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ABSTRACT

THE KINETICS OF THE DEACTIVATION OF A NICKEL CATALYST

DURING THE HYDROGENATION OF CYCLOPROPANE

by

Edward M. Norin

Submitted to the Department of Chemical Engineering
on January 22, 1968, in partial fulfillment of the

requirements for the degree of Master of Science.

An experimental investigation into the kinetics of the deactiva-
tion of a nickel catalyst during the hydrogenation of cyclopropane was
conducted. Information on the recoverability, the kinetics, and the
theoretical significance of this deactivation is considered to be need-
ed to facilitate other basic studies with this reaction system.

The reaction was carried out in an isothermal continuous flow
reactor at near atmospheric pressure. Hydrogen and cyclopropane
were mixed, diluted witI helium up to a total flow rate of 1000 ml/min.
and reacted over 1. 64 m of nickel powder catalyst. The reaction
products were analyzed by an on line gas chromatograph equipped with
a hydrogen flame ionization detector.

Between each run, the catalyst was reactivated by heating first
under high vacuum and then with flowing hydrogen. After deactivation,
it was found that the activity of the nickel catalyst was completely
recoverable by reactivating at temperatures above 3500 C. From this
it was concluded that the deactivation was due to the formation of a
carbonaceous residue on the catalyst surface.

A study of the hydrogenation kinetics resulted in the following
analytic expression for the rate of formation of cyclopropane:

-rcp = k exp(-1 3 . 8 kcal/gm mole) (CP) 0 4(H 2) -0 6 (A-1)

This is in good agreement with previously reported kinetic data.

Studies of the deactivation kinetics showed that the rate of
deactivation increased exponentially with increasing temperature. It
was also found that, at 650 C, the rate of deactivation was essentially
zero with a 300% excess of hydrogen in the reactant stream; increased
linearly with the ratio of the partial pressure of cyclopropane to hydro-
gen up to a maximum value at the ratio at which there was no excess
of either reactant; and then fell to a value of about half the maximum
when there was a 25% excess of cyclopropane in the reactant stream.
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It was finally found that the rate of deactivation, during any run, was
constant over long times after an initial break-in period. From this
it was concluded that the concentration of carbonaceous deposits
increases linearly with time, independent of the amount of active
surface remaining.
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Title: Assistant Professor of Chemical Engineering
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I. Summary

A. Experimental Objectives

Within the last decade, a need has arisen for information regard-

ing the kinetics of the deactivation of a nickel catalyst during the

hydrogenation of cyclopropane. This deactivation has made informa-

tive comparison of different investigations involving this reaction

very difficult due to different methods used to interpret the data.

Future planned work on the hydrogen-cyclopropane-nickel system has

made the need for deactivation information critical. It is the basic

object of this report to obtain this needed information.

The required information fell into three categories:

1) The conditions, if any, for completely reactivating the

catalyst;

2) Determining the temperature and reactant concentration

dependencies of the rate of deactivation;

3) Formulating a model that can explain the observed results

B. Apparatus and Procedure

In this investigation, purified hydrogen was mixed with cyclo-

propane and diluted with helium until the total flow rate was 1000ml/

min. This final mixture was reacted over 1. 64 m2 of finely divided

nickel powder catalyst at atmospheric pressure. The catalyst was

supported by a glass fit in a 3/8 inch diameter glass tube. The

reactor temperature was controlled by a thermostated oil bath. The

incoming gases were preheated by looping through a foot of one-quarter

inch glass tubing submerged in the oil bath. The gases then flowed

downward through the catalyst bed and into the chromatograph.

All incoming gas streams were regulated both by pressure

_ I____ ~ __I I _I_ Y~____ll~
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regulators on the supply tank and needle valves in the manifold

system. The flow rates were calibrated with a soap-film flow meter.

The effluent stream from the reactor was analyzed by means

of a Model 700, F & M Scientific Corporation Gas Chromatograph

equipped with a dual flame, hydrogen ionization detector and the

appropriate electronics. Reaction product samples were injected into

the chromatograph with an on-line gas sampling valve. The output of

the chromatograph electrometer was tied into a Microcord 44 recorder.

The reactor system could be evacuated for catalyst reactivation

purposes. A vacuum was drawn by means of a roughing pump in

series with an oil diffusion pump and a liquid nitrogen cold trap.
-4

Pressures below 10-4 torr were reached.

An experimental run was initiated, after establishment of

temperature equilibrium, by starting the flow of cyclopropane into the

hydrogen-helium mixture. The effluent stream composition was

periodically measured for between one and two hours. At this point

the reaction was stopped and the catalyst reactivated. In reactivation,

the catalyst was first evacuated at 400 C for four hours to remove any

volatile material adsorbed on the catalyst surfaces. Then at the same

temperature, hydrogen was allowed to flow over the catalyst to remove

any organic deposits. The hydrogen flow was continued overnight after

which a new run could be conducted. If the catalyst was not immediately

used, it would be stored under a positive hydrogen pressure to prevent

leaks into the system.

C. Results

The reversibility of the deactivation was first studied. It was

found that the catalytic activity of the sample could be completely
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restored using a combination of high vacuum, flowing hydrogen, and

high temperature. The same level of activity resulted on reactivation

at any temperature above 360 0 C, but below 360 0 C, activity of the

treated catalysts fell off sharply.

By both varying reaction temperature and reactant stream

composition independently of one another, it was possible to determine

the kinetics for the disappearance of cyclopropane. This resulted in

the analytic expression:

-rCP = k0 exp(-1 3 . 8 kcal/gm mole)(CP) 0.4(H2)- 0 6 (A-l)

This is in good agreement with previously reported kinetic data(20),

(21Z), (13).

The temperature, pressure, and concentration dependence of

deactivation was next determined. It was found that the rate of

deactivation increased exponentially with increasing temperature. It

was also found that the rate of deactivation increased linearly with

increasing ratio of cyclopropane partial pressure to hydrogen partial

pressure, up to the ratio at which there were no excess of either

reactants. The equilibrium rate of deactivation was essentially zero

at 650 C with a 300% excess of hydrogen in the reactant stream; and

reached a maximum value at the above mentioned upper limit. It was

finally observed that during any run, the rate of deactivation was

constant over long times after an initial break-in period.

