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ABSTRACT

The usefulness of remotely controlled manipulators is
increasing as the need grows to accomplish complex tasks in
hazerdous environments such as the deep ocean

The best sensory input currently availiable to the
operator of a remote supervisory controlled manipulator is a
television picture of the manipulator and its surroundings
Very often, though, optical opacity due to suspended
particles in the water can make television impractical or
impossible to use This report investigates the use of
touch sensors to construct a picture of the manipulator
surroundings One method studied was to find 3-dimensional
surface points and show tnem on a computer graphic display
An extension of this was to reconstruct the surface of these
points with the aid of a computer

It was found to be possible to quickly construct a
reasonable picture with a position touch sensor by showing
3-D surface points on the graphic display and then having
them rotate about an arbitrary center A better picture
could be made by reconstructing the actual surface, but this
took more computer time

An Informal evaluation by observers suggests tnat this
method offers practical advantages for "seeing" objects in
environments where vision is impossible

Thesis Supervisor Thomas B Sheridan
Title Professor of Mechanical Engineering
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CHAPTER 1 INTRODUCTION

Remotely controlled manipulators make it possible to

perform tasks in nostile environments that would be

impossible or very dangerous for humans to perform It is

very difficult and expensive to send a man down into tne

deep ocean to do a task But tasks such as exploration,

salvage, and maintenance of oil rigs must be done Because

the technology is not yet available to make a completely

autonomous robot, some compromises must be made A robot

can be made as self sufficient as the technology allows and

the higher order thinking can be left to a human controller

This robot-human system is called Supervisory Control and is

meant to relieve the human of as much direct control as

possible to minimize the amount of required transmitted data

and perhaps even allow the robot to continue working during

breaks in transmission

In human-manipulator control systems, it is very

important that the human have as much feedback as possible

about what is happening at the manipulator Sight is

considered to be the most important source of feedback

because it can be readily understood oy the operator If

the operator cannot directly see the manipulator and

manipulated object, (which is often the case), some sort of

artificial vision must be provided This Is most often a

television picare of the manipulator work area Television
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provides the best picture available but there are some

problems that can make television nard to work witn Some

of these problems are

1) Television cannot give a reliable sense of

depth because it is only displayed on a

2-dimensional screen This can slow the operator's

reaction time because he can never be sure if the

manipulator arm or its surroundings are really in

the place he thinks they are It is possible to use

two cameras to get a stereo picture but this kind of

display requires undivided attention and the

operator can become fatigued very quickly

2) The raster picture on the television screen

requires a massive data flow rate to refresn tne

screen in a reasonable amount of time If the

operator is trying to control a manipulator working

on the bottom of the ocean or in deep space, tne

data flow rate can be very restricted by

transmission problems This means tne operator will

have to live with a fuzzy picture or a slow frame

rate or both1

3) A television camera must have a clear view

of the manipulator It cannot see anytning in

turbid water and the television must always be

located so oostructions do not block the view

-9-



4) In modern types of supervisory control

systems, a computer works intimately with the

operator to control the manipulator The computer

should have as much feedoack as possible made

available to it While a television picture is

easily understood by a human, it is meaningless to a

computer unless it has extensive, time-consuming

processing A computer of any control system is

essentially blind to a television picture

These problems show the need for investigating new,

types of viewing systems for use in supervisory control A

system using touch sensors to construct a simulation of the

surroundings of a manipulator is investigated in this

report This kind of simulation can be used to draw a

picture to be viewed by a human or can be used to provide

3-dimensional Information to a computer aoout the

surroundings of the manipulator

-10-



PROPOSED SOLUTION

2 1 Constuction of a Picture with Touch Sensors

A metnod is needed to improve visual feedback using

touch sensors for a human operating a remote supervisory

controlled manipulator One way is to find the coordinates

of a large number of points on all the solid surfaces within

reach of the manipulator A picture of the manipulator

surroundings can then be constructed with computer graphics

by drawing a dot at each location where a solid surface is

hit

Points and their coordinates can be found by using

touch sensors mounted on the manipulator Wnenever a sensor

comes in contact with a surface it could send a signal to

the computer to record the coordinates of the point touched

The computer can accurately calculate point coordinates if

it is given the exact angles of the manipulator joints the

instant the sensor is tripped, see Fig 2 1

A dynamic simulation of the manipulator itself can also

oe added to tne display ab a reference if these angles are

£nown, [1] This means an entire picture of the of tne

manipulator surroundings plus a moving picture of the

manipulator can be made with just information on tne values

of the joint angles and indications of when sensors are

tripped

Very little transmitted data is required to describe

-11-
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Fig. 2.1 Position Touch Sensors Used for Graphic Display

slave arm

computer

mas

graphic display

operator
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3-dimensional points as opposed to a television picture

Assuming the joint angles are to be transmitted anyway, all

that is needed to describe a dot is an indication of which

touch sensor nad just been triggered Its coordinates can

then be calculated from the joint angles given at that

instant

A picture on a 3-dimensional graphic display has the

same disadvantage as a television picture in that it can

only be shown on a 2-dimensional screen But a graphic

display picture can be viewed from any angle, something a

television cannot do without having the camera moved An

obstacle blocKing a clear view of the manipulator on the

display could be ignored by simply looking around it

Also, because the data of the graphic display picture

is stored in three dimensions, the picture can be modified

to bring out it's depth of field Showing snadows,

orthographic views, and perspective will bring out three

dimensionality, [1] Dynamic pictures also bring out depth

The three dimensions of the picture become very apparent

when it is slowly rotating on the screen

An advantage of having tne surroundings of the

manipulator mapped out as discrete points is that it can be

quickly interpreted by a computer Say a task given to a

computer is to move a manipulator arm from one spot to

another without hitting any obstacles If the computer is

given enough information aoout 3-D point locations on the

-13-



obstacles, then it could be programmed to <eep the the

manipulator away from the surface points This would be

easier for the computer to solve than trying to interpret a

flat television picture

2 2 Construction of a Surface From Points

A problem with surface points shown on a graphic

dioplay is that they give a somewhat ambiguous indication as

to what the surface is like between them Without tne

surface, there is no way to calculate volume, surface area,

or decide when something should be hidden from view

A method was found to reconstruct the surface described

by a given set of points with the aid of a computer This

method will be covered in some detail, as it provides a

solution to the above problems and also can significantly

improve the quality of the graphic display used in

supervisory control

Computer graphics can never replace television as a

sense of sight in supervisory control but it could be a very

useful aid to television or even an alternative in

situations where television is impossible to use

-14-



Fig 2 2 Vector Grapnic Display of Manipulator

-15-



CHAPTER 3 EQUIPMENT

3 1 Manipulator

The manipulator used in this project was a master-slave

E-2 built by the Argonne National Laboratories for use in

radioactive environments, see Fig 3 1 The control system

used in experiments was analog with full force feedback

Control potentiometers installed at the servos provided a

signal for determining manipulator joint angles Interfaces

between the manipulator and the A/D converter were installed

by K Tani [2]

3 2 Computer

A PDP 11/34 with a RSX-11M timesharing operating system

was used for all computation There was a FP11-A floating

point processor installed to speed tne fractional

multiplication and division required for real time graphic

transformations and simulation

3 3 Vector Graphic System

All vector graphics were done on a Megatek 7000 System

It had a resolution of 4096 x 4096 on the approximatly 12 x

12 screen There was room in the display list for 8000

3-dimensional points or lines Tnis system was capable of

hardware rotations to speed the cycle time for dynamic

display

Interface between the Aegatek and computer was done

through a user common where all displaj information could oe
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Fig. 3.1: E-2 Manipulator
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stored until a command was called to send the information to

the Megatek all at once

3 4 Analog to Digital Converter

An Analogic 5400 Series was used to convert analog

signals to digital for computer input It also had Inputs

that could convert simple on-off signals to digital numbers

The six analog channels giving the joint angles of the

manipulator could be read in about 300 microseconds on the

parallel interface

4 5 Trackball

The Measurement Systems Inc Trackball was connected

to the computer tarough a serial interface It had a

resolution of 512 for 360 degrees of ball travel and would

output the number of units travelled between each send to

the computer The send rate was set by a baud rate of 9600

The Trackball was sensitive to motion around botn x and y

axes but not around the z axis

4 7 Raster Display

A Lexidata 3400 Vidio Processor was used for raster

display It had a resolution of 640 x 512 pixels with each

pixel having 256 possiole shades The shades were stored in

a lookup table where they could rapidly be cnanged

-18-



CHAPTER 4 TOUCH SENSORS

A touch sensor is required that will respond when it

comes in contact with a solid surface and has to be

configured in such a way tnat the exact location of the

contact point can be determined Many different types of

sensor switching devices can be imagined Switches based on

pneumatics, stess, strain, or electical inductance might

have good applications in different environments but for

experimental purposes simple electical switches dere used

Whatever the sensing device, it must be converted into an

electical signal for the computer The configuration of the

touch sensor was found to be much more important than the

actual sensing mechanism

4 1 Best Configuration

4 1 1 To Sense Touch Direction or Surface Direction

When reading the three dimensional coordinates of a

point on a surface it is also useful to find a vector

pointing the direction of tne surface normal at tnat point

This would give valuable information about how the surface

is structured The problem is that two degrees of freedom

will have to be added to the touch sensor to enable it to

read a surface normal, see Fig 4 1 Adding more degrees

of freedom significantly increases mechanical complexity,

-19-



the amount of data that must be transmitted to the computer,

and computation time There is another problem in that the

surface normal would be oe found for only one small spot

The surface normal in the immediate neighborhood of the

point would only be implied The average surface normal

over a larger area could be found but would be at the

expense of resolution of the point location The surface

normal could be found more accuratly if the points touched

were densely packed, but then the points themselves describe

the surface normal

Although the ability to sense the direction of the

surface normal would increase the surface description

capabilities of a touch sensor, it was decided that it was

not worth adding two more degrees of freedom Since three

adjacent surface points describe an average surface normal,

it was felt there was no need to find it for every single

point

It was found to oe useful, though, to record the touch

sensor direction for each point This was actually the

center line of the touch sensor at the instant a point was

touched The touch direction was easily found oecause it

nad to be known to calculate the coordinates of the point

anyway The touch direction was useful because it defined a

line that could not pass through the surface This helped

to define inside from outside A series of points on a

plane can descrioe a surface normal out cannot, by

-20-



themselves, describe which side of the plane is tne outer

side

4 1 2 Rigid or Flexible Base

A touch sensor mounted rigidly to the manipulator would

be more reiiable and accurate than one mounted on a flexible

base The mathematics required to find its coordinates

would be simpler and so would its mechanical complexity It

might seem that a rigid mounted sensor would be the best

But there are some advantages to a flexibly mounted sensor

that may outweigh its disadvantages One advantage of a

flexibly mounted sensor is that the manipulator would not

have to come to a complete stop when a point was touched

Tne sensor could just bend out of the way and not impede the

continuous motion of the manipulator This would allow

faster motion of the manipulator and would reduce tne risk

of damage to the manipulator, sensor, or the object to oe

touched Another advantage would oe that many sensors could

be used at once if they were all on flexible mounts When

one sensor nit a surface, it could respond and then bend out

of the way to let the next sensor touch, see Fig 4 2

Flexible-base touch sensors could be constructed with

or without degrees of freedom The type witnout degrees of

freedom would only work when straight, then simply shut off

when bent over so as not to register any erroneous points

If the sensor rad one or two degrees of freeaom, it could

-21-
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Lal

surface

Touch Sensor with Surface Normal Touch Sensing
Capability

Tip switch on-
point recorded Tip switch on-

point not recorded

Fig 4 2 Flexible Base Touch Sensor
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still register points even when bent over, see Fig 4 3

This way, a continuous stream of points could be read in one

motion The trade off would come when deciding whether it

is more important to have fewer degrees of freedom or the

capability to read many points with one sensor

4 1 3 Where to Mount the Sensor

Since the sensor is to work with a manipulator, the

most likely place to mount the sensor would be on the

manipulator itself If the sensor were mounted at the wrist

of the manipulator, the sensor would have six degrees of

freedom and be most maneuverable If it were too awkward to

use the wrist, the next oest mount would be the forearm of

the manipulator This would reduce the number of

calculations required to locate the sensor in space but

would still leave three degrees of freedom

The sensor could theoreticly reacn any point in front

of the manipulator but the sensor would only be able to

approach any one point from one direction The sensor would

not be able to reach around an object in the way, see Fig

4 4 A solution might be to install many sensors on the arm

protruding in all different directions so as to oe able to

reach all points with at least one sensor, see Fig 4 5

The very best mounting location woald be to have tne

sensor mounted on its own arm This could run completely

independent of the manipulator and be controlled by a

-23-



angle transducers

Fig 4 3 Touch Sensor with Extra Two Degrees of Freedom

A long string of points could be recorded with one
sweep of the manipulator

-24-



- unreachable area

Fig 4 4 3 Degree of Freedom Manipulator with Interference
Problem

Fig 4 5 Solution to Interference Problem

Several mounted touch sensors could reach more areas and
would not increase the degrees of freedom of the manipulator
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different operator or perhaps be completely controlled by

computer A computer could be programmed to randomly sweep

the sensor around and to concentrate on relatively untouched

areas

4 2 Touch Sensors Used in Experiments

The touch sensors that were built for experiments were

designed solely to get surface points into the computer as

efficiently as possible The touch sensors jere always

mounted firmly in the jaws of the manipulator and only

on-off electrical switches were used to send signals to the

computer

The first sensor built had 10 switches on it and each

was connected seperately to digital inputs on the analog to

digital converter, see Fig 4 6 The switches were mounted

on somewhat flexible stems and were arranged like a brush

It was found tnat a shorter stem provided the most accurate

point coordinates and a slight convex curve to tne profile

of the endpoints of the stems allowed the sensor to be

rociked across a surface to collect a maximum amount of

points

This brush sensor had some proolems that made it

difficult to use The biggest problem was that tne switches

worked only when pressed from one direction When a svitch

was hit from the side nothing woald happen This meant the

sensors always nad to oe pointed in the direction the

-26-



manipulator was being moved to makie sure tne switches would

be hit straight-on Another problem was the sensors were

too far from the base of the manipulator wrist It turned

out that the joint angles of the wrist could not be

calculated accuratly and errors multiplied the farther the

sensors were from the base of the wrist

The second sensor built nad only one switch on it, see

Fig 4 7 This was oecause in later experiments it was

desirable to be able to select Individual points on a

surface Also, the second touch sensor das located suca

that one degree of freedom of the wrist was not needed to

calculate the sensor's coordinates

Although the brush sensor had many more switches on it,

the second sensor could collect points just about as fast

This was because the second sensor was made to be sensitive

when approaching a surface from any direction, see Fig

4 8 Besides being easier to maneuver tnan the brush sensor

it could also be moved faster because the manipulator only

had to move at the wrist to trigger the switch The brush

sensor required that the entire manipulator be moved to get

the switches to approach the surface from the correct

direction
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Fig. 4.6: Brush Touch Sensor

Fig. 4.7: Single Switch Touch Sensor
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microswitch

g sensor tip

SCALE 2/1

Fig 4 8 Switch Mechanism that is Sensitive to Touch from
All Angles
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CALCULATION OF POINT COORDINATES

