect the elec-

tromagnetic modes in a lattice, beginning long before the invention of optical
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lattices. Originally, interest in the subject arose within the field of solid-state

physics. In 1958, Hopfield20 wrote a seminal paper that showed how Frenkel

excitons—the elementary electronic excitations in a tight-binding insulator—

are modified by the interaction between the atoms and the electromagnetic

field. Hopfield pointed out that when one considers the crystal and the elec-

tromagnetic field as a unified quantum system, the elementary excitations

are no longer simply Frenkel excitons and photons, but coherent mixtures

of the two, which he called exciton polaritons. The polaritons’ dispersion

relation has a non-trivial bandstructure, with a gap at the optical resonance

of the atoms. In subsequent sections, I will use the Hopfield theory as the

basis for modelling optical lattices.

The polariton concept survives into the classical limit, and many authors

have studied the problem in this regime, most notably Deutsche and Mead21,

and Mahan and Obermair22. Here, instead of modelling each atom as (say)

a two-level quantum system, one treats it as a localized classical dipole.

The excitation frequency of the Frenkel excitons is replaced by the natural

oscillation frequency of the classical dipoles, and the polaritons are normal

modes of the classical electromagnetic field, which can be obtained by solving

Maxwell’s equations.

Such an approach was taken by Deutsch et. al.7, in 1995, to investigate

the nature of the electromagnetic modes in an optical lattice. As mentioned

earlier, it was they who pointed out that an optical lattice is a type of pho-

tonic crystal. Previously, authors studying the point-dipole crystal implicitly
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assumed that the lattice spacing was much smaller than the wavelength of

the polaritons. For solid-state systems, this is a rather good assumption:

the atomic spacing is around 10−10 m, whereas polaritonic effects occur at

wavelengths corresponding to optical resonances, typically around 10−6 m.

(One could, in principle, study X-ray resonances, but this introduces addi-

tional effects, such as Compton scattering, that lie outside the scope of the

point-dipole model.) In optical lattices, as we have discussed, the two length

scales are in fact comparable, and Bragg scattering plays an important role.

Deutsch et. al. studied a simple model of a 1d optical lattice consisting

of an infinite periodic stack of polarizable planes. In this system, Maxwell’s

equations can solved using a transfer-matrix method, and they showed that

the electromagnetic modes are gapped at a frequency near the dipole res-

onance frequency and a wavelength of one-half the lattice spacing (i.e. the

edge of the first Brillouin zone, k = π/a). This band gap arises from a

combination of two effects: the presence of an optical resonance within the

planes (like the point-dipole crystal models discussed earlier), and Bragg

scattering (like an ordinary photonic crystal). They found that the center of

the band-gap contains an additional branch of longitudinal electromagnetic

modes with very low group velocity. These modes allow for the existence of

the laser fields that support the optical lattice.

A three-dimensional version of this calculation was performed by van Co-

evorden et. al.12 for the FCC lattice, using a higher-dimensional numerical

generalization of the transfer-matrix method. Just like the 1d case, there is
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a band gap at the resonance frequency and a low-velocity branch of longitu-

dinal modes within that gap. Similar phenomena have been encountered in

solid-state resonant photonic crystals, such as photonic crystals made from

polaritonic materials8 and multiple-quantum-well arrays9–11.

In this chapter, I will develop a simple 3d quantum mechanical model of

the optical lattice, starting with the Hopfield theory from which the exciton

polariton concept was originally born20. As we shall see, the “resonant pho-

tonic crystal” effects discovered by Deutsch et. al. survive into the quantum

mechanical regime. With quite resonable approximations, the properties of

the quantum mechanical polaritons can be obtained analytically. Many of

the features found in the classical system appear naturally, and with some-

what simpler interpretations. For instance, the enhancement of the photonic

bandgap in a tuned lattice is shown to be analogous to the well-known Purcell

effect (the enhancement of Rabi splitting in a microcavity). One intriguing

prediction of this model is the existence of a family of slow photonic modes

occupying the boundary of the first Brillouin zone.

1.2 General properties of exciton polaritons

Before going into details, however, let us try to deduce the features of the

polaritonic bandstructure based on general physical arguments.

First, imagine turning off the interaction between the dipoles and the elec-

tromagnetic field. The system now contains two independent elementary ex-
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Figure 1.1: Sketch of polaritonic dispersion relation for (a) detuned lattice
with no electromagnetic interaction, (b) detuned lattice with interaction,
(c) tuned lattice with no interaction, and (d) tuned lattice with interaction.
The exciton frequency is ω = ω0, and k = π/a is the boundary of the first
Brillouin zone.

citations: (i) free electromagnetic waves with dispersion relation ω = ck, and

(ii) free dipoles oscillations at the resonant frequency ω0. These dispersion

relations are sketched in Fig. 1.1(a) for a detuned lattice (ω0 6= cπ/a, where a

is the lattice spacing), and in Fig. 1.1(c) for a tuned lattice (ω0 = cπ/a). The

dipole dispersion relation terminates at the Brillouin zone boundary k = π/a,

which, as we shall see, corresponds to the fact that the dipoles form a discrete

lattice and not a continuum.

When we turn on the interaction between the dipoles and the electro-

magnetic field, the elementary excitations are polaritons, i.e. mixtures of

electromagnetic waves and dipole oscillations. For the detuned lattice, we

can guess what the polaritonic dispersion relation looks like: as shown in

Fig. 1.1(b), a polaritonic band gap ∆pol appears at ω = ω0, because the field-

dipole coupling is strongest when their frequencies match; and a photonic

band gap appears at k = π/a, where Bragg scattering is most pronounced.



22 CHAPTER 1. POLARITONS IN A POINT-DIPOLE CRYSTAL

The polariton dispersion relation naturally splits into three distinct bands

(more if you count higher Brillouin zone boundaries, which we’ll ignore).

When we tune the lattice, the two band gaps merge into a single gap, as

shown in Fig. 1.1(d). The mutual repulsion between the bands “squeezes”

the middle band, reducing its group velocity to zero. This is the family of

slow longitudinal modes seen by Deutsch et. al. and other authors.

The actual polaritonic bandstructure has certain other features that are

not so easy to deduce. For instance, we will see that the combined bandgap

in the tuned lattice is much larger than the sum of the detuned lattice’s

photonic and polaritonic bandgaps. Also, although the “squeezed” middle

branch of polaritons has vanishing group velocity, at k = π/a it consists

entirely of free electromagnetic waves, with no dipole oscillations. In higher

dimensions, these “Bragg resonant” modes generalize to a family of modes

occupying the entire boundary of the first Brillouin zone. The theory that I

will now present describes these effects quantitatively.

1.3 Model Hamiltonian

Consider N localized atoms of the same type in a 3d cubic lattice, at sites ~ri

with lattice period ℓ. The lattice is fully filled, with exactly one atom at each

site (i.e., an n = 1 Mott insulator). To facilitate calculation, we enclose the

lattice in a periodic electromagnetic cavity of volume V , which reproduces

the physical behavior inside a sufficiently large lattice. The Coulomb-gauge
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Hamiltonian is

H =
∑

i

Hi +
∑

~kσ

~c|~k| a†~kσ
a~kσ − e

mc

∑

i

~A(~ri) · ~pi. (1.1)

Here, Hi is the Hamiltonian for the valence electron on the i-th atom, and

~pi is its momentum operator. a†~kσ
and a~kσ are creation and annihilation

operators for photons with wavevector ~k and linear polarization σ. ~A(~r) is

the vector potential,

~A(~r) =
∑

~kσ

√

2π~c

V |~k|

(

a~kσ e
i~k·~r + a†~kσ

e−i~k·~r
)

ê~kσ, (1.2)

where ê~kσ is the unit polarization vector for a†~kσ
.

Let us suppose that the photon polarizations (two for each value of ~k)

excite orthogonal atomic states. If the number of excited atoms is much

smaller than N , the photon polarizations decouple, and we can drop the

σ label in (1.1), subject to the understanding that we are working with a

specific polarization for each ~k. This is consistent with the weak polarization

dependence obtained by van Coevorden et. al.12 In contrast, polarization

effects play an important role in solid-state resonant photonic crystals8–11,

due to the finite size of the scattering centers.

The atomic Hamiltonian now reduces to that of a two-level system,

Hi = ǫ b†ibi, (1.3)
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where ǫ is the energy difference between the atomic levels, and b†i ≡ |1〉〈0|i
and bi ≡|0〉〈1|i are the atomic level raising and lowering operators. We will

refer to the particle-like entities created by the atomic raising operator b†i as

Frenkel excitons, or simply as “excitons”.

Given that the electronic wavefunctions are typically much narrower than

the lattice spacing, we can treat the ~ri in (1.1) as numbers (perfect lattice

positions) rather than operators. At each site, the momentum operator is

~pi =
i

~
mǫ~x01(b

†
i − bi) , ~x01 ≡ 〈1|~x|0〉. (1.4)

Let us also define momentum-space exciton operators

b~q =
1√
N

∑

i

e−i~q·~ri bi

b†~q =
1√
N

∑

i

ei~q·~ri b†i ,

(1.5)

where the wavevectors ~q are restricted to the first Brillouin zone, correspond-

ing to the fact that an exciton has no physical meaning between lattice points.

The momentum-space exciton operators obey the following commutation

relations:

[b~q, b
†

~q′ ] = δ~q~q′ + O(M/N), (1.6)

where M is the number of excited atoms. We have already assumed that

M < N . Thus, the excitons can be approximately treated as bosons20.

(This is similar to the argument for treating spin waves as bosons.)
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Substituting (1.2)-(1.5) into (1.1), we obtain the microscopic polariton

Hamiltonian first derived by Hopfield20 in the context of crystalline solids:

H =
∑

~q

{

ǫ b†~q b~q +
∑

~g

~c |~q + ~g| a†
~q+~g

a~q+~g

−
∑

~g

i C~q+~g

[(

b†~q a~q+~g − a†
~q+~g

b~q

)

+
(

b†~q a
†

−(~q+~g)
− a−(~q+~g) b~q

)]

}

, (1.7)

where ~g’s run over all reciprocal lattice vectors, and

C~q+~g =

√

2παN

|~q + ~g| V ǫ x01, (1.8)

where α is the fine-structure constant.

The atom-photon interaction consists of two parts. The first part, on the

second line of (1.7), describes the lattice absorbing a photon with wavevec-

tor ~q + ~g to create an exciton with wavevector ~q, and the reverse process

of destroying an exciton to emit a photon. The remaining interaction terms

describe the creation and annihilation of associated pairs of photons and

excitons. The usual way to diagonalize (1.7) is to introduce polariton op-

erators α~q
20,23 for each reduced wavevector ~q, as linear combinations of b~q,

b†−~q, a~q+~g, and a†
−~q+~g

(for all ~g). Stipulating that these act as decoupled

lowering operators for H , one obtains the polariton energies as solutions of

a (2n+ 1) × (2n + 1) eigenvalue problem for each ~q, where n is the number
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of Brillouin zones included in the calculation. Higher Brillouin zones were

first included into the Hopfield theory by Knoester and Mukamel23 in their

calculation of polariton-mediated intermolecular forces in solids. There, the

photons in the higher Brillouin zones were taken to be decoupled from the

excitons, which was appropriate since the Brillouin zone energy was many

orders of magnitude larger than ǫ. In our system, the two energies are compa-

rable, and we must incorporate the interaction up to at least the second-order

zones.

It simplifies the calculations to drop the “counter-rotating” interaction

terms in (1.7) describing the creation and annihilation of pairs. This is phys-

ically justifiable even though the discarded terms have the same coupling

strength C~q+~g as the remaining interaction terms, because the pair creation

and annihilation process is a quantum mechanical fluctuation of the “vac-

uum” with a finite energy gap ǫ + ~c|~q|. For ǫ and ~c|~q| both on the order

of eV, and lattice periods at optical wavelengths, C~q ∼ 10−4 eV ≪ ǫ+ ~c|~q|.

Such fluctuations are thus extremely rare and have a negligible effect on parti-

cle energies. The interaction terms describing the conversion of a real photon

into an exciton, and vice versa, remain important: since the existing particle

possesses energy, these processes involve a much smaller energy fluctuation.

The approximation holds provided we look at values of |~q| comparable to

both ǫ/~c and the Brillouin zone energy, which is exactly the regime we are

interested in.

The Hamiltonian now decouples into N independent pieces, one for each
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reduced wavevector:

H =
∑

~q

H~q, (1.9)

where

H~q = ǫ b†~q b~q +
∑

~g

~c |~q + ~g| a†
~q+~g

a~q+~g

−
∑

~g

i C~q+~g

(

b†~q a~q+~g − a†
~q+~g

b~q

)

.

(1.10)

This says that each photon mixes with all other photons having wavevectors

that differ by a reciprocal lattice vector, as one expects of a Photonic Crys-

tal system. Here, the mixing is mediated by the atom-photon interaction.

Since (1.10) has the quadratic form
∑

ij β
†
iHijβj , it can be diagonalized as

∑

nEnα
†
nαn, where the α’s are boson operators defined by αn =

∑

j w
∗n
j βj ,

En is the nth eigenvalue of H, and wn is the corresponding eigenvector.

Therefore, we can obtain the polariton energies En
~q by including a finite

number of Brillouin zones in the sum and diagonalizing the associated ma-

trix.

1.4 Band structure

Fig. 1.2 shows the polariton dispersion curves along the [100] direction for

a blue-detuned optical lattice. The interaction opens up two energy gaps in

the polariton spectrum: an indirect “polaritonic gap” ∆pol at ǫ due to the

repulsion between the bare dispersion curves, and a photonic band gap ∆pbg
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Figure 1.2: Single-polariton dispersion for a 3d cubic lattice along [100]
in the extended zone scheme, with ǫ = 3 eV and three different cou-
pling strengths, associated with the parameters x01 = 0 (non-interacting),
1 Å (Cq ∼ 0.18meV), and 2 Å (Cq ∼ 0.35meV). The vertical dashed line in-
dicates the Brillouin zone boundary at |~q| = 1.00025 ǫ/~c. The graphs are
generated numerically from (1.10), summing over 125 Brillouin zones.

at ~c|~q| where ~q is the Brillouin zone boundary. We have also calculated

the density of polariton states; after integrating over all angles, we find that

the density of states is enhanced near the band edges, but remains nonzero

at all energies because the exact sizes and positions of the gaps vary with

angle. The system therefore does not possess a complete gap, essentially

because of the weakness of the electromagnetic interaction. The gap sizes

vary continuously as we change the lattice period a, and thus V (keeping N

and all other parameters constant). As shown in Fig. 1.3, the gaps meet and

become significantly enhanced when the Brillouin zone boundary intersects

the crossing point of the bare dispersion curves.

To understand the nature of the spectrum at the Brillouin zone boundary,
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consider a photon with wavevector ~k = ~q along one of the faces of the cube.

