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Abstract
As global competition in the manufacturing space grows, so do corporations' needs for
sophisticated and optimized management systems to enable continuous flows of
information and materials across the many tiers within their supply chains. With the
complexities introduced by the variability in the demand for finished goods as well as by
the variability in lead-time of transportation, procurement, production and administrative
activities, corporations have turned to quantitative modeling of their supply chains to
address these issues. Based on the data of a heavy machinery manufacturer
headquartered in the US, this research introduces a robust model for the deployment of
strategic inventory buffers across a multi-echelon manufacturing system. Specifically,
this study establishes a replenishment policy for inventory using a multiple bin, or
Kanban, system for each part number in the assembly of products from our sponsors
tractor line. We employ a numerical simulation to evaluate and optimize the various
inventory deployment scenarios. Utilizing several thousand runs of the simulation, we
derive a generalized treatment for each part number based on an econometric function of
the parameters associated with lead-time, order frequency, inventory value and order
costing. The pilot for the simulation focuses on the parts data for three earthmoving
products across eight echelons, but scales to n products across m echelons. Our results
show that this approach predicted the optimal quantities of Kanbans for 95% of parts to a
level of accuracy +/- 3 bins.
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1 Introduction

This section has been organized to provide an overview of the concept of supply

chain systems as well as the definitions of some of the common nomenclature that will be

used throughout this study. First, we will address the status of our sponsor company's

supply chain while identifying the various inventory policies it employs or has considered

employing. An overview of the thesis objectives will follow, along with a brief review of

the published literature on the subject of inventory management in multi-echelon supply

chain systems as well as Kanban systems.

1.1 Supply Chain Systems

Any company involved in the production of finished goods operates within what

is known as a supply chain system. The concept of a supply chain system (SCS) refers to

the techniques used in the planning and execution of procurement, assembly,

transportation, and storage of inventory. In the instance of manufacturing, the concept of

SCS extends from the acquisition of raw materials to the point of sale of finished

products to the end customer, encompassing numerous intermediary production levels

along the way. Production levels (also known as echelons, tiers, or stages) refer to any

point within the SCS where value is added. So, an echelon can be a workstation, a plant,

a machine, or an external company. For this research, we will use "tier", "stage",

"echelon" and "production level" interchangeably.

A typical supply chain system involves three primary flows across production

levels within the supply chain. Downstream flows refer to those that move toward the

end-customer whereas upstream flows refer to those that move toward raw material



sourcing. The first flow in a SCS is the information passed upstream between adjacent

production levels, originating in the demand signal from end-customers. An example of

information flow would be, when an order is placed by an end-customer, an invoice

detailing the requested quantity and specifications. The second flow refers to the

physical flow downstream of materials in any of the various inventory states, from raw

materials to work-in-process (or "pipeline") inventory to final product. An example of

this type of flow could be the transportation of raw materials from the point of extraction

to the processing plant. The third flow is the exchange of money. For example, as

materials are procured from a supplier to an assembly plant, the assembly plant remits

payment in exchange for the supplied materials, representing the upstream flow of

money. These three flows are illustrated in Figure 1.

Figure 1: Three flows of a supply chain system

Upstream
Supplier

Downstrearr
Customer

1.2 Sponsor Company Overview

Our sponsor company is one of the world's largest manufacturers of construction

and mining equipment, diesel and natural gas engines, and industrial gas turbines. The

products for the construction and mining industries alone comprise several hundred

different models from dozens of product lines with thousands of customizable options,

each dependent on the nature of the customer's job. End products for mining and

construction range in value from several thousand to several million US dollars per unit.



The company's logistics arm operates out of facilities in the Midwestern United States,

and oversees the global operations of over 100 facilities across 6 continents, focusing on

production, transportation and distribution planning services. Over the past five years,

our sponsor company has achieved overall annual inventory turns, calculated by annual

sales over inventory on hand, of approximately 5-7 and operates at approximately 25%

gross margins and 10% operating margins.

The domestic operations division, our primary point of contact, is responsible for

the production planning for large earthmoving machinery with primary assembly plants

clustered in the Midwestern United States. The domestic operations division operates

primarily under a Material Requirements Planning (MRP) model, generally known as

"push" system. The MRP model is based on a zero buffer concept, whereby all

production is made to meet a forecast. Our sponsor is interested in exploring alternative

methods of inventory management to determine the strategy that is most sufficiently

responsive to the variations in customer demand, production schedule changes, as well as

supplier lead-time variability. Specifically, the domestic operations division seeks a

more robust inventory management system that will more effectively optimize their

replenishment planning and deployment of safety-stock (or "buffer inventory") across the

various echelons within their supply chain.

1.3 Supply Chain Overview

This research has a specific application to our sponsor company's SCS associated

with the manufacture of large construction and mining equipment in both wheeled and

tracked designs. The demand for these items is generated from customers. This demand



is then relayed from customers to our sponsor's production planning group through end-

product dealers. Our sponsor then sends information for required materials upstream to

suppliers, both internal and external. This chain reaction is the information flow shown

in Figure 1.

1.3.1 Push/Material Requirements Planning

As mentioned above, Material Requirements Planning (MRP) has been the

primary method of our sponsor's production support in recent history, whereby the

production planning division develops a forecast for the MRP system to determine part

quantities necessary to support the production to meet the demand. This is commonly

referred to as a "push" system, since the upstream assembly components are physically

pushed through the supply chain according to the forecast. A forecast-driven system such

as MRP introduces a phenomenon known as the "bullwhip" effect, where sudden

variations in the demand for the end-product exacerbate the variability in production for

suppliers, leading to inventory shortages. The resulting shortfalls in production upstream

bring the assembly to a halt, resulting in depressed levels of cycle service and increased

down-time on the line. To combat this, each part number in the assembly process carries

a certain amount of "safety-stock", or buffer inventory, to account for variability in the

customer demand patterns and line-side delivery time. This frequently leads to high

carrying charges associated with on-hand inventory. This also leads to increased planned

production lead-times.



1.3.2 Pull/Just-In-Time Environment

Conversely, a "pull" system refers to demand driven production. When parts are

consumed for assembly at Echelon 0, consumption information is passed to the supplier

in Echelon 1 to trigger a replenishment. Suppliers then replenish the consumed stock.

This system shifts the inventory risk toward the suppliers, reducing the overall system's

inventory value and reducing the lead-time variability to that of transportation. Again,

this is theoretically based on the premise of zero buffer; however, in practice, safety stock

is again typically held in order to combat demand and lead-time variability.

Our sponsors are in the midst of managing a shift away from the purely forecast

driven MRP system with the hopes of achieving a pure "pull" system, where inventory is

replenished as it is consumed by downstream demand. Currently, their operations are

estimated to be at approximately 65% pull with an eventual goal of 80% on a 3-year time

horizon (i.e., end of FY2010) 1. This consumption-based inventory policy will ultimately

facilitate a continuous flow of manufacturing that will theoretically improve service

levels and at the same time minimize line shut-downs due to inventory shortfalls.

1.3.3 Kanban Overview

One of the primary characteristics of the desired pull system is a bin

replenishment system, also known as Kanban, from the Japanese term for "sign" or

"card". Kanban is a signaling system originally developed by Toyota in the 1950s that

triggers upstream production of a part or component once it is consumed in the assembly

'These percentage figures are with respect to the dollar value of inventory and not with respect to the
stock-keeping unit count.



line. A key enabler of kanban systems is rapid replenishment from the supplier often

accomplished by the supplier carrying a level of finished goods inventory in stock ready

for shipment. At each stocking point, the inventory level is set based on the expected

demand and replenishment patterns. Contributing to the replenishment pattern at the

supplier is the utilization level of the supplier production facilities. If the supplier is

highly utilized they will have to carry a higher level of finished goods inventory to cover

a longer expected lead-time until replenishment. One of the primary theoretical benefits

of Kanban is that the lead-time variability is decoupled from the variability of production

from the variability in transportation and handling times. Generally the transportation

and handling time will be a more stable and predictable quantity to plan around, and the

highly variable production lead-times will not affect availability for the end customer.

Figure 2: A Kanban board provides managers with immediate visibility into the inventory status of multiple SKUs
using color coded cards. (Source: http://www. shop.org-sys.de)
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Kanban systems typically use a physical card system, as shown in Figure 2, to

indicate the inventory status of individual components (though many companies employ

------ ···;···--~-~··-----~·· ·-····----- ----------- ------ ar ~I~- I-r m---~l·--



the use of items such as golf balls, or the bins themselves, to signal calls for

replenishment). Each card, also known as a Kanban, represents a bin, or a predetermined

quantity of part inventory. As a bin is consumed, the empty bin is sent back upstream in

the supply chain to be replenished by the part manufacturer. When the bin is returned

fully stocked with inventory, the card is replaced to the centralized production Kanban

board as shown in Figure 2. When batched and centralized, the Kanban system provides

line managers with immediate visibility into the potential pain points of an assembly

operation.

Approximately 10% of the dollar value of our sponsor company's inventory is

already on Kanban. The success experienced with this inventory is the primary

motivation behind management's desires to experiment with full deployment of Kanban

across the production of a major line of earthmoving tractors.

1.3.4 Echelon Recognition and Identification

Our research has found there to be no one universal way to identify or label

installations within a supply chain system. For example, Clark and Scarf (1960) identify

echelon N+1 as one tier upstream of echelon N, whereas Rosling (1988) identifies the

individual subassemblies using nodes and inbound/outbound arcs, rather than echelon

numbers.



Figure 3: A typical assembly system. Source Rosling (1989).
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In general, the literature indicates that any numbering system in a multi-echelon

environment should increment as the echelons become further removed from the end

product. As such, we used the following numbering convention for the remainder of this

study: Echelon 0 is the final assembly plant, with echelon numbers progressing up by 1

with each level removed upstream of echelon zero (i.e., a component for final assembly

would reside in Echelon 1; end-product dealers reside in Echelon (1), or negative 1). The

suppliers of the parts and subassemblies for the scope of this project operate as many as

eight echelons removed from the final assembly, or Echelon 8.

There are various approaches to the recognition of echelons in manufacturing.

For example, many supply chains take what is known as a "four-wall" approach to

echelon recognition (namely that an echelon only exists if input inventory enters a

building and finished goods leave the building). Those with multiple decentralized or

independent suppliers use individual companies as the method of echelon recognition,

similar to the four-wall approach, only partitioning echelons by building ownership rather

than location. So, operations conducted by the same company in multiple buildings



would still comprise a single echelon. Graves and Willems (2000) use the following

definition to recognize stages:

A stage represents a major processing function in the supply chain. A
stage might represent the procurement of a raw material, or the production
of a component, or the manufacture of a subassembly, or the assembly and
test of a finished good, or the transportation of a finished product from a
central distribution center to a regional warehouse. Each stage is a
potential location for holding a safety-stock inventory of the item
processed at the stage. (Graves & Willems, 2000)

In the case of our sponsor, for the great majority of the steps in the assembly process,

multiple steps are conducted within the same four walls, generating numerous

intermediate SKUs along the way. For this research, we reduce the scope of the above

definition by restricting echelon recognition to the production tree implied by our

sponsor's assembly bill of materials, keeping building codes and parent companies

independent of the model.

There are also numerous instances in our sponsor's supply chain where batching

or kitting takes place in between the production of components and subassemblies to

facilitate higher levels of efficiency on the line. For example, a subassembly requiring

ten different SKUs as inputs in various quantities might have these parts picked and

organized into a kit prior to arrival on the assembly line. We are not going to be

considering these steps in the sequence unless a new SKU/part number is the eventual

outcome. And so, the production time associated with kitting will therefore be included

in the production time of the next sequential component or subassembly.



1.4 Research Objective

This research has two primary objectives: (1) to develop a general and scalable

methodology that determines the safety stock levels in a multi-echelon supply chain

through the full deployment of Kanban across all parts and components, and (2) to create

a tool that accurately models our sponsor company's inventory management policies by

simulating the calculation and coordination of inventory buffers and the respective lot

sizes associated with each individual part number. The research element of this project

provides a guideline for best practices in our sponsor's organization from the perspective

of cost-efficient inventory management through numerically optimized Kanban quantities

and sizes. Our sponsor company has specifically tasked us with the development of a

prototype for a simulation model that optimizes inventory positioning at the part number

level in a Pull/Just-In-Time (JIT) environment 2. Total cost minimization is the objective

function dependent on the quantity of Kanbans and the number of units per Kanban for

each part number in the production process. The simulation is constructed quantitatively,

based on proprietary company data, and qualitatively, based on employee interviews as

well as on the body of published literature surrounding this topic.