D. Conclusions and Recommendations

It is concluded that the observed catalytic deactivation is com-

pletely reversible on treatment of the catalyst with high vacuum

followed by flowing hydrogen at temperatures above 3600 C. It was

I ·_
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also concluded that the rate of deactivation could be correlated as a

function of the ratio of cyclopropane partial pressure to hydrogen

partial pressure. It was recommended that more work be done on this

correlation at ratios at and above that which produce no excess reactants.

It was further concluded that the concentration of carbonaceous

deposits increases linearly with time, independent of the amount of

active surface area. It was recommended that this conclusion be

further tested by allowing the reaction to proceed until the catalyst

activity reaches zero or levels off.

_ · II _ __ i
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II. Introduction

A. Purpose

Within the last decade, there have appeared many studies of the

catalytic hydrogenation of cyclopropane with the purpose of gaining

fundamental knowledge about reactions, molecular structure, and

sorption, rather than the purpose of collecting kinetic data for design

work. In these studies, the accurate measurement of the specific

catalyst activity has become necessary for meaningful interpretation

of the data. Previous investigators, using this reaction as a tool to

solve problems of a fundamental nature, have been hampered by the

fact that the specific catalytic activity decreased with time. This

deactivation has made informative comparison of different investiga-

tions very difficult.

Several different methods have been attempted to solve the

problem of interpreting data with a deactivating catalyst. These

include bracketing each rate measurement by a measurement under

standard conditions, and then normalizing the results; applying long,

many stepped pretreatment between each measurement and then have

assumed that the catalyst has been regenerated to the same level of

activity; running a series of identical runs and then extrapolating

back to zero time; employing an elaborate statistical analysis of the

data; and finally, trying to work under conditions where the deactiva-

tion process is slow compared to the length of their runs.

The best way to analyze data under the above circumstances

would be to obtain the kinetics of the deactivation process, so as to

enable reporting all measurements in terms of the catalyst's intrinsic

activity. Desirable as this information would be, no previous investi-
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gator has obtained it. Since the frequent use of the hydrogen-

cyclopropane-nickel system justifies obtaining this data, such work

was carried out in this thesis. It was the general purpose of this

thesis to procure the kinetic expression for the deactivation of a

nickel catalyst during the hydrogenation of cyclopropane under

various conditions of temperature, reactant concentration ratios,

and pretreatments. As a side study, the ability to regenerate the

catalyst was also studied.

B. Results of Previous Works

1. Observed Deactivation

Many previous investigators have studied the hydrogenation of

cyclopropane on nickel and other similar systems. Many investiga-

tors observed continuous deactivation of the catalyst and postulated

mechanisms for poisoning. In fact, all the previous investigators

reviewed, except for one (13), have reported deactivation to one

degree or another.

The works of J. H. Sinfelt, et. al. (18), (20), (21), (24) were

made in a flow reactor system very similar to the one used in this

investigation. The first work reported by the group (19) was the

hydrogenolysis of ethane over supported platinum. Decline in

activity of 10 to 20% during any one run and large cumulative activity

declines over extended periods of time were observed. In that study,

as in later works (20), (21), (24), this catalyst deactivation was

corrected by a bracketing technique. This involved making runs at

a standard condition between the desired runs, and then dividing the

rates by the average rate at standard conditions. This allows the

comparison of different measurements on the same or similar
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catalysts if the deactivation is close to linear and the reaction

mechanism is constant with time and temperature. These assump-

tions hold when working under conditions of moderate variations in

catalyst activity (23). However, this method cannot be used to com-

pare measurements on different catalysts and does not yield the

absolute activity required for many purposes.

Many other authors discussed the deactivation problem. Schuit

and van Reijen (18) used an elaborate statistical analysis of their

kinetic data on ethylene hydrogenation which only produced data of

"doubtful utility" (24).

Benson and Kwan (3), who hydrogenated cyclopropane over a

supported nickel catalyst, reported a slow poisoning of the catalyst

during runs. To make all runs at the same conditions, they cleaned

the catalyst surface with hydrogen at 350 0 C for one hour; followed by

evacuation of the catalyst for one-half hour at the reaction tempera-

ture between each run.

Bond and Sheridan (5) hydrogenated cyclopropane at 160-180 0 C,

a temperature considerably higher than that used by most investigators.

They reported that deactivation of nickel occurred, but at rates

sufficiently slow for reliable data to be obtained.

Douglas McKee investigated the hydrogen- cyclopropane system

over platinum balck catalyst. He found a carbonaceous residue, which

he calculated by material balances to be of approximate composition

CH 1. 1 on the surface. He was able to remove this residue only by

reducing the catalyst in flowing hydrogen at 150 0 C or above for at

least two hours. He reported that this residue poisoned the metal

surface and caused by-products to occur in the gas phase.
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2. Postulated Mechanisms

The mechanism of the hydrogen-cyclopropane reaction has

been developed from several studies (1), (6), (15), (22) and has

recently been summarized (12). It has been found that in the presence

of hydrogen and transition metal catalysts, cyclopropane undergoes

five reactions:

1. Hydrogenation

cy-C 3H 6 +H 2 = C 3 H8

2. Hydrogenolysis

cy-C 3H 6 + 2H 2 = CH 6 + CH 4

3. Cracking

cy-C 3 H 6 = C3 H 6 + C2 H 6 + CH 4
+ (CH 1 . l)x

4. Isomerization

cy-C 3 H 6 = CH 3 -CH=CH 2

5. Polymerization

cy-C 3 H 6 = (CH2-CH2-CH
2 )n

Under the reaction conditions used in this investigation, the

hydrogenation and hydrogenolysis reactions will be the main reactions.

Also of interest in this study will be the cracking reaction which lays

down a deposit upon the catalyst surface and causes deactivation.

The nonstoichiometric cracking reaction takes place on most

transition metals. It has even been observed during chemisorption

of pure cyclopropane on nickel films (13). McKee (15) found that the

reaction was no longer measurable above a hydrogen pressure of

25 mm of mercury on a platinum black catalyst, but the effect of

hydrogen partial pressure over a nickel catalyst had not been investi-

gated.

The reaction mechanism, after the cyclopropane has been
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chemisorbed on the nickel surface, is probably the following:

CH 2  1 2S\ 1 3- C2 CH3 C•- +
CH CH II I2 2 CH 2  CH

4 4
10 5

H2 --C -CH-C 2 H (g)

H 2
H CH3C. 2CH

H2 CC H 2g

CH., CH3CH2CH3(g ) "

CH (CH. l)x
*x

chemisorbed hydro-
gens not shown

7
2CH 3 ---7 2CH 4(g)
II

Reaction 1 is a cracking reaction where the two point adsorbed

cyclopropane split into one and two carbon fragments. If the two

carbon fragment loses a hydrogen atom, a double bonded radical

occurs which could then polymerize and from the observed coke

(reactions 2 and 9).

