CCMPUTER GRAPHIC REPRESENTATION
OF REMOTE ENVIRONMENTS USING
POSITION TACTILE SENSORS

oy
DONALD CHARLES FYLER
74

BSME, Un1vers:.t3(r of Mas):sachusetts, Amherst
1978

SUBMITTED TO THE DEPARTMENT OF
MECHANICAL ENGINEERING IN PARTIAL
PULFILIMENT OF THE
REQUIREMENTS FOR THE
DEGREE OF

MASTER OF SCIENCE

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
August 1981

© Massachusetts Institute of Technology

e — — _ _ —— — - - -~ _—

Signature of Author — - S

e e
Department of Mechanlcal Emgineering
August 4,1981

Certified by I UT
! ’ Thomas B Sheridan
’ - _ ~ Thesis Supervisor

Accepted by v

W M Rohsenow
Chairman, Department Committee

Archives
- l_

MASSACHUSETTS INST
OF TECHRGLGay T UTE

0CT 29 198
v

COMPUTER GRAPHIC REPRESENTATION
OF REMOTE ENVIRONMENTS USING
POSITION TACTILE SENSORS

by
DONALD CHARLES FYLER

Submitted to the Department of Mechanical Engineering
on August 4, 1981 1in partial fulfillment of the
requirements for the Degree of Masters of Science 1in
Mechanical Engineering

ABSTRACT

The usefulness of remotely controlled manipulators 1is
increasing as the need grows to accomplish complex tasks 1in
hazerdous environments such as the deep ocean

The best sensory input currently availiable to the
operator of a remote supervisory controlled manipulator 1is a
television picture of the manipulator and 1ts surroundings
Very often, though, optical opacity due to suspended
particles in the water can make television 1impractical or

impossible to use This report investigates the use of
touch sensors to construct a picture of +the manipulator
surroundings One method studied was to find 3-dimensional

surface points and show tnem on a computer graphic display
An extension of this was to reconstruct the surface of these

points with the aid of a computer

It was found to be possible to quickly construct a
reasonable picture with a position touch sensor by showing
3-D surface points on the graphic display and then having
them rotate about an arbitrary center A better picture
could be made by reconstructing the actual surface, but this
took more computer time

An informal evaluation by observers suggests tnat this

method offers practical advantages for "seeing" objects 1in
environments where vision is 1mpossible

Thesis Supervisor Thomas B Sheridan
Title Professor of Mechanical Ingineering

-De

ACKNOWLEDGEMENTS //)

I would like to thank Professor Thomas Sheridan for his
support and for the opportunity to work in the Man-Machine
Systems Laboratory Special thanks to Calvin Winey for
advice and help in maintaining lab equipment His research
in the field of manipulator simulation provided a basis for
much of this report I would like to thank Ahmet Buharali
and Dana Yoeger for support of the computer system and for
the help 1n understanding how 1t worked I would also like
to thank Ryang Lee for his help proof-reading and organizing
this report Finally I wish to thank all the Man-Machine
Systems Lab members for making 1t an enjoyable place to

work

This research was supported 1in part by Contract
NOOO14-77-C-256 with the Office of Naval Research

Arlington VA 22217 G Malecki was contract monitor

ABSTRACT

TABLE OF CONTENT

ACKNOWLEDGMENTS

LIST OF FIGURES

CHAPTER
CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

1
2

~N3113 AAONONONOYOYONOY UTutuiuiul e e S AV R RGA RGN RWA RGN N N

"\)_—h

- AV -~ =

NN — —

VIV LTI D =
U -

WD —

INTRODUCTION

PROPOSED SOLUTION

Construction of a Picture witn Touch
Sensors
Construction of a Surface from Points

EQUIPMENT

Manipulator

Computer

Vector Graphics System
Analog to Digital Converter
Tracgball

Raster Graphics System

TOUCH SENSORS

W N

Best Configuration

To Sense Touch Direction or Surface
Direction

Rigid or Flexible Base

Where to Mount the Sensor

Touch Sensors Used in Experiments

CALCULATION OF POINT COORDINATES

1
2

Description

Problems with the Manipulator
Cables and Gears

Pushrod

POLYHEDRON CONSTRUCTION

Introduction

2-Dimensional Solution
3-Dimensional Solution
Polyhedron Description
Initializing the Polyhedron
Checking Facet Pairs

Quality of Polyhedron Shapes

METHODS OF DISPLAY

N -

Introduction

Problems with Polyhedron Displays
Rotating the Picture

Types of Rotat.on

Oscillating the Picture

-4~

o o W

—_—
N

N D= —
OV —= O OO OOV ONOTO &~ —

I\ \W
NO OO

N
W

S AUAR G|
O m o

oyl
N oY UT\WU1

N N N S T e

CHAPTER

WM —

CHAPTER

WWOW VOOO®MO ~3-3-3-3-I3-33

1
2
REFERENCES

APPENDIX A
APPENDIX B

APPENDIX C

APPENDIX D
APPENDIX E

4 Rotation with a Joystick or Trackball T1
5 Position Control 71
6 Velocity Control 72
Improving the Display for Polyhedra T4
1 Showing All Edges T4
2 Drawing Contour Lines 75
3 Raster Graphic Display 76
EVALUATION 81
Number of Points to Make a Picture 81
Speed of Picture Construction o8
1 Construction Time for Points 88
2 Construction Time for Polyhedra 90
Raster Display 92
CONCLUSIONS AND RECOMMENDATIONS 93
Conclusions 93
Recommendations 93
95
Computer Program Discription 96
Computer Program for Display of Manipulator
and Surface Points 101
Subroutines to Construct Polyhedron from
Surface Point Data 107
Subroutines for Display flanagement 118

Program for Raster Display of Polyhedron 127

-~ S G I \C T \V}

S
4~

>~ B~

O O OO O O O O v 1o VWU

O N o v A~ W

0o N o W

3a
b

LIST OF FIGURES

Position Touch Sensors Used for Graphic Display
Vector Graphic Display of Manipulator
E-2 Manipulator

Touch Sensor with Surface Normal Toucn Sensing
Capability

Plexible Base Touch Sensor

Touch Sensor with Extra Two Degrees of Freedom

3 Degree of PFreedom Manipulator with Interference

Problem

Possible Solution to Interferance Proolem
Brush Touch Sensor |

Single Switch Touch Sensor

Switch Mechanism that 1s Sensitive to Touch
from all Angles

Manipulator Coordinate System

Nonlinear Pushrod

Grid Errors Due to Pushrod Nonlinearity

Gri1d Errors Reduced with Compensation
Connecting 2-D Surface Points Into a Polygon
Definition of Lines and Polygons

Concave Polygons

Definition of Touch Vectors

Constructing Concave Polygons with Touch Vectors
Examples of Points That Cannot be Attached
Dxample of an Erroneously Attached Point

3~D Definition of Facets

-6—

12
15
17

22
22

24

25
25
28
28

29
31
34
37
37
41

43
43
44
46
47
49

oo oo 0O 0o 0O <9 9 9 60 O O O O O O

L0 I G\ N \V

10
!
12
13
14
15

- W N

Example of Complete 3-D Polyhedron

Addition of New Points to the Polyhedron
Possible Errors from Attaching Distant Points
Attaching Interior Points

Initialization of Polyhedron

Need for Smoothing of Polyhedron

Example of a Facet Pair and Its Compliment
Different Displays for One Set of Points
Screen and Object Coordinates

Example of Polyhedron Sanown on Raster Display
Cubes Described by Randomly Distributed Points
Random Cube Points Made Into Polyanedron
Spheres Described by Randomly Distributed Points
Random Sphere Points Made Into Polyhedron

Graph of Computation Time Versus Polyhedron Size

49
52
54
55
55
57
59
64
73
80
83
84
85

91

CHAPTER 1 INTRODUCTION

Remotely controlled manipulators make 1t possible +to
perform tasks in aostile environments that would be
impossible or very dangerous for humans to perform It 1s
very difficult and expensive to send a man down into tne
deep ocean to do a task But tasks such as exploration,
salvage, and maintenance of o1l rigs must be done Because
the technology 1s not yet available +to make a completely
autonomous robot, some compromises must be made A robvot
can be made as self sufficient as the technology allows and
the higher order thinking can be left to a human controller
This robot-human system 1s called Supervisory Control and 1is
meant %o relieve the human of as nuch direct control as
possible to minimize the amount of required transmitted data
and perhaps even allow the robot to continue working during
breaks 1in transmission

In human-manipulator control systems, 1t 1s very
important that the human have as much feedback as possible
about what 18 happening at the mnmanipulator Sight 1is
considered to be the mos* 1important source of feedback
because 1t can be readily understood oy the operator If
the operator cannot directly see +the manipulator and
manipulated object, (which 1s often the case), some sort of
artificial vision must be provided This 1s most often a

television pictare of the manipulator work area Television

-8-

provides the best picture available but there are some

problems that can make television nard to work witn

of these problems are

1) Television cannot give a reliable sense of
depth because 1t 18 only displayed on a
2-dimensional screen This can slow the operator's
reaction time because he can never be sure 1f the
manipulator arm or 1ts surroundings are really 1in
the place he thinks they are It 1s possible to use
two cameras to get a stereo picture but this kind of
display requires undivided attention and the
operator can become fatigued very quickly

2) The raster picture on the television screen
requires a massive data flow rate to refresn tne
screen 1n a reasonable amount of time If +the
operator 1s trying to control a manipulator working
on the bottom of the ocean or 1n dJdeep space, 1tne
data flow rate can be very restricted by
transmission problems This means tane operator will
have to 1live with a fuzzy picture or a slow frame
rate or both

3) A television camera must have a clear view
of the manipulator It cannot see anytning in
turbid water and the television must always Dbe

located so oostructions do not block the view

-0-

Some

4) In modern types of supervisory control
systens, a computer works 1ntimately with the
operator to control the manipulator The computer
should have as much feedoack as possible made
avalilable to 1t While a television picture 18
easily understood by a human, 1t 1s meaningless to a
computer unless 1% has extensive, time-consuming
processing A computer of any control system 1s

essenti1ally blind to a television picture

These problems show the need for 1nvestigating new,
types of viewing systems for use 1n supervisory control A
system using touch sensors to construct a simulation of the
surroundings of a manipulator 1s 1investigated in this
report This kind of simulation can be wused to draw a
picture to be viewed by a human or can be used to provide
3-dimensional 1information to a computer aoout the

surroundings of the manipulator

-10-

CHAPTER 2 PROPOSED SOLUTION

2 1 Constuction of a Picture with Touch Sensors

A metnod 1s needed to 1improve visual feedback wusing
touch sensors for a human operating a remote supervisory
controlled manipulator One way 1s to find the coordinates
of a large number of points on all the solid surfaces within
reach of the manipulator A picture of the manipulator
surroundings can then be constructed with computer graphics
by drawing a dot at each location where a solid surface 1is
hit

Points and their coordinates can be found by using
touch sensors mounted on the manipulator Wnenever a sensor
comes 1in contact with a surface 1t could send a signal %o
the computer to record the coordinates of the point touched
The computer can accurately calculate point coordinates 1f
1t 18 given the exact angles of the manipulator joints the
instant the sensor 1is tripped, see Iig 21

A dynamic simulation of the manipulator 1tself can also
oe added +to tne display as a reference 1f these angles are
gnown, [1] This means an entire picture of the of +tae
manipulator surroundings plus a moving picture of the
manipulator can be made with Just information on tne values
of the Joint angles and 1indications of when sensors are
tripped

Very little transmitted data 1s required to describe
- ll_

Fig. 2.1 Position Touch Sensors Used for Graphic Display

slave arm ; <:::::::::}
computer j:;:;:::>
i

-

master arm

/\

graphic display

operator

ik

3-dimensional points as opposed to a television picture
Assuming the joint angles are to be transmitted anyway, all
that 1s needed to describe a dot 1s an indication of which
touch sensor anad just been triggered Its coordinates can
then be calculated from +the Joint angles given at that
instant

A picture on a 3-dimensional graphic display has the
same disadvantage as a television picture 1in that 1t can
only be shown on a 2-dimensional screen But a graphic
display picture can be viewed from any angle, something a
television cannot do without having the camera moved An
obstacle blocking a clear view of the manipulator on the
display could be i1gnored by simply looking around 1t

Also, because the data of the graphic display picture
1s stored 1in three dimensions, the picture can be modified
to bring out 1t's depth of field Showing snadows,
orthographic views, and perspective will bring out three
dimensionality, [1] Dynamic pictures also bring out depth
The three dimensions of the picture become very apparent
when 1% 1s slowly rotating on the screen

An advantage of having tne surroundings of the
manipulator mapped out as discrete points 1s that 1t can be
quickly interpreted by a computer Say a task given to a
computer 1s to move a manipulator arm from one spot to
another without hitting any obstacles If the computer 1is

given enough 1information aoout 3-D point locations on the

-13-

obstacles, then 1t could be programmed to «eep the the
manipulator away from the surface points This would be
easier for the computer to solve than trying to interpret a

flat television picture

2 2 Construction of a Surface From Points

A problem with surface points shown on a graphic
display 1s that they give a somewhat ambiguous indication as
to what the surface 1s 1like Dbetween them Without tae
surface, there 1s no way to calculate volume, surface area,
or decide when something should be hidden from view

A method was found to reconstruct the surface described
by a given set of points with the aid of a computer This
method will be covered in some detail, as 1t provides a
solution to the above problems and also can significantly
improve the quality of the graphic display used in
supervisory control

Computer graphics can never replace television as a
sense of sight in supervisory control but 1t could be a very
useful aid to television or even an alternative in

situations where television 1s i1mpossible to use

=14~

Fi1g 2 2 Vector Grapanic Display of Manipulator

-15~

CHAPTER 3 EQUIPMENT

3 1 Manipulator

The manipulator used in this project was a master-slave
E-2 built by the Argonne National Laboratories for use 1in
radioactive environments, see Fig 31 The control system
used 1n experiments was analog with full force feedback
Control potentiometers installed at the servos provided a
signal for determining manipulator joint angles Interfaces
between the manipulator and the A/D converter were 1installed
by K Tani [2]
3 2 Computer

A PDP 11/34 with a RSX-11M timesharing operating system
was used for all computation There was a FP11-A floating
point processor installed to speed tne fractional
multiplication and division required for real time graphic
transformations and simulation

3 3 Vector Graphic System

All vector graphics were done on a Megatek 7000 System
It had a resolution of 4096 x 4096 on the approximatly 12 x
12 screen There was room in the display 1list for 8000
3-dimensional points or lines Tnis system was capable of
hardware rotations to speed the cycle time for dynamic
display

Interface between the Megatek and computer was done

tarough a user common where all display information could oe

-16-

Fig. 3.1: E-2 Manipulator

=

stored until a command was called to send the information to
the Megatek all at once

3 4 Analog to Digital Converter

An Analogic 5400 Series was used to convert analog
signals to digital for computer input It also had inputs
that could convert simple on-off signals to digital numbers
The s1x analog channels giving the jJoint angles of the
manipulator could be read in about 300 microseconds on the
parallel interface
4 5 Trackball

The Measurement Systems Inc Trackball was connected
to the computer tarough &a serial 1interface It had a
resolution of 512 for 360 degrees of ball travel and would
output the number of units travelled between each send to
the computer The send rate was set by a baud rate of 9600
The Trackball was sensitive to motion around botn x and y
axes but not around the z axis

4 7 Raster Display

A Lexidata 3400 Vidio Processor was used for raster
display It had a resolution of 640 x 512 pixels with each
pixel having 256 possiole shades The shades were stored 1n

a lookup table where they could rapidly be cnanged

-18-

CHAPTER 4 TOUCH SENSORS

A touch sensor 1s required that will respond when 1t
comes 1in contact with a solid surface and has to be
configured in such a way tnat the exact location of the
contact point can be determined Many different types of
sensor switching devices can be 1imagined Switches based on
pneumatics, stess, strain, or electical inductance might
have good applications in different environments but for
experimental purposes simple electical switches were used
Whatever the sensing device, 1t must be converted 1nto an
electical signal for the computer The configuration of the
touch sensor was found to be much more 1important than the

actual sensing mechanism

4 1 Best Configuration

4 1 1 To Sense Touch Direction or Surface Direction

When reading the three dimensional coordinates of a
point on a surface 1t 1s also useful to find a vector
pointing the direction of tne surface normal at tnat point
This would give valuable information about how the surface
18 structured Tne problem 1s that two degrees of freedom
wi1ill have to be added to the touch sensor to enable 1t to
read a surface normal, see Tig 4 1 Adding more degrees
of freedom significantly increases mechanical complexity,

«]19=-

the amount of data that must be transmitted to the computer,
and computation time There 1s another problem 1in that the
surface normal would be oe found for only one small spot
The surface normal 1in the 1mmediate neighborhood of the
point would only be implied The average surface normal
over a larger area could be found Dbut would be at the
expense of resolution of the point location The surface
normal could be found more accuratly 1f the points touched
were densely packed, but then the points themselves describe
the surface normal

Although the ability to sense +the direction of the
surface normal would 1increase the surface description
capabilities of a touch sensor, 1t was decided that 1t was
not wortn adding two more degrees of freedom Since three
adjacent surface points describe an average surface nornal,
1t was felt there was no need to find 1t for every single
point

It was found to oe useful, though, to record the touch
sensor direction for each point This was actually the
center line of the touch sensor at the instant a point was
touched The touch direction was easily found oecause 1%
nad to be known to calculate the coordinates of the point
anyway The touch direction was useful because 1t defined a
line that could not pass through the surface This helped
to define 1inside <from outside A series of points on a

plane can descrioe a sarface normal out cannot, by

-20-

themselves, describe which side of the plane 1is tne outer

side

4 1 2 Rigid or Plexible Base

A touch sensor mounted rigidly to the manipulator would
be more r=.1able and accurate than one mounted on a flexible
base The mathematics required to find 1ts coordinates
would be simpler and so would 1ts mechanical complexity It
might seem that a rigid mounted sensor would be the Dbest
But +there are some advantages to a flexibly mounted sensor
that may outweigh 1ts disadvantages One advantage of a
flexi1bly mounted sensor 1s that the manipulator would not
have to come to a complete stop when a point was touched
Tne sensor could just bend out of the way and not impede the
continuous motion of the manipulator This would allow
faster motion of the manipulator and would reduce tane risk
of damage to the manipulator, sensor, or the object to oe
touched Another advantage would oe that many sensors could
be used at once 1f they were all on flexible mounts When
one sensor nit a surface, 1t could respond and then bend out
of the way to let the next sensor touch, see Fig 4 2

Flexible-base touch sensors could be constructed with
or without degrees of freedom The type witnout degrees of
freedom would only work when straight, then simply shut off
when bYent over so as not to register any erroneous points

