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ABSTRACT

This project is a continuation in the investigation of ways in which cork can be
incorporated into composite material for boats and kayaks without significant
performance losses. Fiberglass lay-ups (cloth, mat, and epoxy) and cork-epoxy
samples are prepared by vacuum bagging. Samples undergo a three-point
bending test (ASTM D79o) and a Charpy impact test (ASTM D611o) to
investigate maximum flexural stress, effective elastic modulus, and impact
resistance. Fiberglass-epoxy samples serve as the control for comparing the
results of the cork composite samples.

The average flexural strength of the fiberglass ranged from 191-234 MPa with the
different configurations of fiberglass cloth. The effective elastic modulus ranged
from 8.4-10 MPa. These values fall in the lower range of other composites when
compared to general Ashby charts. Its impact resistance, taken with respect to
cross-sectional area to account for variations in the thickness from sample to
sample in the formation process, ranged from 54.9 to 64.5 kJ/m2.

The cork composite samples were at least four times weaker than their fiberglass
counterparts in all investigated respects. However, the cork samples were up to
three times lighter and needed less than half of the epoxy the fiberglass samples
required. The inclusion of fiberglass cloth helped increase its strength
significantly without sacrifice to weight, indicating the likely need to incorporate
chopped fiberglass strands in future testing.

Thesis Supervisor: David Wallace
Title: Associate Professor of Mechanical Engineering
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Introduction
Composite materials used in boat and kayak hulls are both stiff and light

because of the use of a low-density core material in combination with a high

strength outer veneer.

A Portuguese cork company is looking for novel applications for its

product, and is interested in the possible use for cork in kayaks and boats. There

is the added benefit that cork is natural and more environmentally friendly to

produce than typical materials such as fiberglass or carbon, and it can be

recycled.

This project is a continuation in the investigation of ways in which cork

can be incorporated into composite material for boats and kayaks without

significant performance losses. Fiberglass lay-ups (cloth, mat, and epoxy) and

cork-epoxy samples are prepared by vacuum bagging. Samples undergo a three-

point bending test (ASTM D79o) [1] and a Charpy impact test (ASTM D611o)[31 to

investigate maximum flexural stress, effective elastic modulus, and impact

resistance. Fiberglass-epoxy samples were made to serve as the control for

comparison to the cork composite samples.





Background

Composite Structures

Composite structures are often preferred over homogenous materials for

their increased strength and stiffness per weight. Honeycomb, foam, and wood

are examples of light materials used in composite panels. Cork is being explored

as a low-density natural alternative that is additionally less wasteful in

manufacture and recyclable. In the context of boats and kayaks, possible

beneficial properties include cork's buoyancy, flexibility, and dampening effects.

Possible incorporation of cork includes using its agglomerate form,

granules bound together with pressure and adhesive binder, as the core itself and

mixing loose granules with resin as filler, akin to how chopped fiberglass strands

are added to increase strength. Shown below in Figures (1) through (3) are

relative comparisons of competing materials done by SP Systems. Cork is under

consideration as a competing filler material.

SAN PVG Balsa Al. Honeycomb Nomex
80 Kg/m 3  75 Kg/m 3  100 Kg/m 3  50 Kg/m3 H/c (48kg/m 3)

Comparative Prices of Core Materials
Figure 1: Chart of relative prices of currently used core materials.'

1 "Core Materials in Polymeric Composites." The A to Z of Materials.
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data sheets.2

I II I I I

30 40 50 60 70 80 90 100
Densily kg/m3

Figure 3: Comparison of relative shear strength from manufacturers' data
sheets.3

Previous flexural testing has been done using cork agglomerate as the core

in a sandwich composite4. However, the agglomerate core failed by shear stresses

2 "Core Materials in Polymeric Composites." The A to Z of Materials.
3 "Core Materials in Polymeric Composites." The A to Z of Materials.
4 B. Soares, L. Reis, and A. Silva. 2008.
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before the outer carbon fibers during the three-point bending test. This failure

was attributed to the adhesive used in agglomerate manufacture.

The experiments in this thesis stray from using cork agglomerate and

explore its form as filler additive to epoxy resin. Glass fiber cloth is used for the

outer layer and the core is a mixture of cork granules with epoxy, also exploring

the inclusion of chopped fiberglass strands. Since fiberglass and epoxy resin are

often used in higher end kayaks, the control samples use fiberglass cloth and

layers of chopped fiberglass mat wetted through with epoxy resin.