5 1 Description

The picture of the manipulator was refreshed about

every 20 milliseconds while the touch sensor program was

running To do this, the new angles of tne maniplator had

to be read every cycle The coordinates of a touch point

would be calculated during the cycle also whenever a touch

sensor was activated This was done by computing tne

sequential angular transformations from the oase of the

manipulator to the touch sensor tip Intermediate

transformations from each manipulator link were saved so the

manipulator itself could oe drawn on the graphic display

The coordinates of touch points were calculated and stored

using the manipulator base as a relative origin and the x,

y, and z axes were as shown in Fig 5 1 Only integer

values could be sent to the display processor so length

units were cnosen such that there were 40 units per inch

These units were chosen to minimize round off error and at

the same time not overrun the display processor maximum

length values, (plus or minas 2048) The basis for the

dynamic display of this manipulator was developed by C

Winey and is explained in some detail in Ref [1]

5 2 Proolems with the Manipulator

The manipulator that was used to maneuver tne touch

-30-
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Fig 5 1 Manipulator Coordinate System
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sensor was built to be controlled by a numan who would have

direct visual feedback as to where he was moving it This

type of control system did not require accurate positioning

because it was assumed the operator would compensate for

errors Consequently the manipulator was not very good for

finding absolute point locations This posed some unique

proolems to getting accurate point angles The proolem

could oe rectified by using a more rigid manipulator with

less elasticity and "free play"

5 2 1 Cables and Gears

The joints of the manipulator were connected to the

servos and position transducers by a series of cables and

gears This allowed for much backlash and flexibility which

translated into errors for recorded joint angles Any error

in joint angles in turn translated into larger errors in

calculated point coordinates One way tqese errors were

minimized was to make the touch sensor sensitive to very

light pressure to reduce the strain on the caoles Another

solution was to minimize tne effect joint angle errors had

on point coordinates The wrist joints were most prone to

errors because they were connected with the longest cables

Their effect was minimized by keeping the toucn sensor as

close to the base of the wrist as possiole
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5 2 2 Pushrod

The elbow joint of the manipulator was connected to its

servo and transducer by the pushrod arraingement shown in

Fig 5 2 At first it was thought that tne gear angle Ag

would respond very much the same as the elbow angle Ae and

that they could be considered as equivalent For relative

motions this worked well enough but for calculating absolute

point locations, the long forearm length multiplied a small

angle error into a large position error Fig 5 3a shows

the calculated locations of points on a flat square grid

when it was assumed that Ag and A3 were the same Clearly

this assumption Is invalid for absolute positioning

An equation had to be developed to calculate the elbow

joint angle A3 from the two angles it was dependent on, Ag

and the X motion angle A2 A closed solution for A3 would

oe very long because the linkage was 3-dimensional and

relatively complex This was to be avoided if tie

calculations were to be done in real-time Since the angle

A3 was to be calculated for small incremental cnanges on

each cycle it was decided to use the previous value of A3 on

some preliminary calculations when figuring the new A3

Guessing the new value of A3 could eliminate some long

calculations that really did not nave much effect on the

final answer The metnod used was to calculate the x, y,

and z locations at each end of the pushrod using Eq 5 1
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A3 -

Ag
(in Z,Y plane)

(Xg, Yg, Zg) (in X,Y plane)

Fig 5 2 Nonlinear Pushrod
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(5 1 )

a ) Xg =3 10

b ) Yg =-4 5 sin( Ag )

c ) Zg =4 5 cos( Ag )

d ) X3 = 2 25 cos( A2 )- 4 5 sin( A2 ) cos( A3 )

e ) Y3 = 18 + 4 5 sin( A3 )

f ) Z3 = 2 25 sin( A2 ) + 4 5 cos( A2 ) cos( A3 )

The pusnrod length was known to be 18 02 inches and could

also be defined in Eq 5 2

( 5 2 ) 18 02 = (X3 - g)2 + (Y3 - (Z3 -Zg

Between Equations 5 1 and 5 2 there are 7 equations and

9 variables The two variables A2 and Ag are known so all

the others should be defined if the equations are all

linearly independent The problem is that A3 appears 3

times, once in a sine function in Eq 5 le and twice in a

cosine funtion in Eqs 5 id and 5 if This makes tne

problem of calculating A3 very nonlinear and makes it useful

to do some guessing If it is assumed tqat A3 is usually

near zero, tnen small errors in A3 will have little effect

on cos(A3) That means it should not make much difference

If the value of A3 from the previous cycle is used to
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calculate cos(A3) in Eqs 5 Id and 5 if If this is done

then it is a straignt foward problem to calculate tne neq

value of A3 from Eq 5 le Equation 5 2 can be converted

to

( 5 3 ) Y3 = Yg +V18 02 2 - (X3 - Xg) - (Z3 - Zg)'

And from Equation 5 le ,

( 5 4 ) A3 = arcsin(( Y3 - 18 )/4 5)

This method of calculating A3 worked very well even

when the angle of A3 went up to 60 degrees A value of A3

was converged upon fast enough that only one iteration per

cycle was required Figure 5 3b shows how points iere

located on a square grid with the angle A3 computed with tne

above routine
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Fig. 5.3a: Grid Errors Due to Pushrod Nonlinearity

Fig. 5.3'
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POLYHEDRA CONSTRUCTION

6 1 Introduction

The previous chapter described a method of finding

3-dimensional point locations on a surface It oecame

apparent later that it would be very useful to have a way of

describing the surface the points where found on To have a

geometric description of the surface would make it feasible

to delete hidden lines and surfaces because a definite edge

would be defined It would also provide a basis for

deciding inside from outside and make it possible to

calculate volume and surface area

First, simply connecting each point to its three

nearest neighbors on the graphic display was tried This

had disappointing results because the lines tended to

cluster in small bunches and didn't interconnect very much

The approach was discarded because it didn't give any

semblance of a closed object and was no better than bare

dots for making a recognizable picture

It is a trivial problem for human to connect a given

set of points with lines to make a closed shape so it would

seem that a solution solvaole by a computer aould be

possible The problem is a human can make a judgement based

on the whole set of points at once while a computer can only

operate on a very small portion at a time This means an

iterative process must be found to construct the surface
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with the aid of a computer

It was decided to treat tne surface as a geometric

polyhedron (this is what tne surface would come out as

anyway if the surface is constucted properly) Also, a

constraint was imposed that the polyhedron surface be made

up entirely of triangular facets This was done because it

provides the computer the simplest possible surface segments

to process Also, triangular facets give the greatest

resolution for a given number of points A four sided facet

connecting four dots would be the same as two triangular

facets without the cross line

6 2 2-Dimensional Solution

The 2-dimensional solution to the problem will be shown

first because it has many analogies to tne 3-dimensional

solution but is mucn easier to explain In this case there

are points scattered randomly on the edges of a flat area in

two-space The problem consists of finding the best way of

connecting the points to enclose the area and describe its

edge, see Fig 6 1

The problem is fairly trivial if tne area in question

is completely convex The correct way to connect any

combination of edge points will always come out a convex

polygon and any wrong solution will have some lines tnat

cross over one anotner This suggests an algorithm where a

computer could try every possible line connection
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combination until it came across a solution where tnere were

no crossing lines The trouble is that tne number of

required trials would go up exponentially with the number of

points to connect

The solution to this problem that is most similar to

tne one used to solve the 3-D problem is an iterative

approach First, any 3 points are connected with lines to

form a triangle Now if the area is still convex then all

the other points lie outside this triangle

It is Important at this stage to define inside from

outside for eacn line because the computer will only

consider one line at a time It can be seen from Fig 6 2

that the three lines of the triangle can be defined as 1-2,

2-3, and 3-1 assuming that the x-y locations of points 1, 2,

and 3 are known The line 1-2 can be thought of as a vector

with base 1 and end 2 Now the outer side this vector can

be defined arbitrarily as its right side

After the initial triangle is made and inside and

outside defined, it is a straightfoward problem to add each

point onto tne existing polygon An example is shown in

Fig 6 2 Point 4 is to be added to polygon 1-2, 2-3, 3-1

It is apparent that line 1-2 is the only one that faces out

toward point 4, (there will always be just one such line if

the area is convex) Jow the line 1-2 can be deleted and

the lines 1-4 and 4-2 added to make a new polygon 1-4, 4-2,

2-3, 3-1 Tne only decisive +ask for tqe computer is to
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Area to be examined

Fig 6 1 Connecting 2-D Surface Points into Polygon

2

1-2 "' 40

sequence specifles point connection
and outer side of each line

Fig 6 2 Definition of Lines and Polygons
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find the line whicn is best to attach the point

The problem becomes more complex if areas with concave

edges are allowed Many different polygons can be made from

a given set of points if there are concave edges, see Fig

6 3 What can be done to limit the number of possible

polygons to one 9

If it can be assumed that touch sensors were used to

find the points, then data about the direction from which

the point was approached will be available A "touch

vector" can be associated witn each point to indicate its

outer side, see Fig 6 4 Note that the touch vector does

not necessarily have to be at right angles to the edge

touched It is only the centerline of the touch sensor at

the instant the point is touched Now a single polygon

solution is again possible if the constraint is imposed tnat

the touch vectors cannot pass through the polygon, see Fig

6 5 Also, for computer control, there will only be one

line on the polygon available to attach a new point to, (if

any) If tne new point is found to be inside tne existing

polygon then tne correct line to attacn it to is tqe one tne

touch vector passes through

Some proolems can occur with convex polygons It is

possiole to come across a point that qas no line on the

polygon that it can attach to without violating a rule, see

Fig 6 6a In these situations, the point must be thrown

out or set aside until tne poljgon is developed enough to
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wrong solution

Fig 6 3 Concave Polygons

In general, there are many ways to connect points found on a
concave area and still get a closed polygon

. . . . .- - . .. . -t . . . . . . L

0 UUU I

are:

Fig 6 4 Definition of Touch Vectors
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touch vectors must always point
away from the polygon

Fig 6 5 Constructing Concave Polygons with Touch Vectors

There will only be one polygon solution if touch vectors are
considered
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accept the point Another problem witn convex areas is that

a folded polygon can be constructed by the computer, see

Fig 6 6b The solution to tnls problem is to ignore any

point that has a touch vector that goes through any line on

the polynedron from its outer side

It is also possible to attach a new point to a

completely erroneous line if a finite lengta touch sensor is

used on an extremely convoluted polygon, see Fig 6 7

This problem could be solved by putting a oend in the touch

vector to more accurately simulate the touch sensor and its

arm An easier solution is to ignore points found to be

over a certain depth inside the polygon

6 3 3-Dimensional Solution

The problem here is to find a way to connect 3-D

surface points with lines to make a polyhedron that closely

resembles tne surface the on which points were found It

turned out that the best way to solve the problem was not by

analyzing tne connecting lines but by analyzing the facets

of tqe polyhedron If the facets on a set of points is

known then the edges are also known Triangular facets were

used as stated earlier

6 3 1 Polyhedron Description

A method is required to store the facets in computer

memory It was decided to descrioe the facets as a sequence
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1

2

a Point 6 cannot be attached to the existing polygon without
causing a touch vector to pierce through It is not likely
that point 6 Is even from the same area as points 1 - 5

b Point 6 cannot be attached to the polygon without turning
it inside-out Point 6 will have to be ignored or saved until
the polygon is further developed

Fig 6 6 Examples of Pointb That Cannot be Attached
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nection lines

Int to be attached

touch vector

Fig 6 7 Example of an Incorrectly Attached Point

To keep the touch vector on the outside of the polyhedron,
the touch point will have to attach to the wrong line This
problem stems from the fact that touch vectors are considered
to be infinitly long while the actual touch sensor is very
short The simplest solution to this problem is to ignore or
save points tnat are found to be deeper in into the polyhedron
than the length of the touch sensor
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of points, because the points and their coordinates would be

already known The facet 1-2-3 would be a facet witn edges

connecting the points 1 to 2, 2 to 3, and 3 to 1 Also tne

inside and outside of the facet could be defined with tnis

number sequence using the right-hand-rule, see Fig 6 8

It can be seen that the facets 1-2-3, 3-1-2, and 2-3-1 all

describe the same facet because the sequence always goes in

the same direction around the triangle The facets 3-2-1,

2-1-3, and 1-3-2 describe the same facet as above but with

the opposite outside surface

The computer description of a tetrahedron is shown in

Fig 6 9 Note that each line on a polyhedron is given

twice in the facet data, once on two different facets and

always in opposite sequence It might seem easier to

describe the polyhedron bj s+oring the lines as two-number

sequences rather than the apparently redundant method of

storing facets as three-number sequences But it turns out

to be very Important to know the complete facets and this

data would not be readily avallaole with line information

Like the 2-D solution, restraints were imposed that

restricted the configuration of the polyhedron No surfaces

were allowed to stick through one another and no touch

vector could be allowed to exist on the inside of the

polyhedron Also, 11Ke the 2-D solution, an iterative

approach was used where each point was added onto an

existing polyhedron one at a time
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2

outer side of

surface

Facet 1 - 2 - 3

Fig 6 8 3-D Definition of Facets

Number sequence defines point connection and outer
side of facet using the right-hand-rule

1

Polyhedron described
by facet data

1-2-3
1 -3-4
4-2-1
3-2-4

Fig 6 9 Example of Complete 3-D Polyhedron
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How can a new point be added onto a polyhedron9 First,

it is helpfull to exploit some of the useful properties of

polyhedrons as described by Euler's formula for polyhedrons,

where F is the number of faces on a polyhedron, E is the

number of edges or connecting lines, and V is the number of

vertices or points

( 6 1 ) F = E - V +2
This equation holds for any ordinary 3-D polyhedron that

does not have any holes passing through it

Only polyhedrons with triangular facets will be

considered so another defining equation is given On a

polynedron with triangular facets it can be seen that each

facet has exactly 3 edges and that each edge seperates

exactly two facets Thus

( 6 2 ) 3F = 2E (for triangle faceted poljhedrons)

Combining Eqs 6 1 and 6 2 gives two relations

(63) F =2V-4

(6 4) E = 3V - 6
Equations 6 3 and 6 4 show that for each new point

added to a triangular polynedron there will have to be 2

more facets and 3 more lines

For the 2-D solution a point was added onto tne

existing polygon by deleting one chosen line and adding 2

more In effect, the point was attached to the place were

one line used to be In the 3-D solution a facet must be

chosen on the e-isting polyhedron on which attach the new
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point That facet is then deleted and tne resulting hole is

closed by adding 3 new adjacent facets that reached out to

the new point, see Fig 6 10 Tnis procedure satisfies

Equation 6 3, in the total number of facets added to tre

polyhedron for eacn new point It is also apparent from

Fig 6 10 that Equation 6 4 is satisfied because exactly 3

new lines are added

One of biggest proolems was deciding which facet to

attach the point to Unlike the 2-D problem there was not

always a single answer, even when touch vectors were

considered In general there could be several facets that a

point could be attached to that would produce a closed

polyhedron and would not cause any touch vectors to stick

through any surface More restraints had to be incorporated

to make the computer converge on a single facet

One restraint added to the program was that if a facet

was pierced from the negative side of the touch vector of a

new point, then that point must attach to tnat facet,

assuming all the other restraints are satisfied This

restraint worked very well in situations where the new point

was close to the polyhedron and the touch vector most likely

passed through the best facet

Sometimes, though, the new point was so far away that

its touch vector did not pass through the polyhedron at all

and if it did, the facet it pierced through was not likely

to oe the oest To cover tqese situations a secondary
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a. Point 6 shown with chosen facet for attachment