If the sensor nad one or two degrees of freeaom, 1t could

-2]-

sensor

Transducers to find
surface normal

surface

Fig 4 1 Touch Sensor with Surface Normal Touch Sensing
Capability

Tip switch on-
point recorded Tip switch on-
point not recorded

with oent sensor

Only bend switch on-
no point recorded but
- presence of surface realized

P
A\ /- =
S S S SSSSSS S S S S S S S

Pig 4 2 Tlexible Base Touch Sensor

-22-

st1ll register points even when bent over, see Fig 4 3

This way, a continuous stream of points could be read in one
motion The trade off would come when deciding whether 1%
1s more important to have fewer degrees of freedom or the

capability to read many points with one sensor

4 1 3 Yhere to Mount the Sensor

Since the sensor 1s to work with a manipulator, the
most 1likely place to mount the sensor would be on the
manipulator itself If the sensor were mounted at the wrist
of the manipulator, the sensor would have six degrees of
freedom and be most maneuverable If 1t were too awkward to
use the wrist, the next oest mount would be the forearm of
the manipulator This would reduce the number of
calculations required %o locate +the sensor in space but
would st1ll leave three degrees of freedom

The sensor could theoreticly reacn any point 1in front
of +the manipulator but the sensor would only be able to
approach any one point from one direction The sensor would
not be able to reach around an object in the way, see Fig
4 4 A solution might be to install many sensors on the arm
protruding 1in all different directions so as to oe able to
reach all points with at least one sensor, see Fig 4 5

The very best mounting location would be to have tne
sensor mounted on 1ts own arm This could run completely

independent of the manipulator and be controlled by a

23

angle transducers

Pig 4 3 Touch Sensor with Extra Two Degrees of Freedom

A long string of points could be recorded with one
sweep of the manipulator

-24-

sensor

unreachable area

Fig 4 4 73 Degree of Freedom Manipulator with Interference
Problem

7.
3

@W\

Fig 4 5 Solution to Interference Problenm

Several mounted touch sensors could reach more areas and
would not increase the degrees of freedom of the manipulator

-25—

different operator or perhaps be completely controlled by
computer A computer could be programmed to randomly sweep
the sensor around and to concentrate on relatively untouched

areas

4 2 Touch Sensors Used in Experiments

The touch sensors that were built for experiments were
designed solely to get surface points into the computer as
efficiently as possible The touch sensors were always
mounted firmly 1n the jJaws of +the manipulator and only
on-off electrical switches were used to send signals to the
computer

The first sensor built had 10 switches on 1t and each
was connected seperately to digital inputs on the analog to
digital converter, see Fig 4 6 The switches were mounted
on somewhat flexible stems and were arranged like a brush
It was found taat a shorter stem provided the most accurate
point coordinates and a slight convex curve to tne profile
of the endpoints of the stems allowed +the sensor +to Dbe
rocked across a surface to collect a maximum amount of
points

This brush sensor had some proolems that made 1%
difficult to use The biggest problem was that tne switches
worked only when pressed from one direction When a svitch
was hit from the side nothing would happen This meant the

sensors always nad +to oe pointed 1in the direction the
..26_

manipulator was being moved to maxe sure tne switches would
be hit straight-on Another problem was the sensors were
too far from the base of the manipulator wrist It turned
out that the joint angles of the wrist could not be
calculated accuratly and errors multiplied the farther the
sensors were from the base of the wrist

The second sensor built nad only one switch on 1t, see
Fig 4 7 This was oecause 1n later experiments 1t was
desirable to be able to select 1ndividual points on a
surface Also, the second +touch sensor was located sucn
that one degree of freedom of the wrist was not needed +to
calculate the sensor's coordinates

Although the brush sensor had many more switches on 1%,
the second sensor could collect points Just about as fast
This was because the second sensor was made to be sensitive
when approaching a surface from any direction, see Fig
4 8 Besides being easier to maneuver tnan the brush sensor
1t could also be moved faster because the manipulator only
had to move at the wrist to trigger the switch The Dbrush
sensor required that the entire manipulator be moved to get
the switches +to approach the surface from the correct

direction

-27-

Fig. 4.6: Brush Touch Sensor

Fig. 4.7: Single Switch Touch Sensor

28

microswitch

NN
Ra NN

2
S

plunger

s

ES%?\\Q\\C\\C\\C\\C\\C\

Z
%\ rocking sensor tip
|

SCALE 2/1

Fig 4 8 BSwitch Mechanism that 1s Sensitive to Touch from
All Angles

-29-

CHAPTER 5 CALCULATION OF POINT COORDINATES

5 1 Description

The picture of +the manipulator was refreshed about
every 20 milliseconds while the touch sensor program was
running To do this, the new angles of tne manipilator had
to be read every cycle The coordinates of a touch point
would be calculated during the cycle also whenever a touch
sensor was activated This was done by computing tne
sequential angular transformations from the oase of the
manipulator to the touch sensor tip Intermediate
transformations from each manipulator link were saved so the
manipulator 1tself could oe drawn on the graphic display
The coordinates of touch points were calculated and stored
using the manipulator base as a relative origin and the x,
y, and z axes were as shown 1n Fig 51 Only 1integer
values could be sent to the display processor so length
units were cnosen such that there were +O units per 1inch
These units were chosen to minimize round off error and at
the same time not overrun the display processor wmaximum
length values, (plus or minuas 204 8) The basis for the
dynamic display of this manipulator wsas developed by C

Winey and 1s explained in some detail in Ref [1]

5 2 Proolems with the Manipulator

The manipulator that was used +to maneuver tane toucn

-30-

o4

Fig 5 1 Manipulator Coordinate System

-31-

sensor was built to be controlled by a auman who would have
direct visual feedback as to where he was moving 1t This
type of control system did not require accurate positioning
because 1t was assumed the operator would compensate for
errors Consequently the manipulator was not very good for
finding absolute point locations This posed some unique
proolems to getting accurate point angles The proolem
could oe rectified by using a more rigid manipulator with

less elasticity and "free play"

5 2 1 Cables and Gears

The joints of the manipulator were connected +to the
servos and position ‘transducers by a series of cables and
gears This allowed for much backlash and flexibility which
translated into errors for recorded jJoint angles Any error
in joint angles 1n turn translated into larger errors 1in
calculated point coordinates One way tnese errors were
minimized was to make the touch sensor sensitive to very
light pressure to reduce the strain on the caoles Another
solution was to minimize tane effect joint angle errors had
on point coordinates The wrist jJoints were most prone to
errors because they were connected with the longest cables
Their effect was minimized by keeping the toucn sensor as

close to the base of the wrist as possiole

-32-

5 2 2 Pushrod

The elbow joint of the manipulator was connected to 1ts
servo and transducer by the pushrod arraingement shown in
Fig 5 2 At first 1t was thought that tne gear angle Ag
would respond very much the same as the elbow angle Ae and
that they could be considered as equivalent For relative
motions this worked well enough but for calculating absolute
point locations, the long forearm length multiplied a small
angle error 1into a large position error Fig 5 %a shows
the calculated locations of points on a flat square grid
when 1t was assumed that Ag and A3 were the same Clearly
this assumption 1s 1invalid for absolute positioning

An equation had to be developed to calculate the elbow
joint angle A3 from the two angles 1t was dependent on, Ag
and the X motion angle A2 A closed solution for A3 would
oe very long Dbecause the linkage was 3-dimensional and
relatively complex This was to be avoided 1f tae
calculations were to be done 1in real-time Since the angle
A3 was to be calculated for small incremental cnanges on
each cycle 1t was decided to use the previous value of A3 on
some preliminary calculations when figuring the new A3
Guessing +the new value of A3 could eliminate some long
calculations that really did not nave much effect on the
final answer The metnod used was to calculate the x, y,

and z locations at each end of the pushrod using Eq 51

-33-

A3
(in Z,Y plane)

Ag =
Y A (in 2,Y plane)
Location
% // (Xe’ e, Ze)
X A2
Location
(Xg, Ya, zg) (2n %,¥ plane)

Fig 5 2 Nonlinear Pushrod

-34-

(51)

a) Xg =3% 10
)
)

o'

Yg =-4 5 sin(Ag)

Zg =4 5 cos(Ag)

Q

da) X3 = 2 25 cos(A2) - 4 5 sin(A2) cos(A3)
e) ¥3 =18 + 4 5 sin(A3)
f) Z3 = 2 25 sin(A2) + 4 5 cos(A2) cos(A3)

The pusarod length was known to be 18 02 inches and could

also be defined 1n Eq 5 2

(52) 1802 =~/(X3 - WP + (15 - 1 + (23 - za)?

Between Equations 5 1 and 5 2 there are 7 equations and
9 variables The two variables A2 and Ag are known so all
the others should be defined 1f +the equations are all
linearly i1independent The problem 1s that A3 appears 3
times, once 1in a sine function in Eq 5 1e and twice 1n a
cosine funtion in Egs 514 and 5 1f This makes tae
problem of calculating A3 very nonlinear and makes 1t useful
to do some guessing If 1t 1s assumed taat A3 1s usually
near zero, tanen small errors in A3 will have 1little effect
on cos(A3) That means 1t should not make much difference

1f the value of A3 from <the previous cycle 1s used %o

...35_

calculate cos(A3) 1n Egs 514 and 5 1£f If this 1is done
then 1% 1s a straignt foward problem to calculate tne nev

value of A3 from Eq 5 1e Equation 5 2 can be converted

to

(53) Y3 =7vg +J18 022 - (x5 - g - (23 - zg)°
And from Equation 5 le ,
(54) A3 = arcsin((Y3 - 18)/4 5)

This method of calculating A3 worked very well even
when the angle of A3 went up to 60 degrees A value of A3
was converged upon fast enough that only one 1iteration per
cycle was required Pigure 5 3b shows how points rere
located on a square grid with the angle A3 computed with tne

above routine

-36~

Fig. 5.3a: Grid BErrors Due to Pushrod Nonlinearity

. .

.....

.

....

.....

uuuuu
. e

Fig. 5.3b: Grid Errors Reduced with Compensation

CHAPTER 6 POLYHEDRA CONSTRUCTION

6 1 Introduction

The previous chapter described a method of finding
3-dimensional point locations on a surface It oecanme
apparent later that 1t would be very useful to have a way of
describing the surface the points where found on To have a
geometric description of the surface would make 1t feasible
to delete hidden lines and surfaces because a definite edge
would be defined It would also provide a basis for
deciding 1inside from outside and make 1t possible to
calculate volume and surface area

First, simply connecting each point +to 1ts three
nearest neighbors on the graphic display was tried This
had disappointing results because the lines tended to
cluster 1in small bunches and didn't interconnect very much
The approach was discarded because 1t didn't give any
semblance of a closed object and was no better than bare
dots for making a recognizable picture

It 1s a trivial problem for human to connect a given
set of points with lines to make a closed shape so 1t would
seem that a solution solvaole by a computer wsould be
possible The problem 1s a human can make a judgement based
on the whole set of points at once while a computer can only
operate on a very small portion at a time This means an

1terative process must be found <+o construct the surface

-38-

with the aid of a computer

It was decided to treat tne surface as a geometric
polyhedron (this 1s what +tne surface would come out as
anyway 1f the surface 1s constucted properly) Also, a
constraint was 1imposed that the polyhedron surface be made
up entirely of triangular facets This was done because 1t
provides the computer the simplest possible surface segments
to process Also, triangular facets give the greatest
resolution for a given number of points A four sided facet
connecting four dots would be the same as two triangular

facets without the cross laine

6 2 2-Dimensional Solution

The 2-dimensional solution to the problem will be shown
first Dbecause 1% has many analogies to tne 3-dimensional
solution but 1s mucn easier to explain In this case there
are points scattered randomly on the edges of a flat area in
two-space The problem consists of finding the best way of
connecting the points to enclose the area and describe 1ts
edge, see Fig 6 1

The problem 1s fairly trivial i1f tne area 1in question
1s completely convex The correct way to connect any
combination of edge points will always come out a convex
polygon and any wrong solution will have some lines tnat
cross over one anotaer This suggests an algorithm where a

computer could try every possible line connection

-39~

combination until 1t came across a solution where taere were
no crossing lines The trouble 1s that tne number of
required trials would go up exponentially with the number of
points to connect

The solution to this problem that 1s most similar to
tne one used to solve the 3-D problem 1is an 1terative
approach First, any 3 points are connected with lines to
form a triangle Now 1f the area 1s sti1ill convex then all
the other points lie outside this triangle

It 1s i1mportant at this stage to define 1inside from
outside for eacn 1line Dbecause the computer will only
consider one line at a time It can be seen from Fig 6 2
that the three lines of the triangle can be defined as 1-2,
2-3, and 3-1 assuming that the x-y locations of points 1, 2,
and 3 are known The line 1-2 can be thought of as a vector
with base 1 and end 2 Now the outer side this vector can
be defined arbitrarily as 1ts right side

After the i1nitial triangle 1s made and 1inside and
outside defined, 1t 1s a straightfoward problem to add each
point onto tne existing polygon An example 1s shown 1in
Fig 6 2 Point 4 1s to be added to polygon 1-2, 2-3, 3-1
It 1s apparent that line 1-2 1s the only one that faces out
toward point 4, (there will always be just one such line 1f
the area 1s convex) Jow the line 1-2 can be deleted and
the 1lines 1-4 and 4-2 added to make a new polygon 1-4, 4-2,

2=-3, 3-1 Tne only decisive *task for tne computer 1s %o

40-

surface points

Area to be examined

lines describing polygon

Fig 6 1 Connecting 2-D Surface Points 1nto Polygon

sequence specifies point connection
and outer side of each line

Fig 6 2 Definition of Lines and Polygons

-41-

find the line whicn 1s best to attach the point

The problem becomes more complex 1f areas with concave
edges are allowed Many different polygons can be made from
a given set of points 1f there are concave edges, see Fig
6 3 What can be done to 1limit the number of possible
polygons to one?

If 1% can be assumed that touch sensors were used to
find the points, then data about the direction from which
the point was approached will be available A "touch
vector" can be associated witn each point to i1ndicate 1its
outer side, see Fi1g 6 4 Note that the touch vector does
not necessarily have to be at right angles to the edge
touched It 1s only the centerline of the touch sensor at
the 1nstant +the point 1s touched Now a single polygon
solution 1s again possible 1f the constraint 1s imposed tnat
the +ouch vectors cannot pass through the polygon, see Fig
6 5 Also, for computer control, there will only Dbe one
line on the polygon available to attach a new point %o, (1f
any) If tne new point 1s found to be 1nside tne existing
polygon then tae correct line to attacn 1t to 1is t1e one tne
touch vector passes through

Some proolems can occur with convex polygons It 1s
possiole to come across a point that nas no line on the
polygon that 1t can attach to without violating a rule, see
Fig 6 6a In these situations, the point must be thrown

out or set aside until tne polyjgon 1s developed -enough to

-42-

right solution wrong solution

Fi1g 6 3 Concave Polygons

In general, there are many ways to connect points found on a
_ concave area and still get a closed polygon

sensed surface point
touch vector

area to be examined

FPig 6 4 Definition of Touch Vectors

touch vectors must always point
away from the polygon

Fig 6 5 Constructing Concave Polygons with Touch Vectors

There will only be one polygon solution 1f touch vectors are
considered

-44-

accept the point Another problem witn convex areas 1s that
a folded polygon can be constructed by the computer, see
Fig 6 6b The solution to tnis problem 1is to 1gnore any
point that has a touch vector that goes through any line on
the polynedron from 1ts outer side

It 1s also possible to attach a new point to a
completely erroneous line 1f a finite lengtn touch sensor 1is
used on an extremely convoluted polygon, see Tig 6 7
This problem could be solved by putting a oend in the touch
vector to more accurately simulate the touch sensor and 1its
arm An easier solution 1s to 1gnore points found to be

over a certain depth inside the polygon

6 3 3-Dimensional Solution

The problem here 1s to find a way to connect 3-D
surface points with lines to ma%e a polyhedron that closely
resembles tne surface the on which points were found It
turned out that the best way to solve the problem was not by
analyzing tne connecting lines but by analyzing +the facets
of tae polyhedron If +the facets on a set of points 1is
known then the edges are also known Triangular facets were

used as stated earlier

6 3 1 Polyhedron Description

A method 1s required to store the facets 1n conputer
memory It was decided to descrioe the facets as a sequence

-45-

a Point 6 cannot be attached to the existing polygon without
causing a touch vector to pierce through It 1s not likely
that point 6 1s even from the same area as points 1 - 5

b Point 6 cannot be attached to the polygon without turning
1t 1nside-out Point 6 will have to be 1gnored or saved until
the polygon 1s further developed

Fig 6 6 Examples of Points That Cannot be Attached

-46-

correct connection lines

new point to be attached

touch vector

-

incorrect connection lines

Fi1g 6 7 Example of an Incorrectly Attached Point

To keep the touch vector on the outside of the polyhedron,

the touch point will have to attach to the wrong line This
problem stems from the fact that touch vectors are considered
to be 1nfinitly long while the actual touch sensor 1is very
short The simplest solution to this problem 1s to 1gnore or
save polnts tnat are found to be deeper in i1nto the polyhedron
than the length of the touch sensor

-47-

of points, because the poiats and their coordinates would be
already known The facet 1-2-3 would be a facet witan edges
connecting the points 1 to 2, 2 to 3, and 3 to 1 Also tne
inside and outside of the facet could be defined with tais
nunber sequence using the right-hand-rule, see Fig 6 8
It can be seen that the facets 1-2-3, 3-1-2, and 2-3-1 all
describe the same facet because the sequence always goes 1in
the same direction around the triangle The facets 3-2-1,
2-1-3, and 1-3-2 describe the same facet as above bdbut with
the opposite outside surface

The computer description of a tetrahedron i1s shown 1in
Fig 6 9 Note +that each line on a polyhedron 1is given
twice 1n the facet data, once on two different facets and
always 1in opposite sequence It might seem easier to
describe the polyhedron by s*oring the lines as two-number
sequences rather +than the apparently redundant method of
storing facets as three-number sequences But 1t turns out
to be very important to know the complete facets and this
data would not be readily availaole with line information

Like the 2-D solution, restraints were 1imposed that
restricted the configuration of the polyhedron No surfaces
were allowed to stick through one another and no touch
vector could be allosed to exist on the inside of the
polyhedron Also, lixe the 2-D solution, an 1i1terative
approach w#as used where each point was added onto an

ex1sting polyhedron one at a time

=48~

K 3 outer side of
surface

Facet 1 - 2 - 3

Fig 6 8 3-D Definition of Facets

Number sequence defines point connection and outer
si1de of facet using the right-hand-rule

Polyhedron described
by facet data

-2-3

-4

-1

4

WS
[I
N PO\

Fig 6 9 Example of Complete 3-D Polyhedron

~49~-

How can a new point be added onto a polyhedron® TFirst,
1t 1s helpfull to exploit some of the useful properties of
polyhedrons as described by Euler's formula for polyhedrons,
where F 1s the number of faces on a polyhedron, & 1s the
number of edges or connecting lines, and V 1s the number of
vertices or points
(61) F=E-V+2
This equation holds for any ordinary 3-D polyhedron that
does not have any holes passing through 1t