1.5 Literature Review

Since Clark and Scarf's seminal work in 1960 on the decomposition of multi-

echelon supply chain systems, extensive academic research has been conducted on the

subject of manufacturing systems and the inventory policies associated with them. We,

therefore, focused our literary survey on published work in two primary areas: (1)

2 The Just-In-Time principle of procurement indicates that a unit is received from the immediate upstream
supplier at the moment it is required in the assembly line.



quantitative modeling of buffer inventory in multi-echelon supply chain networks and (2)

the optimization of Kanban/JIT systems. In general, most literature surveyed displayed

large amounts of similarity in approaches to dealing with multi-echelon systems, where

the primary differentiator from one study to the next was the underlying assumptions that

were employed in the model and how they were treated. As such, the value derived from

our literature review manifested in extensive consideration for the assumptions and

constraints that we would ultimately employ in our own model.

1.5.1 Multi-Echelon Safety Stocks

The crux of this research is the multi-echelon nature of the assembly process in

manufacturing systems. We, therefore, began our survey by investigating the extensive

body of work on the subject of multi-echelon manufacturing and assembly. A recurring

theme in our research has been that the fundamental key to multi-echelon supply chain

analysis is the method of generalizing solutions for one echelon to more than one

echelon. Clark and Scarf's 1960 paper is the previously cited seminal work on this

subject and lays out the framework for how induction can be used to generalize from one

echelon to two echelons and, therefore, to an arbitrary number of echelons. Our

modeling efforts were guided precisely by this decomposition approach, beginning with a

single part number and gradually incrementing the level of complexity to capture

assumptions and business rules effectively so as to accurately approximate our sponsor's

assembly sequence. As the first major paper on multi-echelon systems, Clark and Scarf

(1960) also define the framework on which most subsequent papers are based.



Multi-echelon supply chains can be classified into two categories: (1) inbound

chains supplying a production facility and (2) outbound distribution chains delivering

products to customers. Although our research is focused on inventory allocation across

the inbound supply chain, there are insights and methodologies, such as techniques for

modeling the network and simulating material flow found in Bookbinder and Heath

(1998), which have lent significant value to our simulation prototype. Bookbinder and

Heath's paper specifically deals with the lot-sizing question in a distribution requirements

planning environment, where the rolling schedule is the primary differentiator from prior

work. As one of the primary goals of our prototype is to deliver a solution that will

recursively answer the uncertain demand question over the long-term, this environmental

condition of the rolling schedule is critical to our research.

The focal point of our research is the allocation of buffer inventory. Specifically,

we aim to identify and optimally treat the points in the supply chain network that run the

risk of shutting down the entire process in the event of a stock-out. Graves and Willems

(2000) employ a digital camera assembly as a case study to illustrate the situation of a

guaranteed level of service to customers under bounded demand. They further introduce

the concept of decoupling points in the process. This plays a significant role in our

research, especially in reference to the part numbers common to numerous assemblies,

intuitively the most likely to effect line delays. Furthermore, the bounded demand

assumption is implied by the schedule freeze practiced by our sponsor.

The paper entitled Safety Stocks in Manufacturing Systems (Graves, 1988)

provides one of the more comprehensive literature reviews on the subject of inventory



planning in multi-stage manufacturing systems and further develops a model flexible

enough to handle centralized and decentralized inventory controls. Lee and Billington

(1993) build on Graves' model by applying it in the context of a decentralized assembly

system to evaluate various alternative supply chain designs for a Hewlett Packard Deskjet

model printer. The domestic operations division of our sponsor follows a centralized

control system; however, the scalability of our model to decentralized systems addresses

the research goal of this study to extend beyond the focused application to sponsor data.

As such, these papers contributed to the overall flexibility of our model.

As discussed above, the negative effect of safety stock is largely the costs

associated with holding additional inventory. As such, Diks and de Kok's 1999 paper

was highly relevant to our handling of inventory costs. They begin with the

decomposition of a generalized arborescent N-echelon network, similar to that of Clark

and Scarf (1960), and algorithmically optimize using a three-echelon simulation under

the assumption of level demand with a uniform distribution. While Diks and de Kok's

model is based on a divergent distribution system as opposed to a convergent assembly

process like that of our sponsors, they raise the substantive question of inventory

allocation between stations within a single echelon. Reverse engineering the allocation

problem to an assembly network becomes relevant to our research due to the significant

proportion of parts common to multiple subassemblies and ultimately end-product

models. Mittra and Chatterjee (2004) similarly optimize their system via the

development of mathematical models.



Simulation modeling is the primary experimentation method in the research space

of multi-echelon supply chain. Works such as Lagodimos and Anderson (1993), Tee and

Rossetti (2002) and Axsiiter (2000) all provide simulations as the primary driver of

results. Stenger (1996) employs a regression-based simulation to evaluate inventory

issues for a ceramic flatware manufacturer through iterative experimentation under

variable conditions.

Rosling (1989) also takes an analytical approach to the demand variability

problem, only in assembly systems. Also based largely on the work of Clark and Scarf,

Rosling's paper decomposes the assembly system into a serial system such that it can be

generalized to an arbitrary number of echelons. Rosling generates his model contingent

on the sequence of events beginning and ending at the start of the period. This is a

simplification of the system that we have adopted in modeling our sponsor's assembly

process. One distinction from Rosling's assumptions is that we have chosen not to

include inventory already assembled into other units; this outlines the difference between

forecast based studies and pull/JIT environments. The work in progress inventory is not

considered in our model since bins are replenished from upstream finished goods

inventory as they are consumed, independent of the production time that typically drags

down performance in push systems.

Bollapragada et al. (2004) is one of the most commonly referenced studies of

multi-echelon modeling in the space of assembly networks. They take a two-echelon

approach to treating uncertainty in end-product demand and lead-time variability,

employing computational experiments to determine supply chain improvements with



respect to safety-stock costs, similar in many respects to our approach. Their findings

validate our sponsor's shift toward the characteristically reduced lead-times in pull/JIT

systems, as the cost benefit is determined to be correlated to the relative value of the part

or component; our project, while inclusive of the majority of the input value spectrum, is

indeed focused on the later stages of the supply chain where the inventory value per unit

of input is higher.

1.5.2 Kanban/JIT Manufacturing Systems

The second body of literature that we investigated was on the subject of the

deployment of Kanban/pull systems. Since the founding of the concept by Toyota in the

1950s, manufacturers around the globe have had a vested interest in evaluating the

potential application to their specific product lines. As such, there is a vast body of work

on Kanban, ranging from qualitative treatments assessing the appropriateness of

integration in existing business models to specific case studies dealing with the

quantitative simulation and optimization, much like the problem with which we are faced.

As an introductory reference point, Esparrago (1988) provides the most concise overview

of the concept of Kanban, including the historical origins, benefits and varieties of

implementations across numerous cited Japanese manufacturers. Zaenglein (2000)

provides a more thorough history of the evolution of Kanban as well as a detailed

description of the execution of a Kanban system, with specific application to the

automotive industry. We recommend these papers as a primer to readers unfamiliar with

the subject of Kanban.



Since our research hinges on the benefits of Kanban with respect to costs, we

restricted the scope of our literature survey to prior work conducted in the space of

mathematical simulation of Kanban systems. Deleersnyder et al. (1989) takes the study

of Kanban to an extensive degree of detail with specific emphasis on the "operational

control" problem, or determining the appropriate quantities of bins and where bins are to

be allocated throughout the assembly process in an effort to combat the inherent issues of

variable demand, one of the primary production disturbances addressed by our research.

This work represents one of the first analytical and quantitative approaches to Kanban

system modeling. Subsequent quantitative work includes Nori and Sarker (1998), K6chel

and Nielinder (2002), and Gurgur and Altiok (2004).

Optimization studies lend further credence to the value of Kanban systems as a

viable alternative to MRP. Wang and Sarker (2005) take a mixed-integer nonlinear

programming (MINLP) approach to modeling the Kanban system, using the total system

cost as the objective function and introduce the queuing concept to address the problem

of container quantities. Xiabo, Gong and Wang (2002) also follow Deleersnyder's study

of operational control while explicitly separating input buffer from output buffer at each

stage in the assembly process, whereby an emptied input Kanban in a stage's input buffer

signals a pull from the adjacent upstream stage's output buffer, as shown in Figure 4.



Figure 4: This figure illustrates the typical flow of material in a Kanban system. Note that finished goods inventory
in Echelon N+1 is the same as the raw materials inventory in downstream Echelon N.
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One of the differentiators of our research from most other work on the subject is

our use of regression analysis following experimental runs of a simulation to generate

reasonable and scalable parametric treatments of parts in our sponsor company's supply

chain. Jothishankar and Wang (1992) take a different approach to the simulation of a

Kanban system by utilizing linear regression metamodeling to describe the relationships

between both quantitative and qualitative factors on the overall system. This provided a

precedent for the type of variables that we would consider in our own case study as well

as an experimental design to generate adequate predictors while reducing the number of

simulation runs required. Due to the large number of part numbers in our assemblies, this
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approach presented itself as a viable option, especially when considering the range of

parameters and the eventual application to larger quantities of end product models.

As mentioned previously, our project models the production of three end-

products. Singh et al. (1989) uses a similar approach of three items. They use a fixed bin

size equal to ten percent of the expected daily demand and a fixed bin replenishment

time, limitations based on prior research conducted in reference to Toyota. They further

restrict the model flexibility by fixing the daily production. Takahashi and Nakamura

(2002) present a much more reactive and decentralized model wherein the buffer sizes

can adjust dependent on the systematic instabilities, validated by a series of simulation

experiments. These instabilities are accounted for by randomly distributed lead-times

and demands, the seminal assumptions of our research.

1.5.3 Literature Summary

This literature review captures the primary published work on the subjects of

multi-echelon supply chains and Kanban implementations that we found to be relevant to

our research. Additional surveyed literature can be found in this paper's bibliography. In

the end, our final simulation model was not derived directly from any previous research

as the requirements of the project were very specific to the nature of our sponsor's

operations. However, our review provided several critical insights in the formulation of

our assumptions as well as our treatments and inclusions of business rules. Our use of

simulation-based experiments as inputs to a linear regression to generalize the treatment

of part numbers within an assembly system marks an alternative approach that we believe



ultimately generates effective and easily replicable recommendations for both ad hoc and

system wide optimization exercises in Kanban implementations.

In the remainder of this paper, we provide a detailed introduction to project

specifics, including assumptions, constraints and other environmental issues specific to

this research. We then provide a detailed description of the iterative construction of our

simulation model. Finally, we conclude this paper with an analysis of the results

followed by specific recommendations for our sponsor's specific inventory policies as

well as for future research on this subject.
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2 Understanding the Problem

Before delving into the details of the model, it is important to gain a deeper

understanding of the motivations behind our research. As such, we use this section of the

paper to discuss the research question with respect to the environmental characteristics of

our sponsor company. The information presented in this section is based on extensive

interviews with company personnel and on-site facility visits. We then discuss the data

provided by our sponsor and the manner in which we specifically use it. This data

includes the Bill of Materials (BOM), the relevant plant and product line production

history, cross-model parts (parts required by multiple product models), as well as a

decomposition of lead-time as defined by our sponsor. We further identify the business

rules and assumptions that require consideration in the development of the model.

Lastly, we conclude with a qualitative discussion of the various components of the costs

included in the objective function.

2.1 Problem Definition

As mentioned earlier, this research is intended to determine a best-practice

guideline for the deployment of Kanbans as evaluated by extensive experimentation

through an exercise in simulation on actual company data that is to be used by managers

of manufacturing systems similar to those of our sponsor company. The primary output

for this research is a functioning model prototype that effectively mimics the assembly

process along with the variability that is introduced by both lead-time and demand.



2.1.1 Focus

We build the model around the parts data for three earthmoving products

produced in three primary Midwestern manufacturing locations, to be referred to as

Model 1, Model 2 and Model 3 for the duration of this paper. As mentioned earlier, our

research extends to suppliers that are as many as eight tiers removed from the final

manufacturing operation. The project takes into account variability in customer demand,

lead-times, quality, service level and production volume. We are not evaluating the

locations or number of facilities, as such questions of network design are beyond the

scope of the project; nor are we evaluating changes to parts and sourcing of raw materials

as they too are topics beyond the project scope.

2.1.2 Data Description

The data driving our modeling efforts is restricted to the production of three

models, Models 1, 2, and 3, manufactured in the assembly facilities near the domestic

operations division headquarters. The primary focus is on the Model 3, the most valuable

and high-margin of the three; however, the parts required to build Model 3 significantly

overlap with those required to build the other two. As such, these models are also

included to account for the cross-demand variability of part numbers with multiple end-

products.

