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Abstract

Advances in Micro-Electro-Mechanical Systems (MEMS) have made possible the de-
velopment of shirtbutton-sized gas turbine engines for use as portable power sources.
As part of an effort to develop a microscale gas turbine engine, this thesis presents
the modeling, design, fabrication, and experimental characterization of a micro-
combustor that catalytically burns JP8 fuel. Due to high energy densities stored
in hydrocarbon fuels, microscale heat engines based on them are estimated to have
specific energies about one order of magnitude higher than those of current battery
systems. In addition, utilizing a commonly available logistics fuel would provide ad-
vantages for military applications. Thus, a microengine burning JP8 fuel is attractive
as a portable power source and potential replacement for batteries.

The thesis first presents a number of models developed to design the fuel vapor-
izer, the fuel-air mixing chamber, and the combustion chamber. Among these is a
reduced-order mass transfer model that simulates catalytic combustion of a slow-
diffusing hydrocarbon fuel. A two-phase heat transfer model was also developed to
design an on-board fuel vaporizer with an array of micro-channels. Using the model
results, a liquid-fueled micro-combustor test rig with a combustion chamber volume
of 1.4cc and an overall die size of 36.4 mm x 36.4 mm x 6.5 mm was built. This
device is a hybrid structure composed of silicon, sapphire, and glass. Deep reactive
ion etching was mainly used to fabricate the silicon parts. The sapphire and glass
parts were built by ultrasonic machining.

The liquid-fueled micro-combustor was then experimentally characterized. Two
configurations were tested and compared; one with the whole combustion chamber
filled with a catalyst, and the other with a catalyst filling the chamber only partially.
In the fully-loaded configuration, JP8 combustion was stably sustained at mass flow
rates up to 0.1 g/sec, and an exit gas temperature of 780 K, an overall combustor
efficiency of 19%, and a power density of 43 MW/m3 were achieved. The primary
limitation on increasing the mass flow rates and temperatures further was structural
failure of the device due to thermal stresses. With the partially-loaded configuration,



a mass flow rate of 0.2 g/sec, and a corresponding power density of 54 MW/mrn3 were
obtained. The exit gas temperature for the partially-loaded configuration was as high
as 720 K, and the maximum overall efficiency was over 22%. Although the reduced
amount of catalyst led to incomplete combustion, smaller thermal losses resulted in
an increase in the overall combustor efficiencies and power densities. The overall effi-
ciency and the exit gas temperature were lower than the operational requirement of
the microengine in both of the device configurations. A non-dimensional operating
map was constructed based on the experiment, and suggestions for future liquid-
fueled micro-combustors were made; to achieve maximum efficiency for a volume as
small as possible, improving the thermal efficiency would be necessary.

Thesis keywords: Power-MEMS, microengine, micro-combustor, catalytic combus-
tion, JP8 combustor, micro fuel vaporizer, micro-fabrication, deep reactive ion etch-
ing

Thesis Supervisor: Ian A. Waitz
Title: Jerome C. Hunsaker Professor
Head of the Department of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Need for portable power sources

Personal electronic devices such as cellular phones, personal media players, digital

cameras, and laptop computers are commonly used today. Market demand for these

products is steadily growing. The current trend in these portable devices is towards

including more features in a smaller form factor. As the devices have been getting

smaller, it has come to a point where the battery is a factor that limits the device

size. There is a need for compact and reliable power sources.

The U.S. military services also need electric power sources that are reliable and

portable. Today's soldiers carry numerous electronic devices for communication,

surveillance, target acquisition, and navigation. When infantry personnel are dis-

patched to a battlefield, they carry batteries to power their equipments such as

portable radio communications (PRC), global positioning systems (GPS), night vision

goggles, and range finders. They use both primary (non-rechargeable) and secondary

(rechargeable) batteries; typically, rechargeable batteries are used for training due to

low cost, and primary batteries for real operations. The reason for this is because

primary batteries have longer shelf life, better specific energy (energy per unit mass),

and wider range of operating temperatures. BA5590, a lithium sulfer dioxide (LiSO 2)

primary battery system with a capacity rated as 200 Whr at room temperatures, is

one of the most used batteries in the U.S. military. The U.S. military services pur-



chase about 350,000 BA5590 batteries every year. The BA5590 weighs about 1.2 kg

with a package size of 880cc (127mm x 112 mm x 62 mm). When deployed in the

field for several days, soldiers typically need 10 - 20 W continuous power, and this

translates to tens of pounds of batteries. This limits other carrying resources, such

as food, water, or ammunition.