Only polyhedrons with triangular facets will be
considered so another defining equation 1s given On a
polynedron with triangular facets 1t can be seen that each
facet has exactly 3 edges and +that each edge seperates
exactly two facets Thus
(6 2) 3F = 2B (for triangle faceted polshedrons)
Combining Egs 6 1 and 6 2 gives two relations
(63) F =2V -4
(64) E =3V -6

Equations 6 3 and 6 4 show that for each new point
added to a triangular polynedron there will have to be 2
more facets and 3 more lines

For the 2-D solution a point was added onto tne
existing polygon by deleting one chosen line and adding 2
more In effect, trhe poiat was attached to the place were
one 1line used to be In the 3-D solution a facet must be

chosen on the evisting polyhedron on which attach <the new

-50_

point That facet 1s then deleted and tne resulting hole 1is
closed by adding 3 new adjacent facets that reached out to
the new point, see Fig 6 10 Tnis procedure satisfies
Equation 6 3, 1in the total number of facets added to tne
polyhedron for eacn new point It 1s also apparent from
Fig 6 10 that Equation 6 4 1s satisfied because exactly 3
new lines are added

One of biggest proolems was deciding which facet to
attach +the point to Unlike the 2-D problem there was not
always a single answer, even when touch vectors were
considered In general there could be several facets that a
point could be attached to +that would produce a closed
polyhedron and would not cause any touch vectors to stick
through any surface More restraints had to be incorporated
to make the computer converge on a single facet

One restraint added to the program was that 1f a facet
was pierced from the negative side of the touch vector of a
new point, then that point must attach to tanat facet,
assuming all the other restraints are satisfied This
restraint worked very well in situations where the new point
was close to the polyhedron and the touch vector most likely
passed through the best facet

Sometimes, though, the new point was so far away that
1ts touch vector di1d not pass through the polyhedron at all
and 1f 1t di1d, the facet 1t pierced through was not likely

to o0e the oest To cover taese situations a secondary

_5]__

b. Completed attachment
Fig. 6.10: Addition of new Points to the Polyhedron

=ED

restraint was added which required taat the new point attach
to the facet with the nearest centroid

If the new point was very far away from the polyhedron,
there would be very little chance the new point would attach
to a good facet, see Fig 6 11 The solution to this
problem was to 1gnore points over a specified distance away
Taken together, these restraints caused the computer +to
converge on a single facet and usually 1t was the oest one
Even when the chosen facet did not look like tne best, the
next step of processing usually converged on a better
solution for the polyhedron

Many times the new point was found to be on the 1nside
of +the ©polyhedron In these cases there was at least one
facet that could be found which +the point's %touch vector
pierced from the 1inside This was tne only facet the
interior point could attach to and keep 1ts touch vector on

the outside of the polyhedron, see Fig 6 12

6 3 2 Initializing the Polyhedron

The above procedure worked only at adding points to an
existing polyhedron A seperate algorithim was required to
create a starting polyhedron from a set of 1initially
unconnected points The method used only required 3 points
to make an 1maginary two sided polyhedron The computer was
simply 1instructed tnat there were two facets, one on each

s.de of tae triangle defined by tne 3 new points, see Tig

-53-

Fig 6 11 Possible Errors from Attachment of Distant Points

In general, 1t 1s very difficult to make a rational decision
on whicn facet to attach a distant point to The choice,
tnough, can nave a drastic effect on the resulting shape

of the polyhedron The easiest solution to this problem 1is
to 1gnore points that are over a certain distance from the
polyhedron

-54-

Z{if new point found below polyhedron surface

P1g 6 12 Attachement of Interior Points

Interior points must always attach to the facet that the touch
vector pierces through

initialization facets
1 =2 =3
3 -2 -1

Fig 6 13 Initialization of Polyhedron

First 3 points are connected with 2 facets to make
psuedo-closed polyhedron

-55~

6 13 The computer had no capacity to reject suca an
impossible polyhedron once 1t had been 1installed Any 3
noncolinear points 1n space can be connected this way and
w1ll not technically violate any of the stated polyhedron
rules This entity also satisfied Equations 6 3 and 6 4
which specify the correct number of verticies, edges, and
faces for a real polyhedron

When the 4th point 1s added on, the conmputer «+111 wuse
the wusual algorithm to erase one of the coplaner facets and
add 3 more +to make a tetrahedron The reason that a
tetrahedron was not used for initialization 1s tnat too much
programing space would be required make sure the shape was
not inside out and also that none of the touch vectors where

piercing through

6 3 3 Cnecking Facet Pairs

After a new point had been attacned to the polyhedron,
the facets were not usually i1in the best configuration The
new point could be sitting on the top of a long spike or
otherwise looking as though 1t was stuck on as an
afterthought, see Fig 6 14

Since there were usually many possiole polyhedron
configurations +that a given set of points could be built
into, some new critera had to be used to make sure that one
polyhedron solution was decided upon

The method chosen to modify the poljyhedron was to cneck

-56—

; LKL / 7.

7SS

a. New point attached to polyhedron without smoothing.

b. After smoothing.

Fig. 6.14: Need for Smoothing of Polyhedron

-57-

ad jacent pairs of facets and, 1f required, replace them with
compliment facets Figure 6 15 shows how the four corner
points connected by any two adjacent triangles could also be
the corner points of two otner completely different
triangles The facets 8-6-5 and 5-6-7 are the starting
facets and 8-6-7 and 8-7-5 are tne compliment facets An
entire polyhedron could be modified bit by bit by changing
facet pairs and +the polyhedron wculd never have to oe
considered as a whole

The primary criterion used for deciding 1f a pair of
facets should changed was based on the 1dea that a
polyhedron with the smoothest surface will be the best In
other words a polyhedron would be seached for that had a
minimum average angle oetween facets This was done by
comparing the pair of facets, considered for changing, to
their four neighboring facets The algorithm checked tne
angular difference between
1) the original facets
2) the compliment facets
3) the neighboring facets and the pair to oe checxked
4) the neighooring facets with the compliment facets
This gave 5 angular differences to average for each of two
polynedron surfaces If tn1e complimentary facet arrangement
was found to have less average angular difference, then the
facets would oe changed

Several checks nad to oe performed waen 1t was decided

-58-

\\\\\\

5-6-T -

Facet Pair 8-6-5,

\\\\\

IHIA %
W

8-T=5

_6_7’

Compliment PFacet Pair 8

Fig. 6.15 Example of a Facet Pair and Its Compliment

-59-

to change a pair of facets New facets could not be allowed
to stick through another surface of the polyhedron Also, a
check had to be made that none of the touch vectors of the
points on the polyhedron pierced through <the new facets
Tne change 1n facets would be stopped 1f any of the above
happened

It was possible to come across a pair of facets tnat
had no reasonable compliment These facet pairs were not
considered changable and were found by checking to see 1if
any of the compliment cross-lines were already occupied by
other facets

It would not be expected to find a <touch vector that
lay at an angle of greater than 90 degrees to tane surface
normal of an adjacent polyhedron facet The computer,
though, would construct a polynedron this way 1f not
instructed to consider touch vector angles Therefore,
anotner restraint was added that any facet pair had to be
made convex 1f 1t had a corner point with a toucn vector
that pointed away from 1ts surface normal at greater than 90
degrees

The above requirements nad %o have certain priorities
because tney very often conflicted with one another Tne
order of priority was

1) The polyhedron must remain a closed ooject and

cannot be allowed to fold on i1tself or wrap inside out
Also all touch vectors must exist on the outside of the

-60-

polynedron and cannot be allowed to stick through
2) Any facet pai™ with a touch vector that pointed
away at greater than 90 degrees from its surface normal had
to ne convex
3) The facet pair that had +the 1least average

difference between themselves and tneir four neignbors nad
to be cnosen

When one pair of facets were converted, 1t affected all
the neighboring facets as to whether they still followed the
above requirements This meant all these facets had to De
rechecked

The routine used %o decide which facets +to check was
fairly simple First all the facets were cnecked around tae
spot where a new touch point was added to the polyhedron
Then, 1f one of these facets was converted, all 1its
neighboring facets were put 1n a 1list of facets to be
cnecked The routine stopped when the 1list was empty
Sometimes a pair of facets to oe changed could get skipped
over Dbecause the 1list +as limited +to 30 points These
facets would be found by using an operator controlled option
that cnecked every facet pair on the polyhedron to catch any
that were 1incorrecd

There was some concern tnat a polyhedron might be
formed that would have a cnain of mutually dependent facet
pairs In otaner words eacn facet change would cause tne
neighboring facets to change and an endless loop of changing

-61-

facets would be formed The existence of such a polyhedron
has not been proven but 1t was never observed to occur The
computer program would always converge on a polyhedron where

all the facet pairs satisfied the requirements

6 3 4 Quality of the Polyhedron Shapes

It might seem that there would always be one solution
that +the computer would converge upon This was not always
true Sometimes the polyhedron would get 1nto a oad shape
the computer algorithm could not get 1t out of This due to
the fact tnat the computer algorithim based 1ts decisions on
only one pair of facets at a time There was no way for the
computer to get to better facet configuration 1f the first
facet change meant putting tane polyhedron in an impossible
shape

The method used to keep the polyhedron from locking
1nto bad shapes was to make sure that new points were not
added an wunreasonaole distance away from the existing
polyhedron If the maximum distance was held to witnin the
general feature dimensions of the object being touched then
the points would attacn onto reasonable areas It would be
very difficult to attach a new point to a developed
polyhedron 1in tne right place 1f tne polyhedron was roughly
one foot across and the new point was more than two feet

away, see Fig 6 12

-6 2-

CAAPTER 7 METYODS OF DISPLAY

7 1 Introduction

The 3-dimensional 1nformation needed to completely
describe points and polynedrons 1in space can be easily
stored as data in a computer But 1f these data are jJust
displayed as 1lists of numbers, 1t w11l be absolutely
meaningless to a human A grapanic display can show
3-dimensional data much better but suffers from the fact
that 1t can only display a 2-dimensional picture This
chapter will consider different methods of bringing out

3-dimensionality for data to be shown on a grapnic display

7 2 Problems with Polyhedra Displays

Most of the methods used +to display 3-dimensionality
descrioed here were developed long before 1t was possible to
create polyhedra from point data It would have oeen very
d1fficult to understand what was nappening in the program
witaout 1t This was because 1t was 1impossible to tell what
the computer was constructing in 3-D, without a good metanod
of viewing 1t A polyhedron drawn on a vector grapnlc
display just looked like a mass of connected lines 1f hidden
segments were not removed There was no way to tell 1f one
triangle was sticking tnough another triangle in 3-space
when only one flat view sas available, see Fig 71

There are several ways to improve the depth or a <flat

-63-

“a) Photograph b) Points Only

c) Polyhedron d) Polyhedron with Contours

Fig. 7.1 Different Displays for One Set of Pacets

b~

picture Showing perspective 1s one way out 1t 1s best
suited to rectangular shapes Triangles shown in
perspective Just look 1like slightly different triangles

Deleting hidden lines and providing shading are methods that
bring out depth for a auman but can be very slow to process
in real time A metnod wusing raster graphics to remove
hidden surfaces will be shown later in this chapter but was
only good at getting a static picture C Winey [1] dad
studies on showing two orthogonal pictures on the screen at
once and displaying a shadow to help define
3-dimensionality These methods worked well for displays
where related features could be distinguished in each view
and were used successfully for maneuvering the touch sensor
on the screen It was difficult, though, to distinguish

related points on a complex polyhedron shown in dual views

7 3 1 Rotating the Picture

It was found that rotating the polyhedron on the screen
helped to Dbring out 1ts 3-dimensionality Features 1in the
back of the picture moved one way and features in front of
the picture moved the other way Specific details could be
seen also 1f the p.cture was rotated a full 260 degrees
For example, 1t could be seen whether or not a line was
piercing a triangle 1f the picture was turned completels
around If a line was not piercing a facet, then there has

to pe at least one place in the rotations on tne screen

-65-

where the line does not lay across the facet

To give the appearance of a rotating picture, the
object coordinates were calculated for a small incremental
angle change and the picture was redrawn on the display It
was possible +to redraw the picture rapidly enough to give
the 1llusion of smooth rotation The object could be viewed
from any angle 1f 1% was first rotated about an axis This
could be done by multiplying the X, Y, and Z coordinates of
the object by a rotation matrix [T] to get the new

coordinates X', ¥', and Z'

(71) [X"Y"Z',1]=[X9Y9Z71][T]
where
(72) 0 0

[T]>= cos(A) -sin(A)

- OO0

1
0
0 sin(A) cos(A)
0 0 0

(for rotation around the x axis)

(73) cos(A) O sin(A) O
[T] = 0 1 0 0

-sin(4) O cos(A) O

0 0 0 1

(for rotation around the y axis)

(74) cos(A) -sin(A) O O
[T] = sin(A) cos(A O O

0 0] 1 0

0 0 0 1

(for rotation around the z axis)

The orientations of the display coordinates and ‘tae

object coordinates used for tne above equations are shown 1in
...66..

Fig 7 2a A positive rotation 1s defined as counter-
clockwise when looking down that rotation axis

Since the display consisted of points i1n space either
connected or disconnected, all that was required to be
transformed was the coordinates of the points Tne
"connectivity" would not change no matter what the angle of
view

A combination of rotations could be made by multiplying
the rotation matrices together The equation,
(75) [T 1=107%][7y][Tx]
1s equivalent to a rotation around the z axis, then around
the y axis, and then around the X axis It 1s 1mportant to
keep the order of multiplication straignt or different views
will result

It 1s convenient to describe all the +terms of the

transformation matix as shown in Equation 7 6

(76)
XX ¥YX 2ZX O
[Tt] = XY YY ZY¥ O
XZ YZ 72Z O
XT YT 2T 1

The terms XX thru ZZ handle rotations and their values
are usually determined by equations 7 2, 7 3, and 7 4 TX,
TY, and TZ are translational values that define the position
of the object relative to 1ts own coordinate system These
are inportant 1f 1t 1s desired to zoom in on a small section

of +the object A zoom effect 1s possible by multipling all

-67-

terms of the transformation matrix by a size factor

The Megatek Display Processor had the capability to do
rotations 1in hardware Te 3 coordinates of all the points
defining the features of tne object were first stored 1in
Megatek memory Then 1% was given the required rotation
terms and the Megatek would take care of calculating the
transformations for each point This saved having to do the
calculations for each point i1in software and also reduced the
amount of data that had to be sent to the llegatek Very
fast and smooth rotations were possible regardless of tne
complexity of the display The transformation terms
required by the Megatek were XX, XY, XZ, XT, YX, YY, YZ, and
YT The rest of the terms only affect the z plane of the
display which cannot be seen on a 2-D screen

The Megatek rotations always occured around the origin
of the object as 1t was installed in display memory This
was 1inconvenient because very often a small portion of the
display would be =zoomed 1n on and would also need to be
rotated With the object rotating about 1ts center the
small portion would generally rotate rigat out of view The
cure for this was to cause +tne object to always rotate
around 1n screen origin The XT and YT terms sent to tne
Megatek affected the x-y posi*ions of points 1n screen
coordinates Tanese terms could be altered each time the
picture was rotated to keep tane object on screen center To

do +tnis, the translations 1in object coordinates nad to be

-68-

specified, (Xo, Yo, Zo) T1s was done by manuvering tnae
desired rotational base to the center of tne screen by
viewing two orthogonal views Now the picture would always
rotate about that base 1f XT and YT were recalculated every
1teration by the equations,

(77) XT
(78) YT = XoYX + YoYY + ZoYZ

XoXX + YoXY + ZoXZ

XX, XY, XZ, YX, YY, and YZ had to be calculated <first for
that rotation

There 1s a problem with dynamic pictures that are
rotated with +the above transformations There wi1ll be no
indication which 1s front and which 1s Dback on an object
when no hidden 1lines are removed and no perspective 1s
shown An object can be rotating on the screen and sone
people viewing 1t will say 1ts rotating to the left while
others say 1ts rotating to the right The mind tends +to
lock on one rotation and can be difficult to change One
way found to remedy the proolem was to memorize the correct
rotation for each input but 1t was too easy to forget The
most useful method was to have a known zero position the the
picture could be put in, where front and back were xnown
Another solution might oe to have a coordinate 1ndicator on
tne screen consisting of writing FPront and back are easily
distinguished with writing because 1t cannot oe read when 1t

18 shown reversed

-69-

7 3 2 Types of Rotation

Some methods of rotating the picture were Dbetter than
otners at showing depth qualities If +the picture was
rotated about the z axis of the screen, there would Dbe no
changes made to +the picture due to 1ts depth The same
rotation could be done with a flat picture Rotation on the
X axls or Yy axis were better because points at different
depth locations would move at different speeds It was best
to have the center of rotation somewhere near tae middle of
the object to get maximum contrast of motion due to depth

Rotation around the x axis could be very disorienting
because the picture goes upside down once every oscillation
This left rotation about the y axis as the best choice of
the three

Simply rotating about tne j axis on the screen moved
each point on tne screen back and forth in the x plane It
was found to be helpful to ti1lt the entire coordinate systen
on the x axis first bvefore rotating in tne y axis This
caused descrete points making up tne picture to move 1n
ellipses on the screen Ellipses gave a better indication
as to exactly where each point was 1in the picture A t1l%
downward around the x axis of about 15 degrees produced the

most natural looking and informative picture

7 3 3 0Oscillating the Picture

Rotating the picture completely around gave the Dbest

-~70~

overall description of the object out wnen the display was
being used to control +the manipulator, 1t was hard %o
distinguisn between front, back, and sideways, as they where
always changing A better way of moving the picture was
found for situations where picture orientation had to be
known Instead of rotating completely around, the picture
was just rotated back and forth witn a sine wave controlling
the y angle This way the orientation was not disturbed
much and the 3-dimensions were still apparent An amplitude
of 10 degrees with a period of 2 seconds produced a wuseful
picture Tne problem with tnis display was that the
operator sometimes had to wait for the full cycle to finish

before getting his bearings and maxing another move

7 3 4 Rotation with a Joystick or Trackball

All the rotations done previously were controlled by
the keyboard and did not require ,or allow, much direct
attention Sometimes 1t could be very useful to be able to
position the picture 1in any view very rapidly There was
available a trackball and Joystick tnat were Dbuilt %o
provide this type of control They could be wired to tnae

computer to control the display angles

7 3 5 Position Control

The 3-degree of freedom Joystick that sas used put out

a voltage related to the position of the joystick This
=71-

voltage was used to control the 3 angles fed 1into the
display transformations matrix, as shown 1in Fig T 2a The
order of angle +transformation used was, first rotation
around the z axis, then the y axis, and then the x axis It
was i1mportant to transform the z axis first Dbecause that
made the display move most similar to the joystick A
potentiometer was mounted on the joystick box to control the
maximum allowable angles that +the display could be put
through The display could be viewed from any angle but

would bounce back to zero when the jJoystick was let go

7 3 6 Velocity Control

In velocity control 1t was most convenient to rotate
the display 1in screen coordinates, as shown in "ig T 2o
This allowed the picture to rotate independently of of the
orientation of the ooject coordinates When angles are
changed with respect to object coordinates 1t was not always
apparent which way the picture would turn for a given input
1f the object was already rotated through some other angles