2.1.2.1 Bill of Materials

We are utilizing the Bill-of-Materials (BOM) for Model 3 to map the entire build

sequence from raw materials to final production. A BOM is a list of materials, parts and

components required for the assembly of a manufactured item. In the case of this



particular line of tractors, uncustomized assemblies require approximately 1500 part

numbers in quantities varying from one to over 900, introduced in as many as 4 echelons.

The BOM specifically identifies the part number, echelon number, quantity required and

the subsequent part number, hence providing us with a means for symbolically

developing the part dependence tree for the relevant products. As such, this is the source

of the large majority of the substance for the model. Figure 5 shows the cumulative

distribution function of the various part numbers required in a Model 3 tractor, with over

50% of all part numbers requiring a single unit per end product and 82.8% requiring 4 or

fewer units.

Figure 5: The cumulative distribution function of components of Model 3.
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2.1.2.2 Historical Production and Demand Planning

Our sponsor company has also provided us with detailed production history data

for the relevant line of tractors manufactured in the Midwestern facilities. The data

includes the quantities and models of tractors completed and approved by calendar date

--



for the trailing three month period. We are using this data to approximate the mean

expected demand and standard deviation for each of the three relevant models over time.

This is used to estimate the distribution of daily demand of each end product. By plotting

the production history for the various models, we estimated a normal distribution for each

of the models, as shown below in Figure 6.

Figure 6: The distribution of daily production by model plotted against the respective normal distribution functions.
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We note that this is merely a means to achieving an approximation of demand

variability. While the production is not necessarily indicative of the actual experienced

demand, it should be adequate to provide us with a reasonable order of magnitude for the

actual demand variability. We are assuming that there is no partial production on a given

day (i.e., there cannot be a fraction of a tractor built at the end of the production day).

Any missed production will be added to the build schedule for the following production

day.

C

L.Li0I
S

"lllillilll~llillllI



2.1.2.3 Inter-Model Parts

We have also been provided with the part numbers common to the multiple end-

product models relevant to this research. As mentioned above, many part numbers

involved in the assembly of the Model 3 are also used in the assembly of other end-

product models. We are using this information to more accurately replicate the amount

of buffer inventory necessary to satisfy the demand variability of all three models.

2.1.2.4 Order Costing

As the objective of this research is to determine the Kanban quantities that

optimize the total cost across the entire assembly system, a critical component of our

success measurement is the cost associated with ordering product between echelons. We

are using our sponsor company's best approximations for the order costs for the

procurement of each part number at each echelon.

2.1.2.5 Decomposition of Lead-Times

We have also been provided with the lead-times for all parts required for Model 3.

This has been broken down for us as follows:

* Order issue lead-time - the time from the point when the order is placed to point

when the order is processed.

* Supplier time - time required for a supplier to prepare the part for transportation

loading (i.e., picking, intra-facility moves); this does not include any stage in the

manufacturing process.

* Transportation time - dock-to-dock time



* Distribution time - time from cross-dock to point of use, such as a storage or

staging area.

* Indirect Process Time - any additional time required by our sponsor to ready

product for consumption.

All times have been provided as integer dates (i.e., there are no timestamps in the

data to account for time of day when an item is received). The mean and standard

deviation of lead-time for each product are based on the most recent series of 30 receipts

for each part number. Data has been manually collected and input by sponsor employees

as well as external suppliers; because of this, we can assume that it is prone to error. An

analysis of variance revealed a clear need for some rudimentary outlier trimming,

primarily on the high end of the spectrum as the low end is generally bound by zero days.

Table 1 provides some summary statistics for the various lead-time classes. The numbers

have been masked for confidentiality reasons but are indicative of the scale of the actual

numbers.

Table 1: Summary Statistics for the various components of sponsor's lead-times

average min max StdDev

Order Issue 1.06 1 11 0.42
Supplier 8.71 0 95 7.91
Transportation 3.67 0 38 5.93
Indirect 0.02 0 5 0.30
Distribution 2.11 0 9 0.49
Total 13.64 3 108 10.06

As mentioned earlier, we are assuming a Kanban environment where upstream

inventory is ready for replenishment as triggered by consumption in downstream

echelons. Therefore, the lead-times associated with filling orders should theoretically be

contained in these lead-time designations. There is some dispute with regard to the



validity of the Supplier Time being exclusive of the actual production associated with

respective part numbers, since on the maximum extreme, it would be highly unlikely for

a supplier to require 95 days to pick and pack an item. Nevertheless, we are assuming

that this is a practical case.

2.1.3 Assumptions, Business Rules and Constraints

In an effort to best understand the issues that a manufacturing organization faces,

we have conducted extensive interviews with logistics personnel and plant managers,

both on-site and via teleconference. Subsequent to our interviews with our sponsor

company's staff and our visit to the assembly facilities, we have developed a working list

of assumptions that are specific to our sponsor company.

Improved performance in the JIT environment: JIT material management has led to

improved levels of stock availability and decreased levels of line shut-downs in trial

implementations. Our sponsor company wants to move in the direction of a pull-based

material management system away from the historical MRP/push system. It is not in the

scope of this project to evaluate the relative performance of these systems, but rather to

conduct an experiment in the environment of Kanbans.

Uniqueness ofsupplier: Products and subassemblies are unique and come from unique

suppliers. This means that upstream inputs in the supply chain can come from one and

only one supplier.

Commonality ofparts: Parts and components can be included in the assembly of several

end products.



Transportation costs: Transportation costs will be assumed to be included in the cost of

ordering replenishments. In the case of our sponsor, the transportation between the

facilities relevant to the tractor models that we are studying is small enough in distance

and cost to be regarded as negligible. However, the lead-times associated with

transportation will be included in the model and hence provide an implicit cost associated

with transportation.

Carrying cost of inventory: The holding costs are estimated by management to be 11%

per annum. This is an average cost of capital and, therefore, will not reflect the estimated

return from the next best alternative to an investment in inventory for the part number in

question. For the sake of simplicity, we are adjusting this to 12% in the event that a

month-by-month analysis is requested by our sponsor.

Units per bin is unconstrained: In practice, some of the later echelon components, such

as 20,000 lb frames and engines, are unlikely to be shipped in increments other than a

single trailer load. Conversely, C-items such as nuts and bolts are likely to be shipped in

lots on the order of thousands simply due to the relatively low inventory value of these

parts. We do not have any upper/lower bound data on the typical shipment size of parts.

In the absence of these sku-by-sku constraints, we are assuming that there is no constraint

to the quantity of units per Kanban.

Production shortfall rolls over: Missed production gets rolled over to the following

production period.



Additional shifts: As the production shortfall accumulates, an additional shift will be

tacked on to the end of the production week, but only if a predetermined threshold of

backorders has been breached. This is captured in our model by a Saturday run. The

threshold can be set and altered by management. For example, with a hurdle of 5 units, if

the number of backordered units is at least 5 on Friday, the time available for production

would be increased by the length of a weekend shift (by default equal to one 430 minute

weekday shift). The amount of production would still be calculate based on the parts and

production time available the same as a regular shift.

Machine reliability: Machine reliability is assumed to be 100%. This means that no

variability is introduced by the availability of production facilities (Deleersnyder,

Hodgson, Muller, and O'Grady, 1989).

Shift length: We assume for a single eight-hour shift per day, or 480 minutes; when

factoring in breaks and lunch, total production time per day is equal to 430 minutes. A

production week equals five production days of 430 minutes. Additional shifts (Saturday

runs) are introduced to the model if the backordered quantity exceeds a specific

threshold. This simply extends the Friday shift to 860 minutes.

Production time is non-constraining: The manufacturing process is not constrained by

production time; i.e., production can only be constrained by parts availability. To

accommodate the assumption of non-constraining production time, we increase the

production shift length if a particular day's mix would require more production than a

standard shift length. We do not decrease the production shift length if the mix is shorter

than the extra time available for producing backordered tractors; in this case, the



remaining production time would simply go unused. This study is strictly an experiment

of the impact of inventory policy on production performance.

Production lines: Only one production line is used. This should not limit the scalability

of our model to production systems with multiple lines running in parallel.

Transfer ofownership: Ownership of a part does not occur until the part arrives in

inventory. This consideration is directly relevant to the calculation of inventory carrying

costs.

Distribution ofDemand: Based on the historic distribution of production, we are

assuming that the daily demand is normally distributed about the production means and

standard deviations as derived from the trailing 90-day production schedule provided by

our sponsor. See Figure 6.

Lead-Time Distribution: Lead-times are also assumed to be normally distributed based on

means and standard deviations provided by historic receipt data.

2.2 Decomposition of Costs

The ultimate motivation behind our research is our sponsor's interest in cost

reduction. Amidst the burgeoning environment of global competition in manufacturing,

corporations around the world have had a vested interest in reducing the cost of

operations in order to advance, or even maintain, their market position. One of the major

components of these costs is accrued in corporations' inventory accounts. These

accounts are comprised of cycle stock, in-transit (or "pipeline") stock, and safety stock.

Cycle stock refers to the component of ordered inventory that is a fixture in the



replenishment of the item. So, when a replenishment order is received for an item, the

cycle stock is intended to cover the expected demand over the order cycle, namely the

expected demand until the next order arrives. The safety stock, as mentioned earlier,

refers to the inventory component accounting for any demand variability that arises

between when an order is placed and when the order arrives, such as demand spikes,

transportation lags, or line shut-downs. The in-transit stock, as the name implies, is

simply the inventory that has already been ordered and is en route to the next downstream

echelon.

2.2.1 Order Costs

When a bin for an item is consumed in a Kanban environment, an order is

triggered for the replenishment of that bin. Because of the administrative costs associated

with processing, preparing, packing and shipping the order, an order cost is tied to the

individual invoice. This cost is fixed with respect to the number of Kanbans replenished

in the single order, as we are assuming that the capacity for in-transit inventory is

unconstrained. For example, the order costs associated with a single bin replenishment

are the same as those associated with a ten bin replenishment.

2.2.2 Procurement Costs

Not to be confused with order cost, procurement cost is the cost of the inventory

ordered. To reuse the example from §2.2.1, a replenishment order often bins will have a

procurement cost ten times that of a single bin replenishment order, assuming no volume

discount.



2.2.3 Holding Costs

Typically, companies will designate a holding charge for inventory since it

represents money that could have been allocated elsewhere in the business or in external

investment markets. For example, a company may have an average of $100 million tied

up in inventory over the course of a year accruing holding charges of 15% per year, or

$15 million per year.

2.2.4 Shortage Costs

A backorder is the event when the available stock fails to satisfy the demand. For

example, if a tractor frame is ready for an engine assembly to be installed but there are no

engines in available inventory, the demand for engine installations cannot be satisfied,

hence yielding a backorder. In the event of a backorder, shortage costs are incurred.

Typically, backorders are added to the following production period's schedule. Because

demand is not met, a downstream sale is lost or delayed and the production line for that

item might stop or shut down, both incurring potentially significant opportunity costs.

Provided these can be accurately monetized, a shortage cost is incurred to represent these

opportunity costs. Our sponsor has minimal data in this regard. As such, we are

selecting rule-of-thumb estimations for shortage costs in determining the cost of the

overall system's production.



3 Methods: Numerical Simulation Modeling

In this section, we discuss the development process of the simulation model that

provided the backbone for our analysis. We provide an overview of the underlying

structure of the model. We then discuss the various components, individual inputs and

intermediate calculations. Finally, we introduce the total relevant cost function on which

the model outputs are measured. All models are designed to simulate a single part at a

time.

3.1 Model Structure

The key tool for our investigation is a model to complete time-series simulation of

the production system. Our model simulates the daily manufacturing production, tracks

part consumption and then places and tracks future orders inbound to the system. In this

section of the paper, we first explain the overall structure of the model and then the key

performance statistics used to compare the results. Finally, we include a detailed

discussion of the specific variables and calculations used to implement our assumptions

and production rules into the model. The simulation is used to evaluate the performance

of the system under different parameters. Following from our focus on inventory

placement in the system, our model is particularly focused on tracking which parts are

available for production and on order. To compare the results from various inputs, we

use the total relevant cost consisting of carrying cost, order cost and backorder cost. Our

model was prototyped in Microsoft Excel and then transferred to MATLAB to perform

the majority of calculations.



There are two aspects to the structure of the model: the conceptual theory around

which the simulation is built and the bookkeeping scheme used to track the data. This

section is primarily focused on the conceptual theory while the bookkeeping is more

substantially handled in a later subsection of the methods. In developing the model, we

found four key areas that needed to be handled: (1) what needs to be built, (2) what can

be built, (3) what is built or consumed and (4) what is on order.

The requirements for what needs to be built each day are calculated based on the

number of units backordered from the previous day plus the daily production schedule.