Experimental Theory

Flexural stiffness measurement via three-point bend test

The flexure equation for a composite beam incorporates the modulus of

elasticity of the material being examined E, the moment M exerted on the beam,

the distance y from the neutral axis, and an effective flexural stiffness, (EI)eff,

EMya = (1)
(EI)eff

where I is the area moment of inertia. For a homogenous beam, the maximum

stress occurs at the outer fibers at the center of the span.

IP

1 P/2 P121

Figure 4: A beam undergoing a three-point bending load

During a three-point bending load, shown in Figure 4, the moment varies

along the span, designated here as the x-axis, according to

M(x) = P- x, (2)22



where x = o at the center of the beam, P is the load, and L is the length of the

support span. The moment is the greatest at the center of the span.

Load and displacement can be related to the flexural stiffness by using the

moment-curvature relation for small deflections, u:

(El) d2uM = ef (EI), 2 (3)

where p is the radius of curvature of the beam.

Figure 5: Display of coordinate system on a beam

Applying the moment from Equation (2) in Equation (3), the result can be

integrated twice to find the relation between flexural stiffness, the load, and the

deflection:

PL3
(EI)e (4)

This can be calculated from the load and displacement data recorded from a

three-point bend test. To compare the modulus of elasticity of the lay-up as a

whole, the effective moment of inertia can be that of a normal rectangular beam,

I bh3  (5)
12

where b is the width of the beam and h is the thickness. Substituting Equation

(5) into Equation (4), an Eeff can be found from the slope of the linear-elastic

region of the load-displacement curve m,

eff Lm (6)
T- 4bh3

This makes the effective flexural stress aFs at the outer fiber:

M



3PL ()
2bh2

and the flexural strain ,s:

6Ph
e = (8)

L

both of which can be used for a quick comparison between different materials.

For a more accurate calculation, the effective flexural stiffness (EI)eff can

be related to the elastic moduli and moments of inertia of its components:

(EI)eff = Ecore core + Eskin'sn, (9)

where the term skin refers to the outer layers of the lay-up, that will be fiberglass

cloth in this case. As seen below in Figure (6), a homogeneous beam5 and a two-

sided composite have a neutral axis at the center. The Iskin is calculated by using

the parallel-axis theorem. The one-sided composite lay-up is a little more

complicated to calculate due to the shifted neutral axis.

Figure 6: Neutral axis for a homogenous beam, a two-sided composite, and a
one-sided composite. Relative thicknesses and dimensions are not to scale

with those used in the experiments.

The material properties of the core are of interest, because it is assumed to be

weaker than the skin. To find the stresses within the core using Equation (1), the

elastic modulus of the core can be found using Equation (6) by using test

specimens of just the core.

For the purpose of preliminary investigation, the incorporation of different

moments of inertia has been omitted and an effective moment of inertia for a

rectangular beam is used from Equation (5).

5 In this case, the microscopically heterogeneous core is considered to act
together like a homogenous material.



Impact resistance measurement via Charpy V-notch test

A Charpy V-notch test[31 is run to calculate the impact resistance of the

material to breakage by flexural shock. The testing apparatus consists of a simple

pendulum.

Figure 7: Dimensions marked out on the Charpy testing apparatus

To convert from the angle reading 0 to energy, the following formula is

used6:

Eraw = LpWp(1- cos0) (10)

where Lp is the length of the pendulum arm, Wp is the weight of the pendulum

head.

The machine is run without a sample to calibrate the results to a maximum

value, Emx. The energy required to break the sample, EcvN, is calculated by

subtracting Eraw from E,ma, thus eliminating the effects of friction and windage:

ECvN = Emax - Eraw (11)

The impact resistance is typically calculated per width of the specimen, however,

due to the variance in thicknesses of the tested samples, a resistance over an area

Rimpact will be calculated:

RImpact = (12)

6 Full derivation of this formula from the geometry of the striking pendulum can
be found in ASTM procedure D611o.



where b is the width of the sample and h is the thickness.