The x-y 1inputs available from the trackball were
sufficient to position the display because only two angular
veloceties were required to maneuver the display when using
screen rotations With tne joystick, all 3 inputs were used
even though they were redundant This allowed somewhat
faster control of the picture position

Rotation 1n screen coordinates was done with the sanme

-72-

v |

Q oY

. N
&:X

‘]

a ©Screen Coordinates and Rotations

b Object Coordinates and Rotations

Fig 7 2 BScreen and Object Coordinates

-73-

transformation matriz as rotation 1in object coordinates
The difference 1s that the +transformation was completely
recalculated each cycle when rolling in object coordinates
and was only modified for screen coordinates The display
transformation matrix was saved from the last iteration and
multiplied by an incremental transformation matrix that was
the same as the object transformation, but which reflected a
very small angle cnange It di1d not matter in which order
the X, Y and z rotations were multiplied Dby the
transformation because 1t made little difference for small
angle changes It would seem that the transformation matrix
would degenerate from floating point round-off when 1t was
continually remultiplied by another matrix but this was not
observed to happen and the display did not seem to lose
integrity even after many rotations

For versatility, rotations in screen coordinates were
found to be the best Also, the capaoility to rotate
directly on the screen z axis in addition to the x and ¥
axes was useful and time-saving even though 1t was

redundant

7 4 Improving the Display for Polyhedra

7 4 1 Showing All Edges

The construction of a polyhedron out of a set of points
offered several methods of improving display qualits The

-74-

obvious way to display a polyhedron constructed in the
method shown in Cnapter 6 was to Just show all edge lines
The edge lines could be constructed from the facet data
because each edge was defined twice, once i1n two different
facets and always directed 1in oppcsite directions The
algoritnm used %o connect the points on the display simply
went througn the data and drew a 1line when two connected
points on a facet were found 1n 1increasing order A
complete picture could be made of a polyhedron consisting of
40 facets in about 50 milliseconds

This particular type of polynedron display was used
most frequently Dbecause 1% was so fast to construct In
fact this display was completely reconstructed every time a
facet was changed It d1d not produce an especially clear
picture but rotating 1t did help Yo attempt was made to
remove hidden lines from this display because 1t would take

too much computing time

7 4 2 Drawing Contour Lines

It was a straightfoward problem to draw contour 1lines
around the outside surface of a polynedron, because the data
for eacn of 1ts facets were stored 1n memory The only
outside information required by the computer vas the number
of contour sections to draw The gap between sections was
automaticly figured from tne overall size of the polyhedron

The contours were all made or the 2z plane and eacn

~75-

contour was calculated and drawn 1n sequence Por each
contour plane every facet in the polyhedron was cnecged to
see 1f 1t passed <tarough that plane When one did pass
through then the endpoin* coordinates of +the line segnment
defining the facet cut were calculated by interpolation If
the polyhedron was withoat holes or folded surfaces then tae
contour drawn at any section would be a closed polygon
Drawing contours was found to be the best way display a
polyhedron on a vector graphic display The shape of the
object was well defined by two aspects of the contours One
was +that the directions that tne contour lines went in gave
an i1ndication of the angle the facets had relative to the =z
axis The other aspect was tnat the density of contour
lines on one facet indicated tane angle the facet had with
respect to the z plane The line density of the facets also
produced a sort of shading effect that gave an 1mmediate
sense of 3-dimensionalaity When the polyhedron with
contours was rotated tne picture became very well defined
Any errors 1in the ©polyhedron became painfully obvious
because any facets sticking tarough other facets could be
readily seen Also 1f any facets folded over on top of each

other the picture became very bright in that area

7 4 % Raster Graphic Display

Raster graphics was experimented #1th to see 710w weil a
3-D polyhedron could oe displayed It was also used to show

=76~

wow easily polyhedron data as descrioed in Chaper 6 could
be processed by a computer

The difference Dbetween raster graphics and vector
graphics 1s that the raster graphics beam sweeps out the
entire screen and 1ts picture i1s changed by variations 1in
intensity like a television picture The vector graphics
beam traces out each of the lines and points 1individually
An advantage of raster graphics 1s that surfaces can be
simulated better because shading 1s possible and 1t 1s also
easier to delete hidden lines and surfaces

The primary disadvantage of the raster display used 1in
the experiments was that 1t was much slower at drawing
pictures than the vector display This made real-time
rotations impossible so the raster graphics was used
primarily to make static copies of polyhedra

To draw a polynedron on the raster display 1t first had
to ope constructed with the vector display The polyhedron
was then framed 1in the vector screen to tane view desired %o
come out on the raster display When this was done all the
polyhedron data was stored in a data file The 3-D point
locations were stored i1in screen coordinates to preserve tne
view chosen for the display Tnis data was tanen read by a
second program that put the polyhedron on the raster
display Tne triangles of the polyhedron were drawn one at
a +time on the display according to their x-y coordinates

The shade of each triangle was determined by comparing tne

-77-

angle of the surface normal to a space vector simulating a
light source direction Triangles facing away from tne
screen were not drawn at all It had to be known how the
facets lay in 3-space and which side of each facet faced out
to accomplish shading This was another advantage of
storing facets as described in Chapter 6

If the polyhedron had any concave areas, 1t was likely
that there were several facets partially hidden by other
facets By 1ts nature, raster graphics will automaticly
draw a new triangle right over an o0ld one so all that 1is
required i1s that nidden triangles be drawn before the
non-hidden ones The method used to draw the facets 1in the
correct sequence was very simple The point on each facet
with the maximum =z value (nearest point) was the only one
considered to decide facet order The facets were ordered
such that the ones with a minimum value for this point were
drawn first and ones with higher values were drawn last
There were some situations wanere this algorithm would give
wrong answers but so long as the object to be displayed was
not a radical shape and there were a reasonable number of
facets defining each feature there would be no overlapping
facets drawn 1in the wrong order This type of shading
display made the best picture when there were smootn
transitions between facets

It was found to be advantageous to oe able to

interactively change +the location of the light source to a

~78-

position where the 3-dimensionality of the polyhedron was
most apparent Due to the nature of tne raster grapnics
hardware used 1t was very slow while drawing the polyhedron
but once drawn the shades of the individual triangles could
be changed very fast The trackball was used to 1input
changes 1in x-y angles for the location of the light source
from the center of the screen The apparent light source on
the polyhedron could be changed rapidly by recalculating all
the new shades for each triangle and sending them to the
display The shades could be changed fast enough that the
light source could be moved almost in real time, (about 200
milliseconds to change a polynedron with 50 exposed facets)
This progressively changing 1light source brought out
3-dimensionality very well

Using raster graphics to display polyhedra can make
them loox very natural from a human point of view They can
even be made somewhat dynamic by moving tae 1light source
However 1t was aimpractical +to rotate the picture in real

time with tne equipment available

-79~

Fig. 7.3 Example of Polyhedron Shown on Raster Display

s

CHAPTER 8 EVALUATION

8 1 Number of Points to Make a Picture

The quality of a picture consisting of points in space
depends very much on the density of points in the picture
If too many points were snown, the picture would be white
and nothing could be seen Too few points, and the picture
would convey notning Somewhere 1in between 1s a region
where there are Just enough points +to describe what 1is
required to be seen

Presumably the minimum number of points 1is dependent on
the number of distinguishing features to be shown 1in the
picture A distinguishing feature could be any simple
surface section of the object to be i1nvestigated These
features would have somewhat rounded profiles and would be
ei1ther flat planes or slightly curved planes Any features
with sharp edges would have %o be broken 1into smaller
more-rounded features As an example, a cuoe could consist
0of six distinguishing features, one for each of 1ts sides
A sphere could consist of Just one curved feature, or
perhaps 1t should consist of several features to reduce the
total angular change per feature There 1s no correct
answer, but 1t 1s required that a degree of magnitude be
found for the amount of points required to descrioe an
object As a test, the nuamber of points needed to describe

ome side of a cube and tne nunber needed to describe tne

-81-

surface of a sphere were estimated and compared to get an
upper and lower bound for tne number of points required to
describe a "feature"

Pigures 8 1 thru 8 4 show how recognizable a cube and a
sphere can be made with different point densities for dot
anad porynedron displays It can be seen that a cube
described by points does not become recognizable until there
are at least 500 points on the cube Although 1t cannot be
shown nere, the cube Dbecame recognizable with only 200
points 1f 1t was rotated on the screen The sphere Dbecane
apparent with only 100 points rotated or not Perhaps this
was because a sphere looks tne same from any view A cube
shown with +the points connected into a polyhedron becanme
fairly recognizable with only 50 random points It must YDe
kept 1n mind though that 8 well placed points can perfectly
describe a cube The sphere still needed about 100 points
to look 1lixe a sphere even when the points were connected
This may be oecause the curved lines of a sphere are not
suited for description by the straight edges of a
polyhedron

Since a cube requires 500 random points to describe 1ts
surface, tanen 85 points are required to descrioe one of 1its
si1x distinguishing features A sphere st1ll requires 100
points, assuming 1t consists of only one feature For
polyhedrons, a cube feature needs aoout 20 poiats and a

spaere requaires 100 It wi1ll %be assumed here that all

-82-

100 Points

20 Points

».wfua’- -'““‘l* l.ﬂ“’w 6"“

o ¢
> £ Ay uv.f
R Q.. LP Tet .
W.M....w. i .nn...n.nf :um.... Qr“
» ol 5

S ORI T Sy RN
Sagd noon s Y o
.... Mum...l 3 o

ol ATy .

. - 2 .
o ®iis : ~ Y .y
5 O L
J--— X o - > o -u
T IS .. B il BRe(%8 Sl
& e . e
L B “* o B el N
: Yoo,
o -~
. D
o-. o -u..
. o Lo
o 3 Ly ~,
Id . o R
g8 : § fope
D o1 Rk
Pd B . “e e P
. K .
umc —--- !..-ot N e
Rl . e
~. VN - s p°
.
s o’o- . - ~ - -oﬂ
“at . . . 7
. .

2000 Points

500 Points

Cubes Described by Randomly Distributed Points

o

Fig.

e

50 Points

20 Points

100 Points

Fig. 8.2 Random Cube Points Made Into Polyhedron

- -

.

LI
L X]

100 Points

20 Points

2000 Points

Fig. 8.3 Spheres Described by Randomly Distributed Points

85

4

l
LN

57 7%
o /’/,
ooy

gy
7% "
ST

?"“7./""(
57,
Vi

20 Points 50 Points

100 Points

Fig. 8.4 Random Sphere Points Made Into Polyhedron

86

distinguishing features on any ooject require about the same
amount of randomly distributed points to define 1ts shape
for a human Different sized features would also require
the same amount of points, they would Just have different
point densities

Any object can be broken 1into arbitrarily small
features depending on the degree of detail required Say an
area 1n front of a manipulator must be completely descrioned
by touch points and 1t 1s necessary that all features down
to three 1inches across must be recognizable This means the
entire area must be covered with a point density sufficient
to describe a 3 1nch feature If +the area to be
investigated 1s 20 square feet and a suface feature 1is
assumed to require 100 points to oe well described, then tne
entire area would have to be covered with 32000 points to
describe all features down to 3 1inches across If the
points are to be connected into polyhedrons, then 1t can be
assumed that only 20 points are needed per feature, 6400
points will be required to cover the entire area

The above figures are probably exaggerated because the
manipulator operator 1s allowed to canoose where he wants to
put a high concentration of points de can leave some areas
with very fews points 1f he decides they are unimportant
Also, 1f the picture can be rotated, the number of required
points can be greatly reduced

A problem unique to points that were connected 1into

-87-

polyhedrons was tnat tne surface of the polyhedron could
become degraded 1f the points were too densily packed
together That 1s, 1f the points were closer togetaer than
the positioning error of +the manipulator, then lines
connected Dbetween them would not likely lay parallel to tae
actual surface These points would make a very Jagged
surface on a polyhedron One solution would be to delete
points that are to close to other points This will not
reduce the resolution because 1t 1s already limited by the

manipulator accuracy

8 2 Speed of Picture Construction

8 2 1 Constuction Time for Points

The amount of time required to read points from the
touch sensor and +then draw them on the display was very
shortd When using a single touch sensor switch, one point
could bYbe read in at every cycle of the progranm One cycle
took about 20 milliseconds so conceivably 50 points could be
read within one second The computer could read points even
faster with tne brush sensor oecause 1t had 10 switches
The 1limiting factor was not how fast computer could read
points but the speed the toucan sensor could respond The
single touch sensor could not be moved fast enougn to read
more than 2 or 3 points per second and the orusa sensor was

not much faster because, although 1t could read many points

88

at once, 1% was more cumoersome %o maneuver

Clearly, a touch sensor 1s required that can read
points very rapidly i1f a picture of a manipulator's
surroundings 1s to be made in a reasonable amount of time
A fast +touch sensor could be made 1f 1%t had many switches
and 1f 1t was set up such that +tne switches did not
interfere with one another, (see Chap 2) This type of
sensor would be considerably more expensive than the ones
used 1n this project but would probably be worth 1t for the
amount of time that would be saved Another way to increase
speed would be to make a sensor that could stream points 1in
without having to l1ift off the surface for every point A
streaming sensor would work best 1f 1t was non-rigidly
mounted to the manipulator That way the manipulator would
not have to follow every bend and corner encountered on the
surface

As an example, assume the maximum point coordinate
reading rate of the computer 1s 200 points per second If a
touch sensor was built with 20 switches on 1%, tnen the
computer would be capable of reading 10 points per second
per switch This rate would not be unreasonable 1f the
switches were made to stream points 1in A touch sensor
capable of reading points at 200 per second could
essentially cover any surface encountered with a thick nat

of points 1in a very short time

-89~

8 2 2 Construction Time for Polyvhedra

The speed of the computer was the limiting factor for
construction of polyhedra The +time period required to
attach a nev point went up with the number of facets on the
polyhedron Fig 8 5 shows a graph of average time
required to attach a new point versus t1e number of points
in the polyhedron for the computer program in Appendix B

There are many areas of this program that could be made
to run much faster at the expense of more program
complexity To attach a new point, the program nad to test
every facet of +the ©polyhedron for suitability This was
very time consuming For this reason a condition was added
tnat the computer only make complete tests on the five
facets with nearest centroids to the new point This
condition 1increased the speed of the program by a factor of
two Other parts of the program could have used +this same
kind of selectivity For example, after a facet was chosen
for attachment, all the other facets had to be checked +to
see that they did not get in the way Also, all the facets
and all tne touch vectors had to oe checked for interference
before a pair of facets could be changed These checks
significantly slowed computation

Perhaps the thing that contributed most to slowing the
program was the basic philosophy that points should be
attached to the polyhedron in tne order they were found by
the operator If all the points could be known at the start

-90-

Computation Time to add New Points (seconds)

Fig

o
20— o
o o
o
o o
25T °
o od’
o
o
20+ o o
) o
o o o
o] Ooo oooo
o ° °
15—+ o o o
e} * °
%9 690 o
0000% ® o o
10+ °o® o °°
o o ©
o o
o o
o o °
OOGJ&
5 4+ o o
o;%g
%
o,
2° °
best® | l] L]
T T T T T
0 20 40 60 80 100

Number of Points in Finished Polyhedron

8 5 Graph of Computation Time Versus Polyhedron Size

-91-

and arranged i1n the best sequence for attachment, many of
tnese extensive comparisions and checks might be eliminated
This might also allow the points to be seperated into small
groups and connected together in patches to further increase

speed

8 3 Raster Display

Drawing a picture of +the polyhedron on the raster
display was much slower than any other method tested One
facet of the polyhedron could be drawn on the display 1in
about half a second so real-time rotation of the picture was
impossible Raster graphic hardware 1s avallable on the
market that will draw a picture much faster but can be very
complex The raster display was best wused for making
permanent pictures Dbecause 1t was capable of making them

look very realistic

92

CHAPTER 9 CONCLUSIONS AND RECOMENDATIONS

9 1 Conclusions

This project has snown that a supervisory controlled
manipulator can oe used 1o construct an understandaole
3-dimensional picture of 1ts surroundings with Just the
sense of touch The picture can consist simply of surface
points shown on a computer graphic display It 1s also
shown how a more sophisticated picture can be made by
reconstructing a surface from these points Not only can a
picture be made that 1s recognizable to a human, 3-D surface
data that 1s easily digestable by a computer 1s also
provided

In situations where vision of the manipulstor work area
by the operator 1s difficult or impossible, these methods of
touch sensor picture construction could be a good aid or

replacement for the usual television camera

9 2 Recomendations

A touch sensor would have to be developed +1at could
sense points very rapidly for toucn generated pictures to be
of practical use That way a picture could be essentially
"painted" with the sensor Also the surface construction
program would have to be made to go faster to be able to use
1t 1n real-time This should not be impossible as the

number of required calculations to attach each po.nt to the

-93=-

polyhedron can be held to a maximum value

There are many aspects of surface construction from
points that could use further study

1) A method 1s needed to decide 1f there should be
more than one polyhedron or surface 1in front of the
manipulator This 1n turn leads to tne problem of attaching
or detaching different polyhedra from each other

2) An 1interesting problem would be to find a method to
construct polyhedra with holes passing tarough them A
polyhedron with a hole does not follow Euler's Formula

3) No allowance was made 1in this study for a moving
object If the motion were known then there ought to oe a
way to compensate for this 1in the construction on the

screen

-94-

REFERENCES

1) CM Viney, "Computer Simulated Visual and Tactile
Feedback as an Aid to Manipulator and Vehicle Control",
flasters Thesis, 11IT, 1981

2) K Tani, "Supervisory Control of Remote Manipulation with
Compensation ~for Moving Target", Report for Man-Machine
Systems Laboratory, MIT, 1980

3) T L Brooks, "Superman A Systen for Supervisory
Manipulation and the Study of Human/Computer Interactions",
Masters Thesis, MIT, 1979

4) T B Sheridan, W L Verplank, "Human and Computer Control
of Undersea Teleoperators", Man-Machine Systems Laboratory
Report, MIT, 1979

5) L D Harmon, "The Sense of Touch Begins +to Gather
Momentum", Sensor Review, April 1981, 81-89

6) DD Grossman, R H Taylor, "Interactive Generation of
Object Models with a Manipulator", IEEE Transactions on

Systems, Man, and Cybernetics, Vol SMC-8, Sept 1978

7) WM dewman, R F Sproull, "Principles of Interactive
Computer Graphics", McGraw-Hill, 2nd Ed, 1979

8)CT Zahn, "Graph-Theoretical Methods for Detecting and
Describing Gestalt Clusters", IDEE Trans Comput c-20,
1971, 68-86

9) G Gini, M Gini, "Object Description witn a
Manipulator", The Industrial Robot, March 1978

