System Architecture of Offshore Oil Production Systems
by
James Keller

B.S. Civil Engineering
'A,I_,(ansas Sta}gﬂgqi_yersit‘y, 2002

i e / James Keller
Department of Aerofautics and Astronautics
. May 2008

E\déCrawley
rofessor
Aeronautics and Astronautics

?\ p IC\ The51s SH)erwsor

ACCEPted BY....evuuneeeiiiiiieeeeeiiee e e S
Prof. DM LI Darmofal
Associate Départment Head
Chair, Committee on Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

~AUG 0 12008
ARCHIVES
LIBRARIES 1

System Architecture of Offshore Oil Production Systems
by
James Keller

Submitted to the Department of Aeronautics and Astronautics
on May 16, 2008 in Partial Fulfillment of the
Requirements for the Degree of Master of Science in
Aeronautics and Astronautics
At the Massachusetts Institute of Technology

ABSTRACT
This thesis presents an approach to applying Systems Architecture methods to the development

of large, complex, commercial systems, particularly offshore oil and gas productions systems.
The aim of this research was to assist BP in the development of concepts for a multi-billion
dollar oil production system, particularly in the unprecedented deep water arctic locations
prone to seismic activity, as well as in existing fields that must be extended. The thesis
demonstrates that these systems can be decomposed and analyzed using rigorous, methodical
system architecture thinking that archives and represents tacit knowledge in several graphical
frameworks. The thesis breaks the architecture of oil and gas production systems into two
problems. The first problem is the architecture of one facility and one reservoir; a classic
problem of assigning function to form. The second problem is the architecture of multiple
facilities and multiple reservoirs; a classic problem of connection and routing. For the first
problem, the production process is decomposed using Object Process Methodology (OPM).
The decompositions provide a methodology to capture industry knowledge that is not always
explicitly stated and provides a framework to explore the entire architectural design space. The
thesis then describes how these decompositions of general and specific oil systems can be used
to develop software models, using the meta-language tool OPN (Object Process Network), that
successfully generate thousands of architecture concepts. This set of feasible architectures can
be prioritized and better understood using metrics in an effort to down-select to a handful of
preferred concepts to be carried forward for more detailed study and eventual development.
The approach to the second problem demonstrates that even a modest set of facilities and
reservoirs have a huge number of connection possibilities. This space of connection
possibilities is large and daunting, and typically is not fully explored. To solve the second
problem the thesis presents two models that generate all the possible connection schemes
between elements in a system, in this case oil facilities and reservoirs. It is then demonstrated
that these possibilities can be prioritized through the use of metrics. The thesis presents a
method that can identify new concepts, highlight preferred sets of concepts, and underline
patterns common to those concepts. This method increases the architects’ overall knowledge
and understanding of the entire space of possibilities, and ensures that all options are
considered in the development of complex systems.

Thesis Supervisor: Ed Crawley
Title: Professor, Aeronautics and Astronautics

ACKNOWLEDGEMENTS

My thesis and work at MIT would not have been possible without the support and contribution
of many individuals.

My thesis advisor, Professor Ed Crawley, took a chance by hiring a civil engineer from Kansas,
for which I'm extremely grateful. Ed’s guidance and wisdom were the driving force for my
transition to become a systems engineer. | always particularly enjoyed Ed’s digressions, which
always amazed me with their breadth of subject matter and frequency of occurrence. Ed sets a
high bar for striving to have a well-rounded mind.

| would also like to thank my research partners, Ziv Rozenblum and Wen Feng. They made the
journey very enjoyable and | learned a great deal from them--some of it even had to do with
systems engineering.

The cooperation and patience shown by our sponsors, Bob Robinson, Alastair Barr, and Tomas
Flanagan from BP, for 4 guys as naive about the oil industry as we were, is remarkable. It was a
pleasure working with them. They were also great teachers.

Two other MIT faculty members, who contributed in a large way to my success at MIT with
their advice and concern, were Professor Oli de Weck and Col. John Keesee.

The classes and the research wouldn’t have been much fun had it not been for my lab mates.
I'd like to thank Ryan Odegard, Phillip Cunio, Zahra Khan, Tim Sutherland, Bruce Cameron, and
Theo Seher for injecting every day with spectacular (and sometimes odd ball) discussions and
interactions. | would also like to thank the three students | think of as my PHD student mentors
Wilfried Hofstetter, Ryan Boas, and Bill Simmons; thanks for the advice and mentorship.

I'd like to thank my good friends here at MIT: Andy, Bastien, Adeline, Michelle, and Jim, who
have made the past two years here in Boston a blast.

Finally, I'd like to thank my family for their support and encouragement (and the visits). In
particular, | thank my uncle, Rick Fornelli, for encouraging me to apply to MIT and believing |
could make it; my sister, Katie, for making my application and resume bleed on so many
occasions in order to make it to MIT; and my brother, Grant, for talking to me on so many trips
home from campus and making me feel | was still connected to K-State. All of this would
certainly not be possible without the support (including financially) and love from my wife (and
sugar-momma) Melissa. This thesis is as much her doing as mine. And last but not least, | want
to thank my parents and in-laws, Tom and Lea and Mac and Sharon. Mom and Dad, thanks for
instilling in me compassion, curiosity, a thirst for knowledge, and a strong work ethic - they help
me every day.

TABLE OF CONTENTS

CHAPTER 1. INtrOdUCEIONcocreieiiicireetictecccrcts e ssansssesste s nessnesesnnesssnensnnsassasassstsssnensanessnens 11
CHAPTER 2. Architecture Model of Oil and Gas Production Process...........ccccevrverscerenrcnecnennes 15
28 SO 1111 o Yo [V T ot T FO U 15
2.2 Decomposing the Oil and Gas Production ProCess........c.ccceervvveervieriervererrsseesresseessenns 16
2.2.1 First Level Decomposition of the Oil and Gas Production Process..........c.cccerunnne 17
2.2.2 Second Level Decomposition of the Oil and Gas Production Process.................... 19
2.2.3 Third Level Decomposition of the Oil and Gas Production Process...............cu...... 21
2.2.4 Fourth and Fifth Level Decomposition of the Oil and Gas Production Process 23
2.2.5 Describing LOCAtiON.......coceciiiiiieceercee vttt e s s seaessseesse e e esaeseneesaesmes 24
2.3 Developing the Morphological Matrix for the Oil and Gas Production Process............ 26
2.4 Constraints within the morphological MatriXccceeuveiiiieiniiiicniiececereseeeeeeeens 30
2.5 Metrics and OULCOMES........ccceciirierrinieericrerieieeesreseesesr e sesseessesssesasessesssssnenseseesansnesnens 31
2.5.1 POSSIBIE IMELIICS ..ot e seesea s s e ne e e snenee 32
2.6 Implementation of the MOdel...........ccoeiiiiriniiieieeee et ens 35
2.7 Alternate Specific Oil and Gas Production System Model..........coceeveverveverververeeresssenns 39
2.7.1 TRLMetric and OULCOMEScoceevivrirrieiiitiiricieciteesereeneeeesesneseeesssesseessesssessessnes 43
2.8 SUMMACY ..ottt veer e e s s b b e et saaesbesenesssee st essseesnnessssssnessessnsansans 48
CHAPTER 3. Multi-Reservoir Multi-Facility Connection Generator............ccccveveeveeceerveeresresnenns 50
70 R 1117 ¢ Te [V 1 £ To T4 O OSSOSO 50
3.2 MOTIVALION ..t e et e et st e et e eaee e et e st eesensensenns 50
R A T o] =T TSR 50
3.2.2 ReQUITEMENTS. ..ottt ettt e s e et e e s ee e esseessesnesseensssenssnsenes 51
3.2.3 POssible SOIUtION CONCEPLS......c.ceeveuecerreriiitcectc et eeeseeee et e e eeesesassneseasessssnenan 52
3.3 TRESOIULION ...ttt ee e se e e s st s e seesse e sne e ssesesseesesseses 56
3.3.1 One Block without CONSIIaiNtSccceevuiuieeiierieeeeceeeeeeteeeeeeeseessseeseeeesssseenes 56
3.3.2 MUIEIPIE BIOCKS.....c.eetitiieicieieetecteeee ettt e e st e st e seesnessessessseesessesessnseeae 59
3.3.3 The Addition Of CONSErAINESccvuiieerieieceiecctecce et e see e seeseeeeseessssesesssssseseeses 60
B4 OULPUL ottt ettt st e ne e e e e e ne e s e e e ee e ae e e eneaes 64
3.4.1 EXPOrtiNG tO EXCEI ..ottt e st ee st st sessne e s e s seaes 65
3.5 EXPAnSioN POSSIDIlILIES.cocciiiueeiirireictccectceecice ettt ses et eseeneeeeseesessesesssnssesessnaes 66
3.5.1 Other Potential CoONSTraints..........ccccceriuimeuieieeiireecreeeeeeeeeseseeeeesseesessesessesessssssenes 66
3.6 Use of Metrics With the GENEIatorc.cevevveieeeieeeeeeeeeeeeeerereseesee e es e ssseseeeeeses 67
3.7 SUMMACY ettt ettt st s et eeeresee st esaesseeseesneessansesse e eeseesseeseees e ea 70
CHAPTER 4. Expanded Multi-Reservoir, Multi-Facility Connection Generator (N plus M
CONNECLION GENEIATOT) ...cc.veeeiieieicic ettt et e e e e st e s e e seeaneeasesssessessessessensesseeseess 71
A1 INTPOAUCHION.....c..eiiiceeere ettt s et see et ese e e eeseesseesseeseeseesnensenens 71
4.2 MOUIVALION ..ottt e ee s s et e e e e seaetesseeseeesenmeenesnen 71
4.2.1 ThE ProbBI@M......cccceeeec ettt e s ee e e ssee e e sensessessesensesssanes 71
4.3 TRE CONCEPL ..ottt ettt sttt st st e e e e e st esaesasesseesesneeseessssssseessessesseseeas 73
4.4 The IMPlemMeENtation..........ccoouiiiieeiiiceccecieect ettt e e s e e e s e sseeseeessseseesessesesseesssesseas 75
4.4.1 EACh BIOCKcciuiiiieiieiee ettt sttt e ee s te e e e saessessessesneseeensesnesnes 75

44.2 BIOCKS 1N SOIIES .. uueeeeeierieeiieiieiieceeirrerrees et reseessrerrereeseseessessasessessssssasssrreraessesassnesenns 76

4.4.3 Other Elements in the MOdelc..cccoeeveriiiiiciencieceerteeeste et sseeesesnens 77
444 Combinations of COmMbINAtioNSccccvvieiiiieiieniier e 78
445 CONSErAINTS ..ottt nre e et e s s e e e ar e e s reeeeesnnenesara 78
4.46 Other Potential ConsStraint..........cccceiviiiiireiiirieeere e et 82

L S A 0 11 4 o 11 S ST 83
4.5 EXPaNnSioN POSSIDIITIES........ciiiiiiiiicii et e 84

L I I 14111 - 4 (o] £ PP 85
4.7 SUMMATY coiiiiiiiiiieeieeeeeecerireeee s e seesss st e e s e ese e st s be s e e ee s ae et e se e s e s babeesssessbbesnessestnessasbansans 85
CHAPTER 5. Conclusion and FULUIe WOTKcocceiviieiiennineeiinnnenseeserees s ssessesessan s sssessnees 87
T8 A 0T T (1] {o T L3OO 87
5.2 Recommended FULUIE WOrK.........ocieieiriiiieiniecieiesiesssrene e sneesse s sne s sresenassss s sanesasens 89
APPENDIX 1. OPM SYMDOIS......coiiiiiiiiiiiiiiiiiiniinicin st sn e 92
APPENDIX 2. Oil Decomposition LeVEIS...........cccovvciiniiiiiiiinininieniiiieciee s 93
APPENDIX 3. Constraints and EXplanationscccceciiieviinriniinciicinesisessseesnesens 99
APPENDIX 4. Abbreviations and encoding used in Oil OPN.........cccccviimviiiiniiiininninennnineenen. 102
APPENDIX 5. TRL Scale (From sponsor presentation).......c..ccuiviniiiiiiiiiineineeninenenenesens 103
APPENDIX 6. Data for the Alternate Specific Architecture Model...........ccoociniiiiinnnenininnennn 104
APPENDIX 7. Operation of the N by M connection generator modelccoocoviiincnnccnnn 106
APPENDIX 8. Global Script code for N plus M generator..........ccccevevvivniinirnnnensissecienccsienes 110
APPENDIX 9. Operation of the N Plus M connection generator model.........ccoooeovcnicnnnans 112
BIBLIOGRAPHY ...ceieivueerieriseeeiesissseseassesesasesansensessesssassssarssssassssssssssessassseesassssesassnnesssseesenseansanssssess 117

LIST OF FIGURES

Figure 2-1. Definitions for Oil and Gas Production Process Decompositionc.ccccvreenuecrennens 17
Figure 2-2. Level 1 Decomposition of Oil and Gas Production Process........c.cceceerurvureeeerecinnseninnns 19
Figure 2-3. Level 2 Decomposition of the Oil and Gas Production Processc.ccocevevevevuecvnennns 21
Figure 2-4. Level 3 Decomposition of the Oil and Gas Production Processcccceeceveerueeennnns 22
Figure 2-5. One of the 11 Elements of the Level 4 and 5 Decomposition of the Oil and Gas
Production Process (for the others see AppendiX 2)..........ccccvveericirerinieenennnenereereeeessennens 24
Figure 2-6. LOCations fOr @ CONCEPLcccceiriiieiiinenenenitieiitccte s raes e eese e sstes s ssessessesasessessansens 26
Figure 2-7. Attributes for LOCAtioNS..........ccciiereeiiiceiceccecce et ere s b s saeesae s 26
Figure 2-8. Example of Decisions in DECOMPOSILION......cccccvvererieiieicriiiisrecrcireseereesessessessessessens 27
Figure 2-9. Hierarchical Morphological Matrix of the Oil and Gas Production Process............... 29
Figure 2-10. Table of the Constraints in the Oil and Gas Production Process Model................... 31
Figure 2-11. Example Plot of Metrics for Oil and Gas Production Process Architectures............ 34
Figure 2-12. OPN Model Implementation LayOuL............cccvuieuiiiiiecieeneeereeeeeeeeeseeeeseeesseeseessnsnes 36
Figure 2-13. Screenshot of Oil and Gas Production Process OPN Model......c.cccceeveverereeereevennns 38
Figure 2-14. Decision Path for Alternate Specific Architecture Model (Full View) 41
Figure 2-15. Decision Path for Alternate Specific Architecture Model (Part 1 of 3)..................... 42
Figure 2-16. Decision Path for Alternate Specific Architecture Model (Part 2 of 3)..................... 42
Figure 2-17. Decision Path for Alternate Specific Architecture Model (Part 3 of 3) 43
Figure 2-18. Table of Concept Families for the Alternate Specific Model..........ocoeevvveveeeviennnns 45
Figure 2-19. TRL Penalty (Method 1) vs COSt (1700M)couirierieeiiieeeeeeeeeeeeeeereseeeesesssssssessesssnens 45
Figure 2-20. TRL Penalty (Method 1) vs CoSt (2500M)ceeuriericverierieeeeeeeeereeeereeeeseeeseessessananes 46
Figure 2-21. TRL Penalty (Method 2) vs COSt {1700M)oeiiiireieieeeeeeeereeeeesseesseseresssssssessesens 46
Figure 2-22. TRL Penalty (Method 2) vs CoSst (2500M)ceeeueuruieieeieeecerieeneeeeeressseeseesesessanens 47
Figure 2-23. Table of Preferred Concepts from TRLIMOGEl..........cccoueeveeeeereeeeereseeeseeeeesessesesns 48
Figure 3-1. Example CONNECtioN IMALriXcceverereieiriniieiiececreeeteeeeeeseeeeeesesessessssssesessessssssesens 51
Figure 3-2. Example Connection HUSTrationceucueirverieeceeeeceeeseeseeeeverseeesesesesssnesessssssens 51
Figure 3-3. Connection MatriXx OUPUL EXAMPIE.......ccveveieriereeeeeeeeeeeeseesesseesessseesseesssssssssesesens 52
Figure 3-4. Looping-INdeXing CONCEPL......ccovuiurrivrierrrereeitirctciet e eeeesesesssesessssnsessessssessssssaes 53
Figure 3-5. EXample BIOCK............cciiiiiiieccccrce ettt sesssan s s s snens 54
Figure 3-6. Blocked-Cascading CONCEPL.......ccccvvuieeiieerecririietcetesseseeteeeeseeeteeseseesseesessssssssesessessenna 55
Figure 3-7. Constraint Entry Code in GIobal SCrPt........cucvveuieciuiiieieeeieee et eeereseeseseeessesssesses 61
Figure 3-8. Screenshot of the Actual OPN N by M Connection Generatorc..oveevvevevenennn. 64
Figure 3-9. Example Output SPreadshEet............coocveiiuieeiiiiiicecereceeeeeeeesesseeseesesseeseesessessssssssnens 65

Figure 3-10. Complete Output for an Example 3-by-2 Connection MatriX.......ccccccevvuerervecrrcnnne 66

Figure 3-11. Example 3X4 Connection LayOutccvecericieriiiieieeeneessceininesssnesssessnssssesssssssnenes 67
Figure 3-12. Metrics Plot of 2401 Connection Schemes for 3X4 Example.........ccccvevcvrverecrennene 69
Figure 3-13. Metrics Plot of 81 Connection Schemes for 3X4 Exampleccccccevvevvrecrencenvenneens 69
Figure 3-14. Four Connection Schemes for 3X4 Exampleccccooiiiinineinnieniiinecnnnnnennenne. 70
Figure 4-1. Example N+M Connection MatriXcccccceverrcieeniinminninieniccseneesseressereessaensssenessaeesens 72
Figure 4-2. Example N+M Connection HUStration............cccveivinennicniincn, 73
Figure 4-3. N+M Model CONCEPLcoviriiiieeieriice ettt e st se s e sn e sresat s 74
Figure 4-4. Screenshot of OPN N+M Connection Model..........c.ccooeiieiiernneninecninnnenenennn, 77
Figure 4-5. Connections for a Single Element............ccccooeiiiiniininnnic e 80
Figure 4-6. N+M Model Excel Front-end.........cccoiiiiinniniinininicnncciesneeeieeeee 82
Figure 4-7. Example N+M Connection Matrix Output..........cccccvviiiiiiiniiiiierercsne, 84

10

CHAPTER 1. Introduction

The successful development of complex systems is a difficult problem and it’s becoming more
difficult: as technology advances, systems’ complexity increases. The increasing complexity,
coupled with the fact that our largest and most complex systems are decades-long endeavors,
requiring many billions of dollars in resources, make it imperative that the development of
these systems is performed in the most efficient way possible. The earliest development stages
of complex systems are an area where considerable planning must be done to ensure selection
of the best possible system. In the beginning stages of the development of a system the
designer has the greatest leverage on the final performance and cost of the system. The
further the system architect moves into the system’s development, the more decisions are
made which lock in costs and performance measures that will influence the lifecycle of the

system.

The most important task in the early stages of development is selecting the concept for the
system. Traditionally this is done by a committee of engineers who collectively draw on their
experience to generate a handful of feasible concepts, which, through further study, are down-
selected to the specific concept that will be developed. However, given the enormous
complexity of modern systems, can the system architect ever be certain all options were
considered? Furthermore, given the enormous quantity of resources and time these systems
take to develop, isn’t it important that every effort be made to ensure all options are explored
before selecting a system’s concept? This thesis will address these questions.

The objective of this thesis is to show that systems architecture methods and thinking can
successfully be applied to the development of large, complex, commercial systems, in particular
to offshore oil and gas production systems. Successful application means that these large
commercial systems can be decomposed and analyzed using rigorous, methodical system
architecture thinking that explicitly archives and represents tacit knowledge in several graphical
frameworks. Successful application also implies that these system architecture methods give
interesting and useful results when applied to complex systems. Further success is
demonstrated if the use of these methods increases the productivity of the engineers working
on the development of these systems.

The sponsor of this research, BP, was dealing with some significantly difficult systems
architecting problems. They were interested in developing offshore oil and gas production
systems in arctic locations with water depths in excess of 100m and in regions prone to heavy
seismic activity. The development of fixed or floating platforms that could handle crushing ice

11

loads or heavy seismic events in such deep water has never been achieved. BP was also faced
with the challenges of extending existing fields by connecting existing facilities to potentially
many untapped reservoirs. However, they weren’t able to explore all the connection scheme
possibilities because the number of possibilities was just too great using current practices. To
deal with these complex problems BP has many systems engineering tools and practices that
enable them to analyze concepts and architectures with enormous depth and repetition.(1) In
particular they use concept catalogs as a way to document all the possible components that
might be used in an architectural concept. These catalogs include information that details
which situations each component is most applicable, as well as, specification for preliminary
concept building. These catalogs are produced for various regions and functions, such as Gulf
of Mexico production systems, production systems in arctic environments, and sub-sea
production elements. For a new project, they generate about a dozen concepts using graphic
building blocks and then analyze them in great detail. This analysis is enabled, in-part, by
powerful cost and performance software like Oil and Gas Manager (OGM). The analysis allows
them to weed out the infeasible and poorer performing concepts. At the same time, they adjust
the surviving concepts based on the knowledge gained about the problem through the analysis.
This continues until they reach the final concept which goes on for development.

This research is based on a system modeling approach that describes a system through two
basic elements, functions and forms. The idea of thinking of two basic system types was first
proposed by Harel and Jacobson.(2)(3) This idea developed into two lines of thinking. One was
that systems could be represented by processes in data flow diagrams (DFD), developed by De
Marco(4). The other line of thinking was that systems could be represented as a set of objects.
The object-oriented thinking was widely used and expanded [Rumbaugh et al., Booch, Coad and
Yourdon, Embley et al., and Shlaer and Mellor(5)(6)(7)(8)(9)] in development of complex
software systems. The idea of using both types of elements, objects and processes, when
representing any system was beginning to be seen in “action” DFD (ADFD), developed by Shlaer
and Mellor(9). However, describing the functions and forms of all systems using processes and
objects fully came together in the approach called Object-Process Methodology (OPM),
developed by Professor Dov Dori.(10) The OPM approach uses a graphical representation
called Object-Process Diagrams (OPD) to describe and archive the behavior and structure of
systems. Crawley introduced the idea of rigorously representing forms as instrument objects
within an OPM and functions as coupled operands and processes within OPM.(11) A meta-
language, called OPN (Object-Process Network), developed by Professors Ed Crawley and Ben
Koo, has been used to model and explore the architectural design space of complex
systems.(12) This lead to the recognition that the nature of the design space for architecture

12

problems could be represented in an Architecture Decision Graph (ADG) framework, developed
by Simmons.(13) The ADG representation of a design space is made up of a set of interrelated
decision variables. Up to this point, OPN and ADG’s have been used to assist NASA in the
development of space systems for exploration of the Moon and Mars.(14)(15) Prior to this
thesis, these methods and tools had not been applied to commercial systems, or even outside

the aerospace engineering field.