S

7i

b. Completed attachment

Fig. 6.10: Addition of new Points to the Polyhedron
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restraint was added which required tqat the new point attach

to the facet with the nearest centroid

If the new point was very far away from the polyhedron,

there would be very little chance the new point would attach

to a good facet, see Fig 6 11 The solution to this

problem was to ignore points over a specified distance away

Taken together, these restraints caused the computer to

converge on a single facet and usually it was the oest one

Even when the chosen facet did not look like tne best, the

next step of processing usually converged on a better

solution for the polyhedron

Many times the new point was found to be on the inside

of the polyhedron In these cases there was at least one

facet that could be found which the point's touch vector

pierced from the inside This was tne only facet the

interior point could attach to and keep its touch vector on

the outside of the polyhedron, see Fig 6 12

6 3 2 Initializing the Polyhedron

The above procedure worked only at adding points to an

existing polyhedron A seperate algorithim was required to

create a starting polyhedron from a set of initially

unconnected points The method used only -equired 3 points

to make an imaginary two sided polyhedron The computer was

simply Instructed tnat there were two facets, one on each

sde of zne triangle defiqed by tqe 3 new points, see Fig
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Fig 6 11 Possible Errors from Attachment of Distant Points

In general, it is very difficult to make a rational decision
on whicn facet to attach a distant point to The choice,
tnough, can nave a drastic effect on the resulting shape
of the polyhedron The easiest solution to this problem is
to ignore points that are over a certain distance from the
polyhedron
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,ctor

,elow nolvhedron surface

Fig 6 12 Attachement of Interior Points

Interior points must always attach to the facet that the touch
vector pierces through

1

initialization facets
1-2-3
3-2-1

Fig 6 13 Initialization of Polyhedron

First 3 points are connected with 2 facets to make
psuedo-closed polyhedron
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6 13 The computer had no capacity to reject sucn an

Impossible polyhedron once it had been installed Any 3

noncolinear points in space can be connected this way and

will not technically violate any of the stated polyhedron

rules This entity also satisfied Equations 6 3 and 6 4

which specify the correct number of verticies, edges, and

faces for a real polyhedron

When the 4th point is added on, the computer ll use

the usual algorithm to erase one of the coplaner facets and

add 3 more to make a tetrahedron The reason that a

tetrahedron was not used for initialization is tnat too much

programing space would be required make sure the shape was

not inside out and also that none of the touch vectors where

piercing through

6 3 3 Cnecking Facet Pairs

After a new point had been attacned to the polyhedron,

the facets were not usually in the best configuration The

new point could be sitting on the top of a long spike or

otherwise looking as though it was stuck on as an

afterthought, see Fig 6 14

Since there were usually many possiole polyhedron

configurations that a given set of points could be built

into, some new critera had to be used to make sure that one

polyhedron solution was decided upon

The method chosen to modify the poljhedron eas to cneck
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a. New point attached to polyhedron without smoothing.

q

b. After smoothing.

Fig. 6.14: Need for Smoothing of Polyhedron
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adjacent pairs of facets and, if required, replace them with

compliment facets Figure 6 15 shows how the four corner

points connected by any two adjacent triangles could also be

the corner points of two otner completely different

triangles The facets 8-6-5 and 5-6-7 are the starting

facets and 8-6-7 and 8-7-5 are tne compliment facets An

entire polyhedron could be modified bit by bit by changing

facet pairs and the polyhedron would never have to oe

considered as a whole

The primary criterion used for deciding if a pair of

facets should changed was based on the idea that a

polyhedron with the smoothest surface will be the best In

other words a polyhedron would be seached for that had a

minimum average angle oetween facets This was done by

comparing the pair of facets, considered for changing, to

their four neighboring facets The algorithm checked tae

angular difference between

1) the original facets

2) the compliment facets

3) the neighboring facets and the pair to oe checked

4) the neighooring facets with the compliment facets

This gave 5 angular differences to average for each of two

polynedron surfaces If tqe complimentary facet arrangement

was found to have less average angular difference, then the

facets would oe changed

Several checks nad to oe pe-formed wnen it was decided
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Facet Pair 8-6-5, 5-6-7

Compliment Facet Pair 8-6-7, 8-7-5

Fig. 6.15 Example of a Facet Pair and Its Compliment
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to change a pair of facets New facets could not be allowed

to stick through another surface of the polyhedron Al41so, a

check had to be made that none of the touch vectors of the

points on the polyhedron pierced through the new facets

The change in facets would be stopped if any of the above

happened

It was possible to come across a pair of facets tnat

had no reasonable compliment These facet pairs were not

considered changable and were found by checking to see if

any of the compliment cross-lines were already occupied by

other facets

It would not be expected to find a touch vector that

lay at an angle of greater than 90 degrees to tne surface

normal of an adjacent polyhedron facet The computer,

though, would construct a polynedron this way if not

instructed to consider touch vector angles Therefore,

anotner restraint was added that any facet pair had to be

made convex if it had a corner point with a toucn vector

that pointed away from its surface normal at greater than 90

degrees

The above requirements nad to have certain priorities

because tney very often conflicted witn one another Tqe

order of priority was

1) The polyhedron must remain a closed ooject and

cannot be allowed to fold on itself or wrap inside out

Also all touch vectors must exist on the outside of the
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polynedron and cannot be allowed to stick through

2) Any facet pai- dith a touch vector that pointed

away at greater than 90 degrees from its surface normal had

to oe convex

3) The facet pair that had the least average

difference between themselves and tneir four neignbors nad

to be cnosen

When one pair of facets were converted, it affected all

the neighboring facets as to whether they still followed the

above requirements This meant all these facets had to be

rechecked

The routine used to decide which facets to check das

fairly simple First all the facets were cnecked around tne

spot where a new touch point was added to the polyhedron

Then, if one of these facets was converted, all its

neighboring facets were put in a list of facets to be

cnecked The routine stopped when the list das empty

Sometimes a pair of facets to oe changed could get skipped

over because the list ias limited to 30 points These

facets would be found by using an operator controlled option

that cnecked every facet pair on the polyhedron to catch any

that were incorrect

There was some concern tqat a polyhedron might be

formed that would have a cnain of mutually dependent facet

pairs In otner words eacn facet change 4ould cause tne

neighboring facets to change and an endless loop of changing
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facets would be formed The existence of such a polyhedron

has not been proven but it das never observed to occur The

computer program would always converge on a polyhedron where

all the facet pairs satisfied the requirements

6 3 4 Quality of the Polyhedron Shapes

It might seem that there would always be one solution

that the computer would converge upon This was not always

true Sometimes the polyhedron would get into a oad shape

the computer algorithm could not get it out of This due to

the fact tnat the computer algorithim based its decisions on

only one pair of facets at a time There was no way for the

computer to get to better facet configuration if the first

facet change meant putting tne polyhedron in an impossible

shape

The method used to keep the polyhedron from locking

into bad shapes was to make sure that new points were not

added an unreasonaole distance away from the existing

polyhedron If the maximum distance was held to witnin the

general feature dimensions of the object being touched then

the points would attacn onto reasonable areas It would be

very difficult to attach a new point to a developed

polyhedron in tne right place if tne polyhedron was roughly

one foot across and the new point was more than two feet

away, see Fig 6 12
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METHODS OF DISPLAY

7 1 Introduction

The 3-dimensional information needed to completely

describe points and polynedrons in space can be easily

stored as data in a computer But if these data are just

displayed as lists of numbers, it w11 be absolutely

meaningless to a human A grapnic display can show

3-dimensional data much better but suffers from the fact

that it can only display a 2-dimensional picture This

chapter will consider different methods of bringing out

3-dimensionality for data to be shown on a grapanc display

7 2 Problems with Polyhedra Displays

Most of the methods used to display 3-dimensionality

descrioed here were developed long before it was possible to

create polyhedra from point data It would have oeen very

difficult to understand what was nappening in the program

witnout it This was because it was impossible to tell what

the computer was constructing in 3-D, without a good metnod

of viewing it A polyhedron drawn on a vector grapnic

displaj just looked like a mass of connected lines if hidden

segments were not removed There was no way to tell If one

triangle was sticking tnough another triangle in 3-space

when only one flat view was available, see Fig 7 1

There are several ways to improve the depth ot a flat
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a) Potogaphb) Points Only

c) Polyhedron d) Polyhedron with Contours

Fig. 7.1 Different Displays for One Set of Facets
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picture Showing perspective is one way out it is best

suited to rectangular shapes Triangles shown in

perspective just look like slightly different triangles

Deleting hidden lines and providing shading are methods that

bring out depth for a numan but can be very slow to process

in real time A metnod using raster graphics to remove

hidden surfaces will be shown later in this chapter but was

only good at getting a static picture C Winey [ 1 ] did

studies on showing two orthogonal pictures on the screen at

once and displaying a shadow to help define

3-dimensionality These methods worked well for displays

where related features could be distinguished in each view

and were used successfully for maneuvering the touch sensor

on the screen It was difficult, though, to distinguish

related points on a complex polyhedron shown in dual views

7 3 1 Rotating the Picture

It was found that rotating the polyhedron on the screen

helped to bring out its 3-dimensionality Features in the

back of the picture moved one way and features in front of

the picture moved the other way Specific details could be

seen also if the p cture was rotated a full 360 degrees

For example, it could be seen whether or not a line was

plercing a triangle if the picture was turned completelj

around If a line was not piercing a facet, then there has

to oe at least one place in the rotations on tne screen
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where the line does not lay across the facet

To give the appearance of a rotating picture, the

object coordinates were calculated for a small Incremental

angle change and the picture was redrawn on the display It

was possible to redraw the picture rapidly enough to give

the illusion of smooth rotation The object could be viewed

from any angle if it was first rotated about an axis This

could be done by multiplying the X, Y, and Z coordinates of

the object by a rotation matrix [ T ] to get the new

coordinates X', Y', and Z'

[ x', Y', Z', 1 i = [ K, Y, Z,

1 0 0
[ T ] = 0 cos(A) -sin(A)

0 sin(A) cos(A)
0 0 0

( for rotation around the

cos(A) 0 sin(A)
[T = 0 1 0

-sin(4) O cos(A)
0 0 0

( for rotation around the

cos(A) -sin(A) 0
[ T sin(A) cos(A 0

0 0 1
S 0 0 0

( for rotation around the

1 Il T i

T

00
0
1

x axis )

O
0
0
1

y axis )

0
0
01

z axis )

The orientations of the display coordinates and tne

object coordinates used for tne above equations are shown in
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Fig 7 2a A positive rotation is defined as counter-

clockwise ghen looking down that rotation axis

Since the display consisted of points in space either

connected or disconnected, all that was required to be

transformed was the coordinates of the points The

"connectivity" would not change no matter what the angle of

view

A combination of rotations could be made by multiplying

the rotation matrices together The equation,

( 7 5 ) [ T ] = [ Tz ][ Ty ][ Tx ]

is equivalent to a rotation around the z axis, then around

the y axis, and then around the x axis It is important to

keep the order of multiplication straignt or different views

will result

It is convenient to describe all the terms of the

transformation matlx as shown in Equation 7 6

(76)
XX YX ZX O0

[T]= XY YY ZY 0
XZ YZ ZZ O

LXT YT ZT 1

The terms XX thru ZZ handle rotations and their values

are usually determined by equations 7 2, 7 3, and 7 4 TX,

TY, and TZ are translational values that define the position

of the object relative to its own coordinate system These

are important if it is desi-ed to zoom in on a small section

of the object A zoom effect is possible by multipling all
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terms of the transformation matrix by a size factor

The Megatek Display Processor had the capability to do

rotations in hardware The 3 coordinates of all the points

defining the features of tne object were first stored in

Megatek memory Then it was given the required rotation

terms and the Megatek would take care of calculating the

transformations for each point This saved having to do the

calculations for each point in software and also reduced the

amount of data that had to be sent to the Hlegatek Very

fast and smooth rotations were possible regardless of tne

complexity of the display The transformation terms

required by the Megatek were XX, XY, XZ, XT, YX, YY, YZ, and

YT The rest of the terms only affect the z plane of the

display which cannot be seen on a 2-D screen

The Megatek rotations always occured around the origin

of the object as it was installed in display memory This

was inconvenient because very often a small portion of the

display would be zoomed in on and would also need to be

rotated With the object rotating about its center the

small portion would generally rotate rignt out of view The

cure for this was to cause tne object to always rotate

around in screen origin The XT and YT terms sent to tne

Megatek affected the x-y posilions of points in screen

coordinates Tnese terms could be altered each time the

picture was rotated to keep tne object on screen center To

do tals, the translations in object coordinates nad to be
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specified, (Xo, Yo, Zo) This was done by manuvering tqe

desired rotational base to the center of tne screen by

viewing two orthogonal views Now the picture would always

rotate about that base if XT and YT were recalculated every

iteration by the equations,

( 7 7 ) XT = XoXX + YoXY + ZoXZ

( 7 8 ) YT = XoYX + YoYY + ZoYZ

XX, XY, XZ, YX, YY, and YZ had to be calculated first for

that rotation

There is a problem with dynamic pictures that are

rotated with the above transformations There will be no

Indication which is front and which is bacK on an object

when no hidden lines are removed and no perspective is

shown kn object can be rotating on the screen and some

people viewing it will say its rotating to the left while

others say its rotating to the right The mind tends to

lock on one rotation and can be difficult to change One

way found to remedy the proolem was to memorize the correct

rotation for each input but it was too easy to forget The

most useful method was to have a known zero position the the

picture could be put in, where front and back were enown

Another solution might oe to have a coordinate indicator on

tne screen consisting of writing Front and back are easily

distinguished with writing because it cannot oe read when it

is shown reversed
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7 3 2 Types of Rotation