-95-

APPENDIX I

COMPUTER PROGRAM DESCRIPTION

Interdependent tasks sucn as manipulator simulation,
vector grapanic display, and polyhedron construction where
all combined in one Fortran 4-Plus program because 1t was
most practical that they all work at the same time Raster
graphic display was done on a seperate program as 1% did not

have to0 run 1in real-time

MATIN PROGRAM

The main program, TOUCH, handled manipulator
simulation, touch sensing, and program 1initialization
TOUCH was basicly a stripped down version of C Winey's ARM
program [1] Only +those parts that were required for
manipulator simulation were saved Dbecause cycle time was
critical The touch sensing capability was added and took
care of locating points and touch vectors any time a touch
sensor switch was found to be tripped Also some algorithms
were added to improve aosolute point coordinate calculation
as described in Chapter 5

When running, tane processor would simply loop through
TOUCd continually refreshing the manipulator display and
sal1ting for an outside command Control would be transfered
to subroatine DISP 1in tne event of a keyboard input or to

-96—

subroutine CON 1f a touch sensor tripped when a polyhedron
was Dbeing coastructed Cycle time through TOUCH was aoout
20 milliseconds which was fast enough to simulate a smooth
moving manipulator and give 1t a reasonably good reaction
time to respond to touch inputs

Subroutine DISP responded to any keyboard inputs and
took care of display managment It controlled view angle,
set program parameters, and organized information output
It was responsible for creating, deleting, and starting
construction of polyhedra DISP was called every cycle of
TOUCH when 1% was required that the display be dynamicly
rotated or moved This 1increased cycle time to 26
milliseconds

Subroutine CON took care of adding new points to an
existing polyhedron If no polyhedron existed, CON would do
the process of initialization described in Chapter 6 CON
decided wnich was the best facet to attach to and made sure
that 1t d1d4 not violate any rules for a closed polyhedra
After the point was attached CON did the joo of deciding
which facet pairs to check for smoothing

Subroutine WACE compared facet pairs and decided «vnen
they should be switched with compliment facets It
determined tne angles oetween neighboring facets and checked
that new facets di1d not violate any rules for closed
polynedra FACE was be callea by CON when cnecking facet

pairs and could also be called by DISP when tne operator

=07~

wanted to cneck or change facets from tne keyooard

Subroutine CTOUR drew evenly spaced contour 1lines
across tne existing polynedron These contour lines were
always drawn on the object coordinate z plane

Subroutine JROL performed rotations in screen
coordinates for control by the joystick or trackball

The following 1list of subroutines took care of
individual tasks that were often required by main
subroutines

Subroutine PIERC compared relationships oetween a line
and a triangle It determined 1f the line pierced through
tne triangle, 1f the triangle faced away from +the base of
the 1line, and 1f the line pointed away from the triangle
It could also determine the distance along the direction of
the line from the base of the line to the plane descrioed by
the triangle PIERC was used to determine 1f +two facets
sere concave or convex, 1f a touch vector was at an angle
greater than 90 degrees to a facet, or 1f a line segment

stuck through a facet

CROSS - determined the normal vector of a plane described by
three points 1in 3-space

ANGL - determined the angle difference oetween tvo vectors
1in 3-space

SEARCH - found the third point of a facet on an existing
polyhedron 1f give- the +two other points in sequence for

_98—

that facet

VECT - dres a line on the screen between two specified touch

points

The following are the set of library subroutines that

were used to control tne vector graphics display processor

MGINIT -1nitialize tne Megatek

MGSEND -send data 1in display buffer to Megatek

SETINT -set the light intensity for all lines drawn after 1t

DRWI3 -draw a 3-D line

MOVI3 -move to a new 3-D location without drawing line

PNTI3 -draw a point in 3-D

NPOINT -find last line number being used by Megatek

MODIFY -modify next command in Megatek with next call

LDPTRO -reset oeginning of Megatek display and erase
everything after 1%

LDTRN3 -gsend transformation coefficients for rotation,

translation, and zoom for all lines drawn after 1t

RASTER DISPLAY

The program DRW read 3-dimensional points and
polyhedron data from a data file from DISP The points were
preformatted on the vector graphic display DRW drew all
the facets facing toward the screen on the Lexidata

Furtnermost facets were drawn first so tnat they would be

-99~

erased 1f a closer facet was in front of them Shading was
accomplished by relating a facet to the angle Dbetween a
facet normal and a vector simulating a light source
direction The light source direction could be changed with
a trackball very quickly by changing the shading lookup
table

The following are a list of subroutines used to read

the trackball and control the Lexidata

TBALL - read trackball x and y velocities and the combined
value of three switches

DSVEC - drew a line between two points and selected a
shading lookup number

DSLLU - changed the shade of one lookup number

DSLWT - cnanged the shades of many lookup number according

to an array

-100-

APPENDIX B1 COMPUTER PROGRAM FOR DISPLAY OF MANIPULATOR
AND SURFACE POINTS

PROGRAM TOUCH
C INITIALIZE PROGRAM

DIMENSION IPT(4),XX(4),XY¥(4),Xz2(4),XT(4),YX(4),YY(4)
DIMENSION YZ(4),ZX(4),2Y(4),22(4),YT(4),2T(4)
DIMENSION SCL(7,2),IA(16),A(T7)

DIMENSION IOSB(2),IBUF(12),IPOT(10),MS(10),IPARAM(6)

COMMON /DMABUF/ IDUM (2298),ADAT(51,3), BRP(36 3),
1 ICON(90,2),IBRC(50,2), IFC(ZOO 3), M(1OO 3)
COMMON /FACT/IFMAX Nx(3o) NA,IPS,NCON,NPOL,ICCN,
1 IVECT,ISUP,IRX
COMMON /IPTPS/ IANG(100,2),ICHECK, VEX
COMMON /DISPL/ICM,XXD,XYD, XZD XTD,YXD,YYD, YZD,
1 YTD,ZXD,ZYD, ZZD, ISHAD, IARM IWALL IROLL JSTICK IDOTR
C INITIALIZE THE MEGATEK AND A/D
CALL ANINIT
CALL MGINIT
CALL SETINT(13)
CALL NPOINT (IREP)
C INITIALIZE THE KEYBOARD MONITER ROUTINE
CALL GETADR(IPARAM(1),ICMD)
IPARAM(2)=1
IEXC="033
LLL="114
IAAA="101
¢ INITIALIZE VIEW AND MENU
100 IRX=-5
CALL DISP
IRX=0
ICM="114
CALL DISP
C SET LINK LENGTHS AND ORIGIN
AY=55 625
AZ=1600
SZ=T20
Z0G=480
Y0G=960
VEX=2
C READ SCALING FACTORS FOR A/D OUTPUT OF ANGLES
OPEN(UNIT=4 ,VAME='SCALE DAT',TYPE='0LD')
READ (4, *) ((SCL(T,d),d=1,2),I=1,7)
CLOSE(UNIT=4,DISPOSE='SAVE')
C READ POINT DATA FOR MANIPULATOR
OPEN (UNIT=4,NAME="'ARMSDT DAT',TYPE='0LD"')
DO 101 I=1 60
READ (4 , * END 102)ADAT(I,1),ADAT(I,2),ADAT(I,3)
101 CONTINUE
102 CLOSE(UNIT=4,DISPOSE="'SAVE')
C READ CONNECTIVITY DATA FOR MANIPULATOR
OPEN(UNIT=4,NAME="'ARMSCN DAT',TYPE='QLD"')
DO 103 I=1,100
-101-

READ(4,*,CND=104)ICON(I,1),ICON(I,2)
103 CONTINUE
104 CLOSE(UNIT=4,DISPOSE='SAVE"')
C READ POINT DATA FOR TOUCH SENSOR
OPEN(UNIT=4 ,NAME='BRSHDT DAT',TYPE ='0OLD')
DO 105 I=1,50
READ (4, *,END=106)BRP(I,1),BRP(I,2),BRP(I,3)
105 CONTINUE
106 CLOSE(UNIT=4,DISPOSE='SAVE"')
C READ CONNECTIVITY DATA FOR TOUCH SENSOR
OPEN(UNIT=4 ,NAME='BRSHCN DAT',TYPE='0LD")
DO 107 I=1,50
READ (4, *,END=108)IBRC(I,1),IBRC(I,2)

NBCON=I
107 COJTINUE
108 CLOSE(UNIT=4,DISPOSE='SAVE')

C INPUT ARM AND WALL LINES INTO MEGATEK
IXXX=83+NBCON
DO 128 I=1,IXXX
INK=I-NBCON
IF(I EQ 1)GOTO 341
IF(INK EQ 36)GOTO 343
IF(INK EQ 56)GOTO 342
IF(INK EQ 72)G0TO 344

GOTO 346
C INPUT TOUCH SENSOR
341 CALL SETINT(13)

CALL NPOINT(IPT(2))
IARM=IPT (2)-1

GOTO %45

C INPUT SHOULDER

342 CALL NPOINT(IPT(3))
GOTO 345

C INPUT FOREARI

343 CALL NPOINT(IPT(4))
GOTO 345

C INPUT WALLS

344 CALL SETINT(13)

CALL NPOINT(IPT(1))
IWALL=IPT(1)-1
345 CALL LDTRN3(1 ,0 ,0 ,3000 ,0 ,1 ,0 ,0)
346 IF(INK LE 0)GOTO 250
MR=ICON(INK,1)
MM=ICON(INK,2)
IX1=40 *ADAT(MR,1)
IX2=40 *ADAT(MM,1)
IY1=40 *ADAT(MR,2)
IY2=40 *ADAT(MM,2)
171=40 *ADAT(MR,3)
I172=40 *ADAT (MM, 3)
GOTO 249
250 MR=IBRC(I,1)
-102-

MM=IBRC(I,2)
IX1=40 *BRP(MR,1)
IX2=40 *BRP(lM,1)
1Y1=40 *BRP(MR,2)
1Y2=40 *BRP(MM,2)
17Z1=40 *BRP(MR,3)
1722=40 *BRP(l1M,3)
IF(IX1 EQ 880 OR IX2 EQ 880)GOTO 128
249 CALL MOVI3(IX1,IY1,IZ1)
CALL DRWI3(IX2,IY2,Iz2)
C SEND TO DISPLAY
CALL MGSEND
128 CONTINUE
129 CONTINUE
C SET DISPLAY AFTER MANIPULATOR
CALL SETINT(13)
CALL NPOINT(NCON)
CALL MGSEND
C READ ARM POSITION FROM A/D CONVERTER AND CONVERT TO
VOLTAGE
C READ TOUCH SENSOR SWITCHES

112 CALL AINSQ(16,22,IA)
CALL DIN(20,ISP)
135 DO 113 I=1,7
A(I)=FLOAT(IA(I)) /3276 2
113 CONTINUE
C SCALE A/D OUTPUT, FILTER, AND CALCULATE SINES _COSINES
914 THZ=SCL(1,1)*A(5)+SCL(1,2) -

THX=SCL(2,1)*A(7)+SCL(2,2)
THYZ=SCL(3,1)*A(6)+SCL(3,2)
THY=THYZ-THZ
THA=SCL(4,1)*A(2)+SCL(4,2)
THR=SCL (5,1)*A(3)+SCL(5,2)
THL=SCL(6,1)*A(4)+SCL(6,2)
S1=SIN(T4dZ)
S2=SIN(THX)
S4 =SIN(THA)
C1=C0S (THZ)
C2=C0S(THX)
C4=COS (THA)

C PREFORM PUSHROD CALCULATION
7P1==2 25%S2-4 5%C2*CP3
XGXP=3 1-2 25%C2+4 5%S2*CP3
7,GZP==4 S5*¥COS(THY)+2 25%32+4 5%C2*CP3
YP=4 S5*SIN(TYY)+SQRT (324 T2-XGAP*XGXP-ZGZP*ZGZP)
SP3=(YP-18)/4 5
THY1=ASIN(SP3)
CP3%=C0OS(THY1)

C ROTATE JOINT 90 DEGREES
S3=-CP3
C3=SP3

C PREFORM DIFFERENTIAL CALCULATION

-103~

S5=SIN((THR+THL)/2)
S6=SIN((THL-THR) /1 65)
C5=C0S ((THR+THL) /2)
C6=COS((THL-THR) /1 65)

C DO LINK TRANSFORMATIONS
C SHOULDER TRANSFORMS

XX(3)=C2
XY(3)==82
YX(3)=C1%*S2
YY(3) C1%C2
Y7 (3)=-S1
YT(3)=Y0G
ZX(3)=S2*31
zY(B) S1*C2
22 (3)=
71 (3)=20G

C FOREARM TRANSFORMATIONS

XX (4)=C2%C4-S2*C3%*34

XY (4)==C2%S4 -S2*C3*C4

X7 (4)=82%83

YX(4)=C1*S2%C4+C1*C2*C3*34 -S1 *S3%34
YY (4)==C1*S2%S4+C1*C2*¥C3*C4-51 *¥33%*C4
YZ (4)==C1%C2*33-51 *C3

YT (4)=S1*SZ+Y0G

7X (4 Y=S1%S2%C4 +S1 *C2*C3*S4+C1 *¥33*%34
7Y (4)==S1*S2*34 +S1*C2*C3*C4+C1 ¥33%C4
7.7 (4) ==81 *C2*S3+C1 *C3

7T (4)==C1 *SZ+20G

C HAND TRANSFORMATIONS

C

XX(2)=XX(4) *C6+XY (4) *C5*S6+XZ (4) #S5*S6
LY (2)==XX (4)*S6+XY (4) *C5*C6+XZ (4) *S5%C6
X7 (2)==-XY(4) *35+%XZ (4) ¥C5
XT(2)==X7 (4) *AZ+XY (4) *AY
YX(2)=YX(4)*C6+YY (4) *C5*S6+Y7Z (4) *S5%36
YY (2)==YX (4)*S6+YY (4)*C5*%C6+YZ (4) *S5*C6
YZ (2)=-YY (4)*S5+YZ (4) *C5

YT (2)==YZ (4)*AZ+YT (4)+YY (4) *AY
7X(2)=2X(4) *C6+2Y (4) *C5*S6+Z7Z (4) ¥S5*%36
7Y (2)==2X(4)*S6+ZY (4)¥C5*C6+27 (4) *S5%C6
772(2)==2Y (4) *S5+Z7 (4) *C5

72T (2)==27 (4)*AZ+ZT (4)+ZY (4) *AY

C DO DISPLAY TRANSFORM AND SEND TO DISPLAY

60

DO 371 I=2,4

XX =XX(I)*XXD+YX(I)*XYD+ZX(I)*XZD

XY1 =XY (1) *ZLXD+YY (I) *XYD+ZY (I)*4ZD
£71=X7 (1) *XXD+YZ (I)*XYD+ZZ (I)*XZD

XT1 =XT (I)*XXD+YT (1) *XYD+%T (I) *XZD+XTD
Y1 =XX(I)*YXD+Y X (I) *YYD+ZX (I)*YZD

YY1 =XY (I)*YVD+YY (I)*YYD+ZY (I)*YZD
Y71 =47 (1) *Y AD+YZ (I)*YYD+22Z (I)*YZD
Y71 =YD (1) *YXD+YT (I)*YYD+ZT (I)*YZD+YTD

-104-

~50T-
(ZWIL)SANDIS=EMWIL
NOD TIVD
(0 0)SaNDIS =HNWIL
YL¢ OTOH(L EN NDDI)dAI
QITIVNT 41 NOIIDENNOD 0d O
0000 bx (TA“ (S “SAT)W-T97Z)2NVIV=(2‘SdI)DHNVI
0000 % ((L SAT)N-IX * (2‘SdT) H-T9X)2NVIV=(1°‘SdI)DNVI
(Cxx (TEA-(2SAI) 1) +2%x» (IdX-(| ‘SIT) W)) IEDS=TA
(SYTHEINI SV THOIS 0I) 0000 ix SHTHNY JOLOHA HONOL D
ZWHH=(C°SdI) N
ANWH=(2‘SdI) |
XHRK=(1 ‘SdI)N
SEIYNIQH00D INIOA D
LS 0L0OH(00)L IH SdI)dI
ZWAR TN X WHIH (% ‘2) TITYM(L DE ¥I0AI)dI
(2)12+(2)22%9Z+(2) AZ%LX+(2)XZxIX=14Z
(2) Lx+(2) ZA»92+(2) XIA#GA+(2) X AxEX=14X
(2) Ta+(2) ZX%42+(2) AX» G+ (2) X X» €X=1X
(2)3Z+(2) 2Z%dZ+(2) XZ»dX+(2) X Z%dX=ZWHH
(2)TF+(2) ZX%xdZ+(2) AExd X+(2) X AxdX=ZHNN
(2) TX+(2) ZX%dZ+(2) X% dX+(2) Xax X=X WHK
SELYNIQHO0D YOIVIALINYH D
NI HOIDHEA QNV INIOd HONOTL IEH OF WHOJISNVYI 04 D
Otk (€0 L+I)dudg=9d7
Oyx(2°01+TI)dug=9x
Otx (| ‘O L+I)dudg=g%
Obx (€ °T)aud=4az
Obx(2°I)dud=4dx
Obx(}1)a¥d=dx
ANITHEINTD HOSNIS ONId O

|+SdI=8dI

YTINAOD INIOd INEWIYONI O

(1¥L¢ o) IVIMOd 69l
JAFAN(GOL Q) TITHM (Y- DH XUI)dI
LOOw=dTEEN

Ad0 ST 0I® JT TTHE TVYNIWHMEL DNIY O
¥=(I)SH

¢LC 0LOD(0 EN (I)SH ¥0 O dDH (I)I0dI)dI
b=(I)SH=(I)SH(O IH (I)SW ANV O O (I)I0dI)dI
1=(I)I0dI(0 D& (r QNV dSI))dI

SHETOXD ¥ J0 SEHOIIMS NO IIWIT IIVM INd O
(1=-I)%xc=P

0L‘1=I 2L¢ oda 29
2L¢ 0L0H(LLLLLYVG DE dSI)AI

SAHOLIMS HMOSNHS HONOL ENIWVXE D

0
(QIX“QZX‘QAA“Q¥X‘AIX ‘02X ‘XX ‘QXX) ¢N¥IAT TIVD
((1)ILdI)XLIAOW TIVD

NOIIVIMOASNVEL TIVM 0d D

TANIINOD VLS
(VIZCVZRACLAXCIXALIX 12X C LAY 1XX) ¢¥IaT TIVD
((I)IdI)ZAIAOW TIVD

IF(IRX EQ -4)TYPE *,IPS,TIME
C RING BELL TO INDICATE COMPLETION
IF(IRX EQ -4)WRITE(5,765)NBEEP

GOTO 373

C DRAW POINT ON SCREEN

374 CALL PNTI?(MMMX,MMMY,MMMZ)
CALL MGSEND

373 IPOT(I)=0

372 CONTINUE

C ENABLE QIO IP ARM IS TWISTED
IF(IRX EQ -4 AND THA GT 3 O)IRL=0
IF(IRX EQ -4)GOTO 112
C CHANGE DISPLAY TRANSFORMATIONS IF VIEW IS CHANGING
IF(IROLL EQ 1)CALL DISP
IF(IVECT EQ 2)GOTO 112
C READ KEYBOARD
IF(IFF NE 1)CALL QIO("10400,5,3,,10SB,IPARAM,IDS)
IFF=1
CALL READEF(3,IUU)
IF(IUU NE 2)GOTO 112