1.2 Power-MEMS

There have been extensive efforts to invent a battery replacement technology. Progress

in Micro-Electro-Mechanical Systems (MEMS) during the last few decades has opened

a possibility that a micro-fabricated device could be used to generate electrical power.

Power-MEMS is a field that explores the capabilities of MEMS technology for devel-

oping such power-generating devices. Diverse concepts are being pursued. Internal

heat engines, fuel cells, and (thermo)photovoltaics are among them. Power-MEMS

devices are often based on hydrocarbon fuels. The specific energy of hydrocarbons is

larger than that of batteries by two orders of magnitude; hydrocarbons have a spe-

cific energy of approximately 40 MJ/kg, whereas the best lithium-ion batteries have

about 0.5 MJ/kg for safe operation. Therefore, a hydrocarbon-based device with a

chemical-to-electric efficiency of only a few percent could have benefits over batteries.

Another noteworthy merit of fuel-burning devices is short charging time and ease of

checking fill level. Fueling can be done in a matter of minutes as opposed to many

hours for battery recharge. Power-MEMS manifests itself as a promising technology

to resolve the need for high-density power sources.

1.2.1 Applications

Power-MEMS technologies, for the most part, aim to replace current battery systems

that are in the tens-of-watts regime. Power systems for individual soldiers, such as

described in the previous section, fall into this category. Small robotic platforms such

as PackBot®1 ask for high-power/high-density energy sources and thus, are an area

1PackBot® is a trademark of iRobot.



in which a power-MEMS device could also replace batteries.

As for civil applications, laptop computers typically require 10 - 50 W power.

Current laptop batteries can hold about 60 Whr of charges, providing up to 5 hours

of battery life. Among other criteria, consumers often shop for laptops with a long

battery life, so this is a potential market in which a high-density power-MEMS device

can compete. ICAO (International Civil Aviation Organization) passed a regulation,

effective since January 1, 2007, that allows airline passengers and crew to carry and

use certain fuel cartridges on board [4]. So there is an open opportunity for portable

fuel-burning generators to be used in laptop computers.

Portable generators are one of the potential markets as well. Due to lifestyle

changes, portable power generators are a growing market. People enjoying activities

such as camping and tailgating use portable generators to power diverse electronic

gadgets. According to SBI (Specialists in Business Information) [5], the U.S. market

for portable power generators with an output up to 15 kW was driven to $723 million

in 2006 at a compound annual growth rate (CAGR) of 21% since 2002. The market

is expected to keep growing at a 19% CAGR through 2011. Although not specified

outright in this report, a new market for a portable generator with sub-kW power is

emerging owing to fuel cell technologies.

Figure 1-1 lists feasible implementations of power-MEMS technologies. Soldiers,

laptop computers, and most robotic platforms are currently powered by batteries

(primary and rechargeable), whereas portable generators and some robotic platforms

use internal combustion engines. These applications fall into a category of 10 -

1000 W power. For smaller power/energy devices, batteries are likely to prevail for

a time being. And for devices requiring larger powers, heat engines are expected to

dominate. However, there exists a healthy market between them in which micro-

fabricated power-generating devices may seriously contend.

1.2.2 Pertinent technologies

There are several competing power-MEMS technologies, and fuel cell is one of them.

A fuel cell is an energy conversion device producing electricity between fuel (anode)



Figure 1-1: Potential for power-MEMS technologies

and oxidizer (cathode). The Direct Methanol Fuel Cell (DMFC) is one of the major

fuel cell technologies, and is available commercially. Smart Fuel Cell is one of the

market leading companies in fuel-cell-based mobile power supply. They manufacture

fuel cell systems that can deliver - 50 W of power out of a 7 kg (without fuel) device.

One 5 L methanol cartridge (weighing 4 kg) can provide 4.5 kWhr of energy [6]. This

translates to a specific energy of 1.5 MJ/kg, a three-fold increase over Li-ion batteries.

Proton Exchange Membrane Fuel Cell (PEMFC) is also recognized as a promising

technology. With help of a fuel reformer, PEMFC is fuel-flexible allowing the use of

high-density hydrocarbon fuels. Since hydrocarbon fuels have higher specific energy

than methanol (- 40 MJ/kg as opposed to methanol's - 20 MJ/kg), PEMFC is

more prospective for higher specific energy than DMFC.