As seen by reactions 3 and 4, the two carbon fragments could

also go to methane or ethane gas which are observed products of the

reaction system.

3. Poisons

Cambell and Thomson (8) showed that mercury vapor is a

poison for hydrogen- cyclopropane reactions. Their conclusion was

that mercury displaces hydrogen from the catalyst surface, inhibiting

the reaction. Because mercury is a poison, only oil diffusion pumps

were used.

Oxygen has also been found to be a poison for this system.
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Knor, et. al. (13), reported that the preadsorption of oxygen on a

nickel film decreases the rate of hydrogenation approximately to the

same degree as it decreases the extent of hydrogen chemisorption.

Care has been taken to keep all oxygen out of the system.

C. Method of Investigation

The main part of the investigation was the determination of the

kinetics for the deactivation of the catalyst. The reaction was

carried out in a flow reactor which contained a nickel powder catalyst.

The catalyst was regenerated before every run. During the run, the

reaction was monitored so that the rate of hydrogenation of cyclopro-

pane could be determined as a function of time.

A secondary study of the regeneration process was also made.

Time, temperature, and hydrogen flow rate were varied, starting

from the most severe conditions, until the catalyst no longer reached

its former level of initial activity.
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III. Experimental Apparatus and Procedure

Research grade hydrogen and cyclopropane were diluted with

helium, preheated, and reacted over a nickel powder catalyst in a

thermostated, differential, continuous flow reactor. The reaction

products were then analyzed with a gas chromatograph equipped with

a flame ionization detector. All the gas streams for both the reaction

and the gas chromatograph were controlled by one central manifold

board. A standard catalyst preparation and chromatograph standard-

ization were carried out before each experimental run.

A. Reagents and Catalyst

The "ultra Pure" grade of hydrogen was purchased from the

Matheson Company, Inc., East Rutherford, New Jersey, and was

further purified with a Deoxo® Gas Purifier from Engelhard Industries,

Inc. and with molecular sieve desiccants. These purifiers are

claimed by their manufacturers to lower the oxygen and water vapor

concentrations to less than one part per million.

Cyclopropane of 99. 6% purity was also purchased from the

Matheson Company.General laboratory grades of hydrogen and helium

were obtained from MIT laboratory supplies. These three gases were

used without further purification.

A standard gas mixture for use in standardization of the gas

chromatograph was obtained from the Matheson Company, Inc. Their

analysis, done by their Morton, Georgia, laboratory was recorded in

Appendix A-1. Natural gas was also used for standardization. A

laboratory analysis, by the Boston Gas Company, of the mixture used

can also be found in Appendix A-1.
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An International Nickel Company, New York, N. Y., Mond

Nickel Powder - Grade 255 was used as a catalyst. This powder was

composed of irregularly shaped particles averaging between 2. 6 and

3. 4 microns in size. It had a porosity of between 85-90% as measured

in Appendix B-8. Five and one-half grams of this catalyst was used

2
giving a BET measured surface area of 1. 5 meters .

B. Reactor and Bath

The catalyst was supported on a glass frit in a thin walled glass

reactor tube (Fig. 6). The reactor was 3. 5 inches high with an

0. 5 inch outside diameter. The reactor was placed vertically with

the gases entering from the top. A thermocouple junction was taped

to the outer edge to record temperature.

The reactor was placed in a well-insulated Nujall bath (Fig. 2

and 5). The bath was agitated by a large magnetic stirrer. Tempera-

ture in the bath was controlled by a YSI Thermistemp® Model 71

temperature controller. Cooling water was allowed to flow continuous-

ly through a copper coil in the bath. One 250 watt infrared, immersion

heater was operated continuously while a second was activated by the

Thermistemp.

Before entering the reactor, the gases were preheated and

mixed by passing through a 21 inch loop of glass tubing submerged in

the oil bath. This preheated the gases to within 1oC of the bath

temperature.

C. Manifold System

All the gas cylinders were connected directly to one central

control panel (Fig. 1 and 4). The gas flow rates were controlled by
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means of micrometer-dialed needle valves which were set before

each run with a soap film flow meter. In order that the flow rates be

independent of small changes in down stream pressure drops, stainless

steel capillary tubes were placed in the manifold system. It was

determined that the flow rates were independent of each other; of the

down stream resistances caused by the hydrogen purifying system;

and of flow through the side stream feeding the gas chromatograph.

The manifold system was also connected up to the vacuum system.

During the initial activation of the catalyst and during all subsequent

reactivations, a high vacuum was needed. To obtain this vacuum, a

roughing pump, an oil diffusion pump, and a liquid nitrogen cold trap

were connected in series. An oil diffusion pump was used instead of

the more efficient mercury pumps, because mercury is a catalyst

poison.

The oil diffusion pump was a Consolidated Vacuum Corporation

(Rochester, New York) type G-4 that was supplied with Octoil pump

fluid. The vacuum, as measured with a type 518, NRC Equipment
-5

Corporation ionization gauge, was less than 5 x 10-5 torr.

D. Chromatograph and Recorder

The effluent stream from the reactor was analyzed for all

reaction products and also for cyclopropane. The analysis system

was composed of an on-line gas chromatograph with associated

electronics and a strip chart recorder (Fig. 4). The gas chromato-

graph was placed on-line with a gas sampling valve (Model GV-10,

F & M Scientific Corporation, Avondale, Penna.). These valves

provided a convenient method of introducing reproducable amounts of

sample into the chromatograph. The valve was designed to operate
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without leaks at pressures more than two and a half times greater than

used. Details of the operation of this valve will be found in Appendix

A-3.

The analysis of reactor product stream samples was done on a

laboratory gas-liquid chromatograph (700 Series, F & M Scientific

Corporation) that was fitted with a dual flame, ionization detector and

the appropriate electronics. The column used was a 30 foot one-

quarter inch stainless steel tubing packed with 20% dimethylsufolane

on 60-80 mesh chromosorb W.

The separated gases from the column were then burned in a

flame ionization detector. A description of this detector may be found

in Appendix A-4 and Reference 9 presents a more detailed analysis of

the subject.