There is another such photon, with wavevector ~q + ~g
′
lying on the opposite

face, such that |~q| = |~q + ~g
′|. (When ~q lies on an edge or corner of the

Brillouin zone boundary, there are more partners; we will not consider these

cases, but they can be treated in a similar fashion.) The two photons mix

strongly since they have the same energy, so we can neglect the other photon

states and use the effective Hamiltonian

H̃~q =













b~q

a~q

a~q+~g′













† 











ǫ −iC~q −iC~q

iC~q ~c|~q| 0

iC~q 0 ~c|~q|

























b~q

a~q

a~q+~g′













. (1.11)

Thus, the polariton energies at the Brillouin zone boundary are

E0
~q = ~c|~q|,

E±
~q

=
ǫ+ ~c|~q|

2
±

√

(

ǫ− ~c|~q|
2

)2

+ 2C2
~q
.

(1.12)

These are exactly the energy levels resulting from Rabi splitting of a two-level

atom interacting with two counterpropagating photon states with wavevec-

tors ±~q, with an effective cavity size V/N . In the exactly-tuned case ǫ =

~c|~q|, E±
q

has a special significance: as shown in Fig. 1.3(b), these are the

upper and lower edges of the band gap. The resonant enhancement of the

band gap in this system is thus a manifestation of the Purcell effect13. In-

tuitively, we can imagine enclosing a single atom in a microcavity with the
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Figure 1.3: Single-polariton dispersion along [100], with ǫ = 3 eV, x01 = 2 Å,
and different lattice periods: (a) |~q| = 1.00025 ǫ/~c, and (b) |~q| = ǫ/~c.
Plots (c) and (d) show the corresponding overlaps of the polariton with the
bare exciton, 〈0| b~qα†

~q |0〉, for the polaritons on the dispersion curve leading

to the purely photonic state at ~q = ~q (indicated with arrows in (a) and (b)),
which have no atomic component.

dimensions of the unit cell; if the cavity walls are mirrors, the atom sees a

lattice of atoms similar to the one considered here.

We have checked (1.12) against numerical solutions of (1.10) including the

125 lowest Brillouin zones, for various values of ~q along the Brillouin zone

boundary up to 40◦ from the [100] direction. For ǫ = 3 eV and x01 = 2 Å, the

error is always less than 0.02 cm−1, three orders of magnitude smaller than

the maximum gap size.

The size of the gaps in the exactly-tuned limit can be estimated by sub-

stituting ǫ = ~c|~q′| into (1.12):

∆ ≈
√

2 C ′
ǫ/~c =

√

4αx2
01ǫ

4

π2(~c)2
. (1.13)
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For ǫ, ~c|~q| ≈ 3 eV, and x01 ≈ 2 Å, ∆/~c ≈ 25 cm−1 (∼ 10−4 ǫ), in agree-

ment with Fig. 1.3(b). We can also obtain limiting expressions for the

gaps when they are significantly decoupled. Consider |~q| > ǫ/~c, as in

Fig. 1.3(a). Away from the Brillouin zone boundary, we can neglect the

effect of photons in higher Brillouin zones, and the effective Hamiltonian

matrix is H = [ ǫ, −iC~q ; iC~q, ~c|~q| ], with eigenvalues

E±
~q =

ǫ+ ~c|~q|
2

±

√

(

ǫ− ~c|~q|
2

)2

+ C2
~q . (1.14)

The contribution to the indirect polaritonic gap from the large-q branch of

the dispersion curve, which is truncated at the Brillouin zone boundary, is

obtained from the large-q expansion of (1.14) evaluated at ~q = ~q. The

contribution from the small-q branch cannot be found by setting ~q = 0 in

(1.14) due to our preceding approximations, so we instead calculate an upper

bound on it by evaluating it at the minimum, |~q| = ǫ/2~c. The resulting

polaritonic gap is

∆′
pol ≃

4C2
ǫ/~c

ǫ
+

C2
~q

~cq
(1.15)

With the same lattice parameters, ∆′
pol ≈ 10−3 cm−1 (∼ 10−8 ǫ). From the

large-|~q| expansion of (1.12), the photonic band gap is ∆′
pbg = C2

~q/~c|~q|,

strictly smaller than (1.15). Therefore, the effects of the polaritonic interac-

tion are very small when the system is detuned.

This model can also be used to study the quasi-1D geometry considered

by many authors, in which atoms are trapped along periodically-stacked
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infinite sheets. Consider a 3d lattice in which the lattice spacing in one of

the directions, ℓ1, is much larger than the spacing in the other two directions.

The relevant wavevectors, lying on the Brillouin zone boundaries closest to

the origin, have magnitude |~q1| = π/ℓ1 and point in the direction of stacking.

In this regime, this model can be directly compared with the semiclassical

analysis of Deutsch et. al.7. For instance, the semiclassical theory predicts

band gaps from E
(cl)
− to ǫ and from ~c|~q1| to E

(cl)
+ for blue-detuned lattices.

A short calculation, using Eq. 15-19 of that paper, yields

E
(cl)
± ≈ ǫ+ ~c|~q|

2
±

√

(

ǫ− ~c|~q|
2

)2

+ 2 · 3~2cγη

2|~q1|
(1.16)

where η is the surface density along each sheet and γ ≪ (E± − ǫ)/~ is the

linewidth of the atomic transition. Using the golden rule prescription for the

natural linewidth24, γ = (4αǫ3x2
01)/(3~

3c2), this reduces to (1.12) with C2
q

replaced by C2
q
· ǫ/~c|~q1|. The band gaps predicted by the semiclassical and

quantum mechanical theories are thus similar for ǫ ∼ ~c|~q1|, which is also

the regime where the band gaps are significant. In the exactly-tuned case,

the results are identical, and one obtains

∆1d = 2ǫx01
√
αη . (1.17)

Actual 1d/2d lattices are more problematic since each exciton is coupled

to photons with a continuum of wavenumbers in the transverse direction,
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which smears out the gaps. One might avoid this using an actual cavity in

the transverse direction, making the electromagnetic field effectively 1d/2d.

1.5 Slow polariton modes

The energy E0
q

in (1.12) corresponds to a polariton created by the operator

(a†q − a†
q+g′)/

√
2. This remains an exact polariton state when we include

higher Brillouin zones in the effective Hamiltonian. (In fact, there is a family

of such states for each pair of Brillouin zone boundaries.) These “purely

photonic” polaritons are reminiscent of “dark states” in electromagnetically

induced transparency (EIT)14, since (1.11) is identical to the EIT effective

Hamiltonian with the exciton and two photon modes acting as the levels

of the Λ system. In EIT, a “dark state” arises: a coherent superposition

of atomic levels that does not couple to the radiation. The analog in our

case is a non-interacting photonic state, with no atomic component. Its

classical limit is a standing electromagnetic wave commensurate with the

lattice. Since the laser light that supports the lattice always falls exactly

on the Brillouin zone boundary7, the stability of the optical lattice relies on

the existence of such standing wave modes; other modes are Bragg reflected

away. In a sense, the lattice “selects” the standing wave modes from the

incoming laser light. Similar modes have been observed in other resonant

photonic crystal systems9–11. We have shown here that in the self-consistent

limit of complete quantum coherence and low exciton density, this selection



34 CHAPTER 1. POLARITONS IN A POINT-DIPOLE CRYSTAL

(cm−1)

kx (103cm−1)

∆/h̄c

100806040200

100

10

1

0.1

0.01

Figure 1.4: Photonic gap at wavevectors ~q = [kx, π/ℓ, 0] along the Bril-
louin zone boundary, for ǫ = 3 eV, x01 = 2 Å, and π/ℓ = 0.9 ǫ/~c =
1.4 × 105 cm−1 (red-detuned). The dashed lines show ky vs. kx for the sur-

face |~k| = ǫ/~c and the Brillouin zone boundary; here, the ordinate is not
drawn to scale. The gap is largest at the intersection of the two surfaces,
i.e. |~q| = ǫ/~c.

takes place at the quantum state level. Only the purely photonic polaritons

can support a macroscopic population, since they are the only elementary

excitations of the interacting system with zero atomic component.

In the 3d system, there is a family of purely photonic polaritons every-

where on the boundary of the first Brillouin zone. Remarkably, these states

are attached to the slow, “atomic” branch of the dispersion curve. These

appear to be analogs of the slow, non-degenerate, longitudinal electromag-

netic modes that appear in the classical t-matrix calculation of Coevorden

et. al.12 Our model shows that the photonic component along this branch

goes continuously from nearly zero to unity as we approach the Brillouin zone

boundary, as shown in Fig. 1.3(c) and (d). Therefore, by exciting polaritons
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over a range
∣

∣

∣

∣

ǫ− ~c|~q|
~c

∣

∣

∣

∣

∼ C~q

~c
∼ 10 cm−1 (1.18)

around wavevector ~q, one could create a wavepacket that propagates slowly

but has low exciton density.

1.6 Conclusions

According to the simple model presented in the preceding sections, we see

that the laser light supporting an optical lattice is allowed to fill the lattice,

despite the phenomenon of Bragg reflection, due to the nature of the optical

lattice as a resonant photonic crystal. This conclusion is in agreement with

the findings of Deutsch et. al.7, but applies to three dimensions and the fully

quantum mechanical regime.

In modern optical lattices, the trapping beams are usually set far-detuned

from optical resonance. However, it should be possible to study nearly-tuned

systems, such as alkali atoms loaded in a cubic lattice made by near-IR

light. In that case, the present model predicts an unusually large bandgap

containing a slow-light mode, which could be probed by introducing a probe

beam at an angle to the axis of the lattice. One should choose an atomic

transition ǫ such that 1 ≤ ǫℓ/π~c ≤
√

3, where ℓ is the lattice period, and use

probe wavevectors with magnitude lying in a range ∆/~c ∼ 10 cm−1 around

|~q| = ǫ/~c, at an angle cos−1(π~c/ǫℓ) to a lattice axis (Fig. 1.4). Although

the present theory applies to an infinite lattice, the predicted frequency shifts
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may be observable close to the atomic resonance, even in a lattice of about

100 atoms on a side.

We have treated the atomic positions as fixed, as would be the case for a

strongly-confining optical lattice where the rate at which each atom tunnels

to a different lattice site is negligible compared to the radiative lifetime. The

presence of non-zero hopping amplitudes would add an imaginary part to the

polariton energies, proportional to the tunneling rate. The size of the band

gaps would be reduced by the corresponding amount.



Chapter 2

Band theory of dark-state

polaritons

2.1 Dark-state polaritons

Several years ago, Fleischhauer and Lukin15 predicted the existence of a

stable polaritonic excitation in Λ-type media [Fig. 2.1(a)] exhibiting elec-

tromagnetically induced transparency (EIT)14. This is a coherent quantum

excitation whose evolution is governed by a classical control field; because it

involves a vanishing population of excited states, it was dubbed the “dark-

state polariton”. The dark state polariton concept has been used in remark-

able experiments that manipulate the motion of single photons, including

“stopping light”25,26.

∗Y. D. Chong and M. Soljačić, Phys. Rev. A 77, 013823 (2008).

37
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Figure 2.1: (a) 3-level Λ-type medium. (b) Double-Λ medium.

The original Fleischhauer-Lukin result was derived as a perturbation ex-

pansion of the field operator equations of motion in the limit of strong

control fields. In a subsequent work, Juzeliūnas and Carmichael27 used a

Bogoliubov-type transformation to diagonalize the model Hamiltonian ex-

actly, and showed that the dark-state polariton can be understood as a part

of a branch of slow polaritons occurring in systems containing a pair of atomic

resonances. These authors also emphasized the fact that the photonic part of

the polariton mixes with atomic excitations possessing wavevectors differing

by the wavevector of the control field. Thus, for instance, it is possible to

reverse the direction of a polariton wavepacket by switching the direction of

the control field.

In this chapter, I present a derivation of the dark-state polariton using

the Sawada-Brout technique28. This approach allows us to understand the

properties of the dark-state polariton in terms of band theory, in the same

spirit as the analysis of exciton polaritons in the previous chapter. In a

sense, this chapter serves as a generalization of the exciton polariton concept

from two-level atoms to Λ-type atoms. The present approach can also be

thought of as a simplified version of the method used by Juzeliūnas and
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Carmichael. We shall see how the band-theoretical model reduces to the

model of Fleischhauer and Lukin, a result that was not demonstrated by

Juzeliūnas and Carmichael27.

We will also see how the analysis can be extended to a double-Λ medium,

shown in Fig. 2.1(b). Such a medium contains a dark-state polariton con-

sisting of low-lying atomic excitations and photon states of two different

frequencies29,30.

In both single- and double-Λ systems, the dark-state polariton is pro-

tected against incoherent decay processes acting on the excited states, be-

cause it contains a vanishing population of these states. It has previously

been shown that double-Λ media can efficiently upconvert classical probe

beams31,32, and a related four-wave mixing scheme has already been used in

such systems to generate correlated photon pairs33–36. We will explore the

possibility of exploiting the dark-state polariton to perform single-photon

frequency conversion in a manner that preserves quantum coherence. Un-

like semiclassical analyses in which the electromagnetic field is treated clas-

sically31,32, this theory applies to the single-photon regime. It may thus

have applications in quantum information processing, such as for downcon-

verting a member of an entangled photon pair to a frequency suitable for

transmission over a telecommunications fiber. Unlike parametric conversion

schemes exploiting optical nonlinearities, the relevant photons are up- or

down-converted individually, instead of being split or recombined; the addi-

tional momentum and energy are supplied by the control fields.
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2.2 Single-Λ system

We begin by considering an N -atom gas with a single-Λ level structure,

shown in Fig. 2.1(a). The ground, excited, and metastable atomic states are

respectively denoted by |b〉, |a〉, and |c〉, and their corresponding energies by

~ωb, ~ωa, and ~ωc. The atomic Hamiltonian is

H0 = ~

∑

r

(

ωaσ
aa
r + ωbσ

bb
r + ωcσ

cc
r

)

, (2.1)

with the sum performed over all atomic positions r. Here,

σµν
r ≡ |µ〉r 〈ν|r (2.2)

denotes a transition operator for the atom at position r. We also define

Fourier-transformed operators, σab
k ≡ N−1/2

∑

r σ
ab
r eikr etc. The photon

Hamiltonian is

H1 =
∑

k

~c|k|a†kak, (2.3)

where a†k and ak are photon creation and destruction operators. The photons

interact with the ab transition through the minimal-coupling Hamiltonian

H2 = −~g
∑

k

ak σ
ab
k + h.c. (2.4)

The coupling constant is g ≃ P
√

2πNωab/~V , where P is the dipole moment

of the ab transition, ωab ≡ ωa−ωb, and V is the cavity volume. For notational
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simplicity, we have used the rotating-wave approximation. Finally, we include

a classical control field with strength (Rabi frequency) Ω, frequency ωL ∼ ωac,

and wavevector kL:

H3(t) = −~Ω e−iωLt
∑

r

eikLr σac
r + h.c. (2.5)

Here, we have again discarded counter-rotating terms. We neglect the cou-

pling between the photons and the ac transition, which is negligible compared

to the effects of the control field, and the coupling between the control field

and the ab transition, which is off resonance.