The number of units backordered is the total number of units required the previous day

that were not built due to inventory shortages. This figure is not precisely the same as the

number of backorders we track for total cost because if a unit is backordered, it might be

carried on the rolling requirements list for multiple days until it can be completed, either

during a regular shift or by scheduling an extra Saturday shift. To capture the effects of

variable production schedules, we model the production schedule of each tractor model

as a normally distributed variable with a nominal average and standard deviation based

on historical data. For the simplicity of our calculations, the production schedule of each

tractor model is distributed independent of the other models.

Based on the production requirements, we then calculate the number of units that

can be built. There are two constraints on production simulated in the model: the primary

constraint is the number of parts available for production and the secondary constraint is

the amount of production time available. The usage in parts-per-unit by tractor model is

one of the inputs to the model and can be changed to investigate the dynamics of different



parts. In the situation where there are not enough parts to complete the total production

requirement, production is prioritized for tractor Model 3 then tractor Model 2 and finally

tractor Model 1. This is the same way units are prioritized if there isn't enough time to

complete the required production because the relative value and margin on these tractor

models increase with the model number.

Based on the parts available for production, the simulation model calculates the

"part-limited" production, representing the maximum production level that can be

completed up to the total production requirement. This "part-limited" production is used

as the basis for calculating the "time-limited" production, representing the maximum

production level that can be completed based on the time available up to the "part-

limited" level. While the quantity of parts in inventory available for production is simply

calculated based on consumption and receipts, the time available for production is a more

complex calculation.

To accommodate our simplification that the production schedules are

independently distributed, we may produce schedules that are not feasible; therefore, we

change the length of each production shift to be the greater of (a) the baseline 430-minute

shift and (b) the total time required to build the production schedule based on the time per

unit. For example in our standard system, the production schedule for model 1 ranges

between 5 and 10 units per day, model 2 ranges between zero and 4 units per day and

model 3 ranges between 3 and 5 units per day. When the production schedule is 7, 2 and

3 for model 1, 2 and 3, respectively, the production time is completed within the standard

shift. However since the production schedules are distributed independently, a



production schedule of 10, 4 and 5 could be selected which would take longer than a full

shift to complete. In these situations the shift length is extended to equal the time

required. In addition to the daily production shift length, if there are a sufficient number

of backordered units, additional production time representing "Saturday" shifts is added

to the available production time.

The "time-limited" production represents the maximum production possible that

day. The "time-limited" production is directly calculated from the "part-limited"

production, the production time per unit and the total production time available. Our

model assumes that this "time-limited" production will be produced everyday. Any other

reductions based on machine breakdowns or other external factors are handled by the

variability introduced into the production schedule based on historical data. The number

of parts consumed from inventory is calculated based on the number of parts consumed

per unit of production. Because our model is focused on the use of bins to manage

inventory in the system, we also calculate the number of bins that are at least partially full

at the start and end of the day to track how many were emptied. The number of bins

emptied is tracked for replenishment as essentially an empty bin becomes an order for

replacement. In a real world system, orders will not always be immediately forwarded on

to suppliers, and requirements may be batched together to place fewer larger orders. To

account for this characteristic, our model also handles the complexity of limiting the

number of orders per 20-day cycle.

Tracking the inbound orders takes up almost half of the bookkeeping in the model

but is based on relatively simple calculations. We assume the lead-time of new orders to



be normally distributed with some known average and standard deviation; this treatment

is driven by the assumptions that (a) the lead-time primarily represents the transportation

time and (b) the supplier will keep finished inventory on hand for replenishments. The

lead-time is calculated from the normal distribution based on a uniformly distributed

random seed. Each day, the orders outstanding are updated by shifting the previous day's

orders by one day and adding any new orders placed today (i.e. orders 8 days out on day

1 are 7 days out on day 2). The orders one day out are assumed to have arrived and are

dropped out of the inbound tracking system. This method is enabled by calculating the

lead-time for each order when it is placed according to the known distribution then

keeping it fixed because we have already accounted for the variability.

3.2 Equations, Objective Function and Constraints

Our model is built around a large matrix where each column represents a

particular variable and each row represents a different day in the simulation. The flow of

calculations through the model follows the sequential completion of the calculations for

all of the variables on a given day (i.e., a given row) before moving on to the next day

(i.e., the next row). Variability enters the production system through fluctuations in the

lead-time and production schedule; our model captures that variability using probability

distribution functions and samples from random seeds.

3.2.1 Nomenclature

The matrix we use to track our model grew in complexity and size through

multiple iterations. We ended up with a model 88 columns wide with variables grouped

by what they represent and when they were used in the calculations. The positions of



some of the variables look sub optimal when reviewed; however most of them allowed

for more clarity while debugging and developing the model. While each column

represents a different variable each row represents a different day of the simulation. We

ran our simulation over 5000 days representing 20 years of 250 production-days per year.

Model = 1 . j

n = 88 columns

m = # of Days

Each column of the model represents a different variable in the state of the system on that

particular day.

As explained in the first section of the methods there are four major categories

into which the calculations and variables can be grouped. Those categories are:

1. what needs to be build
2. what can be built
3. what is built or consumed
4. what is on order

Here are the columns of the matrix grouped by category. Columns 42 and 85 are kept

blank to allow for future expansion of the model without having to expand the matrix.

3.2.1.1 What needs to be built

a,,l = Day



Day represented by this line of the simulation, for the base models this runs from

1 to 5000. To calculate which schedule seed to use we rely on knowing which day we

are simulating.

a, 2 = LT Random Seed

ax,3 = Model 1 Random Seed

a, 4 = Model 2 Random Seed

a, 5 = Model 3 Random Seed

The seeds from uniform distribution between zero and 1 used as the input for

inverse probability distribution functions when calculating random factors of the

calculations. To keep the experiments repeatable these are sampled out of a known set of

random variables.

a,6 = Production Schedule Model 1

a, 7 = Production Schedule Model 2

ax, = Production Schedule Model 3

The production schedule for each day is calculated based on the random seed and

the production distribution characteristics for that model. We assume the production

schedule to be normally distributed based on an average of the nominal schedule and a

standard deviation based on a histogram of historic production numbers.

a, 9 = Model 1 Daily Production Requirements

ax,o = Model 2 Daily Production Requirements

ax,, = Model 3 Daily Produciton Requirements

The daily production requirements for each model are based on the production

schedule and any units that have been backordered. The daily production requirement is



calculated based on the sum of the previous days production requirement plus the current

days production schedule minus the previous days production.

3.2.1.2 What can be built

ax,12 = Inventory On Hand

Each day the inventory on hand is calculated, and represents the total number of

parts available for use in production on a specific day. The inventory on hand is

calculated as the previous days inventory on hand minus the inventory consumed during

production plus the parts received today.

a,13 = Total Part Requirements

ax,14 = Part Requirements Model 1

ax,15 = Part Requirements Model 2

a,16 = Part Requirements Model 3

Each day the total number of parts required to build all of the units of the daily

production requirements is calculated. The requirements for each model of tractor are

also calculated. Each of these is the product of the daily production requirements and

the number of parts per unit input to the system.

a, 7,, = Production Limited Flag

a,1s = Units of Model 1 to Build

a,x, 9 = Units of Model 2 to Build

ax,20 = Units of Model 3 to Build

Each day based on the number of parts available and the daily production

requirement the model calculates if the number of parts available would limit production.



If production is limited, the model calculates the number of units of each model to

produce, based on a prioritization of Model 3, Model 2 then Model 1 attempting to use up

as many parts as possible. If the production is not limited by the number of parts

available, the number of units to build is set equal to the daily production requirements.

al,21 = Saturday Production

In order to simulate the actual production system, the model takes into account the

fact that a shift can be added on a Saturday if there are enough backordered units. The

calculation of Saturday production is made if the number of backordered units is over a

"hurdle" rate input to the system and the particular day being simulated is a Friday. The

backordered count is based on the rolling production requirements in columns 10 to 12

compared with the daily production schedule in columns 6 to 9.

a,22 = Production Minutes Available

Each day the number of production minutes available is calculated based on the

length of shift and if there is a Saturday shift (for the ease of calculations Saturday shifts

are simulated by adding production time onto Friday shifts).

ax, 23 = Total Minutes Required
a,24 = Minutes for Model 1

a,25 = Minutes for Model 2

a,26 = Minutes for Model 3

Similar to the number of parts required for production, the number of production

minutes required to complete production is calculated. The parts limited production is



used as the basis of this calculation since the number of units built is constrained by the

number of parts available. Both the total for all models and the specific quantities for

each model are calculated.

ax,27 = Time Limited Production Model 1

ax,28 = Time Limited Production Model 2

a,29 = Time Limited Produciton Model 3

If there is not enough time to complete the entirety of the part limited production,

production is prioritized for Model 3, Model 2 then Model 1. If there is sufficient time to

complete all production then the time limited production numbers will be equal to the

part limited production quantities.

a,86 = Production Loss Model 1

a, 87 = Production Loss Model 2

a,,88 = Production Loss Model 3

For each model the production losses are tracked based on the actual production

numbers and the production schedule. Production losses are tracked as back ordered

units and added to the rolling production requirements.

3.2.1.3 What is built or consumed

a,3 0 = Production of Model 1

a,31 = Production of Model 2

a, 32 = Production of Model 3

These variables represent the actual production numbers for each model. The

production level for each model is bounded by the time-limited production for each



model, but could be modified if there were other constraints. For our model we took the

actual production to be equal to the time limited production.

a,33 = Parts Consumed

a, 34 = Ending Inventory

The number of parts consumed each day is calculated based on the units of

production of each model and the number of parts per unit. Ending inventory is

calculated based on the beginning inventory and the number of parts consumed by

production.

a,35 = Stating Number of Bins

a, 36 = Ending Number of Bins

a,3, = Bins Consumed

The inventory control model is based on Kanban bins used to manage and control

part inventory. At the start and end of each shift we calculate the number of bins at least

partially full based on the starting and ending inventory and the number of parts per bin.

Based on the starting and ending number of bins we calculate the number of bins

consumed or emptied. Empty bins become the orders for replenishment from the

suppliers.

ax,3 = Rolling Bin Requirement

ax,3 = Days Lapsed Since Order

a,40 = Place Order Flag

ax,41 = Order Quantity



The rolling bin requirement represents the number of bins required for

replenishment that have not been ordered yet. The requirement is calculated based on the

previous day's requirements less the bins ordered plus the bins emptied today. In order to

simulate the effect of different order windows, the number of days since the last order

was placed is tracked. Each day whether an order is to be placed is calculated based on

the number of days since the last order was placed and the maximum order frequency

specified in the inputs. The maximum order frequency is equivalent to the inverse of the

order cycle period. The order quantity is the number of bins to be ordered during that

period; it is based on the order flag and the number of bins in the rolling bin requirement.

ax,42 = Blank

Column 42 is intentionally left blank to allow for future expansion of the model.

ax, 43 = Order Flag

ax,44 = Order Lead Time

Whether an order is placed during a given period is calculated based on the Order

Quantity in column 41, because even if it were time to place a scheduled order, if there

were no bins to be replenished, an order would not be placed. Each day the order lead-

time is calculated based on a normal distribution with an average and standard deviation

given in the inputs and a random seed.

3.2.1.4 What is on order

ax,i+44 = New order units due on the ith day in future



Each day the number of bins ordered and the lead-time calculated for that order is

used to populate columns 45-64 representing new orders due in the future.

ax,i+64 = Bins on order due i days into the future

Each day the number of bins due is tracked, for each day up to the 20-day order window.

The calculation to track future receipts is based on the previous days receipts adjusted for

a new day and the newly placed order from that day.

ax,,5 = Blank

Column 85 is intentionally left blank to allow for future expansion of the model.