Experimental Procedure

Composite Sample Making

Flat composite samples were prepared in rough accordance with the

ASTM D5687 procedure. Two pieces of plywood, covered in packaging tape to

make them impermeable, were used for the flat mold. Shown in Figure (8) below

is the setup. A layer of release fabric was placed over the bottom mold piece,

followed by the lay-up, another layer of release fabric, breather material, the

upper mold, and more breather material to reduce sharp edges under the bag.

exhat
4--compressor

Figure 8: Cross-section diagram of the vacuum bag setup. Hollow rectangles
are the flat mold pieces, dotted lines are release fabric, rounded dotted lines

are breather material, and the shaded rectangle is the test specimen.
Arrows indicate direction of airflow.

The composite was cured under vacuum to provide an evenly distributed

pressure over the specimen. A Venturi vacuum generator7 was used in

conjunction with a compressor yielding the pressure of 72 PSI. The apparatus

was left on for 6 hours at a time then left alone to sit for a day to allow for full

curing of the epoxy.

The control samples consist of one layer of medium-weight fiberglass cloth

and ten layers of chopped strand fiberglass mat (0.75 oz/ft2), wet through with

West System #105 epoxy resin and #205 fast hardeners .

7West System Venturi Vacuum Generator. <http://www.westsystem.com/>
8 West System lo5 Epoxy Resin and 205 Hardener.
<http://www.westsvstem.com/>



Figure 9: Fiberglass bending sample.

The cork samples have the same first layer of fiberglass cloth as the control
samples, and the core is composed of cork granules of various sizes (1-3 mm)
mixed with epoxy resin at a 1:2 ratio of cork to epoxy by mass, making it a 50%
matrix content composite.

Figure to: Two one-sided cork samples laid up in half the flat mold.
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Figure 11: One-sided cork sample, after curing and before machining.

Figure 12: Cross-section of mixed cork sample.

Figure 13: Cork samples machined for the bending test (above) and the
Charpy test (below)



Testing

Three-point bend test

Testing protocol was based off of the ASTM D79o procedure for

determining flexural properties of plastics.

Figure 14: Three-point bend test apparatus.

The Instron 1125, modified by ADMET to include load control, was the test

machine with a 2okN loading cell. The appropriate strain rate is calculated

according to ASTM D79o. The support span was 90omm, yielding a span-to-

thickness ratio greater than 16:1. The radii of the supports were 12.7 mm and

that of the loading nose was 19 mm, differing from the 5mm radii called for by

the protocol.

Charpy V-Notch test

The simple pendulum impact machine is as shown in Figure (15). A milled

450 notch is made to the side of the samples to produce a stress concentration

that encourages brittle fracture. The angle to energy conversion is calculated

through Equation (1o).



Figure 15: Charpy test apparatus.
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Results and Discussion

Bending Test Results

The fiberglass core composites were over an order of magnitude stronger

than the cork composite samples. Shown below in Figure (17) are representative

stress-strain curves from testing.

45U

200

150

100

50

0
0 0.01

- fiberglass core
-- cork core

0.02 0.03 0.04 0.05
flexural strain (mmnmm)

-- one-sided fiberglass
one-sided cork

two-sided fiberglas.
two-sided cork

Figure 16: Calculated stress-strain curves for representative data.

It can be seen that the one-sided fiberglass sample is actually stronger

than the two-sided one. This could be attributed to the variable nature of the

making of the fiberglass samples, since the amount of epoxy added was

qualitatively determined by the visual saturation of the fiberglass mat. Graphs

displaying data for individual runs can be seen in Appendix (A).

It was also seen that the one-sided samples were stronger when tested

with the layer of fiberglass cloth on the bottom, shown in Figures (17) and (18).
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250

200

150

100

50

0 0.005 0.01 0.015 0.02 0.025 0.03

flexural strain (mm/mm)

- one-sided fiberglass
- one-sided fiberglass

(1) -one-sided fiberglass (2) - one-sided fiberglass (3)
(4) one-sided fiberglass (5) - one-sided fiberglass (6)

Figure 17: Samples 1-3 were tested with the cloth on the top, while samples
4-6 were tested with the cloth on the bottom.