Some methods of rotating the picture were better than

otners at showing depth qualities If the picture was

rotated about the z axis of the screen, there would be no

changes made to the picture due to its depth The same

rotation could be done with a flat picture Rotation on the

x axis or y axis were better because points at different

depth locations would move at different speeds It was best

to have the center of rotation somewhere near tne middle of

the object to get maximum contrast of motion due to depth

Rotation around the x axis could be very disorienting

because the picture goes upside down once every oscillation

This left rotation about the y axis as the best choice of

the three

Simply rotating about tne j axis on the screen moved

each point on tne screen back and forth in the x plane It

was found to be helpful to tilt the entire coordinate system

on the x axis first before rotating in tne y axis This

caused descrete points making up tne picture to move in

ellipses on the screen Ellipses gave a better indication

as to exactly where each point was in the picture A tilt

downward around the x axis of about 15 degrees produced the

most natural looking and Informative picture

7 3 3 Oscillating the Picture

Rotating the picture completelj around gave the best
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overall description of the object out wnen the display was

being used to control the manipulator, it was hard to

distinguisn between front, back, and sideways, as they where

always changing A better way of moving the picture was

found for situations where picture orientation had to be

known Instead of rotating completely around, the picture

was just rotated back and forth witn a sine wave controlling

the y angle This way the orientation was not disturbed

much and the 3-dimensions were still apparent An amplitude

of 10 degrees with a period of 2 seconds produced a useful

picture Tne problem with tnis display was that the

operator sometimes had to wait for the full cycle to finish

before getting his bearings and maiing another move

7 3 4 Rotation with a Joystick or Trackball

All the rotations done previously were controlled by

the keyboard and did not require ,or allow, much direct

attention Sometimes it could be very useful to be able to

position the picture in any view very rapidly There das

available a trackball and joystick tnat were built to

provide this type of control They could be wired to tqe

computer to control the display angles

7 3 5 Position Control

The 3-degree of freedom joystick that was used put out

a voltage related to the position of the joystick This
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voltage was used to control the 3 angles fed into the

display transformations matrix, as shown in Fig 7 2a The

order of angle transformation used was, first rotation

around the z axis, then the y axis, and then the x axis It

was important to transform the z axis first because that

made the display move most similar to the joystick A

potentiometer was mounted on the joystick box to control the

maximum allowable angles that the display could be put

through The display could be viewed from any angle but

would bounce back to zero when the joystick was let go

7 3 6 Velocity Control

In velocity control it was most convenient to rotate

the display in screen coordinates, as shown in 7ig 7 2b

This allowed the picture to rotate independently of of the

orientation of the ooject coordinates When angles are

changed with respect to object coordinates it was not always

apparent which way the picture would turn for a given input

if the object was already rotated through some other angles

The x-y inputs available from the trackball were

sufficient to position the display because only two angular

veloceties were required to maneuver the display when using

screen rotations With tne joystick, all 3 inputs were used

even though they were redundant  This allowed somewhat

faster control of the picture position

Rotation in screen coordinates was done with the same
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a Screen Coordinates and Rotations

b Object Coordinates and Rotations

Fig 7 2 Screen and Object Coordinates
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transformation matrix as rotation in object coordinates

The difference is that the transformation was completely

recalculated each cycle when rolling in object coordinates

and was only modified for screen coordinates The display

transformation matrix was saved from the last iteration and

multiplied by an incremental transformation matrix that was

the same as the object transformation, but which reflected a

very small angle cnange It did not matter in which order

the x, y, and z rotations were multiplied by the

transformation because it made little difference for small

angle changes It would seem that the transformation matrix

would degenerate from floating point round-off when it was

continually remultiplied by another matrix but this was not

observed to happen and the display did not seem to lose

integrity even after many rotations

For versatility, rotations in screen coordinates were

found to be the best Also, the capaoility to rotate

directly on the screen z axis in addition to the x and y

axes was useful and time-saving even though it was

redundant

7 4 Improving the Display for Polyhedra

7 4 1 Showing All Edges

The construction of a polyhedron out of a set of points

offered several methods of improving display qualitJ The
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obvious way to display a polyhedron constructed in the

method shown in Cnapter 6 was to just show all edge lines

The edge lines could be constructed from the facet data

because each edge was defined twice, once in two different

facets and always directed in opposite directions The

algoritnm used to connect the points on the display simply

went througn the data and drew a line when two connected

points on a facet were found in increasing order A

complete picture could be made of a polyhedron consisting of

40 facets in about 50 milliseconds

This particular type of polynedron display was used

most frequently because it was so fast to construct In

fact this display was completely reconstructed every time a

facet was changed It did not produce an especially clear

picture but rotating it did help No attempt was made to

remove hidden lines from this display because it would take

too much computing time

7 4 2 Drawing Contour Lines

It was a straightfoward problem to draw contour lines

around the outside surface of a polynedron, because the data

for eacn of its facets were stored in memory The only

outside information required by the computer ias the number

of contour sections to draw The gap between sections was

automaticly figured from tne overall size of the polyhedron

The contours were all made or the z plane and eacq
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contour was calculated and drawn in sequence For each

contour plane every facet in the polyhedron was cnecked to

see if it passed tarough that plane Jlhen one did pass

through then the endpoin4 coordinates of the line segment

defining the facet cut were calculated by interpolation If

the polyhedron was withoat holes or folded surfaces then tqe

contour drawn at any section would be a closed polygon

Drawing contours was found to be the best way display a

polyhedron on a vector graphic display The shape of the

object was well defined by two aspects of the contours One

was that the directions that tne contour lines went in gave

an indication of the angle the facets had relative to the z

axis The other aspect was tnat the density of contour

lines on one facet indicated tne angle the facet had with

respect to the z plane The line density of the facets also

produced a sort of shading effect that gave an immediate

sense of 3-dimenslonality When the polyhedron with

contours was rotated tne picture became very well defined

Any errors in the polyhedron became painfully obvious

because any facets sticking tqrough other facets could be

readily seen Also if any facets folded over on top of each

other the picture became very bright in that area

7 4 3 Raster Graphic Display

Raster graphics was experimented dith to see qow wedl a

3-D polyhedron coald oe displayed It was also used to show
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how easily polyhedron data as descrioed in Chaper 6 could

be processed by a computer

The difference between raster graphics and vector

graphics is that the raster graphics beam sweeps out the

entire screen and its picture is changed by variations in

intensity like a television picture The vector graphics

beam traces out each of the lines and points individually

An advantage of raster graphics is that surfaces can be

simulated better because shading is possible and it is also

easier to delete hidden lines and surfaces

The primary disadvantage of the raster display used in

the experiments was that it was much slower at drawing

pictures than the vector display This made real-time

rotations impossible so the raster graphics was used

primarily to make static copies of polyhedra

To draw a polynedron on the raster display it first had

to oe constructed with the vector display The polyhedron

was then framed in the vector screen to tne view desired to

come out on the raster display When this was done all the

polyhedron data was stored in a data file The 3-D point

locations were stored in screen coordinates to preserve tne

view chosen for the display Tnis data was tnen read by a

second program that put the polyhedron on the raster

display Tne triangles of the polyhedron were drawn one at

a time on the display according to their x-y coordinates

The shade of each triangle was determined by comparing tne
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angle of the surface normal to a space vector simulating a

light source direction Triangles facing away from tne

screen were not drawn at all It had to be known how the

facets lay in 3-space and which side of each facet faced out

to accomplish shading This was another advantage of

storing facets as described in Chapter 6

If the polyhedron had any concave areas, it was likely

that there were several facets partially hidden by other

facets By its nature, raster graphics will automaticly

draw a new triangle right over an old one so all that is

required is that nidden triangles be drawn before the

non-hidden ones The method used to draw the facets in the

correct sequence was very simple The point on each facet

with the maximum z value (nearest point) was the only one

considered to decide facet order The facets were ordered

such that the ones with a minimum value for this point were

drawn first and ones with higher values were drawn last

There were some situations wnere this algorithm would give

wrong answers but so long as the object to be displayed was

not a radical shape and there were a reasonable number of

facets defining each feature there would be no overlapping

facets drawn in the wrong order This type of shading

display made the best picture when there were smootn

transitions between facets

It was found to be advantageous to oe able to

interactively change the location of the light source to a
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position where the 3-dimensionality of the polyhedron was

most apparent Due to the nature of tne raster grapnics

hardware used it was very slow while drawing the polyhedron

but once drawn the shades of the individual triangles could

be changed very fast The trackball was used to input

changes in x-y angles for the location of the light source

from the center of the screen The apparent light source on

the polyhedron could be changed rapidly by recalculating all

the new shades for each triangle and sending them to the

display The shades could be changed fast enough that the

light source could be moved almost in real time, ( about 200

milliseconds to change a polynedron with 50 exposed facets)

This progressively changing light source brought out

3-dimensionality very well

Using raster graphics to display polyhedra can make

them loon very natural from a human point of view They can

even be made somewhat dynamic by moving tne light source

However it was impractical to rotate the picture in real

time with tne equipment available
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Fig. 7.3 Example of Polyhedron Shown on Raster Display
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CHAPTER 8 EVALUATION

8 1 Number of Points to Make a Picture

The quality of a picture consisting of points in space

depends very much on the density of points in the picture

If too many points were snown, the pictare would be white

and nothing could be seen Too few points, and the picture

would convey notning Somewhere in between is a region

where there are just enough points to describe what is

required to be seen

Presumably the minimum number of points is dependent on

the number of distinguishing features to be shown in the

picture A distinguishing feature could be any simple

surface section of the object to be investigated These

features would have somewhat rounded profiles and would be

either flat planes or slightly curved planes Any features

with sharp edges would have to be broken into smaller

more-rounded features As an example, a cuoe could consist

of six distinguishing features, one for each of its sides

A sphere could consist of just one curved feature, or

perhaps it should consist of several features to reduce the

total angular change per feature There is no correct

answer, but it is required that a degree of magnitude be

found for the amount of points required to descrloe an

object As a test, the namber of points needed to describe

one side of a cube and tne number needed to desclibe tne
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surface of a sphere were estimated and compared to get an

upper and lower bound for tne number of points required to

describe a "feature"

Figures

sphere can

ana poy~yedr

described by

are at least

shown nere,

points if it

apparent wi

was because

shown with

8 1 thru 8 4 show how recognizable a cube and a

be made with different point densities for dot

on displays It can be seen that a cube

points does not become recognizable until there

500 points on the cube Although it cannot be

the cube became recognizable with only 200

was rotated on the screen The sphere became

th only 100 points rotated or not Perhaps this

a sphere looks tne same from any view A cube

the points connected into a polyhedron became

fairly recognizable with only 50 random points It must be

kept in mind though that 8 well placed points can perfectly

describe a cube The sphere still needed about 100 points

to look lie a sphere even when the points were connected

This may be oecause the curved lines of a sphere are not

suited for description by the straight edges of a

polyhedron

Since a cube requires 500 random points to describe its

surface, tnen 85 points are required to descrioe one of its

six distinguishing features A sphere still requires 100

points, assuming it consists of only one feature For

polyhedrons, a cube feature needs aoout 20 points and a

spnere reqilres 100 It will be assumed here that all
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distinguishing features on any ooject require about the same

amount of randomly distributed points to define its shape

for a human Different sized features would also require

the same amount of points, they would just have different

point densities

Any object can be broken into arbitrarily small

features depending on the degree of detail required Say an

area in front of a manipulator must be completely descrioed

by touch points and it is necessary that all features down

to three inches across must be recognizable This means the

entire area must be covered with a point density sufficient

to describe a 3 inch feature If the area to be

investigated is 20 square feet and a suface feature is

assumed to require 100 points to oe well described, then tne

entire area would have to be covered with 32000 points to

describe all features down to 3 inches across If the

points are to be connected into polyhedrons, then it can be

assumed that only 20 points are needed per feature, 6400

points will be required to cover the entire area

The above figures are probably exaggerated because the

manipulator operator is allowed to cnoose where he wants to

put a high concentration of points de can leave some areas

with very few points if he decides they are unimportant

Also, if the picture can be rotated, the number of required

points can be greatly reduced

A problem unique to points that were connected into
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polyhedrons was tnat tne surface of the polyhedron could

become degraded if the points were too densily packed

together That is, if the points were closer togetner than

the positioning error of the manipulator, then lines

connected between them would not likely lay parallel to tne

actual surface These points would make a very jagged

surface on a polyhedron One solution would be to delete

points that are to close to other points This will not

reduce the resolution because it is already limited by the

manipulator accuracy

8 2 Speed of Picture Construction

8 2 1 Constuction Time for Points

The amount of time required to read points from the

touch sensor and then draw them on the display was very

short When using a single touch sensor switch, one point

could be read in at every cycle of the program One cycle

took about 20 milliseconds so conceivably 50 points could be

read within one second The computer could read points even

faster with tne brush sensor oecause it had 10 switches

The limiting factor was not how fast computer could read

points but the speed the toucn sensor could respond The

single touch sensor could not be moved fast enougn to read

more than 2 or 3 points per second and the orusn sensor was

not much faster because, although it could read many points
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at once, it was more cumoersome to maneuver

Clearly, a touch sensor is required that can read

points very rapidly if a picture of a manipulator's

surroundings is to be made in a reasonable amount of time

A fast touch sensor could be made if it had many switches

and if it was set up such that tne switches did not

Interfere with one another, (see Chap 2) This type of

sensor would be considerably more expensive than the ones

used in this proJect but would probably be worth it for the

amount of time that would be saved Another way to increase

speed would be to make a sensor that could stream points in

without having to lift off the surface for every point A

streaming sensor would work best if it was non-rigidly

mounted to the manipulator That way the manipulator would

not have to follow every bend and corner encountered on the

surface

As an example, assume the maximum point coordinate

reading rate of the computer is 200 points per second If a

touch sensor was built with 20 switches on it, tnen the

computer would be capable of reading 10 points per second

per switch This rate would not be unreasonable if the

switches were made to stream points in A touch sensor

capable of reading points at 200 per second could

essentially cover any surface encountered with a thick mat

of points in a very short time
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8 2 2 Construction Time for Polyhedra

The speed of the computer was the limiting factor for

construction of polyhedra The time period required to

attach a nei point went up with the number of facets on the

polyhedron Fig 8 5 shows a graph of average time

required to attach a new point versus tIie number of points

in the polyhedron for the computer program in Appendix B

There are many areas of this program that could be made

to run much faster at the expense of more program

complexity To attach a new point, the program nad to test

every facet of the polyhedron for suitability This das

very time consuming For this reason a condition was added

tnat the computer only make complete tests on the five

facets with nearest centroids to the new point This

condition increased the speed of the program by a factor of

two Other parts of the program could have used this same

kind of selectivity For example, after a facet was chosen

for attachment, all the other facets had to be checked to

see that they did not get in the way Also, all the facets

and all tne touch vectors had to oe checked for interference

before a pair of facets could be changed These checks

significantly slowed computation

Perhaps the thing that contributed most to slowing the

program was the basic philosophy that points should be

attached to the polyhedron in tne order they were found by

the operator If all the points could be known at the star+
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and arranged in the best sequence for attachment, many of

tnese extensive comparisions and checks might be eliminated

This might also allow the points to be seperated into small

groups and connected together in patches to further increase

speed

8 3 Raster Display

Drawing a picture of the polyhedron on the raster

display was much slower than any other method tested One

facet of the polyhedron could be drawn on the display in

about half a second so real-time rotation of the picture was

Impossible Raster graphic hardware is available on the

market that will draw a picture much faster but can be very

complex The raster display was best used for making

permanent pictures because it was capable of making them

look very realistic
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CONCLUSIONS AND RECOMENDATIONS

9 1 Conclusions

This project has snown that a supervisory controlled

manipulator can oe used to construct an understandaole

3-dimensional picture of its surroundings with just the

sense of touch The picture can consist simply of surface

points shown on a computer graphic display It is also

shown how a more sophisticated picture can be made by

reconstructing a surface from these points Not only can a

picture be made that is recognizable to a human, 3-D surface

data that is easily digestable by a computer is also

provided

In situations where vision of the manipulstor work area

by the operator is difficult or impossible, these methods of

touch sensor picture construction could be a good aid or

replacement for the usual television camera

9 2 Recomendations

A touch sensor would have to be developed +iat could

sense points very rapidly for toucn generated pictures to be

of practical use That waj a picture could be essentially

"painted" with the sensor Also the surface construction

program would have to be made to go faster to be able to use

it in real-time This should not be impossible as the

number of required calculations to attach each point to the
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polyhedron can be held to a maximum value