The specific objective of this thesis is to apply OPM thinking to the development of oil and gas
production systems. This is to assist BP in the development of multi-year, multi-billion dollar
projects around the world. In particular, this thesis aims to demonstrate that, using OPM and
OPD’s, the general oil and gas production process can be decomposed and analyzed. This
should enable BP’s engineers to explicitly archive the intricacies of the production process, so
that innovative solutions can be developed. Once this is possible for the general process, this
method should be demonstrated on more specific “real world” problems.

The thesis should also show that OPN can be used as a tool to transform decompositions of oil
and gas production processes into a software engine that generates all the feasible architecture
concepts for a given situation. Our method should also be shown to assist in the down-
selection of concepts to a handful of preferred concepts using metrics including cost, schedule,
and technology readiness. The preferred set of concepts can then be carried forward for more
detailed study. The overall goal is to provide BP with systems engineering tools and procedures
that will help them develop new and better production systems.

The problem of architecting very complex offshore oil and gas production systems will be
broken into two parts. The first part is the problem of architecting an offshore oil and gas
production system which consists of one facility producing from one oil reservoir. This will be
approached as a classical system architecture problem of assigning function to form. The
second part is architecting a field of multiple facilities and multiple reservoirs. This problem will
use the solutions to the first problem for the individual facilities and reservoirs, but will
approach the core of the second problem as another classical system architecture problem,
that of connection and routing.

This thesis is organized into three main chapters. Chapter 2 addresses the first part of the
problem, one facility and one reservoir. In particular, Chapter 2 discusses the use of our
systems architecture methods on the general oil and gas production process. It starts by
decomposing the process into a graphical representation of the functions and forms contained
in the overall process. Then, searches that decomposition for decision points and then gathers
and organizes them in a matrix framework. This chapter then goes on to discuss the

13

development of the OPN model that generates all the feasible concepts in that design space. It
finishes with a discussion of the development of an alternate, more specific, oil and gas
production system model, and a discussion of how the architectures it generates can be
prioritized using metrics. The second part of the problem, multiple facilities and multiple
reservoirs, is addressed by Chapters 3 and 4. Chapter 3 discusses the development of an OPN
model that generates all the possible ways to connect a set of oil platforms and oil reservoirs, a
general connection assignment problem. It also lays out the usefulness of applying this
connection generator in other disciplines. Chapter 4 presents the development of an enhanced
connection generator that captures a more general set of connections between different
elements in a system. This thesis finishes by presenting its conclusions and recommendations
for future work.

14

CHAPTER 2. Architecture Model of Oil and Gas Production Process
2.1 Introduction

The aim of this research was to assist BP in the development of concepts for a multi-billion
dollar oil production system, particularly in the arctic. The intent was to build an OPN model
that would explore the entire envelope of the design space for the oil and gas production
process and generate many viable concepts. These concepts would have one or more metric
values associated with each one, so that after the set of concepts was generated for a certain
situation, one could focus in on the top handful of concepts for further study.

This idea of generating all the concepts in the design space comes from the following notion. In
standard engineering practice today, during the concept development stage for a new system,
especially for a new or unprecedented system, the first step is to gather a team of experienced
engineers. They develop five to ten concepts for more detailed study and eventual down-
selection. Because these engineers are human, they draw on their collective and individual
past experience to develop these concepts. This method has served the engineering
community well thus far, but it is possible that because we are developing concepts based on
the past experiences of individuals, there may be innovative concepts that are missed in this
sweep of the design space. This method of enumerating all the concepts in a design space
takes advantage of current computing power combined with the experience and knowledge
that an engineering community possesses. Enumerating all possible concepts with some
metrics associated with each concept allows us to thoroughly sweep the whole design space
and ensure the handful of concepts sent forward in the development process represent those
preferred from the entire space.(15)

In this chapter the motivation for this work is discussed first. Next, there will be a discussion of
the first steps of decomposing the oil and gas production process into its more basic objects
and processes. This decomposition will be used to find the decision points with the
architecture design space. The next sections discuss the development of the morphological
matrix and constraints that would act as a framework and starting point for the making of an
Object Process Network (OPN)(12)(15)(14)(16)(10) model that would generate all the possible
architecture concepts. This is followed by a discussion of the metrics that would be used within
the OPN model to evaluate and rank the generated architectures. The chapter concludes with a
discussion of the implementation of the OPN model and the outcome from that model.

15

2.2 Decomposing the Oil and Gas Production Process

The first step for this research project was to develop an understanding of the oil exploration
and production process. This was particularly important and necessary because the author
knew very little about the oil business. This required a steep learning curve in order to grasp
the oil and gas production process and the technical language of the oil industry with enough
detail to decompose it. This initial lack of knowledge had one advantage in that it allowed us to
look at the oil exploration and production process from a fresh perspective as we learned and
decomposed the process. This was important, as it freed us from having preconceived
connections between particular functions and their forms. It allowed us to think about generic,
solution-neutral processes and forms. This solution-neutral thought process is important in
allowing this method to possibly develop “out-of-the-box” concepts, as thinking about
problems in an abstract way helps to open up more possibilities for solutions, and solution-
neutral thinking allows for a high degree of abstraction in the description of a problem, as it
deliberately avoids prescribing any particular solution.(11)

Our learning of the oil and gas production process was enabled by our readings(17)(18). But
most of our understanding was developed through conversations with our BP sponsors, which
occurred at least once per month. The following decomposition was completed by Ziv
Rozenblum(19) and the author over the period of the first year of this project. We used Object
Process Diagrams (OPD’s) which are graphs using Object Process Methodology(10)(11), to
describe the decomposition of the system. A tutorial on OPN and OPD’s can be found in
Appendix 1. Through the course of the work we had to develop a specific dictionary of terms to
describe processes in the whole oil and gas production system. Where possible, an effort was
made to keep these words solution-neutral in the sense that they did not have the specific
connotation that accompanies similarly defined words in the oil industry’s technical language.
Otherwise we kept the terms that were used by the oil industry for a particular process or
object. The following table of definitions , Figure 2-1, will be useful in reading the coming
decompositions.

16

Changing
Composition

Altering the composition of the components of the reservoir fluid (e.g. separating)

Changing
Properties

Altering the property attributes of something (e.g. temperature, pressure)

Constructing

Causing a form to come into being

g::::; ‘: Change ownership of an operand to another entitiy
Disposing Getting rid of something

. . Something from outside the system causing a negative effect on the system's ability to perform its
Disturbing -

functions

Energizing Any process which assists the transportation of the reservoir fluid within the process of extracting
Extracting Creating a means to get the reservoir fluid to a wellhead and then moving it to the wellhead
Maintaining [Scheduled and unscheduled fixing, replacing, and repairing
Moving Changing the position of something between facilities but not within a facility
Operating The actions involved with causing all processes to run and/or to continue to run
Powering Providing energy in a useful form

Provisioning

Providing the necessary materials, supplies and logistics

Reaching The process within "Extracting” by which one gets at the reservoir fluids (i.e. drilling)

Reusing Using a reservoir fluid to deliver value other than making a sale
Holding something stationary at a facility at which this is the only function (other storing taking place at

Storing a facility with other functions will be assumed to be taking place as required, but will not fall under this
term)

Supporting Mechanically supporting

Supporting) . .

Horizontal Counteract forces acting at right angles to gravity

Supporting)

Vertical Counteract gravity

Sweeping Changing the properties of the fluid in the reservoir and/or the reservoir such that it moves with more
ease to the well head (i.e. change viscosity, reduce attachment to rock particles...)

Transporting The process taking place within "Extracting" that changes the position of the fluid from in the reservoir,
to at the well head

Treating Changing the fluid to make it more useful

Figure 2-1. Definitions for Oil and Gas Production Process Decomposition

2.2.1 First Level Decomposition of the 0il and Gas Production Process

At the highest level, we define the oil production process as, “taking the fluids from an

underground reservoir and outputting sellable oil and gas to a purchaser.” We decomposed

the oil production process into four main processes: Extracting, Treating, Moving, and Storing.
The exact definitions of these four processes can be seen in Figure 2-1. It is around these four
main processes that we built our decomposition. We decomposed the oil and gas production

17

process using the hierarchy of levels. Level 1, for instance, is the highest level in the hierarchy.
It represents the system as simply as possible and contains information about the context
around the system. Subsequent levels zoom-in on the process, breaking the system down into
component systems (objects) and component processes. Note that objects can be any physical
things, including the oil itself, a platform, or other important items like storage tanks, ships, and
pipelines. Processes act on objects, and may affect them, change them, or produce new
objects. Mapping the basic abstract principles of object and process onto everyday language,
an object can be almost any noun and a process can be almost any verb.

The OPD for oil and gas production process Level 1 can be seen in Figure 2-2. The main process,
Producing, interacts with reservoir fluids and leads to the custody transfer of exported oil and
gas. Producing is done by the main instrument object, the Producing Facility. Producing also
takes place in context with the local ocean, land, ocean floor, and sub-sea geography.
Producing is made of six sub-processes: Extracting, Treating, Moving, Storing, Disposing, and
Reusing. The producing facility is affected by a process we call disturbing. Disturbing is done by

meteorological and oceanic conditions (MetOcean), seismic activity, arctic ice, and gravity.

In our OPD’s there are two features in addition to object and processes. The first is the box
made from a dashed line. This represents the system boundary. That means that the architect
of this system is responsible for designing the objects and processes within the box and dealing
with the interface of anything that crosses the boundary. Additionally the architect must be

knowledgeable about whatever lies just outside the boundary.

in these diagrams, arrows or lines that cross the boundary indicate that something from outside
the system is passing or being passed some operand to/from the system or that something
outside the boundary is effecting or being affected by the system. Any of these cases indicate
to the architect that there is an interface that needs to be considered. There are also instances
of processes that lie on the boundary. These are inherently processes that interface between

the system and the wider world around the system.

The second feature in the OPD’s is the color code. As you can see in the lower right hand
corner of Figure 2-2 there is a legend for the coloring of the various elements in the OPD.

Green elements are elements that will be included in the OPN model. Yellow elements may be
included in the OPN model. Red elements will not be included in the OPN model, but are
represented in the OPD’s to provide more detail and generality. This color coding was based on
two criteria. First, does that element have a major role in differentiating different concepts?

An element that does have a major role may be involved as a major cost driver or it may involve

18

creating the major branches in the architecture’s design space. The second criterion is whether
or not the element contributes greatly to the complexity of the OPN model. The intent was to
make the first model simple and then increase the complexity as the model was refined.

This modeling of the oil and gas production process had to be able to represent the various
situations in which this system might be built. Each situation could have a different location,
context, and/or environment. The set of feasible architecture concepts then would also be
different for each situation. For example, you may want to build an oil and gas production
system in the arctic or you may want to build it in the Gulf of Mexico. Each situation has a
different location, context and environment. They also have a very different set of feasible
architecture concepts. However, what is important and represented in this modeling of the oil
and gas production process is that they both have the same oil and gas production process.

They are both represented by this decompositional model.

In the decompositional model, these situations are represented by the different MetOcean,

Seismic, Ice, and geography that lie outside the system boundary.

L,L

19 m
SubsequentModels

Leavingoutof
models

1
|
! “
'

Exported Qil & Gas

Figure 2-2. Level 1 Decomposition of Oil and Gas Production Process

2.2.2 Second Level Decomposition of the Oil and Gas Production Process
Figure 2-3 represents our understanding of the Level 2 decompositional model of the oil and
gas production process. In this OPD the process called Production is expanded to its sub-

19

process. The instrument object (a special class of object, by means of which a process occurs)
Production Facility is also expanded to its component objects.

The production process is best decomposed as four main sub-processes and two more minor
sub-processes. The four main processes are Extracting, Treating, Storing, and Moving. In Figure
2-3 you can see that there is some notion of the relative timing of these processes. Extracting
and Treating must occur. They must be the first processes to occur and they must be in that
order. Extracting interacts with the reservoir fluids. Treating has an input of reservoir fluids
and outputs the operands: oil, gas, water and other. Storing and Moving may or may not occur
as processes in oil and gas production, and sometimes occur more than once. These two
processes can also occur in various orders before and after one another. Moving can even
occur before the treating process. Storing and Moving both interact with the operands oil and
gas. Storing also potentially interacts with the other two operands. Each of these four
processes is done by generic instrument objects: Extractors, Treaters, Depositories, and

Movers. It is upon these objects that the process of disturbing interacts.

The two more minor sub-processes, Reusing and Disposing, each usually occur in the oil and gas
production process. Both can have the operands of gas, water and other as their inputs.
Reusing interacts with the reservoir fluids when operands are returned to the reservoir. The
Disposing process lies on the system boundary because it takes its operands outside the

defined system.

A process called Custody Transfer also sits on the boundary of the system. It has inputs of oil
and gas. It can also be thought of as the interface between the system and the outside, at
which value is delivered by the system. Because the geographical location and physical manner
in which this process takes place both have large variance, it was quite difficult to arrive at the
current representation. Further discussion on this issue can be found in a thesis by Ziv
Rozenblum(19).

20

: :
: : :
Disposing)« Seismic

to. tq — undefined time

Exported Oil & Gas

Figure 2-3. Level 2 Decomposition of the Oil and Gas Production Process

2.2.3 Third Level Decomposition of the Oil and Gas Production Process

The Level 3 decomposition of the oil and gas production process, Figure 2-4, expands Extracting
and Treating to two sub-processes each and adds supporting processes. Extracting is broken
up into Reaching and Transfer, which must occur in that order. Treating decomposes to
Changing Composition and Changing Properties. (Once again for the formal definitions of all
the elements in the decomposition see Figure 2-1 on page 17.) Both of the Treating processes
usually occur but not in a particular order. All four of these sub-processes are executed by
generic instrument objects: Reachers, Transferers, Composition Changers, and Property

Changers.

The Interfacing process interacts with the Moving process and represents specific interface
functions that several objects in the oil industry do in nearly every oil and gas production
process. This occurs in two places in the production process. First, when moving of reservoir
fluids occurs just after extraction there is a need for specific interfaces to the moving process.
The wellhead is one of these interfaces. The second occurrence of these interfaces is between
Treating and Moving. When the Mover is a discrete mover like a tanker, an interface called an
offloading facility is required. The OPD’s that show the decomposition of these two interfacing

processes are shown in Appendix 2.

On the right side of Figure 2-4, we can see the supporting processes in the level 3 model. These
so-called supporting processes each interact with most of the instrument objects of the value
delivering processes, but because they aren’t directly involved with the delivery of value (that

21

is, turning reservoir fluids into exported oil and gas) they fall into the second layer processes—
the supporting processes(11). It was important to highlight these supporting processes
because the decisions on how to do some of these processes are major architectural decisions.
For instance, choosing which type of mechanically supporting substructure is to be used turns
out to be one of, if not the, main decisions for an offshore facility. Other supporting processes
such as maintaining, powering and provisioning, are operationally important but less significant
from an architecture standpoint. The level 3 decomposition also shows a few objects outside
the system boundary: people who operate and maintain, and provisions for the system which
must be accounted for in the interfaces.

(’ﬁowiﬁ]f‘ Power :
S ¢ supplier '

Subsea {

Umbilical &

.
Heannnan?

(Oisposngye—

L
; [- Chemicals
é g,..«d Water
]
; e
] : -m

.............

Exported Oil & Gas

Figure 2-4. Level 3 Decomposition of the Oil and Gas Production Process

The first icon also shows up in level 3. The subsea umbilical icon is an example of a power
supplier. We placed icons throughout the decomposition in an effort to make it easier for our
sponsors, who are extremely familiar with all the elements that are involved in the oil and gas
production process, to understand our different way of decomposing their processes. Each
icon shows a concrete example of an element or process that we have abstracted to a more
generic representation. We found that the use of these icons helped those in the oil business
be more comfortable thinking about the oil and gas production process in this decomposed
way. Much as the OPM methodology seeks to discover new solutions by abstracting objects
and processes, concretizing an object or process serve to provide an example of one particular

solution.

22

2.2.4 Fourth and Fifth Level Decomposition of the Qil and Gas Production Process
Our lowest level decompositions are the level 4 and 5 decompositions. There are 11 of these
level 4 and 5 OPD’s all of which can be seen in Appendix 2. Each zoomsin on a particular
component process in the oil and gas production process in the level 3 decomposition (Figure
2-4). Figure 2-5 shows one example of these level 4 and 5 decompositions. It zooms in on the
sub-process Reaching.

Figure 2-5 shows that Extracting is decomposed (in part) to Reaching, which is done by a
Reacher. A specialized form of a Reacher is a drill. Reaching has the attributes of: direction,
operation time, location, and placement. Each of those attributes has some specialized variant.
For example, operation time could be year-round or seasonal. Location is an attribute that
describes the geographic location at which the process will take place. Placement is an
attribute that describes, in a sense, the vertical “plane” on which the process is supported
(mechanically). More discussion of these different attributes of location is found in the next
section.

As discussed in the previous section, this and most of the level 4 and 5 OPD’s contain icons that
link elements in the decomposition to concrete instances in the real world which that element
represents as used by BP.

The level 4 and 5 decompositions represent the full extent to which we have decomposed the
oil and gas production process. The remainder of the chapter will focus on how this
decomposition leads to an architecture generating model in OPN.

23

ERD Wells

#

'
i
'
'
i
i
'
'
|
i
'
'
i

e Stan dard wells

Seasonal

Drilling Platform

Drilling

Figure 2-5. One of the 11 Elements of the Level 4 and 5 Decomposition of the Oil and Gas Production Process (for
the others see Appendix 2)

2.2.5 Describing Location

The motivation for this work was to generate architectural concepts for a given situation in
which an architecture was desired. A particular situation is described and differentiated by the
context that surrounds it and the particular parameters for that situation. These parameters
are a set of variables that are “given” from outside the system and are understood to be the
same for all possible architectures. It could be said that they outline the architectural design
space for each situation. These parameters include information about the reservoir(s), the
geologic, MetOcean, and other information about the environment surrounding a potential oil
project. They also include information about the financial markets and political environment

that the oil project must exist in.

We developed a framework we called Location that describes a set of those parameters
concerned with the geography of the area near the potential oil project. We needed a
framework that could be used to describe the various situations that might require an
architecture concept for an oil production process. This framework had to include all the
information that would need to be filled-in to completely describe the situation. It would have
to include enough detail such that the different concepts could have metrics calculated about
each of them. The framework had to be general enough that it could be used for a wide range

of situations.

24

Figure 2-6 is an illustration of the location framework that we developed. A particular situation
for an architectural concept would have all of these possible locations: At the Field, in Shallow
Water, on The Shore, Farther Inland, and in ice Free Water (if there is ice present). We think
these locations are the minimum set needed to describe a situation in enough detail to be able
to generate architecture concepts and calculate meaningful metrics about each of those
concepts. Different situations would have different attribute values at each of these locations,
but each situation, in general, would have these locations and the same attribute decisions.

Figure 2-6 illustrates the five locations, while Figure 2-7 shows what attributes need to be
defined for each location for a given situation. Location 1, At Field, describes the location
offshore that is directly above the reservoir(s). Before you could generate concepts you would
need to fully describe this location, including its water depth, geographic location (as in latitude
and longitude coordinates or distance from the other locations), the area of the reservoir or
field in question (i.e. km?), whether or not that location was prone to seismic activity and the
characterization of that seismic threat, the ability of the sea floor and surrounding environment
to be built upon, whether or not there are concerns of arctic ice and the characterization of
that ice disturbance, the particulars of the MetOcean conditions at that location, and finally the

nature of the environmental sensitivities of that location.

Location 2, Shallow Water, represents the location closest to the field with a shallow enough
water depth that shallow water structures could be built and/or from which extended reach
drilling to the field could take place. The water depth of this location would be in the up to 50
m. The attributes required to be defined for this location is shown in column 2 of Figure 2-7.
This includes the one attribute decision that has not been described yet, Infrastructure. The
attribute infrastructure requires a characterization of any existing infrastructure at a location
that could be leveraged either in construction or during production. Examples might be existing
transportation lines or nodes at a location or other oil facilities or pipelines that already exist at
a location.

Location 3, The Shore, describes the closest point on shore to the field or shallow water
location that could be used in an architecture for logistics or as a location for a facility in the
production process. Location 4, Farther Inland, describes a place farther inland that either has
some existing useful infrastructure or is more conducive for the construction of some useful
infrastructure in an architecture. Location 5, Ice Free Water, is only used in arctic situations and
describes a location that is the closest spot to the field with year-round ice free water. This is

25

where one might locate a logistics node or production facility in an architecture. Each of the

required attributes for these locations can be found in Figure 2-7.

Location 4:
Location 5: Farther |_:nland
Ice Free Water Location 2: f
; Location 1: Shallow water | pcation 3: :
- ALEIRd : The Shore |
End of P
icy area ' o o
i Reservoir Field i

Figure 2-6. Locations for a Concept

Important Location

Attribute 1 2 3 4 5
Depth X X X
Location X X X X X
Area of Field X
Seismic X X X X
Buildability X X X X
Ice Concerns X X
MetOcean X X X
Infrastructure X X X X
Env Sensitive X X X X X

Figure 2-7. Attributes for Locations

2.3 Developing the Morphological Matrix for the Oil and Gas Production
Process
The first step toward making an OPN model to generate architectures for the oil and gas
production process was to construct a morphological matrix that outlines the design space from
which all the architecture concepts are generated. The morphological matrix is basically a
collection of all the major decisions that must be made in order to define a concept for the
architecture. In order to collect all the major decisions we referred to the decomposition of the
oil and gas production process outlined in the proceeding sections. Specifically, we looked at all
the level 4 and 5 OPD’s for places where decisions must be made.(14) An example of this is

shown in Figure 2-8.

26

Places in the oil and gas production
process where decisions occur

Drilling Platform

On shre
Drilling

...

Figure 2-8. Example of Decisions in Decomposition

The choices that come from the OPD’s turn out to be choices of processes, choices of form, and
choices of attributes. The traditional morphological matrix has rows that each represent one
decision with the name of that decision and the individual choices that could be made.
However, this style of morphological matrix doesn’t convey any sense of the hierarchy of
process, then form, and then attribute. So we developed a hierarchical morphological matrix,
shown in Figure 2-9, that includes extra information for each row where the name of the
decision used to appear. In this new style of morphological matrix one lists the process
decision and any individual choices about that decision. Next, any decisions about the
attributes of that process are listed. Then, one lists form decisions that are related to that
process and individual choices about those forms. Finally, one lists attribute decisions about
those forms and individual choices about those attributes. These decisions are listed in an

outline format to show the structure of the hierarchy.

One could go further in this idea of hierarchy in the morphological matrix and show a cascading
set of lower decisions to be made based on higher level decisions. For instance in a hierarchical
morphological matrix, if there was a decision about process x with two choice possibilities A
and B, choice A would have a whole different set of form and attribute decisions below it than
choice B. Each of those form or attribute decisions could have different sets of related
decisions below them. We have not produced such a matrix and producing a visualization of it

would be difficult but the style of morphological matrix has the potential to be useful.