The electric signal produced by the detector was attenuated and

balanced against background noise by an F & M Model 700 Electrometer

(See Appendix A-2 for details of operation). From the electrometer, the

signal was sent into a Microcord 44 (Photovolt Corporation, New York,

N. Y.) self balancing, potentiometric strip recorder. During operation

the recorder was set at full scale equal to one millivolt, and at a chart

speed of two inches per minute.

E. Reactivation Procedure

After a kinetic run, the catalyst activity was generally much

lower than its original activity. However, this activity could be

completely restored by the reactivation procedure. The sixteen hour

reactivation process was accomplished overnight.

The first step of reactivation was heating the sample under a high

vacuum. With all flows turned off, the oil bath was removed from the

reactor, and the reactor was wound with heating tape. The vacuum was
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turned on as the temperature was allowed to rise to 400 ± 100 C. This

was continued for four hours.

After heating in high vacuum to remove all gaseous adsorption

products, the catalyst was heated under flowing hydrogen to remove

carbonaceous deposits. The hydrogen flow was set at 50-70 cc/min

and was held at 400 0 C for 10 to 16 hours. After this time, the catalyst

was cooled in flowing hydrogen. At this point, it was concluded that the

catalyst was fully reactivated. If the catalyst was not to be used

immediately, it was stored under a positive pressure of 20 psig of

hydrogen to assure against leaks into the system.

F. Kinetic Data Collecting Procedure

The experimental procedure began by cooling the freshly

reactivated catalyst sample and placing the reactor in the oil bath.

While the bath was equilibrating at the desired reaction temperature,

the gas flow rates were set with a soap film flow meter, and then a

blank was run through the analysis system.

When the desired temperature was reached, the hydrogen and

helium flows were started. The reaction was started when the cyclo-

propane was mixed with the hydrogen. Samplings were then taken at

regular intervals - every four minutes at the start of a run and every

fifteen minutes near the end of the run. After enough data was taken

(ninety to one hundred-fifty minutes), the hydrogen and cyclopropane

flows were closed and the system was purged with helium. This purge

was analyzed for catalyst desorption products. Finally the reaction

rates were calculated for each sample taken.

G. Chromatograph Standardization Procedure

Although the output from a flame ionization detector was reported
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to be linear (9), such an assumption did not produce the required

accuracy. Chromatograph standardization was based upon the fact that

at constant detector temperature and constant carrier gas flow rate,

the ratio of the electrical outputs from each component remained

constant. The mathematics behind this standardization technique is

worked out in detail in Appendix B-i and B-2. The equipment was

standardized on three different occasions. Results of these standardi-

zations are shown in Table III.
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IV. Results

A. Hydrogenation Kinetics

The temperature and concentration dependence of the hydrogena-

tion reaction kinetics were determined on catalysts activated at

400 ±10 0 C. The reaction rates were measured for temperatures of

550, 75 , and 900C at a concentration of 0. 03 atm. of CP, 0. 09 atm.

of hydrogen, and 0. 88 atm. helium. These results are summarized

in Figs. 8 and 9.

Determination of the concentration dependence of the rate of

disappearance of cyclopropane was done at 650 C. The work was done

in two parts. As summarized in Fig. 10, the concentration of CP

was held constant at 0. 04 atm. while the hydrogen concentration was

varied between 0. 04 and 0. 20 atm. As the partial pressure of hydrogen

increased, the initial rate of reaction decreased.

Next the hydrogen concentration was held constant at 0. 09 atm.

and the CP flow rate was varied from between 0. 015 to 0. 060 atm.

As seen in Fig. 11, as the partial pressure of CP increased, the

initial rate of reaction - as determined by extrapolating the linear

portion of the curves back to time equals zero - increased.

B. Deactivation Kinetics

The effects of temperature and concentration of reactants upon

the rate of deactivation of the nickel catalyst were measured. It was

noted that the reaction rate versus time curves became linear at long

times. The slope of this linear portion was defined as the rate of

deactivation. For ease of comparison, all such data were fitted by

the best straight line visually determinable.

The same runs that were used to study the effect of temperature
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on hydrogenation kinetics were used for a similar study of deactivation

kinetics. The resulting rates of deactivation from Figs. 8, 9, and 12

are summarized in Table I which is in Section V-B. 2. It can be seen

that as temperature increases, the rate of deactivation also increases.

In order to discover the effect of cyclopropane and hydrogen con-

centration upon the rate of deactivation of the nickel catalyst, three

different sequences of runs were performed. This was done so that

the effect of varying each component separately plus the effect of

varying both components together could be observed. All of these runs

were carried out at a reaction temperature of 65 0 C.

The results of the first two sequences - constant hydrogen

concentration and constant cyclopropane concentration - are summari-

zed in Figs. 10 and 11 which have previously been discussed in Section

IV-A. In both sequences, increa sing the ratio of hydrogen to cyclopro-

pane generally decreased the rate of deactivation. The exception being

the run at equal hydrogen and cyclopropane concentrations.

In the third sequence, as shown in Fig. 12, the ratio of cyclopro-

pane to hydrogen was held constant at one-third, and the actual

amounts of each were allowed to vary. The variation in the rate of

deactivation was small and the curves were hard to fit by straight

lines at long times. For these reasons, no quantitative conclusions

were drawn from this data.

C. Catalyst Reactivation

A study was performed to determine at what temperature the

catalyst could be fully activated. This work was done at a reaction

temperature of 65 0 C, a cyclopropane flow rate of 40 cc/min and a

hydrogen flow rate of 120 cc/min. Catalysts were reactivated at
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temperatures of 2900, 3100, 3600, and 400 0 C. The run at 290 0 C

was stopped after 30 minutes due to equipment problems, leaving

its validity in question. The results of all four runs are shown in

Fig. 12a.
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V. Discussion of Results

Before starting the detailed discussion of results, the shape

of the reaction rate versus time curves will be noted and various

quantities will be defined.

The observed shape of the reaction rate versus time curves

(i. e., Figs. 7-12) is that of an initial rise, a maximum, and finally

a relatively linear decrease. The slope of this linear portion was

defined as the rate of deactivation in units of 10- 7 moles/second/m2

minute. These units are not in general included with the results

since only the relative rates were important.