There are many aspects of surface construction from

points that could use further study

1 ) A method Is needed to decide if there should be

more than one polyhedron or surface in front of the

manipulator This in turn leads to tne problem of attaching

or detaching different polyhedra from each other

2 ) An interesting problem dould be to find a method to

construct polyhedra with holes passing tnrough them A

polyhedron with a hole does not follow Euler's Formula

3 ) No allowance was made in this study for a moving

object If the motion were known then there ought to oe a

way to compensate for this in the construction on the

screen
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APPENDIX I

COMPUTER PROGRAM DESCRIPTION

Interdependent tasks sucn as manipulator simulation,

vector grapnic display, and polyhedron construction where

all combined in one Fortran 4-Plus program because it was

most practical that they all work at the same time Raster

graphic display was done on a seperate program as it did not

have to run in real-time

MAIN PROGRAM

The main program, TOUCH, handled manipulator

simulation, touch sensing, and program initialization

TOUCH was basicly a stripped down version of C Winey's ARM

program [ 1 i Only those parts that were required for

manipulator simulation were saved because cycle time was

critical The touch sensing capability was added and took

care of locating points and touch vectors any time a touch

sensor switch was found to be tripped Also some algorithms

were added to improve aosolute point coordinate calculation

as described in Chapter 5

When running, the processo" would simply loop through

TOUCH continually refreshing the manipulator displaj and

aliting for an outside command Control would be transfered

to subroatine DISP in tne event of a keyboard input or to
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subroutine CON if a touch sensor tripped when a polyhedron

was being constructed Cycle time through TOUCH was aoout

20 milliseconds which was fast enough to simulate a smooth

moving manipulator and give it a reasonably good reaction

time to respond to touch inputs

Subroutine DISP responded to any keyboard inputs and

took care of display managment It controlled view angle,

set program parameters, and organized information output

It was responsible for creating, deleting, and starting

construction of polyhedra DISP was called every cycle of

TOUCH when it was required that the display be dynamicly

rotated or moved This increased cycle time to 26

milliseconds

Subroutine CON took care of adding new points to an

existing polyhedron If no polyhedron existed, CON would do

the process of initialization described in Chapter 6 CON

decided wnich was the best facet to attach to and made sure

that it did not violate any rules for a closed polyhedra

After the point was attached CON did the 3oo of deciding

which facet pairs to check for smoothing

Subroutine FACE compared facet pairs and decided inen

they should be switched with compliment facets It

determined tqe angles oetween neighboring facets and checked

that new facets did not violate any rules for closed

polynedra FACE was be callea by CON when cnecking facet

pairs and could also be called by DISP when tne operator
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wanted to cneck or change facets from tne keyooard

Subroutine CTOUR drew evenly spaced contour lines

across tne existing polynedron These contour lines were

always drawn on the object coordinate z plane

Subroutine JROL performed rotations in screen

coordinates for control by the joystick or trackball

The following list of subroutines took care of

individual tasks that were often required by main

subroutines

Subroutine PIERC compared relationships oetween a line

and a triangle It determined if the line pierced through

tne triangle, if the triangle faced away from the base of

the line, and if the line pointed away from the triangle

It could also determine the distance along the direction of

the line from the base of the line to the plane descrioed by

the triangle PIERC was used to determine if two facets

dere concave or convex, if a touch vector was at an angle

greater than 90 degrees to a facet, or if a line segment

stuck through a facet

CROSS - determined the normal vector of a plane described by

three points in 3-space

ANGL - determined the angle difference oetween tfo vectors

in 3-space

SEARCH - found the third point of a facet on an existing

polyhedron if give- the two other points in sequence for
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that facet

VECT - drew a line on the screen between two specified touch

points

The following are the set of library subroutines that

were used to control tie vector graphics display processor

MGINIT -initialize tne Megatek

MGSEND -send data in display buffer to Megatek

SETINT -set the light intensity for all lines drawn after it

DRWI3 -draw a 3-D line

MOVI3 -move to a new 3-D location without drawing line

PNTI3 -draw a point in 3-D

NPOINT -find last line number being used by Megatek

MODIFY -modify next command in Megatek with next call

LDPTRO -reset oeginning of Megatek display and erase

everything after it

LDTRN3 -send transformation coefficients for rotation,

translation, and zoom for all lines drawn after it

RASTER DISPLAY

The program DRW read 3-dimensional points and

polyhedron data from a data file from DISP The points were

preformatted on the vector graphic display DRW drew all

the facets facing toward the screen on the Lexidata

Fartnermost facets were drawn first so tnat they would be
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erased if a closer facet das in front of them Shading was

accomplished by relating a facet to the angle between a

facet normal and a vector simulating a light source

direction The light source direction could be changed with

a trackball very quickly by changing the shading lookup

table

The following are a list of subroutines used to read

the trackball and control the Lexidata

TBALL - read trackball x and y velocities and the combined

value of three switches

DSVEC - drew a line between two points and selected a

shading lookup number

DSLLU - changed the shade of one lookup number

DSLWT - cnanged the shades of many lookup number according

to an array
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APPENDIX B1 COMPUTER PROGRAM FOR DISPLAY OF MIANIPULATOR
AND SURFACE POINTS

PROGRAM TOUCH
C INITIALIZE PROGRAM

DIMENSION IPT(4),XX(4),XY(4),XZ(4),XT 4),YX(4),YY(4
DIMENSION YZ(4),ZX(4),ZY(4),ZZ(4),YT(4),ZT(4)
DIMENSION SCL(7,2),IA(16),A(7)
DIMENSION IOSB(2),IBUF(12),IPOT(1O),MS(10),IPARAM(6
COMMON /DMABUF/ IDUM(2298),ADAT(51,3),BRP(36,3),

1 ICON (90,2), IBRC (50,2), IFC (200,3),M (100,3)
COMMON /FACT/IFMAX,NX(30),NA,IPS,NCON,NPOL,ICCN,

1 IVECT,ISUP,IRX
COMMON /IPTPS/ IANG(100,2),ICHECK,VEX
COMMON /DISPL/ICM , XXD,XYD,XZD,XTD,YXD,YYD,YZD,

1 YTD,ZXD,ZYD,ZZD,ISHAD,IAR•,IWALL,IROLL,JSTICK,IDOTR
C INITIALIZE THE MEGATEK AND A/D

CALL ANINIT
CALL MGINIT
CALL SETINT(13)
CALL NPOINT(IREP)

C INITIALIZE THE KEYBOARD MONITER ROUTINE
CALL GETADR(IPARAM(1),ICMD)
IPARAM(2)=1
IEXC="033
LLL="114
IAAA="101

C INITIALIZE VIEW AND MENU
100 IRX=-5

CALL DISP
IRX=O
ICM="114
CALL DISP

C SET LINK LENGTHS AND ORIGIN
AY=55 625
AZ=1 600
SZ=720
ZOG=480
YOG=960
VEX=2

C READ SCALING FACTORS FOR A/D OUTPUT OF ANGLES
OPEN(UNIT=4,qAME='SCALE DAT',TYPE='OLD')
READ(4, *)((SCL(I,J),J=1,2),I=1,7)
CLOSE(UNIT=4,DISPOSE= 'SAVE')

C READ POINT DATA FOR MANIPULATOR
OPEN(UNIT=4,NAME='ARMSDT DAT',TYPE='OLD')
DO 101 I=1,60
READ(4,*,END=102)ADAT(I,1),ADAT(I,2),ADAT(I,3)

101 CONTINUE
102 CLOSE(UNIT=4,DISPOSE='S4VE')
C READ CONNECTIVITY DATA FOR MANIPULATOR

OPEN(UNIT=4,NAME='ARMSCN DAT',TYPE='OLD')
DO 103 I=1,100

)

)

1.\_---1. \
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MM=IBRC(I, 2)
IXi =40 *BRP (MR, 1)
IX2=40 *BRP(MM,1)
IY1=40 *BRP(MR,2)
IY2=40 *BRP(MM,2)
IZ1=40 *BRP(MR,3)
IZ2=40 *BRP(MM,3)
IF(IX1 EQ 880 OR IX2 EQ 880)GOTO 128

249 CALL MOVI3(IX1,IY1,IZ1)
CALL DRWI3(IX2,IY2,IZ2)

C SEND TO DISPLAY
CALL MGSEND

128 CONTINUE
129 CONTINUE
C SET DISPLAY AFTER MANIPULATOR

CALL SETINT(13)
CALL NPOINT(NCON)
CALL MGSEND

C READ ARM POSITION FROM A/D CONVERTER AND C
VOLTAGE

ONVERT TO

C READ TOUCH SENSOR SWITCHES
112 CALL AINSQ(16,22,IA)

CALL DIN(20,ISP)
135 DO 113 I=1,7

A(I)=FLOAT(IA(I))/3276 2
113 CONTINUE
C SCALE A/D OUTPUT, FILTER, AND CALCULATE SINES COSINES
914 THZ=SCL(1, 1 )*A(5)+SCL(1, 2)

THX=SCL(2,1 )*A(7)+SCL(2,2)
THYZ=SCL(3,1 )*A(6)+SCL(3,2)
THY=THYZ-THZ
THA=SCL(4,1 )*A(2)+SCL(4,2)
THR=SCL(5,1)*A(3)+SCL(5,2)
THL=SCL(6,1 )*A(4)+SCL(6,2)
S1=SIN(TzIZ)
S2=SIN(THX)
S4=SIN(THA)
Cl=COS(THZ)
C2=COS(THX)
C4=COS(THA)

C PREFORM PUSHROD CALCULATION
ZPl=-2 25*S2-4 5*C2*CP3
XGXP=3 1-2 25*C2+4 5*S2*CP3
ZGZP=-4 5*COS(THY)+2 25*S2+4 5*C2*CP3
YP=4 5*SIN(TYTY)+SQRT(324 72-XGLP*XGXP-ZGZP*ZGZP)
SP3=(YP-18 )/4 5
THY 1=ASIN(SP3)
CP3=COS(THY1)

C ROTATE JOINT 90 DEGREES
S3=-CP3
C3=SP3

C PREFORM DIFFERENTIAL CALCULATION
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S5=SIN((THR+THL)/2)
S6=SIN((THL-TdR)/1 65)
C5=COS((THR+THL)/2)
C6=COS((THL-THR)/1 65)

C DO LINK TRANSFORMATIONS
C SHOULDER TRANSFORMS

XX(3)=C2
XY(3)=-S2
YX(3)=C *S2
YY(3)=C1 *C2
YZ(3)=-S1
YT(3)=YOG
ZX(3)=S2*S1
ZY(3)=S1*C2
zz(3)=ci
ZT(3)=ZOG

C FOREARM TRANSFORMATIONS
XX(4 )=C2*C4-S2*C3*S4
XY (4) =-C2*S4-S2*C3*C4
XZ (4)=S2*S3
YX(4 )=C1 *S2*C4+C1 *C2*C3*S4-S1 *S3*S4
YY(4)=-C1 *S2*S4+C1 *C2*C3*C4-S1 *S3*C4
YZ (4)=-Cl *C2*S3-S1 *C3
YT (4)=Sl *SZ+YOG
ZX(4 )=S1 *S2*C4+S1 *C2*C3*S4+C1 *S3*S4
ZY (4)=-S1 *S2*S4+S1 *C2*C3*C4+C1 *S3*C4
ZZ (4 ) =-S1 *C2*S3+C *C3
ZT (4)=-C1 *SZ+ZOG

C HAND TRANSFORMATIONS
XX(2)=XX(4 ) *C6+XY(4 ) *C5*S6+XZ (4) *$5*"6
XY(2)=-XX(4)*S6+XY(4)*C5*C6+XZ (4)*S5*C6
XZ (2)=-XY(4 )*S5+XZ (4 ) *C5
XT (2)=-XZ (4)*AZ+XY (4)*AY
YX(2)=YX(4 )*C6+YY(4 )*C5*S6+YZ (4 )*S5*S6
YY (2 ) =-YX (4) *S6+YY (4) *C5*C6+YZ (4) *S5 *C6
YZ(2)=-YY(4 )*S5+YZ (4)*C5
YT (2)=-YZ (4)*AZ+YT (4)+YY(4)*AY
ZX(2 )=ZX(4 ) *C6+ZY (4) *C5*S6+ZZ (4 ) *S5*"6
ZY(2)=-ZX(4)*S6+ZY (4)*5*C6+ZZ (4)*5*C6
ZZ (2)=-ZY (4 )*S5+ZZ (4 )*C5
ZT(2)=-ZZ(4)*AZ+ZT (4)+ZY(4)*AY

C
C DO DISPLAY TRANSFORM AND SEND TO DISPLAY

DO 371 I=2,4
60 XX1=XX(I)*XXD+YX(I)*XYD+ZX(I)*XZD

XY1 =XY(I)*XXD+YY(I)*XYD+ZY(I)*XZD
LZ1 =XZ (I)*XXD+YZ (I)*XYD+ZZ (I)*ZD
XT1=XT(I) *XD+YT(I)*XYD+ZT(I)*XZD+XTD
YX1 =XX(I) *YXD+YX(I) *YYD+ZX(I) *YZD
YY1=XY(I)*YvD+YY(I)*YYD+ZY(I)*YZD
YZ1=,Z(I)*YLD+YZ(I)*YYD+ZZ(I)*YZD
YT1=TT(I)*YXD+YT(I)*YYD+ZT(I)*YZD+YTD
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IF(IRX EQ -4)TYPE *,IPS,TIME
C RING BELL TO INDICATE COMPLETION

IF(IRX EQ -4)WRITE(5,765)NBEEP
GOTO 373

C DRAW POINT ON SCREEN
374 CALL PNTI3 (MMMX,MMMY,MMMZ)

CALL M(SEND
373 IPOT(I)=O
372 CONTINUE
C ENABLE QIO IF ARM IS TWISTED

IF(IRX EQ -4 AND THA GT 3 O)IRL=O
IF(IRX EQ -4)GOTO 112

C CHANGE DISPLAY TRANSFORMATIONS IF VIEW IS CHANGING
IF(IROLL EQ 1)CALL DISP
IF(IVECT EQ 2)GOTO 112

C READ KEYBOARD
IF(IFF NE 1)CALL QIO("10400,5,3,,IOSB,IPARAM,IDS)
IFF=1
CALL READEF(3,IUU)
IF(IUU NE 2)GOTO 112
ICM=ICMD
WRITE(5,999)IZXC,LLL,IEXC,IAAA

999 FORMAT('+',4A)
IFF=O
CALL DISP
ICM=O

C LOOK AT DISPLAY FLAG
382 IF(IRX EQ -1)CALL LDPTRO(NCON)

IF(IRX EQ -1 )CALL MGSEND
IF(IRX EQ -2)GOTO 100
GOTO 112
END
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APPENDIX C SUBROUTINES TO CONSTRUCT A POLYHEDRON
FROM SURFACE POINT DATA

SUBROUTINE CON
COMMON /DMABUF/ IDUM(3060),NF(20),ID(20),

1 IFC(200,3), i(100,3)
COMMON /IPTPS/IANG(100,2)
COMMON /FACT/IFMAX,NX(30),NA,IPS,NCON,NPOL,ICCN,

1 IVECT,ISUP,IRX
C INITIALIZE VARIABLES

NDIST=1O ' MAXIi4UM DISTANCE TO FACET CENTROID
NM AX=5 ' NUMBER OF FACETS FOR COMPLETE CHECKS

357 IPRC1=0
PD1=0
DL1=0
IB=O
ITRY=O
NFMX=NMAX
PI=3 1415927
IF (IPS GT 3)GOTO 3 'IPS=CURRENT NUMBER OF POINTS
IF (IPS GT 1)GOTO 1