3.2.2 Inputs

The inputs to the model comprise a 31-element vector used to capture all the variables on

which the model calculations are based. The input vector captures both the variables

expected to change between different samples of the experiment and the other values on

which the model is based.

a, = Lead Time Seeds

a2 = Model 1 Seeds

a3 = Model 2 Seeds

a4 = Model 3 Seeds

The first four values are used to select which sets of random seeds to use for the

calculations. For repeatability all of the random variables (uniformly distributed

between zero and one) that are used in this model are stored in a large array with 10

unique sets for each purpose and samples to cover 5000 days. This allows the



calculations to be repeated and compared with different inputs without the random

number generation changing the results.

a5 = Number of Parts per Bin

a6 = Number of Bins in System

The key inventory controls in a kanban bin managed system are the number of

parts per bin and the number of bins in the system. The multiple of these two values

defines that maximum part capacity that can be held in inventory. The number of bins in

the system is used as the primary lever of optimization; in more advanced generations of

the model the number of bins is iteratively changed to find the best performing system.

a7 = Average Lead-Time
as = Standard Deviation of Lead-Time
a9 = Frequency of Orders

The lead-time of replenishment is tracked as the bin empty to bin full time,

encompassing both the material replenishment time and also any preparation time

required before the parts can be used for production. This general definition of the lead-

time can be used to model systems beyond just supplier replenishment but also earlier

stages in a production environment. The standard deviation of the lead-time is also used

to characterize the replenishment time for bins to be available. The frequency of orders is

the maximum number of orders that can be placed during a 20-day order cycle.

a1o = Model 1 Usage
a,I = Model 2 Usage

a,1 = Model 3 Usage



The model relies on the number of parts used per unit of production of each

model to calculate the part requirements and consumption. The usages for each model

can be set independently of the values used for other models.

a,3 = Weekday Shift Length
a14 = Weekend Shift Length

The lengths of the shifts are used to calculate the amount of time available for

production. Using two different inputs allows for adjusting the shifts independently.

a,, = Model 1 ProductionTime
a,6 = Model 2 Produciton Time

a17 = Model 3 Production Time

The model relies on the production time in minutes per unit of production for each

model to calculate the time requirements. The production time for each model can be set

independently of the values used for other models.

als = Model I Production Average

al9 = Model 1 Production Standard Deviation

a20 = Model 2 Production Average

a21 = Model 2 Production Standard Deviation

a22 = Model 3 Production Average

a23 = Model 3 Production Standard Deviation

The model relies on the average and standard deviation of production based on

historical numbers. For most of our production we have taken the average production to

be the production schedule and based the standard deviation on the historical data.

a24 = Saturday Hurdle



The model calculates Saturday production shifts based on the hurdle rate. The

hurdle rate represents the minimum number of back ordered units that are required to

trigger Saturday production shift.

a26 = Part Value

a27 = Carry Rate

a28 = Order Cost
a29 = Model 1 Back Order Penalty

a30 = Model 2 Back Order Penalty
a31 = Model 3 Back Order Penalty

The final group of inputs is associated with the evaluation of the costs associated

with each simulation run. The simulations are evaluated on the costs associated with

carrying inventory, placing orders and compensating for back orders. To calculate the

inventory holding costs, the part value and carry rate (/Year of inventory arek$ of inventory)

multiplied times the average inventory across the days of the simulation. The number of

orders is multiplied with the order cost to find the cost associated with placing orders. To

find the back order penalty associated with each simulation run the number of each model

back-ordered is multiplied with the backorder penalty per unit missed. These three costs

represent the most important costs relevant to comparing the different runs of the

simulation.

3.2.3 General Equations

Our model is built around a series of calculations that are used to fill in the matrix

representing the state of the system for each day of the simulation model. The same

calculations are used to fill out the matrix across each day and then continued down to the



next day. The algorithm for filling out the matrix is explained in detail below, paired

with a numerical example. The conditions for the numerical example are as follows:

20 parts/ bin
Mean lead-time = 5 days
Standard deviation of lead-time = 1 day
Ending Inventory (Day 1) = 170 units
Order placed for 1 bin
Lead-time = 1 day
Backordered units = 0
Order Frequency = Daily

Model Number Usage (units) Average Production (# Std. Deviation of Production Cycle Time
tractors) Production (# of tractors) (minutes)

1 2 7 1 18
2 4 2 0.25 36
3 8 3 0.5 54

Step 1: The available inventory is calculated based on the previous day ending inventory

and the orders scheduled to arrive that day.

E.g.: Available Inventory = Day 1 Ending Inventory + Day 2 Receipts
= 170 units + 1 bin x 20 parts/bin = 190 units

Step 2: The daily production schedule is calculated based on the specified random seeds

and production characteristics. As discussed in the problem description our model

assumes normally distributed production schedules with the average set at the nominal

production level and the standard deviation set based on the historical production

numbers.

E.g.: Via inverse of Normal distribution and randomly selected random seed,
Production(Model 1, Model 2, Model 3) = (8 units, 1 unit, 5 units)



Step 3: The daily rolling requirements are calculated based on the previous days

requirements and the previous days production requirements. If scheduled production

units are missed they are added to the rolling requirements to ensure they are built at the

first opportunity.

E.g.: Required Production = Backordered units + Scheduled Units
Req'd Prod. Model 1 = 0 + 8 = 8
Req'd Prod. Model 2 = 0 + 1 = 1
Req'd Prod. Model 3 = 0 + 5 = 5

Step 4: The production part requirements are calculated based on the part usage per unit

defined in the inputs and the rolling requirements for how many units of production are

required.

E.g.: Parts Required = Req'd Prod. x Usage
Parts Req'd = 8 x 2 + 1 x4+5x 4 = 40 parts

Step 5: The "Part Availability Limited" production is calculated representing the

maximum production based on the parts available for production. If there are not enough

parts to produce the total rolling requirements, production is prioritized based on the

model priority: Model 3, Model 2 then Model 1.

E.g.: Parts Req'd = 40 Parts available = 170;
40 < 170 -* Part Limited = Required Production

Step 6: The total available production time is calculated based on weekday shift and if

there is a Saturday shift. One of the assumptions we used in the model is that the

production schedules for each tractor model are normally distributed and independent;

this simplification can produce production schedules that are unrealistic and too long for

the available production time. To accommodate this circumstance the available time in



the shift is set to the longer of the time required to complete the production schedule and

the nominal production shift.

E.g.: Production Time Required for Schedule = Req'd Prod. x Prod. Cycle Time
= 8 units Model 1 * 18 minutes + 1 unit Model 2 * 36 minutes + 5 units Model 3
* 54 minutes = 450 minutes

Step 7: The "Time Limited" production number is calculated based on the production

time available during a shift and the "Part Availability Limited" production. If there is

not enough time to complete the entire "Part Availability Limited" production the

production is prioritized based on model priority: Model 3, Model 2 then Model 1.

E.g.: Production Time Required for Part-Limited = Production x Prod. Cycle Time
= 8 units Model 1 * 18 minutes + 1 unit Model 2 * 36 minutes + 5 units Model 3
* 54 minutes = 450 minutes
So, Time-Limited = Part-Limited

Step 8: The actual production numbers are calculated based on the "Time Limited"

production.

E.g.: Model 1 = 8, Model 2 = 1, Model 3 = 5

Step 9: The part consumption is calculated based on the actual production and the part

usages.

E.g.: Consumption = 40 Parts

Step 10: The ending inventory is calculated based on the starting inventory and the part

consumption.

E.g.: Ending Inventory = Beginning Inventory - Consumption
= 170 units - 40 units = 130 units



Step 11: The number of "bins" of parts that are consumed are calculated based on the

number of bins at least partially full at the start of the day and the number of bins at least

partially full at the end of the day.

E.g.: Bins in Use Start = Beginning Inventory / Parts per Bin, rounded up
= 170 / 20, rounded up = 9 bins
Bins in Use End = Ending Inventory / Parts per Bin, rounded up
= 130 / 20, rounded up = 7 bins 4 2 bins emptied

Step 12: Each day a running tally of bins that have been emptied but not yet ordered are

tracked based on the previous day's running tally, the previous day's number of bins

ordered and the number of bins emptied today.

E.g.: Consumed Bins not yet Replenished, Day 1 = 0
Bins Emptied, Day 2 = 2 bins
Consumed Bins not yet Replenished, Day 2 = 2 bins

Step 13: Orders are placed based on the number of days since the last order and the

specified maximum number of orders per 20-day order period from the inputs.

E.g.: Days since last order = 1 day;
Order Frequency = Daily +Order Flag = Yes 4 Place Order

Step 14: The number of bins to order is set at the rolling quantity of bins that have been

emptied but not yet ordered.

E.g.: Bins to be ordered = 2 bins

Step 15: The lead-time for each order is calculated based on the average and standard

deviation of the lead-time in the inputs. We assume the lead-time to be normally

distributed, and calculate the value for each day based on the normal probability density

function and the random seed for that day. For the purposes of our model calculations



the lead-time is rounded to the nearest whole number, and put at a ceiling of 20 and floor

of 1 day. One day represents an order to be received the next day.

E.g.: Inverse of the Normal Distribution of Lead-Time (5, 1), given random seed =
= 3days

Step 16: Columns 45-84 are used to track the inbound orders. The first half is used to

track the orders placed that day and the second half is used to track the incoming orders.

Each day's orders are calculated based on the lead-time and order quantity that day, for

days when orders are not placed the quantity will be zero and therefore not affect other

calculations. Each day the incoming orders are added based on the previous days orders

adjusted one day and the new orders placed that day. this paragraph is confusing.

E.g.: Column corresponding to 3 days out, update value to 2 bins

Step 17: The production losses are updated in columns 86-88. Our model doesn't track

the actual serial numbers of the units being produced but we assume the production is

first going to be that days scheduled units. For each tractor model we calculate the

number of back-ordered units to be the production schedule for that model minus the

number of units produced.. Logically the number of units back-ordered can't be less than

zero therefore if production is more than the scheduled numbers due to completing

previously back orders we set the back order number to zero.

E.g.: Back Orders = (Model 1 Prod. - Model 1 Sched.) + (Model 2 Prod. - Model 2
Sched.) + (Model 3 Prod. - Model 3 Sched.)
=(8-8)+ (1- 1)+ (5-5)= 0



3.2.4 Summary Equations

For each simulation run of our model we used a standardized set of statistics to

evaluate and compare the performance of the system under different entries. The two

areas of summarization are the production statistics and the number of orders placed.

nDaily Production Schedulej = Total Schedule
i=l

SDaily Actual Production, = Total Production
i=1

Total Production
= Raw Efficiency %

Total Schedule

nDaily Back Orderd Unitsi = Missed First Time Through
i=l

Missed First Time Through = First Time Through Efficiency %
Total Production

These calculations are completed for each tractor model. To summarize the

orders placed during each simulation the following equations are used:

SBins Orderedi = Total Number of Bins Ordered
i=1

XOrders Placed, = Total Orders Placed
i=l

Total Orders Placed = % of Days When Orders Placed
n

Total Number of Bins Ordered
= Average Number of Bins Ordered

Total Orders Placed

-Lead Time,
i1 = Average Lead Time

None of the summary statistics are used in the calculations other than orders

placed to calculate the order cost component of total relevant costs. Our model calculates



lead-times even if an order isn't placed in a particular period and the average lead-time

statistic is used more to validate that the distribution is consistent with the input than it is

for calculations in the model.

3.2.5 Objective Function

The objective of our investigation is to minimize the total cost of replenishment

for each system. The components of this cost are the carrying cost of inventory, the order

cost associated with placing orders for replenishment and the back-order cost penalty

associated with units that were backordered due to not having enough parts to complete

production. The carry cost is calculated by taking the average inventory level multiplied

by the part value and the carry rate for the system. The order cost is calculated by

multiplying the number of orders placed by the cost per order. Finally, the backorder

cost is calculated by multiplying the number of units backordered per model on the day

they are missed by the penalty associated with back-ordering that particular model; each

unit backordered incurs a single one-time-only backorder charge.
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4 Analysis

In this section, we discuss the process flow of our analysis following the

completion of the development of our simulation model as depicted below in Figure 7.

We begin by discussing the deployment of the simulation model to generate the first set

of empirical experiments. We then demonstrate how we used the results of this first

experiment to determine the parameters of our model which were in fact significant

contributors to the total relevant cost of the system. Using these parameters, we generate

a second set of empirical experiments with a focused set of variable parameters. We then

explain how these results were used to refine a generalized predictive model. Finally, we

discuss the application and performance of our predictive model on data supplied by our

sponsor company. We performed the analysis in this order to avoid a situation of "model

contamination" - where the same data is used to build and validate the model. By

running case study data through an independently generated model, we better illustrate

the predictive model's efficacy in a real-world situation.

Figure 7: Process flow for analysis
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the performance of the overall system. We initially implemented the model in Microsoft

Excel to allow for easy debugging and manipulation of the data; however, Excel limited

our ability to time-efficiently complete runs due to the sheer quantity of computations

associated with each individual simulation run. We, therefore, converted the model from

Excel into Mathworks' MATLAB to complete the bulk of the calculations. For a

particular set of inputs, the results from the Excel and MATLAB versions are the same;

however, MATLAB allowed us to script the inputs and batch process the bulk of the

calculations. A printout of the code from the MATLAB m-files is available to the reader

in Exhibits 3-7 of the Appendix. We would suggest this method for future teams looking

to conduct a similar type of analysis.