At this point it becomes advantageous to define the quantity R,

which is the ratio of the partial pressure of cyclopropane and of hydro-

gen. For this investigation, R is equal to the flow rate of cyclopropane

divided by the flow rate of hydrogen. It is this quantity that was most

successfully correlated with the rate of deactivation.

A. Hydrogenation Kinetics

As noted in the introduction, other investigators have worked on

similar systems. It was felt that a qualitative comparison of results

from this study to the results from previous studies would be appro-

priate. This comparison was used to show the reliability of the

results obtained.

The apparent activation energy was first determined. This was

done at reactant concentrations that gave low rates of deactivation for

all but the highest temperatures, i. e., cyclopropane concentration of

0. 03 atm. and a hydrogen concentration of 0. 09 atm. These concen-

trations were held constant as reaction temperature was varied

between 550 and 900C as shown in Figs. 8 and 9. The logarithm of
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the rate at 70 minutes of reaction time was plotted versus the recipro-

cal of the reaction temperature in Fig. 13. From the slope of the

resulting straight line, the apparent activation energy is 13. 8 kcal/gm

mole. This value compares well with a range of 13. 0 - 15. 2 kcal/gm

mole obtained by J. H. Sinfelt, et. al. (20), (21) for various types of

supported nickel catalysts.

By extrapolation, kinetic data for the hydrogenation of cyclo-

propane is commonly reported at 0 0 C. Thus for comparative purposes,

some of the reaction rates determined in this investigation were

referred to the above temperature. This was done by assuming that

the apparent activation energy was independent of temperature down

to 00 C. Although this assumption is probably. in error, the error is

small and also the same assumption has been used by all other investi-

gators for comparison purposes.

Sinfelt, et. al. (20), (21) reported rates of reaction of between

3. 5 - 250 x 10-10 moles/sec/m2 referred to 0 0C, at a hydrogen partial

pressure of 0. 20 atm., and at a cyclopropane partial pressure of

0. 03 atm. These rates were determined on various supported nickel

catalysts. On the pure nickel powder used in the present investigation,

it was found that the rate under similar conditions to those described

above, the reaction rate is 6. 1 x 10- 1 0 moles/sec/m 2

Knor, Ponec, et. al. (13) have carried out the hydrogenation of

cyclopropane on a nickel powder catalyst similar to the one used in

this investigation. They reported a rate of 3.0 x 10- 10 moles/sec/m 2

for an equal mixture of cyclopropane and hydrogen referred to 0 0 C.

The comparison value found in the present investigation is 14.0 x 1010

2
moles/sec/m 2 . The factor of five difference in these values may be

due to differences in experimental procedure. Knor, Ponec, et. al.
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made their measurements in a static reactor at a total pressure of

1. 2 - 1. 5 mm of Hg, whereas in the present investigation, measure-

ments were taken in a flow reactor at a total pressure of 1 atmosphere.

A final comparison with the works of other investigators was

made on the reaction order of hydrogen and cyclopropane in the

overall rate expression. In general, the reaction orders have been

found to go from zero in cyclopropane and minus one in hydrogen at

temperatures around 0 0 C to an order to one in cyclopropane and zero

in hydrogen at temperatures above 150 0 C.

In the present study, the cyclopropane order was 0. 4 and the

hydrogen order was -0. 6 at 65 0 C. These reaction orders were

estimated from figures 8 and 9. These orders are in very good

agreement with those previously observed.

It is seen that good comparisons with the results of previous

investigators were found for cyclopropane hydrogenation kinetics data.

Thus, it is concluded that the methods and apparatus used in this

investigation work well for this system and that the data obtained are

reliable.
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B. Deactivation Kinetics

1. Correlation with R

In Fig. 14, the relative rate of deactivation was plotted as a

function of R. Also plotted was the R corresponding to a mixture of

hydrogen arid cyclopropane which would yield no excess reactant.

This mixture is defined as the stoichiometric mixture. Since the

ratio of hydrogenation to hydrogenolysis varied between 3:1 and 4:1,

the stoichiometric mixture fell in a range of 0. 80 to 0. 83. The runs

plotted in Fig. 14 are those found in Figs. 10 and 11. All runs were

made at 65 0C on a catalyst that had been reactivated at 4000C.

In Fig. 14, the five data points with R's less than the above

defined stoichiometric mixture form a straight line of positive slope.

Thus as the ratio of cyclopropane to hydrogen increases, the rate of

deactivation increases linearly up to the stoichiometric ratio.

The single point corresponding to an R greater than the

stoichiometric mixture falls below the line formed by the other data

points. It seems probably that the maximum rate of deactivation

lies near this concentration, although more data at high R's is needed

to confirm this conclusion.

2. Temperature and Pressure Dependences of Deactivation

From Figs. 8, 9, and 12, rates of deactivation were determined

for an R of one-third and at reaction temperature of 550, 650, 750

and 900 C. These rates of deactivation, shown in Table I, clearly

show a dependence on temperature - the rate of deactivation increases

with increasing temperature.



46.

+ - 4, 1-4 t -- * " 1

-1 ___-
r-p-t--- :ri'vp '-'-·--'r'- 2 rit·rrttt 2< 4

1-!.!.! 1'..c--- t
4. . .4·-!r--i -. ~-.- ,,-.... ,..,.. .. ,,..,.,..,.,,·~ - · '-~~ - ~~ --~:': Irr -:rr:- -'-1::': 11: l

-A . .. 4. ... ..

4~~~~ he=7v.th~al _
~ e-e-f '66

L ~eitiA e p. ___ -____

-A.44t ' .T ~ -. ~-4-...4~-

::1M ti221

.=1 133--L

Z=-

4-t-
-+;4

$4t:11--Y,,m

i-I
+-

1 -4 +

* , I,

-i-

4-.

i-nj ~o

-4-.-,-- 4

-'-4-.,-..

'-4--
4,.,.

4

1 r 4

I- -1 71. + I-I Tl12

44 -44
i-ctt

41 4ý -

'1FIG LR Et, T- .

.0 1t -·±4-.--i --- -1t

±' "iii;

-.2-.

-.34 4-' -t^·-- -i

W -- Fl :J!CP 1 " ·- ·
-- -- i~ t---i --ji .-- -~t~24iii Ili. c,- ,.

[44

4-42-t,-i ~ýt- ted

411

t*

L42l

-T-0

T1¾:

4#4~

-44, -4--

TLt
-H

~-4i

44 '

4 ~ 1

-44

4 4 -4 4 4,

1+I---17 I 44-

--

;



47.