C DRAW DOT FOR FIRST POINT
CALL PNTI3(M(1,1),M(1,2),M(1,3))
GOTO 5

1 IF (IPS GT 2)GOTO 2
C DRAW LINE BETWEEN FIRST 2 POINTS

CALL VECT(1,2)
GOTO 5

C CONSTRUCT INITIALIZING FACETS ON FIRST 3 POINTS
2 CALL VECT(2,3)

CALL VECT(3,1)
IFC(1,1)=3 ' LOAD FIRST 2 FACETS FIRST 3 POINTS
IFC(1,2)=2
IFC(1,3)=1
IFC(2, 1)=1
IFC(2,2)=2
IFC(2,3)=3
IFMAX=2 I NUMBER OF FACETS ON EYISTING POLYHEDRON

5 CALL MGSEND
RETURN

3 CONTINUE
DO 320 1=1,20
ID(I)=40 *NDIST

320 NF(I)=O
C FIND DISTANCE FROM POINT TO CENTROID OF ALL FACETS

DO 321 I=1,IFPMAX
IFC1=IFC(I,1)
IFC2=IFC (I,2)
IFC3=IFC (1,3)
FXA=(I1(IFC1,1)+M(IFC2,1)+M(IFC3,1))/3 -14(IPS,1)
FYA=(V(IFC1,2)+M(IFC2,2)+M(IFC3,2))/3 -4(IPS,2)
FZA=((IFC1 , 3)-M(I (FC2 , 3)+M(IFC3,3) ) /3 -M (IPS,3)
LD=SQRT(FLPA*FXA+FYA*FYA+FZA*FZA)
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C ADD FACET TO LIST OF NEAREST FACETS IF CLOSE ENOUGH
IF(LD GE ID(NMAX))GOTO 321
ID(NMAX)=LD ' DISTANCE TO NEAR FACET
NF(NMAX)=I ' NUMBER OF NEAR FACET
DO 322 J=1,NMAX-1
J1 =NMAX-J
IF(LD GE ID(J1))GOTO 321
ID(J1+1)=ID(J1)
NF(J1+1 )=NF(J1)
ID(J1)=LD
NF(J )=I

322 CONTINUE
321 CONTINUE
C BEGIN SEARCH FOR BEST FACET
323 DO 100 IC=1,NFML

I=IC
IF(ITRY EQ 1)GOTO 324
IF(NF(IC) LT 1 OR NF(IC) GT IFMAX)GOTO 100
I=NF(IC)

IFC1=IFC(I,1)
IFC2=IFC(I,2)
IFC3=IFC (I,3)
ICW=O 'SET FLAG TO SIGNIFY ORDINARY FACET CHECK

FIND IF TOUCH VECTOR PIERCES FACET (IPEIRC)
FIND WHICH WAY FACET IS FACING POINT (LOUTF)
FIND DISTANCE BETWEEN POINT AND FACET PLANE ALONG
TOUCH VECTOR (PDIST)

CALL PIERC(IPS,IFC1,IFC2,IPC3,IPIERC,LOUTF,
1 PDIST,ICW)

C DECIDE IF FACET IS BEST SO FAR
C
C CHECK IF DIRECTION VECTOR POINTS POWARD THRU FACET

IF (IPIERC LE O)GOTO 40
C
C REJECT POINT IF FACET FACES TOWARD TOUCH POINT

IF (LOUTF GE O)GOTO 38
IB=O
TYPE *,'NEGATIVE PIERCING FACET'
GOTO 52

C
C COMPARE TO BEST FACET
38 IF (IPRC1 LE O OR PDIST LT PD1)GOTO 60

GOTO 50
C
C REJECT ALL OTHER FACETS IF BEST IS PIERCED POSITVE
40 IF (INTPNT EQ 1)GOTO 50
C
C CHECA CASE WHERE DIRECTION VECTOR POINTS AJAY TnRU FACET

IF (IPIERC EQ O)GOTO 45
-108-
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IF (PDIST
IF (LOUTF
IF (IPRC1
IF (PDIST
GOTO 60

CHECK CASE WHERE
IF (LOUTF
IF (IPRC1

GT
EQ
EQ
LT

D
EQ
NE

0) GOTO 50
1 )GOTO 50
O)GOTO 60
PD1)GOTO 50

GO FOR FURTHER TESTS
IRECTION VECTOR DOESNT
1)GOTO 50
o)GOTO 50

C FIND DISTANCE TO
FXA=(M(IFC1
FYA=(M(IFC1
FZA=(M(IFC1
DL=SQRT(FXA
IF (DL1 EQ
IF (DL1 LE

C CHECK PIERCING OF
60 DO 310 J=1,
C SET FLAG TO CHECK

310
C

CENTROID OF FACET
,1)+M(IFC2,1 )+M (IFC3,1))/3 -M (IPS
,2)+M1(IFC2,2)+M(IFC3,2))/3 -M(IPS
,3)+M(IFC2,3)+M(IFC3,3))/3 -M(IPS
*FXA+FYA*FYA+FZA*FZA)
o)GOTO 60
DL)GOTO 50 'REJECT IF NOT NEAREST SO PAR

OLD FACETS BY NEW LINES
IFMAX
PIERCING OF LINE SEGMENT THROUGH FACET

ICWF=4
CALL PIERC(IPS,IFC1,IF

1 IFC(J,3),LOT PDD,ICWF)
IF(ICWF EQ 6)GOTO 50
CALL PIERC(IPS,IFC2,IF'

1 IFC(J,3),LOT PDD,ICWF)
IF(ICWF EQ 6 GOTO 50
CALL PIERC(IPS,IFC3,IF

I IFC(J,3),LOT,PDD,ICWF)
IF(ICWF EQ 6)GOTO 50

C CHECK PIERCING OF NEW FACETS
DO 51 J=1,IPS
ICWF=O
IPP=O
CALL PIERC(J,IPS,IFC2,
IF(IPP GT O)GOTO 50
CALL PIERC(J,IPS,IFC3,
IF(IPP GT O)GOTO 50
CALL PIERC(J,IPS,IFC1,
IF(IPP GT O)GOTO 50

51 CONTINUE
C SAVE POINT AS BEST SO FAR AN

IF(IPIERC EQ O)DL1=DL
PD1=PDIST
IPRC1 =IPIERC
IB=I ' N

50 CONTINUE
100 CONTINUE
C RETURN IF J0 GOOD FACET IS F

IF(IB EQ 0 AND ITRY SQ
52 IF(IB NE GOTO 10

C(J,1),IFC(J,2),

C(J,1 ),IFC(J,2),

C(J,1 ),IFC(J,2),

BY ALL OTHER TOUCH VECTORS

IFC3,IPP,LOT,PDD,ICWF)

IFC1 ,IPP,LOT,PDD,ICWF)

IFC2, IPP,LOT,PDD, ICITF)

*D SAVE

[UMBER 0

OUND
o)GOTO

ALL ITS ATTRIBUTES

F BEST FACET

326
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IPS=IPS-1
IF(IRX EQ -4)WRITE(5,234)
FORMAT(' *****REJECT POINT*****')
RETURN
ITRY=1 ' MAKE SECOND TRY BY CHECKING
NFMX=IFMAX
GOTO 323

LINES FROM NEW POINT TO CHOSEN FACET
DO 55 I=1,3
CALL VECT(IPS,IFC(IB,I))
CALL MGSEND

ALL FACETS

C GET RID OF OLD FACET AND
IFC(IFMAX+1,1 )=IPS
IFC(IFMAX+2,1 )=IPS
IFC(IFPMAX+1, 2)=IFC
IFC(IFMAX+2, 2)=IFC
IFC(IFMAX+1,3)=IFC
IFC(IFMAX+2,3)=IFC
IFC(IB,3)=IPS
IFPMAX=IFMAX+2

C SELECT FACET P.
C

DO 181 I=
181 NX(I)=O

NX(1)=IPS
NX(2)=IFC
NX(3)=IFC
NX(4)=IFC

ADD 3 NEW ONES

(IB,
(IB,
(IB,
(IB,

AIRS FOR CHECKING SMOOTHNESS

1,30

(IB,2)
(IB,3)
(IFMAX,

'LIST OF POINTS TO

NA=4
NEND=O
IF(NA GT 30)NA=30
NX1 =NX(NA)
NA=NA-1
K1=0
DO 182 I=1,30
IF(NX1 EQ NX(I))K1=K
IF(K1 GT 3)GOTO 143
DO 141 I=1,IFMAX
DO 142 J=1,3
IF(NX1 NE IFC(I,J))G
(1 =NX1
K2=IFC(I, 1+HIOD(J,3))
CALL FACE(K1,K2)
NEND=NEND+1
IF(NEND GT 50)GOTO 1
CONTINUE
CONTINUE
IF(dA GT O)GOTO 140
RETURN

234

326

C
C DRAW
10
55

CHECK AROUND

140

182

142
141
143
144

1+1

OT 142

44
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END
SUBROUTINE FACE(K1,K2)
DIMENSION IA(4)
COMMON /DiIABUF/ IDUJM(3100),IFC(200,3),M(100,3)
COMMON /FACT/ IFMAX,NX(30),NA,IPS,NCON,NPOL
COMMON /IPTPS/ IANG(100,2),ICHECK,VEX,IFCC

C FIND ALTERNATE SET OF POINTS M1,M2
C ISTICK=O INITIAL FACETS

IFCC=O
IF(K1 EQ K2)RETURN 1 M1
IF(K1 EQ O OR K2 EQ O)RETURN *

556 IF(K1 LT K2)GOTO 5 / \
IFACEl =K1 / \
K1=K2 /
K2=IFACE1 KI *.--------* K;

5 IFACE1=0 \ /
CALL SEARCH(K1,K2,M1,IFACE1) \ /
CALL SEARCH(K2,K1,M2,IFACE2) \ /
IF(M1 EQ 0 OR M2 EQ O)RETURN *

70 IF(ICHECK EQ 1)WRITE(5,*)K1,K2,M1,M2 M42
IF(M1 EQ M2)RETURN
CALL SEARCH(MI,M2,J,I) , OUT OF THE PAG
IF(J NE O)RETURN ' IS OUTSIDE THE

C IF ICHECK=2 FORCE FACET CHANGE , POLYHEDRON
IF(ICHECK EQ 2)GOTO 160

2

E

C FIND ATRIBUTES OF COMPLIMENT FACETS
90 CALL PIERC(K1,M1,M2,K2,IPRC3,LOUTF2,PDIST,ICW3)

CALL PIERC(K2,M2,M1,K1,IPRC4,LOUTF3,PDIST,ICW4)
C IF ICHECK=1 THIS SUBROUTINE ONLY PRINTS THE FACET DATA

IF(ICHECK NE 1)GOTO 689
TYPE *,'POINT LOUTF ICW IPIERC'
WRITE(5,*)K1,LOUTF2,ICW3,IPRC3
WRITE(5,*)K2,LOUTF3,ICW4,IPRC4

689 IF(IPRC3 LE 0 AND IPRC4 LE O)GOTO 155
ISTICK=1
IF(LOUTF2 GT O)RETURN

C
C
C CHECK IF TOUCH VECTOR AND FACET NORMAL ARE OVER
C 90 DEGREES APART
155 IF(ICW3 NE 1 AND ICW4 NE 1)GOTO 159

IF(LOUTF2 EQ -1 )RETURN
GOTO 157

159 Al =0
A2=0

C FIND THE 4 PERIPHERY POINTS
CALL SEARCH(K1,M1,M11,I)
CALL SEARCH(M1,K2,MI2,I)
CALL SEARCH(K2,M2,M22,I)
CALL SEARCH(M2,K1,M21,I)

C FIND ALL THE SURFACE NORMALS
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CALL CROSS(KI,K2,M1,1)
CALL CROSS(K2,K1,M2,2)
CALL CROSS(M1,M2,K2,3)
CALL CROSS(M2,M ,K1,4)
CALL CROSS(K1,M1,M11,5)
CALL CROSS(M1,K2,M12,6)
CALL CROSS(K2,M2,M22,7)
CALL CROSS(M2,K1,M21 ,8)

C FIND ANGLE BETWEEN ADJACENT FACETS AND AD
CALL ANGL(6,1,A1)
CALL ANGL(7,2,A1)
CALL ANGL(8,2,A1)
CALL ANGL(5,1,A1)
CALL ANGL(5,4,A2)
CALL ANGL(6,3,A2)
CALL ANGL(7,3,A2)
CALL ANGL(8,4,A2)
CALL ANGL(1,2,AI)
CALL ANGL(3,4,A2)

420 IF(ICHECK NE 1)GOTO 421
TYPE *,'ORIGINAL ANGLE TOTAL=',A1
TYPE *,'COMPLIMENT ANGLE TOTAL=',A2

421 IF(A1 LE A2)RETURN
C
C CHECK IF NEW LINE PIERCES ANY FACETS
157 CALL PIERC(M1,K2,K1,M2,IPRC3,LOUTP1

CALL PIERC(M2,K1,K2,M1,IPRC4,LOUTF1
IF(ICHECK NE I)GOTO 156
TYPE *,'POINT LOUTF ICW IPIERC'
W~RITE(5,*)M1,LOUTF1,ICW3,IPRC3
WRITE(5,*)M2,LOUTF1 ,ICW4,IPRC4
RETURN

156 IF(IPRC3 LE O AND IPRC4 LE O)GOTO 1
IF(LOUTF2 EQ I)RETURN

158 IF((ICW3 EQ 1 OR ICW4 EQ 1) AND LOU
DO 160 I=1,IFMAX
ICWF=4
CALL PIERC(M1,M2,IFC(I,1),IFC(I,2),

1 LOUTF1,PDIST ICWF)
IF(ICWF EQ 65RETURN

160 CONTINUE

D TOGETHER

,PDIST, ICW3)
,PDIST,ICW4)

58

ITF2 EQ -1)RETURN

C CHECK IF ANY LINES PIERCE NEW FACETS
DO 568 I=1,IFMAX
DO 569 J=1,3
K<1=IFC(I,J)
KK2=IFC(I,1+MOD(J,3) )
IF(KK1 GE KK2)GOTO 569
I CWF=4
CALL PIERC(KK1,KK2,K1,M2,M1,LOUTF1,PDIST,ICWF)
IF(ICWF EQ 6)RETURN
CALL PIERC(KK1,KK2,K2,M1,M2,LOUTFI1,PDIST,ICWF)
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569
568

IF(ICWF EQ
CONTINUE
CONTINUE

C CHECK IF

571

570

6)RETURN

ANY TOUCH VECTORS PIERCE NEW FACETS
IF(ISTICK E
ICWF=O
DO 570 I=1,1
IF(I EQ K1
CALL PIERC(
IF(IPRC1 EQ
IF(PDIST GT
CALL PIERC(
IF(IPRC1 EQ
IF(PDIST GT
CONTINUE
IFCC=1

1Q )GOTO 570

IPS
OR I EQ K2 OR I EQ Ml OR I EQ M2)GOTO 570
I,K1,M2,MI1 ,IPRC1,LOUTF1 ,PDIST,ICWF)
O)GOTO 571
O )RETURN
I,K2,M1,M2,IPRC1 ,LOUTF1,PDIST,ICWF)
O)GOTO 570
O)RETURN