The time dependence in (2.5) can be removed by defining

HL = UL(t)H(t)U †
L(t) + ~ωL

∑

r

σcc
r , (2.6)

where H(t) ≡ H0 + · · ·+H3(t), and

UL(t) = exp

[

−iωLt
∑

r

σcc
r

]

. (2.7)

The Schrödinger equation H(t) |ψ(t)〉 = i~∂t |ψ〉 can be then rewritten as

i~
∂

∂t
[UL(t) |ψ(t)〉] = HL [UL(t) |ψ(t)〉] . (2.8)

Thus, we can extract solutions to the Schrödinger equation from the energy

eigenstates of the time-independent Hamiltonian HL. To obtain these, we
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look for a polariton excitation operator A† such that

[HL, A
†] = ~ωA† + · · · (2.9)

The polariton is long-lived provided the omitted terms are negligible28. If

the initial state of the system is its (zero photon) ground state, A† should be

a mixture of a†, σab, and σcb.

The commutation relations of these three operators with HL are listed

below. We have removed terms involving σba, σaa, σca, and ak; since these

operators give zero when acting on the ground state, this introduces no ad-

ditional error for single-polariton excitations. Similarly, we have replaced σbb
k

with
√
Nδk0. Thus,

[

HL, σ
ab
k

]

≃ ~ωabσ
ab
k − ~Ω∗ σcb

k−kL
− ~g∗a†k (2.10)

[

HL, σ
cb
k−kL

]

≃ ~(ωcb + ωL)σcb
k−kL

− ~Ωσab
k (2.11)

[HL, a
†
k] = ~c|k|a†k − ~g σab

k . (2.12)

Let us now look for excitation operators of the form

A†
nk = −φ1

nk σ
ab
k + φ2

nk σ
cb
k−kL

+ φ3
nk a

†
k, (2.13)

where the band index n enumerates the different polariton species. The

c-numbers φj
nk are determined by inserting (2.13) into (2.9) and using (2.10)-
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Figure 2.2: Polaritonic dispersion curve for ωL = ωac. The solid lines show
the exact polariton solutions given by Eq. (2.14); the dashed line showss the
Fleischhauer-Lukin solution, Eq. (2.16).

(2.12). This gives three self-consistency equations that can be written as













ωab Ω g

Ω∗ ωcb + ωL 0

g∗ 0 c|k|

























φ1

φ2

φ3













nk

= ωnk













φ1

φ2

φ3













nk

. (2.14)

The form of the effective Hamiltonian in (2.14) is familiar from semiclassical

analyses of EIT. Fig. 2.2 shows the bandstructure in the absence of loss,

similar to the one obtained by Juzeliūnas and Carmichael27. For simplicity,

let us assume that ωL = ωac. The asymptotic eigenfrequencies far from

resonance are c|k| and the eigenvalues of the upper-left 2 × 2 submatrix

in the effective Hamiltonian, in this case ωab ± Ω. Exactly at resonance
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(|k| = ωab/c), there is an eigenvector













φ1

φ2

φ3













DSP

∝













0

1

−Ω/g













. (2.15)

For slightly detuned k, this continues into eigenvectors where the σab com-

ponent is nonzero but small. These solutions—“dark-state polaritons”—are

thus insensitive to incoherent decay processes acting on |a〉.

The stability of the exactly-resonant dark-state polariton is limited only

by the lifetime of the metastable state |c〉, which we shall assume to be longer

than the time-scale of any relevant experiment. For off-resonant dark-state

polaritons, the decay rate is only quadratic in the detuning: upon replacing

ωa with ωa − iΓa in (2.14), one finds that the imaginary part acquired by

ωk is ∼ Γa|∆/Ω|2 (for Ω ≫ g), where ∆ ≡ c|k| − ωab. The other two

polariton branches correspond to “bright” polaritons that contain significant

|a〉 population and are thus strongly affected by losses. Like Fleischhauer

and Lukin15, we neglect Langevin noise effects, which do not influence the

adiabatic evolution of the dark-state polaritons.

Expanding around ω = ωab yields a limiting solution for the dark-state

polaritons:

ωk = ωab +
|Ω|2

|g|2 + |Ω|2 (c|k| − ωab) (2.16)
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φ1
k =

Ω(c|k| − ωab)

|g|2 + |Ω|2 φ2
k (2.17)

φ3
k = −Ω

g
φ2

k. (2.18)

Equations (2.16)-(2.18) agree with the solution derived by Fleischhauer and

Lukin using a perturbation expansion in 1/Ω15. In the present formalism,

the fact that decreasing Ω reduces the polaritonic group velocity can be

intuitively understood as the result of “squeezing” the bandwidth of the

middle polariton band. An interesting property of the dark-state polariton

solution is that it does not depend on the energies of the underlying Λ system,

only the detuning of the control field and the coupling parameters g and Ω.

Finally, we can extract the solutions to the original Schrödinger equation

using (2.8). For a polariton with quantum numbers (n, k), the state at time

t is

|ψ(t)〉 = e−iωnkt ×
[

−φ1
nk σ

ab
k + φ2

nk e
iωLt σcb

k−kL
+ φ3

nk a
†
k

]

|0〉 . (2.19)

The σcb component in (2.19) has a different frequency and wavevector com-

pared to the rest of the polariton. This property does not, however, desta-

bilize the polariton: in a wavepacket constructed of a superposition of dark-

state polaritons, the photonic and σcb components possess different phase

factors but share a single envelope.

The preceding derivation holds regardless of the angle between the input

photon and the control beam. The direction of kL only enters into the choice
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of excitation operator σcb
k−kL

occurring in the polariton operator (2.13), and

plays no role in the eigenproblem (2.14) that yields the state amplitudes and

polariton energy.

By switching between two non-collinear control beams, it is possible to co-

herently rotate the photon wavevector, by an angle of up to 2 sin−1(ωac/ωab),

where the plane of rotation is specified by the polarization of the control field.

A special case of this has been discussed by Juzeliūnas and Carmichael: when

ωb ≈ ωc, one can coherently backscatter the photon by inserting a photon

with k ∼ kL, which mixes with a σbc excitation with wavevector k − kL ∼ 0,

and switching the control field to −kL. The σbc excitation then mixes into a

photon of wavevector k − 2kL ∼ −k 27.

2.3 Double-Λ system

Suppose we add a second excited state, |d〉, as shown in Fig. 2.1(b). A second

control beam couples |d〉 to |c〉, and for simplicity we assume that the two

control beams have parallel polarization vectors. The d ↔ a transition is

assumed to be forbidden.

One of the reasons this “double-Λ” system is interesting is that it can be

used to upconvert or downconvert probe beams, as experimentally demon-

strated by Merriam et. al.32 and other groups. It can be shown, using the

Fleischhauer-Lukin formalism, that this type of level structure supports a

dark-state polariton30. As we shall see, this dark-state polariton arises nat-
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urally from the present method as a 5×5 generalizion of (2.14).

The Hamiltonian, H ′(t), contains several new terms. First, we have the

Hamiltonian for the free |d〉 states, and the Hamiltonian for a second photon

field with operators b†k and bk:

~

∑

r

(

ωdσ
dd
r

)

+
∑

k

~c|k|b†kbk. (2.20)

There is really only one photon field, but introducing this second photon field

is permissible since the atom-photon coupling becomes negligible far away

from the EIT resonances.

We also have an additional set of interaction terms, which are analogous

to (2.4) and (2.5):

−~g′
∑

k

bk σ
db
k ~Ω′ − e−iω′

Lt
∑

r

eik′
Lr σdc

r + −h.c. (2.21)

We now have two control field interaction Hamiltonians, associated with

two different frequencies ωL and ω′
L. Therefore, the transformation (2.6)-

(2.7), which works by rotating |c〉, cannot eliminate the time dependence.

We can overcome this difficulty with a transformation that instead rotates

|a〉, |d〉, and the photon states. Let

H ′
L = U ′

L(t)H ′(t)U ′
L
†

− ~ωL

(

∑

k
a†kak +

∑

r
σaa

r

)

− ~ω′
L

(

∑

k
b†kbk +

∑

r
σdd

r

)

, (2.22)



48 CHAPTER 2. BAND THEORY OF DARK-STATE POLARITONS

where H ′(t) is our new Hamiltonian, and

U ′
L = exp

[

iωLt
(

∑

k
a†kak +

∑

r
σaa

r

)

+ iω′
Lt

(

∑

k
b†kbk +

∑

r
σdd

r

)]

.

(2.23)

This once again allows us to write the Schrödinger equation as

i~∂t [U ′
L(t) |ψ(t)〉] = H ′

L [U ′
L(t) |ψ(t)〉] , (2.24)

where H ′
L is time-independent. We look for excitation operators

A†
nk = −φ1

nkσ
ab
k+kL

− φ2
nkσ

db
k+k′

L
+ φ3

nkσ
cb
k + φ4

nka
†
k+kL

+ φ5
nkb

†

k+k′
L

. (2.25)

The self-consistency equations for the parameters φj
nk take the form

H′
k













φ1

...

φ5













nk

= ωnk













φ1

...

φ5













nk

, (2.26)

H′
k = ~

























ωab − ωL 0 Ω g 0

0 ωdb − ω′
L Ω′ 0 g′

Ω∗ Ω′∗ ωcb 0 0

g∗ 0 0 c|k + kL| − ωL 0

0 g′∗ 0 0 c|k + k′L| − ω′
L

























.

(2.27)
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The polariton created by (2.25) is a valid excitation because, as in the single-

Λ case, no extra non-negligible terms are generated by commutating this

operator with the Hamiltonian.

Let us now assume that the control fields are resonant, i.e. ωL = ωac and

ω′
L = ωdc. For |k+kL| = ωab/c and |k+k′L| = ωdb/c, the effective Hamiltonian

(2.27) has an eigenvector













φ1

...

φ5













DSP

∝

























0

0

1

−Ω/g

−Ω′/g′

























. (2.28)

The first two components of this eigenvector, corresponding to the two ex-

cited states, are identically zero, so this represents a dark-state polariton

consisting of σcb
k excitations and photons with wavevectors k+kL and k+k′L.

It can be shown that no other linearly independent eigenvector with this

property exists, so there is only one such dark-state polariton solution. The

linearized dark-state polariton solution, analogous to (2.16)-(2.18), is

ωnk = ωcb +
|Ω/g|2δk + |Ω′/g′|2δk′
1 + |Ω/g|2 + |Ω′/g′|2 (2.29)

φ1
nk =

Ω

|g|2
δk + |Ω′/g′|2(δk − δk′)

1 + |Ω/g|2 + |Ω′/g′|2 φ3
nk (2.30)

φ2
nk =

Ω′

|g′|2
δk′ + |Ω/g|2(δk′ − δk)

1 + |Ω/g|2 + |Ω′/g′|2 φ3
nk (2.31)
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kωcb/c

ω

ωcb

0

Figure 2.3: Polaritonic dispersion curve for the double-Λ medium. The solid
lines show the exact polariton solutions given by Eq. (2.27); the dashed line
shows the linearized solution given by Eq. (2.29). The horizontal asymptotes
occur at ωcb and ωcb ±

√

|Ω|2 + |Ω′|2.

φ4
nk = −(Ω/g)φ3

nk (2.32)

φ5
nk = −(Ω′/g′)φ3

nk, (2.33)

where δk ≡ |k + kL| − ωab/c and δk′ = |k + k′L| − ωdb/c. The polaritonic

bandstructure, in the absence of loss, is shown in Fig. 2.3.

These results can be shown to be consistent with the single-photon limit

of a semiclassical analysis of the double-Λ medium given by Korsunsky and

Kosachiov31. In this one-dimensional model, where the electromagnetic field

is treated classically, the Heisenberg equations of motion for the atomic sys-

tem possesses a stationary “dark state” solution that is decoupled from the

electromagnetic field and is stable against spontaneous emission. This dark

state exists only if the background field (consisting of two probe beams and
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two control beams) obeys certain frequency, amplitude, and phase matching

conditions. The frequency-matching condition is

ω − ωL = ω′ − ω′
L = ωcb, (2.34)

where ω and ω′ are the respective frequencies of the probe beams resonant

with the ab and db transitions. This equation is exactly satisfied by (2.25),

for which ω = c(k + kL) and ω′ = c(k + k′L). The physical meaning of

(2.34) is particularly easy to deduce in the present theory: in the single-

photon limit, the stationary state corresponds to a polaritonic solution of

the form (2.25), for which the photonic components cannot take on arbitrary

frequencies because they are coherently mixed via the atomic excitation σcb
k .

The amplitude-matching condition for the semiclassical dark state is

PE
Ω

=
P ′E ′

Ω′
, (2.35)

where P and P ′ are the dipole moments for the ab and db transitions, and E

and E ′ are the electric field amplitudes of the associated probe beams. The

electric field amplitudes can be related to the quantum mechanical photon

amplitudes φ4 and φ5 by

E ↔
√

2π~ωab/V φ
4 (2.36)

E ′ ↔
√

2π~ωdb/V φ
5, (2.37)
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which can be verified by computing the expectation value 〈|E|2〉 produced

by each photon creation operator. With this identification, the linearized

dark-state polariton amplitudes (2.32) and (2.33) satisfy (2.35). The third

condition derived by Korsunsky and Kosachiov, which relates the phases of

the four beams, is also satisfied by the dark-state polariton because, as shown

by (2.32) and (2.33), the phases of the probe beams are locked to those of

the control beams Ω and Ω′.

The dark state studied by Korsunsky and Kosachiov is a pure state of

the atomic system, reflecting the fact that the electromagnetic field is treated

classically31. In contrast, the present model takes into account the coherent

mixing between the quantum state of the probe field and the quantum state

of the atomic medium: performing a partial trace of the dark-state polariton

over the photonic Hilbert space yields a mixed atomic state. This mixing

becomes important at the single-photon level, which is also potentially the

regime of interest for quantum information processing. In the following sec-

tion, we will examine how this mixing can be used to convert between the

two photonic components of the double-Λ dark-state polariton.