Thermophotovoltaics (TPV) are another technology being researched as a portable

power source. A TPV system consists of a thermal emitter and a photovoltaic diode

cell. The thermal emitter radiates photons when it is heated to 900 - 1300 C. The

photovoltaic diode absorbs these radiated photons and converts them into electricity.

Photovoltaics, commonly known as solar cells, are effectively TPV devices in which

the Sun functions as the emitter. Photovoltaics have been used to power calculators

and watches for many years. Recently, owing to the advance of MEMS technology,

highly efficient emitters and photovoltaic diodes can be micro-fabricated. If combined
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with a heat source burning hydrocarbon fuels, TPV may be a contender as a battery

replacement.

1.3 MIT microengine

MIT initiated a research program in the mid 1990's to develop a technology for

microscale gas turbine engines. Epstein et al. [7, 8] led this initiative in designing

and building shirtbutton sized gas turbine engines using silicon semiconductor micro-

fabrication technology. These engines are about one hundredth the length scale of

their conventional-sized counterparts, thus one millionth the volume. This is why

they are called microengines [9]. Since power level scales with fluid mass flow rate,

and flow rate scales with intake area, the microengines could produce about one ten-

thousandth (1/10,000) the power level of the conventional-sized. This would be on

the order of kilowatts, since typical power levels of those large engines are a few tens

of megawatts. In reality, the microengines will have smaller pressure ratio and lower

efficiencies, so the power level will be lower. Bench-top microengines are designed to

produce about 10 W of electrical power or 0.1 N of thrust within a package about 1 cc

in volume. The resulting engine power density2 would be on the order of 10 MW/m3 .

As seen in Figure 1-2, the size of the engine itself would be negligible compared to

the volume of fuel. So, with just 10% chemical-to-electric conversion efficiency3 , the

microengines would have a specific energy of 4 MJ/kg, which is about an order of

magnitude higher than that of the best batteries available today.

Based on a gas turbine Brayton cycle, the MIT microengine contains all the func-

tional components of a conventional gas turbine engine as shown in Figure 1-2. Air

is drawn in axially through the inlet, and makes a right-angle turn into the compres-

sor. Then fuel is injected into the compressed air. The fuel and air are mixed in

the recirculation jacket, which provides 1) preheating of the fuel/air mixture and 2)

2 This power density is based on the volume of engine only, excluding fuel or fuel storage device.
Unlike power density, specific energy should be based on the system volume (or weight) including
fuel system.

3 Conventional gas turbine engines have efficiencies of 40-45%



thermal isolation of the combustion chamber. The fuel/air mixture enters the com-

bustion chamber, in which combustion reactions take place; chemical energy stored

in the fuel is converted to fluid thermal energy. Then, the high-enthalpy combustor

exhaust passes through the turbine, and finally exits the engine. During this process,

the turbine extracts mechanical power from the fluid, and the power is used to drive

the compressor and the electric generator.

There exist challenges for developing novel technologies for these microscale gas

turbine engines. Abridged descriptions of the technical challenges are listed below.

During the past ten years, each of these challenging problems has been addressed,

and many publications were made by the MIT research group.

Engine system design : The microengine is based on a Brayton cycle. The ad-

vantages of the Brayton cycle are simplicity and high power density. As this

is a first-of-its-kind device based on pioneering technologies, simplicity is an

attractive virtue. For the Brayton cycle to be self-sustaining, however, each

component should meet a minimum efficiency (typically 40-50%). In addition,

operating conditions such as temperatures, pressures, and mass flow rates are

limited by fabrication and material constraints. For details on these issues ref-

erences [7, 8, 9, 10, 11] should be consulted.

Turbomachinery : The current micro-fabrication techniques dictate the turboma-

chinery geometries to be only two-dimensional extrusions with constant blade

heights. Due to fabrication and size issues, the compressor and turbine are lim-

ited to a single-stage as well. Furthermore, because of the small scale, the flow

has low Reynolds numbers leading to high viscous losses. And due to unavail-

ability of active turbine blade cooling, the spool between the turbine and the

compressor must be short, so that the heat transferred to the turbine can be

conducted and rejected to the compressor fluid. Although this is a simple way

to keep the turbine below 950 K at which silicon starts to lose strength, it has

a severe disadvantage of lowering the compression ratio. Finally, a sharp right-

angle turn of intake flow into the compressor is detrimental to the compressor
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efficiency. Details on these topics can be found in references [10, 11, 12, 13].