4.2 First Experiment Set

Our first set of experiments was designed to formulate a general understanding of

how the different input parameters affect the output of the system. Our goal was to

determine which factors were the most important candidates for a more thorough and

detailed investigation. Before beginning the experiment, we devised a working list of

input factors that satisfied two criteria: (1) our sponsor could reasonably provide reliable

inputs for the factor, and (2) the factor provides intuitive potential to be a significant

contributor to the experimental outcomes. The resulting list is as follows:

1. Parts per bin - the nominal quantity of units that can be fit into a bin; this is often
a preset value due to standardized bin sizes and warehouse space constraints

2. Average lead-time - based on trailing information from the production database
3. Standard deviation of lead-time - based on historic information from the

production database
4. Order frequency - the number of orders that take place in a standard 20-workday

month (for example, a part that is ordered once per month receives a value of 1)



5. Part usage - the quantity of the part necessary to build the respective end-product
models

a. usage for model I
b. usage for model 2
c. usage for model 3

6. Production schedule - the quantity of units to be built
a. model 1
b. model 2
c. model 3

7. Part cost - the finished per-unit value of inventory

For each factor, we determined between 4 and 15 levels to investigate based on a

reasonable step size resolution between the upper and lower bounds of the parameter's

range. The bounds were based on a Pareto analysis of our sponsor's actual data for each

of the listed parameters. Our goal was to design a full-factorial experiment to ensure the

full independence of all test runs. However, the initial design indicated a permutation

count on the order of 1,000,000,000. As such, it was not practical to complete a full-

factorial experiment as originally planned given the computational time for each

simulation run. We, therefore, condensed the experiment to eight parameters3, selecting

three levels for each representing the low, medium and high portions of the distributions.

The new eight-factor-by-three-levels full-factorial comprised a total of 6,561(or 38)

individual permutations. Because we suspected that the impacts between different

characteristics would be very subtle, we avoided using some of the less robust

experimental design techniques.

Each set of experiments consists of running a series of 5000-day simulations for

each unique array of inputs. As the incremental use of random seed increases quantity of

calculations per run by a factor of 4, we only had the resources to complete the

3 Production schedule factors were eliminated



experiments with a single array of random seeds. For each unique array of inputs, we

numerically determined the optimal number of bins using a step searching technique.

The total relevant cost calculations were based on estimations of each component and

may not exhibit absolute accuracy due to external factors that were not addressed by the

model; nevertheless, they are consistent across various experimental runs. As such, the

difference between total relevant costs for multiple experimental runs can be used for

decision-making purposes. This total relevant cost is convex with respect to the number

of bins, as pictured below in Figure 8. We used a step search to find the cost minimizing

bin quantity, represented by the vertical line.

Figure 8: Components of the total relevant cost function. Note the cost minimizing quantity of bins denoted by the
vertical line toward the center of the figure.
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The output from each run of the simulation is an array summarizing the

production outputs and costs associated with the individual run. The production outputs
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consist of total production by model and on-schedule production without backorders.

The remainder of the array consists of performance statistics for the simulation run, such

as average number bins ordered, total number of backorders by model and average

inventory on hand. The output was formatted into a text file with each line representing a

simulation run and the first columns representing the inputs and then the outputs.

To validate the optimization method of the model, a series of debugging trials

were run on much smaller experiment sets. We ran the simulation model with different

initial bin quantities to ensure the optimization would consistently find the same value.

We also ran the same inputs in Excel and used the Solver numerical optimization tool to

verify our answers. As a final check, we altered the optimal bin quantities generated by

the model to verify that indeed the associated costs increased when we changed the

number of bins used.

After completing the experimental runs, we conducted an analysis of variance

(ANOVA) to evaluate the impact different factors had on both the optimal number of

bins required and the costs associated with each scenario. This ANOVA was completed

using statistical summaries generated in Excel, which can be found in Exhibits 1 & 2 in

the Appendix. Upon investigation of the data, we did find one shortcoming of the model

in that the optimization method did not accurately determine the optimal number of bins

for parts with low parts-per-bin settings relative to usage. A side-effect of the

optimization routine used to determine the required number of bins led to inconsistent

results for one-part-per-bin systems because of the disproportionately large number of

bins required to handle typical usage patterns. Specifically, model performance fell off



when the number of bins in circulation exceeded 200; all such scenarios were one-part-

per-bin systems. We were unable to determine modifications to the code that would

consistently calculate the single part bin case. In practice, the only parts that fit a one-

part-per-bin profile would likely be extremely large and high-value components for

which a Kanban system would not be the proper inventory management technique. We

ultimately removed experimental runs with parts-per-bin settings of 1 from the results

and evaluated the remainder. The remaining factors and levels are summarized in Table

2.

Table 2: Factors and levels for Experiment Set 1

Factor Levels Units
Parts/Bin 10, 20 qty/bin
Lead-Time 2, 3, 15 days
Standard Deviation of LT .001, 1, 3 days
Order Frequency 2, 4, 10 orders/production month
Model 1 Usage 0, 1, 2 units per Model 1
Model 2 Usage 0, 1, 2 units per Model 2
Model 3 Usage 0, 1, 8 units per Model 3
Value 2, 16, 4096 $ value/unit

To determine which factors had a significant impact on the results of the

simulation, we reviewed the results using a standard difference of means test. Those

factor settings that showed a significant difference between their own average and the

overall average Total Relevant Cost with a confidence level equal top < 0.05 were

designated as contributors to be escalated to the next round of experiments. This

threshold provided an effective benchmark to eliminate the ineffectual factors from the

experiment. Summary results can be found in Exhibits 1 and 2 of the Appendix.



This led to deeper investigations of (1) the standard deviation of the lead-time, (2)

order frequency, (3) usages and (4) part values. We further decided to trim part usages

per model out of the next iteration since costs were intuitively and heavily correlated with

the direct usage numbers. The graph below shows a distribution fanning from the origin,

indicating that usage provides a linear contribution to the optimal bin quantity (see Figure

9). For each usage setting, the wide variability in the optimal bin quantity is attributable

to other factors.

Figure 9: Bin Quantity vs. Average Part Usage, Experiment Set 1
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Furthermore, the part usage per tractor was fixed from the viewpoint of the supply chain.

Reviewing the costs of different experimental runs, we found that the order costs account

for approximately 40% of total costs.



Figure 10: Components of total relevant cost and their contribution percentages
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Because the order cost is a direct multiplicative result of the cost per order placed, we

added the cost per order to the factors we would investigate in the next experiment.

4.3 Second Experiment Set

The goal of this set of experiments was to provide a much larger sample set of

data that could be used to develop a predictive model capable of accurately determining

the optimal outcomes of the simulation. We used the factors selected for further

investigation from our first experiment set: standard deviation of lead-time, part value,

order frequency and per order cost. We selected between five and eleven levels - again,

based on an analysis of sponsor data - to investigate for each factor using a full-factorial

design for the creation of individual runs. By using the simulation model as implemented

in MATLAB, we were able to script the experiments and reduce the time and effort

associated with completing such a large set of samples. Furthermore, this design reduced

the complexity of interpreting the results because we did not have to investigate internal

Figure 10: Components of total relevantcost and their contribution percentage
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correlations between different levels. The factors and levels were implemented as

described in Table 3.

Table 3: Factors and Levels for Experiment 2

Factor Levels Units
Standard Deviation of LT 0.001, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 days
Part Value 4, 16, 32, 128, 512, 2048, 4096 $ value/unit
Order Frequency 1 2 4 10. 20 orders per production month
Per Order Cost 0.1, 1, 2.5, 10, 20, 40, 75, 150, 300 variable cost with respect to

the qty. of orders ( )

The other factors were set to representative levels for the system and held

constant for all of the experimental runs. These settings are shown below in Table 4.

Table 4: Settings for remaining simulation model inputs

Lead Time Avg 5 days
Model 1 Usage 2 parts per tractor

Part Usage Model 2 Usage 3 parts per tractor
Model 3 Usage 6 parts per tractor
Weekday 430 minutes
Sat 430 minutes

Production time Mintues Model 1 Per 18 minutes
Model 2 Per 36 minutes
Model 3 Per 54 minutes
Model 1 Avg 7 units per day
Model 1 Dev 1 units
Model 2 Avg 2.25 units per day
Model 2 Dev 0.5 units
Model 3 Avg 3 units per day

Production Schedule Model 3 Dev 0.75 units
Sat Hurdle 5 units
Days 5000 days
Part Value 4 $
Carry Rate 0.12
Model 1 2500 $/unit backordered

BO Penalty Model 2 3500 $/unit backordered
Model 3 5000 $/unit backordered

The results of each run with the optimally calculated number of bins were then

analyzed via ANOVA to identify the general effects of each factor on the output. Upon



review of the ANOVA results, we found the variability in the order cost to be directly

related to the variability in order frequency and per order cost. The carry and backorder

costs were correlated with changes in the standard deviation of the lead-time and the part

value. The optimal number of bins and, therefore, the inventory buffer was a function of

the standard deviation of the lead-time, the part value and the order frequency. In

analyzing the results, we also determined that the number of bins had to be related to the

average lead-time because it affects the amount of inventory float on order that had not

been received. Based on our assumptions of inventory carrying cost being calculated

based on the inventory on hand, the added float did not effect the relevant costs of the

system; so, average lead-time was held constant for this set of experiments.

After a thorough review of the experimental results and ANOVA summary, we

began evaluating the correlations between the inputs and results. We took the factor

levels along with the average lead-time to be the inputs driving the results of the system.

We used the optimal number of bins as the key result we wanted to predict along with the

relevant costs associated with each set of inputs as secondary goals. We used xy-scatter

plots to review how each of the factors related to the outputs. From the plots we were

able to observe both the trend of that factor relative to the output as well as the level due

to other factors. We used a least R-squared error line fit to quantify the trend of the

output relative to the inputs. One of the most significant impacts we observed was of the

coefficient of variation of the lead-time on the number of bins, as shown in Figure 11.
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Two observations from this chart are the increasing trend and the increasing spread. As

the CV of lead-time increases, the number of bins necessary to compensate for the

uncertainty in the system increases. Furthermore, increasing the CV of lead-time

magnifies the variability of optimal bin quantities relative to the other factors. Based on

our evaluation of the results coupled with our understanding of inventory policies and

practices, we were satisfied with the simulation model's ability to accurately resemble

real-world production. As such, the results of Experiment Set 2 would serve as the basis

for development of our predictive model.

4.4 Predictive Model

The next phase of our analysis process entailed the development of a generalized

predictive model that would accurately determine the number of bins found through our

simulation. We began by going back to the basic inventory control equations and relating
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them to our system. The key goal of our project is the strategic deployment of inventory,

which for our purposes is signified by the number of bins used to manage each part.

More inventory means more parts and drives higher carrying costs, while less inventory

might lead to more back orders. We define the purposes of the primary components of

inventory as follows: cycle stock is used for the normal operations between two

replenishment cycles, in-transit stock is used to account for inbound orders and safety

stock is used to compensate for variability in the replenishment cycle. The cycle stock

required to cover the period between orders can be directly calculated based on the time

between orders, the part usage per unit of production and the average scheduled

production. We show the explicit calculation for the cycle stock of item i, or Ci,here

(measured in number of bins per order cycle):

Days/Order * Avg. Parts/Day
Parts/Bin

We show the explicit calculation for the in-transit stock of item i, or Fi, here (measured in

number of bins):

Orders
C * Avg. LT * Month

20 Days/Month

We assume a 4-week, 5-day per week month; this is the origin of the "20 Days/Month" in

the denominator of the equation for in-transit stock. Accounting for the average number

of units on order is a function of the average order size, the length of the lead-time and

the order frequency in orders per month.



Under the condition of zero variability in lead-time, we will designate the sum of

those two stocks (i.e., cycle and in-transit) as the "perfect baseline":

Perfect Baselinei = Ci + Ti

In a system with no variation in lead-time, the perfect baseline would be the optimal

stocking level for the system. However, since very few supply chains have perfect

delivery, a key to the strategic deployment of inventory is accounting for the variability.

For many parts in our system the carrying cost of another bin of inventory is very small

relative to the cost of back-ordering even a single unit; therefore, we focused on

developing a very conservative buffer level. We converted the standard deviation of the

lead-time from a number of days into the dimensionless coefficient of variation, CVi, or

the ratio of standard deviation to mean:

C V i = --

where ai is the standard deviation of lead-time for item i and pi is the average lead-time

for item i.