27

For the oil and gas production process morphological matrix, after locating all of these different
places in the decompositional model where a decision was necessary, the decisions are
gathered in the matrix shown in Figure 2-9, using the hierarchical method of listing the
decisions described above. In this matrix, the decisions in the somewhat outline format are on
the left while the individual choices for each decision or listed on the same row on the right.
Shaded/yellow boxes indicate decisions or individual choices that were left out of the eventual
OPN model in order to simplify the model.

Every possible concept is represented in this matrix. A concept would be an instance of
choosing one individual choice from each row. This combinatorial space is very large. Ignoring
the shaded/yellow squares and any constraints about things that can and can’t go together
there are about 224 million concepts. This is way too many concepts to consider or generate.
Luckily there are a great number of constraints that limit different individual choices being
paired with other individual choices.

28

Function Form Attribute Possible Choices
Extracting-ReachinWelis Drilling Standard [Extended Reach
Well Head Location At fisld Shallow Water
Drilling Season Year Round . .
Driller Platiorm I MODU Both
Extracting-TranspgReservoir Driver -push Gas and Water Inj -
Extracting-TranspdReserveirDriver-pull = . _ ESPPumps |
Interface Extracting Tree Type Dy Wet Mixed
Facility Between Welthead and Treating _ Satellite Platform Sub-sea Manifold None
Treating Treating Facility Geographic Location At field Shallow Water | The Shore | After lce Belt
Vertical Placement On land On Sea Surface On Sea Floor
of Sites One _ Multi
Operational Season Year Round _ Seasonal
Substructure GBS | SPJ Semi |FPSO|Artficiallsland| None
Storing Storing Facility Yas No
Storing Geographic Location | At field| Shallow Water | The Shore] FartherInland | After Ice beit| None
Storing Vertical Placement On Land On Sea Surface On Sea Floor
Substructura GBS | SPJ Shipshape | Artificial Island | None
Moving Mover from Wellhead to Treating Facility Pipeline None
Mover From Treating Facility to Storage Pipeline _L Tanker l None
Mover From Treating Facility to Treating Facili - e T T
Mover To Custody Transfer Pipeline Tanker [None
Interface Moving |Interface o Tanker from Treating Facility Offloading System None
Interface Moving |Interface to Tanker to Custudy Transfer Off-loading System None
Custody Transfer |Custody Transferer Loecation Atfield | Shallow Water] The Shore Farther Inland | Distant Shore

Figure 2-9. Hierarchical Morphological Matrix of the Oil and Gas Production Process

29

2.4 Constraints within the morphological matrix

This section will discuss the constraints that correspond to the decisions and choices in the
morphological matrix that are necessary to prune the infeasible concepts from the design
space. Figure 2-10 shows the constraints within the morphological matrix. (See Appendix 3 for
further explanation about each constraint.) These constraints in general contain a great deal of
the industry knowledge that is required to construct an architecture generator. Some of the
constraints are buried in simple physical understandings. For instance, if you choose to have a
treating facility on the shore it makes no sense to later choose a ship-shaped substructure
(FPSO-Floating Production, Storage and Offloading). Others constraints are only clear to those
in the oil industry. For instance, you wouldn’t have a pipeline mover from a Treater with a
FPSO substructure. It took more than a year for the author to gain the industry knowledge to
develop these constraint relationships, but for those already familiar with the oil industry these
relationships are better understood and almost second nature. One of the great advantages of
this method is that is takes this tacit information about these relationships, which is well known
by experts in an industry, and formally collects it, makes it explicit, and leverages it to
“automatically” generate concepts. One key lesson was that this method is much easier and
quicker if done by those already knowledgeable about the industry in question. This is
particularly true if the person is knowledgeable about these constraint relationships, major
architecture decisions and rules of thumb concerning different elements of an architecture or
system.

About 20% of the constraint relationships shown in Figure 2-10 were “discovered” through trial
and error in the development of the OPN model. That is, after test runs, some nonsensical
concepts would be generated and the OPN model would have to be adjusted to eliminate them
from being generated in the future by adding some additional constraints to the model. These
“discovered” relationship constraints are buried in the logic of the OPN model and now are
difficult to express explicitly.

30

Constraint

no standard drill with shallow water well location

no platform driller with wet or mixed trees, no MODU with dry or mixed trees

no dry trees with sub sea manifolds; wet or mixed trees must have sub sea manifold

no standard drill with shallow water, the shore or after ice belt treater location

no dry trees on sea surface treater placement, no wet trees with on land treater placement,

no mixed trees with on land or sea surface treater placement

no on sea floor or on land treater placement or dry or mixed trees or the shore treater location with Semi or
FPSO substructure,

DI DIWIN]

~

no at field or shallow water or after ice belt treater location or platform driller or on sea floor or on sea surface
_8jtreater placement with no substructure
no the shore or after ice belt treater location or on land or on sea surface treater placement with GBS or SPJ
9|substructrue,
10]must be no storage facility for FPSO treater
11]no on land storage placement with at field or shallow water or after ice belt storage location,

12|no on sea surface storage placement with the shore or farther inland storage location,

13Jno on the sea floor storage placement with the shore or farther inlant or after ice belt storage location

14Ino the shore or after ice belt or on land or on sea surface with GBS or SPJ,

15]|no on sea surface or on land or the shore with Semi or FPSO,

16]no at field or shallow water or after ice belt or on sea floor or on sea surface or FPSO with none

17}no dry trees with pipeline from wellhead to treater

18]must be no mover from treater to stroage for FPSO treater and if there is no storage facility,
19]no pipeline mover from to storage for Semi Treater

20]no pipeline mover to custody transfer with FPSO treater or shipshape storer or semi treater

21]no offloading facility with pipeline mover or none for treating to storage mover, must be none if no storage facility

22|no offloading facility with pipeline mover or none for mover to custody transfer

23|if no stroage facility then 'none' for 'to custudy transfer mover if match with treater location,

if the treating location is ...

24]...at the field then the wellhead location must be at the field

25]... in shallow water then the drill type must be extented reach

26]... in shallow water and the wellhead is in shallow water then mover from wellhead must be none

27]... in shallow water and the wellhead is at the field then mover from wellhead must be pipeline

28)...the shore then the drill type must be extended reach and the mover from wellhead must be pipeline

...after ice belt then drill type must be extended and the wellhead must be at field and mover from wellhead
29}must be a pipeline

if storage location is....

...In shallow water then treating location must be at the field if the is a mover to storage or after ice belt
30]if the mover to storage is tanker

31]... at the shore then the treating location can't be at the shore

32|...at the shore then and there must be a mover to storage if treating location is at field or in shallow water

33|...at the shore and the treating location is after ice belt then mover to storage must be a tanker

34|... after ice belt and the treating location is after ice belt then mover to storage must be a none

35]... after ice belt and the treating location is at field then mover to storage must be a tanker

36|...farther inland then the treating location must be at the shore and the mover to storage must be pipeline

Figure 2-10. Table of the Constraints in the Oil and Gas Production Process Model

2.5 Metrics and Outcomes

Enumerating all the architectures in a design space is an important and informative method in
the development of complex systems. The method discussed in this chapter helps to ensure
the full envelope of the design space is explored. It will hopefully lead to new concepts that
might not have been developed using more traditional concept development methods.
However, enumerating hundreds or thousands of concepts is not helpful unless there is a way

31

to make sense of them all. That is, the ultimate aim is to so develop a single system, so there
must be some down selection. This is enabled by thoughtfully chosen metrics, applied in a well
planned strategy. One advantage to this method is that it can employ very rough, easy-to-
calculate, metrics to cull 90% of the concepts, leaving the preferred concepts for further study
or for further down selection by more sophisticated metrics. This method also enables the use
of multiple metrics, allowing for a multi-disciplinary search for the best concepts and allowing
human decision-makers the ability to see how the application of different measures of merit
affect the set of feasible concepts for a system. This section will discuss how metrics can be
used in the generation of oil production system architectures.

2.5.1 Possible Metrics

Ultimately a decision maker want to choose the best concept based on which concept delivers
the most value. Value is benefit at cost. (11) For the oil and gas production problem, benefit is
measured in the systems performance. This would include throughput of exportable product
and treatment efficiency. Cost in a broad sense would include resources expended (cost in a
more narrow sense) and length of construction or development schedule. Both benefits and
costs could be metrics used to measure concepts to find the ones with the best value. In this
case, we assumed that the performance or benefit delivered from each concept would be
equal. Thus we were only interested in measuring the cost side of value. These metrics are
then iso-performance metrics, because they are used with the understanding that the
performance of each concept is equal. Therefore the concepts with the least cost have the best
value.

Cost

Cost is the first obvious metric that could be used when enumerating thousands of oil and gas
production system architectures. A cost metric would be implemented by attaching some cost
value to each decision choice and then summing all those values for each concept. This could
be done in two ways. The first would be to have the cost values on each choice process in the
OPN model and as a token passes, the corresponding cost value from a choice would be added
to some accumulating cost variable on that token. The second way would be to associate the
cost for each choice and sum them up in post processing. This could be in a simple spreadsheet
or in a more complex cost estimating software.

In this project we were not able to extract all the need cost data to be able to apply this cost
metric to the architectures generated by the model discussed in the next section. However,
using a limited knowledge of the nature of the cost estimation relationships in this design space
a pseudo cost metric was applied to the 878 architectures that were generated by the model

32

discussed in section 2.6. Figure 2-11 shows the pseudo cost for each of the generated
architectures in the darker (blue) bars. In this chart a couple of trends are shown that are
commonly seen in similar metric charts for architectures of different systems. First, a series of
step-like patterns in the cost metrics can be seen. These steps indicate that some significant
architectural choices are being made at each step. To better understand the design space it
may be a good idea to investigate what major decisions and choices correspond to these steps.
Additionally, on the left there is clearly a set of concepts (the top 10) that are distinctively lower
from a cost perspective. That makes it easy to just take those 10 concepts on further in the
development and analysis and throw away the remaining concepts. It is interesting to know
what common features all of these preferred concepts share and how they are functionally
different.

Figure 2-11 also shows an example of a very simple metric that may be useful. The white bars
at the bottom show the number of major elements in the architecture as indicated by the scale
on the right. This number ranges between 3 and 8 and counts elements like platforms,
pipelines, tankers, and subsea wells. One interesting trend in this graph is that the pseudo cost
does not strongly correlate with the number of elements in a concept as one would expect. It
can be seen that the number of elements in a concept varies widely across the entire spectrum
of cost. This would at least indicate in a real case that the number of elements is not a strong
influence in the cost of a concept, but that other architectural decisions have a stronger impact
on cost.

33

450 . =
& Psudo Cost Oil Architechtures

o Element count w/ Pseudo Cost and Element Count

400

350

300

»
B
=3

Psudo Cost

[
>
o

878 possible
|| architectures
generated

50| Top 10

100

50 -

Element Count

Figure 2-11. Example Plot of Metrics for 0il and Gas Production Process Architectures

Schedule
Another metric that was of interest to our sponsors and that would be as easy to implement as

the cost metric is construction/development time. Schedule is a major factor in the
development of many systems in the commercial world. To implement this metric one could
estimate the construction time by assigning some time-to-build value to each choice and
cleverly summing them up to a total development/construction time. Because construction of
elements in large systems is nearly always done in a somewhat parallel manner, the total
development time wouldn’t be a pure sum, but one could easily enact some rough time
estimation procedure. Once again the aim would be to roughly estimate some time metric to

be able to tell the possible desirable concepts from the undesirable concepts.

Net Present Value

With knowledge of construction schedule and cost, and estimates of production schedules, one
could also use Net Present Value (NPV) as a metric to sort the generated concepts. The idea of
using NPV to sort architectures generated by OPN models is discussed in more detail in
Rozenblum’s thesis.(19)

Technology Readiness Level
The final metric we considered using to sort the 1000’s of possible architectures that may be

generated by this method was to assume their development risk as measured by Technology

34

Readiness Level (TRL). TRL is a score given to a technology or component within a system to
gauge how far it has matured in the development cycle. A technology with a TRL value of 7
represents a technology or component that is mature and fielded. A TRL value of O represents
a technology or component that is only an idea. The integers between 0 and 7 fill in the
spectrum of development between those two extremes. (See Appendix 5 for the full scale.) In
order to use TRL as a metric for sorting architectures we needed data that matched oil industry
components and their TRL scores. Our sponsor was able to provide such data, but it was for a
more specific problem and design space which was different enough from our general model
(discussed in the next section) that we had to make an alternate model. This alternate specific
model and its further use of TRL as a metric are discussed in section 2.7.

2.6 Implementation of the Model

With the idea of metrics now in place, this section will discuss the implementation of the oil and
gas production process as an OPN model that generates all the feasible architectures. The
implementation of the model is facilitated by OPN.(12) It begins by making the various objects
and processes to be used in the OPN model and connecting them in a logical way. Next, code is
written to be performed by each process. Then constraint coding is written for the connections
as pre- or post-conditions to prune infeasible concepts before they are created. Finally, the
model is run several times, with the resulting concepts being checked manually each time for
infeasible instances. If such infeasible concepts are found, the model is adjusted to eliminate
those infeasible concepts from being generated again. This “bug checking” process is iterated
until there are no infeasible designs in the generated set of concepts.

Figure 2-12 shows the layout of how the OPN model is populated with processes and objects.
The objects (rectangles) are the decisions from the morphological matrix shown in Figure 2-9.
Initially objects were placed in the OPN model labeled and in the same order as the decisions in
the morphological matrix. After each of these objects, OPN processes (ovals) were placed in-
line, abreast, and below their respective decisions. This is shown in two examples in Figure
2-12, with the OPN processes (ovals) replaced by icons to illustrate what each OPN process
represents. Arrows are added as shown in Figure 2-12, branching from the decision OPN object
(rectangle) to each of the individual choices for that decision and then collecting again at the
next decision object. In this way, the diagram in Figure 2-12 illustrates the flow of data tokens
through the OPN model: each process generates a set of tokens such that one token
propagates through each of the possible choices associated with that decision (each choice
being represented by an oval in the OPN model and an icon in the figure), and the tokens
congregate at the next decision (object) in the chain to repeat the procedure. This continues

35

until the entire tree of decisions and choices has been traversed by tokens; the first pass at the
model simply proceeds along the tree in the manner laid out as top to bottom of the

morphological matrix seen in Figure 2-9.

On each OPN process which represents an individual choice, code is written that would identify
on a token that passes through each process which choice was made in each decision. This was
done by assigning a variable to represent each decision, then assigning a different value to that
variable based on which individual choice process a token passed though (chose) in each
decision. For instance, in the example in Figure 2-12, there would be two variables; the first
could be Sub_typ and would represent which choice was made in the substructure type
decision. Sub_typ would equal 1, 2, 3, 4, or 5 based on which of the five individual choices
(from left to right respectively) through which the token passed. The second variable could be
MT and would represent which choice was made in the “Mover from Treating” decision. MT
would equal 1 or 2 based on which of the two individual choices (from left to right respectively)
the token passed through. A token passing through the Floating Production process would
have the variable Sub_typ set to equal 2. If that same token were to then pass through the QOil
Tanker in the next decision it would then also have the variable MT set to equal 2. Thus, when
a token reached the end of the OPN model and had Sub_typ=2 and MT=2, this token would
represent one architecture that has a Floating Production substructure and an Oil Tanker
Mover from Treating. Appendix 4 shows the different variable abbreviations used for each
decision in the OPN model, as well as the values used for each of the individual choices in those

decisions.

Choices in the oil process diagram become

braljnch points in the OPN. Where each \ e
choice becomes a process on a branch that T a
carries some attributes about that choice. ‘ Substructure Type l

Onshore

Drilling

Constraints are imposed on the arrows .- on ’ H
leading to processes in each branch. ‘%

They restrict passage to a process based \/ﬂwm

on the previous path to that point

Figure 2-12. OPN Model Implementation Layout

36

The model, if run in its current configuration, would generate more than 200 million
architectures. And if the model were able to finish, the tokens that reached the end would be
encoded with all the different individual choice elements it passed through (chose), and after
some decoding this could be turned into a description of that instance of an architectural
concept. Those millions of architectures would be mostly infeasible and that many concepts
being generated would exceed the computational resources available, so constraints are -

necessary to prune the infeasible concepts in the model.

Constraints (shown in Figure 2-10) are implemented by placing Boolean statements
(preconditions) on the arrows leading to each OPN process (these are all the individual choices
in each of the decisions). These Boolean statements don’t allow the passage of tokens that
don’t meet the inequality constraints of the statements. Each of the constraints in Figure 2-10
is transformed into Boolean statements on one or more arrows in the model. For instance, a
constraint statement might be “no oil pipelines with Floating Production systems” (constraint
number 21 in Figure 2-10). Practically this is because it is not possible to hook a pipeline up to
facilities with these types of substructures. In the model this constraint statement would be
implemented by writing a Boolean statement on the arrow leading to the Qil Pipeline in the
Mover from Treating decision that says that the variable Sub_typ must not equal 1 or 2. This
stops any token from passing to Oil Pipeline if it has already passed through Floating Production
in the previous decision, but allows any other token to pass. Constraints can also be
implemented that are much more complicated. Two general examples of complicated
constraints would be constraints that say “D may not go with C=3 if A=1” or “D may not go with
any C but C=2 or any B but B=2 and B=3". All the constraints in Figure 2-10 were implemented
in the model in this manner. After many iterations of debugging, 20% of those constraints were
added because they were overlooked in the initial thinking.

In OPN, the order of the decisions and constraints in a model, such as this one, affect the
model’s ability to run to completion. In order to help the model run more quickly and ensure
completion with available memory, the model should be structured following two rules of
thumb. First all the decisions with more branches (more individual choices in that decision)
should be towards the end of the model. The model should generally be arranged with
decisions with the smallest number of branches near the beginning and decisions with the
largest number of branches near the end. The second rule of thumb is that the model should
be arranged such that the constraints are concentrated closer to the beginning of the model.
Unfortunately these two rules of thumb often conflict. In order to improve the speed of this
model, the decisions were rearranged to follow both rules of thumb as best as possible. An N2

37

diagram was made that showed the number of branches for each decision and which decisions
had how many constraints related to which other decisions. After calculating a weighted
priority for each decision based on its adherence to the two rules of thumb and some trial and
error, the current arrangement of decisions in the model was completed. This current
arrangement is a good compromise between conflicts of the two rules of thumb. A screen shot
of the final oil and gas production process OPN model is shown in Figure 2-13. This model

generates 878 architectures in 156 seconds.

T TR

o i

@x;wm;,)
i e

s 30 i’Wg Fie T
mmm Qm
w&wm o |
i - —
& stiraad w&nmgm "‘s ol ffﬁ,mgm)
U e P Wiebad o Taar. sy SN P
Slhige it (R R
, o . _.*-MD
 emmtesshewl
oren &Mﬂgﬁys&;w) ¢, ‘@4 m Mzma §

. o s
rwx\fw ‘

Q'KT/

’mw vm.d Baand

Wﬂ&% St N&.&\m Bawa ¥ "i u\‘:fs . i
\ { / Wit i B o e
' ooy g 2 oo
o To B e

Hhpees Fw Wm 0 By

Breog Paigg esi»i:(.» R

(=

SU—

e B

A

ol s & smmmm

*»sw»&wm“\ ’
e B eshe fabint . Fus
A b
?im"‘ /

Figure 2-13. Screenshot of Oil and Gas Production Process OPN Model

38

At this point the model is generating all the feasible concepts. All the tokens that reach the end
of the model are instances of valid architecture concepts. Each of these tokens has an encoded
string of variables that represent all the choices made in the design space. These concepts can
now have metrics applied to them in post-processing to rank them from best to worst or help in
selecting the best set to be carried forward in development. One could also implement metrics
in the OPN model. This would involve adding code to each of the processes throughout the
model that calculates some running metrics as the tokens flow down through the model. This
method allows the pruning of concepts in the middle of the model that will clearly not meet
some threshold, thus speeding up the model overall. One could also add processes at the end
of the model that calculate metrics for each token based on the variable string each is carrying.
This allows the user to export the concepts from the model with metric values already
attached.

2.7 Alternate Specific Oil and Gas Production System Model

This project also considered the use of Technology Readiness Levels (TRL) as a metric to sort the
many generated concepts. The use of TRL as a metric was prompted by our sponsor during
work on architecture concepts for a specific problem for which they were able to provide
specific TRL’s for all the major components of all the major concept branches in the decision
space. To use this specific TRL data, an alternate specific OPN model was made to generate all
the possible concepts in this specific design space. This model was based on discussion and
information from our sponsors and followed a line of thinking similar to a decision tree or
decision path. This decision path representing the Alternate Specific Model is shown in full
view in Figure 2-14 and in closer views in Figure 2-15, Figure 2-16, and Figure 2-17.

This alternate specific model was made in a very short time span (about 2 days from initial
discussion with our sponsor to understand the design space to completely finished and
generating architectures). Of course, this was after almost 2 years of learning about the oil and
gas industry. In the decision path individual decisions fall into decision categories, which are
represented by the corresponding bands across the decision path. Each of those bands
corresponds to one of the major processes in the oil and gas production process shown in
Figure 2-4. Comparing it to the oil and gas production process decomposition and the
subsequent OPN model, both of which were discussed in the majority of this chapter, we found

similarities and differences.

The two models are similar in that the more specific model still captures all the major processes
previously discussed in the more general model. The more specific model also contains some

39

of the same alternatives (choices) as the general model. Finally, they both have an overall
branching structure that comes from ADG(13) type models.

There are several noticeable differences between the general model and the specific model.
The specific model has a much more tree-like structure as opposed to the branching in and out
structure of the general model. The tree-like structure handles many of the constraints in the
specific model explicitly in the structure of the model. in the general model nearly all of the
constraints are handled as pre or post conditions and thus the structure has a more general
ADG appearance. The general model does have one instance of this tree-like structure which is
seen in the “No storage facility” branch in Figure 2-13. The specific model has many more of
these tree branch structures. For example, the wet tree branch, the TLP (Tension-Legged
Platform) branch and the no hull branch avoid the use of pre and post condition constraints by
having their own train of decisions. There are more than 40 pre and post condition constraints
implemented in the general model while the specific model, through the use of the tree-like
structure, only has 11 pre and post condition constraints. One example is that coming from the
deep draft caissons, only those with wet trees may follow the branch to a MODU (Mobile Oil
Drilling Unit). It is therefore much easier to visualize the nature of the decision space on the
more specific model. Another difference is that the specific model does not address many of
the location and placement related forms and attributes of the general model. It also does not
address other more specific forms and attributes of the general model. This more specific
model concentrates on floating hull types and leaves out any platform-iike structures which are
both represented in the more general model. This is because in the situation that this more
specific model addresses, the water is too deep for fixed structures and much more conducive
to floating facilities. The more specific model also addresses several forms, attributes and
processes that we thought were too specific and not major architectural decisions in the
general model. The main reason of the inclusion of these more specific decisions is their
relationship to this specific situation or, more importantly because these are system
components that have specific technology development concerns for this particular situation.
Therefore, due to the developmental concerns for these more specific decisions they must be
included in a model that uses TRL and cost as a metric.