Bearings : To get the required pressure ratios, the tip speed of the turbomachinery

must be about 500mrn/sec. With a rotor diameter of 4mm, this translates to

a rotational speed of approximately 2.4 million RPM. To achieve these high

rotational speeds while retaining simplicity, air bearings were selected. Im-

plementations of the air bearings pose challenges. Complex rotor and bear-

ing dynamics problems must be resolved. Due to extremely tight clearance of

the air bearings, even a small imbalance of the rotor disk can result in a fail-

ure of the device. Progress has been made in this subject, and test devices

demonstrated repeatable high speed operation near tip speeds of 380m/sec,

making MEMS turbomachinery viable. More details are available in references

[10, 11, 14, 15, 16, 17, 18].

Combustion : The key design requirements for the microengine combustor are tem-

perature rise, efficiency, low pressure drop, structural integrity, ignition, and

stability. The high power density of a gas turbine engine is realized by putting

large mass flow rates through small cross sectional areas. As a consequence, flow

residence times in the combustor are short and may become less than chemical

reaction times that are invariant with size. This causes incomplete combustion,

low efficiencies, and sometimes blowout of the flame. Moreover, due to larger

heat transfer coefficients at microscale (smaller length scales result in thin ther-

mal boundary layers), the micro-combustor tends to lose much heat through the

combustor walls. Thin walls and high thermal conductivity of silicon make the

structure nearly isothermal, leading to poor thermal isolation of the combustor.

This exacerbate the heat loss problem. The non-adiabatic operation lowers com-

bustor temperatures, and the low temperatures reduce chemical reaction rates,

making the residence time issue more severe. Thus, fluid dynamics, chemical

kinetics, and heat transfer are more strongly coupled and more significant in

the micro-combustor. These challenges are reviewed in detail in Section 1.7,

and references [1, 2, 19, 20, 21, 22, 23, 24, 25, 26].



Electrical machinery : Micro-electrical machinery is needed for power generation

and to start the engine. The requirements for the devices of interest here dif-

fer from conventional-scale generators in that the power densities are at least

two orders of magnitude larger. For simplicity, it is desirable for the electri-

cal machinery to be integrated within the engine structure, typically on top of

the compressor, because no additional bearings or structure would be needed.

But this brings an adverse thermal environment for the generator, as the mag-

netic properties become deficient at high temperatures. The Curie temperature,

above which a ferromagnetic material loses magnetization, is no higher than

1400 K for most useful ferromagnetic materials. Since silicon fusion bonding

is followed by annealing typically at 1400 K, keeping the electrical machinery

intact during the fabrication processes is challenging. References on this topic

include [8].

Fabrication : Micro-fabrication technology is the key enabler of the microengine.

However, the micro-fabrication techniques restrict the geometries that can be

manufactured. In many cases, this makes development of the microengine

quite challenging. For instance, inability to fabricate three-dimensional com-

pressor/turbine blades undermines turbomachinery performance. Difficulty in

etching high aspect ratio trenches to the very stringent tolerances is a concern

for bearing development. Etch non-uniformity can unbalance the rotor disk and

cause instability. Wafer bonding is demanding too; mis-alignment can also cause

rotor imbalance, and any particles trapped between wafers can trigger leakage

flow. Each component of the microengine, and the engine as a whole, must

be designed to address these challenges. Additional details on the microengine

fabrication can be consulted in references [10, 11, 27, 28, 29].

This thesis focuses on the combustion system for the MIT microengine. More

specifically, a combustor utilizing the most common logistics fuel, JP8, is studied.



1.4 Motivation and objectives of the research

Previous researchers at MIT have made significant progress in the field of microscale

combustion. Using platinum as a catalyst, stable propane combustion has been

demonstrated at mass flow rates of 0.35 g/sec with exit gas temperatures of 1100 K

within a combustor volume of 191 mm3 , resulting in a combustor power density4 of

about 1200 MW/m3 [2]. Burning hydrogen fuel, a power density over 1400 MW/m 3

was achieved. Although hydrogen or propane are good fuels in general, in order for

the microengine to be more practical, it is desirable to utilize a fuel that is easier to

store, transport, and more readily available in the battlefield settings.