TABLE I

DEPENDENCE OF RATE QF DEACTIVATION ON

REACTION TEMPERATURE

Temp. (0C) Rate of Deactivation
550 1. 1

650 1. 8
750 2. 1

900 2.8

The dependence of reaction rate on the total reactant partial

pressure was also investigated. Runs were made at 65 C and at an

R equal to one-third. In one run, the reactant partial pressures

were:

cyclopropane = 0.04 atm.

hydrogen = 0. 12 atm.

and in the other run, the corresponding partial pressures were:

cyclopropane = 0.05 atm.

hydrogen = 0. 15 atm.

In both cases, the total pressure was held at one atmosphere by use

of helium.

The two above described runs are plotted together in Fig. 12.

The amount of scatter is such that no quantitative conclusions can be

made on the rates of deactivation. It is observed that the shapes of

both curves are quite similar with the 0. 04/0. 12 curve lying above

the 0. 05/0. 15 curve. This was as expected since the negative hydro-

gen order, -0. 6, is greater than the positive cyclopropane order, 0. 4.

An equal increase in both reactants thus tends to lower the reaction

rate.

---- P~-~C~C=P-P.~
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3. Catalyst Break-in Period

It was earlier observed that the catalyst has initially a very low

activity, rises steeply through a maximum, and finally begins a

linear deactivation. The time required until the catalyst reaches

thislinear deactivation was called the catalyst break-in period. This

period was usually between 40 and 50 minutes long, but was as low

as 20 minutes for runs with very slow rates of deactivation. It was

not possible to correlate the catalyst break-in period to either tempera-

ture or composition. Also the cause of this break-in period was not

determined.

4. Mechanism

Griffith and Marsh (11a)have called the type of deactivation

observed in this investigation fouling. They apply this term to the

formation of carbonaceous deposits on catalysts used for reaction

involving organic molecules. Fouling is normally the result of

polymerization and is gummy. The characteristic properties of

fouling is its reversibility - it can usually be totally removed by

combustion.

Since it was found in this work that cleaning the catalyst

surface with flowing hydrogen at high temperatures completely

restored the catalyst activity, it was concluded that fouling was the

cause of deactivation. McKee, who investigated the hydrogen-cyclo-

propane system over platinum black catalysts, determined the com-

position of this carbonaceous residue to be approximately CH1.1 (15).

A similar composition would be expected on the nickel catalyst used

in this work.

Since fouling proceeds by covering the surface of the catalyst

-- I - --- -.-----PZ- ~---
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with a carbonaceous deposit and thus effectively lowering the amount

of active catalyst surface, it was expected that both the rate of coke

formation would be inversely proprotional to the coke concentration,

C, as found by Voorhies (22a) and others. This can be expressed

mathematically as

dC K (5)

Integrating between C = 0, t = 0 and C = C, t = t yields:

C = /•2-Kt (6)

Since the activity for hydrogenation is proportional to the reciprocal

of the coke concentration, it follows that the activity for hydrogenation

(and hydrogenolysis) is proportional to (time)- 1/2 - i. e.

-rCp a 1i//r- (7)

The actual results found did not show the relationship predicted

from Equation 7. As shown in Figs. 10 and 11, the catalyst activity

for hydrogenation and hydrogenolysis was directly proportional to the

first power of time for periods of over an hour. The linear deactiva-

tion was best described by an equation of the form:

-rCp = -mt + b (8)

It was then concluded that only a reaction rate of polymeriza-

tion, independent of active surface area could account for the observed

time dependency of the catalytic activity. This was determined by

first noting that at constant reactant concentration, the overall reaction'

rate, -rCp, was equal to:

-r - d(Cp) = KlA (9)Cp dt

~____ _ _; _?/__ __ C_



50.

where K 1 = a constant (moles/time/area)

A = initial surface area

e = fraction of the surface available for reaction

Differentiating equation 9 with respect to time yields,

drcp dO
= - KA

dt dt
(10)

But from the observed results as expressed in Equation 8, it can be

seen that:

drCp = K

dt
(11)

where K 2 = rate of deactivation. Now combining Equations 10 and 11

gave:

dO K 2

dt K1A

Assuming that there exists some constant,

ed per mole of coke, 60was expressed as:

S= 1 bC

A

Differentiating with respect to time,

dO _ b dC

dt A dt

b, equal to the area cover-

(13)

(14)

Combining Equations 12 and 14 finally gave the desired results that,

dC K 2
- = +. (15)
dt bK 1

(12)

_ __ _~__n___
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C = ( 2 )t (16)
1

That is, the amount of carbonaceous deposits increases linearly with

time independent of the amount of active surface available.

The one assumption made in this derivation was that the area

covered per gram of carbonaceous deposit, b, is a constant. It would

be expected that this would hold true as long as the surface was not

completely covered with the deposit and that the deposit is of uniform

thickness. Since the reaction was always stopped before the reaction

rate reached zero or leveled off, the surface could not have been

completely covered. Since it is unlikely that the thickness of the

deposit is a strong function of 6, the assumption that b is a constant is

highly probable.

A completely satisfactory model that would account for the

independence of the rate of carbonaceous deposition with respect to 6

has not been found. It is thus recommended that further investigation

be conducted towards developing such a model.

C. Catalyst Reactivation Kinetics

The deactivation of the catalyst was observed on all runs conduct-

ed during the present investigation and has also been observed by

previous investigators (3), (5), (15), (18), (19), (20), (21), (24). Benson

and Kwon (3) had reported that this deactivation was completely revers-

ible and that by evacuation at reaction temperature and then cleaning

with flowing hydrogen at 350 0 C, the initial activity of the catalyst could

be completely restored. One of the purposes of this investigation was

to examine this reactivation procedure.

From the results of this investigation, it is concluded that the

_ ~ __
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deactivation of the catalyst can be completely resotred by proper

treatment. This catalyst treatment consists of evacuating the catalyst

at a temperature greater than 350 0C and then flowing hydrogen over

the catalyst at the same temperature. Fig. 7 shows that the reaction

rates on the catalysts reactivated at 3600 and 400 0 C are nearly equal

with the former averaging only seven per cent higher than the latter.

The reaction rates on the catalyst reactivated at 310 0 C averaged

about 50%7 below that of the catalyst reactivated at 400 0 C. Finally, the

catalyst activated at 290 0 C. had a reaction rate averaging 75% below

that of the catalyst reactivated at 400 0C. This information is summar-

ized below in Table II.