25

20

15

10

5

0.01 0.02 0.03 0.04 0.05 0.06

flexural strain (mm/mm)

- one-sided cork (1) one-sided cork (2) - one-sided cork (3)
- one-sided cork (4) - one-sided cork (5)

Figure 18: Samples (1-2) were tested with the fiberglass cloth up, while
samples (3-5) were tested with the cork core facing up.
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A closer look at the cork composite results is shown in Figure (19), where

the presence of fiberglass cloth in the cork samples made a significant difference

in the flexural strength.

52-~~--~~~~~~~-----~~

20

15

10

5

0.01

- cork co

0.02 0.03 0.04

flexural strain (mm/mm)

re one-sided cork tw

0.05

io-sided cork

Figure 19: Calculated stress and strain for representative cork data.

In the results for the cork samples, there was always a sudden drop or plateau in

the flexural stress. This hinge is most drastically shown in the two-sided cork

samples, and is consistently present through the different samples, shown in

Figure (19). This may be due to the core breaking before the outer fibers. More

graphs can be seen in the Appendix (A).
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25

cc
20

L 15

16 10

5

0 0.01 0.02 0.03 0.04 0.05 0.06

flexural strain (mm/mm)

- two-sided cork (1) two-sided cork (2) - two-sided cork (3)
-two-sided cork (4) - two-sided cork (5)

Figure 20: Two-sided cork results showing an exaggerated hinge in stress.
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Figure 21: Semi-log plot of maximum flexural stress versus density of the
sample

As seen in Figure (21), while the cork samples were weaker than the

fiberglass samples, the cork samples were two to three times less dense, even

including the fiberglass cloth.

Plotting the maximum flexural stresses versus density on an Ashby chart9

in Figure (22), the results for the fiberglass samples fall within the right regime of

strength. The cork composite samples have a broad range due to the inclusion of

the cork core data and the variability in the one-sided samples depending on

fiberglass orientation during testing.

9 "Materials and Process Selection Chart". Granta - Material Intelligence.
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10 "Materials and Process Selection Chart". Granta - Material Intelligence.
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Figure 23: Semi-log plot of the calculated elastic moduli versus density.

The elastic moduli have more defined grouping. The fiberglass samples

show little difference between the different forms, but fiberglass increases the

modulus of elasticity for the cork samples. The expected flexibility of cork may

not be present due to its form as filler for the epoxy. Tests could be run with just

the epoxy to see the effect of various fillers.

7

I

1I1/1

I

AW



1000
Young

Longit~sina

Foams

100,

10,

10"-

104

Flexi*e poly~er
foams - -

, -W

rmeM
ruysb
rubber

Guide Irwe for
m7nHinunm m•ss

desfqn

Density, p (Mglm 3)

Figure 24: Comparing moduli of elasticity from bending tests on an Ashby
chart".

Charpy V-Notch Test Results

Figure 25: Close-up of cork specimen after undergoing Charpy test
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The fiberglass composite samples proved to have higher impact resistance

than the cork samples as well. The presence of cloth showed little difference

across the different fiberglass samples, even in the defected samplesl2 marked as

(bad?) and (good) in Figure (26). As described in the Experimental Theory, the

impact resistances were taken over the cross-sectional area of the sample to

account for the varying thicknesses, thus represented as impact

resistance/thickness in the graphs.

14 n

100

80

60

40

20

0
4.50 5.00

Nfiberglass core
Atwo-sided (bad?)

Scork core

5.50 6.00 6.50 7.00 7.50 8.00
width (mm)

oone-sided (bad?) fiberglass eone-sided (good) fiberglass
fiberglass Atwo-sided fiberglass (good?) Atwo-sided fiberglass (good)

*one-sided cork Atwo-sided cork

Figure 26: Charpy test results.

The sample widths shown in Figure (26) are the ones that all give the same

range of impact resistance. It was found with wider samples that there was a

jump in the impact resistance, shown in Figure (27). There is also increased

variability in the results, so the increased resistance may be attributed to energy
devoted to plane strain or possibly buckling.

12 Samples were suspected to be defected if the vacuum time was cut short, if the
vacuum pump was losing shape, or if they were separated from the mold by force.
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width (mm)

Efiberglass core *one-sided fiberglass
Atwo-sided fiberglass (good?) Atwo-sided fiberglass (good)

Displaying an increase in impact resistance/thickness as the
width of the samples increased.