C RECORD NEW FACETS
IFC(IFACEI,1)=K1
IFC(IFACE1,2)=42
IFC(IFACE1,3)=II1
IFC(IFACE2,1 )=K2
IFC(IFACE2,2)=M1
IFC(IFACE2,3)=M2

C
C RECORD NEW LINES TO BE CHE

NA=NA+4
IF(NA GT 30)GOTO 300
NX(30)=H1
NX(29)=M2
NL(28)=K1
NX(27)=K2
DO 161 J=1,4
KK1 =NX(30)
DO 161 I=1,29
KK2=NX(I)
NX(I)=KK1
KK1=NX(I+1)
NX(I+1)=KK2

161 CONTINUE
C
C DRAW NEW POLYHEDROM
300 CALL LDPTRO(NCON)

DO 310 I=1,IFMAX
DO 309 J=1,3
IL•I=IFC (I,J)
ILM2=IFC(I, 1 +MOD (J,3)
IF(ILM1 GT ILM2)GOTO
CALL VECT(ILM1,ILM2)

308 CONTINUE
309 CONTINUE

CONVERTED FACETS

/1 \
/1
/1

IC KED * K2

\I /

42

)
308
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310 CONTINUE
CALL MGSEND
RETURN
END

C SUBROUTINE PIERC
C THIS SUBROUTINE CALCULATES ATTRIBUTES BETWEEN A VECTOR AND
C A TRIANGLE IN TOUCH VECTOR MODE KP IS THE TOUCH
C POINT NUMBER AND Ki-K2-K3 IS INPUT CORNER POINTS OF THE
C TRIANGLE IN THIS MODE ICW WILL BE OUTPUT AS 1 IF THE
C TRIANGLE KP-K1-K2 HAS A SURFACE NORMAL MORE THAN 90
C DEGREES FROM THE TOUCH VECTOR
C IN LINE SEGMENT MODE, (ICW=4), KP IS INPUT AS THE PRIMARY
C ENDPOINT OF THE LINE SEGMENT AND Kl IS THE SECONDARY
C ENDPOINT AND K2-K3-K4 IS THE TRIANGLE
C
C AS OUTPUT, K4=1 IF THE VECTOR PIERCES THE FACET ON THE
C POSITIVE SIDE OF THE FACET AND K4=-i IF IT PIERCES FROM
C THE NEGATIVE SIDE K4=0 IF NEITHER IS TRUE LOUTF=1 IF THE
C FACET FACES AWAY FROM THE PRIMARY POINT OR TOUCH POINT AND
C LOUTF=-1 IF IT FACES TOWARD THE POINT PDIST IS THE
C DISTANCE FROM THE TOUCH POINT OR PRIMARY POINT TO THE
C FACET SURFACE ALONG THE VECTOR
C

SUBROUTINE PIERC(KP,K1,K2,K3,K4,LOUTF,PDIST,ICW)
DIMENSION RX(3),RY(3),RZ(3) ,PX(3) ,PY(3),PZ(3),KA(3)
COMMON /DiABUF/IDUM (3700) ,M(100,3)
COMMON /FACT/ IFMAX,NX(30),NA,IPS,NCON,NPOL
COMMON /IPTPS/ IANG(100,2)
DATA PI/3 1415927
IF(ICW NE 4)GOTO 40

C LINE SEGMENT MODE
KA(1)=K2
KA(2)=K3
KA(3)=K4

C IGNORE COMPARISIONS IF ANY POINTS ARE THE SAME
DO 41 IIS=1,3
IF(KA(IIS) EQ Kl)RETURN

41 IF(KA(IIS) EQ KP)RETURN
C FIND ANGLES SIMILAR TO TOUCH VECTORS

RDX=M(K1,1)-M(KP,I)
RDY=M(K1,2)-M(KP,2)
RDZ=M(KI ,3)-M(KP,3)
PGAP=SQRT (RDL*RDX+RDY*RDY+RDZ*RDZ)
PG=SQRT (RDX*RDX+RDY*RDY)
IF(PG NE O)GOTO 42
CTHET=1
STHET=O
GOTO 43

42 CTHET=RDX/PG
STHET=RDY/PG

43 IF(PGAP NE O)GOTO 44
CPHI=1
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SPHI=O
GOTO 50

44 SPHI=RDZ/PGAP
CPHI=PG/PGAP
GOTO 50

C ORDINARY MODE
C KP IS POINT WITH TOUCH VECTOR
C K ,K2,k3 DESCRIBE THE FACET
40 IF(KP EQ Ki OR KP EQ K2 OR KP EQ K3)RETURN

CTHET=COS(FLOAT(IANG(KP,1))* 0001)
STHET=SIN(FLOAT(IANG(KP,1))* 0001)
CPHI=COS(FLOAT(IANG(KP,2))* 0001)
SPHI=SIN(FLOAT(IANG(KP,2))* 0001)
KA(1)=K1
KA(2)=K2
KA(3)=K3

50 DO 30 J=1,3
PX(J)=M(KA(J),1)
PY(J)=M(KA(J),2)
PZ(J)=M(K4(J),3)

C GET POINTS IN COORDINATES OF KP POINT AND
C TRANSFORM COORDINATES SUCH THAT THE VECTOR LAYS ON THE
C X AXIS

RDX=PX(J)-M(KP,1)
RDY=PY(J)-M(KP,2)
RDZ=PZ(J)-M(KP,3)
RX(J)=(CTHET*RDX+STHET*RDY)*CPHI+SPHI*RDZ
RY (J) =-STHET*RDX+CTHET*RDY
RZ(J)=-(CTHET*RDX+STHET*RDY)*SPHI+CPHI*RDZ

30 CONTINUE
C
C CHECK PIERCING
C IF THE VECTOR PIERCES THE TRIANGLE, THE CORNER POINTS
C WILL SURROUND THE X AXIS

IPIERC=O
T1=ATAN2(RY(1 ),RZ(1))
T2=ATAN2(RY (2),RZ(2) )-T1
T3=ATAN2(RY(3),RZ (3))-T1
IF(T2 LT O)T2=T2+2*PI
IF(T3 LT O)T3=T3+2*PI

C
C CHECK IF TOUCH VECTOR IS GREATER THAN 90 DEG FROM NORMAL

IF(ICW EQ 4)GOTO 55
C IF THE TWO OTHER POINTS GO SEQUENTIALLY CLOCKWISE WHEN
C LOOKING DOWN THE TOUCH VECTOR, THEN THE FACET IS iORE
C THAN 90 DEGREES AWAY

ICW=O
IF(T2 LT PI)ICW=1 ' GREATER THAN 90 DEG

C
55 IF(T2 GT PI)GOTO 32

IF(T3 GT PI AND T3 LT T2+PI)IPIERC=1
GOTO 36
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PI AND T3 GT T2-PI)IPIERC=l

C CHECK IF FACET POINTS OUT OR IN
C FIND CROSS PRODUCT OF FACET

DO 408 1=2 3
RX(I)=RX(Iý-RX(1)
RY(I)=RY(I)-RY(l)

408 RZ(I)=RZ(I)-RZ(1)
QX=RY(2)*RZ(3)-RZ(2)*RY(3)
QY=RZ(2)*RX(3)-RX(2)*RZ(5)
QZ=RX(2) *RY (3 )-RY(2) *RX (3)

C D IS POSITIVE IF FACET POINTS AWAY
D=(RX(1 )*QX+RY(1 )*QY+RZ (1)*QZ)
PDIST=100000
IF(QX NE O)PDIST=D/QX

C LOUTF=1 IF FACET FACES AWAY FROM POINT AND -1
LOUTF=-1
IF(D LT O)LOUTF=1

C PDIST IS DISTANCE ALONG TOUCH VECTOR TO FACET
IF(PDIST LT O)IPIERC=-IPIERC
IF(ICW NE 4)K4=IPIERC
IF(ICW NE 4 OR IPIERC EQ O)RETURN

C INDICATE THAT SEGMENT PIERCES FACET
IF(PDIST GT 0 AND PDIST LT PGAP)ICW=6
RETURN
END
SUBROUTINE CROSS(M1,M2,M3,I)

C THIS SUBROUTINE FINDS THE SURFACE NORMAL OF A
COMMON /DMABUF/IDUM(3700),M(100,3)
COMMON /TVEC/ TX(8),TY(8),TZ(8)
Al =M(M2,1)-M(Tl1,1)
A2=M(M2,2)-M(Ml ,2)
A3=M(M2,3)-M (Ml ,3)
B1=M(M3,1)-M(M1, )
B2=M(M3,2)-M(Ml1,2)
B3=M(M3,3)-M(M1, 3)
TX(I)=A2*B3-A3*B2
TY(I)=A3*B1-A *B3
TZ(I)=A *B2-A2*Bl
RETURN
END

C
SUBROUTINE ANGL(I,J,A)

C THIS SUBROUTINE FINDS THE ANGLE BETWEEN T
COMMON /TVEC/TX(8),TY(8),TZ(8)
R=TX(I)*TX(J)+TY(I)*TY(J)+TZ(I)*TZ(
Sl=SQRT((TX(I)*TX(I)+TY(I)*TY(I)+TZ
S2=SQRT ( (TX(J)*TX(J)+TY(J)*TY(J)+TZ
B=R/(S1 *S2)
IF(ABS(B) GT 1)TYPE *,'ERROR IN ANG
B=ABS(ACOS(B))
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A=A+B
RETURN
END

C
SUBROUTINE SEARCH(N1,N2,N3,N4)

C THIS SUBROUTINE FINDS THE 3RD POINT OF A FACET GIVEN THE
C OTHER TWO IN SEQUENCE IT ALSO RETURNS THE FACET NUMBER

COMMON /DMABUF/ IDUM(3100),IFC(200,3)
COMMON /FACT/ IFMAX,NX(30),NA,IPS
N3=0
DO 10 I=1,IFMAX
J=O
IF(N1 EQ IFC(I,I))J=1
IF(N1 EQ IFC(I,2))J=2
IF(NI EQ IFC(I,3))J=3
IF(J EQ O)GOTO 10
IF(N2 NE IFC(I,1+MOD(J,3)))GOTO 10
N3=IFC(I,1+MOD(J+1,3))
N4=I
RETURN

10 CONTINUE
RETURN
END

SUBROUTINE VECT(I11,12)
C THIS SUBROUTINE DRAWS A LINE BETWEEN TWO

COMMON /DMABUF/IDUM(3700),M(100,3)
10 CALL MOVI3(M(I1,1),M(I1,2),M(I1,3)

CALL DRWI3(M(I2,1 ),M(12,2),M(12,3)
RETURN
END

TOUCH POINTS
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APPENDIX D SUBROUTINES FOR DISPLAY MANA(xGEENT
SUBROUTINE DISP
DIMENSION T(7),DT(7)
BYTE IBUF(3)
COMMON /DMABUF/ IDUM(3100),IFC(200,3),M(100,3)
COMMON /IPTPS/ IANG(100,2),ICHECK,VEX,IFCC
COMMON /FACT/IFMAX,NX(30),NA,IPS,NCON,NPOL,ICCN,

1 IVECT,ISUP,IRX
COMMON /DISPL/ICM,XLD,XYD,XZD,XTD,YXD,YYD,YZD,YTD,

1 ZXD,ZYD,ZZD,ISHAD,IARM,IWALL,IROLL,JSTICK,IDOTR
DATA INTPNT,INWALL,INARM /13,13,13/

C DRAW INSTRUCTIONS
IF(ICM EQ "113 OR IRX EQ -5)GOTO 208
IRX=O
IQS=O
IF(ICM NE "117)GOTO 733

C INITIATE JOYSTICK ROTATIONS
IQS=1
IF(JSTICK EQ O)JSTICK=-I , JOYSTICK FLAG
JSTICK=-JSTICK
IF(JSTICY NE 1)IROLL=O

733 IF(JSTICK NE I)GOTO 300
IROLL=1
CALL JROL(TX,TY,TZ,IQS)
IF(IQS EQ -1)JSTICK=-JSTICK
IF(JSTICK NE 1)IROLL=O

300 IF(ICM NE "125)GOTO 301
C INITIATE SCREEN OSCILLATIONS

TYPE *,'INPUT CYCLES/SEC AND MAX ANGLE'
ACCEPT *,PER,OSC
OSC=0SC/360
PER=PER*6 283
TOS=SECNDS(O 0)
IROLL=1

C CHECK TWO KEY COMMAND CONDITION FLAG
301 IF(ICM NE O AND IPCON EQ 1)GOTO 700

IF(ICM NE 0 AND IPCON EQ 2)GOTO 800
IF ICM EQ "120)IPCON=2
IF(ICM EQ "1 31)IPCON=1
IF(JSTICK EQ 1)RETURN
IF(ICM EQ "131 OR ICM EQ "120)RETURN
IF(ICM EQ "040)GOTO 400 ' STOP ROTATIONS
IF(IROLL EQ 1)GOTO 200 ' SKIP FOR ROTATIONS
IF(ICM EQ "132)STOP
IF(ICM EQ "123)IRX=-1 ' REDRAW DIbPLAY
IF (ICM NE "115)GOTO 458 ' SET INTENSITI OF MANII
INARM=MOD(1+INARM,1 6)
CALL MODIFY(IARM)
CALL SETINT(INARM)

458 IF(ICM NE "127)GOTO 459 ' SET INTEiSITY OF WALL•
INWkLL=MOD (1 +INWALL, 1 6)
CALL MODIFY(IWALL)
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VP1=VP1+T(2)
TOS=SECNDS(TOS1)
TOS1 =TOS1 +TOS
TOS=I'OD(TOS1*PER,6 283)
VPT=VP1 +OSC*SIN (TOS)
TY=TY+T(3)/S
TX=TX+T(4)/S
TZ=TZ+T(7)/S
S=S*(1 +T(5))
IF(S GT 15 9)S=15 9
DO 452 I=1,7

452 DT(I)=O
ICM=0

201 sP1=SIN(VPT*6 28)
SP2=SIN(VP2*6 28)
CP1=COS(VPT*6 28)
CP2=COS(VP2*6 28)
CP3=COS(VP3*6 28)
SP3=SIN(VP3*6 28)

C CALCULATE SCREEN TRANSFORMATIONS
XXD=CP1 *CP3*S
XYD=CP1 *SP3*S
XZD=-SPl *S
XTD= ( TX*XXD+T Y*XYD+T Z *(ZD )
YXD=(-CP2*SP3+SP2*SP*CP3) *S
YYD=(CP2*CP3+SP2*PS*SP3) *S
YZD=SP2*CPI*S
YTD= (TX*YXD+TY*YYD+TZ*YZD)
ZXD=(SP2*SP3+CP2*SPI*CP3)*S
ZYD=(-SP2*CP3+CP2*SP1 *SP3)*S
ZZD=CP2*CP1*S
RETURN

400 DO 401 I=1,7
401 T(I)=0

RETURN
C INITIATE POLYHEDRON CONSTRUCTION
700 IF(ICM NE "107)GOTO 701

CALL LDPTqO(NCON)
IFMAX=O
ICCN=1
IPS=O
DO 121 J=1,3
DO 121 I=1,100
M(I,J)=O
IFC(I,J)=O
IFC(I*2,J)=O
IF(J EQ 3)GOTO 121
IANG(I,J)=O