40

Major Process - Decision
Extracting- Tree Type

Interfacing/Operating- Subsea Elements

Powaering- SubseaUmbilicals

Moving- Subsea pipes
|
/ /”?:(flf:/"‘ Faumble ™y
{_Flosdines,)/\i::h_]i;’).
Treating- Subsea Treating (e
| |
Supporting-Hull Type il Type % a1 Tre

I e - R e

T = = —
TS S G AN TD T

TN Rty — e
Staxl b E 4 Y g [5
\ s Sonérate 5 ((__stael }\/L ey L = : (/sm_.\ Interfacing
v, S gy, St
e ety S\
Extracting- Drilling Facility g Criing Fackpetar
Capable Hulls TLFY Ho Hull
el y

Crilling Faclieyfar Hulls
weja Drilling Sapaliiity
s

Drilling Faciiies for
Capabla Hulls

. A P : -7
S C ¢ reon > Figure 2-14. Decision Path for
N ~ = gy Alternate Specific Architecture
Electrical Submersible Pumps -—4—{—"”/“35-?-‘3 -[4;:?“" Er-;él_ 1
(ESP)with Mobile Ol Driling ? Ceimers X Withow 85 @lqhou:z@ MOdel (Fu" VleW)
_Unis(MODU) iy o e
Extracting- /
S N TP Dirilling Piser o
Drilling Riser Type oo -
@%m «-':,.-driy_) (/\,\E’E :) C /"‘Eiif:)
Supporting-
Mooring Type
mm;\) 200y
C oy
Tendon e, ; =
Ql”'l“‘/ T i
Supporting- [Frurero susfioar] E:)um;ul .
Seafloor Fixture Type = 2 “"‘\:_w
Foundaiont>) < ries :?(;i‘f,",',:f\
L

ExtractingMoving
Riser Type

E: TIR's

‘W' p———

i
TIR Complaxity
WhTLP's

T e e Ho Hulls
Constructing Tow Type I - e
T g oy
,‘.‘.—K_/'\ ‘:X_\\N Ha Hulls
C e 2 w0 /
S L.

Moving- Long Tieback Subsea Driver \] T
SubseaDriver
e .
q < r',z\ Campresdon)
el

Treating- Processing Facility

Storing- Storage Type
Moving- Offloading Type g V[
i
_.—‘:"/ -
__Hawre) fnn Mnu_rD (fmmnmj
o

41

Major Process - Decision

Extracting- Tree Type

TreeTipe

Interfacing/Supporting- Subsea Elements

Powering- SubseaUmbilicals

Moving- Subsea pipes

7 Feguia ‘\}\/p’e u :ahﬁ?)
N Hosdines A Flexiblss
Salinzs

Treating- Subsea Treating

- = o
< ho /(/ Tes
\ﬁ—’-‘

e

SubseaFrocessing|

i

Supporting- Hull Type

v h
Stesl 3 &) | i
3 stes sun;mf:,i | Buicelstar Interfacmg
\“_ﬁq ey, e
oy Wer e . /.

SPAR _“/

i ,i‘g\
¢ Stael Concrete
.

X\
Hull Typa et Treel

N .

~,

b

Caissan b

~Baeg Draft

£ Sami

o

Extracting- Drilling Facility TR
Capable HullsTLR)

Drilling Facilitias for
Capakle Hulls

Grilling Facilityfor Hulls
7o Drilling Capabilite

T
Tunderassinad Dirilling Faciyfor
Drilling Faciiy Ho Hull

Figure 2-15. Decision Path for Alternate Specific Architecture Model (Part 1 of 3)

Drilling
Zapalste Hulls (TLP

Extracting- Drilling Facility

Drill
<

Dirilling Facittyfor Hull

ing I
w70 Dirilling Capability

apable Hulls

Tender &ssited
I Cerilling Facility

DrillingFacilityfor
Ho Hull

pan

S Trrilling an

(Wl
__T/

Vel D’r:"'intx‘\\

A Tender ./
Skl

B

P
FPASGU
~..

Tirilling an
e

Extracting-
Electrical Submersible Pumps
(ESP) with Mobile Qil Drilling

4

WODU BiFs
i 3
(':\‘im Py X Without B8 3
SN S
- S

HADU ESP’s

With &SPs w

Units(MODU)
Extracting- -
Driling Riser Type | ™ ®ilinetias

i
e
55 BOP Surfaca BOF wd Pr-drill £ % Cspartpisse) Cﬂ;l:frl)
Supporting-
:
Mooring Type
e T St
Tendon) Y,
{_ chainfwire 3 <’>%P\\§
e " ey
Tendon P 7—
‘»\Enel'ar.e) \\,\ -
Supporting-
Seafloor Fixture Type i o
\F:mdmim (’w@ Zugtion
e e
i
ExtractingMoving- S
Riser Type s U
3 Ty
sl \<
&, e ,,.,L -
TIR Complexity 2o, 3 SLHK { ek Fltxl@
with TLF's ‘/z' /}}“:&‘:?u %Hml!
3 R g T ——
Constructing- Tow Type w"“?%w@\ k

Figure 2-16. Decision Path for Alternate Specific Architecture Model (Part 2 of 3)

42

Constructing- Tow Type

Moving- Long Tieback Sﬁbsea Drivef

' Treating- Processing Facility

Storing- Storage Type

“Moving- Officacing Type

\\

COMFLETE

Figure 2-17. Decision Path for Alternate Specific Architecture Model (Part 3 of 3)

2.7.1 TRL Metric and Outcomes
The alternate specific OPN model that was made based on the model in Figure 2-14 , generated

7,536 architectures. The components of each of these architectures had corresponding TRL
values. In post processing, each of these architectures had a metric calculated based on the
TRL values for the components in each architecture. The TRL values varied between 7, which
represents a technology that is proven, fielded and mature, and 0, which represents a
technology that is only an idea. Each architecture had a varying number of components based
on its particular route through the decision path. (See Appendix 6 for TRL and cost data for
each component.) For each component in a concept a penalty was calculated based on its TRL.

The following relation describes the penalty:
Component Penalty =7 — TRL

The penalty, therefore, varied from 0 (no penalty) for mature components to 7 for components

that must be completely developed.

We looked at two methods for calculating the TRL penalty for a concept made up of its various
components. The first uses only the TRL values for the various components and the second
uses these TRL values and the cost for each component. The two methods for finding the total

TRL penalty for a concept are:

Method 1-

Concept Penalty = z Component Penalies for that concept

43

Method 2-

Concept Penalty = Z Component Penalty x» Component Cost

for each component in that concept

Because we did not have any cost data for the components or concepts in this specific problem,
each component was categorized into three cost groups: high cost components (near $100
million), medium cost components (near $25 million), and low cost components (near $1
million) based on our limited understanding of the nature of the costs in this design space.
These costs groups were used to assign some estimated cost value to each component and
then added up for each architecture to give an estimated cost for a concept. These costs were
also used to weight the TRL penalty in the second method under the assumption that larger
cost items will require more development resources than a lower cost item at the same TRL
level. The first method is useful when it is more important to simply gauge the relative
maturity of different concepts by using their component TRL values.

The TRL penalty and cost for each concept was then plotted on a scatter plot chart as shown in
Figure 2-19, Figure 2-20, Figure 2-21 and Figure 2-22. Figure 2-19 and Figure 2-20 use method 1
to calculate the TRL penalty for a concept, while Figure 2-21 and Figure 2-22 use method 2.
Figure 2-19 and Figure 2-21 represent TRL values for components if they are used in water
depths of 1700m, while Figure 2-20 and Figure 2-22 represent TRL values for the same
components used in 2500m water. Each point on the graphs is a single concept. The legend
shows the 12 different data point shapes that correspond to the 12 major concept families
originally provided by our sponsor. The names and a breakdown for the total number of
architectures generated for each of the 12 concept families is shown in Figure 2-18.

44

Concept Family Count

1 Caisson Tender Assist Drilling 864
2 Caisson w/o Drilling 1536
3 Caisson w/ Drilling 1728
4 Spar w/ Drilling 192
5 TLP 4col w/ Drilling 24
6 TLP 1 col w/ Drilling 24
r Semi w/o Drilling 768
8 Semi w/ Drilling 768
9 Small FPSO w/o Drilling 768
10 Long SS Tieback w/o ss Process | 48
11 Long SS Tieback w/ ss Process 48
12 Chunky FPSO w/o Drilling 768
Total| 7536

Figure 2-18. Table of Concept Families for the Alternate Specific Model
(with the number of concepts generated for each family)

In the plots the data points (complete concepts) closest to the lower left correspond to the
concepts that have low cost and a low TRL penalty (the least amount of technology

development required).

TRL Penalty vs Total Component Cost (1700m)

1100
W
i i lodh, i it e i 8 #
1000 e e ¢ 66 o
G e oedioe 0D D0 B @ 0e @
mmea BFOLSVODD & a8 &
® e s PR B B & a8 && R
o0 b0 4l B e Py A G
g Ao TODD 0 ¢ 9¢ ¢
BpRper GORRTUE & &8 & ¢l
e e T LT K T
BOD o B AR BB 5 R SR BB 0 4. aASE0S & © 80 O B
¥ # g BT E@REIERIE O S48 & 0, 09 P 3
et popppan SESEReERsmRRSQ 4 &4 8 O °¢ ¢ o %00 %
w0 wow BeeRleeReRR® Q 4 Barmap®E ¢¢ < 2 oe ¢
700 P i g e e o D messsnnn 0. .00 O & Ak 4 . *S
B ek B B goges W W oo wa as € 90 O 45 a4 o8
babkaas DBOBERERET & BE a4 P RS @90 6 i
§ e Ha manmang °¢ 2 ¢ ¢o o +7
B 600 o o SRR RS SRR R GhgmoERoR T e O OO T TS -8
W aEREEEXBERE O ¥ oo oz ¢ o8 B 4 ss &
e oo T T Ut R R] o 66 © -9
S s T G owg o ® *0 9 <10
00 fosbi o oo D B T T A o R BB &
B e sERGReD G DO D & A& & ¥ w8 @ it
e Syl ae b 4 &4 & & oR o a2
g & Lad R 8RB
400 oA S T S BB B
o & ¢ g A an A
300 v ¢
k] 20 30 A0 50 60
TRL Penaity

Figure 2-19. TRL Penalty (Method 1) vs Cost (1700m)

Total Component Cost

Tatsl Component Cost

TRL Penalty vs Total Component Cost (2500m)

1300
1000 s 7 ; RHOBOND
SO
A
906 SRR .
CHIOAIRD
.:1
SRR a2
300 - AN Adsddonn
53
ARDBEABS W4
BRSNS SLE
700 A8 8
SITLLLEIGAAASAA SESHIREN Bt
ficy 630 10 B: 3 43 BANRBH A
e —— 7
800 A 8
-
Sep
<12
400
300 s
40 100 128 140 160
TRL Penaity
Figure 2-20. TRL Penalty (Method 1) vs Cost (2500m)
TRL Penalty vs Total Component Cost (1700m)
1100
o & o L
PR & o
- o & & PO
- o & & & &
A B B
200 ey 9 e o
st Bowen EO s & o1
i 5 = & 8 5 &
0 @ P 8 2% s ag
¢ % o a2 o ® ¢ » @ k2
¥ 2 WEgn g s on o L 9 2 44
S rr o WY s O oad oo s % % L)
%o g I Y a.8..nono B A 5
i S ¢ £ 4 o o & % &8 & & 6
B o] L il ol ‘
e o R I ¢ 5 o w oo B0 & e *2
00 A e kAP AN - o1 D.BL.E 5 B =8
. o ° ¢ 5 o o o s 2 & & iy
s e 8 £ @ .
. . o D & R 10
Hedl 2 n o & &
500 etk i = o1
S o o oo ¢ B o4O F o
o G LA S S £ 12
i i g ® 2 . % 8
400 Bt b = o s
o S LA 58
300
0 500 1000 1500 2000
TRL Penalty {cost)

Figure 2-21. TRL Penalty (Method 2) vs Cost (1700m)

46

TRL Penalty vs Total Component Cost {2500m)

R

1000

21
n2

xA

¥
00 4

+7

Total Camponent Cast

- «8

e |

%30
11
<12

400

300 g i
e 500 1000 1500 2000 2500 3000 3500 4000 4500

TRL Penalty {cost)
Figure 2-22. TRL Penalty (Method 2) vs Cost (2500m)

Examining Figure 2-19 thru Figure 2-22, several interesting patterns can be seen. For example,
how groups of concepts fall on the graph and how families of concepts perform compared to
others all based on the TRL’s of various component building blocks in a design space. We can
find the preferred concepts in each plot. They are the points that lie closest to the lower left
corner. Since the author is not the decision maker in this problem, it is not clear whether lower
cost or lower TRL penalty is more important, so we have highlighted (with arrows) the two
points in each plot that represent the two ends of the spectrum of this idea. Figure 2-23 shows
a table of the concepts that lie at these points on the plot. Two sets of concepts pop up as
preferred concepts in all four plots. These are shown shaded in blue and red and are
highlighted in the second to last column. One interesting note is that according to our sponsor
the concept family that seemed the most favorable from their analysis was the spar concepts

(concept family number 4). Our analysis appears to have a similar indication.

47

Figure # 16 16 17 17 18 18 19 19
Concept Familyl 7 4 4 7 4 7 4
TRL Penalty Method 1 1 1 1 2 2 2 2
TRL Penalty 0 578 71 67 0 578 243 578
Total Component Costs 380 330 330 335 380 330 380 330
. 4417,4422-
Concept # 4414742222" 4143, 4144 | 4143, 4144 | 4134, 4135 | 174922\ | 4o 1100 | 4424,4431, | e 40y
4424 4434,4437, ’
4438
Tree Type Wet Dry Dry Dry Wet Dry Wet Dry
HIPP's No -—- — No -— No e
Processing Facility Yes Yes Yes Yes Yes Yes Yes Yes
Semi- Semi- Semi-
s L Submersibl i =par Spar Submersibl Bpar Submersible s"?’
Hull Material -— Steel Steel Steel — Steel — Steel
Tow Typel_mt or Dry | Wet or Dry | Wet or Dry [Wet or Dry | Wet or Dry | Wet or Dry [Wet or Dry | Wet or Dry
Tow Tow Tow Tow Tow Tow Tow Tow
| Wet or Dry Wet Wet Wet or Dry Wet Wet or Dry Wet
Storage Type Storage Storage Storage e Stamkge Storage Storage Storage Storage
Offloading Type Tanker Tanker Tanker Tanker Tanker Tanker Tanker
. ‘Chain/wire/ | Chain/wire/ | Chain/wire/ | Chain/wire/ | Chain/wire/ Chain/wire/ | Chain/wire/ | Chain/wire/
Mooring Type
poly poly poly poly poly poly poly poly
Seafloor Fixture Piles Piles Piles Slels Piles Piles Piles Piles
Anchor .
Riser Type, SCR TTR TIR TTR SCR TR SCR or SLH TR
Subsea Manifold] Yes — — Yes - Yes —
Subsea Umbilical Yes -— Yes — Yes —
Subsea Flowline] Reuseable o -— Reuseable — Reuseable -
Subsea Processing No = i — No L No —
o s Drilling from |Drilling from | Drilling from Drilling from Drilling from
Drilling Facility] MODU Hull Hull Hull MODU Hull MODU Hull
MODU ESP'sf No — -— - No - No —
MODU Spar Type | Spar Type | Spar Type MODU Spar Type Spa‘r ’_I:ype :
Drilling Riser Type| Riser Drilliing Drilliing Drilliing Risar Drilling [MODU Riser Dr;liilng-
Riser Riser Riser Riser Riser

2.8 Summary

Figure 2-23. Table of Preferred Concepts from TRL Model

This chapter discussed the method used by this research effort to develop a model that

generates many possible architecture concepts for an offshore oil production system. It began

by decomposing the oil and gas production process into it’s basic objects and processes. This

was done in order for the researchers, which were new to the oil business, to better

understand the process, and to find the decision points within the development of oil

production system architectures.

Next the development of a hierarchical morphological matrix and corresponding set of

constraints was discussed. This morphological matrix was a tool that explicitly outlines the

entire architecture design space and serves as a framework for the creation of an OPN model to

generate concepts. The corresponding set of constraints operate as a set of rules that prune

the infeasible concepts from the full set of possible architectures. These constraints were

developed from implicit rules of thumb known by most in the oil business, but are rarely

expressed explicitly.

Then the metrics that were to be used within the model to rank and evaluate the possible
concepts were discussed. This was followed by the steps to implement the general OPN model
itself, including the outcome of that model.

Finally, in order to explore the use of TRL as a metric, an alternate more specific model was
made to be able to use accompanying TRL data for a more specific oil and gas production
problem. This model and the use of TRL as a metric both showed further usefulness for the
overall method.

49

CHAPTER 3. Multi-Reservoir Multi-Facility Connection Generator

3.1 Introduction

In order to address the second part of the oil and gas production problem, the architecture of
multiple facilities and multiple reservoirs, this chapter will discuss the development of an
Object Process Network (OPN)(12)(10)(14)(15) model that can be used generically to generate
all possible links between any two sets of elements. The model will generate all the possible
connection matrices, a sub-class of Multi-Domain Matrices (MDM) (20), given two sets of
elements to be linked and any constraints on their linkage. The generator discussed was
developed for a specific purpose and project, but it is quite conceivable that this model could
be used as one of several general tools for building system architecture models with OPN.

This chapter will first provide the motivation for the development of this connection generator.
Next, it will explain two possible concepts for this OPN model and why concept that will be
implemented was chosen. The chapter then steps through the implementation of the
generator as an OPN model. Next, it discusses the addition of constraints to the generator.
This is followed by a discussion on the output format and procedures for the generator. This
chapter then finishes with a discussion of the limitations and expansion possibilities of the
model.

3.2 Motivation

3.2.1 The Problem

The problem that motivated the development of this generator became evident during
research conducted at MIT on behalf of BP (21)(1). This multi-reservoir, multi-facility problem
centered around developing an oil reservoir model that captured uncertainties in reservoir
characteristics as well as uncertainties in the economic characteristics that might surround a
project intent on obtaining oil and gas from a reservoir. This model aims to enable BP to better
understand the potential profit and loss distribution for a given reservoir. This model was
expanded to do the same assessment for a set of reservoirs that were connected to a set of oil
production facilities. This would enable BP to better understand the profit and loss
distributions for different schemes of facilities connected to reservoirs, hopefully aiding in the
selection of the best scheme. This model could take a connection scheme and evaluate it, but
each connection scheme had to be entered manually. It was evident that an engine that
generated all possible connection schemes, each to be evaluated by the main model, would
expedite the search for the best connection scheme and ensure that no possible schemes were

missed during the search.

50

3.2.2 Requirements

The design space for these connection schemes was derived from the following hypothetical
situations. There is a set of oil production facilities; for this example we will say there can be up
to three facilities. There is a set of reservoirs. For this example, there are three reservoirs. A
facility could be connected to one or more reservoirs, meaning that facility would produce oil
(or gas) from the reservoirs it is connected to. Finally, there is a set of rules about how these
facilities could be connected to the reservoirs. These rules, also called constraints, might be
that Facility 1 can only be connected to up to two reservoirs or that Reservoir 2 may only be
connected to one facility. With these sets of facilities, reservoirs, and rules there is a finite set
of possible connection schemes. An instance of one connection scheme can be represented by
a connection matrix. In a connection matrix, the rows represent the different facilities and the
columns represent the different reservoirs. Marks in the matrix indicate which facilities are
connected to which reservoirs. For example, in Figure 3-1 the “X” in the Facility 1 row and
Reservoir 2 column indicates that Reservoir 2 is connected to Facility 1. Figure 3-2 is an

illustrated description of what the connection matrix in Figure 3-1 represents.

i (gl (49}
s 5 |5
g e |2
2 |8 |3
() Q [}
oc oc o
Facility 1 X
Facility 2 | X _
Facility 3 X X

Figure 3-1. Example Connection Matrix

Facility 1

Facility 2 pacility 3

Figure 3-2. Example Connection lllustration

21

The connection matrix is the form by which a connection scheme is input in to the multi-
reservoir, multi-facility problem model. The requirement for the connection generator

discussed here created up to a 5-by-5 connection matrix for facilities and reservoirs. This
generator had to enable the user to specify:

e The total number of facilities to be connected

e The total number of reservoirs to be connected

e The maximum number of reservoirs that could be connected to each facility
e The maximum number of facilities that could be connected to each reservoir

¢ Any specific reservoirs that were not allowed to be connected to the same
facility as other specific reservoirs

The model would be required to generate all the possible connection schemes for a given set
of constraints that fell within the above framework and produce each instance of a connection
scheme in a connection matrix or a form easily transformed into a connection matrix. It was

also understood that the software language to be used for this generator would be OPN.

3.2.3 Possible Solution Concepts

Two possible OPN model concepts were considered to generate all possible connection
schemes for a given set of constraints. The first was a looping-indexing concept. The second
was a blocked-cascading concept. Both concepts would generate a connection matrix made of
ones and zeros. The ones would correspond to “X’s” in the matrix in Figure 3-1 and zeros would
correspond to the blank spaces. The general idea for both concepts was to start with a matrix
of all zeros. OPN can be thought of as tokens that flow through the network; recording their
path as they go and picking up attributes as they pass through the various processes in the
network. These processes can also change each token’s attributes. In this model, as an OPN
token passed a process oval (corresponding to a specific facility and reservoir connection), the
value of that connection in the connection matrix would be changed to “one”. An example of
this type of connection matrix is shown in Figure 3-3.

Field 1
Field 2
Field 3
Field 4
Field 5

—|o]|o|o|o|Resen oir 1
o|alo|-|o|Reservoir 2
ol|o|w|o||Resern oir 3
o|o|o|o|a|Resern oir 4
w|o|o|al-s|Resenoir 5

Figure 3-3. Connection Matrix Output Example

52

The looping-indexing concept

The looping-indexing concept is represented Figure 3-4. The process flow in this concept would
work in a similar fashion to how one might structure code in MatLab or C+ to generate all
possible connection matrices. This concept uses indexing inner and outer loops to generate all
the possible connection instances. As the generator starts, tokens begin by passing through
“Facility Indexing”, where the facility is set to Facility 1. Then the tokens go to the “Reservoir
Connection Loop Start” point, where they branch to the reservoirs. After this, they go to the
“Reservoir Connection Loop End”, where they branch to go back to the reservoir loop to be
connected to more reservoirs, or to the “Facility Indexing” loop to move on to connections in
other facilities. Otherwise, they branch to the “Generator End” where instances of the
connection matrix are recorded. The “Facility Indexing” would advance the reservoir loop to
generate connections for the next facility, much like moving to the next block in the following
blocked-cascading concept. Rules would be written to avoid return trips to the same reservoir
while in the same facility index. Coding would have to take care of advancing the reservoirs to
be “writing” on the next row down in the connection matrices. Some care would have to be
taken so that repeats were not produced. For example, in this concept a token path through
Reservoirs 3, then 2, then 1 and a token path through Reservoirs 1, then 2, then 3 could be
produced, but these would be redundant as both paths represent a facility being connected to

all three reservoirs.