Table 1.1 compares the specific energy (energy per unit mass) and the energy

density (energy per unit volume) of several fuels appropriate for power-MEMS appli-

cations. Because an attraction of a power-MEMS device relative to a battery is the

large energy stored in a small volume (or weight), these are important criteria for

judging which fuel is preferable. Liquid or liquefiable hydrocarbon fuels have high

energy density. Although hydrogen's combustion times are very short, which is an

advantage for a micro-combustor, it is considered not practical due to low energy

density. Even at extremely high pressure (700 bar), the energy density of liquid hy-

drogen is only around the same order as a Li-ion battery. Only when hydrogen is

stored as a form of metal hydride does the energy density become reasonably high,

but its specific energy becomes so low that the system will be very heavy.

JP8 is a kerosene-based liquid jet fuel that is widely used for military operations.

More than 5 billion gallons are consumed every year by the U.S. Air Force, the U.S.

Army, and NATO. JP8 is the U.S. Army's logistic fuel, and is the fuel of choice

for most Army vehicles, and also for appliances such as heaters, stoves, and power

generators. JP8 is projected to remain as the primary fuel at least until 2025. For

these military applications, it is an advantage for a portable power generating device

to work on a fuel that is readily available in the battlefield.

There are significant challenges, however, to using JP8 in a microengine since

4 fluid power over combustor volume



Fuel

hydrogen (room temperature)
hydrogen (at 700 bar)
hydrogen (metal hydride)
methanol
ethanol
natural gas (at 200 bar)
liquefied propane
liquefied butane
LPG
gasoline
JP8
Li-ion battery

Specific energy
[MJ/kg]

143
143
2.1
19.7
30.0
53.6
46.4
49.1
34.4
46.9
42.8

0.54-0.72

Energy density
[MJ/L]

0.0011
4.7
11.4
15.6
24.0
10.0
27.0
28.1
22.2
34.6
33.0

0.9-1.9

Table 1.1: Specific energies and energy densities of different
device

fuels for a power-MEMS

burning JP8 fuel in an environment resembling the microengine has not hitherto

been done; the combustion model is not well known, and liquid-fuels necessitate

additional component for vaporization. There is also an issue of device degradation

due to coking. These challenges motivated the research program described in this

thesis. Key scientific questions were identified and addressed. Test devices were

designed and fabricated. Then, the devices were tested, and experimental data were

collected, reduced, and analyzed. This thesis presents general guidelines for designing

a combustor that burns liquid-fuels such as JP8 within several cubic centimeters of

volume.

A liquid-fueled micro-combustor is a combustor with approximately one millionth

the volume of a conventional gas turbine combustor, burning fuels that are in liquid-

phase at standard temperatures and pressures. A liquid-fueled micro-combustor has

many of the same technical challenges as a gaseous-fueled micro-combustor. How-

ever, there are several additional hurdles due to different combustion time-scales,

liquid-phase at room conditions, and stability of the fuel molecules. Scientific issues

associated uniquely with burning liquid-fuels at microscale are listed below. These

points will be discussed in detail later in Section 1.7.4.



Combustion time-scales : The designer of a liquid-fueled micro-combustor needs

to size the combustion chamber large enough so that the fuel and air mixture

resides in the combustion chamber longer than it takes to complete the combus-

tion reaction. The ratio between the flow residence time-scale and the reaction

time-scale is defined as the Damkohler number:

Da E- Tresidence

Treaction

The Damkdhler number is required to be greater than unity. However, due to

unavailability of a chemistry model for catalytic JP8 combustion, it is difficult to

estimate the reaction time-scales. Thus, determining the minimum combustor

volume for a JP8-fueled combustor is challenging.

Fuel vaporization : A liquid-fueled combustor differs from a gaseous-fueled com-

bustor in that the former requires a fuel atomizer or vaporizer. The fuel va-

porizer should be compact, and it should be easily integrated with the engine

system. Further, there is limited experience in designing vaporizers at this scale.

Coking : JP8 decomposes at high temperatures and leaves residual carbons on de-

vice surfaces. This is referred to as coking or sooting. The residual carbons may

build up and clog the fuel flow paths including the vaporizing surfaces and the

fuel injection nozzles. In addition, the coking can degrade the catalyst. Device

deterioration by coking must be evaluated.