2.4 Frequency Conversion

For a single-Λ medium with a resonant control beam, inserting a photon

with wavevector k0, resonant with the ab transition, gives rise to a dark-state

polariton whose group velocity points in the same direction, independent of
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the direction of the control beam. This freedom to choose the direction of

the control beam disappears in the double-Λ case. Here, an incident photon

k0 mixes with another photon with wavevector k1 = k0 − kL + k′L. Assuming

both control beams are tuned to resonance, the resulting state overlaps with

a dark-state polariton only if |k1| ≃ ωdb/c. Furthermore, the group velocity

of the dark-state polariton is, from (2.29),

v = ∇kωnk =
|Ω/g|2 k̂0 + |Ω′/g′|2 k̂1

1 + |Ω/g|2 + |Ω′/g′|2 , (2.38)

where k̂0 = k0/|k0| and k̂1 = k1/|k1|. Therefore, a choice of k̂0 and k̂1 deter-

mines the directions of the two control beams (or, more generally, choosing

any two of these directions determines the other two).

As an aside, we note that the beam matching conditions forbid the choice

k̂0 = −k̂1, which would imply the possibility of a stationary wavepacket with

nonzero control beams; however, if k̂0 and k̂1 are nearly antiparallel, (2.38)

predicts that the control beam strengths can be tuned to produce a low group

velocity.

In order to illustrate the mixing between the two photonic components in

the dark-state polariton, let us fall back on the “trivial” one-dimensional case

where all wavevectors are parallel, which satisfies the above beam matching

conditions. Suppose we inject the photon k0 at t = 0, so that the quantum

state is

|ψ(0)〉 = a†k0
|0〉 =

5
∑

n=1

φ∗ 4
nkA

†
nk |0〉 , (2.39)
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Figure 2.4: Numerical solutions of | 〈0| bk−kL+k′
L
|ψ(t)〉 | against t, where |ψ(t)〉

is the quantum state at time t after inserting a photon a†k with k = ωab/c.
Here, ωcb = 104 cm−1, |g| = |g′| = 0.1 cm−1, and |Ω| = |Ω′| = 1 cm−1. (a) No
excited state decay, Γa = Γd = 0. (b) Γa = Γd = 0.02 cm−1.

where k ≡ k0 − kL. Without losses, the state at time t is

|ψ(t)〉 = eiω′
L

t
(

e−iH′
k
t/~

)

5,4
b†k+k′

L

|0〉 + · · · , (2.40)

where the matrix H is defined in (2.27) and the omitted terms are the other

polariton components. The result, shown in Fig. 2.4, is an oscillating upcon-

version amplitude | 〈0| bk+k′
L
|ψ(t)〉 | that can approach 100%. The effects of

incoherent excited state decay, which can be modeled by replacing ωa with

ωa − iΓa and ωd with ωa − iΓd in (2.27), are also shown in Fig. 2.4. Although

the dark-state polaritons are protected against decay, damping still occurs

because the incident photon generates a non-vanishing population of bright

polaritons. When these exit the system (typically as off-axis photons), only

the dark-state polariton remains.
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Figure 2.5: Photon frequency conversion. The a-photon amplitude |φ4(z, t)|
(dashed line) and b-photon amplitude |φ5(z, t)| (solid line) are plotted at
three instants. The abscissa is z/ cos θ, where kL · ẑ = cos θ. The second
control beam is pointed that k′L · ẑ = 0.9 cos θ. Both control beams are c.w.
The effective thickness of the double-Λ medium, z0 = 60 cm, is indicated.
Within the medium, |g| = |g′| = 0.1 cm−1, Γa = Γd = 0.2g, |Ω| = 1 cm−1,
and |Ω′| = 3{1 + tanh[4(z/ cos θ − 0.5)/z0]} cm−1. Outside the sample lies
vacuum. The amplitudes are computed by integrating Eq. (2.42) numerically
for the initial conditions in Eq. (2.44), where β = 0.8 m−2 and z2 = −50 cm.
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Figure 2.6: Frequency conversion efficiency, parameterized by the converted
photon amplitude Φ5 normalized to the input photon amplitude, as a function
of the sample length z0. Within the sample, the control beam Ω′ varies as
|Ω′| = 3{1 + tanh[4(z/ cos θ − 0.5)/z0]} cm−1. Curves for incoherent decay
rates Γa = Γd = 0.2g, 0.4g, and 0.6g are shown. All other parameters are
the same as in Fig. 2.5.

A more efficient example of single-photon frequency conversion can be

obtained by going from momentum space to real space and studying the

behavior of polariton wavepackets. Let us define c-number fields Φj = Φj(r, t)

such that

|ψ(t)〉 =
∑

r

ei(κr−ωcbt)
(

−Φ1 e
ikLrσab

r − Φ2 e
ik′

L
rσdb

r

+Φ3 σ
cb
r + Φ4 e

−ikLra†r + Φ5 e
−ik′

L
rb†r

)

. (2.41)

Inserting (2.41) into the Schrödinger equation and using (2.27), we obtain a
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Schrödinger wave equation

i~
∂Φi

∂t
(r, t) =

∑

j

Hij Φj(r, t). (2.42)

If κ is chosen such that |κ+kL| = ωab/c and |κ+k′L| = ωdb/c, then the dark-

state polariton corresponds to values of Φj that are constant in space. For a

wavepacket centered around κ with bandwidth ≪ ωab, ωdb (i.e., spatial width

much longer than the optical wavelength, which is the usual slowly-varying

envelope approximation), H takes on the intuitive local form

H(r, t) ≈ ~

























0 0 Ω g 0

0 0 Ω′ 0 g′

Ω∗ Ω′∗ 0 0 0

g∗ 0 0 −ick̂0 · ∇ 0

0 g′∗ 0 0 −ick̂1 · ∇

























. (2.43)

As in the single-Λ case, the evolution of the polaritonic envelope is inde-

pendent of the underlying double-Λ frequencies, except through the coupling

parameters g, g′, Ω, and Ω′. We again emphasize that this result is not

perturbative; it holds for arbitrary values of Ω and Ω′, and depends only on

the fact that the wavepacket is sufficiently broad. Generally, the coupling

parameters can vary (smoothly) in space; for instance, a variation in Ω or Ω′

could be accomplished using a c.w. control beam with a non-uniform cross-

sectional intensity profile. Such variations can be used to “adiabatically”
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transfer one photon population to another within a propagating dark-state

polariton wavepacket, substantially improving the efficiency of the conversion

process compared to the previous example.

Let us consider an effectively one-dimensional experimental setup where

all relevant spatial variations occur in the z direction. In particular, we must

assume that the x and y edges are far enough away that boundary effects

(which appear when the beams are not all collinear) are negligible. The

incident envelope field Φj(z, t = 0) is

Φ4 = exp

[

−β
( z

cos θ
− z2

)2
]

,

Φ1 = Φ2 = Φ3 = Φ5 = 0.

(2.44)

Outside the sample (z < 0 or z > z0), all coupling parameters are zero.

Within the sample (0 < z < z0), the functional forms of Ω(z) and Ω′(z) are

chosen so that |Ω| > |g| > |Ω′| near the entrance of the sample, which ensures

that the dark-state polariton is dominated by the input photon; whereas

|Ω′| > |Ω| > |g| near the exit, which ensures that the dark-state polariton is

dominated by the converted photon. The result is shown in Fig. 2.5. For the

given parameters, the converted photon amplitude is ∼ 0.9 times the incident

amplitude. The efficiency is limited by the available length of the double-Λ

medium. As shown in Fig. 2.6, a longer sample allows the Ω′ field to be

varied more gently, generating fewer bright state polaritons and increasing

the conversion efficiency.
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2.5 Conclusions

In this chapter, I have presented an analysis of single- and double-Λ EIT

systems based on a microscopic equation-of-motion technique. Within this

formalism, the presence of a dark-state polariton corresponds to the existence

of special eigenvectors of an effective Hamiltonian matrix, in which the entries

corresponding to rapidly decaying excitations are identically zero, regardless

of the strength of the control fields. The ability of the double-Λ system

to efficiently upconvert and downconvert photons, previously established in

semiclassical four-wave mixing studies31,32, is retained in the coherent single-

photon limit due to the existence of the dark-state polariton. The analysis

can be further generalized to multi-Λ systems, where one finds additional

polaritonic bands similar to those in Fig. 2.3, with exactly one family of

dark-state polariton solutions possessing vanishing excited state populations.

This theory is concerned with only the single-polariton sector, which is

valid only if the polaritons are much more dilute than the underlying atomic

medium. The polariton operators (2.13) and (2.39) do not obey exact bosonic

commutation relations, since the σ operators are not bosonic operators; how-

ever, the corrections to the commutator vanish as O(M/N), where M is the

number of atoms excited20. This condition is satisfied, for instance, in the

experiments of Merriam et. al., where M/N ∼ 10−3 32. The single-polariton

sector has the advantage that the quantum state of the system can be ex-

pressed in terms of a simple wave equation, as in (2.42). Thus, once the σ
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operators have been used to derive the effective Hamiltonian, the additional

structure given by their non-trivial commuation relations disappears from the

theory. Should one wish to study the limit where M becomes comparable to

N , this structure will have to be taken into account.



We now turn away from the topic of atomic-lattice photonic crystals. Chap-

ters 3 and 4 deal with a class of photonic crystals that deviate from the

conventional photonic crystal theory in a completely different way. These

are solid-state photonic crystals in which time-reversal symmetry is broken.

As we shall see, the systems exhibit some truly remarkable properties, in-

cluding interface modes that are immune to backscattering.



Chapter 3

One-way Edge Modes in

Magneto-optic Photonic

Crystals

3.1 Non-reciprocal photonic crystals

Let us recall how time-reversal symmetry applies to Maxwell’s equations.

Suppose the electromagnetic fields and sources vary harmonically with fre-

quency ω, so that we can adopt the usual complex representation: if the real

electric field is ~E(t), the corresponding complex electric field E is defined by

~E(t) = Re
[

Ee−iωt
]

. (3.1)

∗Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, Phys. Rev. Lett. 100,
013905 (2008).
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Complex representations for the other fields and sources are defined similarly.

The linear Maxwell equations then become

∇ · ~D = ρf , ∇ · ~B = 0,

∇× ~E = iω ~B, ∇× ~H = J − iω ~D,
(3.2)

where

~D = ǫ ~E and ~H = µ−1 ~B. (3.3)

The system is said to obey time-reversal symmetry if, for each solution

{

~E, ~D, ~B, ~H, ρ, ~J
}

, (3.4)

the following is also a solution to (3.2) and (3.3):

{

~E∗, ~D∗,− ~B∗,− ~H∗, ρ∗,− ~J∗
}

. (3.5)

This is called a “time-reversed” solution because of the way we have defined

the complex fields and sources. For example, returning to (3.1):

~E(−t) = Re
[

Eeiωt
]

= Re
[

E∗e−iωt
]

. (3.6)

It is a quirk of Maxwell’s equations that time-reversal requires flipping the

signs of the magnetic field and current density, as indicated in (3.5); we will

simply take this as our operational definition of time-reversal symmetry for
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electromagnetic systems. By direct substitution, we then see that (3.5) is

a valid solution to (3.2). It is also a valid solution to (3.3) if and only if ǫ

and µ are real. This is normally the case (e.g. in the simplest case where ǫ

and µ are real scalars), but not always. If non-radiative losses are absent, ǫ

and µ are Hermitian tensors, and time-reversal symmetry may be broken by

introducing non-zero imaginary terms to the off-diagonal components of one

or both of these tensors.

We should note, at this point, that it is easy to break time-reversal sym-

metry, by (i) introducing non-radiative losses or (ii) adding non-harmonic

time-dependences to ǫ or µ. For the moment, let us ignore these “trivial”

sources of time-reversal symmetry breaking.

The materials that we are interested in are those in which ǫ and/or µ

contain imaginary off-diagonal components. These are called “non-reciprocal

media”, as their electromagnetic properties are dependent on the direction

of time. More prosaically, we could say that they respond differently to an

applied electromagnetic field and its time-reversed counterpart. They are

also referred to as “magneto-optical media” because, as we will see, the non-

reciprocity typically arises when the microscopic currents within the medium

are “pinned” by an external magnetic field. These materials are commonly

used in Faraday isolators, devices that allow the transmission of electromag-

netic waves moving in one direction while absorbing waves of equal frequency

moving in the opposite direction.

Several authors have investigated the use of non-reciprocal media in pho-
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tonic crystals37,38. For example, it has been shown that one-dimensional

photonic crystals made of non-reciprocal media can give rise to an enhanced

Faraday rotation angle (i.e., the angle by which the polarization vector of

a plane wave rotates as it passes through the system). However, the most

remarkable phenomenon associated with such photonic crystals was pointed

out only recently, by Haldane and Raghu16,17. These authors predicted that

certain two-dimensional non-reciprocal photonic crystals possess electromag-

netic edge modes that are analogous to electronic edge states in the integer

quantum Hall effect18. These modes are remarkable because they possess

group velocities pointing in only one direction along the edge, regardless

of detailed shape of the edge. The direction is determined by the sign of

the time-reversal symmetry breaking within the bulk crystal, and the time-

reversed versions, which propagate in the reverse direction, are not valid

eigenmodes.

If electromagnetic one-way modes could be realized, suitable applications

would readily be found. For example, it has long been known that pho-

tonic crystals can be used to construct slow-light waveguides. However, such

structures are extremely susceptible to backscattering, which limits their ef-

ficiency39. A slow-light waveguide utilizing one-way modes could overcome

this limitation as the the backscattered modes would be evanescent.

In this chapter, I will discuss how the one-way edge modes predicted by

Haldane and Raghu can be practically realized. I will begin by reviewing

the necessary conditions for the existence of these modes, which are related
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to the topological properties of the photonic bandstructure. Based on these

conditions, Haldane and Raghu have suggested using triangular-lattice pho-

tonic crystals incorporating gyroelectric materials. Though valid in principle,

this proposal turns out to run into serious practical difficulties. I will present

an experimentally feasible photonic crystal incorporating gyromagnetic ma-

terials, which should allow one-way edge modes to be easily observed. This

photonic crystal possesses a bandstructure with the desired non-trivial topol-

ogy, but deviates from the Haldane-Raghu theory in some interesting ways.

I will present numerical simulations that demonstrate the existence of the

edge modes and their immunity to backscattering. In the next chapter, I will

develop an analytical theory for the bandstructure of this photonic crystal.

3.2 Topological effects

The existence of one-way edge modes in photonic crystals is related to the

concept of the Chern number, an integer quantity associated with each band

in a two-dimensional Bloch system40–42. The Chern number measures a cer-

tain topological property of the band. A self-contained introduction to this

topic is provided in Appendix A.

Although the Chern number was first introduced to physics in the con-

text of electronic bands in the quantum Hall effect, Haldane and Raghu16,17

have pointed out that the concept is not limited to electronic systems. The

Chern number can be defined in any two-dimensional Hermitian system
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with discrete translational symmetry (i.e. any Bloch system), including two-

dimensional photonic crystals. In the absence of free charges and currents,

Maxwell’s equations can be cast as a Hermitian eigenproblem2. There are

several ways to accomplish this; we will pick one that is useful for our pur-

poses.