To calculate the amount of inventory required for a real system (i.e. a system in

which lead-time is variable), we take the perfect baseline and increase it by the lead-time

coefficient of variation as a percentage of the perfect baseline. For example, if the

average lead-time is five days and the standard deviation is two and a half days, the

number of bins would be 50% higher than the perfect baseline. Hence the projected

optimal number of bins is:



Bin Prediction = (Ci + Ti) * (1 + CVI)

To evaluate this method of calculating the optimal number of bins, we used it to

calculate the required number of bins for each of the runs from Experiment Set 2. We

compared the optimal number of bins found in the simulation with the number of bins

calculated using the predictive model. We used the percentage of error of our calculation

relative to the optimal as the metric to evaluate the quality of our tool calculating the

number of bins. The average absolute percent error of our tool was less than 35% for

each run with the distribution approximately normal around zero. There were two

modifications made to further refine our bin predictions: (1) rounding the number of bins

to a whole number and (2) refining the equation through the introduction of a correction

factor, fcorrection. We plotted the percentage errors into a histogram, which showed that

the bin prediction was slightly skewed to having too few bins; we chose to round up the

number of bins required at the last step of each calculation because of this skewness

combined with the relatively low cost of carrying extra bins. In order to improve our

performance, we plotted the error percentage against different independent variables and

did not find any particular factor that appeared to be driving the error; however, when we

plotted the predicted number of bins against the error percentage, we did find that when

we predicted fewer bins, we tended to under-predict and when we predicted more bins we

tended to over predict, as shown below in Figure 12.



Figure 12: Uncorrected bin predictions
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We used a least squares linear fit to find the level and trend of the residuals with

an R-squared error of 63%, yielding our fcoectio,,:

Pcorrectioni = a + (Ci + T•) * (1 + CVi) *

where a and fl are numerically derived constants via linear regression. We then modified

our prediction to compensate for the expected amount of error based on this linear fit:

Revised Bins Prediction = roundup[(C1 + Ti) * (1 + CVi) * (1 + Pcorrection,)]

Due to the clusters in the empirical predictions evident in Figure 12, we treated the Order

Frequency as a discrete variable and generated pairs of a and/ to correspond with each

individual Frequency level via linear regression on the residuals. Our resulting a and/

outcomes are shown below in Table 5:



Table 5: Frequency-based coefficients for the correction factor

OrderFreq Alpha Beta

I 1 month .299 -.006

2/ month .127 -.003
4 / month .161 -.003
10 / month .206 -.004
20 /month .328 -.016

hence, yielding the final model:

Bins Prediction = roundup[(C1 + Tj) * (1 + CV1) * (1 + fcorrection,freq)]

flcorrection,freq = afreq + (Ci + Ti) * (1 + CVi) * .freq

These modifications enabled us to further reduce the maximum absolute error percentage

of empirical predictions to less than 25% with 80% of samples achieving absolute percent

error less than 10%.

4.5 US Tractor Company Case Study

To evaluate the validity of the prediction model, we performed a case study based

on parts from the US Tractor Company. We selected 557 parts from their inventory and

used the production simulation to find the optimal number of bins for each part. We

chose parts based on their per-unit usage, value and lead-time. We did not design the

model to accommodate long lead-times believing the classic inventory calculation

techniques could be more accurately used for those parts, since the lead-time coefficient

of variation should be much lower. Per unit usages and values were selected to avoid the

small value fasteners where optimal inventory policies are driven by other factors.



Because we did not have accurate data for per order cost and full usages across all

models, ten different simulation runs were made varying the per order cost and part

usages. We varied per order cost from $300 per order to $75 per order to cover what we

expected to be a realistic range. To vary the part usages per unit of production we first

completed runs at the usages we had data for and then we matched the per unit usage

across the other models for which we didn't have information. We used our MATLAB

model to simulate the production of each part and find the optimal number of bins for

each one. The different scenarios we used for each part were:

* Usage exactly from data, order cost 300, parts/bin 20

* Under the condition that we did not have usage information for common parts, we
assumed the usage in Models I and 2 to be the same as that in Model 3; the order
cost and parts/bin were simulated as below:

o Order Cost 300 Parts/Bin 20

o Order Cost 150 Parts/Bin 20

o Order Cost 75 Parts/Bin 20

o Order Cost 300 Parts/Bin 50

o Order Cost 150 Parts/Bin 50

o Order Cost 75 Parts/Bin 50

o Order Cost 300 Parts/Bin 100

o Order Cost 150 Parts/Bin 100

o Order Cost 75 Parts/Bin 100

After completing the simulation, we used the predictive model to calculate our

expected number of bins so we could compare the results. The prediction equation we

used was the same equation we developed based on the Experiment Set 2. We found

that, based on our prediction, for 49% of over 5000 samples we correctly predicted the



optimal number of bins. The prediction performance in terms of number of bins was

within one bin of optimal for 88% of the samples and within 3 bins of optimal for 95% of

the samples, as shown below in Figure 13.

Figure 13: Histogram and cumulative distribution of prediction errors
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We further evaluated the results to define for which parts our prediction worked

best. As stated above, small value parts may be managed and optimized for other

considerations; our model does not accommodate them. The converse of small value

parts are the very high value parts, which call for special attention in designing the

system to balance the cost of carrying against the backorder cost of running out. Another

constraint of our model is the length of lead-time. Due to the construction of the model,

we limited the lead-time to twenty days. For parts that have a substantial likelihood of

delivery beyond 20 days, the prediction's accuracy will decline. Furthermore, for bin

predictions resulting in quantities in excess of 50 or less than 3, the model's performance



loses reliability. Recognizing these limitations, we find the predictive model to be a valid

tool for calculating the optimal number of bins.
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5 Conclusions

The most important conclusion from our research is the connection between the

coefficient of variation of the lead-time (days) and the amount of inventory that should be

held. In developing areas for possible improvement of a system, the benefits of reducing

the coefficient of variation of the lead-time may be more important than reducing the

actual lead-time. Simply reducing the average lead-time while maintaining a high level

of uncertainty in actual delivery times will not have that great an impact on the number of

bins because while the perfect baseline decreases, the coefficient of variation by which it

is multiplied increases. In order to improve system performance, both areas need to be

addressed but particularly the variability in delivery; key characteristics of successful

just-in-time systems are reliability and repeatability through the elimination of

uncertainty.

5.1 Recommendations

This model for inventory deployment should be used as a baseline when selecting

the number of bins to put into Kanban usage for a particular part number. However, the

model was only designed to accommodate certain characteristics of the parts and any

results from the model will have to be modified to accommodate other factors such as

optimal order sizes, shipping economies, storage space and others.

5.2 Areas for Further Research

Our model was designed to investigate a limited number of the details about part

usage and characteristics. Future research could be focused on expanding the part level

detail used in determining the optimal number of parts by including the cost of



warehousing or handling into the carrying cost rather than just the financing costs.

Heavy tractors being a very stable product, our model does not handle any considerations

of part spoilage or damage in storage that could increase with a higher level of inventory.

Future models could also be adjusted to expand the time horizon of the model to a larger

number of days into the future receipts or adjusting the resolution within a production day

to accommodate multiple orders per production day. Particularly for high value parts,

multiple daily or hourly deliveries might be more realistic to how the production system

actually operates.

The end goal ofjust-in-time manufacturing systems is a consumption-based

continuous flow of material through the system. As the bin size approaches one part per

bin and single piece batch sizes, there are additional complexities that must be

accommodated. Material handling costs between and within facilities may increase as

the batch size gets smaller and smaller. Additional research could focus on the real costs

associated with single part flow through the system, as well as quantifying the offset

between the financial cost savings and the increased material handling costs. As the

opportunities for improvement get smaller, the level of detail required to make good

choices between different options gets more complicated. Calculating the true

differences between two systems becomes a matter of accounting for all of the

differences from ordering costs, to handling costs and administrative costs. One-piece

flow systems will require high levels of coordination between suppliers and customers

both internal and external.



Appendix

Exhibit 1: Experiment Set 1 Summary Results

Parts/Bin Lead-Time StDev LT Order Freq Model 1 Model 2 Model 3 Value

Value

Bins

Carry

Order

BackOrder

TRC

Value

Bins

Carry

Order

BackOrder

rRC

Average
StDev
Average
StDev
Average
StDev
Average
StDev
Average
StDev

Average
StDev
Average
StDev
Average
StDev
Average
StDev
Average
StDev

Value
Bins Average

StDev
Average
StDev

Order Average
StDev

BackOrder Average
StDev

TRC Average
StDev

Bins Average
StDev

Carry Average
StDev

Order Average
StDev

BackOrder Average
StDev

TRC Average
StDev

2 0.001 2 0 0 0 2
16.73 20.11 30.55 16.96 22.79 12.85 24.35
14.48 19.65 25.43 18.48 21.06 9.96 22.42

535,617 399,243 734,124 404,476 526,052 301,281 960
1,020,796 752,323 1,321,853 831,712 993,213 521,881 733

378,851 378,852 150,000 337,679 377,747 359,810 378,852
242,524 242,526 0 213,843 240,694 231,760 242,526
36,021 15,282 45,639 29,553 36,853 16,733 380
91,521 41,014 113,565 77,972 88,568 42,878 5,126

950,489 793,377 929,763 771,708 940,652 677,824 380,192
1,101,742 784,754 1,420,545 916,970 1,074,452 579,345 242,113

10 3 1 4 1 1 1 16
31.22 18.30 23.09 22.80 22.88 22.89 15.21 24.35
26.06 15.49 21.29 20.31 20.66 21.84 11.55 22.42

542,281 547,459 523,800 531,406 533,900 532,132 360,403 7,679
1,036,976 1,045,825 948,111 974,558 999,808 1,025,952 622,283 5,867

389,895 378,850 378,851 296,337 394,298 371,331 374,626 378,852
247,120 242,523 242,525 19,613 249,060 241,577 237,362 242,526
34,451 35,559 34,841 33,696 33,297 35,213 18,414 380
85,413 92,366 74,933 78,170 86,846 87,884 46,902 5,126

966,626 961,869 937,492 861,439 961,495 938,676 753,443 386,911
1,111,600 1,125,734 1,021,975 1,042,727 1,072,385 1,107,107 670,963 241,034

20 15 3 10 2 2 8 4096
16.19 36.09 27.91 17.75 30.51 25.33 41.84 22.42
13.02 27.61 23.94 17.34 23.92 22.69 25.73 20.87

556,809 565,558 725,592 383,104 694,140 587,840 959,366 1,639,996
1,044,255 1,055,170 1,315,456 700,291 1,214,430 1,094,325 1,497,053 1,210,231

367,805 378,849 378,846 690,213 399,998 387,349 399,998 378,846
237,264 242,522 242,518 140,813 255,036 244,808 255,036 242,517
37,224 35,931 57,388 28,177 43,963 35,559 70,241 106,751
91,552 81,359 123,860 66,030 97,988 89,208 130,417 126,199

961,837 980,338 1,161,826 1,101,494 1,138,101 1,010,747 1,429,606 2,125,592
1,127,329 1,130,986 1,425,281 790,477 1,288,695 1,168,859 1,593,316 1,272,548

23.70 23.70 23.70 23.70 23.70 23.70 23.70 23.70
21.93 21.93 21.93 21.93 21.93 21.93 21.93 21.93

549,545 549,545 549,545 549,545 549,545 549,545 549,545 549,545
1,040,524 1,040,524 1,040,524 1,040,524 1,040,524 1,040,524 1,040,524 1,040,524

378,850 378,850 378,850 378,850 378,850 378,850 378,850 378,850
242,465 242,465 242,465 242,465 242,465 242,465 242,465 242,465

35,837 35,837 35,837 35,837 35,837 35,837 35,837 35,837
88,536 88,536 88,536 88,536 88,536 88,536 88,536 88,536

964,232 964,232 964,232 964,232 964,232 964,232 964,232 964,232
1,119,362 1,119,362 1,119,362 1,119,362 1,119,362 1,119,362 1,119,362 1,119,362

--



Exhibit 2: Experiment Set 1 Summary Results, cont.
Parts/Bin Lead-Time StDev LT Order Freq Model 1 Model 2 Model 3 Value

Value
Bins Average

StDev
Ca rry Average

StDev
Order AverageOrde StDev

BackOrder Average
StDev

TRC AverageStDev

value

Bins Average
StDev

Carry Average
StDev

Order Average
StDev

BackOrder Average
StDev

TRC Average
StDev

Value
Bins Average

StDev
Carry Average

StDev
Order Average

StDev

BackOrder Average
StDev

TRC Average
StDev

-1.32%
-29.38% -2.92%1 -7.38% -5.79%

-0.38%I -4.68%I -3.30%1 -2.85%

2,

1

0.97%1 5.18%I 0.02%1
-0.78% 96.00% 197.88%

67.0 % 47 3% 42 9%i

4.82%1 48.26% 120,44%4.42% 42.34% 1369%

* Cells with yellow fill denote statistically significant results as determined by a test of
means at a confidence level of p < 0.05.
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Exhibit 3, Run Experimental Trials

function []=runtrialfile()

% Converting the trial running script into a function

% no functional inputs or outputs
% user interfacE:
% input file: the name of the file with the trials to run
% output file: the name of the file in which to place the output
results

% by Phil Hodge
% for MLOG thesis 2008
% Multi Echelon Inventory Control using Kanbans

clear all

% Get file names to use.

inputfile = input('what is the name of the input file?', 's');

% Input file format each:
% input in delimited columns
% trials on seperate lines

outputfile = input('where do you want the results put?', 's');

% Ourput file format each line represents a trial:
% input array and then output array

% Initialize the Variables

seeds=load('randomseeds.txt');

trials=load(inputfile);

diminputs = size(trials);

numinputs = diminputs(1);

%



% Loop through to analyze set of inputs

for x = l:numinputs,
runoutputs(x, :)=optimizebins(trials(x, :),seeds, 0, -1);
save(outputfile, 'runoutputs','-ascii');
fclose('all');
runcomplete = x
totaltorun = numinputs

end



Exhibit 4, Begin Bin Search
function [optimizedresults]=optimizebins(input, seeds, fleetsize,
run)

% Function to find the optimal number of bins given the other input
% parameters.