121 CONTINUE
701 IF(ICM NE "122)GOTO 703

IPS=IPST
ICCN=1
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DO 737 I=1,IFMAX ' PIERCE THE POLYHEDRON
DO 738 J=1,IPS
"4XX=O
IF(J EQ IFC(I,1) OR J EQ IFC(I,2) OR J EQ IFC(I,

1 3))GOTO 738
CALL PIERC(J,IFC(I,1),IFC(I,2),IFC(I,3),CP1,CP2,

1 SP1 ,MX)
IF(CP1 EQ 0 OR SP1 LE O)GOTO 738
CP2=SP1/40
WRITE(5,739)J,IFC(I,1),IFC(I,2),IFC(I,3),CP2

739 FORMAT(' VECTOR',I4,' PIERCES FACET',314,' AT',
1 F9 4,' INCHES')

738 CONTINUE
737 CONTINUE
736 IPCON=O

RETURN
800 IF(ICM NE "104)GOTO 802 ' DRAW POINTS

DO 803 I=1,IPS
803 CALL PNTI3(M(I,1),M(I,2),M(I,3))

CALL MGSEND
802 IF(ICM NE "112)GOTO 804 ' DELETE POINT

TYPE *,'INPUT NUMBER OF POINT TO DELETE,O=END'
ACCEPT *,MEND
IF(MEND EQ 0 OR MEND GT IPS)RETURN
DO 805 I=MEND,IPS
M(I,1 )=H(I+I, 1 )
M(I,2)=M(I+1,2)
M(I,3)=M(I+1,3)
IANG(I,1 )=IANG(I+1 ,1 )

805 IANG(I,2)=IANG(I+1,2)
IFMAX=O
IPS=IPS-i
DO 806 I=1,200
IFC(I,1)=O
IFC(I,2)=0

806 IFC(I,3)=O
804 IF(ICM NE "103)GOTO 807 1 CLEAR ALL POINTS

DO 808 I=1,100
DO 808 J=1,3
M(I,J)=O
IFC(I,J)=O
IFC(I+100,J)=O
IF(J EQ 3)GOTO 808
IANG(I,J)=O

808 CONTINUE
ICCN=O
IPS=0
IFMAX=O

807 IF(ICM EQ "113)ICCN=O 'STOP POINT CONNECTIONS
IF(ICM NE "114)GOTO 809 'WRITE DATA TO FILE
TYPE *,'FOR LIDIDATA "1" FOR MEGATEK "2"'
ACCEPT *,IWRT
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IF(IWRT EQ 1)OPEI(JNIT=1,NAME='LEX DAT',TYPI
IF(IWRT EQ 2)0PEN(UNIT=1,NAPE='MEG DAT',TYPI
WRITE(I, *)IPS,IPMAY
DO 810 I=1,IPS
MXX=M ( I,1 ) *XXD+M (I, 2) *XYD+M (I, 3) *XZ D+XT D
MYY=M(I,1)*YXD+M(I,2)*YYD+M(I,3)*YZD+YTD
MZZ=M(I,1 )*ZXD+M(I,2)*ZYD+M(I,3)*ZZD
IF(IWRT EQ 2)WRITE(1,*)M(I,1),M(I,2),M(I,3)
IF(IWRT EQ 1)WRITE(1,*)MXX,MYY,MZZ
DO 811 I=1,IFMAL
WRITE(1,*)IFC(I,1),IFC(I,2),IFC(I,3),

1 IANG(I,1),IANG(I,2)
CLOSE(UNIT=1 ,DISPOSE='SAVE')
IF(ICM NE "122)GOTO 815 ' READ DATA FROM FI
OPEN(UNIT= ,NAME='MEG DAT' ,TYPE='OLD')
READ (1,*)IPS,IFMAX
DO 814 I=1, IPS
READ(1,*)M(I,1),M(I,2),H(I,3),IANG(I,1),IAN
DO 813 I=1,IFMAX
READ(1,*)IFC(I,1),IFC(I,2),IFC(I,3)
CLOSE(UNIT=1,DISPOSE='SAVE')
IF(ICM NE "116)GOTO 818 ' ARRANGE TO WRITE
IF(IDOTR EQ 1)GOTO 819 ' LARGE NUMBER OF P
OPEN(UNIT=2,NAME='DOT DAT',TYPE='NEW')
IDOTR=1
GOTO 818
CLOSE(UNIT=2,DISPOSE='SAVE')
IDOTR=O
IF(ICM NE "115)GOTO 820' READ MORE THAN 100
OPEN(UNIT=2,NAME='DOT DAT',TYPE='OLD')
DO 822 I=1,8000
READ(2,*,END=821)MMX,MMY,MMZ
CALL PNTI3(MIHX,MMY,MMZ)
CALL MGSEND
CLOSE(UNIT=2,DISPOSE='SAVE')
TYPE *,I
IPCON=0
RETURN

C PRINT DISPLAY CONTROL INSTRUCTIONS
208 TYPE *,' TO ROTATE TYPE '

E= 'NEW' )
E= 'EW' )

LE

G(I,2)

810

811

809

814

813

815

819

818

822
821

820

TYPE *,' 8=UP 2=DOWN 6=RIGHT 4=LEFT 5=FRONT
'1=SIDE 7=TOP'
TYPE *,' L=ORIENTED VIEW E=CW T=CCW'
TYPE *,' TO TRANSLATE TYPE '
mv 'TvT -W- l YL ,iW TTfl I?, T TT C T_D TQrt m _T .- 'r f n- ' ]T m -']D
TlY f.• = T =U P = W - L , - ,WI , = ,,-- . pyL I ,

1 '=FOWARD, {=BACK'
TYPE *,' 9=ZOOM UP 3=Z00M DOWN, TYPE "M"',

1 'FOR MANIPULATOR'
TYPE *,' TYPE "S" TO ERASE, "W" FOR WALLS, I 'OR

1 'POINT INT'
TYPE *,' TYPE "Z" TO EXIT, "R" TO REPEAT, "K" FO0

1 'INSTRUCTIONS'
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TYPE * ' TYPE "H" TO HALT KEYBOARD ROTATIONS'
TYPE * I' C'
TYPE *,' "P" FOR POINT MANIPULATION -- THEN TYPE'
TYPE *,' N= READ POINTS TO DOT R=RECALL POINT

1 'AND LINE DATA'
TYPE *,' TYPE D=DRAW POINTS J=DELETE SPECIFIC POINT'
TYPE *,' C=CLEAR EVERYTHING, K=DOT ENABLE, L=SAVE ',

1 'FOR LEX OR MEG'
TYPE *,' C'
TYPE *,' FOR POINT CONNECTIONS -- FIRST TYPE ',

1 '"Y" TFEN- '
TYPE *,' G=START, S=START WITH SURFACE, B=SUPPRESS',

1 ' BASE POINTS'
TYPE *,' E=END, R=RESUME, W=REDRAW, T=TOUCH ',

1 'VECTORS, C=50 CONTOUR'
TYPE *,' SECTIONS, H=CONTOUR SECTIONS, A=CONNECT '

1 'POINTS ALREADY READ'
TYPE *,' V=CHANGE CONCAVITY FACTOR X=CHECK TOUCH ',

1 'VECTOR PIERCING'
TYPE *,' P=CHECK LINE PIERCING OF FACETS F=CHECK',

1 ' ALL FACETS'
TYPE *,' I=CHANGE FACETS,L=LOOK AT FACETS,N=',

1 'NUMBER FACETS'
TYPE *,' M=COORDS OF POINT J=FACET NUMBERS'
TYPE *,' O=JOYSTICK OR TRACKBALL'
IRX=O
RETURN
END
SUBROUTINE CTOUR(IS)

C THIS SUBROUTINE DRAWS CONTOURS AROUND THE POLYHEDROM
C IN THE X-Y PLANE
C (IS) IS ThE NUMBER OF CONTOURS

DIMENSION NF(4)
COMMON /DMABUF/ IDUM(3100),IFC(200,3),M(100,3)
COMMON /IPTPS/ IANG(100,2)
COMMON /FACT/ IFMAL,NX(30),NA,IPS,NCON,I4POL,ICCN,

1 IVECT,ISUP,IRX
COMMON /DISPL/ ICM,XXD,XYD,XZD,XTD,YXD,YYD,YZD,

1 YTD,ZXD,ZYD,ZZD,ISHAD,IARM,IWALL,IROLL
MAXZ=-2000
MINZ=2000

C FIND THE MAX AND MIN Z VALUES OF THE POLYHEDRON
DO 10 I=1,IPS
IF(M(I,3) GT MAXZ)MAXZ=M(I,3)

10 IF(M(I,3) LT MINZ)MINZ=M(I,3)
S=FLOAT (MAXZ-MINZ)/FLOAT (IS+1)

DO 20 I=1,IS
IZ=MAXZ-I*S ' IZ IS THE GAP BETWEEN CONTOURS
DO 30 J=1,IFMAX

C SEE IF FACET LAYS ACROSS THE CONTOUR IN QUESTION
432 DO 40 K=1,3

IF(M(IFC(J,K),3) GE IZ AND M(IFC(J,1+MOD(K,3)),
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40

50

45

80

90

70
30

20
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1 3) LE IZ)OTO 50
CONTINUE

GOTO 30
NF(1 )=IFC(J, 1)
NF(2)=IFC(J,2)
NF(3)=IFC(J,3)
NF(4)=IFC(J,1
D=FLOAT((IZ-(NF(K),3) ) )/FLOAT( ((NF(K),

1 3)-M (NF(K+1),3)))
IY1=D *(M (NF (K),2)-M(NF (K+1),2))+M (NF(K
IX1=D*(M(NF(K), 1 )-M(NF (K+1 ), 1) )+M(NF(K

CALL MOVI3(IX1,IY1,IZ)
DO 70 K=1

IF(M(NF(K),3) LE IZ AND M(NF(K+1),3) GE IZ)G
GOTO 70
D=FLOAT((IZ-M(NF(K),3) ) )/FLOAT((M(NF(

1 3)-M (NF(Y+1),3)))
IY2=D* (M(NF(K),2)-M(NF(K+1),2))+M(NF(K
IX2=D*(MN(NF(K), )-M(NF(K+1),1))+M(NF (K
IF(IY1 EQ -1900 AND IY2 EQ -1900)GOTO

CALL DRWI3(IX2,IY2,IZ)
CONTINUE

CONTINUE
CALL MGSEND

CONTINUE
RETURN
END

),2)
),1)

OTO 80

)9

),

70



((

( I

N:(N'1+I)T)I 04o

L. =)x 80 a o0 L0ot
907 010•Dzw DD LW)JI (W (C'('+I)OJI)W

,(,, , ,'+ ,

90t o0•o(o oa ( 'I)DdI)JI
1-XV•dJI'1.=I 9047 O

L-xvwi'i L=p got oal
lVsI LAVIhI DIV ISSEVSIN OS SDVL20L HEN0 3

aflNIINOD gO4

(N' t+r)ZJI=(x•D'J):
L=X. ýct OGI wI'1P = ct oQ

L-XVIaI=XVN4I
~047 oioo(o ~?z~~ z0t 010-D(0 Ir ZN)II ( 1)Z•.L( 1) 1•-( 2) •.+( ) Ct=Zb

ýO-v
Li1=r ýO47 OG

Zot oToo(o Z (L'I)OaI)JI
j.+ 47A-WJITI

YVAV SOVa I]VEIl slaOVa 'TTlV lOD3PZU 0
XVWJI=wJI

(iSAVS&=ESOdSIG' 4=lIlln)SSOrD (E') 0li'(C'I)OdiI' (• 'I)OeI(* ' V) (lVal L0t
VaI '1= 0I Lo OI (W I) w•'(Z'I) l' (L'I) M(.' t)a(V21 00-

sci'1=I 0047 0cI
xvwaI 'scI (* I') caval

I•10= EalX' Iva 0[t1z~1'oO] lv Ia:=wvlN'4=lINfl)N3dO
aIiia viva GVE11 0
LIVL C=ICT

( 60t)T•IDS(I rlrlVO0
( 16o1)0 s a r~i EIZD9Q rSIVD

(o'o'Z)'Isosa 'i r v 0 (OI''Z)NaOSr 'IVD
XVrIdSIG 3ZIIVIIINI 3

(ooZ) caanfa' (OOZ Zdnoo g ) an , (ooz) LI•I• U
( z'Ool) N ' ( g-'OOE1) •II'( 1.'00 1) W' ( ) N NO ISNZI•I(I

ViVa 7,IAIlOSNNOD 3
91I GNV 9•$lOd 91I rIV JO SEIVNIGOOD3 G- ZHI NLAIH 3

NOHC2HMYI0d V dO sflO ~G3Id IVISH V 9VS NV'D00 9I S!Hl 3
MJIA IVHDO'Od

NO1GIZHTTEOd aO XVTIlT 'iSc 1 O•Vd IJO DMXIO'cd H XIGNI¶JJV



40
40
C

40

41

41
41

44

41
44

ON SCREEN

6 CONTINUE
5 CONTINUE
DRAW FACETS AS 2 DIMEJSIONAL TRIANGLES

DO 409 I=1,IPS
NN(I, 1 )=H (I,1 )*4/25+320

9 NN(I, 2)=-M(I,2)*4/25+256
DO 410 I=1,IFMAL
DO 413 J=1,3

3 IY(J)=J
DO 411 J=1,3
DO 412 K=1,2
IF(NN(IFC(I,IY(K)),2) LE NN(IFC(

1 2))GOTO 412
N=IY(K)
IY(K)=IY(K+1)
IY(K+1)=N

2 CONTINUE
1 CONTINUE

IYT=NN(IFC I,IY(1)),2)
IYM=NN(IFC I,IY(2)),2)
IYB=NN(IFC(I,IY (3)),2)
IXT=NN(IFC(I,IY(1 )), 1)
IXMr=NN(IFC(I,IY (2)),)1
IXB=NN(IFC(I,IY(3)),1)
IF(IYB EQ IYT)GOTO 410
IF(IYM EQ IYT)GOTO 441
F=FLOAT (IYM-IYT)/FLOAT(IYB-IYT)

0 IX2M=IXT+FLOAT(IXB-IXT )*F
IF(IYB LT 1)GOTO 410
IF(IYT GT 512)GOTO 410
DO 414 J=IYT,IYM
F=FLOAT (J-IYT) /FLOAT (IYM-IYT)
IXI =IXT+FLOAT (IXM-IXT ) *F
IX2=IXT+FLOAT(IX2M-IXT )*F
CALL TRI(IX1,IX2,J,I)

4 CONTINUE
1 IF(IYB EQ IYM)GOTO 410

DO 415 J=IYM,IYB
F=FLOAT (J-IYM) /FLOAT (IYB-IYM)
IXI =IXI+FLOAT (IXB-IXM) *F
IX2=IX2M+FLOAT (IXB-IX2M) *F
CALL TRI(IX1,IX2,J,I)

5 CONTINUE
O CONTINUE
READ DATA FROM TRACKBALL

CALL TBALL(IXX,IYY,IZ)
IF(IXX EQ 0 AND IYY EQ 0 AND IZ
IAX=IAX+IXX*TS
IAY=IAY+IYY*TS
IF(IZ EQ 1)GOTO 1
IF(IZ EQ O)GOTO 436
IF(IZ EQ IZ2)GOTO 1
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