Let us assume that µ is a Hermitian tensor, while ǫ is a scalar. (It is

possible to analyze the more general case where both ǫ and µ are tensors,

but this is significantly more complicated16,17. Furthermore, it is not relevant

for the materials that we will consider.) We eliminate the magnetic field from

Maxwell’s equations to express them in terms of the electric field ~E(r). (The

conventional band theory of photonic crystals2 eliminates ~E to express things

in terms of ~H; we shall see why the present choice makes sense for us.) For

a mode with frequency ω,

ǫ−1(r)∇×
(

µ
−1(r)∇× ~E(r)

)

= ω2 ~E(r). (3.7)

Here, both the inverse permeability tensor µ
−1 and the scalar ǫ are functions

of position. Let us define the inner product as

〈E1|E2〉 =

∫

d2r ǫ(r) ~E∗
1 · ~E2, (3.8)

where |E〉 represents the eigenket (abstract state vector) associated with the

eigenmode whose field is ~E(r). Using this inner product, it is easily shown

that the operator on the left hand side of (3.7) is a Hermitian operator.
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If ǫ and µ are periodic, (3.7) further reduces to a Bloch problem, and the

eigenkets can be written in the Bloch form |nk〉. Let us define the quantity

~Ann′

(k) ≡ 〈nk|∇k|n′k〉 , (3.9)

called the “Berry connection”, where the inner product for Bloch states is

identical to (3.8) except that the integral is performed over a single unit cell.

For each band n, the Chern number is

Cn =
1

2πi

∫

BZ

d2k

(

∂Ann
y

∂kx
− ∂Ann

x

∂ky

)

, (3.10)

where the k-space area integral is performed over the first Brillouin zone. As

shown in Appendix A, the Chern number has the following properties:

1. It is always an integer.

2. The sum of the Chern numbers over all bands is zero.

3. The Chern number of every band is zero if the Hamiltonian is symmetric

under time-reversal or parity.

These properties imply that as one adiabatically tunes the Hamiltonian (e.g.,

varying the strength of the permeability tensor), the Chern number of each

band changes, if and when it does so, abruptly. The critical point at which

this abrupt change occurs is exactly when the band becomes degenerate with

a neighboring band at one or more k-space points.
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If the system is tuned correctly, the band’s Chern number changes by a

non-zero integer p once the degeneracy is lifted. At the same time, the other

band’s Chern number changes by −p. This tuning must involve time-reversal

symmetry breaking, since all Chern numbers are zero when the system is

time-reversible. Hatsugai43 has shown that in a lattice quantum Hall model,

this gives rise to p one-way edge states that occupy the gap between the two

bands. As far as I know, no equivalent theorem has been proven for photonic

crystals. However, there is an interesting relationship that allows us to map

photonic modes to a family of QH systems. Suppose, as before, that the

permittivity is a scalar and the permeability a Hermitian tensor. We write

the inverse permeability tensor as

µ
−1 =













ν−1 iη 0

−iη ν−1 0

0 0 µ−1
0













. (3.11)

Plugging this into (3.7), we find that the equations for Ex and Ey decouple

from Ez. For TM states (Ex = Ey = 0),

[

−∇2 + (∇ ln ν − iνẑ ×∇η) · ∇ − νǫω2
]

Ez = 0. (3.12)

Expressing this in terms of ψ ≡ Ez/
√
ν, we obtain

[

−
∣

∣

∣
∇ + iÃ(r)

∣

∣

∣

2

+ Ṽ (r)

]

ψ = 0, (3.13)



70 CHAPTER 3. ONE-WAY EDGE MODES

where

Ã =
ν

2
ẑ ×∇η, (3.14)

Ṽ =
1

4

(

|∇ ln ν|2 + |ν∇η|2
)

− 1

2
∇2 ln ν − νǫω2. (3.15)

This is the equation for zero-energy wavefunctions of a non-relativistic par-

ticle in periodic vector and scalar potentials Ã(r) and Ṽ (r). Increasing ω

corresponds to increasing the depth of the scalar potential well in the third

term of (3.15), shifting the spectrum downwards relative to the zero of energy.

With suitable boundary conditions, this mapping holds for both edge modes

and bulk modes. Thus, for each value of ω, the existence of unpaired edge

modes, as well as their spatial characteristics, can be mapped to a similar

problem in a QH system.

Therefore, it appears that Hatsugai’s result should be generally true; the

only necessary condition is that there are no bulk modes beyond the boundary

of the system. In the quantum Hall system, this is accomplished using an

electrostatic potential well; in a photonic crystal, this can be accomplished

by surrounding the crystal with a perfect electric conductor, or with a second

photonic crystal possessing a complete bandgap at the operating frequency.

In theory, the one-way edge modes appear as soon as the degeneracy is lifted,

but in practice they are physically relevant only if the lateral confinement to

the edge is fairly tight. The confinement is roughly ω/∆ω lattice constants,

where ∆ω is the size of the bandgap. If this is too large, the bandgap will
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Figure 3.1: Bandstructure of a hexagonal lattice of dielectric rods, with
filling fraction 0.431 and ǫ = 14. A linear degeneracy, or “Dirac point”,
occurs between the second and third TE bands at each of the two equivalent
corners of the hexagonal Brillouin zone. From Raghu and Haldane (2006)17.

not be robust against disorder, and the edge modes will scatter easily into

the bulk modes of the crystal, leading to significant radiative loss.

The above discussion implies a simple and general strategy for construct-

ing photonic crystals supporting one-way edge modes. We begin by searching

for a time-reversible band structure with a pair of photonic bands degener-

ate at one or more discrete k-points. If this degeneracy is broken when we

alter the system in a manner that breaks time-reversal symmetry, it might

be possbile to observe one-way edge modes within the resulting bandgap.

Haldane and Raghu identified hexagonal-lattice photonic crystals as a

candidate system for observing one-way modes16,17. In a time-reversible pho-

tonic crystal consisting of dielectric rods in a hexagonal lattice, the second

and third TE bands are degenerate at each of the two inequivalent corners of
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the hexagonal Brillouin zone44, as shown in Fig. 3.1. The bands meet linearly

at these degeneracies, which are referred to as “Dirac points” because the

Bloch modes in the vicinity of these degeneracies can be described in terms

of an effective Dirac theory. Such theories have been extensively deployed in

the condensed-matter literature. For instance, Dirac points arise in a famous

model of a quantum Hall system, proposed by Haldane in 1988, consisting

of tight-binding electron orbitals in a hexagonal lattice45. The Dirac theory

predicts that the bands acquire Chern numbers of ±1 when time-reversal

symmetry is broken, which in turn implies the existence of one family of

one-way edge modes.

In TE modes, the electric field vector lies parallel to the plane and the

magnetic field lies perpendicular to the plane. Therefore, the only way for

a time-reversal symmetry breaking effect to lift the TE band degeneracies

is by introducing off-diagonal components to the permittivity tensor. Non-

reciprocal materials with this property are called gyroelectric materials. Hal-

dane and Raghu showed that the indicated degeneracies can be lifted by

adding a gyroelectric effect to the medium outside the rods, and that this

gives rise to the predicted one-way edge modes.

The main problem with the Haldane-Raghu proposal is that real gyro-

electric materials break time-reversal symmetry very weakly. The ratio of

(imaginary) off-diagonal to (real) on-diagonal elements of the permittivity

tensor (the Voigt parameter) is ∼ 10−3 for the best materials available. This

is also roughly the ratio of the bandgap to the operating frequency, which,
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as we have discussed, implies that the edge modes span thousands of lattice

spacings and are readily scattered into the bulk. In order to actually observe

this effect, one would desire a bandgap that is orders of magnitude larger.

3.3 Photonic crystal bandstructure

In this section, I will describe a type of photonic crystal that supports one-

way edge modes without the restriction of having Dirac points in the band-

structure or the use of gyroelectric materials. With realistic material pa-

rameters, the one-way edge modes are laterally confined to a few lattice

constants, and occupy a broad (∼ 10%) band-gap with negligible material

loss. The system consists of Yttrium-Iron-Garnet (YIG) elements in a square

lattice, which lacks Dirac points in its bandstructure, operating at microwave

frequencies.

The YIG elements in the photonic crystal are gyromagnetic ferrimag-

nets46. These exhibit strong time-reversal symmetry breaking due to the

phenomenon of ferromagnetic resonance. In the presence of an applied mag-

netic field ~B, the local magnetic moment ~M obeys the precessional equation

d ~M

dt
= γ ~M × ~B, (3.16)

where γ is the gyromagnetic ratio. If ~B consists of a strong static out-of-plane
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field plus in-plane components that are weaker and harmonic in time,

~B = [δBxe
−iωt, δBxe

−iωt, Bz], (3.17)

then the magnetic moment has a similar form:

~M = [δMxe
−iωt, δMxe

−iωt,Mz]. (3.18)

Here, Mz = (αs/µ0)Bz, where αs = χs/(1 + χs), with χs denoting the static

magnetic susceptibility. From (3.16), we obtain







δMx

δMy






=
αs

µ0

ω0

ω2
o − ω2







ω0 iω

−iω ω0













δBx

δBy






, (3.19)

where ω0 = γBz is the magnetic resonance frequency. Therefore, the in-plane

permeability tensor is

µ2d = µo






1 − αsω0

ω2
o − ω2







ω0 iω

−iω ω0













−1

. (3.20)

This possesses an imaginary off-diagonal component because the presence of

the static magnetic field Bz breaks time-reversal symmetry: if we reverse the

direction of this field, the magnetic moments precess in the opposite direction,

and the imaginary off-diagonal components switch sign. When ω ≈ ω0, the

second term in (3.20) dominates the permeability, so time-reversal symmetry



3.3. PHOTONIC CRYSTAL BANDSTRUCTURE 75

can be strongly broken.

For simplicity, let us assume that the system is always operating in the

vicinity of a reference frequency ω1, where ω1 is close to ω0. We approximate

the permeability tensor with the frequency-independent form

µ2d =







µ iκ

−iκ µ






, (3.21)

obtained by evaluating (3.20) at ω = ω1. For ω1 = 26.9 GHz (f = ω/2π =

4.28 GHz), the tensor elements for YIG in a 1600 Gauss applied field are

µ = 14µ0 and κ = 12.4µ0
46. (Later, we will examine the consequences of

including the full ω-dependence, as well as material losses. It turns out that

these effects are relatively unimportant.)

The breaking of time-reversal symmetry in the in-plane permeability ten-

sor affects the TM modes, which contain in-plane magnetic fields and out-

of-plane electric fields. Fig. 3.2 shows the TM bandstructure for a photonic

crystal of YIG rods in a square lattice, surrounded by air. The bandstruc-

ture is computed numerically, using the COMSOL program47. Each rod has

radius 0.11a (where a is the lattice constant) and permittivity 15ǫ0. When

no static out-of-plane magnetic field is applied, the permeability is µ0, and

the second and third TM bands are degenerate at the corner of the Brillouin

zone (M). There is a separate degeneracy between the third and fourth TM

bands at the center of the Brillouin zone (M). Unlike the degeneracies in

the crystal studied by Haldane and Raghu, these degeneracies are quadratic
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Figure 3.2: TM photonic bandstructure for a square lattice of YIG rods (inset
in b, with and r = 0.11a) in air. (a) Zero static magnetic field. The relevant
quadratic degeneracy point is indicated. (b) 1600 Gauss +z static magnetic
field. The degeneracies are lifted, resulting in non-zero Chern numbers (red
numbers). The Chern numbers are calculated from Eq. 3.9.

and not linear “Dirac points”. As we will see in the next chapter, linear de-

generacies are forbidden by the C4v symmetry of the square-lattice photonic

crystal.

With a static 1600 Gauss out-of-plane magnetic field, the rods’ perme-

ability components (3.21) are µ = 14µ0 and κ = 12.4µ0. The degeneracies

are lifted, and a numerical calculation of the Chern numbers yields 1, -2,

and 1 repectively. In other words, each degeneracy-lifting causes a Chern

number exchange of magnitude p = 1. The bandgap between the second

and third TM bands is around 10% of the operating frequency, which should

be suitable for observing the one-way edge modes. We ignore the bandgap

between the third and fourth bands, which is significantly smaller.
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3.4 One-way edge modes

When the magnetized photonic crystal intersects a cladding in which the

fields go to zero, one-way edge modes exist at the interface. The interface

therefore functions as a one-way waveguide. Fig. 3.3 shows a simulation in

which the cladding is an ordinary photonic crystal possessing a bandgap at

the operating frequency. The cladding crystal consists of a square lattice

of high-index alumina rods (r = 0.106a, ǫ = 10ǫ0) in air, tilted 45 degrees

to match the bandgap frequency. (The cladding crystal is time-reversible,

and does not itself produce one-way edge modes.) The precise details of the

interface does not really matter; for example, the one-way edge modes can

also be observed along a boundary with a perfect electrical conductor. An

antenna, inserted at the boundary and operating at a mid-gap frequency,

excites a mode that propagates rightwards along the boundary. To the left

of the antenna, the fields decay exponentially to zero.

The projected bandstructure of the system was computed in COMSOL47,

and the results are shown in Fig. 3.4. As we can see, a branch of unpaired

edge modes occupies the gap between the second and third bulk TM bands.

The fact that there is exactly one branch of edge modes is consistent with

the discussion in the previous section, where we found that the degeneracy

lifting induces a p = 1 Chern number transfer (Fig. 3.2). Another branch of

one-way modes exists in the gap between the third and fourth TM bands,

but it is not plotted in Fig. 3.4.
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Figure 3.3: (a) Steady-state field pattern of a one-way edge mode at the
interface between the magnetized YIG photonic crystal (lower half-plane)
and a stopband cladding (upper half-plane). The field plotted is Ez, the out-
of-plane electric field component, with blue and red representing positive
and negative values respectively. The edge mode is excited by a c.w. source
(black double-arrow) along the interface (dashed line), which operates at a
mid-gap frequency (0.552 · 2πc/a). (b) Time-averaged value of |Ez|2 along
the interface.
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Figure 3.4: Projected band diagram at the boundary between the magnetized
YIG photonic crystal and a stopband cladding. The bulk modes of the YIG
crystal are shown in blue, those of the cladding are shown in green, and the
dispersion curve of the edge modes is shown in red.

Numerical simulations show that the one-way edge modes are immune to

scattering from extremely large defects inserted along the interface. Fig. 3.5

shows the results of simulations with a slab of perfect electrical conductor

(PEC) of width 3a and thickness 0.2a placed perpendicular to the interface.

In a conventional waveguide, such a drastic defect would almost completely

block the guided mode. In the current system, a steady-state source oper-

ating at the mid-gap frequency 0.555 · (2πc/a) excites a one-way mode that

circumvents the PEC defect, with 100% power transmission within the bulk

bandgap. This happens because the defect creates a new interface waveguide

between the PEC and the magnetized crystal. It therefore only alters the

phase response, which is partly due to the delay incurred by traversing the
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lengthened interface.