WGenerator Start

| Facility indeking

Reservoir Connection
Loop Start

[" Reservoir
|| Inner loop .
. W)

ik

Reservoir Connection
Loop End

Generator End 1-“"/

Figure 3-4. Looping-Indexing Concept

53

The blocked-cascading concept

The blocked-cascading concept would look like Figure 3-6 (which is not an OPN). This concept
works by forming blocks as in Figure 3-5 (which is also not an OPN). A block would generate all
the connection possibilities for one row of the connection matrix. Each row in the connection
matrix would have one specific block that generates all its possible instances. These blocks
would be connected in series to form the whole matrix.

Each block would be structured such that all possible combinations of token paths would exist.
For the connection instance where Facility 1, as represented by Block 1 (Figure 3-5), is
connected to reservoirs 1, 2 and 3, the token would start in the “Block 1 Start” object, then go
to Reservoir 1 and cascade down to Reservoirs 2 and 3 before finishing at the ”"Block 1 End”
object. Likewise, for the instance where Facility 1 is only connected to Reservoir 2 the token
path would be: Block 1 Start, Reservoir 2, Block 1 End.

Reservoir Cascade

o T e Block 1 Start
N e
{ . TS ,W«ﬁ
— o - e
N\ /" Reservoir ™ ~ e\
P -3 e
’“Q‘WMVWW‘MW“
N
AN
S
TN
%
. e :agww..m e N
= SN o wn* {'n‘ Rese;rvo;r ﬁ,ﬁ'%
Block 1 End -~ - T i
—

A i s
To Generator End «# T pnast Blosk

Figure 3-5. Example Block

54

Generator

Reservoir s
1 ‘:: e —
‘\

e
A

Block 1 End N ib

s s s ol Wiggs s wews wns ews Ww e M RN WK OWON W A

R R P R

o e o g e v o OO oo § o e SR W

! Block 2
Generator End : = Remoa.‘j__ - :
‘ 1 - E‘~:»-~~‘
~ S,
el
% ~,
- 2 hY

i
i
; % Reservoir
i
H

N i fal SR
g ‘:*“»”‘\\ Reservoir
Block 2End ~ 3

T ™ o T i R

Figure 3-6. Blocked-Cascading Concept

Concept selection

The two concepts each have their advantages and disadvantages. The looping-indexing
concept is advantageous because it can be very easily expanded in both reservoirs and facilities
and should be able to be quickly made into an OPN model (with very few objects and processes
to create). The disadvantages of the looping concept are that it relies heavily on coding, is
prone to redundancy, and is harder to visualize in OPN since a good deal of its functionality is in
its coding. The blocked-cascading concept has the advantage of eliminating redundancy of
connections by the nature of its structure, not relying heavily on intricate coding, and being
easy to visualize its functionality, which is largely in its structure. A disadvantage of the blocked
concept are the large number of objects, processes and connections to be made in an OPN
model which will slow the creation of the model and make expansion tedious. In addition,
because one cannot copy and paste in current OPN versions, creating and coding each of many
connections will be tedious and redundant work making the model prone to bugs.

55

After several weeks of effort failed to develop a looping-indexing generator (the effort was
plagued with many problems programming OPN to do the indexing from one row to the next),
the blocked-cascading concept was selected. This selection was largely due to the difficulties in
coding OPN to perform the indexing process, which made the looping concept unattainable in a
short span of time. The blocked-cascading concept will be described in detail in the next
section.

3.3 The Solution

The general concept of the blocked-cascading structure for the OPN model to generate all
possible connection schemes for the oil reservoir problem has been presented in the previous
section. Thus, this section will discuss in more detail how this concept was implemented and
how the implemented model works. It will start by examining how one block works, then
describe how adding blocks completes the structure of the model, and conclude by explaining
how the various constraints are handled in the model.

3.3.1 One Block without Constraints

In order to understand how the model works it is best to examine a single block closely. As a
reminder, the aim of a block is to generate connection scheme possibilities for one row in the
connection matrix. In this case a block generates all the possible connection schemes for a set
of reservoirs to one facility. In Figure 3-5, we see that a block has three sections and three
types of connections between items within the block. The three sections of the block are: the
block start, the block end, and the reservoir “cascade”.

Block sections

The block start initializes the block by setting all the values in the row of the connection matrix,
with which this block is concerned, to “zero”. It also sets all the internal block counters (these
will be explained further in the constraints section 3.3.3) to “zero”. Finally, it provides a branch
point for tokens to be entered into the reservoir cascade. In OPN a branch point describes any
place where more than one arrow emerges from an object or process. A token that arrives at
one of these branch points makes copies of itself so that a copy of that token follows each

arrow leading away from the branch point.

The block end collects all the completed connection instances for that block and passes them to
other parts of the model. Each token that reaches the block end is one instance of possible

connections between one facility and the set of reservoirs.

56

The reservoir cascade is made up of the OPN processes that represent a connection to each
reservoir in the problem to one facility. In other words, each reservoir in the cascade is
responsible for assigning a “connected” value (in this case a “one”) to the various columns in
the connection matrix for the row being modeled by that block. The number of reservoirs in
the cascade will equal the number of columns in the connection matrix. When a token passes
through a reservoir in the cascade, the reservoir assigns a value of “one” in the corresponding
position in the connection matrix on that token. For example, in Figure 3-5, which we will call
Block 1 or Facility 1, we are only dealing with the first row in the connection matrix. As a token
passes through Reservoir 2 in this block, a value of “1” is assigned to the position in the matrix
that is in the first row and second column. This corresponds to Facility 1 being connected to
Reservoir 2. Conversely, if a token does not pass through Reservoir 2 in Block 1, then Reservoir
2 is not connected to Facility 1, and a zero would remain in the position in the matrix that is in
the first row and second column. The reservoir processes in the OPN model also advance
counting variables on each token as they pass, which will be explained later in the constraints

section (3.3.3).

Block connection types
Again in Figure 3-5, we see that a block has three types of connections between items within

the block. The first type is the connections between the block start and the reservoirs in the
cascade. The second type is the connections between the reservoirs within the cascade, and
the third is the connections between the reservoirs and the block end.

The connections between the block start and the reservoirs are the solidgreen lines = in
Figure 3-5. They feed tokens into the reservoir cascade and allow tokens to enter from any

position along the cascade of reservoirs.

The connections between the reservoirs within the cascade are the small-dashed black

lines™ == in Figure 3-5. These connections are responsible for making the group of reservoir
processes a cascade. The structure of these connections only allows a token to move down the
cascade or out of it, but never up the cascade. Reservoir 1 is connected to each of the
reservoirs after it and the block end. Reservoir 2 is connected to each of the reservoirs after it
and the block end but not Reservoir 1. Reservoir 3 is connected to each of the reservoirs that
may be after it and the block end but not Reservoirs 1 and 2. This pattern is continued for
additional reservoirs while the last reservoir in the cascade is only connected to the block end.

57

The connections between the reservoirs and the block end are the large-dashed red

lines—— > in Figure 3-5. They allow tokens to exit the cascade from any position. They carry
completed connection instances to the block end.

Proof that a block generates all possible combinations and no more

The structure of the connection in the block ensures that all the possible connection instances
for a row in the connection matrix will be generated, but it also eliminates the possibility of
redundant connection instances. The elimination of the redundant instances is taken care of by
the fact that tokens can only move “downward” within the cascade. If tokens could move both
up and down in the reservoir cascade then there could be a token path that goes from
Reservoir 1, to 2, to 3 and a token path that goes from Reservoir 3, to 2, to 1. Both of these
data strings correspond to a facility being connected to all three reservoirs. The structure of
the cascade forces the former token path to be only one of six possible combinations to
represent this connection scheme. The connection structure within the block, which allows
tokens to enter and exit the cascade from any position in the cascade, and the fact that tokens
may pass though one or more reservoirs within the cascade, contribute to the blocks ability to
generate all possible connection instances.

The total number of connection instances for one facility to a set of reservoirs with no
constraints is easy to calculate. It is 2"-1, where ‘n’ is the number of reservoirs. The ‘minus
one’ term is included because the connection instance where the facility is not connected to
any reservoir is ignored and not generated by the block. An example would be that for one
facility and five reservoirs, the total number of combination possibilities is 2°-1=31. With OPN,
it is quick and simple to count the number of instances generated by a one-block model, and
implementing a model for the above example generates 31 instances. Tests of this nature were
performed throughout the development of this generator to check for bugs and to ensure all

possible combinations were being generated.

Expanding a Block

Expanding a block to have more reservoirs requires an additional OPN process representing the
additional reservoir. It also requires the addition of n+1 connections. Considering the fact that
each connection has some Boolean coding attached to it (for constraint purposes explained
later in section 3.3.3) and the fact that OPN currently does not have any “copy and paste”
function, the addition of more reservoirs becomes increasingly tedious. This issue compounded
by the fact that it must be done all over again for the addition of reservoirs in other blocks in

the model.

58

3.3.2 Multiple Blocks
Since one block only generates connection possibilities for one row in the connection matrix,

additional blocks must be added in order to complete the matrix. Essentially all the blocks in
the model are the same. The one small difference is the block or facility number indices, which
describe for which row in the connection matrix the block is responsible. In the model shown in
Figure 3-6, there are three blocks. Block 1 would generate all the combination possibilities for
Row 1 of the connection matrix. Block 2 and Block 3 would do the same for Rows 2 and 3,

respectively.

Combination of combinations

Now that we have a model that generates each of the possible connection combinations for
each row of the connection matrix individually, these blocks must connected so that all the
possible connection combinations for the whole system are generated. For example, in the
model shown in Figure 3-6, there are three facilities to be connected to a set of three
reservoirs. With no constraints, each block will generate 23-1=7 possible connection schemes
for each facility. For the whole system of three facilities and three reservoirs then there are
73=343 total possible connection schemes. This is because each instance of a connection
scheme for one row in the matrix could occur in combination with each of the possibilities in

the other two rows.

This generation of the set of possible row combinations is handled in this OPN model by putting
the blocks in series. For example, in the model in Figure 3-6, as the tokens reach the Block 1
End object, there are seven tokens, each with a different set of row-one values in their
connection matrices representing the seven different connection schemes for Facility 1 and a
set of three reservoirs. Each of these seven tokens has “blank” rows 2 and 3 in their matrices.
Now, as each token enters Block 2 to have its second row assigned, each token entering Block 2
generates seven tokens exiting the block. Therefore, a token with one particular combination
instance of Row 1 enters Block 2. It will generate seven tokens at the end of Block 2, each with
that one particular instance of Row 1. Additionally, each of the seven tokens will have one of
the seven possible combination schemes for Row 2. Thus, seven different instances entering
Block 2 from Block 1 will generate 7*7=49 instances leaving Block 2. Furthermore, 49 instances
entering Block 3 from Block 2 will generate 49*7=343 instances leaving Block 3, and so on for
more blocks. This series arrangement of blocks ensures all possible combinations for the whole

system are generated.

59

The general relation for the total number of connection schemes generated by this N by M

generator, where N equals the number of columns in the matrix and M equals the number of
rows in the matrix is:

@Y -1M

Additional model items
The model has two additional items beyond the set of blocks in series. The first is the
“Generator Start”. It initializes the model and sends the initial token into the first block. The

last item is the “Generator End”, which collects all the tokens that have made it through the
whole model.

Expanding the model with more blocks

Expanding the model to add more facilities requires the addition of more blocks to the series.
Each nth block added would be a copy of the existing blocks, with the index for the facility or
row it is responsible for changed to “n” in all the new block’s elements. This block will then be
connected in series at the end of the chain of existing blocks and to the “Generator End”. With
the current version of OPN without copy and paste, this is a tedious but simple task.

3.3.3 The Addition of Constraints

With a model that now generates possibly millions of connection schemes, it is essential that
constraints are added to limit the number of solutions to large problems. The addition of
constraints into this model is important for two reasons. First, since the number of
combination schemes generated by the model is exponential with the number of facilities and
reservoirs, there must be constraints in larger problems in order to ensure that OPN does not
run out of memory resources while trying to generate 10,000 or more instances, and so that
the model runs to completion in a reasonable amount of time. For example, a 5x5 connection
matrix with no constraints has more than 28 million ((2°-1)°) possible connection schemes,
which is many times more than OPN can handle currently. More importantly, constraints allow
the user to tailor the model to generate connection schemes that are possible in the real
problem. This model currently allows the user to set five types of constraints:

e Total number of facilities

¢ Maximum number of reservoirs

e Maximum number of reservoirs per facility
e Maximum number of facilities per reservoir

e Specific non-compatible reservoirs

60

All constraints are set before running the model in the “Global Script” section of OPN. The code

for the entry of constraint settings in the model is shown in Figure 3-7.

#Sets total number of facilities 1-5
Fmax=3

#Set max number of Reservoirs 1-5
Rmax=

#sets max number of reservoirs for @ facility
1-5

Flmax=2

F2max=2

F3max=2

F4max=1

FSmax=1

#sets max number of facilities for @ reservoir
1-5

R1lmax=1

R2max=1

R3max=1

R4max=1

RS5max=1

#sets reservoirs that can't go together

example rir2=1 (resl and res2 can't go
together)

example r2r3=0 (res2 and res3 can go
together)

rlr2=0

rlr3=0

r1r4=0

rlr5=1

r2r3=0

r2r4=0

r2r5=0

r3r4=0

r3r5=0

r4r5=0

Figure 3-7. Constraint Entry Code in Global Script

Total number of facilities
For the first constraint, the user may set the total number of the facilities to be connected. This

essentially sets the number of blocks to be used by the generator. This can also be viewed as
setting the number of rows in the connection matrix. The current generator has a total of five

blocks, so the user can select from 1 to 5 total facilities.

61

This constraint is implemented by creating a variable called Fmax and assigning a value to it in
the Global Script, which can be changed by the user to set the total number of facilities. This
variable is then used within the model to restrict tokens passing from one block to the next and
from blocks to the generator end. Tokens may only move from one block to the next if the
value of Fmax is greater than the index of the block it is leaving. For example, if Fmax=2 then
tokens are allowed to move from Block 1 to Block 2, but not from Block 2 to Block 3. Also,
tokens are only allowed to pass from a block to the “Generator End” if the index of the block
they are leaving is equal to the value of Fmax. Tokens are restricted or allowed to pass using
Boolean statements on the connection arrows leading to elements in OPN.

Maximum number of reservoirs

The user can set the maximum number of reservoirs to be considered by the model. This
constraint essentially sets the number of columns in the connection matrix. The current
generator has a total of five reservoirs in each block, so the user can select from 1to 5 as the

maximum number of reservoirs.

In the model, this constraint is implemented by creating a variable called Rmax and assigning a
value to it in the Global Script, which can be changed by the user to set the maximum number
of reservoirs. This variable is then used within the model for restricting tokens from passing to
reservoirs with an index higher than Rmax. This is done identically in each block by writing a
Boolean expression on all the connections within the reservoir cascade that connect one
reservoir to another. In the current model, by setting Rmax=4 all the Reservoir 5’s in each block
are not used.

Maximum number of reservoirs per facility

The oil problem described above required that a constraint be created, where the user could
set the maximum number of reservoirs that each facility could be connected to. Physically this
constraint could be required because a facility only has enough oil production capacity for a
given number of reservoirs. For the connection matrix, this sets the maximum number of “x’s”
allowed in each row. This model allows the user to set each facility’s maximum number of

reservoirs individually.

The implementation of this constraint is done by creating counting variables called: F1cnt for
Facility 1, F2cnt for Facility 2, etc. These counters are zeroed at the beginning of their
respective blocks. Then within each block its specific counter counts the number of reservoirs a
token has passed though while in that block. Boolean statements on the connections leading
into each reservoir restrict tokens that have already connected to the maximum number of

62

reservoirs allowed for that block. This essentially sends the token to the block end instead. The
maximum number of connections for each facility is set by a variable in the Global Script called:

F1max for Facility 1, F2max for Facility 2, etc.

Maximum number of facilities per reservoir
In the multi-reservoir, multi-facility problem one of the constraints that needed to be able to be

set was the maximum number of facilities to which a reservoir could be connected. Physically
this could be because a reservoir may only contain enough oil to be processed by a certain
number of facilities. In terms of the connection matrix, this constraint sets the maximum
number of “x’s” in each column. In this model, this constraint is implemented such that the

maximum number of facilities can be set for each individual reservoir.

This constraint is implemented by creating counting variables on each token. There is one
counter for each reservoir. These are called RIcnt for Reservoir 1, R2cnt for Reservoir 2, etc.
All of the counting variables are set to zero as the generator initializes. Then, as a token passed
through a reservoir, its Rxcnt variable is advanced by one. (Rxcnt is the counting variable for
Reservoir “X”.) For example, as a token is passed through Reservoir 4, in any of the blocks, it
adds one to the existing R4cnt value of the token. Each counter keeps track of how many
facilities its corresponding reservoir has been connected to thus far in the model. The
connecting arrow leading into each reservoir has a Boolean statement that restricts any token
from passing that has already had the maximum number of connections with the reservoir the
token is trying to enter. This essentially sends that token to a different reservoir or to the end
of the block. The maximum number of connections for each reservoir is set by variables in the

Global Script called: R1max for Reservoir 1, R2max for Reservoir 2, etc.

Specification of non-compatible reservoirs

In the oil problem, there may be a case where two reservoirs are at such a distance from each
other that one would never want to connect them with the same facility; or the two reservoirs
may have very different types of oil or gas in them, such that one could not process them at the
same facility. In the connection matrix, this constraint states that there can never be an “x” in
both the Reservoir A column and Reservoir B column for any row. For a system with “n”
reservoirs (or columns) there are 2n-1 individual pairs of reservoirs that may not be allowed to
connect to the same facility. Thus, for this model with five reservoirs there are nine pairs of

reservoirs that may not be allowed to go together.

The implementation of this constraint is done by creating flag variables in the Global Script.
They can be seen at the bottom of the code in the Global Script in Figure 3-7. There are nine

63

flag variables, each corresponding to the nine different pairs of reservoirs. Flag variable rir2
corresponds to the pair Reservoir 1 and Reservoir 2, and r3r5 corresponds to the pair Reservoir
3 and Reservoir 5, for example. By setting the flag variable r1r2=1, Reservoir 1 and Reservoir 2
cannot be connected to the same facility. Leaving a flag variable equal to zero means the
corresponding two reservoirs can be connected to the same facility. The connections between
the reservoirs in the cascade use these flag variables within the model. There are Boolean
statements on these connections that restrict tokens entering reservoirs if the token has
already passed through a non-compatible reservoir within that block. A screenshot of the

complete N by M connection generator in OPN is shown in Figure 3-8.

Figure 3-8. Screenshot of the Actual OPN N by M Connection Generator

3.4 Output
The model will direct, to the generator end, all the tokens that have a complete instance of a
connection scheme that satisfies the constraints. Each of those tokens contains the variables

64

that represent all the intersections of the rows and columns of the connection matrix. Each will
equal either zero or one. A “Zero” indicates that there is no connection at the intersection of
that column and row (reservoir and facility), and “one” shows that there is a connection. These
“ones” will be assigned by passing through the particular reservoir in the particular block
corresponding to that column and row. The labeling convention for these variables is as
follows: R31 corresponds to the connection of Reservoir 3 and Facility 1 (or in the matrix
column 3 and row 1) and R25 corresponds to the connection of Reservoir 2 and Facility 5, and
so forth. In addition, each token that reaches the end will have the counting variables

discussed above. Essentially, these tokens now have a vector containing all of these variables

and data about the connections.

In this OPN model, the first quick check is to view the list of tokens that have reached the
“Generator End” object. It is there that the user can read how many tokens have arrived. This
should equal the total number of possible connection schemes. The user can also graphically

view the path each token took and read the output vector described above for each token.

3.4.1 Exporting to Excel
From the OPN object marking the “Generator End”, one click will export the tokens to an Excel

spreadsheet. (This is convenient for sorting and filtering the outputs.) Within the exported
spreadsheet, there will be a header row that names all of the columns, each of which
represents a variable in the output vector on each token. The following rows each represent
one instance of a connection possibility generated by the model. Instructions for running the
model and retrieving these outputs are found in Appendix 7. To create a connection matrix
from one row in the spreadsheet, one would delete or ignore the counting variables (all of
which have a header label ending in “cnt”). One would then move (probably via MATLAB or an
Excel macro) the elements of the vector into their corresponding positions in the connection
matrix so that it looks like Figure 3-3. An example output spreadsheet for a 3-facility by 2-
reservoir matrix is shown in Figure 3-9. The complete set of connection schemes output from

the model for an unconstrained 3-by-2 model is shown in Figure 3-10.

LB lciplelE el Ty ke I MmENTO Il R ISIE LV MW LX G
1 R21 R31 R41 R51 R12 R22 R32 R42 R52 R13 R23 R33 R43 R53 R14 R24 R34 R44 R54 R15 R25 R35 Rd5 R55
0 1 0o o 0 1 0o o o 0o 6 0 1 0 0 0 0 0 1 0 0 0 0 O 1
0 0 o 1t 0 0 0 0 0 1 0 O 1t 0 O O 1 0O O 0 t O 0 0 O
o 1+ 0 0o 0 0O 0 1 0 0 1 0 0 O 0 O 0 0 1t 0 0 0 O 0 |
0 1 o0 o o 1 o o o o o o 0 1 0 0 0 O 0O 1 0 O 1 0 O
t{ o o 0o 0 0o t 0o 0 0 0O 0O O O t 0 O O t 0 0 0 1 0 O
0 o o 1+ o 0o 0 0o 0o 1t 1 0 0 0 0 O 1 0 0 0 0 0 1 00
61 o o o 1 o o 0 o 0o o 1 0 O 0O 0O O O 1t 0 0O 0O 1 O

Figure 3-9. Example Output Spreadsheet

65

R1]R R2 R2 | [R1IR2 R2 R2 R2
F1 11 [0 _|[F1 [T o o |[F [1 1 0 1
F2 11 _[0_|[F21 o 1_|[F2[1 [0 0 0 1
F3 [1 [0 |[F3]0 [0 |[F T Jo 1 1 0

R1[R2 R21p2 [R1]R2 | I3 TR1[R2 | FE]RT[R2 | [ER1[R2 | B IR IR2 | FFRTIR2 | BRI T2
Fi[1_[1 T Jo JEe i P AlIFilo 1 AlFio 1T To
F2 [0_[1 0 JpE2t [JF2t Jo M2l 2 12 T 12T T 1T
F3 [1 |0 0 JIE3[T [1 JEIr T JIFsTo [1IlFs o " {IF3lr o |l o 130T

[R1[R2 R2| BT R1[R2] [ZZ]R1[R2 Rz | A]R1]R2 | B5]R1[R2 1 R2 R2
F1]1 [0 i | GECEEN | GEOEE [| (O O G2 O E | SRR 1
F2 0|1 I | AN | AR 1 |[F2 o [+ |IF2 " [|[Fr2]o |1 1
F3 1 [1 I | GO | RN T |[FB [|IFsr [+ |[F37 [1

Figure 3-10. Complete Output for an Example 3-by-2 Connection Matrix

3.5 Expansion Possibilities

There are several foreseeable possibilities for future work on this model that would expand its
capabilities and utility. They include changes to the model itself and updates to the OPN
program. This model could also be made to do larger than a 5-by-5 connection matrices.
Finally, there could be additional constraints added to the model, like minimum number of

facilities and reservoirs to be connected.