There is still significant headway for the cork samples to make in order to

compete with fiberglass samples. As seen in Table (1), the fiberglass samples

were significantly stronger in all the determined properties.

Table 1: Summary of material properties, average values
oFS (MPa) E,, (GPa)

Fiberglass (FG): core 104 ± 10 5.3 ± 0.4

FG: one-sided, cloth on top 203 ± 24 9.6 ± 1.2

FG: one-sided, mat on top 234 ± 11 10 ± 0.6

FG: two-sided 191 ± 23 8.4 ± 08

Cork: core 6 ± 1 0.2 ± 0.0

Cork: one-sided, cloth on top 12 3 0.7 ± 0.1

Cork: one-sided, cork on top 37 ± 20 0.6 ± 0.1

Cork: two-sided 53 _ 15 2.0 ± 0.2

displayed.
Ri,,mpt, (kJIm2 )

65.5 ± 9.7

54.9 ± 7.1

54.9 ± 7.1

64.5 ± 13.9

4.6 ± 0.7

7.7 ± 0.9

7.7 ± 0.9

12.1 ± 1.5
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Conclusions
Composite samples were made via vacuum bagging and underwent a

three-point bend test[] and a Charpy impact testl31 to investigate maximum

flexural stress, effective elastic modulus, and impact resistance. The fiberglass

samples were on average four times stronger than the cork-epoxy samples in

flexural strength. The elastic modulus was also four times greater than that of the

cork, and the impact resistance per thickness was up to five times greater. The

cork composite samples, however, were up to three times lighter than the

fiberglass.

Future Testing

While the cork samples are significantly weaker than the fiberglass, a

sudden drop or plateau in the stress was observed in most of the bend tests.

Doing further testing by loading and unloading them in the anticipated elastic

region could determine if the cause was delamination, hardening, or a defect. It

may also be worthwhile to test the core's shear modulus of elasticity, since core

materials in composites are often compared by this property. Another possibility

is to incorporate loose chopped fiberglass strands into the cork samples, and to

find a relationship between strength and density.

To advance the investigation of cork application in boating materials, it

may be useful to compare moisture absorption properties. Expanding the types

of materials used for control samples to include honeycomb (paper, plastic, and

aluminum) and foam core would be another step in seeing where cork could

compete. The same reasoning applies to running the tests again using polyester

resin or vinylester resin instead of epoxy.

Suggested Improvements

While the procedure for testing polymer matrix composite materials

(ASTM D7264)[41 references that for reinforced plastics[l] the shear strength of

the materials were not determined before deciding the specimen size. The

standard ratio of support span to thickness is noted as 32:1, while the ratio used



in practice is closer to 18:1. Optional ratios were listed in ASTM D7264 as low as

16:1, but the failure needs to first occur at the outer fibers.

To obtain a more accurate calculation of flexural stress, the different

moments of inertia can be incorporated as discussed in the Experimental Theory

section.

While the lay-up process was the same, the resulting samples sometimes

varied in thickness. Experimenting with different pressures during the vacuum

bagging process and perhaps clamping could produce more consistent

thicknesses and possibly more consistent results.
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Appendix

A: Stress-strain curves for cork and fiberglass samples

0.01 0.02 0.03 0.04 0.05

flexural strain (mm/mm)
- cork core (1) cork core (2) - cork core (3) - cork core (4) - cork core (5)

Figure A - 1: Stress-strain curves for the cork core.
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20
a.

S15

0

5

0 0.01 0.02 0.03 0.04 0.05 0.06
flexural strain (mm/mm)

- one-sided cork (1) one-sided cork (2) - one-sided cork (3)
- one-sided cork (4) -- one-sided cork (5)

Figure A - 2: Stress-strain curves for cork with fiberglass cloth on one side,
repeated from text. Samples (1-2) were tested with the cloth up, while the

others were with the cloth down.
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Figure A - 3: Stress-strain curves for cork samples with fiberglass cloth on
both sides, repeated from text.
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Figure A - 4: Stress-strain curves for the all-core fiberglass samples.
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Figure A - 5: Stress-strain curves for one-sided fiberglass samples, repeated
from text. Samples (1-3) were tested with the cloth on top, while samples (4-

6) were tested with the cloth on the bottom.
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Figure A - 6: Stress-strain curves for the two-sided fiberglass samples.
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