The robustness of the one-way modes can be further quantified using a

time-domain transmission calculation. Fig. 3.6 shows the electric field in-

tensity along the interface after a temporal Gaussian pulse with a spectral

bandwidth of 50% of the bandgap and carrier frequency 0.555 · (2πc/a) is

launched into the waveguide. Regardless of the presence of the defect, the

pulse passes through the waveguide with no perceivable change in amplitude

or pulse width. Since the one-way mode has approximately linear dispersion

relation at mid-gap frequencies (Fig. 3.4), sharp corners do not contribute

significantly to chromatic dispersion. The increased transit time is in agree-

ment with the change in group delay.

Although embedded sources were used in the above simulations, a sep-

arate set of simulations have verified that it is also easy to couple to the

one-way mode using waves incident on the system boundary.

3.5 Propects for experimental realization

Thus far, our analysis has been limited to two-dimensional structures. Similar

one-way waveguides can be realized in practical three-dimensional structures.

In the three-dimensional structure, TM modes can be truncated by sandwich-

ing the rods of the photonic crystal between two slabs of perfect electrical con-

ductor46,48. At microwave frequencies, metals such as copper can be treated

as perfect electrical conductors. Since the electric field must be normal at the
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Figure 3.5: Back-scattering suppression in the one-way waveguide. When a
slab of perfect electrical conductor with thickness 0.2a (black rectangle) is
inserted, the propagating modes circumvent the defect and maintain com-
plete transmission. The left hand side plots Ez for (a) t = 0, (b) t = 0.25T0,
and (c) t = 0.5T0, where T0 is the optical period.
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Figure 3.6: (a) Time-domain simulation results for a temporal Gaussian pulse
with spectrum contained in the bandgap. The electric field amplitude is
plotted at the source point (black), at the same transverse position 13 lattice
constants downstream along the waveguide in the absence of a defect (red),
and at the same point with an intervening defect (blue). (e) Transmission
and phase shift plots for the time-domain simulation, showing that the pulse
is completely transmitted regardless of the existence of the defect.
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Figure 3.7: Photonic bandstructure for the second and third TM bands, with
and without frequency dependence in the gyromagnetic permeability tensor.

surface of the conducting slabs, the three-dimensional structure supports the

same field distributions as the two-dimensional system (assuming, of course,

that the spacing between the slabs is sufficiently narrow that higher-order

modes are not generated for the desired operating frequency). It should be

noted that TE modes, like those studied by Haldane and Raghu16,17, lack

this advantage.

Real microwave ferrites contain material losses, which the simulations in

the preceding section have ignored. Material losses will cause the one-way

edge modes to decay, but for practical purposes this decay is quite negligible.

With a gyromagnetic linewidth of 0.3 Oe and a dieletric loss tangent of

0.0002, typical in commerically available monocrystalline YIG49, the complex

propagation constant was found to be is (−0.359+0.0001i)(2π/a) for the one-

way edge mode shown in Fig. 3.5. This means that the decay length is around

300 lattice constants, far exceeding practical structural dimensions.

We have also ignored the frequency dependency of the gyromagnetic per-



84 CHAPTER 3. ONE-WAY EDGE MODES

meability, which was given in (3.20). Including the full frequency dependence

modifies the photonic bandstructure slightly, as shown in Fig. 3.7. The mag-

netic bandgap shrinks from around 10% to around 6%, which narrows the

operational bandwidth, though not fatally. Further simulations have shown

that the dispersion does not harm the back-scattering suppression or the

confinement of the edge mode.

Finally, it should be noted that the system we have studied is limited to

the GHz regime. According to (3.20), the operating frequency of the gyro-

magnetic photonic crystal must lie near the magnetic resonance frequency.

This can go up to several GHz in the presence of high-field biasing magnets,

but no higher. In the GHz regime, the system is essentially a table-top ex-

periment, which should make it relatively easy to create; as of this writing,

an experimental effort is already underway. For applications at THz and

higher frequencies, the prospects for realizing one-way edge modes remain

uncertain. One possible avenue of attack is to invent a meta-material that

produces an artificial high-frequency magnetic resonance. To the best of my

knowledge, no suitable proposal currently exists in the literature.



Chapter 4

Effective theory of quadratic

degeneracies

4.1 Quadratic degeneracies

In the previous chapter, we studied the bandstructure of a two-dimensional

crystal with a square-lattice (C4v) symmetry. This bandstructure contained

band degeneracies at particular points in k-space: the center of the Brillouin

zone (Γ) and the corner of the Brillouin zone (Γ). As we have seen, such

degeneracies play an important role in the study of one-way edge modes:

when the degeneracies are lifted by breaking time-reversal symmetry, the

edge modes are generated within the resulting bandgap.

In the condensed-matter literature, a common approach to studying band

∗Y. D. Chong, X. G. Wen, and M. Soljačić, Phys. Rev. B 77, 235125 (2008).
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degeneracies is to construct an “effective theory”, which characterizes the

bandstructure near each degeneracy in a manner that is independent of the

underlying physical details. Suppose we have a band degeneracy at ~k = ~k0.

Let us choose a pair of independent Bloch functions at ~k0, denoted by u1
0(~r)

and u2
0(~r). Since we interested in ~k ∼ ~k0, let us define ~κ ≡ ~k − ~k0 for

convenience. For ~κ ≈ 0, the Bloch functions can be written as

u1
κ(~r) ≈ c11(~κ)u

1
0(~r) + c12(~κ)u

2
0(~r)

u2
κ(~r) ≈ c21(~κ)u

1
0(~r) + c22(~κ)u

2
0(~r).

(4.1)

The mixing elements cnm(~κ) can be related to the mode frequencies, ωn(~κ),

through an eigenvalue equation

H(~κ)







cn1(~κ)

cn2(~κ)






= λn(~κ)







cn1(~κ)

cn2(~κ)






, (4.2)

where the “effective Hamiltonian” H(~κ) is a 2× 2 matrix whose eigenvalues

are, by definition, λn(~κ) ≡ ωn(~κ)−ω0. As we shall see, obtaining H(~κ) alone

can provide a great deal of insight into the physical properties of the system,

in a way that does not require any additional information about u1
0(~r) and

u2
0(~r) (which are generally rather complicated functions of ~r).

The seminal Haldane-Raghu papers on electromagnetic one-way edge

modes16,17 concentrated on linear degeneracies, for which the band frequen-

cies near each degeneracy go as ±|~κ|. The reason for looking at linear de-
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generacies is that they occur whenever there is no a priori reason for the

O(κ) term in (4.2) to vanish. The effective Hamiltonian takes the form of a

two-dimensional Dirac Hamiltonian, such as

H(κ) = λ0 (κxσ1 + κyσ3) , (4.3)

where σi represent Pauli matrices. These degeneracies are therefore referred

to as “Dirac points”45.

The degeneracies in the C4v bandstructure shown in Fig. 3.2 are clearly

quadratic, not linear. Therefore, the effective theory based on the two-

dimensional Dirac Hamiltonian does not describe this bandstructure. But

whereas Dirac points have been extensively analyzed in the condensed-matter

literature45, there has been, to the best of my knowledge, no analogous study

of quadratic degeneracies.

In this chapter, I present an effective theory that describes the bands near

a quadratic degeneracy point, based on the symmetry properties of k-space

around that point. It turns out that the quadratic degeneracy in the C4v crys-

tal can be regarded as a pair of linear degeneracies, analytically continuable

to Dirac points, that are “pinned” to the same k-space point by the crystal

symmetry. The quadratic degeneracy is robust against perturbations such as

variations in the permittivity and radius of the rods, as long as the C4v sym-

metry is preserved. The degeneracy can be lifted by parity and time-reversal

symmetry breaking. In that case, the two bands acquire Chern numbers of
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±1, in agreement with the numerical result of the previous chapter. Break-

ing the 90◦ rotational symmetry “unpins” the quadratic degeneracy point,

which splits apart into two distinct linear degeneracies. The theory applies

to any two-dimensional Bloch system, whether electronic or photonic, with

C4v symmetry and a quadratic degeneracy point. In particular, we show that

it accurately describes the aforementioned photonic crystal of dielectric rods

for a wide range of dielectric contrasts and rod radii.

4.2 Effective Hamiltonian

Suppose we are able to find an effective Hamiltonian H(κ) that satisfies (4.2)

for the C4v crystal. When the crystal is perturbed, (4.2) should remain valid

for some analytical continuation of H(κ), even if the perturbation breaks

C4v. In other words, although the basis functions u1
0(~r) and u2

0(~r) are not

κ = 0 eigenstates of the perturbed system, they remain valid basis functions

for the perturbed eigenstates around κ ∼ 0. The mixing elements cnm(~κ)

shown in (4.1) are altered by the perturbation, and this is reflected in H(~κ).

We will be interested in three different symmetry-breaking perturbations

of the square lattice. Firstly, we could “shear” the lattice by rotating the

basis vectors as follows:

~a1 = a (cos θ, sin θ)

~a2 = a (sin θ, cos θ) ,

(4.4)
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where a denotes the lattice constant. This breaks the symmetry under C4

rotations and reflections about the x and y axes. Secondly, we could distort

the rods by stretching them along the x or y axes—or, alternatively, stretch-

ing the lattice vectors and rescaling kx and/or ky; this breaks the symmetry

under rotations and reflections about y = ±x. Thirdly, we could break par-

ity (left-right symmetry). This can be accomplished by adding an imaginary

off-diagonal component µxy = iκ to the permeability tensor, as discussed in

the previous chapter.

We will shortly see that breaking parity in this system is equivalent to

breaking time-reversal symmetry. For simplicity, we will mostly refer to

“parity” instead of “time-reversal symmetry” in this chapter. This is because

parity has a direct meaning in the context of the C4 symmetry group, which

we will exploit to construct the effective theory.

We are now ready for the central result of this chapter. I claim that the

following effecitve Hamiltonian describes the quadratic degeneracies of a C4v

crystal, including the symmetry-breaking effects that we have discussed:

H = λ0

[ 3
∑

i=1

αiσi + β(κ2
x − κ2

y) σ1 + 2κxκy σ3 + γ|~κ|2
]

. (4.5)

This Hamiltonian contains six phenomenological parameters: λ0, β, γ, and

α1,2,3. The parameter λ0 determines the frequency scale, while β and γ

control the relative curvatures of bands along different directions. The α

parameters determine the strength of the symmetry breaking: α1 controls
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the relative lengths of the two lattice vectors, α2 is proportional to the parity-

breaking permeability component µxy, and α3 is proportional to the shear

angle θ defined in (4.4).

This Hamiltonian is valid in the neighborhood of κ = 0, and we have

omitted O(κ4) terms which have negligible effects on the band properties in

the regime of interest. Furthermore, we assume that the symmetry-breaking

is weak (e.g. θ ≪ 1), and thus retain only symmetry-breaking terms that are

zeroth-order in κ.

In the next two sections, we will determine the bandstructure produced

by (4.5), and show that it is consistent with the symmetries of the system. By

comparing this bandstructure to the numerically obtained bandstructure, we

will then be able to show that (4.5) is an appropriate effective Hamiltonian.

4.3 Bandstructure

When α1 = α3 = 0, the eigenvalues of (4.5) are

λ±(~κ)/λ0 = γ|~κ|2 ±
√

|~κ|4 + (β2 − 1)(κ2
x − κ2

y)
2 + α2

2 . (4.6)

Suppose we assume β = 1 (setting β 6= 1 simply distorts the bandstructure

along the κx = ±κy directions). For α2 = 0, (4.6) then reduces to a pair of

quadratic bands λ±/λ0 = (γ±1)|~κ|2, which meet at ~κ = 0. The parameter γ

controls the relative curvatures of the two bands: for instance, the bands have
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equal and opposite curvatures when γ = 0, whereas they curve in opposite

directions with a flatter upper band when −1 < γ < 0. Two examples of

such bands are shown in Fig. 4.1(a) and Fig. 4.1(c).

Setting α2 6= 0 lifts the degeneracy and opens a bandgap ∆λ = 2λ0α2.

The two bands will curve in the same direction at ~κ = 0, as we observed in

Fig. 3.2.

Now consider the case where α3 6= 0, keeping α1 = 0. For α2 = 0, the

quadratic degeneracy splits into two distinct degeneracy points, at

~κ± = ±(
√

α3/2,−
√

α3/2 ) for α3 > 0

~κ± = ±(
√

−α3/2,
√

−α3/2 ) for α3 < 0.

(4.7)

We will henceforth assume that α3 > 0; the following discussion can be easily

adapted to the α3 < 0 case. Examples of these linear degeneracies are shown

in Fig. 4.1(b) and Fig. 4.1(d).

Let us expand the Hamiltonian around ~κ±, using the variables

q1 =
1

2
(κx + κy)

q2 =
1

2
(−κx + κy) ±

√

α3/2,

(4.8)

which are simply k-space displacements from ~κ±, rotated by 45◦. To first

order in q1 and q2,

H±(~q)/λ0 ≃ γ(α3 ∓
√

8α3 q2) ±
√

8α3 (βq1σ1 + q2σ3) + α2 σ2. (4.9)
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Figure 4.1: The second and third TM photonic bands for time-reversible
lattices of dielectric rods, plotted against κx, where ~κ = (κx,−κx) (i.e. along
the line ΓM). Note that the effective Hamiltonian (4.5) is independent of β
along this line. The rods have radius r0 and permittivity ǫ, where r0 = 0.25a
and ǫ = 16.26 for (a) and (b), and r0 = 0.25a and ǫ = 16.26 for (c) and
(d). Dots show numerical data (generated using MPB50); solid lines show
analytic results after fitting the parameters in (4.5) to the numerical data. In
(a) and (c), the square lattice is undistorted (θ = 0 and α3 = 0), and there is
a quadratic degeneracy at κ = 0. In (b) and (d), the lattice is sheared by an
angle θ: (b) θ = 1.2× 10−4 radians, with fitted value α3 = 3.7× 10−5(π/a)2;
(d) θ = 10−4 radians, with fitted value α3 = 1.8×10−5(π/a)2. The quadratic
degeneracy then splits into two linear degeneracies.
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Figure 4.2: Three-dimensional plot for the bandstructure of Fig. 4.1(d), show-
ing the distorted Dirac spectrum.

When γ = 0 and β = 1, this reduces to a two-dimensional Dirac Hamiltonian

near each each degeneracy point (or “Dirac point”). Furthermore, α2 plays

the role of a mass term, opening a bandgap ∆λ = 2λ0α2. Setting γ 6= 0

distorts the Dirac Hamiltonian and its eigenvalue spectrum: as shown in

Fig. 4.1(d), the Dirac cones in the α2 = 0 limit are “tilted” in k-space.

Along the line κy = ±κx, the splitting of the degeneracy point can be

thought of as a vertical relative displacement of the two parabolic bands.