The research presented in this thesis attends to these scientific/technical problems,

aiming to become a general reference in designing a microscale liquid-fuel burning

system. To do so, a design model that can estimate the time-scale of the catalytic

JP8 combustion must be developed. The best scheme for fuel vaporization needs

to be selected, and a MEMS fuel-vaporizer must be designed and built. Research

objectives also include fabrication and demonstration of a working JP8 combustor

that can be integrated in the MIT microengine. Based on data collected in the test

devices, general design guidelines for microscale liquid-fueled micro-combustor should



be suggested.

1.5 Contributions of the research

The contributions of this research project include:

* Demonstration of JP8 combustion in a microengine setting

Catalytic JP8 combustion was achieved at a mass flow rate of 0.2 g/sec, and

a corresponding exit gas temperature of 640 K within a combustor volume of

1.4 cc. This results in a combustor power density of 54 MW/m 3 and an overall

efficiency of 19%. However, operational requirements of the microengine were

not achieved mainly due to large thermal loss. Based on the experimental

results, recommendations for better thermal management were made.

* Development of a design methodology for catalytic combustion time-

scales

Catalytic combustion of heavy hydrocarbon fuels is not well understood to date.

A simplified model was developed to estimate catalytic combustion time-scales,

based on an assumption that catalytic combustion is a diffusion-limited process.

Although this model is only applicable for diffusion-limited catalytic combus-

tion, it can serve as a preliminary design tool in estimating the combustion

time-scale and determining the required combustor volume for slow-diffusing

fuels.

* Design, fabrication, and integration of an on-board MEMS fuel va-

porizer

A two-phase heat transfer model was constructed to calculate the required sur-

face area for vaporizing the fuel. An on-board fuel vaporizer consisting of an

array of micro-channels in parallel was designed using the model, and fabri-

cated with silicon micro-fabrication techniques. Its operability was successfully

demonstrated at a fuel flow rate up to 0.01 g/sec, which is approximately a



quarter of the design specification. Inability to test at the design flow rate was

because the total mass flow rate could not be pushed further.

* Construction of an empirical non-dimensional operating map

A non-dimensional operating map was generated based on the experimental

data acquired in the test apparatus. The operating map is useful in explaining

the characteristics of a liquid-fueled catalytic micro-combustor and in designing

a similar combustor. Based on analyses via the non-dimensional operating map,

suggestions for future liquid-fueled micro-combustor design were made.

* Investigation of device deterioration

After over ten hours of operation, degradation of the device was studied. Al-

though some local destruction of the catalyst was observed, the exit gas tem-

perature response was repeatable for the same conditions, showing that the

catalyst did not degrade. Deposition of decomposed carbon was observed on

the walls of the device, especially along the fuel flow path. However, pressure

change in the fuel supply tube due to a blockage in the fuel flow path was not

observed.

1.6 Review of previous research

1.6.1 Previous MIT micro-combustor research

Feasibility study of hydrogen combustion at microscale

Waitz, Gauba, and Tzeng [20, 21] were the first to study combustion systems for

microengines. To meet operational specifications for the microengine combustion

system 5, a lean-burning hydrogen-air combustor was elected as a strategy. In a flame

tube experiment, they proved that this concept was appropriate for micro-combustors.

To further study the subject, a model micro-combustor was built. This combustor

5 At the initial stage of the project, operational specifications for the combustor were 4 atm of
inlet total pressure, 0.18 g/sec of mass flow rate, 500 K of inlet total temperature, and 1600 K of
exit temperature.



was macro-machined out of steel, and had a combustor volume of 0.13 cc. In this de-

vice, premixed hydrogen-air combustion was demonstrated, and stability limits were

mapped. Computational Fluid Dynamics (CFD) was also used to better understand

reacting flow phenomena at microscale. These results became the basis for the devel-

opment of micro-combustors.

Three-stack silicon micro-combustor

Mehra [19, 30] built a three-stack silicon micro-combustor. A cross-sectional schematic

and a Scanning Electron Microscope (SEM) image of Mehra's combustor are shown

in Figure 1-3. This combustor was micro-fabricated using Deep Reactive Ion Etching

(DRIE), and the three wafers were permanently bonded via aligned fusion-bonding.

The three-stack micro-combustor mimicked the baseline microengine geometry. The

combustor volume was 0.066 cc, and it had the ability to explore fuel injected com-

bustion. Premixed and non-premixed hydrogen-air combustion were successfully sus-

tained in this device. For premixed combustion, exit gas temperatures were in excess

of 1800 K at mass flow rates of 0.045 g/sec, corresponding to a power density near

1200 MW/m3 . For non-premixed operation, the maximum temperature achieved was

approximately 1700 K. The combustor efficiencies were in the 40-60% range. Exten-

sive structural studies were also conducted in this device to assess silicon's durability

in an oxidizing environment.