3.5.1 Other Potential Constraints
There are a few conceivable constraints that could be added to this model that were not

needed for the initial oil problem, but that could be needed for other problems.

Maximum number of facilities used

The first would be a constraint that sets the maximum number of facilities used, as opposed to
the current model, which strictly sets the total number of facilities connected. For the
connection matrix, this would allow generation of connection schemes that have one, two or
more rows up to a set maximum. This could be implemented by simply changing the Boolean
statements on the connections between the block ends and the generator end. Currently these
statements only allow the passage of tokens that have been through a specific number of
facilities. By changing these Boolean statements to an inequality, the model would generate
additional connection schemes that have used fewer facilities for connection. Essentially, this
would allow completed tokens to reach the generator end from several block ends instead of

just one.

Minimum number of facilities used
The addition of a constraint that sets the minimum number of facilities used would only be a

slight variation of the previous constraint. The addition of this constraint would require the

66

creation of one more variable in the Global Script to set this value and slight changes to the
inequalities on the connections between the block ends and the generator end.

Minimum number of facilities per reservoir
A user may want to specify a minimum number of “x’s” allowed in a column (the current

version allows the user to specify a maximum). This would translate into stating a minimum
number of facilities to which a reservoir could be connected. This could be done on an
individual reservoir basis. The constraint could be implemented by creating minimum variables
for each reservoir in the Global Script. This minimum variable and the Rxcnt variables, which
count the number of times a token has passed through a reservoir “x”, could then be used in
the Boolean statements on the connections between the block ends and the generator end to
restrict tokens that have not passed through each reservoir enough times.

Minimum number of reservoirs per facility
Finally, a user may want to set a minimum number of reservoirs for each facility. This would be

a minimum number of “x’s” in each row of the matrix (the current version allows the user to set
a maximum). This constraint could be implemented by creating a minimum variable for each
facility in the Global Script and then using this minimum variable and the Fxcnt variables on the
connections between the reservoir cascades and the block ends to restrict tokens that have not
passed through enough reservoirs within each block.

3.6 Use of Metrics with the Generator

This generator could also be used separately to screen connection schemes with the addition of
iso-performance metrics. An example problem was developed to illustrate this point. In this
problem there are three facilities and four reservoirs that are to be connected by some to-be-
determined scheme. The facilities and reservoirs are laid out on a 10km by 10km grid shown in
Figure 3-11.

i 7
g.w‘.‘“ﬁ
8 &~
7 b
6
5 s &
4 X1
3
2 @ &
1 ?a
0 !
¢ 1 2 3 4 5 6 7 8 9 10

Figure 3-11. Example 3X4 Connection Layout
67

Using the connection generator, 2,401 connection schemes were generated for this problem
where at least one facility was used and all the reservoirs had at least one connection to a
facility. After calculating the distance between each facility and each reservoir, a length of pipe
can be assigned to each connection in the connection matrix. A simple cost formula that
relates the cost to the total length of pipe for a connection scheme and the total number of
facilities used in that scheme was developed for illustrative purposes.

Connection Scheme Cost
= Cp * total length of pipe + Cf = total number of facilities used

where Cp = $7million/km pipe and Cf=$50million/facility used. The values for both Cp and Cf
were chosen as simple representative values for this example.

Using this cost calculation method and post processing of the generated connection schemes in
a spreadsheet, the cost was calculated for each connection scheme. Figure 3-12 shows a plot of
the cost for each of the 2,401 schemes. The upper (light-blue) bars show the cost for each
scheme (with the scale on the left), while the lower (dark-red) bars show the number of
facilities used for each scheme (with the scale on the right). Figure 3-13 shows the same
information, but only for the 81 connection schemes in which each reservoir is connected to
only one facility.

Using this rough screening method, one could pick out the best single or handful of connection
schemes for more detailed analysis. For example, in Figure 3-12 the preferred connection
schemes can be seen distinctly on the left side of the graph were the cost starts to drop more
sharply as you move to the left. This distinction of the preferred set of connection scheme s is
less apparent in the case represented by Figure 3-13, which has a much smoother graph. The
preferred set in this case would simply be the top 5 or 10 schemes, with the number of
schemes in that set being any reasonable number (i.e. top 5, top 10, or top 12). Figure 3-14
shows the top three connection schemes with the lowest cost for the case represented in
Figure 3-12. Both their connection matrices and illustration of their connection layout are
shown. For contrast, the same is also shown for one of the most expensive connection

schemes.

68

1000

Connection schemes with at least 1 facility used

and all reservoirs connected at least once

&

Fleld Cost
8

200

100 -

1000

800

800

700

&h&m&
g

400

300

200

100

0

2401 Total

148
187
246
295
344
393
442
491
540
589
638
487
736
785
834
883
932
98l
1030
17a
1128
177
1226
1275
1324
1373
1422
1471
1520
1568
1618
1667
1716
1765
1814
1863
1912
1961
2010
29058
2108
2157
2206
2258
2304
2353

Figure 3-12. Metrics Plot of 2401 Connection Schemes for 3X4 Example

Connection schemes with at least 1 facility used
and all reservoirs connected only once

st
s
s
s

81 Total

13

¥

,,,,,, 0 Lo oot ot N g 0 A et s 4 G 200 o 1 o b (g L

§ 7 09 111315 17 1921 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 ¥3 V5 V7 V9 81
Connection Scheme Number

Figure 3-13. Metrics Plot of 81 Connection Schemes for 3X4 Example

Ntmhe;;f Facilites Used

w

(3

)

[~

Ld N
Number of Facilites Used

<

69

1-8321 |Reservoir 1|Reservoir 2|Reservoir 3|Reservoir 41 | 2-$325 |Reservoir 1|Reservoir 2IReservolr 3IReservorr 4
Facility 1 X X Facility 1
Facllity 2 Facility 2
Facility 3 X X Facility 3 X X X X
3-$327 |Reservoir 1|Reservoir 2|Reservoir 3|Reservoir 4] [2392-$914]Reservoir 1|Reservoir 2IReservoir 3Reservoir 4]
Facility 1 X X Facility 1 X X X X
Facility 2 X X Facility 2 X X % X
Facility 3 Facility 3 X X X
10 sy 1 ; 10 s 2 ; L1 J— 3 y
9 @-Re - g 1 ot ; 9 R :
8 .\\ - , R2. 8 ‘\ B s b el R2
7 \, x #2 7 \ %‘y 7)
s N : 28 :
4 R T% a X i X
3 I : 3 I 4 5
3 & ri \ 2 & 3 o\
1 bgaa 1 -R3 1 : b«;ﬁa
] o e 4] ; o 4] ; $iud
012345573919‘ 0123456788510 012345678910
e
9 %
8 i
7
5 5
4
’ X
3
PR |

012345678910

Figure 3-14. Four Connection Schemes for 3X4 Example (connection matrices and illustrations)

3.7 Summary

In summary, this chapter discussed the development of an OPN model that can be used
generically to generate all possible links between two sets of elements. The model generates
all the possible connection matrices, given two sets of elements to be linked and constraints
about their linkage. The model uses a blocked-cascading concept to generate all possible
connection schemes and limits redundant instances by its structure. There are various
restrictions that a user can set to limit the number of connection schemes generated and to
meet real-world constraints. Additional constraints could be implemented in the future if
needed. The model discussed was developed for a specific oil project, but it is quite
conceivable that this model could be used as one of several general tools for building system
architecture models with OPN. One could conceive of a time where someone building an OPN
model recognizes the need for a “connection generator” and that person could go to a toolbox

to insert one into their model.

70

CHAPTER 4. Expanded Multi-Reservoir, Multi-Facility Connection
Generator (N plus M Connection Generator)

4.1 Introduction
This chapter discusses an additional connection generator model built in Object Process

Network (OPN)(12)(10)(14)(15). This generator is different from the connection generator in
Chapter 3. Instead of connecting two sets of things that do not have connections between
elements within each set, this model generates all of the connections between all elements. It
is called an N plus M connection generator because it takes the N rows and M columns of the N
by M generator and puts them in a square matrix that has a row and column number of N+M.

This chapter first reminds the reader of the motivation for the development of the N by M
connection generator and then discusses the need that arose for a more general N plus M
Generator. Next, it explains the concept for this OPN model. Then, the chapter steps through
the implementation of this generator as an OPN model. Next, it discusses the addition of
constraints to the generator. This is followed by a discussion on the output format and
procedures for the generator. The chapter finishes with a discussion of the limitations and
expansion possibilities of the model.

4.2 Motivation

4.2.1 The Problem
After some use of the generator discussed in Chapter 3, it became evident that there was

another class of connection problems. This class of problems is just a more general and
expanded version of the first. This problem was posed in the same research effort as that
discussed in 3.2.1.(21) In that work with BP, we found that in many cases it would be useful to
generate the connections between a set of facilities and reservoirs, as before, but additionally it
would be beneficial to generate connections between facilities and connections between
reservoirs. In general this is a problem were every element could be connected to every other

element.

The original problem in 3.2.1 is represented by an N by M matrix as in Figure 3-1. The
expanded problem is represented by the N plus M matrix in Figure 4-1. It is essentially an N-
squared matrix. The black positions along the diagonal are the positions that would represent
the connection of an element to itself, but they are blackened because in this problem this self
connection is meaningless. In this case we do not have any concept related to directionality
which would cause the need for detailed examination of both the upper and lower triangles in

71

the matrix. Instead, we only care if the elements are connected or not. Thus only the upper or
the lower triangle is needed to convey this information. | have chosen to use a lower triangular
representation for reasons that will become apparent later in this chapter. Figure 4-1isa
matrix representation of a connection scheme depicted as an example in Figure 4-2. The “X’s”
indicate a connection between the elements in the corresponding row and column. Blanks in

the matrix indicate no connection.

Figure 4-2 is the same connection scheme as Figure 3-2 in the previous chapter, but with two
added connections. These two connections are examples of the two additional connection
types this generator handles; connections between facilities and connections between
reservoirs. As stated earlier in this section, this N plus M connection problem is just an
expansion of the N by M problem. This can be seen in the N plus M connection matrix in Figure
4-1. The N by M connection matrix can be seen embedded in this N plus M matrix. It is the 3
by 4 rectangle in the lower left corner of the matrix where the facilities of the columns meet
the reservoirs of the rows. The additional connection information about the two new types of
connections is contained in the smaller 2 by 2 and 3 by 3 triangles that form the points of this N
plus M matrix. The top 2 by 2 triangle contains information about connections between
facilities and the lower right triangle contains the information about the connections between

reservoirs.

F1|F2|F3|R1|R2|R3[R4
Facility 1- F1 | ’ -

Facility 2- F2

Facility 3- F3| | X
Reservoir 1- R1 X
Reservoir 2- R X X
Resenvoir 3- R X
Reservoir 4- R4 X

Figure 4-1. Example N+M Connection Matrix

72

N
[N

Facility 1

W
g

ra
N

Facility 2 Facility 3

i
|
i
F

Connections

Figure 4-2. Example N+M Connection lllustration

4.3 The Concept

The concept for the solution of this problem is very similar to the blocked-cascading concept
used in the N by M generator. This problem could also use a version of the looping-indexing
concept discussed in 3.2.3 but it did not because of the same reasons outlined at the end of
3.2.3. An illustration of the concept for this N plus M problem is shown in Figure 4-3 (which is
not an OPN). The block structures used are similar to those in the concept for the N by M
problem (Figure 3-6). Each block again is responsible for generating connections for a specific
row in the connection matrix. However, in this concept the number of reservoirs in the cascade
is increased by one from one block to the next. This follows the form of the lower triangular
connection matrix where each row has one more column than the one above. The cascade in
each block still has the same structure as in the N by M concept. This structure ensures all of
the possible connections for a row are generated and avoids any redundancy of connections.
This N plus M concept also has the addition of a null process that allows a path in each block
around the cascade that generates no connections. This adds the ability of this model to
generate connection schemes where individual elements are not connected at all, including the

one instance where none of the elements have a connection.

73

Generator

Generator End

Figure 4-3. N+M Model Concept

The example N plus M model concept shown in Figure 4-3 leaves out the actual first block,
which is in the model, but is not shown because it is so simplistic. This first block has a block
start and end object as the rest do. It has one “reservoir” and a null process. This first block
generates the connection possibilities for the first row in the matrix that only has one column.
The connection possibilities are simply connected or not connected.

In this concept for larger and larger problems, blocks are simply added to the end of the model,
each with one more reservoir in the cascade than the last. This idea of starting with smaller
blocks and adding larger and larger blocks for larger problems is what led to the use of the
lower triangle in the connection matrix as opposed to the upper triangle. If the upper triangle
was used with this same concept the first block would have to be of varying size depending on
the size of the problem. By using the lower triangle, every problem uses the same first, second
and third blocks no matter the size of the problem. The model could be built with a certain
number of blocks for the largest possible problem and then the larger blocks could simply be
ignored and bypassed for smaller problems. This allows the speed of the generator to be
inversely proportional to the size of the problem.

74

4.4 The Implementation

4.4.1 EachBlock
Each block in the N plus M model is structured and operates similar to the blocks in the N by M

model (see 3.3.1). There is a block start and block end and a cascade of “reservoirs” as before.
The “reservoirs” in this model, however, no longer represent oil reservoirs or, in a more general
sense, individual elements of one type. Instead, in the N plus M model the “reservoirs” in a
cascade represent an individual element that is of any type. More specifically, a reservoir
represents the connection of one column in the matrix. In this way all reservoirs named R2 in
Figure 4-3 represent the connection of the second column in the matrix with each row of the
matrix (each block in the model).

In N plus M model there is also a null process in each block which gives a path around the
reservoir cascade that does not assign any connections. This allows the possibility of no
connections as an instance of a connection scheme for each block and thus each row. This was
necessary because all of the connections of one element no longer reside in one row or one
column. In the N plus M matrix, all of the connections for one element are represented in an
“L” shape with the 90-degree angle of the “L” on the main diagonal of the N plus M matrix (see
Figure 4-5). This holds for every element in the matrix except the first and the last elements,
whose connections are completely represented in the first column and last row respectively.
Since connections for most elements do not completely lie in one block in the model, it is
possible that in a block all of the connections it represents are restricted individually and that
the allowed connections for that element lie as a column in another block (or another row). As
these blocks are connected in series, it is necessary to provide a path around a reservoir
cascade that may be entirely restricting the entry of a token. In addition, in a real-world sense,
the connection instance where an entire row in the connection matrix is unconnected may be a

real and feasible possibility.

Each block is initialized in its Block Start process. In the initialization the variables that
represent each position in the connection matrix in the row that corresponds to that block are
created and are set equal to “zero”. This produces the blank (unconnected) canvas on which
the block will write the different connection schemes for the corresponding row. Also in the
initialization of a block, the counter variable, which represents the number of connections
made to the element to which the row of the block corresponds, is created and set to “zero”.
Since, as one moves down the rows in the matrix, each row has the first connections for the
element that row represents, there is no need for a counter for that element before its

75

corresponding row. That counter will be used and possibly advanced in the block in which it is
created and every block thereafter for implementing constraints, which will be discussed in a
section later in this chapter.

4.4.2 Blocks in Series

As in the N by M model, blocks are placed in series, where all of the connection schemes
generated by the previous block seed the following block. In addition each block has one more
reservoir in its cascade than the previous block, to mimic the lower triangular connection
matrix, where each row is one column longer than the row above it. In this way the model can
represent connection matrices of increasing size by allowing token flow through more and
more blocks. Every connection matrix of N+M22 will use the first block, and for each step up in
the size of N+M from N+M=2, one more block will be added. In the complete model (a screen
shot of which is shown in Figure 4-4), there are a total of 12 blocks which means the model is
able to represent connection matrices up to N+M=13.

76

Figure 4-4. Screenshot of OPN N+M Connection Model

4.4.3 Other Elements in the Model
There are two sets of other elements in the N plus M model, as were in the N by M model.

They are the same two elements as described in Section 3.3.2. These are essentially the
generator start processes and objects and the generator end processes and objects. The

77

generator start elements generate the initial seed token and send it into the model. The
generator end elements collect the finished tokens for analysis.

4.4.4 Combinations of Combinations

The combinatorics of this N plus M generator are similar to those of the N by M generator
discussed in section 3.3.2. The different form of the connection matrix adds the additional
connection types in the oil problem (connections between facilities and connections between
reservoirs). This increases the possible number of connection schemes for a given set of
facilities and reservoirs. The addition of the null reservoirs in each block also adds connection
schemes which involve instances where an element is not connected at all. These two reasons
increase the total number of connection scheme possibilities of an unconstrained problem from

the N by M case of (2"-1) ™, where N equals the number of columns in the matrix and M

equals the number of rows in the matrix. In the N plus M generator, the total number of
possibilities for an unconstrained problem is represented by the following relation:

55

where n=N+M or the total number of elements being considered for connection. As an
example, for an unconstrained situation with five facilities and five reservoirs, there are about
2% (or 35x10?) connection schemes in the N plus M case. There are about 29x10° possibilities
in the N by M case. The fact that the N plus M case has more possibilities for the same set of
elements means that in order for the model to run in a reasonable amount of time (or at all) it
will have to be more constrained, or reduced to a smaller problem.

4.4.5 Constraints

Once again it is important that this generator enable the use of the constraints on a problem
for two reasons. First, the exponential nature of the size of the problem and the number of
possible connection schemes require constraining the problem in order for it to be run at all
from a computational standpoint. Second, the real world situations which these problems
represent have legitimate constraints on their ability to connect different elements. The
current model has three types of constraints that the user can set:

e Total number of elements

e Maximum number of connections per element

e Specific non-compatible elements (including a sub-set based on distance
between elements and some maximum allowable distance)

78

These constraints are set in the generator by changing values of different variables in the Global
Script section of the OPN model. The code for this is shown in Appendix 8.

Total number of elements
For the first constraint, the user may set the total number of elements to be connected. Doing

so essentially sets the number of blocks to be used by the generator. This can also be viewed as
setting the number of rows in the connection matrix. The current generator has a total of 12
blocks. So the user can select from 2 to 13 total elements.

This constraint is implemented by creating a variable called Fmax and assigning a value to it in
the Global Script, which can be changed by the user to set the total number of elements. This
variable is then used within the model to restrict tokens passing from one block to the next and
from blocks to the “Generator End”. Thus, tokens may only move from one block to the next if
the value of Fmax is greater than the index of the block it is leaving. For example, if Fmax=2
then tokens are allowed to move from Block 1 to Block 2, but not from Block 2 to Block 3. Also,
tokens are only allowed to pass from a block to the Generator End if the index of the block they
are leaving is equal to the value of Fmax. Tokens are restricted or allowed to pass using
Boolean statements on the connection arrows between elements in OPN. This is the same
implementation for the total number of facilities as used in the N by M generator (see section
3.3.3).

Maximum number of connections per element

In the expanded multi-reservoir, multi-facility problem, one of the constraints that needed to
be able to be set was the maximum number of connections allowed for each element.
Physically this could be because a reservoir may only contain enough oil to be processed by a
certain number of facilities, or because a facility only has enough oil production capacity for so
many reservoirs. In terms of the connection matrix, this constraint sets the maximum number
of “x’s” for an element. As previously discussed, for most elements all of the positions in the
matrix associated with the connection to a single element form an “L” shape, as shown in
Figure 4-5. In this model, this constraint is implemented such that the maximum number of
facilities can be set for each individual element.

79

R1|R2|R3|R4|R5|R6 |R7
Element 1-R1 «
Element2-R2| 0 .
Element3-R3[1| 0
Element4-R4{ 0 | 0 /. (
Element 5-R5{.0.,,0 | 1 o
Element6-R6[1 | 1|0 1H |
Element7-R7[0| 0[1]0[:1:] 0

e, »
Element 5 connection positions

Figure 4-5. Connections for a Single Element

This constraint is implemented by creating counting variables on each token. There is one
counter for each element. These are called Ricnt for Element 1, R2cnt for Element 2, etc. All
the counting variables are set to “zero” as the first block involved with the connection of that
element initializes. Then, as a token passes through a “reservoir”, its Rxcnt variable is advanced
by one. For example, as a token is passed through an R4, in any of the blocks, it adds one to the
existing R4cnt value of the token. In addition, since each block handles the connections ofa
single element to multiple other elements across the columns, when a token passes through a
“reservoir” in a block, the element counter for the single element being handled by that row is
also advanced by one. For example, as a token passes through the R4 “reservoir” process in the
block corresponding to Element 5’s row in the matrix, R4cnt and R5cnt are both advanced by
one. This is because the single connection of Element 4 and Element 5 is one instance of a
connection for Element 4 and for Element 5. Each counter keeps track of how many elements
its corresponding element has been connected to thus far in the model. The connecting arrow
leading into each “reservoir” has two Boolean statements that restrict tokens from passing that
already have the maximum number of connections to the elements for the block (row) that it is
currently in and with the “reservoir” it is trying to enter. This essentially sends that token to a
different “reservoir” or to the end of the block. The maximum number of connections for each
element are set by variables in the Global Script called: RImax for Element 1, R2max for
Element 2, etc.

Specification of non-compatible reservoirs

In the oil problem, there may be a case where two elements are at such a distance from each
other that one would never want to connect them; or the two elements may have very
different types of oil or gas in them, such that one could not process them both at a particular
facility. In the connection matrix, this constraint states that there can never be an “x” in a

80

particular position in the matrix corresponding to the connection of Element A and Element B.
For a system with “n” elements, there are % *(nZ-n) individual pairs of elements that may not
be allowed to go together. Thus, for a model with 13 elements, there are 78 pairs of elements
that may not be allowed to go together.

The implementation of this constraint is done by creating flag variables in the Global Script.
They can be seen at the bottom of the code in the Global Script in Appendix 6. There are 78 flag
variables, each corresponding to the 78 different pairs of elements. Flag variable r1r2
corresponds to the pair Element 1 and Element 2 and r3r5 corresponds to the pair Element 3
and Element 5, for example. By setting the flag variable r1r2=1, Element 1 and Element 2
cannot be connected. Leaving a flag variable equal to zero means the corresponding two
elements can be connected. The connections between the Element “reservoirs” in the cascade
use these flag variables within the model. There are Boolean statements on these connections
that restrict tokens entering reservoirs if the token has already passed through a non-
compatible reservoir within the generator.

Excel front-end
In order to better visualize and set the constraints in the previous section for a specific

problem, an Excel spreadsheet was made to act as a front-end to the N plus M generator
(shown in Figure 4-6). The reason for making this front-end was twofold. First, there was a
need in the oil problem to be able to enter the latitude and longitude coordinates of each
element in a problem, then set some maximum distance beyond which elements would not be
allowed to be connected in the generator. This could have been done by the user typing
coordinates into the Global Script before each run of the generator, but the Global Script
interface is not very user-friendly. Second, with 78 flag variables all equaling one or zero and
each having an encoded representation of the connection it represents, it is not easy for a user
to visualize how they are setting up the generator and the connection matrix for a given
problem. Not to mention that it is tedious to double-check 78 ones and zeros.