Note, however, that the bands meet only at isolated points in the full κ-

space, as shown in Fig. 4.2. The splitting is accompanied by a change in

the density of states from a discontinuity to a linear “dip” centered at the

frequency of the band degeneracy. When α2 6= 0, the density of states is

discontinuous at the band edges, dropping to zero inside the band gap. (For

photonic crystals, this refers to the density of states for either TE or TM

modes, not the entire photonic density of states.)
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The situation is very similar for α1 6= 0. When α2 = α3 = 0, the degener-

acy splits into two, but along the line κy = 0 (if α1 > 0) or κx = 0 (if α1 < 0),

instead of κx = ±κy. When both α1 and α3 are nonzero, the degeneracies

are located at an intermediate location, κ± = ±(α2
1 + α2

3)
1/4(cos φ, sinφ),

where tanφ = α3/α1, and expanding around each point yields a Dirac-like

Hamiltonian analogous to (4.9).

When α2 6= 0, the bands are non-degenerate, and their Chern numbers

can be calculated. The details of this calculation are given in Appendix

B. The result is that the upper and lower bands possess Chern numbers

−sgn(α2) and sgn(α2) respectively, regardless of the values of α1, α3, β, and

γ. This implies the existence of a single family of one-way edge modes43, and

agrees exactly with the numerical results of the previous chapter.

Although the effective Hamiltonian (4.5) is only valid near κ = 0, it yields

the same Chern number as the actual bandstructure because only the region

near the broken degeneracy point provides a non-vanishing “Berry flux” con-

tribution to the Chern number, as explained in Appendix A. Furthermore,

while our theory only describes weak symmetry-breaking, the Chern number

is a topological quantity and cannot be altered by non-perturbative distor-

tions, as long as the bands remain non-degenerate. Therefore, it remains

unchanged even in the strong parity-breaking regime explored in the previ-

ous chapter.

When α1 and/or α3 are non-zero, the two linear degeneracy points each

contribute ±1/2 to the Chern number, in accordance with previous analyses
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of the Dirac Hamiltonian45. When α1 = α3 = 0, the Berry connection winds

twice as fast around the point κ = 0, which provides the entire contribution

of ±1. The dependence of the Chern number on the sign of α2 confirms that

α2 controls parity breaking, since the Chern number can be shown to vanish

identically when parity is unbroken.

4.4 Symmetry properties

The fully symmetric Hamiltonian H0 ≡ H|αi=0 must transform under any

operation g ∈ C4v as

D(g)H0(~κ)D
−1(g) = H0(g~κ). (4.10)

The matrices D(g) form a two-dimensional representation of C4v. It is

easy to verify that (4.10) holds if and only if D(g) falls under the two-

dimensional irreducible representation conventionally denoted as χ(5), which

is also the only two-dimensional irreducible representation for C4v
51. The

representation is shown in Table 4.1. The transformation properties of the

symmetric Hamiltonian are unaffected by the parameters β, γ, or λ0.

By studying how H(~κ) transforms under this group representation, we

can show that the quadratic degeneracy is protected by the crystal symmetry.

Any zeroth-order term proportional to the identity matrix, when added to

H0, simply shifts the eigenvalues without opening a gap. Adding a zeroth-
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g Description D(g)

E Identity 1

C4 90◦ clockwise rotation

[

0 1
−1 0

]

= iσ2

C3
4 90◦ anticlockwise rotation

[

0 −1
1 0

]

= −iσ2

C2
4 180◦ rotation -1

mx Reflection about κx-axis

[

0 1
1 0

]

= σ1

my Reflection about κy-axis

[

0 −1
−1 0

]

= −σ1

σu Reflection about κy = κx

[

1 0
0 −1

]

= σ3

σv Reflection about κy = −κx

[

−1 0
0 1

]

= −σ3

Table 4.1: Representation for the symmetry transformations of C4v acting on
the effective Hamiltonian (4.5). This is the only two-dimensional irreducible
representation of C4v, up to the usual similarity transformations51.
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order term proportional to σ1 (i.e. α1 6= 0) breaks C4v since, under the

representation given in Table 4.1, α → −α for 90◦ rotations and reflections

across κx = ±κy. Note that α → α for reflections across the κx and κy

axes, in agreement with our claim that α1 6= 0 corresponds to stretching the

lattice. Similarly, setting α2 6= 0 preserves the rotational symmetries but

breaks the reflection symmetries (parity). Finally, setting α3 6= 0 preserves

the reflection symmetry across κx = ±κy but breaks the symmetry under 90◦

rotations and reflections across κx = 0 and κy = 0.

Furthermore, the Hamiltonian cannot include terms that are first-order

in ~κ if the C4v symmetry is unbroken or only partially broken. Such terms

have the general form

∆H =
2

∑

i=1

3
∑

j=1

κicijσj , (4.11)

and we can show that cij = 0 for all i, j as long as the system is symmetric

under either rotations, reflections about the κx and κy axes, or reflections

about κx = ±κy. At least one of these symmetries is preserved by each of

the three “elementary” distortions discussed above. For example, suppose

we break parity while leaving the system rotationally invariant. According

to Table 4.1, 90◦ anticlockwise rotations are represented by −iσ2, so

σ2∆H(κx, κy)σ2 = ∆H(−κy, κx). (4.12)

Inserting (4.11) into both sides of this equation, we obtain the following six
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equations for the coefficients cij:

−c11 = c21, c12 = c22

−c13 = c23, −c11 = −c21
c12 = −c22, −c13 = −c23

(4.13)

The only possible solution is cij = 0 for all i, j.

This situation may be contrasted with a triangular or honeycomb lat-

tice, for which there is a C3v symmetry around each corner of the hexagonal

Brillouin zone. There, one can write down an O(κ) Hamiltonian which trans-

forms under a two-dimensional irreducible representation of C3v: this is just

the Dirac Hamiltonian (4.3). In that case, a zeroth-order “mass” term pro-

portional to σ2 controls parity breaking45.

4.5 Comparison with numerical results

We can check the validity of the ansatz (4.5) by comparing its bandstruc-

ture to numerical results. In this section, I will use results obtained using

the MPB50 and COMSOL47 computer programs, which solve the Maxwell

equations without any approximations apart from the discretization of the

simulation cell.

Let us begin with the fully-symmetric crystal, for which α1 = α2 = α3 =

0. We can determine β and γ by fitting the effective bandstructure (4.6) to

numerical bandstructures. Fig. 4.3 shows the results of least-squares fits for
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Figure 4.3: Values of β and γ obtained from least-squares fits of (4.6) to
bandstructures computed numerically along the lines ky = π/a and kx = −ky.
The photonic crystal consists of a square lattice of rods with radius r0 and
permittivity ǫ, embedded in air.
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a variety of rod radii r0 and permittivities ǫ. Two typical fits are shown in

Fig. 4.1(a) and Fig. 4.1(c). We find that β and γ are both strongly dependent

on r0 and ǫ.

In all these simulations, we will assume that µxx = µyy = µ0, in order to

avoid introducing an additional numerical parameter. If we set µxx and µyy

to, say, the values for the YIG crystal studied in Chapter 3, that introduces

a different set of best-fit parameters. However, the main conclusions in this

chapter are unaltered.

When the simulated crystal is perturbed by changing the lattice constant

slightly along (say) the x direction (δax < 0), the degeneracy splits along

the line κy = 0 in the computed bandstructures. From the location of the

linear degeneracies, we can obtain α1. Similarly, shearing the lattice by an

angle θ 6= 0 induces linear degeneracies along the line κx = κy, as shown in

Fig. 4.1(b) and Fig. 4.1(d), and this yields α3. Finally, we can obtain α2

by introducing an off-diagonal permeability component µxy = iκ in the rods

and fitting the resulting bandstructure to (4.6).

We find that that α1 is proportional to δax, α2 is proportional to κ, and α3

is proportional to θ, as shown in Fig. 4.4. Like β and γ, the proportionality

factors α1/δax, α2/κ, and α3/θ depend on r0 and ǫ. In other words, the

positions of the linear degeneracies induced by shearing and/or stretching the

lattice do not depend solely the lattice geometry, but also on the underlying

details of the crystal. This behavior differs from that of previously-studied

Dirac points in triangular and hexagonal lattices, where, as we have seen, the



4.5. COMPARISON WITH NUMERICAL RESULTS 101

0

0.5

1
x 10

−4

0

2

4

6

x 10
−6

α 2 / 
(2

π/
a)

2

0

2

4

x 10
−4

0

1

2

3
x 10

−5

α 3 / 
(2

π/
a)

2

0

2

4
x 10

−4

0

1

2
x 10

−6

α 1 / 
(2

π/
a)

2

0.5 × 10−3
10−3

10−30.5 × 10−3

η η
0.5 × 10−3

0.5 × 10−3

10−3

10−3

0.5 × 10−3

0.5 × 10−3

10−3

10−3

θ (radians) θ (radians)

r
0
 = 0.1 a ,  ε = 15 r

0
 = 0.3 a ,  ε = 20

|δ a
x
| / a |δ a

x
| / a

Figure 4.4: Plots of α1, α2, and α3 for two different photonic crystals of
dielectric rods with radius r0 and permittivity ǫ. In the left column, the
dielectric rods have radius r0 = 0.1a (where a is the lattice constant) and
permittivity ǫ = 15. In the right column, r0 = 0.3a and ǫ = 20. We
obtain α1 from the location of the degeneracies ~κ = ±(0,

√

α1/β) for lattice
stretching parameter δax/a. We obtain α2 by performing a nonlinear least-
squares fit of Eq. (4.6) to the computed T -broken bandstructures along the
line κx = −κy, using the values of γ found in Fig. 4.3 (which were obtained
using the symmetric lattice); it is plotted against the imaginary off-diagonal
permeability component, µxy = iκ. We obtain α3 from the location of the

degeneracies ~κ = ±(
√

α3/2,−
√

α3/2), for lattice distortion angle θ.
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Dirac points are invariably pinned to the corners of the hexagonal Brillouin

zone by the C3v symmetry.

Fig. 4.5 compares the numerically computed bandstructure of a parity-

broken photon crystal with the effective bandstructure, utilizing the param-

eters obtained above. Here, we use the values of λ0, β, and γ computed for

the parity-symmetric system, and the proportionality constant α2/κ found

above. In this sense, the effective bandstructure is “predicted” and not di-

rectly fitted to the numerical data. As we can see, the theory matches the

numerical results very well within its region of validity (κ ∼ 0).

4.6 Implications of the effective theory

In the preceding section, we have seen that the effective Hamiltonian (4.5)

accurately describes the bands of a C4v photonic crystal in the vicinity of a

band degeneracy. I would like to point out, in closing, that the effective the-

ory should be applicable to any electronic or photonic system possessing C4v

symmetry and a two-fold band degeneracy, regardless of the other physical

details of the system. In particular, the various results obtained in section

4.4 must hold based on symmetry considerations alone. This includes the

protection of the quadratic nature of the degeneracy, the forbidding of linear

degeneracies, and the Chern numbers induced by parity breaking.

As an example of an electronic system for which (4.5) is a valid effective

Hamiltonian, consider a tight-binding model shown in Fig. 4.6, which consists
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Figure 4.5: TM bandstructure of a two-dimensional photonic crystal formed
by a square lattice of dielectric rods. (a) Fully symmetric crystal with rod
radius 0.15a (where a is the lattice constant) and ǫ = 20ǫ0. The rods are
embedded in air, and µ = 1 everywhere. The quadratic degeneracy between
the second and third TM bands is indicated with an arrow. Inset: the
crystal structure in real space. (b) Parity-broken crystal, with off-diagonal
permeability component µxy = 0.1i in the rods. Inset: Band structure near
the lifted degeneracy, with dots showing numerical solutions of the exact
Maxwell equations47. The solid lines show the analytic approximation of
(4.6), where λ0, β, and γ are calculated from the symmetric system and α2

is calculated separately based on the proportionality constant with |µxy| (see
Fig. 4.4.)
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Figure 4.6: A tight-binding model that is described by the effective Hamil-
tonian (4.5) near k = 0.

of two interleaved square lattices with d-wave hopping between nearest and

next-nearest neighbors. If we denote the creation operators on sublattices 1

and 2 as a† and b†, and the nearest-neighbor lattice vectors as b1 and b2, the

tight-binding Hamiltonian is

H =
∑

f

{

1

4

[

(

−a†r+b1+b2
+ a†r+b1−b2

)

ar +
(

b†r+2b1+b2
− b†r+2b1−b2

)

br+b1

]

+ β
[(

−b†r+b1
+ b†r+b2

)

ar +
(

−a†r+2b1
+ a†r+b1+b2

)

br+b1

]

}

+ h.c.

(4.14)

As usual, this can be solved by Fourier-transforming the fermion operators
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to obtain a Fourier decomposition H =
∑

k Hk. For k ∼ 0, we find that

Hk = b2







ak

bk







† 





k1k2 β (k2
1 − k2

2)

β (k2
1 − k2

2) −k1k2













ak

bk






+O(k3), (4.15)

which is the desired effective Hamiltonian. In this system, β regulates the

strength of nearest neighbor hopping between the two sublattices as com-

pared to the strength of next-nearest-neighbor hopping within each sublat-

tice. In this light, the existence of a free β variable dependent on the under-

lying physical properties of the lattice is unsurprising. It should be pointed

out, however, that this tight-binding model is not generally applicable to

photonic crystals, since most photonic Bloch modes are poorly-localized; I

am simply presenting it as an illustration that the effective Hamiltonian (4.5)

and its associated behaviors could show up in other physical contexts. In-

deed, a similar effective Hamiltonian has previously been found by Onoda

and Nagaosa52, while studying a tight-binding model of a two-dimensional

square-lattice ferromagnet.

Degeneracy points occuring in lattices with fundamental symmetries dif-

ferent from C4v can be studied via a program similar to the one outlined in

this chapter. As long as the degeneracy occurs at a point with a high degree

of symmetry, that symmetry can be exploited, by guessing an appropriate

representation of the symmetry group, to yield the most general possible

form of the effective Hamiltonian. The advantage of this procedure is that it
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relies only on symmetry principles, and can therefore be applied when other

methods, such as tight-binding, are not readily applicable.



Conclusions

In this thesis, I have studied two types of photonic crystals which break the

conventional mold in very different ways.

The first type consists of systems in which the scattering centers of the

“photonic crystal” are single atoms interacting with the electromagnetic field

via an optical resonance. We saw that quantum mechanical polariton the-

ories, coupled with band-theoretical arguments, can yield intuitive explana-

tions for the behavior of these systems, such as the resonant enhancement

of the photonic bandgap and the dependence of the dark state polariton’s

group velocity on the control beam.