TABLE II

EFFECT OF REACTIVATION TEMPERATURE

ON TIME AVERAGED REACTION RATES

Temperature rate/(rate at 4000C)

4000C -

360°C 1.07

310°C 0.50

290 C 0. 25

The results of Table II show that if the catalyst is reactivated

first under vacuum followed by flowing hydrogen at a temperature

above 360 0 C, the catalyst can be assumed to be returned to its initial

activity. The seven per cent difference between the runs on the

catalysts activated at 4000C and 3600C is probably the limit of experi-

mental precision.

---------------~-~-~ -- .._- ~---
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VI. Conclusions

1. The observed catalytic deactivation is completely reversible

on treatment of the catalyst with high vacuum followed by flowing

hydrogen at temperatures above 3600 C.

2. At constant temperature and total pressure, the rate of

deactivation increases linearly with increasing ratio of cyclopropane

partial pressure to hydrogen partial pressure, up to the ratio at which

there are no excess reactants.

3. At a constant ratio of cyclopropane partial pressure to hydro-

gen partial pressure and at constant total pressure, the rate of deacti-

vation increases exponentially with increasing temperature.

4. The concentration of carbonaceous deposits increases linearly

with time, independent of the amount of active surface area.

5. The methods and apparatus used in this investigation are well

suited for analyzing kinetic data for cyclopropane hydrogenation.

I I I-
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VII. Recommendations

1. Additional work should be performed to test the dependency

of rate of deactivation upon temperature and upon the ratio of cyclopro-

pane partial pressure to hydrogen partial pressures at and above that

ratio which gives no excess reactants.

2. Investigations leading to a satisfactory model of the deactiva-

tion should be carried out in order to increase the understanding of

this effect. A first step would be to determine if the rate of deactiva-

tion continues to be linear down to zero activity.

3. Suggested reaction conditions for conversions in the range

of one per cent and for a low rate of deactivation are a reaction tem-

perature around 65 0 C and a ratio of cyclopropane partial pressure to

hydrogen partial pressure equal to or less that 0. 20.

~ ____
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VIII. Appendix

A. Supplementary Details

1. Standardized Gas Mixture

a. The Matheson Company, Inc.
P. O. Box 136
Morrow, Georgia 30260

Date: July 25, 1967

Analyst: John Oliver

Cylinder No. RR-23657

Cyclopropane 4.71%

Propane 4.88%

Propylene 5.14%

Methane 5.41%

Ethane 5.24%

Helium Balance

b. Boston Gas Company
144 McBride
Boston, Massachusetts

Date: July 20, 1967

Analyst: Mr. Churchill

Methane 94. O2%

Ethane 3.33%

Propane 0.58%

Carbon Monoxide 1.16%

Nitrogen 0. 63%

Butanes and Pentanes Traces

2. Principles of Operation of Model 700 Electrometer

The electrometer consists of an electrometer tube, a series of

high input range resistors, zero and balancing network, an attenuator

and two battery voltage sources to provide bias for the Flame Ionization

_ ~_____^~ F ____1~_~__
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Detector. Batteries also supply power to the plate and filament of the

electrometer so that no A. C. line power is required. The current

from the detector is permitted to flow through the high input resistors

and the zero network. The voltage so developed provides the input

signal to the electrometer tube. The zero network provides a

voltage which compensates for the voltage due to detector background

current by inserting a series voltage of equal magnitude and opposite

polarity. The output is taken across a bridge type network in the

cathode of the electrometer tube which allows the system to have a

"live" zero and also aids in stability. Initially, the electrometer is

balanced by means of the coarse and fine potentiometers with the

input shorted. An input signal (change in detector current) to the

tube causes an unbalance across the bridge output terminals and the

resulting voltage is applied to the input terminals of a recorder to

provide a permanent record. Various instrument sensitivities are

available through the selection of range and attenuation.

3. Description of Gas Sampling Valve

A stainless steel spool rides inside a stainless steel cylinder on

silicone rubber O-rings. In the "load" position the spool is pushed in,

and the sample flows through the sample inlet port, through the center

of the spool, around the sample loop, to the sample vent. In this

position the carrier gas flow directly into the chromatograph.

To inject the sample, the spool is pulled out. This causes

carrier gas to sweep the sample that is contained in the sample loop

into the column; while the sample stream is diverted directly to the

vent. By use of double seals, leakage is prevented when the spool is

moved from the load to inject position. It also allows the use of larger
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holes to reduce pressure drop across the valve.

The silicone rubber O-rings were replaced during the data taking

period (F & M part # 6303) and the entire valve was cleaned and

regreased with a high grade silicone grease.

4. Theory of Flame Ionization Detectors

In a hydrogen flame ionization detector, the column effluent is

mixed with hydrogen fuel and burned at the tip of the. metal jet in an

excess of air. To reduce spurious noise, the hydrogen and air streams

are filtered to remove particulate alkali salts and carbon compounds

which produce ion avalanches as they pass through the flame. Hydro-

gen burning at the jet produces a very low background, of the order of
-14

10 amperes, depending on flow rate and impurity content, which

can be electrically compensated. The ions are collected at the

electrodes, the jets being negative and the positive electrode, the

electrode collector, a metal ring placed just above the tip of the

flame. The phenomena producing ions in the flame have not been

fully established. Whatever the actual mechanism, both electrons and

positive ions are produced, the latter having the lower transport

velocity in any given field because of their larger mass. After the

ionization event, recombination occurs to a degree that is determined

by the electrode voltage and ion concentrations. The electrode voltage

is adjusted to obtain the saturation current for optimum performance.

This voltage is a function of the electrode spacing but is independent

of electrode size.

B. Sample Calculations

1. Normalized Standardization Factors



f hcp
P hp

%Ps

%CP

For average of runs S-12 through S-15

height of CPpeak

height of propane peak

% propane in sample gas

% CPin sample gas

3.9 ±0.1 1S ± x
5.1 ± 0.1

hcp = 3. 9 0. 1 cm

hp

%ps
%CP

s

= 5. 1 0. 1 cm

=4.

= 4.