The front-end solves both of these problems. On the left side of the front-end spreadsheet is
the grid which represents the connection matrix of which the user is trying to generate
instances. In this grid, the user places “X’s” or leaves blanks in the positions corresponding to
the different connections being considered. Placing an” X” in a position in the grid means the
elements in that row and column can be connected. Leaving a blank in a position in the grid
means the elements in that row and column cannot be connected. The user can then easily

understand and see how the connection problem is being set up. The “X’s” and blanks in the

81

grid change the values of the various flag variables to the correct values of “1” or “0” in the
middle column of equations. On the right side of the spreadsheet, the user can enter the
latitude and longitude coordinates (in degrees) for each element. Then some maximum
distance (in kilometers) that is allowed for a connection to take place can be specified. The user
then clicks on a macro button and the spreadsheet figures the distance between each pair of
elements (using a sphere representation of the earth). It flags which of those pairs are inside
and outside the maximum allowable distance by placing “X’s” and blanks in the correct
corresponding positions in the grid on the left. The user can then change the grid on the left as
necessary for the problem. Once the user is satisfied the correct connections are allowed and
disallowed, the column of flag variable equations in the middle of the spreadsheet is copied and
pasted into the Global Script. The generator is then ready to run and the user can be sure the

correct connections will be allowed and disallowed.

Grid allows setting of non-connectable Coordinates for each element are input,
elements by leaving blank spaces and then using some maximum distance non-
putting in X's connectable elements are set in the grid

Code is prepared to copy in to OPN
Global Script to run the model with the
appropriate constraints

o
Coordinates (degrees)
tem 1 R1 R2 r12=0; Hem 1 6.764730 811 41912222 E
ftem 2 R2} x R3 r163=1; ltem 2 B.774730 $1141902222 E
Hem 3 R3 X R4 rivd=0; ltem 3 6784739 81141892222 E
ftem 4 R4l x X RS r1e5=1, | ltam 4 6.794739 8| 41882292 E |
ftem 5 RS X X R6 11620, em $ 6804739 S]] 41872222 €
Htom 8 RE| % X x R7 rirl=1; fem & 6.724730 8| | 41069022 E |
ftom 7 R1| x x x RB 1r8=0; lwem7 6.734729 8| | 41.980227 €|
ttem 8 RB| x X x x RY ! ; £1r9=1; Hem 8 6.744730 81141972222 E
tem 9 RO| X X X X R10. F1r10=0; ttom 0 6.754730 S|] 41962222 €
tem 10 R0} x b3 X X X R1t ririt=1; | Hem 10 6814730 81141052222 E
Hem 1 Rl x x % x x R12 rir12=0; 88 tom 11 6.824730 8|] 41042222 E
ftem 12 R12| x X X X X X R13 T3y ftem 12 3834730 81141032222 E
ftem 13 R13 x x x x x | x 263=0; ttom 13 844730 81141922222 E
= . R r2ra=1,
l 1205=0; '
~You can change the names of the items in the NAME column r2efizt, Max Distance] [KM}
“Place an X in a grid space that corresponds to an allowed connection ; 21 =0,
- -Leave a blank space in the grid for a disallowed connection r2r8=1; . Bet X's From Dist
~ -Enter the coordinates in degrees in the coordinates boxes for each item 2,920, .
 SetNor Sor £ or W {use caps} 2e10=1,8
-Set the max distance allowed between alements and click the "Set Xs” Button r2r11=0,
~When grid is completely set, copy the all the filled cells from rir2to 12613 rei2=1.8
-Then paste them in the appropriate spot in the "Global Script” of the OPN Model gﬁ;ﬂ ;
2 i 3 . L,

Figure 4-6. N+M Model Excel Front-end

4.4.6 Other Potential Constraint
There is one other potential constraint that has to be considered but has not yet been
implemented. This constraint would set a minimum number of connections for each element.

82

In order to implement this constraint, one would need to create 13 variables in the Global
Script. Each variable would represent the minimum allowable connections for the (potentially)
13 elements. These might be called R1min, R2min, etc for Element 1, Element 2 and so on. To
implement the constraint and use these minimum variables in the model, you would need to
restrict tokens from reaching the end which haven’t reached the minimum number of
connections for a given element. Since the last potential connection to any element occurs in
the last block in any problem the restriction has only two possible locations. First, the
restriction could be placed on the arrows that form the “exits” from each of the 12 blocks to
the center process called Done. That would require writing 12 Boolean statements, one for
each of the “exits.” The other option would be to write one Boolean statement on the arrow
from the process Done to the last object, Final. This is probably easiest since there is only one
long Boolean statement to write, which includes all of the Rxmin variables compared to their
corresponding Rxcnt counters. It would restrict any tokens that don’t have all of their Rxcnt
variables set to at least the matching number of connections allowed by the corresponding
Rxmin variables set in the Global Script. Since this constraint would be enacted only at the end
of the generator, it would not have any effect on speeding up the generator by way of pruning
the space. This is because the model would still have to generate all of the restricted tokens,
only to prune them at the very end.

4.4.7 Output

As in the N by M generator (see 3.4), this generator will funnel all of the tokens that have a
complete instance of a connection scheme which satisfies the constraints to the generator end.
Each of those tokens contains the variables that represent all of the intersections of the rows
and columns of the connection matrix. Each variable will equal either zero or one. Zero
indicates that there is no connection at the intersection of that column and row (reservoir and
facility), and one shows that there is a connection. These “ones” will be assigned by passing
through the particular “reservoir” in the particular block corresponding to a column and row.
The labeling convention for these variables is as follows: R31 corresponds to the connection of
Element 3 and Element 1 (or in the matrix row 3 and column 1) and R25 corresponds to the
connection of Element 2 and Element 5 (row 2 and column 5), and so forth. In addition, each
token that reaches the end will have the counting variables discussed above. Essentially, these
tokens now have a vector containing all of these variables and data about the connections.

In this OPN model, the first quick check is to view the list of the tokens that have reached the
Final object. It is there that the user can read how many tokens have arrived. The number of
tokens that have arrived should equal the total number of possible connection schemes. The

83

user can also graphically view the path each token took and read the output vector described

above for each token.

Exporting to Excel
From the OPN object marking the generator end (called Final), one click will export the tokens

to an Excel spreadsheet. (This is convenient for sorting and filtering the outputs.) Within the
exported spreadsheet, there will be a header row that names all of the columns, each of which
represents a variable in the output vector on each token. The following rows each represent
one instance of a connection possibility generated by the model. Instructions for running the
model and retrieving these outputs are found in Appendix 9. To create a connection matrix
from one row in the spreadsheet, one would delete or ignore the counting variables (all of
which have a header label ending in “cnt”). One would then move (probably via MATLAB or an
Excel macro) the elements of the vector into their corresponding positions in the connection

matrix so that it looks like Figure 4-7.

R1|R2|R3|R4 |R5|R6|R7
Element 1-R1 -
Element2-R2 O ‘
Element3-R3] 1 | O
Element4-R4 0 | 0 | 1
Element5-R5 0 | 0 | 1
Element6-R6| 1 | 1| 0 ;
Element7-R7/ 0| 0 | 1 110

Figure 4-7. Example N+M Connection Matrix Output

4.5 Expansion Possibilities

A possible expansion to this generator would be to improve the front-end for easier use of the
whole model by a user. First, it would be good to add a spot next to each element in the front-
end to specify a maximum and possibly a minimum number of connections. This would be
linked to the information in the middle column of the front-end. It would then be copied and
pasted into the Global Script of the OPN model so the user won’t have to do much, if any,
coding in the Global Script. It would also be nice if the user could start in the front-end by
setting the number of elements or size of the problem and then the front-end would only show
the grid and coordinate framework for a problem of that size and no bigger. If the matrix size
variable was also added to the middle column to be copied to the OPN models Global Script,
then there really would be no need for the user to adjust the Global Script except to paste into
it.

84

Finally, the front-end would now have all of the information to calculate the total number of
connection scheme possibilities. This would be a great output in the front-end that would
inform the user of how many possibilities to expect before running the model. This resulting
output would allow the user to gauge how long the model would take to run for some given
settings or if the model is feasible to be run at all.

4.6 Limitations

This generator has a couple of limitations. First, in the current version of OPN, one can only run
a model that has up to maybe 100,000 possibilities. The model has been run for two hours at
the longest, and it produced 36,000 tokens in that time. More likely one wouldn’t want to
analyze any problem larger than 1,000 architectures. The expanded multi-reservoir, multi-
facility problem looked to encompass less than 100 architectures.

During the discussion of the formation of this generator, we considered using the generator
with more evaluation and constraint variables. As with any model that has some generator of
possibilities and evaluator of those possibilities, there is the question of how much rough
evaluation and pruning should be done in the generator and how much should be left for the
detailed evaluator in the end. It is believed that there is room for a few more evaluations like
cost or time in this generator. These would be rough calculations of metrics for each
connection scheme as it develops that could be used to prune the space even more before each
is evaluated in more detail. However, there is probably very little computational ability left in
this OPN model for such added features. More likely these prunings would be more easily dealt
with in some post processing element that could be as simple as a spreadsheet or MatLab code.

4.7 Summary

In summary, this chapter discussed the development of an OPN model that can be used
generically to generate all possible links between a set of elements. The model generates all of
the possible connection matrices, given a set of elements to be linked and constraints about
their linkage. The model uses a blocked concept, similar to that used in the N by M generator,
to generate all possible connection schemes, and it limits redundant instances by its structure.
There are various restrictions that a user can set to limit the number of connection schemes
generated and to meet real world constraints. The model uses an Excel front-end to allow
easier setting of the constraints. There is an additional constraint that could be implemented in
the future if needed, as well as, added features to the front-end that would enable easier use.
The model discussed was developed for a specific oil project, but just as for the N by M model,
it is quite conceivable that this model could be used as one of several general tools for building

85

system architecture models with OPN. One could conceive of a time where someone building
an OPN model recognizes the need for a “connection generator” and that person could go to a
toolbox to insert one into their model.

86

CHAPTER 5. Conclusion and Future Work

5.1 Conclusions
This thesis has shown that system architecture methods and thinking can successfully be

applied to the development of large, complex, commercial systems, particularly offshore oil and
gas production systems. Oil and gas production systems were decomposed and analyzed. The
overall problem was shown to be able to be broken down into two parts: the problem of
architecting an offshore oil and gas production system which consisted of one facility producing
from one oil reservoir, and the problem of architecting a field of multiple facilities and multiple
reservoirs. The first was approached as a classic system architecture problem of assigning
function to form. The approach to the second problem utilized the solutions to the first
problem for the individual facilities and reservoirs, but approached the core of the problem as
another type of classic system architecture problem, that of connection and routing.

The problem of architecting one facility and one reservoir was addressed by decomposing and
analyzing the oil and gas production process using rigorous, methodical system architecture
thinking. This method explicitly archived and represented the process in several graphical
frameworks, including OPD’s and hierarchical morphological matrices. It was shown that the
underlying processes could be represented in a solution-neutral way, and that the specific
forms in the overall process could also be represented in the same framework. The solution-
neutral representation provides system engineers with a framework to develop “out of the
box” solutions. This is enabled by allowing an orderly expansion of the architecture space as
ideas evolve. This evolution of ideas in the architecture space can take place in the OPD and
Morphological Matrix representations. These representations also provide a method to
capture and archive industry knowledge that is not always explicitly stated. The OPD’s can be
used to indicate the decision points in the design space, which enables the design space to be
clearly outlined. Few industries, to include the oil industry, practice methods like the one
presented in this thesis, which can clearly represent the full design space in a single chart or
matrix. The entire envelope of architectural possibilities is contained in the morphological
matrix, which provides a great starting point for understanding the design space before
developing concepts. Metrics based on performance, risk, and cost (including throughput,
efficiency, TRL, construction cost, development cost, NPV, and schedule) can be developed to
prune and sort the decision space. The usefulness of OPN to enumerate all of the architectures
in the design space in conjunction with the use of metrics was shown. This automated
enumeration can identify new combinations, highlight preferred sets of concepts, and
underline functionalities or patterns common to the concepts in the preferred set. This

87

increases the architects’ overall knowledge and understanding of the entire design space, and
ensures that all options are considered, facilitating the down-selection to a handful of
preferred concepts that can be carried forward for more detailed study and eventual
development.

The development of the Alternate Specific Model showed that the decompositions of more
specific oil systems can be used to make OPN models that successfully generate thousands of
architecture concepts that, with the use of metrics like TRL and cost, offer preferred concepts
similar to current industry studies. The Alternate Specific Model also illustrates the method’s
potential for increasing the productivity of systems engineers. This model was conceived and
built in two days after only an hour-long conversation between an industry expert and a
student engineer (who was familiar with the oil industry after two years of indoctrination). This
demonstrates that our thinking and language of systems architecture is a quick way of
decomposing an architecture problem. Now that the models are built, BP engineers can change
TRL and cost values, enact different metrics, or consider different water depths and
environments. With small, quick changes to the models, they can have swift answers to the
nature of a new design space.

This thesis has shown how to better ensure that all options have been considered as a concept
is selected for a complex system. This is true whether the aim is to develop a single oil and gas
production system, or to develop an oil field where many facilities and reservoirs are
connected, as in the thesis’s approach to the second part of the offshore oil and gas production
system problem, where we considered multiple reservoirs and multiple facilities. The approach
to the second part demonstrated that even a modest set of facilities and reservoirs has a vast
number of connection possibilities. This space of connection possibilities is so large and
daunting that it has been overlooked and not fully explored by most system engineers. Instead,
a handful of feasible possibilities are generated by committee and analyzed to find the best
solution. The tools developed in this thesis automate the enumeration of this daunting space
of possibilities. These possibilities can then be sorted and prioritized through the use of
metrics. This method can identify new combinations, highlight preferred sets of connection
schemes, and underline patterns common to the schemes in the preferred set. This increases
the architects overall knowledge and understanding of the entire space of possibilities and
ensures that all options are considered.

In conclusion, this thesis showed that this method of systems architecture thinking has great

promise for other large, complex, commercial systems.

88

5.2 Recommended Future Work

There are many steps that could be taken to advances this research past the current
point. The following lists those steps and is broken into the two overall problems in
the offshore oil and gas production architecture problem.

One Facility and One Reservoir Models

Reconcile the processes, forms, and attributes represented in the general oil and gas
production system model and the alternate specific model used in the TRL metric case. In
particular, note all the processes and forms in the general model that are not represented in
the specific model. Clarify why they are not represented. Ensure that the general model
captures all the processes, forms and attributes found in the specific model. This may include
expanding and adding to the general model.

Enhance the architecture generator models to enable a user to input various location,
environmental, and other attributes to “tune” the model to specific situations. In particular,
implement a way to enable a user to enter information about the situation (possibly including:
water depth, reservoir characteristics, environment, distances, geographical and geological
data). Refer to the objects under Situation on Figure 2-2, as well as all the attributes for the
locations as shown in Figure 2-7. Link these inputs to metrics to be able to give more accurate
estimates of the various metrics, particularly cost.

Implement new metrics as outlined by BP. These might include schedule, risk, production
performance, more accurate cost estimates, environmental impact, social impact,
developmental requirements, ice protection requirements, flexibility, extensibility, and
commonality. The implementation of any of these metrics will require access to, and the
gathering of, more data. This may include significant work with OGM (Oil and Gas Manager)
software for cost and schedule data. OGM clearly gives detailed cost data, but the use of its
construction man-hour outputs could be used to produce schedule estimates.

Work on the development of ice protection architectures. Our work was limited by the lack of
industry progression in this area. In particular, component models of ice-structure interactions
and natural ice behavior are still not to a level that easily enables their use in system-level
modeling and thinking. As these component models become better, work on the development
of ice protection architectures can go forward.

89

Multiple Facility and Multiple Reservoir Models

Develop the connection generator to consider not only how elements in a field are connected,
but what sequence of smaller connections could lead to those final connection schemes. This
work is of particular interest to Prof. Oli de Weck. it includes thinking about all the sequence
paths that lead to a connection scheme and potentially implementing a generator that
produces not only all connection schemes but also all the connection sequences that lead to a
connection scheme. The size of this problem (generating all the possible connection schemes
and all the possible sequences that lead to each of those schemes) is potentially the original
connection problem size raised to another exponent. One idea is that the current connection
generator could also generate these sequences if the reservoirs in the reservoir cascade were
fully connected; in that case the order in which the token goes through the then “non-
cascading” reservoir cascade would be captured and imply a sequence possibility.

Enhance the connection generators’ Excel based front-end to encapsulate all the constraint
settings for the connection generator. In particular, consider adding the ability to set the total
number of elements, and the maximum and potentially minimum number of connections per
element, to the Excel front-end so that the user need only copy and paste once into the tool’s
Global Script.

Enhance the connection generator front-end to calculate the total number of possible
connection schemes based on the constraint settings, so the user has an idea of the size of the
set of possibilities the generator is about to ’produce.

In the connection generator models, implement the extra constraints suggested in sections 3.5,
4.4.6, and 4.5.

30

Appendices:

91

APPENDIX 1. OPM Symbols

System Boundary

Interacts with
Enables/Consumes

Instrument of
Operator of

Decomposes to
Has Attribute of
Specializes to

Has Instance of

A piece of form;
something tangible

An action of some
® kind; not tangible

_ A process that takes
place at the boundary

Something crosses
the system boundary;
Usually requires an
interface of some kind

92

APPENDIX 2. Oil Decomposition Levels

...................................

Seismic

1¢model

SubsequentModels

! Il Leavingoutof
; models

[Expurted Oil & Gas

..............

isposing) i ' Seismic

tp, ty — undefined time

'
i
|
i
1
'
1
'
i
i
|
i
|
'
1
'
|
'
i
1
i
i
'
1
'
i
'
i
|
i
|
'
1
'
([

3
Exported Qil & Gas

93

Power
supplier

before all others

Powering
. Takes place at a SFEEHIE fime; typically

Chemicals
Water
Fuel
Supplies
Food

Shelter

.
N
-
g
-
L
»
«

Subsea
Umbilical

| Exported Oil & Gas |

MODU

= Standard wells

ERD Wells

Shallow water

s

Seasonal

Drilling Platform

94

Produ ced Water
Re-Injection ==

P s em o m - ————

Small SPJ
ubseaManifold

95

Onshore
Oil & Gas Facility
Floating Production

Subsea
Processing

Shallow water
The Shore
After ice belt

SeaFloor

Shallow water

The Shore

After ice belt

SeaFloor

Change
Temperature

96

Discrete

Treater to Treater
mover

Cont

nuous

.
1

Oil Tanker
Cil Shuttle Tanker

Oil
Pipeline

Continuous

Gas
Pipeline

97

i']
[} - § > 3
1 & %

Sub-marine

Operation method

| Automatic
I Human
! operated
Mix

-

o

Shallow water

After ice belt

98

APPENDIX 3. Constraints and Explanations

1) no standard drill with shallow water well location
e Assume the reservoir would not be in shallow water so extended reach drill would
have to be used
2) no platform driller with wet or mixed trees, no MODU with dry or mixed trees
e Platform drillers only drill dry trees and MODU's only drill wet trees

3) no dry trees with subsea manifolds; wet or mixed trees must have subsea manifold
e Subsea manifolds are only for wet trees and must be used with all wet trees

4) no standard drill with shallow water, the shore or after ice belt treater location
e Assume the reservoir would not be at these locations so extended reach drill would
have to be used
5) no dry trees on sea surface treater placement, no wet trees with on land treater placement,
e Dry trees can only be used with a few types of floating platforms (spars and TLPs)
not represented here; if you did have wet trees going to an on land treater then it
would be cheaper just to do extended reach drilling both of which are situations in
which the reservoir would be close to the shore and thus too trivial to be modeled
by this model
6) no mixed trees with on land or sea surface treater placement
e fixed platforms are the only treater placement that can possibly have mixed trees
(other than TLPs and spars which are not represented in this model)
7) no on sea floor or on land treater placement or dry or mixed trees or the shore treater
location with Semi or FPSO substructure,
e Semisubmersibles and FPSO are on the sea surface and thus not on the shore and
with wet trees only
8) no at field or shallow water or after ice belt treater location or platform driller or on sea
floor or on sea surface treater placement with no substructure
e If there is no substructure a facility can only be on land or on the shore

9) no the shore or after ice belt treater location or on land or on sea surface treater placement
with GBS or SPJ substructure,
e GBS and SP]'s go at the field or in shallow water and are placed on the sea floor

10) must be no storage facility for FPSO treater
e FPSO is also a Storage facility by definition so assume there wouldn't be a separate
one
11) no on land storage placement with at field or shallow water or after ice belt storage
location,
e for locations in the water there is no land to place a storage facility on
12) no on sea surface storage placement with the shore or farther inland storage location,
e for location on land you would not have water to place a storage facility on or a
sea floor for that matter
13) no on the sea floor storage placement with the shore or farther inland or after ice belt
storage location

e for location on land you would not have a sea floor to place a storage facility on,
assume the same for after ice because the water is too deep

99

14) no the shore or after ice belt or on land or on sea surface with GBS or SPJ,
e the same as 8 only for a storage facility instead of a treating facility

15) no on sea surface or on land or the shore with Semi or FPSO,
e same as 7 only for a storage facility instead of a treating facility

16) no at field or shallow water or after ice belt or on sea floor or on sea surface or FPSO with
none
e if you do not have a storage facility substructure then a storage facility can only be
at the shore and on land and the treater cannot be a FPSO
17) no dry trees with pipeline from wellhead to treater
e ifyou have a pipeline from the wellhead to the treater then assume you don't have
dry trees (a satellite platform would change this)
18) must be no mover from treater to storage for FPSO treater and if there is no storage facility,
e no need for a mover from treater to storage if there is no storage facility or if there
is an FPSO treater because you treat and store at the same facility so no moving is
required
19) no pipeline mover from to storage for Semi Treater
e gssume not common to have a pipeline from a Semi (becoming more common)

20) no pipeline mover to custody transfer with FPSO treater or shipshape storer or semi treater
e Shipshape facilities including FPSO cannot hook up to pipelines

21) no offloading facility with pipeline mover or none for treating to storage mover, must be
none if no storage facility
e an offloading facility is only for tanker movers; no need for an offloading facility
from a storage facility that doesn't exist
22) no offloading facility with pipeline mover or none for mover to custody transfer
e no need for an offloading facility to mover that doesn't exist (there actually could
be but the mover would not be in the system)
23)if no storage facility then ‘none' for 'to custody transfer mover’ if match with treater
location,
e if there is no storage facility then the oil will go from the treater to custody

transfer and if those two are at the same location then we assume there is no need
for a mover

if the treating location is ...
24) ...at the field then the wellhead location must be at the field
e Think about the locations as required sequence at field to shallow water to the

shore to farther inland OR at field to after ice belt to the shore; Then the overall
process will only go in the direction of those two paths; never in the reverse of
those two paths. You can start the overall process at most locations but then you
can't ever go to a next step in the process in the reverse direction in one of the two
sequences. For instance you would never drill and treat in shallow water and then
store or custody transfer at the field but you could do both on shore. If you are
treating at one location then the wellhead must be at the same location or at a
location closer to the start of the location sequence

25) ... in shallow water then the drill type must be extended reach
e similar to 1

100

26) ... in shallow water and the wellhead is in shallow water then mover from wellhead must be
none
¢ no need for a mover if they are in the same location
27) ... in shallow water and the wellhead is at the field then mover from wellhead must be
pipeline
e the mover must be continuous i.e. pipeline, for any movement before treating
28) ...the shore then the drill type must be extended reach and the mover from wellhead must
be pipeline
e see 25 and 27
29) ...after ice belt then drill type must be extended and the wellhead must be at field and
mover from wellhead must be a pipeline
e similar to 1 and 27

if storage location is...
30) ...in shallow water then treating location must be at the field if there is a mover to storage
or after ice belt if the mover to storage is tanker
e see 24 if there is a mover to storage that means the storer and treater are not in
the same location; you can only have a mover to storage at the location after ice
belt of a tanker, pipelines aren't practical in water assumed to be too deep
31)...at the shore then the treating location can't be at the shore
e For the model assumed a storage facility is only considered separately if it is at
another location otherwise storage may or may not take place at the treating
facility on shore we assume that is just part of the treater design not an
architecture consideration
32) ...at the shore then and there must be a mover to storage if treating location is at field or in
shallow water
e since the treater and storer are in different locations there must be a mover
between them
33)...at the shore and the treating location is after ice belt then mover to storage must be a
tanker
e assume there will be no pipelines going to after the ice belt since after the ice belt
facilities are assumed to be ship-shaped
34) ...after ice belt and the treating location is after ice belt then mover to storage must be a
none
e no need for a mover they are at the same location
35) ...after ice belt and the treating location is at field then mover to storage must be a tanker
e see 33

36) ...farther inland then the treating location must be at the shore and the mover to storage
must be pipeline
e The only need for storing further inland comes if you have a treating facility on
shore And you must move between the two with a pipeline. There are no land
tankers (suppose you could truck it but that’s not very practical)

101

Coded abbreviation for each decision used
as variables in OPN Model code

Value assigned to each decision variable to
represent each individual choice. Values are in gray
below corresponding individual choice. Default

value is zero meaning not choice was made.
\

\

Function Form Attribute

\ Possible Choices

Extracting-Reaching Wel!s Drilling

Well Head Location

. o . ’ -} . -
Dnﬂer
S o 5 5
Extractm -Transpo Reservou' Drlver -push
- . . .
lnterface Extracting Tree Type
E\ x’*;;;gv &

Treating Geographic Location

. . o

Vertical Placement

Substructure

. . . .
Storing Stonng Facmty
. . . .