The second type of unconventional photonic crystal breaks time-reversal

symmetry by incorporating magneto-optic materials, leading to topologically

distinct bandstructures (i.e., bands possessing non-zero Chern numbers). We

have seen that these systems give rise to the peculiar phenomenon of one-

way edge modes, and that it is feasible to observe these modes experimen-

tally. Much work remains to be done on this topic; in particular, it will be

interesting—especially from the technological applications point of view—to

107
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find a method for generating one-way edge modes at terahertz, or higher,

frequencies.



Appendix A

Chern numbers and topology

The effect of time-reversal symmetry breaking on Bloch systems, such as

photonic crystals, can be summarized by a mathematical quantity known as

the Chern number or TKNN number40. This was introduced into physics

by Thouless, Kohmoto, Nightingale, and den Nijs in 1982, in their seminal

study of quantum Hall systems in a periodic scalar potential. Non-zero Chern

numbers are associated with a variety of interesting physical phenomena,

particularly unidirectional edge states—called chiral edge states in quantum

Hall systems, or one-way edge modes in photonic crystals. This Appendix

provides a self-contained overview of the relevant mathematical background.

Consider a time-independent Schrödinger equation,

H(r)ψ(r) = Eψ(r). (A.1)

109
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The eigenfunctions ψ(r) might be scalars, vectors, spinors, or more compli-

cated objects. In this thesis, we are interested in the Hermitian form of the

classical Maxwell equations, where, as shown in (3.7), ψ is the electric field

vector and

H = ǫ−1 ∇×
(

µ
−1(r)∇× ·

)

. (A.2)

Suppose H(r) is periodic in the x-y plane, with periodic boundary con-

ditions and a total of N unit cells. We assume there is no z-dependence, so

that the problem is two-dimensional. Bloch’s theorem states that the eigen-

functions can be uniquely labelled by two quantum numbers (n, k), where n

an integral band index and k is a wavevector in the first Brillouin zone:

ψnk(r) =
1√
N
unk(r)e

ik·r. (A.3)

The Bloch function unk(r) has the periodicity of the Hamiltonian and obeys

a modified Schrodinger equation

Hk(r)unk(r) = Enkunk(r), (A.4)

where Hk is obtained by substituting (A.3) into (A.1), i.e. replacing ∇ with

∇+ik. We can refer to abstract kets |nk〉 instead of Bloch functions unk(r) =

〈r|nk〉. The Bloch functions obey the orthonormality condition

〈nk|n′k〉 =

∫

Ω

d2r u∗nk(r)un′k(r) = 1, (A.5)
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where Ω denotes the area of the unit cell.

For the prototypical quantum Hall system—a two-dimensional electron

gas in a uniform magnetic field—there is an additional complication: the vec-

tor potential that gives rise to a uniform magnetic field is not periodic under

ordinary lattice translations, so neither is the Hamiltonian. This problem

is skirted by introducing the concepts of “magnetic translations” and “mag-

netic Bloch functions”40. I will not discuss this complication here, as it does

not affect the subject of this thesis. The electromagnetic Hamiltonian (A.2)

is periodic under ordinary lattice translations.

For each band n, the Chern number (or TKNN number)40 Cn is defined

as the following integral:

Cn =
1

2πi

∫

BZ

d2k

∫

Ω

d2r

(

∂u∗nk

∂kx

∂unk

∂ky
− ∂u∗nk

∂ky

∂unk

∂kx

)

. (A.6)

This is an area integral carried out in both k-space and real space, over the

first Brillouin zone and the real-space unit cell respectively.

The Chern number Cn is a measure of certain topological characteristics

of a band, and is completely unaffected by sufficiently weak changes in H (the

precise meaning of “sufficiently weak” will eventually become clear). This

relies on the fact, which we shall shortly prove, that Cn is always an integer,

and it is impossible to go continuously from one integer to another. In other

words, suppose we start with a Hamiltonian H(r) whose eigenfunctions are

grouped into bands n = 1, 2, · · · possessing Chern numbers C1, C2, · · · . If
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we continuously tune the parameters of H, such as particle masses or the

strengths of external fields, the Bloch functions and their eigenvalues vary

continuously in some complicated way. However, the Chern numbers remain

completely unchanged, until we tune past some critical value. At that point,

they change abruptly to some other set of integers C1
′, C2

′, · · · .

We will now prove that the Chern number is always an integer. For each

(n, k), define the following k-space vector, known as the Berry connection:

~Ann′

(k) =

∫

Ω

d2r u∗nk(r)∇kun′k(r) = 〈nk|∇k|n′k〉 . (A.7)

Here, ∇k ≡ (∂/∂kx, ∂/∂ky). In terms of the Berry connection, we can write

(A.6) as

Cn =
1

2πi

∫

BZ

d2k

(

∂Ann
y

∂kx

− ∂Ann
x

∂ky

)

=
1

2πi

∫

BZ

d2k (∇k × ~Ann(k)) · ẑ. (A.8)

According to Stokes’ theorem, the flux of a curl through a surface can be re-

expressed as a line integral around the edge of the surface. This implies that

the above integral is equal to the following line integral around the boundary

of the Brillouin zone:

Cn
?
=

1

2πi

∮

∂(BZ)

d~k · ~Ann(k). (A.9)
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Figure A.1: The Bloch functions are defined in the first Brillouin zone with
periodic boundary conditions. The Brillouin zone is therefore topologically
equivalent to a torus.

This appears to vanish since the Bloch functions (and the Berry connec-

tion A(k)) are defined smoothly and periodically in the Brillouin zone. The

contributions to the integral from opposite ends of the zone should cancel.

Another way to say this is that the Brillouin zone is topologically equiv-

alent to the surface of a torus, as shown in Fig. A.1. Therefore, (A.9) is

equivalent to the flux (of a curl) through the entire surface of the torus.

Since the surface of the torus has no boundary, the flux is zero. We can see

this by noting that Stoke’s theorem equates the flux integral to a line inte-

gral carried out along an infinitesimal loop residing on the suface (since the

theorem is agnostic about which side of the loop we take as the flux integral,

the flux through the infinitesimal area of the loop is the negative of the flux

through the entire remaining surface of the torus). This vanishes since the

area of the loop is infinitesimal.

The crucial loophole in this reasoning was pointed out by Kohmoto42. It
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is sometimes impossible to define the Bloch functions smoothly and uniquely

over the entire Brillouin zone due to the existence of phase singularities.

Suppose we have a set of eigenstates |nk〉 that solve (A.4). This set is not

uniquely defined, as we can multiply each |nk〉 by an arbitrary phase factor

exp[iφ(k)], where φ(k) is real and periodic in the Brillouin zone. Generally,

we attempt to choose φ(k) such that, for an arbitrary fixed value of r, the

resulting Bloch function unk(r) varies continuously with k over the entire

Brillouin zone. A phase singularity occurs if this scheme fails at any isolated

point k0 in the Brillouin zone: for neighboring k ≈ k0,

|nk〉 ≈ eip arg(k−k0) |k0〉 , p ∈ Z. (A.10)

Here, arg(k − k0) is the angle of k − k0 relative to the kx axis. Kohmoto

showed that in a quantum Hall system, can always find at least one point k0

that satisfies this condition, for any given value of r.

For a given set of phase singularities in the Brillouin zone, the Chern

number (A.8) is the sum of line integrals around infinitesimal k-space loops

enclosing each singularity. For each singularity,

1

2πi

∮

k0

d~k · 〈nk|∇k|nk〉 = p ∈ Z, (A.11)

where p is the winding number defined in (A.10). We have thus proven that

the Chern number is an integer.

There is an important relationship between Chern numbers and band de-
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generacies, which was first pointed out by Simon41. By resolving the identity,

we can write (A.8) as

Cn =
−1

2πi

∑

n′

∫

BZ

d2k

(〈

nk

∣

∣

∣

∣

∂

∂kx

∣

∣

∣

∣

n′k

〉 〈

n′k

∣

∣

∣

∣

∂

∂ky

∣

∣

∣

∣

nk

〉

−
〈

nk

∣

∣

∣

∣

∂

∂ky

∣

∣

∣

∣

n′k

〉〈

n′k

∣

∣

∣

∣

∂

∂kx

∣

∣

∣

∣

nk

〉)

. (A.12)

Using the “Feynman-Hellman” theorem

〈nk|∂H/∂ki|n′k〉 = (En′k − Enk) 〈nk|∂/∂ki|n′k〉 +
∂Enk

∂ki

δnn′, (A.13)

this becomes

Cn =
1

2πi

∑

n′

∫

BZ

d2k

[〈

nk

∣

∣

∣

∣

∂Hk

∂kx

∣

∣

∣

∣

n′k

〉〈

n′k

∣

∣

∣

∣

∂Hk

∂ky

∣

∣

∣

∣

nk

〉

−
〈

nk

∣

∣

∣

∣

∂Hk

∂ky

∣

∣

∣

∣

n′k

〉 〈

n′k

∣

∣

∣

∣

∂Hk

∂kx

∣

∣

∣

∣

nk

〉]

/
[

(Enk − En′k)
2] . (A.14)

We have seen that the Brillouin zone is topologically equivalent to the

surface of a torus. Imagine smoothly interpolating Hk off this surface and

into the surrounding three-dimensional space. Suppose that the band n is

degenerate with some other band n′ for some k = k0 in the three-dimensional

space. Generally, this occurs at an isolated k-space point (rather than a line,

sheet, or volume)53. According to (A.14), such degeneracy points act as
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Figure A.2: Relationship between Chern numbers and degeneracies. (a)
Initially, a pair of bands have Chern numbers C1 and C2. In the extended
k-space, there is a degeneracy point, represented by an orange dot, outside
the torus whose surface represents the first Brillouin zone. (b) Tuning H
moves the degeneracy onto the torus surface, and it becomes physical. (b)
Further tuning moves the degeneracy inside the torus. The Chern numbers
are now C1 + p and C2 − p, where p ∈ Z. The Bloch functions defined on the
torus surface possess a phase singularity with winding number p.
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point sources for an abstract flux passing through the torus surface54. If

we tune parameters in Hk (other than k itself), the degeneracy points will

generally move around in the extended k-space. If k0 lies outside the torus,

the abstract flux sums to zero, so its contribution to the Chern number is

zero. If k0 lies within the torus, it contributes a non-zero integer to both

Cn and Cn′. In fact, according to (A.14) its contributions to Cn and Cn′

are equal and opposite in sign. Thus, the Chern numbers jump abruptly

whenever a degeneracy point pops into or out of the torus, i.e. whenever we

tune past a physical band degeneracy. This is summarized in Fig. A.2.

The extended k-space degeneracy points are closely-related with the phase

singularities discussed earlier, but it is important not to confuse the two.

The former are definite points in extended k-space, outside the physical Bril-

louin zone; the latter reside on the physical Brillouin zone, but their position

can be shifted around by an appropriate choice of phase convention. One

way to think about this is to imagine strings attached to each degeneracy

point, extending to infinity (akin to “Dirac strings” in the theory of magnetic

monopoles). The intersection of the string with the surface of the torus is a

phase singularity. As long as a degeneracy point lies inside the torus, there

is at least one phase singularity on the surface. The Chern number measures

the “charge” carried by degeneracy points within the torus, or, equivalently,

the total “vorticity” carried by the strings penetrating the torus’ surface.

Finally, we note that the Chern number vanishes whenever the Hamil-

tonian H obeys time-reversal or parity symmetry. Time-reversal symmetry
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implies the following identity for the Bloch functions:

unk(r) = ±u∗n,−k(r). (A.15)

In that case, the Berry connection obeys

Ann′

(k) = Ann′

(−k). (A.16)

Parity, on the other hand, implies that

un(kx,ky)(x, y) = ±un,(kx,−ky)(x,−y), (A.17)

so

Ann′

x (kx, ky) = −Ann′

x (kx,−ky)

Ann′

y (kx, ky) = Ann′

y (kx,−ky).

(A.18)

Upon substituting either (A.16) or (A.18) into (A.8), we find that Cn = 0.



Appendix B

Chern numbers for quadratic

degeneracies

In this Appendix, we calculate the Chern numbers of the bands associated

with the effective Hamiltonian studied in Chapter 4:

H = λ0

[ 3
∑

i=1

αiσi + β(κ2
x − κ2

y) σ1 + 2κxκy σ3 + γ|~κ|2
]

. (B.1)

We will consider the lower band |ψ−(~κ)〉; the calculation for the upper

band proceeds analogously. First, consider α1 = α3 = 0. The eigenvectors of

(B.1) do not depend on γ since that parameter multiplies the identity matrix.

For simplicity, we set β = 1. Adopting cylindrical coordinates (κ, φ), defined

as usual by κx = κ cosφ and κy = κ sinφ, we find that the eigenvector

119



120 APPENDIX B. CHERN NUMBERS FOR QUADRATIC...

corresponding to the lower band is

|ψ−(~κ)〉 =
1

√

2[κ4 + α2
2 + κ2

√

κ4 + α2
2 sin 2φ]

×







−κ2 cos 2φ+ iα2

κ2 sin 2φ+
√

κ4 + α2
2






. (B.2)

This result is independent of γ. The Berry connection, defined in (A.7), is

~A−(~κ) =
iα2κ

(

cos 2φ κ̂− sin 2φ φ̂
)

κ4 + α2
2

√

κ4 + α2
2 sin 2φ

. (B.3)

To obtain the Chern number, integrate (B.3) around a loop κ = κ0:

C− =
1

2πi

∮

κ=κ0

d~κ · ~A−(κ)

= −2α2

π

∫ π
4

−π
4

κ2
0 sin 2φ dφ

κ4
0 + α2

2 + κ2
0

√

κ4
0 + α2

2 sin 2φ
.

(B.4)

The integral can be performed via the substitution sin 2φ = tanh u, and we

find that

C− = sgn(α2) −
α2

√

κ4
0 + α2

2

→ sgn(α2) for |α2| ≪ κ2
0.

(B.5)

As discussed in Chapter 4, this result remains unchanged even when we enter

the non-perturbative regime, even though our effective theory is only valid



121

for small values of κ and αi.

When α1 and/or α3 are non-zero, the band maximum at κ = 0 splits

into two distinct maxima, and expanding around each maximum yields a

Dirac-like Hamiltonian. For instance, when α1 = 0 and α3 6= 0 the maxima

occur at ~κ± = ±(
√

α3/2,−
√

α3/2 ), and the Hamiltonian near each of these

points is given by (4.9). In terms of the variables q1 and q2 defined in (4.8),

the Berry connection for the lower band is

~A−
±(~q) = ±ib

2
· cosφ q̂ + sinφ φ̂

q2 + b2 ± q
√

q2 + b2 sinφ
, (B.6)

where b ≡ α2/
√
α3, ± refers to which maximum we are expanding around,

and (q, φ) is the cylindrical coordinate representation of ~q. This Berry con-

nection has the same form as (B.3), but winds half as quickly around each

maximum point as (B.3) does around ~κ = 0. Each maximum thus contributes

sgn(α2)/2 to the Chern number of the lower band.
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