01o%
01%

4.88 ± 0.01

4.71 10.01

= 0. 79 ±0. 015 unitless

TABLE III

NORMALIZED STANDARDIZATION FACTORS

2. Per cent Propane in Effluent Stream

h f
% P= F xx-P- x 100% - %(C 3 H 6)B

cp

For run 13-8 (8/31)

height of propane peak

height of CPpeak

attenuation factor

h = 6. 2 ± 0.1 cm
cpa = 2016.8 0.cm
a = 20.

58.
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normalization factor
for propane

per cent propylene in the
blank

f 0. 79 0. 015
p

%(C3 H 6)B_ = 0. 22 ± 0. 005%

P 6. 2 0.1 0 7 9 0. 0 15 x 100% -0. 22

16.8 ±0. 1

%P = 1.46 + 0.01% -0.22 ± 0.005%

%P = 1. 24 ± 0. 015 unitless

3. Per cent Conversion of Cyclopropane

% conversion =

For Run 13-8

%P + 4(% ET) + 1(%M)

%CP + %P + 3(% ET) + -(%M)

(8/31)

per cent propane in effluent

per cent ethane in effluent

per cent methane in effluent

per cent CP in effluent

% ET

= . 24 ± 0. 015%

0.42 ± 0. 010

% M 0.35 ±0.008

% CP 97.99 ± 0. 03

% conversion

(1.24 ± 0. 015) + 2(0. 42 ± 0.01) + 1(0. 35 ± 0. 008)

(97. 99 ± 0.03) + (1. 24 ± 0. 015) + (0. 42 ± 0.01) + 1(0. 35 ± 0. 008)

% conversion = 1. 64 ± 0. 10%

4. Reaction Rate

np-r cp

(% conversion)

For Run 13-8 (8/31)

59.

+ 0. 005%

A (100%)
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molal flow rate of CP
entering the reactor

% conversion of CP

BET surface area of the
catalyst

-r cp

-5F = (3.00 ± 0.15) x 10
cp moles/sec

% conversion = 1. 64 ± 0. 10%

A = 1.64 ± 0.12

(3.00 ±0.15) x 10-5mole/sec x (i.
-(3. 00±10.15) xl10 mole/sec x(1.

1. 64 ±0. 12 m2

-r =(3. o 0. 2)cp

64 ± 0. 01)%

x 100%

x 10- 7 moles/sec/m 2

5. Concentration Ratio

F
R= cp

FH
2

For Run 13

cyclopropane flow rate

hydrogen flow rate

R = (40 ± 2)
(120 ± 2)

R = 0.333 ±0.006

6. Activation Energy

d tn(-r )
AEACT =-R[ p)

dTd(1/T)

For Runs 8, 10,

Gas Law Constant

Slope of Figure 13

F cp
FH2

= 40 ±2 ml/min

= 120 ± 2 ml/min

and 12

= 1. 987 cal/g mole

= 6.93 ±0. 10 x 103
OK)

_ ---~ ------- -TTT~-- -
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AEA T = -1. 987(6.93 ±0. 10) x 10 3

ACT

AEAC T = 13.8 ± 0. 2 kcal/g mole

7. Reaction Rate at 00 C

-r o = (-rT) exp

For Run 13-8

AEAC

R
1 2 1

T 7 .)T 273. 1

(8/31)

Reaction rate at T = 50

Activation Energy

Gas Law Constant

Reference temperature

-7
-r = (3.0 ±+0. 2) x 10

-r =6 ±1.2x10 9 m
-r = 6 11. 2 x 10 - 9 m

-7
-rT .= .U-. u.x 1u moles/sec/m

AEAC T = 13.8 ± 0.2 kcal/g mole

R = 1. 987 cal/g mole 0oK

T = 323.0 ± 1 OK

13. 8 0. 2) x03exp 1. 8

1. 987
3 23±1
3 23±11

3 1
273. 1

oles/sec/m 2

8. Catalyst Porosity

P = (1 -pp/ps) x 100%

For catalyst sample A (9/13/67)

actual density of nickel powder

density of pure solid nickel

P = (1 - 1.35 ± 0. 0 1) x 100%

8.90

pp =

Ps

1. 35 ± 0.01 gm/cm 3

= 8. 90 gm/cm 3

P = 84. 2 ± 0. 1%

_ _T __ __ _ __ _·__ _____
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C. Location of Original Data and Detailed Calculations

The original data and detailed calculations are in the custody of

the author. Permanent copies of all of this material are held by

Professor Max C. Deibert, Department of Chemical Engineering,

MIT, Room 12-148.
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D. Summary of Data and Calculated Values

Rate of
Reaction Regeneration at o

Cp Flow H 2 Flow Temperature Temperature Deactivation

Run ml/min ml/min oC oC moles/sec/m /min

8 30 90 55 409 1.1 x 10

9 30 91 65 300 -

10 30 90 90 420 2.8 x 10

13 40 120 65 360 1.8 x 10

14 50 150 65 390
15 40 120 65 400

16 40 120 65 300
-p

17 30 90 75 400 2.1 x 10

18 40 120 65 310

19 40 120 65 490 1.86 x 10

20 40 90 65 407 6.95 x 10

21 15 90 65 390 0.29 x 10

22 40 200 65 390 0.19 x 10

23 60 90 65 408 10.2 x 10

24 40 40 65 396 7. 1 x 10

63.
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E. Nomenclature

Symbol Definition
2

A Surface area - meter

a Attenuation factor for the electrometer
2

b Specific area - m 2/gm

C Concentration of carbonaceous deposits on the surface-

moles/cm2

CP Cyclopropane

E Energy - kcal/gm mole

Et Ethane

F Molar flow rate - moles/sec

f Normalized Standardization Factor

g Gaseous state

h Height of chromatograph peak - cm

K Arbitrary constants

k Rate constants - specific rate units

M Micrometer valve

Me Methane

P Propane

p Porosity

R Gas law constant - 1. 987 cal/gm mole OK

R Ratio of the partial pressure of Cp to the partial
pressure of H2

r Reaction rate- moles/sec/meter 2

T Temperature- 0 C or 0oK

t Time - minutes

A The final state - the initial state

----- -I --- · -·--.-r -
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Symbol Definition

p Density - gm/cm 3

6 Fraction of the surface available for reaction

Subscripts

A Actually measured

ACT Activation (apparent)

B Blank

Cp Cyclopropane

Et Ethane

i Pertaining to substance i

Me Methane

0 Referenced to 00C

P Propane

R Reactivation

s Pure solid substance

s Pertaining to standardized sample

1 First arbitrary constant

2 Second arbitrary constant

1 ----
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