% Input = vector of values similar to row 4 of excel defining system
% Output = optimized setting for parametrers and summary stats

% By Phil Hodge
% for MLOG 2008 Thesis
% Multi Echelon Inventory Control using Kanbans

% Guess the number of bins as a starting point

if fleetsize == 0

binguess=round(((input(7)+(20/input(9)))*((input(10)*input(18)+input
(11)*input(20)+...

...input(12)*input(22))))/input(5));
else

binguess=round(fleetsize/input(5));
end

trial=input;
trial(6)=binguess;

trialstats=summstats(runtoplevelsim(trial,seeds),trial);

optimizedresults=seekbin(trial,trialstats,l,seeds, run);



Exhibit 5, Optimal Bin Search
function [results]=seekbin(input,runstats,step,seeds, run)

% Function to search for the number of bins to optimally run.

% Search is based on stepping forward with steps of 5 until TRC
stops
% inproving and then stepping back to find the best setting then
% steping forward again to verify number.

% The stepping is implemented using recursive calls of the same
function
% incrementing the number of bins until the total cost does not
improve
% then evaluating for other lines.

% by Phil Hodge
% for MLOG 2008 Thesis
% Multi Echelon Inventory Control Using Kanbans

trial=input;
trial(6)=trial(6)+step;

trialstats=summstats(runtoplevelsim(trial,seeds),trial);

if trialstats(28)<runstats(28)
results=seekbin(trial,trialstats,step,seeds, run);

else
if step == 5

results = seekbin(input, runstats, -1, seeds, run);
else

if step == -1
results = seekbin(input, runstats, 1, seeds, run);

else
results = [input runstats];

end
end

end



Exhibit 6, Summary Statistics
function [runstats]=summstats(runarray,inputvector)

% Function to summarize a run array representing the simulation of
% a set of imputs into the outputs.

% Input = array reprsentig the daily runs like the bulk of excel
% Output = vector representing the outputs.

% by Phil Hodge
% For MLOG Thesis 2008
% Multi Echelon Inventory Control using Kanbans

runstats=zeros(1,28);
runstats(1)=sum(runarray(:,6));
runstats(7)=sum(runarray(:,7));
runstats(13)=sum(runarray(:,8));
runstats(2)=sum(runarray(:,30));
runstats(8)=sum(runarray(:,31));
runstats(14)=sum(runarray(:,32));
runstats(3)=runstats( l)-runstats( 2);
runstats(9)=runstats( 7)-runstats( 8);
runstats(15)=runstats( 13)-runstats( 14);
runstats(4)=runstats( 2)/runstats( 1);
runstats(10)=runstats( 8)/runstats( 7);
runstats(16)=runstats( 14)/runstats( 13);
runstats(5)=sum(runarray(:,86));
runstats(ll)=sum(runarray(:,87));
runstats(17)=sum(runarray(:,88));
runstats(6)=l-runstats( 5)/runstats( 1);
runstats(12)=l-runstats( 11)/runstats( 7);
runstats(18)=l-runstats( 17)/runstats( 13);
runstats(20)=sum(runarray(:,41));
runstats(22)=sum(runarray(:,43));
runstats(21)=runstats( 22)/(max(runstats(:,l))-1);
runstats(19)=runstats( 20)/runstats( 22);
runstats(23)=mean(runarray(:,44));
runstats(24)=mean(runarray(:,12));

runstats(25)=runstats(24)*inputvector(26)*inputvector(27)*(inputvect
or (25)/250) ;

runstats(26)=runstats(22)*inputvector(28);

runstats(27)=runstats(5)*inputvector(29)+runstats (11) *inputvector(30
)+ runstats(17)*inputvector(31);

runstats(28)=runstats(25)+runstats(26)+runstats(27);



Exhibit 7, Simulation Code
function [calcs]=runtoplevelsim(inputvector, seeds)

% Function to Run Bulk of calculations for a given
% set of inputs.

% Input = vector of values similar to row 4 of excel
% Output = giant matrix in rows 33 - 5032 of excel

% Summarization to be done by another function

% By Phil Hodge
% for MLOG 2008 Thesis
% Multi Echelon Inventory Control using Kanbans

days=inputvector(25);

randl=inputvector (1);
rand2=inputvector(2)+10;
rand3=inputvector(3)+20;
rand4=inputvector(4)+30;

calcs=zeros(days+1,88);
calcs(1,12)=inputvector(5)*inputvector(6);
calcs(1,34)=calcs(l,12);

% Loop through to fill out the matrix of values.

for x=2:days+l,
calcs(x,l)=x-1; % Day being Simulated
calcs(x,2)=seeds(x-l,randl); % seed value for leadtime

% Scheduled production numbers by model

calcs(x,6)=round(norminv(seeds(x-
, rand2),inputvector(18),inputvector(19)));

calcs(x,7)=round(norminv(seeds(x-
, rand3),inputvector(20),inputvector(21)));

calcs(x,8)=round(norminv(seeds(x-
l,rand4),inputvector(22),inputvector(23)));

% Required production numbers by model based on schedule and
% backorders

calcs(x,9)=calcs(x,6)+calcs(x-1,9)-calcs(x-1,30);
calcs(x,10)=calcs(x,7)+calcs(x-1,10)-calcs(x-l, 31);
calcs(x,ll)=calcs(x,8)+calcs(x-1,11)-calcs(x-l,32);



%

% Inventory available for production

calcs(x,12)=calcs(x-1,34)+calcs(x-1,65)*inputvector(5);

% Part requirements based on prduction requirements both total
across

% models and by model

calcs(x,14)=calcs(x,9)*inputvector(10);
calcs(x,15)=calcs(x,10)*inputvector (11);
calcs(x,16)=calcs(x,l1)*inputvector(12);
calcs(x,13)=calcs(x,14)+calcs(x,15)+calcs(x,16);

% Calculation of part limited production based on the availible
parts

% and production requirements

if calcs(x,13)<calcs(x,12)
calcs (x, 18)=calcs (x, 9);
calcs (x, 19)=calcs (x, 10);
calcs (x, 20) =calcs (x, 11);

else
if calcs (x, 16) <calcs (x, 12)

calcs(x,20)=calcs(x,11);
if calcs(x,15)<=(calcs(x,12)-calcs(x,16))

calcs (x, 19)=calcs (x, 10) ;

calcs(x,18)=min(calcs(x,9),max(0,floor((calcs(x,12)-calcs(x,19) *...

... inputvector (11)-
calcs(x,20)*inputvector(12))/inputvector(10))));

else
calcs(x,19)=min(calcs(x,10),max(0, floor((calcs(x,12)-calcs(x,20)*...

...inputvector(12))/inputvector(ll))));

calcs(x,18)=min(calcs(x,9),max(0,floor((calcs(x,12)-calcs(x,19) *...

... inputvector (11)-
calcs(x,20)*inputvector(12))/inputvector(10))));

end
else

calcs(x,20)=min(calcs(x,11) ,max(0,floor(calcs(x,12)/inputvector(12))

calcs(x,19)=min(calcs(x,10),max(0,floor((calcs(x,12)-calcs(x,20)*...
...inputvector(12))/inputvector(ll))));

calcs(x,18)=min(calcs(x,9),max(0,floor((calcs(x,12)-
calcs (x, 19)*...

... inputvector (11)-
calcs(x,20)*inputvector(12))/inputvector(10))));

end
end
%



% Fill in production requirements as full if the usage for a
part is

% zero for a particular model.

if inputvector(10)==0
calcs (x, 18) =calcs (x, 9);

end
if inputvector (11)==0

calcs (x, 19) =calcs (x, 10);
end
if inputvector(12)==0

calcs(x,20)=calcs(x,11);
end

if (mod(calcs(x,l),5)==0) &&
((calcs(x,9)+calcs(x,10)+calcs(x,ll1) -calcs(x,6)-calcs(x,7)-...

...calcs(x,8))>inputvector(24))
calcs(x,21) =1;

else
end

% Calculation of the time limited production

calcs(x,22)=max(inputvector(13),calcs(x,6)*inputvector(15)+calcs(x,7
)*inputvector(16)+...

...calcs(x,8)*inputvector(17))+inputvector(14)*calcs(x,21);
calcs(x,24)=calcs(x,18)*inputvector(15);
calcs(x,25)=calcs(x,19)*inputvector(16);
calcs(x,26)=calcs(x,20)*inputvector(17);
calcs(x,23)=calcs(x,24)+calcs(x,25)+calcs(x,26);

if calcs(x,23)<calcs(x,22)
calcs (x, 27) =calcs (x, 18);
calcs(x,28)=calcs(x,19);
calcs (x, 29) =calcs (x, 20);

else
if calcs(x,26)<calcs(x,22)

calcs (x, 29) =calcs (x, 20);
if calcs(x,25)<(calcs(x,22)-calcs(x,26))

calcs(x,28)=calcs(x,19);

calcs(x,27)=min(calcs(x,18),max(0,floor((calcs(x,22)-calcs(x,28) *...

... inputvector(16)-
calcs(x,29)*inputvector(17))/inputvector(15))));

else
calcs(x,28)=min(calcs(x,19),max(0,floor((calcs(x,22)-calcs(x,29)*...

...inputvector(17))/inputvector(16))));

calcs(x,27)=min(calcs(x,18),max(0,floor((calcs(x,22)-calcs(x,28)*...
...inputvector(16)-

calcs(x,29)*inputvector(17))/inputvector(15))));
end



else
calcs(x,29)=min(calcs(x,20),max(0,floor(calcs(x,22)/inputvector(17))

calcs(x,28)=min(calcs(x,19),max(0,floor((calcs(x,22)-calcs(x,29)*...
...inputvector(17))/inputvector(16))));

calcs(x,27)=min(calcs(x,18),max(0,floor((calcs(x,22)-calcs(x,28) *...

...inputvector(16)-
calcs(x,29)*inputvector(17))/inputvector(15))));

end
end

% Actual prodction of each model based on time limited
calculations

calcs (x,30)=calcs (x,27);
calcs(x,31)=calcs(x,28);
calcs (x, 32) =calcs (x, 29);
%

% Calculate part consumption and ending inventory

calcs(x,33)=calcs(x,30)*inputvector(10)+calcs(x,31)*inputvector (11) +
calcs(x,32)*inputvector(12);

calcs(x,34)=calcs(x,12)-calcs(x,33);

% Calculate the number of bins emptied this day

calcs(x,35)=ceil(calcs(x,12)/inputvector
calcs(x,36)=ceil(calcs(x,34)/inputvector(5));
calcs(x,37)=calcs(x,35)-calcs(x,36);
calcs(x,38)=calcs(x,37)+calcs(x-1,38)-calcs(x-l, 41);

% Order flag to calculate if an order gets produced this day and
how

% many bins to order if an order is placed.

if (calcs(x-1,39)+1)>=(20/inputvector(9))
calcs (x, 40)=1;

else
end
if (calcs (x, 40) ==l)

calcs(x,39)=0;
else calcs(x,39)=calcs(x-1,39)+l;
end
calcs(x,41)=calcs(x,40)*calcs(x,38);
if calcs(x,41)>0

calcs(x,43)=calcs(x,40);
else calcs(x,43)=0;
end
calcs(x,44)=max(l,min(20,round(norminv(seeds(x-

1,randl),inputvector(7),inputvector(8)) )));



% Track inbound orders

scratch = 44+calcs(x,44);
calcs(x,scratch)=calcs(x,41);

for b=1:20,
calcs(x,b+64)=calcs(x-l,b+65)+calcs(x,b+44);

end

% Calculate the back orders for each model.

calcs (x, 86)=max (0, calcs (x, 6) -calcs (x, 30) );
calcs(x,87)=max(0,calcs(x,7)-calcs(x,31));
calcs (x, 88)=max (0, calcs (x, 8)-calcs (x, 32) );

end
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