Six-wafer engine static structure

Mehra designed and fabricated a second micro-combustor with silicon micro-fabrication

techniques [1, 19]. Figure 1-4 shows a cross-sectional schematic and SEM image of this

device, which had a combustor volume of 0.191 mm 3 . This device replicated the MIT

microengine design as conceived at the time, approximating the microengine's flow

paths and thermal boundary conditions. The engine static structure did not include

the rotating spool, which is complex to fabricate and not considered critical to the

micro-combustor functionality. Air enters the device axially and makes a 90-degree

turn into the compressor blades that have a modified blade angle, providing the flow
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more swirl to compensate for the absence of the rotor. Fuel is injected immediately

downstream of the compressor. Fuel and air mix while passing through a recircula-

tion jacket that wraps around the combustion chamber. The role of the recirculation

jacket is three-fold: it provides a mixing zone, preheats the combustion reactants,

and thermally isolates the combustion chamber. The fuel-air mixture then enters the

combustion chamber, where the combustion reactions take place. The combustion

product goes through the turbine guide vanes, which are designed to choke the flow

and thus offer an ability to experiment at elevated combustor pressures.

This device was developed primarily as a hydrogen combustor, and tested with

both premixed and non-premixed hydrogen. As seen in Figure 1-5, for premixed

hydrogen-air combustion, an exit gas temperature in excess of 1600 K was achieved

at mass flow rates of 0.11 g/sec, resulting in a power density of 1100 MW/m 3 and a

combustor efficiency in excess of 80%. But the design mass flow rate of 0.36 g/sec

could not be realized in this device because of flame blowout around 0.16 g/sec. Hy-

drocarbon fuels such as ethylene and propane were also tested in the six-wafer engine

static structure, and the results are shown in Figure 1-6. When burning hydrocar-

bons, however, the mass flow rate capabilities were limited. Ethylene-air combustion

yielded exit gas temperatures as high as 1400 K, at mass flow rates of 0.07g/sec,

corresponding to a power density of 500 MW/m 3 and a combustor efficiency of 60%.

When burning propane, a maximum power density of 140 MW/m 3 was achieved at a

flow rate of 0.02 g/sec with 1250 K of exit gas temperature. The corresponding overall

efficiency was 55%. Combustion was blown out around 0.04 g/sec. The reduced mass

flow capabilities for hydrocarbon fuels are due to their slow reaction rates; reaction

time-scales of hydrocarbon fuels are approximately an order of magnitude longer than

those of hydrogen.

Dual-zone micro-combustor

To broaden the operating range of the micro-combustor, Spadaccini [2, 24] designed

and fabricated a dual-zone combustor. This device was similar in design to Mehra's

six stack micro-combustor, but included a bypass air flow. As shown in Figure 1-7,
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the dilution air is taken from the compressor discharge prior to fuel injection, and fed

into the rear half of the combustion chamber. Thus, the combustor is bisected into

a fuel-rich primary zone and a diluted secondary zone. This scheme is used in most

conventional gas turbine combustors to sustain combustion at lean overall fuel-to-air

ratio. Because flammability limits of hydrocarbon fuels are relatively narrow in terms

of fuel-to-air ratio, the primary zone needs to be supplied with near stoichiometric

fuel-air mixture to sustain combustion and produce hot combustion products. Then

in the secondary zone, dilusion air is mixed in to cool the combustion products to a

temperature at which the turbine can safely operate.

Using hydrogen, exit gas temperatures in excess of 1600 K and efficiencies over

85% were achieved at mass flow rates of 0.12 g/sec. The maximum power density

was 1400 MW/m3 . Due to enhanced stability, the dual-zone combustor was able

to sustain combustion at equivalence ratios 6 as low as 0.2, whereas the single-zone

micro-combustor was limited to 0.4. However, with hydrocarbon fuels, the dual-

zone micro-combustor did not achieve the expected broader range of mass flow rates.