Abbreviations and encoding used in Oil OPN

S e S 8 3 T T
L ,A«"sxéf o g - i i ‘%

\ g T
. . . .

‘ Stormg Geograpmc Locatwn

DT Standard

e . e 1

At Tield

Exlended Reach

WHL Shallow Water

. . . . - h . o
DRT Plalform MODU Both
@ 1 - 2 . ' L
RDS __Gas and Waler In " Gasini | waterinj

Wet Mixed

5 (i s

SM | sateliite Piatform Sub-sea Manifold None

TGL At field Shallow Water The Shore | After ice Belt

i 1 . . i & i A ’4’
TVP On land On Sea Surface On Sea Floor
TS5B | GBS SPJ Semi FPSO Artificial island None

S Yes NO
T ”“f S . G - . 7 i . e
SGL Snallow Waxer The Sho armer inlal After Ice belt

i . .} . i . 1
» v |Stering Vertical Placement SvVP On Land On Sea Surface On Sea Floor
e Ty - =y
Substructure SPJ Shipshape Adificial island None
. . . . - 3 @ 1 ' ' !
Movmg Ptpelme None
- .y .
Pnpelme Tanker Hone
. - 8 .
- Mover To Custody Transfer MCT Pipe!ine Tanker None
<+ T " - {1 @ i 3z .
E Interface Moving Interface to Tanker from Treatmg cmnhty Off—loadmg System
2z Interfwe Moving lnterfaee to Tankerto Custudy Transfer Off Ioadtngs 1em Norae
& Custody Transfer 0ustody Transferer Al field Sl;aw'liWaier Fartnenmand Dtstant Shor
< e T T T

102

APPENDIX 5. TRL Scale (From sponsor presentation)
__ Technology Readiness Levels

e
L
o

103

APPENDIX 6. Data for the Alternate Specific Architecture Model

Architecture Section Concept Number Critical Components TRL 1| Cost1| TRL 2| Cost 2

1] Production Facilities 1,2,7,8,9,12 Processing Facilities 7|H 7]H

2 3 Dry Trees 7IL 7|L

3 3,4 Process and Drill Facilities (ops) 7IM 7|M

4 4,5,6 Dry Trees 6|L 6iL

5 5,6 Process Capacity ~ 7|M 7IM

6 9,12 Swivel 7IM 4]M

7 10 Subsea HIPPs 7|L 4L

8 11 Dependent on host facility 7iL 7iL

9]Hull and Layout 1,2,3 Hull 3|H 3|H

10 1,2,3 Tandum Offioading 3|M 3[M

n 1,2,3 Concrete Hull concept 1|H 1|H

.12 1,2,3 Storage Design >300mb 3[M 3|M

13 3 Construction of Larger Hulls 3|M 3|M

14 3 Process & Drill Layout (construcability 3|m 3[M

15 4 Stroage (dry Tanks) 0|M ojM

16 4 Storage (wet Tanks) 4|M 4IM

17 4 Offioading 3|M 3|M

18| 4 Concrete Hull of{H o[H

19 5 Hull 4|H 3|H

20 6 Hull (post typhoon) 4H 3[H

21 7,8 Hull 7iH 7|H

22 9 Hull(turret/spread moored w/ offioad buoy) 7|H 7|H
23] 10,11 NONE

24 12 Dry Tow 7|L 7L

: 25 12 Wet Tow 4iL 4iL

;26 12 Split Hull 7[H 7|H

27[Moorings 1,2,37,8 Chain/wire/chain/Polyes 7|l 3L

28 1,2,3,7,8 Suction anchor design 4{L 1L

29 1,2,3,7,8 Suction anchor Install 7|M 4iM

30 1,2,3,7,8 Piles (driven) 7|L 1|L

31 5,6 Tendons 2|M o|M

32 5,6 Foundations-design 6L 4L

33 5,6 Foundations-installation 6iL 1|L

34 5,6 Tendon/tcp interface 3|M 1M

'35 9,12 Spread moored/turet 7IM 3|M

36 9,12 Chain/wire/chain 7]L 4]l

37 9,12 Suction anchors design 7|C (L

‘38 9,12 Suction anchors install 7IM 7|mM
39 10,11 NONE

40 12 DP 7|M 7|M

"41[Risers 12,3,9,1011,12_|SLHR __ alM 2[M

42 1,2,3,4,9,10,11,12 |SCR's 1M 1M

1,2,3,4,9,10,11,12 |Flexibles 41M 1M

4 TIR's 5|L 2iL

5,6 TTR's Production + injection 5iL 2|L

5,6 Tensioners/stroke 5|L 2|L

5,6 Completion design / Analysis 4L 2JL

7,8 SCR's 7IM 2|M

7,8 SLHR 41M 2|M

7,8 Flexibles 4|M 1M

'51|Subsea 1-10,12 Trees/controls 7|M 5|M

' 1-10,12 Manifold 7|L 5|C

1-10,12 Flowline 7{H 5{H

1-10,12 Umbilicals 7|M 5|M

1-10,12 Re-usable flexibles (low cost Chinese) 7|L 1|L

11 Pumps (multi-phase) 6lL 4|L

11 Subsea Separation 4|H 3[H

11 Raw Water Injection 41H 41H

11 Compression 2|M 1M

11 Power distribution 6jL 2|L

104

61]Drilling Facilities 1 Offshore rig Transfer

62 1 HP Transfer hoses from TSV

63| 1 Ballasting system for transfer
,“.,§.‘!F 1 Power Umbilical

65| 1 Fluid/cuttings Retum hoses
66 3 Combined Drill/pod layouts
67 4 As per GOM

68} 2,5,6,7,8,9,10,11,12 |Semi Drill Rigs

69 8 SIMOPS procedures

70 11 semi's With esp's

71 Dﬁlling Risers

1

Tensioned riser off caisson

72

1

Riser size (18 3/4)

73| 1 Tensioning equip
74 1 SIMOPS During rig mowes
75 2,3 Riser
76| 4 As per GOM
77 5,6 S/S BOP
78 5,6 Surface BOP/riser
79 5,6 with pre-drill
80 7,9,10,11,12 Riser
81 8 Semi Drilling

!] I 21 Y S0 1 T Y I XY T T T 1 T N N TS BN
HEEHEHEEHBEHEBEREEEBEEEEE

~I~~fvlnof~f i~ o] s wl o] |~ ~l ol il ~f ol)

HEEBHEEEEEEEEHEBEHEBEEBERBEER

Component Cost Bins
($millions)

H [M |L [VH (pipeline)

100 125 | 1

300

105

APPENDIX 7. Operation of the N by M connection generator model

When first opening the model, if you see no model in the window, zoom way out with the

mouse roller until you see the model, then zoom in on it. For some reason the graphics does
not always center the model in the window.

106

Step 1. Set constraints in Global Script
Click on Global Script.

B2 OpNet Document Window

This set of constraints shown
would look for all the
combinations of 5 facilities and 5

reservoirs where each facility is

sets max number of fields for @ resiveoir 1-§

12fRInax=1 only connected to 1 reservoir and

| 13[R2pax=1

3max=1 vice versa.

Smax=1

sets resivoirs that can't go together
t example rir2=1 (resl and resZ can't go togethear)
example rar3=0 (resz and resd car go together)

cript Committed to ExpressionProcassor.

Comments in the code above each constraint should be self-explanatory. When finished setting
constraints, click ‘compile’ and then ‘commit’.

107

Step 2. Run OPN

Click Run. Wait for counter to stop running. Run time range is 3-seconds to 10 plus minutes,
depending on size of model.

Step 3. Export outputs
Right Click on the object called 'Final'. Click on 'Edit this Object'. Click on 'Export to Excel'.
Choose a file name and location and click 'Export'.

[IRecinshe OPN (9 2363 £ 230

e @ 5

and SeftingsinMiMy Documents\ResearchiOPN FOR JIUNJiIS

108

Step 4. Reading Data

Open the Excel file. The first row is the header with the name of each variable for each column.
Each following row is one instance of a possible connection of facilities and reservoirs. All the
Columns with variables ending in 'cnt' are counting variables used in the model. You should
delete all the columns with these counting variables there are up to 10 of them. Now the
variables have the following naming scheme R31 corresponds with Reservoir 3 and Facility 1.
O(zero) means not connected and 1(one)means connected. (Further example, R52 corresponds
with Reservoir 5 and Facility 2). To make the actual connection matrix, the first 5 columns
would be the first row of the matrix, the second 5 columns (6-10) would be the second row of
the matrix,...etc until you have a 5x5 matrix where the columns are reservoirs and the rows are

facilities.

109

APPENDIX 8. Global Script code for N plus M generator

#Sets number of elements (N+M} 2-13
Fmax=8

#sets max number of connections for @
#element 1-12
Rimax=1
R2max=1
R3max=1
R4max=1
RS5max=1
R6émax=1
R7max=1
R8max=1
R9max=12
R10max=2
R11lmax=2
R12max=2
R13max=2
#sets elements that can't go together
example rir2=1 (resl and res2 can't go together)
example r2r3=0 (res2 and res3 can go together)
rir2=0

rir3=0

rir4=0

rir5=0

rir6=0

rir7=0

rir8=0

rir9=0
rir10=0
rirll=0
rirl2=0
rir13=0

r2r3=0

r2r4=0

r2r5=0

r2r6=0

r2r7=0

r2r8=0

r2r9=0
r2r10=0
r2r11=0
r2r12=0
r2ri3=0
r3r4=0

r3r5=0

r3r6=0

r3r7=0

r3r8=0

r3r9=0
r3r10=0
r3r11=0

110

r3r12=0
r3r13=0
r4r5=0
rar6=0
r4r7=0
r4r8=0
r4r9=0
r4r10=0
r4r11=0
r4r12=0
r4r13=0
r5r6=0
r5r7=0
r5r8=0
r5r9=0
r5r10=0
r5r11=0
r5r12=0
r5r13=0
ror7=0
rér8=0
roer9=0
rér10=0
rérll=0
rér12=0
rérl3=0
r7r8=0
r7r9=0
r7r10=0
r7r11=0
r7r12=0
r7r13=0
r8r9=0
r8r10=0
r8rll=0
r8r12=0
r8r13=0
ror10=0
rorll=0
ror12=0
rori3=0
ri0rl1=0
ri0r12=0
ri0r13=0
r1irl12=0
riiri13=0
ri2ri3=0

111

APPENDIX9. Operation of the N Plus M connection generator model
When first opening the model, if you see no model in the window, zoom way out with the
mouse roller until you see the model then zoom in on it. For some reason the graphics does

not always center the model in the window.

Step 1. Set constraints with the front end

In order to better visualize and set the constraints for a specific problem, an Excel spreadsheet
was made to act as a front-end to the N plus M generator. Without the front end the user must
type coordinates in the Global Script before each run of the generator, but the Global Script
interface is not very user-friendly. Also, without front end there are 78 flag variables in the
Global Script that must be set to implement the constraints on specific connections. Each flag
variable equaling one or zero and each having an encoded representation of the connection it
represents. Itis not easy for a user to visualize how he or she is setting up the generator and
the connection matrix for a given problem.

On the left side of the front-end spreadsheet is the grid which represents the connection matrix
of which the user is trying to generate instances. In this grid, the user places X’s or leaves
blanks in the positions corresponding to the different connections being considered. Placing an
Xin a position in the grid means the elements in that row and column can be connected.
Leaving a blank in a position in the grid means the elements in that row and column cannot be

112

connected. The user can easily understand and see how the connection problem is being set
up. The X’s and blanks in the grid change the values of the various flag variables to the correct
values of 1 or 0 in the middle column of equations. On the right side of the spreadsheet, the
user can enter the latitude and longitude coordinates (in degrees) for each element. Then
some maximum distance (in kilometers) that is allowed for a connection to take place can be
specified. The user then clicks on a macro button and the spreadsheet figures the distance
between each pair of elements (using a sphere representation of the earth). It flags which of
those pairs are inside and outside the maximum allowable distance and places X’s and blanks in
the correct corresponding positions in the grid. The user can then change the grid as necessary
for the problem. Once the user is satisfied the correct connections are allowed and disallowed,
the column of flag variable equations is copied from the spreadsheet and pasted into the Global
Script. The generator is then ready to run and the user can be sure the correct connections will
be allowed and disallowed.

Grid allows setting of non-connectable Coordinates for each element are input,
elements by leaving blank spaces and then using some maximum distance non-
putting in X's connectable elements are set in the grid

Code is prepared to copy in to OPN
Global Script to run the model with the
appropriate constraints

NAME Rt Coordinates {degrees)
ftem { R R2 1r2=0; flom ¥ B.764739 S$1{41912227 €
tem 2 R2l x R3 ! £1r3=1; fem 2 B.774739 $1] 41900222 €
Item 3 R}_f X Rd rird=0; liam 3 B8.784730 81141809229 E
ftem & R4 x X R5 1=t Yemd — 6.794739 S]] 41862299 E|
Hem 5 R5 X X RG rirgs(y; Jtem 6.804739 81141872222 E|
ltem & Rl x X x R FIffxt; ltem 6724739 81141862227 E
hemy r7 X X x R8 £118=0; tem B.734739 81141962200 E |
e 8 RS x X X % R 1ig=1; item § 8.744730 $1{41.972022 €
ftem 9 RY| X x X X R0 r1e10=0; Hem 8 8754730 81141982222 E
tom 10 R10] x X X X X Rt ririt=1; fem 10 6.814739 Si} 41952222 E
ftem 14 R1t X X X 4% X /12 1r12=0, {em ¥ B.824730 81141942222 E
tem 12 R1Z2| x X x x X R13 firig=y; Mem 12 6.834730 §|]41932292 E|
tem 13 RI3 x X F x x1 1x 2030, hom 13 6.844739 8114192222 E]
i SOV SRR SRR SN SRR e f2edz1;
~Yous can change the names of the items in the NAME column LR Max Distance] 6 K|
~Place an X in a grid space that corresponds to an alfowed connection 207=0;
“Leave a blank space in the grid for a disallowed connection 2ra=1; Set X's From Dist
-Enter the coordinates in degrees iiv the coordinates bowes for each item 2r9:0; §
-Set N or Sor £ or W (use caps) 2r10=1;
~Set the max di atiowed b } and dlick the “Set Xs Button 12e11=0,
-When grid is completely set, copy the all the filled cells from rir2 to ri2r13 2i12=1;
~Then paste them in the appropriate spot in the “Global Script” of the OPN Mode! g;;f;o
TR b

113

Step 2. Set constraints in Global Script
Click on Global Script.

8 0PNet Document Window

Set constraints by changing variables.

1 ;ﬁﬁ Jython Script
b“ "

Glohal Script -

.L!#Sets number of facilities (N+M) 2-13
n 2| Fuax=8|
al#sets max nuwber of connections for &
4 facility 2-12
Rlmax=1
R2max=1
R3max=1
Ramax=1
R5max=1
1ofR6max=1
&1 11{RTmax=1
1z{R8max=1
12 R9max=12
14 R10nax=2
15{R11nax=2
15§R12nax=2
17 R13nax=2
184sets nin mmber of fields for & resivoir 0-%
19 R1min=0
2004sets resivoirs that can't go together
210# exanple riri=1 (resl and res? can't go together)
2204 example riri=0 (resz and zasi can ¢o togsther)
22irlr2=0
24irlr3=0
258r1rd=0
26irlr5=0
27irlr6=0
z8irlr7=0
z9irlr8=0
20frlr9=0
31irlrl0=0
i 228rlrll=0
23{rlrl2=0
34rlrl3=0
25§r2r3=0

W D B

oy 5 A

o500 5,

36ir2r4=0

1 L

Comments in the code above each constraint should be self-explanatory. When finished setting

constraints click ‘compile’ and then ‘commit’.

114

Step 3. Run OPN
Click Run. Wait for counter to stop running. Run time range is 3-seconds to 60 plus minutes,

i 2363 of 2363 tasks completed at time 62

Step 4. Export outputs
Right Click on the object called 'Final'. Click on 'Edit this Object'. Click on 'Export to Excel'.

Choose a file name and location and click 'Export'.

PNet Bocument Window

|

115

Step 5. Reading Data

Open the Excel file. The first row is the header with the name of each variable for each column.
Each following row is one instance of a possible connection of facilities and reservoirs. All the
Columns with variables ending in 'cnt' are counting variables used in the model. You should
delete all the columns with these counting variables there are up to 13 of them. Now the
variables have the following naming scheme R31 corresponds with Column 3 and Row 1 in the
connection matrix. O(zero) means not connected and 1(one)means connected. (Further
example R52 corresponds with Column 5 and Row 2 in the connection matrix). (NOTE: This
naming convention is different than the convention in the N by M to generator.) To make the
actual connection matrix, move the elements of the matrix to their respective positions in the
matrix based on the name of the column in the excel spreadsheet in which they fall.
Remember that each row in the excel spreadsheet is one connection scheme instance, so each
row of the spreadsheet will form it's own lower triangular connection matrix.

116

BIBLIOGRAPHY

1. Robinson, Bob; Barr, Alastair; Flanagan, Tomas; Schroeter, Robert; et al. Conversations with
BP Sponsors. September 2006 - May 2008.

2. Harel, D. Statecharts: a visual formalism for complex systems. Science of Computer

Programming. 8, 1987.

3. Jacobson, 1., et al. Object Oriented Software Engineering, A User Case Driven Approach.
Reading, MA : Eddison Wesley, 1992.

4. De Marco, T. Structured Analysis and System Specification. New York : Yourdon Press, 1978.

5. Rumbaugh, J., et al. Object-Oriented Modeling and Design. Englewood Cliffs, NJ : Prentice
Hall, 1991.

6. Booch, G. Object-Oriented Analysis and Design, 2nd edn. Redwood City, CA : Benjamin
Cummings, 1994.

7. Coad, P. and Yourdon, E. Object Oriented Analysis, 2nd edn. Englewood Cliffs, NJ : Prentice
Hall, 1991.

. 8. Embley, D. W., Kurtz, B. D. and Woodfield, S. N. Object-oriented Systems Analysis.
Englewood Cliffs, NJ : Prentice Hall, 1992.

9. Shlaer, S. and Mellor, S. J. Object-Oriented System Analysis. Englewood Cliffs, NJ : Prentice
Hall, 1988.

10. Dori, Dov. Object-Process Methodology. Springer, 2002.

11. Crawley, Edward. ESD.34 System Architecture. [Course Notes]. MIT, January 2006-
December 2007.

12. Koo, Ben. A Meta-Language for Systems Architecting. Engineering Systems, MIT.
Cambridge, MA :, 2005. PhD Thesis.

13. Simmons, Willard. A Framework for Decision Support in Systems Architecting, Cambridge,
MA : PhD Thesis, Dept. of Aeronautics and Astronautics, Massachusetts Institute of Technology,
February 2008.

117

14. Simmons, Willard, Koo, Ben and Crawley, Edward. Space Systems Architecting Using Meta-
Language. 56th International Astronautical Congress. 2005.

15. Simmons, W., Koo, B. and Crawley, E. Architecture Generation for Moon-Mars Exploration
Using an Executable Meta-Language. AIAA Space. 2005.

16. Crawley, Edward and Simmons, Willard. Towards a Formalism for System Architecture --
From Value to Architecture. MIT. October, 2006.

17. Leffler, William L., Pattarozzi, Richard and Sterling, Gordon. Deepwater -- Petroleum
Exploration and Production -- A Nontechnical Guide. PennWell, 2003.

18. Raymond, Martin S. and Leffler, William L. Oil and Gas Production in Nontechnical
Language. PennWell, 2006.

19. Rozenblum, Ziv. Object-Process Networks & Object Process Diagrams -- Implimentation
Issues of Oil Exploration Systems. MIT. Cambridge, MA : s.n., 2007. Thesis.

20. Maurer, M. Structural Awareness in Complex Product Design. MUNICH : TU MUNICH, 2007.

21. de Weck, Oli and Lin, Jijun. Conversations about MIT research project sponsered by BP. BP
Tieback Flexibliity Case Study. November 2007-May 2008.

22. Cameron, Bruce G. A Quantitative Method For Comparing Benefit Across Exploration
Architectures. MIT. Cambridge, MA : s.n., 2007. Thesis.

23. Maier, Mark W. and Rechtin, Eberhardt. The Art of Systems Architecting. Boca Raton, FL :
CRC Press, 2002.

24. Rechtin, E. Systems Architecting: Creating and Building Complex Systems. Englewood Cliffs,
NJ : Prentice Hall, 1991.

25. Sage, Andrew P. and Lynch, Charles L. Systems Integration and Architecting: An Overview

of Principles, Practices, and Perspectives. Systems Engineering 1. 1998, Vol. no. 3.

118