ICM=ICMD
WRITE(5,999)IZXC,LLL, IEXC, TAAA
999 FORMAT ('+',4A)
IFF=0
CALL DISP
I1CM=0
C LOOK AT DISPLAY FLAG
382 IF(IRX EQ -1)CALL LDPTRO(NCON)

IF(IRX EQ -1)CALL MGSEND
IF(IRX EQ -2)GOTO 100
GOTO 112

END

-106-

APPENDIX C SUBROUTINES TO CONSTRUCT A POLYHEDRON
FROM SURFACE POINT DATA

SUBROUTINE CON
COMMON /DMABUF/ IDUM(3060),NF(20),ID(20),
1 IFC(200,3%),1(100,3)
COMMON /IPTPS/IANG(100,2)
COMMON /FACT/IFMAX,NX(30),NA,IPS,NCON,NPOL,ICCN,
1 IVECT,ISUP,IRX
C INITIALIZE VARIABLES
NDIST=10 ! MAXIMUM DISTANCE TO FACET CENTROID
NMAX=5 ! NUMBER OF FACETS FOR COMPLETE CHECKS
357 IPRC1=0
PD1=0
DL1=0
IB=0
ITRY=0
NFMX=NMAX
PI=3 1415927
IF (IPS GT 3)GOTO 3 'IPS=CURRENT NUMBER OF POINTS
IF (IPS GT 1)GOTO 1
C DRAW DOT FOR FIRST POINT
CALL PNPI3(M(1,1),M(1,2),M(1,3))
GOTO 5
1 IF (IPS GT 2)GOTO 2
C DRAW LINE BETWEEN FIRST 2 POINTS
CALL VECT(1,2)
GOTO 5
C CONSTRUCT INITIALIZING FACETS ON FIRST 3 POINTS
2 CALL VECT(2,3)
CALL VECT(3,1)
IFC(1,1)=3 ! LOAD PIRST 2 FACETS FIRST 3 POINTS
IFC(1,2)=2
IFC(1,3)=1
IFC(2,1)=1
IFC(2,2)=2
IFC(2,3)=3
IFMAX=2 ' NUMBER OF FACETS ON EXISTING POLYHEDRON
5 CALL MGSEND
RETURN
3 CONTINUE
DO 320 I=1,20
ID(I)=40 *NDIST
320 NF(I)=0
C PIND DISTANCE FROM POINT TO CENTROID OF ALL FACETS
DO 321 I=1,IFMAX
IFPC1=IPC(I,1)
IFC2=IFC(I,2)
IFC3=IFC(I,3)
PXA=(I1(IFC1,1)+M(IFC2,1)+M(IFC3,1)) /3 —-1(IPS,1)
PYA=(M(IFC1,2)+M(IFC2,2)+M(IFC3,2))/3 -1(IPS,2)
FZA=(M(IFC1,3)+~M(IFC2,3)+M(IFC3,3)) /3 -M(IPS,3)
LD=SQRT (FAA*FYXA+FYA*PYA+FZA*FZA)
~107-

C ADD FACET TO LIST OF NEAREST FACETS IF CLOSE EWOUGH
IF(LD GE ID(NMAX))GOTO 321

ID(NMAX)=LD ' DISTANCE TO NEAR FACET
NF (NMAX)=I ! NUMBER OF NEAR FACET
DO 322 J=1,NMAX-1

J1=NMAX-J

J1+1)=ID(J1)
J1+1) NF(J1)

IF%LD GE ID(J1))GOTO 321
NF
ID (J1)=L

NF(J1) I
322 CONTINUE
321 CONTINUE
C BEGIN SEARCH FOR BEST FACET
323 DO 100 IC=1,NFMJL
I=IC

IF(ITRY EQ 1)GOTO 324
IF(NF(IC) LT 1 OR NF(IC) GT IFMAX)GOTO 100

I=NF(IC)
C
324 IPC1=IFC(I,1)
IFC2=IFC(I,2)
IFC3=IFC(I,3)
ICW=0 'SET FLAG TO SIGNIFY ORDINARY FACET CHECK
C
C FIND IF TOUCH VECTOR PIERCES FACET (IPEIRC)
C FIND WYICH WAY FACET IS FACING POINT (LOUTF)
C FIND DISTANCE BETWEEN POINT AND FACET PLANE ALONG
C TOUCH VECTOR (PDIST)

CALL PIERC(IPS,IFC1,IFC2,IFC3,IPIERC,LOUTF,
1 PDIST,ICW)

DECIDE IF FACET IS BEST SO FAR

QaQ

CHECK IF DIRECTION VECTOR POINTS FOWARD THRU FACET
IF (IPIERC LE 0)GOTO 40

C
C REJECT POINT IF FACET FACES TOWARD TOUCH POINT
IF (LOUTF GE O)GOTO 38
IB=0
TYPE *,'NEGATIVE PIERCING FACET'
GOTO 52
C
C COMPARE TO BEST FACET
38 IP (IPRC1 LE O OR PDIST LT PD1)GOTO 60
GOTO 50
C
C REJECT ALL OTHER FACETS IF BEST IS PIERCED POSITVE
40 IF (INTPNT EQ 1)GOTO 50
C

C CHECK CASE WHERE DIRECTION VECTOR POINTS AVAY THRU FACET
IF (IPIERC EQ 0)GOTO 45

-108-

C CHECK
45

C

IF (PDIST GT O) GOTO 50

IF (LOUTF EQ 1)GOTO 50

IF (IPRCY1 EQ 0)GOTO 60

IF (PDIST LT PD1)GOTO 50

GOTO 60 ' GO FOR FURTHER TESTS

CASE WHERE DIRECTION VECTOR DOESNT PIERCE FACET
IF (LOUTF EQ 1)GOTO 50

IF (IPRC1 NE 0)GOTO 50

C FIND DISTANCE TO CENTROID OF FACET

C
C CHECK
60

FXA= (M (IFC1,1)+M(IFC2,1)+M (IFC3,1)) /3 -M(IPS,1)
FYA=(M(IFC1,2)+M(IFC2,2)+M (IFC3,2)) /3 -M(IPS 2)
FZA=(M(IFC1,3)+M(IFC2,3)+M(IFC3,3)) /3 -M(IPS,3)
DL—SQRT(FXA*FXA+WYA*FYA+FZA*FZA)

IF (DL1 EQ 0)GOTO 60

IF (DL1 LE DL)GOTO 50 'REJECT IF NOT NEAREST SO FAR

PIERCING OF OLD FACETS BY NEW LINES
DO 310 J=1,IFMAX

C SET FLAG TO CHECK PIERCING OF LINE SEGMENT THROUGH FACET

310
C
C CHECK

51

ICWP=4

CALL PIERC(IPS,IFC1,IFC(J,1),IFC(J,2),
IFC(J,3),LOT, PDD, ICWF)

IF(ICWP EQ 6)GOTO 50

CALL PIERC(IPS,IFC2,IFC(J,1),IFC(J,2),
IFC(J,3),LOT, PDD, ICWF)

IF(ICWF EQ 6)GOTO 50

CALL PIZRC(IPS,IFC3,IFC(J,1),IFC(J,2),
IFC(J,3),L0T,PDD, ICWF)

IF(ICWF £Q 6)GOTO 50

PIERCING OF NEW FACETS BY ALL OTHER TOUCH VECTORS
DO 51 J=1,IPS

ICWF=0

IPP=0

CALL PIERC(J,IPS,IFC2,IFC3,IPP,LOT,PDD,ICWF)
IF(IPP GT 0)GOTO 50

CALL PIERC(J,IPS,IFC3,IFCi1,IPP,LOT,PDD,ICWF)
IF(IPP GT 0)GOTO 50

CALL PIERC(J,IPS,IFCt,IFC2,IPP,LOT,PDD,ICUFR)
IF(IPP GT 0)GOTO 50

CONTINUE

C SAVE POINT AS BEST SO FAR AND SAVE ALL ITS ATTRIBUTES

50
100

IF(IPIERC EQ 0)DL1=DL

PD1=PDIST

IPRC1=IPIERC

IB=I ! NUMBER OF BEST FACET
CONTINUE

CONTINUE

C RETURN IF 40 GOOD FACET IS FOUND

52

IF(IB EQ O AND ITRY IQ 0)GOTO 326
IF(IB NE GOTO 10

-109-

IPS=IPS-1
IF(IRX EQ -4)WRITE(5,23%4)

234 FORMAT (' ***%**REJECT POINT***%x%!)
RETURN

326 ITRY=1 ' MAKE SECOND TRY BY CJECKING ALL FACETS
NFMX=IFMAX
GOTO 323

C

C DRAW LINES FROM NEW POINT TO CHOSEN FACET

55 CALL VECT(IPS,IFC(IB,I))

CALL MGSEND

o

C GET RID OF OLD FACET AND ADD 3 NEW ONES
IFC (IFMAX+1,1)=IPS
IFC(IFMAX+2,1)=IPS
IFC(IFMAX+1,2)=IFC(IB,2)
IFC(IFMAX+2,2)=IFC(IB,3)
IFC(IFMAX+1,3)=IFC(IB,3)
IFC(IFMAX+2,3)=IFC(IB,1)
IFC(IB,3)=IPS
IFPMAX=IFMAX+2

C
C SELECT FACET PAIRS FOR CHECKING SMOOTHNESS
C

DO 181 I=1,30

181 NX(I)=0 tLIST OF POINTS TO CHECK AROUND
NX(1)=IPS
NX(2)=IFC(IB,2)
NX(3)=IFC(IB,3)
NX(4)=IFC(IFMAX,2)
NA=4
NEND=0

140 IF(NA GT 30)NA=30
NX1=NX(NA)
NA=NA-1
K1=0
DO 182 I=1,30

182 IF(NX1 EQ NX(I))K1=K1+1
IF(K1 GT 3)GOTO 1473
DO 141 I=1,IFMAX
DO 142 J=1,3
IF(NX1 NE IFC(I,J))GOTO 142
K1=NX1
K2=IFC(I,1+10D(J,3))
CALL FACE(XK1,K2)
NEND=NEND+1
IF(NEND GT 50)GOTO 144

142 CONTINUE

141 CONTINUE

143 IF(8A GT O)GOTO 140
144 RETURN

-110-

END
SUBROUTINE FACE(K1,K2)
DIMENSION IA(4)
COMMON /DMABUF/ IDUM(3100),IFC(200,3),M(100,3)
COMMON /FACT/ IFMAX,NX(30),NA,IPS, NCON NPOL
COMMON /IPTPS/ IANG(1OO 2), ICHECK VEX, IFCC
C FIND ALTERNATE SET OF POINTS M1 M2
o ISTICK=0
IFCC=0
IF(X1 EQ K2)RETURN
IF(K1 EQ O OR K2 EQ O)RETURN

INITIAL FACETS
M1

!
!
1
!
556 IF(X1 LT K2)GOTO 5 ' / \
IFACE1 =K1 ' /. \
K1=K2 ' / \
K2=IFACE1 ' G R —— * K2
5 IFACE1=0 ' \ /
CALL SEARCH(X1,K2,M1,IFACE1) r \ /
CALL SEARCH(K2,K1, M2, IFACER) ' \ /
IF(M1 EQ O OR M2 EQ O)RETURN v *
70 IF(ICHECK EQ 1)WRITE(5,*)K1,K2, Mt 2 M2
IF(M1 EQ M2)RETURN
CALL SEARCH(M1,M2,J,I) ' OUT OF THE PAGE
IF(J NE O)RETURN ' IS OUTSIDE THE
C IF ICHECK=2 FORCE FACET CHANGE ' POLYHEDRON
IF(ICHECK EQ 2)GOTO 160
c
C FIND ATRIBUTES OF COMPLIMENT FACETS
90 CALL PIERC(X1,M1,M2,K2,IPRC3,LOUTF2,PDIST,ICH3)

CALL PIERC(K2,M2, M1 X1,IPRC4,LOUTF3,PDIST,ICWA)
C IF ICHECK=1 THIS SUBROUTINE ONLY PRINTS THW FACET DATA

IF(ICHECK NE 1)GOTO 689

TYPE *, 'POINT LOUTF ICW IPIERC'

WRITE(5, *)K1,LOUTF2,ICW3, IPRC3

WRITE (5, *)K2 LOUTF3,ICW4,IPRC4

689 I“(IPRCB LE O AND IPRC4 LE 0)GOTO 155
ISTICK=1
IF(LOUTF2 GT O)RITURN

C

C

C CHECK IF TOUCH VECTOR AND FACET VORMAL ARE OVER
C 90 DEGREES APART

155 IF(ICW3 NE 1 AND ICW4 NE 1)GOTO 159
IF(LOUTF2 EQ -1)RETURN
GOTO 157

159 A1=0
A2=0

C FIND THE 4 PERIPHERY POINTS
CALL SEARCH(K1,M1,M11,I)
CALL SEARCH(M1, K2 Ml 2, I)
CALL SEARCH(K2 M2,M22,1)
CALL SEARCH(M2,K1,M21,I)

C FIND ALL THE SURFACE NORMALS
-111-

CALL CROSS(K1,K2,M1,1)
CALL CROSS(K2,K1,M2,2)
CALL CROSS(M1,M2,K2,3)
CALL CROSS(M2,M1,K1,4)
CALL CROSS(K1,M1,M11,5)
CALL CROSS(M1,K2,M12,6)
CALL CROSS(K2,M2,M22,7)
CALL CROSS(M2,K1,M21,8)

C FIND ANGLE BETWEEN ADJACENT FACETS AND ADD TOGETHER

420

421

C

C CHECK
157

156
158

160
C
C CHECK

CALL ANGL(6,1,A1)

CALL ANGL(7,2,A1)

CALL ANGL(8,2,A1)

CALL ANGL(5,1,At)

CALL ANGL(5,4,A2)

CALL ANGL(6,3,42)

CALL ANGL(7,3,A2)

CALL ANGL(8,4,A2)

CALL ANGL(1,2,A1)

CALL ANGL(3,4,A2)

IF(ICHECK NE 1)GOTO 421

TYPE *, 'ORIGINAL ANGLE TOTAL="', At
TYPE *,'COMPLIMENT ANGLE TOTAL=',A2
IF(A1 LE A2)RETURN

IF NEW LINE PIERCES ANY FACETS

CALL PIERC(M1,K2,K1,M2,IPRC3,LOUTF1,PDIST,ICW3)
CALL PIERC(M2,K1,K2,M1,IPRC4,LOUTF ,PDIST,ICW4)
IF(ICHECK NE 1)GOTO 156

TYPE *,'POINT LOUTF ICW IPIERC'

WRITE (5, *)M1,LOUTF1,ICW3,IPRC3

WRITE(5, *)M2,LOUTHM , ICW4 , IPRC4

RETURN

IF(IPRC3 LE O AND IPRC4 LE 0)GOTO 158

IF(LOUTF2 EQ 1)RETURN

IF((ICW3 EQ 1 OR ICW4 EQ 1) AND LOUTF2 EQ -1)RETURN
DO 160 I=1,IFMAX

ICWF=4

CALL PIERC(M1,M2,IFC(I,1),IFC(I,2),IFC(I,3),
LOUTF1,PDIST,ICWF)

IF(ICWF EQ 6)RETURN

CONTINUE

IF AWY LINES PIERCE NEW FACETS
DO 568 I=1,IFMAXL

DO 569 J=1,3

KL1=IFC(I,d)

KK2=IFC(I,1+M0D(J,3))

IF(KX1 GE KK2)GOTO 569

ICWF=4

CALL PIERC(KK1,KK2,K1,M2,M1,LOUT™ ,PDIST,ICVWF)
IF(ICWF EQ 6)RETURN

CALL PIZRC(XX1,KK2,K2,M1,M2,LOUTF1,PDIST,ICWF)

-112-

569

568

C

C CHECK

571

570
C

IF(ICWF EQ 6)RETURN
CONTINUE
CONTINUE

IF ANY TOUCH VECTORS PIERCE NEW FACETS
IF(ISTICK EQ 1)GOTO 570

ICWF=0

DO 570 I=1,IPS

IF(I EQ K1 ORI EQ K2 OR I EQ M1 OR I EQ M2)GOTO 570
CALL PIERC(I,K1,M2,M1,IPRC!,LOUTF1,PDIST,ICWF)
IF(IPRC1 EQ 0)GOTO 571

IF(PDIST GT O)RETURN

CALL PIERC(I,K2,M1,M2,IPRC1,LOUTF!,PDIST,ICWF)
IF(IPRC1 EQ 0)GOTO 570

IF(PDIST GT O)RETURN

CONTINUE

IFCC=1

C RECORD NEW FACETS

C

IFC(IFACE!, 1)=K1
IFC(IFACE1,2) =12
IFC(IFACE!, 3) =111
IFC(IFACE2,1)=K2

CONVERTED FACETS
M1

*

t

!

!

1
IFC(IFACE2,2)=M1 ' JI\
IFC (IFACE2,3)=M2 ' // I \\

' I

C RECORD NEW LINES TO BE CHECKED ' K1 * I % K2

NA=NA+4 ' \ I /
IF(NA GT 30)GOTO 300 ' \ I/
NX(30) =M1 ! \I/
NX(29)=M2 ' *
NZ(28)=K1 ' M2
NX(27)=K2
DO 161 J=1,4

161
C

KX1=NX(30)

DO 161 I=1,29
KK2=NX(I)
NX(I)=KK1
KK1=NX(I+1)
NX(I+1)=KK2
CONTINUE

C DRAW NEW POLYHEDROM

300

308
309

CALL LDPTRO(NCON)

DO 310 I=1,IFMAX

DO 309 J=1,3
IIM1=IFC(I,d)
IIM2=IFC(I,1+MOD(J,3))
IF(IIM1 GT IIM2)GOTO 308
CALL VECT(ILM1,ILM2)
CONTINUE

CONTINUE

-113-

31

eNoRoNoNoXoNoNoNoRoRoNoYoRe o RO RO RO Y]

C

41
C

42
43

0 CONTINUE

CALL MGSEND

RETURN

END

SUBROUTINE PIERC

THIS SUBROUTINE CALCULATES ATTRIBUTES BETWEEN A VECTOR AND
A TRIANGLE IN TOUCH VECTOR MODE KP IS THE TOUCH
POINT NUMBER AND K1-K2-K3 IS INPUT CORNER POINTS OF THE
TRIANGLE IN THIS MODE ICW WILL BE OUTPUT AS 1 IF THE
TRIANGLE KP-K1-K2 HAS A SURFACE NORMAL MORE THAN 90
DEGREES FROM THE TOUCH VECTOR
IN LINE SEGMENT MODE, (ICW=4), KP IS INPUT AS THE PRIMARY
ENDPOINT OF THE LINE SEGMENT AND K1 IS THE SECONDARY
ENDPOINT AND K2-K3-K4 IS THE TRIANGLE

AS OUTPUT, K4=1 IF THE VECTOR PIERCES THE FACET ON THE
POSITIVE SIDE OF THE FACET AND K4=-1 IF IT PIERCES FROM
THE NEGATIVE SIDE K4=0 IF NEITHER IS TRUE LOUTF=1 IF THE
FACET FACES AWAY FROM THE PRIMARY POINT OR TOUCH POINT AND
LOUTF=-1 IF IT FACES TOWARD THE POINT PDIST IS THE
DISTANCE FROM THE TOUCH POINT OR PRIMARY POINT TO TdAE
FACET SURFACE ALONG THE VECTOR

SUBROUTINE PIERC(KP,K1,K2,K3,K4,LOUTF,PDIST,ICW)
DIMENSION RX(3),RY(3),RZ(3),PX(3),PY(3),Pz(3),KA(3)
COMMON /DMABUF/IDUM (3700),M(100,3)
COMMON /PACT/ IFMAX,NX(30),NA,IPS,NCON,NPOL
COMMON /IPTPS/ IANG(100,2)
DATA PI/3 1415927
IF(ICW NE 4)GOTO 40
LINE SEGMENT MODE
KA(1)=K2
KA (2)=K3
KA (3)=K4
IGNORD COMPARISIONS IF ANY POINTS ARE THE SAME
DO 41 IIS=1,3
IF(KA(IIS) EQ K1)RETURN
IF(KA(IIS) EQ XP)RETURN
FIND ANGLES SIMILAR TO TOUCH VECTORS
RDX=M(K1,1)-M(KP,1)
RDY=M(K1,2)-M(XP,2)
RDZ=M (K1,3)-M (KP,3)
PGAP=SQRT (RDA*RDX+RDY*RDY+RDZ *RDZ)
PG=SQRT (RDX*RDX+RDY*RDY)
IF(PG NE 0)GOTO 42
CTHET=1
STHET=0
GOTO 43
CTHET=RDX/PG
STHET=RDY /PG
IF(PGAP NE 0)GOTO 44
CPHI=1

=114~

SPHI=O
GOTO 50
44 SPHI=RDZ /PGAP
CPHI=PG/PGAP
GOTO 50
C ORDINARY MODE
C XKP IS POINT WITH TOUCH VECTOR
C K1,K2,k3 DESCRIBE THE FACET
40 IF(KP EQ X1 OR KP EQ K2 OR KP EQ K3)RETURN
CTHET=COS (FLOAT (IANG (KP,1))* 0001)
STHET=SIN(FLOAT(IANG(KP,1))* 0001)
CPHI=COS (FLOAT (IANG (XP,2))* 0001)
SPHI=SIN(FLOAT(IANG(KP,2))* 0001)
KA (1) =K1
KA(2)=K2
KA(3)=K3
50 DO 30 J=1,3
PX(J)—M(KA(J) 1)
PY(J)=M(KA(J),2)
PZ(J):M(KA(J),B)
C GET POINTS IN COORDINATES OF KP POINT AND
C TRANSFORM COORDINATES SUCH THAT TYE VECTOR LAYS ON THE
C X AXIS
RDX=PX(J)-M(XP,1)
RDY=PY (J)-M (XP,2)
RDZ=P%Z (J)-M (XP, 3)
RX(J) (CTHET*RDX+STHET*RDY)*CPHI+SPHI*RDZ
RY (J)=-STHET*RDX+CTYET*RDY
RZ(J)- (CTHET*RDX+STHET*RDY) *SPHI+CPHI*RDZ
0 CONTINUE

CHECK PIERCING
IF THE VECTOR PIERCES THE TRIANGLE, THE CORNER POINTS
WILL SURROUND THE X AXIS
IPIERC=0
T1=ATAN2(RY (1),RZ(1))
T2=ATAN2(RY(2),RZ(2))-
T3=ATAN2(RY(3),RZ(3))-
IF(T2 LT O)T2=T2+2*PI
IF(T3 LT O)T3=T3+2*PI

QW

T

CHECK IF TOUCH VECTOR IS GREATER THAN 90 DEG FROM NORMAL
IF(ICW EQ 4)GOTO 55
IF THE TWO OTHER POINTS GO SEQUENTIALLY CLOCKWISE WHEN
LOOKING DOWN THE TOUCH VECTOR, THEN THE FACET IS MORE
TYAN 90 DEGREES AWAY
ICW=0
IF(T2 LT PI)ICW=1 ! GREATER THAN 90 DEG

QaQQ QQ

IF(T2 GT PI)GOTO 32
IF(T3 GT PI AND T3 LT T2+PI)IPIZRC=1
GOTO 36

Ul Q
Ul

-115-

32 IF(T3 LT PI AND T3 GT T2-PI)IPIERC=1
36 CONTINUE
C
¢ CHECK IF FACET POINTS OUT OR IN
C FIND CROSS PRODUCT OF FACET
DO 408 I=2,3
RX(I)=RX(I)=RX(1)
RY(I)=RY(I)-RY(1)
408 RZ(I)=RZ(I)=-RZ (1)
QX=RY (2)*RZ(3)-RZ(2)*RY(3)
QY=RZ (2)*RX(3)-RX(2)*RZ(3)
QZ=RX(2)*RY(3)-RY(2)*RX(3)
C D IS POSITIVE IF FACET POINTS AWAY
D=(RX(1)*QX+RY (1) *QY+RZ (1) *QZ)
PDIST=100000
IF(QX NE O)PDIST=D/QX
C LOUTF=1 IF FACET FACES AWAY FROM POINT AND -1 OTHERWISE
LOUTP=-1
IF(D LT O)LOUTF=1
C PDIST IS DISTANCE ALONG TOUCH VECTOR TO FACET SURFACE
IF(PDIST LT O)IPIERC=-IPIERC
IF(ICW NE 4)K4=IPIERC
IF(ICW NE 4 OR IPIERC EQ O)RETURN
C INDICATE THAT SEGMENT PIERCES FACET
IF(PDIST GT O AND PDIST LT PGAP)ICW=6
RETURN
END
SUBRQUTINE CROSS(M1,M2,M3,1I)
C THIS SUBROUTINE FINDS THE SURFACE NORMAL OF A FACET
COMMON /DMABUF/IDUM(3700),M(100,3)
COMMON /TVEC/ TX(8),TY(8),TZ(8)
A1=M(M2,1)-M(M1,1)
A2=M(M2,2)-M(M1,2)
A3=M(M2,3)-M(M1,3)
B1=M(M3,1)-M(M1,1)
B2=M (M3,2)-M(M1,2)
B3=M(M3,3)-M(M1,3)
TX(I)=A2*B3-A3*B2
TY(I)=A3%*B1-A1*B3
TZ (I)=A1%*B2-~A2*B1
RETURN
END
o
SUBROUTINE ANGL(I,J,A)
¢ THIS SUBROUTINE FINDS THE ANGLE BETWEEN TWO VECTORS
COMMON /TVEC/TX(8),TY(8),TZ(8)
R=TX(I)*TX(J)+TY (I)*TY(J)+TZ(I)*TZ(J)
S1=8SQRT ((TX(I)*PX(I)+TY(I)*TY(I)+TZ (I)*TZ(I)))
S2=8QRT ((TX(J)*TX(J)+TY (J)*TY (J)+TZ (J)*TZ(J)))
B=R/(S1%82)
IF(ABS(B) GT 1)TYPE *,'ERROR IN ANGL'
B=ABS (ACOS(B))
-116-

C

A=A+3B
RETURN
END

SUBROUTINE SEARCH(N1,N2,N3,N4)

C THIS SUBROUTINE FINDS THE 3RD POINT OF A FACET GIVEN THE
C OTHER TWO IN SEQUENCE IT ALSO RETURNS THE FACET NUMBER

10

C

COMMON /DMABUF/ IDUM(3100),IFC(200,3)
COMMON /FACT/ IFMAX,NX(30),NA,IPS
N3=0

DO 10 I=1,IFMAX

J=0

IF(N1 EQ IFC(I,1))Jd=1

IF(N1 EQ IFC(I,2))d=2

IF(N1 EQ IFC(I,3))Jd=3

IF(J EQ 0)GOTO 10

IF(N2 NE IFC(I,1+MO0D(J,3)))GOTO 10
N3=IFC(I,1+MOD(J+1,3))

N4=I

RETURN

CONTINUE

RETURN

END

SUBROUTINE VECT(I1,I2)

C THIS SUBROUTINE DRAWS A LINE BETWEEN TWO TOUCH POINTS

10

COMMON /DMABUF/IDWM(3700),M(100,3)
CALL MOVIB(M(I1,1),M(I1,2),M(I1,3§g
CALL DRWI3(M(I2,1),M(I2,2),M(I2,3
RETURN

END

-117-

APPENDIX D SUBRQUTINES FOR DISPLAY MANAGEMENT

SUBROUTINE DISP

DIMENSION T(7),DT(7)

BYTE IBUF(3)

COMMON /DMABUF/ IDUM(3100),IFC(200,3),M(100,3)
COMMON /IPTPS/ IANG(100,2),ICHECK,VEX,IFCC

COMMON /FACT/IFMAX,NX(30),NA,IPS,NCON,NPOL,ICCH,
IVECT, ISUP,IRX

COMMON /DISPL/ICM,X4D,XYD,XzD,XTD,YXD,YYD,YZD,YTD,
7.XD,ZYD,ZZD,ISHAD, IARM, IWALL, IROLL, JSTICK,IDOTR
DATA INTPNT,INWALL,INARM /13,13,13/

C DRAW INSTRUCTIONS

IF(ICM EQ "113 OR IRX EQ -5)GOTO 208
IRX=0

IQS=0

IF(ICM NE "117)GOTO 733

C INITIATE JOYSTICK ROTATIONS

133

300

1QS=1

IF(JSTICK EQ O)JSTICK=-1 ' JOYSTICK FLAG
JSTICK=-JSTICK

IF(JSTICK NE 1)IROLL=0

IF(JSTICK NE 1)GOTO 300

IROLL=1

CALL JROL(TX,TY,TZ,IQS)

IF(IQS EQ -1)JSTICK=-JSTICK

IF(JSTICK NE 1)IROLL=0

IF(ICM NE "125)GOTO 301

C INITIATE SCREEN OSCILLATIONS

C CHECK
301

458

TYPE *,'INPUT CYCLES/SEC AND MAX ANGLE'
ACCEPT *,PER,O08SC

0SC=08C /360

PER=PER*6 283

TOS=SECNDS (0 0)

IROLL=1

TWO KEY COMMAND CONDITION FLAG
IF(ICM NE O AND IPCON EQ 1)GOTO 700
IFgICM NE O AND IPCON EQ 2)GOTO 800
IF(ICM EQ "120)IPCON=2

IFéICM EQ "131)IPCON=1

IF(JSTICK EQ 1)RETURN

IF(ICM EQ "131 OR ICM EQ "120)RETURN

IF(ICM EQ "040)GOTO 400 ' STOP ROTATIONS
IF(IROLL EQ 1)GOTO 200 ' SKIP FOR ROTATIONS
IF(ICM EQ "132)STOP

IFEICM EQ "123)IRX=-1 ' REDRAW DILPLAY

IF(ICM NE "115)GOTO 458 ' SET INTENSIT{ OF MANIP

INARM=MOD(1+INARM,16)

CALL MODIFY (IARM)

CALL SETINT(INARM)

IF(ICM NE "127)GOTO 459 ' SET INTENSITY OF WALLS
INWALL=MOD (1 +INWALL,16)

CALL MODIFY(IWALL)

-118-

CALL SETINT(INWALL)
459 IF(ICM NE "111)GOTO 461 ! SET INTENSITY OF POINTS

INTPNT=MOD (1 +INTPNT,16)

CALL MODIFY (NCON-1)

CALL SETINT (INTPNT)
461 IF(ICM EQ "122)IRX=-2 ! INITIALIZE PROGRAM

IF(ICM EQ "110)IRX==4 ! STOP QIO

IF(IRX LT O)RETURN
602 IF(ICM NE "067)GOTO 603 ! SET TOP VIEW

VP1=0

VP2=- 75

VP3=Q
603 IF(ICM NE "061)GOTO 604 ! SET FRONT VIEW

VP1== 75

VP2=0

VP3=0
604 IF(ICM NE "060)GOTO 605 ! CENTER PICTURE

TX=0

TY=0

17 =0
605 IF(ICM NE "065)GOTO 200 ! SET SIDE VIEW

VPi= 5

VP2=0

VP3=0
200 IF(ICM NE "114)GOTO 618 ! SET NORMAL VIEW

VP1== 55

VP2= 04

VP3=0

S=1
618 IF(ICM EQ "O70)DT 0008 ' SET ROTATION SPEEDS
IF(ICM EQ "062)DT
IF(ICM EQ "064)DT
IF(ICM EQ "066)DT
IF(ICM EQ "105)DT
IF(ICM EQ "124)DT
IF(ICM EQ "075)DT
IF(ICM EQ "047)DT
IF§ICM EQ "133)DT
IF(ICM EQ "134)DT
IF(ICM EQ "OT73)DT
IF(ICM EQ "173)DT

IF(ICM EQ "O71)DT

IF(ICM EQ "O63)DT(5) - 004

DO 450 1I=
450 IF(ABS(DT(I)) GT 00001)IROLL=1

J=0

DO 451 I=1,7

T(I)=T(I)+DT(I)
451 IF(T(I) NE 0)J=J+1

IF(J EQ O AND PER EQ O)IROLL=0
460 VP3=VP3+T (6)

VP2=VP2+T (1)

-119-

VP1=VP1+T(2)
T0S=SECNDS(T0S1)
T0S1=T0S1+T0S
T0S=MOD(TOS1*PER,6 283)
VPT=VP1+0SC*SIN(TOS)
TY=TY+T (3) /S
TX=TX+T (4)/S
17=17+T (7) /S
S=8*(1 +7(5))
IF(S GT 15 9)8=15 9
DO 452 I=1,7
452 DT(I)=0
ICM=0
201 SP1=SIN(VPT*6 28)
SP2=SIN(VP2*6 28)
CP1=COS(VPT*6 28)
CP2=C0S (VP2*6 28)
CP3=C0S(VP3*6 28)
SP3=SIN(VP3*6 28)
C CALCULATE SCREEN TRANSFORMATIONS
YXD=CP1*CP3*S
XYD=CP1*SP3*S
XZD=-SP1 *S
ATD= (TX*XXD+TY*XYD+TZ*{ZD)
YXD= (~CP2*SP3+SP2#SP1 *CP3) *S
YYD=(CP2*CP3+SP2*3P1*5P3) *3
YZD=SP2*CP1 *S
YTD= (TX*YXD+TY*YYD+TZ*YZD)
7.XD= (SP2*3P3+CP2*SP1 ¥CP3) ¥
7YD= (~SP2*CP3+CP2*3P1 *¥SP3) *S
7.2D=CP2%CP1 *S
RETURN
400 DO 401 I=1,7
401 T(I)=0
RETURN
¢ INITIATE POLYHEDRON CONSTRUCTION
700 IF(ICM NE "107)GOTO 701
CALL LDPTRO(NCON)
IFMAX=0
ICCH=1
IPS=0
DO 121 J
DO 121 I
)=0
)

’

1,3
1,100
M(I,Jd)=

IFC(I,d)=
IFC(I*2,d
IF(J EQ 53
TANG(I,J)
121 CONTINUE
701 IF(ICM NE "122)GOTO 70% ' RESTART POLYHEDRON

IPS=IPST

ICCN=1

0
)=0
)GOTO 121
=0

-120-

703 IF(ICM NE "127)GOTO 704 ' REDRAW WALLS
DO 705 I=1,IFMAX
779 DO 705 J=1,3
IF(IFC(I,Jd) GT IPC(I,1+MOD(J,3)))GOTO 705
CALL VECT(IPC(I,J),IFC(I,1+MOD(J,3)))
705 CALL MGSEND
704 IF(ICM NE "101)GOTO 70! CONNECT POINTS ALREADY READ
CALL LDPTRO (NCON)
ICCN=1
DO 777 I=1,IFMAX
DO 777 J=1,3
777 IFC(I,J)=0
IFMAX=0
IPST=IPS
DO 707 I=1,IPST
IPS=I
707 CALL CON
706 IF(ICM NE "124)GOTO 708 ' DRAW TOUCH VECTORS
DO 709 I=1,IPS
M(I, 3))
1)

CTHET= COS(FLOAT(IANG(I
STHET=SIN(FLOAT (IANG(I,

CALL MOVI3(M(I,1),M(I,2),M(
1% *
1))*
CPHI=COS (FLOAT (IANG (I, 23%
,1
2

0001
0001
000
SPHI=SIN(FLOAT(IANG(I,?2 0001)
MXX=100 *CTHET*CPHI4M (I
MYY=100 *STHET*CPHI+M (I,
MZZ=100 *SPHI+M(I,3)
709 CALL DRWI%(MXX,MYY,MZZ)
CALL MGSEND
C DRAW CONTOURS
708 IF(ICM NE "103% AND ICM NE "110)GOTO 781
MYY=50
IF(ICM EQ "103)GOTO 710
WRITE(5,783)
783 FORMAT(' INPUT NUMBER OF SECTIONS')
READ (5, *)MYY
782 CALL CTOUR(MYY)
710 IF(ICM NE "120)GOTO 711 ' CAECK IF FACETS FOLD
ICW5=0
DO 713 I=1,IFMAX
DO 713 J=1,IFMAX
DO 713 K=1,3
MYY=IFC(J,K)
MZZ=IFC(J,1+M0D(K,3))
IF(MYY GZ MZZ)GOTO 713
MX{=4
CALL PIERC(MYY,MZZ,I,I,CP1,CP2,SP1,MX¥)
IF(MXZ NE 6)GOTO 713
ICW5=ICW5+1
YRITE(S5, 714)MYY,M2%,IFC(I,1),IFC(I,2),IFC(I,3)
714 FORMAT (' LINE',I4,' TO',I4,' PIERCES FACET',3I4)
7173 CONTINUE

)
%
)
)

-121-

T

433
716

12
715

718

719
AN|

725

729

726
728

IF(ICM NE "106)GOTO 715 ' RECHECK FACETS
MZZ=0 ' FOR SMOOTHNESS
DO 716 I=1,IFMAX

DO 433 J=1,3

MXX=IFC(I,J)

MYY=IFC(I,1+MOD(J,3))

IF(MXX GE MYY)GOTO 433

IF(IFCC EQ 1)MZZ=1ZZ+!

CALL FACE(MXX,MYY)

CONTINUE

CONTINUE

WRITE(5,12)MZZ

FORMAT(' OF FACET CHANGES=',I6)

IF(ICM NE "116)GOTO 717 ! DRAW POINT NUMBERS

DO 719 I=1,IPS

CALL MOVI3(M(I,1),M(I,2),M(I,3))
ENCODE(3,718,1IBUF)I

CALL CHAR(IBUF,3,1,0)

FORMAT(I3)

CALL MGSEND

CONTINUE

IF(ICM NE "114)GOTO 725 ' LOOK AT FACET PAIR DATA
WRITE(5,729)

READ (5, *)K1,K2

ICHECK=1

CALL FACE(X1,K2)

ICHECK=0

IF(ICM NE "111)GOTO 726

ICHECK=2

WRITE(5, 729)

FORMAT (' INPUT K1 AND kK2')
READ (5, *)K1,K2

CALL FACE(K1,K2)

ICHECK=0

IF(ICM NE "115)GOTO 727 ' GET COORDS OF A POINT
WRITE (5,728) ' AND ITS TOUCH VECTOR
FORMAT(' INPUT POINT ')

READ (5, %) I

WRITE(Sy*)M(I91) yM(Iy2) ,M(I;B)
CTHET=COS (PLOAT (IANG(I,1))* 0001)
STHET=SIN(FLOAT (IANG(I,1))* 0001)
CPHI=COS (FLOAT (IANG(I,2))* 0001)
SPYI=SIN(FLOAT(IANG(I,2))* 0001)

MXX=100 *CTHET*CPHI+M(I,1)

MYY=100 *STHET*CPHI+M(I,2)

MZZ=100 *SPHI+M(I,3)

WRITE(5, *)MXX,MYY,MZZ

IF(ICM NE "112)GOTO 735 ' WRITE ALL FACET DATA
DO 731 I=1,IFMAX
WRITE(5,*)IFC(I,1),IFC(I,2),IFC(I,3)

CONTINUE

IF(ICM NE "130)GOTO 736 ' CHECK IF ANY TOUCH VECTORS

-122-

DO 737 I=1,IFMAX ! PIERCE THE POLYHEDRON

DO 738 J=1,IPS

MXX=0

IF(J EQ IFC(I,1) OR J EQ IFC(I,2) OR J =Q IFC(I,
1 3))GOTO 738

CALL PIERC(J,IFC(I,1),IFC(I,2),IFC(I,3),CP1,CP2,

1 SP1,MXX)
IF(CP1 EQ O OR SP1 LE 0)GOTO 738
CP2=SP1 /40
WRITE(5,739)J,IFC(I,1),IFC(I,2),IFC(I,3),CP2
739 FORMAT (' VECTOR',I4,' PIERCES FACET',3I4,' AT',
1 F9 4,' INCHES')
738 CONTINUE
137 CONTINUE
736 IPCON=0
RETURN
800 IF(ICM NE "104)GOTO 802 ! DRAW POINTS
BO 803 I=1,IPS
803 CALL PNTI3(M(I,1),M(I,2),M(I,3))
CALL MGSEND
802 IF(ICM NE "112)GOTO 804 ' DELETE POINT

TYPE *,'INPUT NUMBER OF POINT TO DELETE,Q=END'
ACCEPT *,MEND
IF(MEND EQ O OR MEND GT IPS)RETURN
DO 805 I=MEND,IPS
M(I,1)=M(I+1,1)
M(I,2)=M(I+1,2)
M(I,3)=M(I+1,3)
IANG(I,1)=IANG(I+1,1)
805 IANG(I,2)=IANG(I+1,2)
IFMAX=0
IPS=IPS-1
DO 806 I=1,200
IFC(I,1)=0
IFC(I,2)=0
806 IFC(I,3)=0
804 IF(ICM NE "103)GOTO 807 ! CLEAR ALL POINTS
DO 808 I=1,100
DO 808 J=1,3
M(I,J)=0
IFC(I,J)=0
IFC(I+100,J)=0
IF(J EQ 3)GOTO 808
IANG(I,d)=0

808 CONTINUE
ICCN=0
1PS=0
IFMAX=0
807 IF(ICM EQ "113)ICCN=0 'STOP POINT CONNECTIONS

IF(ICM NE "114)GOTO 809 'WRITE DATA TO FILD
TYPE *,'FOR LITYIDATA "1'" FOR MEGATEK "2"'
ACCEPT *,IWRT

-123-

810
811

809

814
813
815

819
818

822
821

820

C PRINT
208

IF(IWRT EQ 1)OPEN(JNIT=1,NAME='LEX DAT',TYPE='NEW')
IF(IWRT EQ 2)OPEN(UNIT=1,NAME='MEG DAT',TYPE='NEW')
WRITE(1, *)IPS, IFMAX
DO 810 I=1,IPS
MXX=M(I,1)*XXD+M(I,2)*XYD+M(I,3)*XZD+XTD
MYY=M(I,1)*YXD+M(I,2)*YYD+M(I,3)*YZD+YTD
MZZ=M (I,1)*ZXD+M (I, 2)*ZYD+M(I,3)*ZZD
IF(IWRT EQ 2)WRITE(1,*)M(I,1),M(I,2),M(I,3)
IF(IWRT EQ 1)WRITE(1,*)MXL,MYY,MZZ
DO 811 I=1,IFMAL
WRITE(1, *)IPC(I,1),IFC(I,2),IFC(L,3),
IANG(I,1),IANG(I,2)
CLOSE(UNIT=1,DISPOSE='SAVE')
IF(ICM NE "122)GOTO 815 ' READ DATA FROM FILE
OPEN?UNIT=1,NAME='MEG DAT',TYPE='0LD"')
READ (1, *)IPS, IFMAX
DO 814 I=1,IPS
READ (1, *)M(I,1),M(1,2),M(I,3),IANG(I,1),IANG(I,2)
DO 813 I=1,IFMAL
READ(1, *)IFC(I,1),IFC(I,2),IFC(I,3)
CLOSE(UNIT=1,DISPOSE="'SAVE"')
IF(ICM NE "116)GOTO 818 ' ARRANGE TO WRITE LARGE
IF(IDOTR EQ 1)GOTO 819 ' LARGE NUMBER OF POINTS
OPEN(UNIT=2,NAME='DOT DAT',TYPE='NEW')
IDOTR=1
GOTO 818
CLOSE(UNIT=2,DISPOSE='SAVE"')
IDOTR=0
IF(ICM NE "115)GOTO 820! READ MORE THAN 100 POINTS
OPEN (UNIT=2,NAME='DOT DAT',TYPE='0LD')
DO 822 I=1,8000
READ (2, *,END=821)MMX,MMY,MMZ
CALL PNTI3(MNMX,MMY,MMZ)
CALL MGSEND
CLOSE(UNIT=2,DISPOSE='SAVE"')
TYPE *,I
IPCON=0
RETURN
DISPLAY CONTROL INSTRUCTIONS
TYPE *,' TO ROTATE TYPE '
TYPE *,' 8=UP 2=DOWN 6=RIGHT 4=LEFT 5=FRONT ',
'1=SIDE 7=TOP'
TYPE *,' L=ORIENTED VIEW E=CW T=CCW'
TYPE *,' TO TRANSLATE TYPE '
TYPE *,' "="=UP,"=DOWN, [=RIGHT,=LEFT,0=CENTER,, ',
'=FOWARD, {=BACK'
TYPE *,' 9=7Z0CM UP 3=Z0CM DOWN, TYPE "M"',
'"FOR MANIPULATOR'
TYPE *,' TYPE "S" 70 ERASD, "W" FOR WALLS, I =OR ',
'"POINT INT'
TYPE *,' TYPE "Z" TO EZLIT, "R" TO REPEAT, "K" FOR ',
'"INSTRUCTIONS'

-124-

TYPE *,' C=CLEAR EVERYTHING, K=DOT ENABLE, L=SAVE ',
1 'FOR LEX OR MEG'
TYPE *,' C'
TYPE *,' FOR POINT CONNECTIONS -- FIRST TYPE ',
1 tnY" TP’EN_ 1
TYPE *,' G=START, S=START WITH SURFACE, B=SUPPRESS',
1 ' BASE POINTS'
TYPE *,!' E=END, R=RESUME, W=REDRAW, T=TOUCH ',
1 'VECTORS, C=50 CONTOQUR'
TYPE *,' SECTIONS, H=CONTOUR SECTIONS, A=CONNECT ',
{1 'POINTS ALREADY READ'
TYPE *,' V=CHANGE CONCAVITY FACTOR X=CHECK TOUCH ',
1 'VECTOR PIERCING'
TYPE *,' P=CHECK LINE PIERCING OF FACETS F=CHECK',
1 ' ALL FACETS'
TYPE *,' I=CHANGE FACETS,L=LOOK AT FACETS,N=',
1 'NUMBER FACETS'
TYPE *,' M=COORDS OF POINT J=FACET NUMBERS'
TYPE *,' 0=JOYSTICK OR TRACKBALL'
IRX=0
RETURN
END
SUBROUTINE CTOUR(IS)
C THIS SUBROUTINE DRAWS CONTOURS AROUND THE POLYHEDROM
¢ IN THE X-Y PLANE
¢ (IS) IS ThE NUMBER OF CONTOQURS
DIMENSION NF(4)
COMMON /DMABUF/ IDUM(3100),IFC(200,3),M(100,3)
COMMON /IPTPS/ IANG(100,2)
COMMON /FACT/ IFMAL,NX(30),8A,IPS,NCON,NPOL,ICCN,
1 IVECT,ISUP,IRX
COMMON /DISPL/ ICM,XXD,XYD,XZD,XTD,YXD,YYD,YZD,
1 YTD,ZXD,%ZYD,ZzD,ISHAD,IARM,IWALL,IROLL
MAXZ ==2000
MINZ=2000
C FIND THE MAX AND MIN Z VALUES OF THE POLYHEDRON
DO 10 I=1,IPS
IF(M(I,3) GT MAXZ)MAXZ=M(I,3)
10 IF(M(I,3) LT MINZ)MINZ=M(I,3)
S=FLOAT (MAXZ-MINZ) /FLOAT (IS+1)
DO 20 I=1,IS
I%=MAXZ-I*S ' IZ IS THE GAP BETWEEN CONTOURS
DO 30 J=1,IFMAX
C SEE IF FACET LAYS ACROSS TYE CONTOUR IN QUESTION
432 DO 40 X=1,3
IF(M(IFC(J,K),3) GE IZ AND M(IFC(J,1+MOD(K,3)),
-125-

TYPE *,' TYPE "H" T0 HALT {EYBOARD ROTATIONS'
TYPE *,' C'
TYPE *,' "P" FOR POINT MANIPULATION —-- THEN TYPE!
TYPE *,' N= READ POINTS TO DOT R=RECALL POINT ',
1 'AND LINE DATA'
TYPE *,' TYPE D=DRAW POINTS J=DELETE SPECIFIC POINT'
9

40
50

45

80
90

70

20

1 3) LE IZ)GOTO 50
CONTINUE
GOTO 30
NF(1)=IFC(J,1)
NF(2)=IFC(J,2)
NF(3)=IFC(J,3)
NF(4)=IFC(J,1
D=FLOAT((IZ-M(NF(X),3)))/FLOAT((M(NF(X),
1 3)-M(NF(K+1),3)))
IY1=D* (M (NF(X),2)-M(NF(K+1),2))+M (NF(K),
IX1=D*(M(NF(K),1)-M(NF(K+1),1))+M(NF(K),
CALL MOVI3(IX1,IY1,IZ)
DO 70 K=1
IF(M(NF(X),3) LE IZ AND M(NF(X+1),3) GE IZ)GOTO 80
GOTO 70
D=FLOAT ((IZ-M(NF(X),3)))/FLOAT ((M(NF(LK),
(

2)
1)

1 3)-M(NF(¥+1),3)))
IY2=D*(M(NF(K),2)-M(NF(K+1),2))+M(NF(X),2)
IX2=D*(M(NF(K),1)-M(NF(X+1),1))+M(NF(X),1)
IF(IY? EQ -1900 AND IY2 EQ -1900)GOTO 70

CALL DRWI3(IX2,IY2,IZ)
CONTINUE
CONTINUE
CALL MGSEND
CONTINUE
RETURN
END

-126-

APPENDIX E PROGRAM FOR RASTER DISPLAY OF POLYHEDRON
PROGRAM DRW
C THIS PROGRAM DRAWS A SHADED PICTURE OF A POLYHEDRON
C GIVEN THE 3-D COODINATES OF ALL ITS POINTS AND ITS
C CONNECTIVITY DATA
DIMENSION NF(4),M(100,3),IFC(200,3),NN(200,2)
DIMENSION R1(3),R2(3),IY(3)
INTEGER BUFF1 (200),BUFF2(200),BUFF3(200)
DATA MM1,MM2,MM3/255,255,255/
C INITIALIZE DISPLAY
CALL DSOPN(2,IE)
CALL DSCSL(2,0,0)
CALL DSCER
CALL DSCLR(4095)
15=1
PI=3 1415
C READ DATA FILE
OPEN(UNIT=4,NAME='DL1 [200,214]0 DAT',TYPE ='0LD')
READ (4, *)IPS,IFMAX
DO 400 I=1,IPS
400 READ (4,*)M(I,1),M(1,2),M(L,3)
DO 401 I=1,IFMAY
401 READ (4, *)IFC(I,1),IFC(I,3),IFC(I,2)
CLOSE(UNIT=4,DISPOSE="'SAVE")
IFM=IFMAX
C REJECT ALL FACETS THAT FACE AWAY
DO 402 M4=1,IFM
I=IFM-M4 +1
IF(IFC(I,1) EQ O)GOTO 402
DO 403 J=1,3
R1(J)=M(IFC(I,2),J)-M(IFC(I,1),d)
403 R2(J)=M(IFC(I,3),d)-M(IFC(I,1),d)
QZ=R1 (1)*R2(2)-R1(2)*R2(1)
IF(QZ LT 0)GOTO 402
IFMAX=IFMAX-1
DO 435 J=I,IFM

DO 435 K=1,3
IFC(J,K)=IFC(J+1,K)
435 CONTINUE
402 CONTINUE

C ORDER FACETS SO NEAREST ARE DRAWN LAST
DO 405 J=1,IFMAX
DO 406 I=1,IFMAX-1
IF(IFC(I,1) BQ 0)GOTO 406
M1=MAXO(M(IFC(I,1),3),M(IFC(I,2),3),M(IFC(I,3),3))
M2=MAXO (M (TFC(T+1,1),3),M(IFPC(I+,2),3)
1 M(IFC(I+1,33,3))

’

IF(M1 GT M2)GOTO 406
407 DO 408 K=1,3

N=IFC(I,K)

IFC(I,K)=IFC(I+1,K)
408 IFC(I+1,K)=N

~127-

406 CONTINUE

405 CONTINUE

C DRAW PACETS AS 2 DIMENSIONAL TRIANGLES ON SCREEN
DO 409 I=1,IPS
NN(I,1)=1(I,1)* /25+320

409 NN(I,2)=-M(I,2)*4/25+256
DO 410 I=1,IFMAL

413 IY(J
IY(K)),2) LE NN(IFC(I,IY(K+1)),

IY(K)=IY(K+1)
IY(K+1)=N

412 CONTINUE

411 CONTINUE
IYT:NN(IFCEI,IY(
IYM=NN(IFC(I,IY(
IYB=NN(IFC(I,IY(
IXT=NN(IFC(I,IY(
IXM=NN(IFC(I,IY(
IXB=NN(IFC(I,IY(
IF(IYB EQ IYT)GOT
IF(IYM EQ IYT)GOTO 4
F=FLOAT(IYM-IYT)/FLOAT (IYB-IYT)

440 IX2M=IXT+FLOAT (IXB-IXT) *F
IF(IYB LT 1)GOTO 410
IF(IYT GT 512)GOTO 410
DO 414 J=IYT,IYM
F=FPLOAT(J-IYT) /FLOAT(IYM-IYT)
IX1 =IXT+FLOAT (IXM~IXT)*F
IX2=IXT+FLOAT (IX2M-IXT)*F
CALL TRI(IX1,IX2,J,I)

414 CONTINUE

441 IF(IYB EQ IYM)GOTO 410
DO 415 J=IYM,IYB
F=FLOAT (J-IYMM) /FLOAT (IYB-IYM)
IX1=IXM+FLOAT (IXB-IXM)+*F
IX2=IX2M+FLOAT (IXB-IX2M) *F
CALL TRI(IX1,IX2,J,I)

1)),2
2)),2
3)),2
1)),1
2)),1
3)),1
0 41
4

415 CONTINUE

410 CONTINUE

C READ DATA FROM TRACKBALL

1 CALL TBALL(IXX,IYY,IZ)

IF(IXX EQ O AND IYY EQ O AND IZ EQ 0)GOTO 1
IAX=TAX+IXX*TS
IAY=TAY+IYY*TS
IF(IZ EQ 1)GOTO 1
IF(IZ EQ 0)GOTO 436
IF(IZ EQ IZ2)GOTO 1 ,
l 8

IF(IZ NE 3)GOTO 437
TYPE *,'INPUT BACKGROUND BLUE-GREEN-RED SHADES,
1 0-255"'
ACCEPT *,M1,M2,M3
CALL DSLLU(1024,11,1024,M1)
CALL DSLLU(2048,M2,2048,M2)
CALL DSLLU(3072,M3,3072,113)
437 IF(IZ NE 6)GOTO 438
TYPE *,'INPUT OBJECT BLUE-GREEN-RED SHADES,0-255'
ACCEPT *,MM1,MM2,MM3

4738 IF(IZ EQ 7)CALL EXIT
C CALCULATE SHADES FOR ALL TRIANGLES
436 AX=FLOAT (IAX)*PI /180
AY=FLOAT(IAY)*PI /180
172=12

SX=SIN(AX)
SY=COS (AX) *SIN(AY)
SZ=-C0S (AX)*COS(AY)
DO 422 I=1,IFMAX
IF(IFC(I,1) EQ 0)GOTO 422
R1(J)=M(IFC(I,2),J)-M(IFC(I,1),d)
423 R2(J)=M(IFC(I,3),J)-M(IFC(I,1),d)
QX=R1 (2) *R2 (3)=R1 (3) *R2(2)
QY=R1(3)*R2(1)-R1(1)*R2(3)
QzZ=R1 (1)*R2(2)-R1(2)*R2(1)
DLEN=SQRT (QX*QX+QY*QY+QZ*QZ)
DENS= (QX*SX+QY*SY+QZ *SZ) /DLEN
IF(DENS LT O)DENS=0
BUFF (I)=DENS*FLOAT (MM1)
BUFF2(I)=DENS*FLOAT (MM2)
BUFF3(I)=DENS*FLOAT (MM3)
422 CONTINUE
C SEND SHADES TO DISPLAY
CALL DSIWT (1025, IFMAX,BUF?1)
CALL DSLWT (2049, IFMAX, BUFF2)
CALL DSLWT (3073, IFMAX,BUFF3)
GOTO 1
END
SUBROUTINE TRI(IX1,IX2,J,I)
¢ THIS SUBROUTINE DRAWS THE ACTUAL LINES ON THE SCRIEN
IF(J GT 512)RETURN
IF(J LT 1)RETURN
IF(IX1 GT 640)IX1=640
IF(IX2 GT 640)IX2=640
IF(IX1 LT 1)IX1=1
IF(IX2 LT 1)IX2=1
IF(ABS(IX1-IX2) LT 1)RETURN
CALL DSVEC(IX1,d,IX2,d,I)
RETURN
END

=129~