Mass flow rates only up to 0.06 g/sec and efficiencies less than 50% were achieved

with ethylene, while flow rates up to 0.035 g/sec and efficiencies less than 30% with

propane. Corresponding power densities are 100 MW/m3 and 75 MW/m3 for ethy-

lene and propane respectively. The reason for the limited performance is believed to

be inadequate mixing; due to the nature of the device, fuel injection should happen

downstream of the dilution holes. Moving the fuel injection ports downstream short-

ened the available mixing length by 3.2 mm. Mehra surveyed this effect of variant

fuel injection locations with hydrogen in his six-wafer micro-combustor [1, 19]. He

found that fuel injected operation decreases combustor efficiencies by about 5%-point

compared to premixed operation. In addtion, when fuel injection location is moved

downstream by 3.2 mm, there was another 20%-point drop in the efficiencies. Due to

longer mixing times, hydrocarbon fuels will be affected more severely. This can ex-

plain why the dual-zone micro-combustor exhibited limited performance when using

actual fuel/air ratio
stoichiometric fuel/air ratio
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Figure 1-7: Cross-sectional diagram of the dual-zone micro-combustor [2]

Table 1.2 summarizes the results from previous work at MIT on homogeneous
gas-phase micro-combustors.

Catalytic micro-combustor

Hydrogen was chosen for initial studies of micro-combustors as it is a fast burning
fuel with wide flammability range. However, hydrogen is not a practical fuel for the
microengine due to storage issues and low energy density (see Table 1.1). Experi-
mental and modeling results indicated that it would not be possible for gas-phase
hydrocarbon combustion to achieve the design mass flow rate of 0.36g/sec within a
combustor volume of 0.191 cc. This is due to slow reaction kinetics of hydrocarbons
compared with hydrogen. To enhance the kinetics and thus to extend the mass flow



Fuel 3-stack silicon 6-wafer engine static Dual-zone
hydrogen power density 1200 MW/m3  1100 MW/m 3  1400 MW/m 3

(H2 ) efficiency 50% 70% 85%
ethylene power density 500 MW/m 3  100 MW/m 3

(C2 H4) efficiency 60% 38%
propane power density 140 MW/m3  75 MW/m3

(C3H8 ) efficiency 55% 29%

Table 1.2: Comparison of all the gas-phase micro-combustors

rate capabilities, Spadaccini et al. [2, 25, 26] developed a catalytic micro-combustor.

A metal high porosity foam coated with platinum was placed inside the combus-

tion chamber. Platinum is the catalyst which promotes hydrocarbon combustion.

The catalytic insert occupies the entire combustion chamber as shown in Figure 1-8.

Spadaccini found that a 78% porous foam results in about a 2% total pressure loss,

which is within the allowable pressure loss limit of 5%. The enhanced reaction kinet-

ics increased mass flow rate capabilities, as expected. Stable propane-air combustion

was achieved at mass flow rates in excess of 0.35 g/sec. However, exit gas tempera-

tures were somewhat low and limited to 1100 K. The reduced exit gas temperature

is believed to result from lower thermal efficiency. In the catalytic micro-combustor,

heat is generated on the catalytic surfaces and transferred to the flow by convec-

tion. But considerable heat is also transferred into the surrounding silicon structure

by conduction along the short paths between the hot catalytic insert and the sili-

con structure. This increased loss to the structure lowers the thermal efficiency of

the device. Nevertheless, the increased mass flow rate results in a combustor power

density of 1200 MW/m3 burning propane fuel, which is a 8.5-fold increase over the

non-catalytic propane-air combustion.

Summarized in Figure 1-9 are all the versions of the micro-combustors developed

at MIT including the liquid-fueled micro-combustor that is the theme of this thesis.

As seen in the diagram, the dual-zone combustor and the catalytic combustor are

variations of the six-wafer engine static structure. The liquid-fueled micro-combustor

inherits the catalytic micro-combustor in that it catalytically burns a hydrocarbon
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Figure 1-8: Schematic of the catalytic micro-combustor (adapted from Spadaccini [2])

fuel. But it is a unique endeavor as it has a fuel vaporizer and utilizes a liquid-fuel
whose reaction mechanism is not known.

1.6.2 Other microscale combustion research

Several micro-combustors are being developed by other researchers for various appli-
cations. Yang et al. [31] developed a hydrogen-based combustor as a heat source for
micro-thermophotovoltaics. Their stainless steel micro-combustor is a tubular type
with a diameter of 3 mm and a volume of approximately 1 cc. They obtained tem-
peratures about 1300 K along the wall at a mass flow rate of 0.1 g/sec. Combustors
for micro-thermophotovoltaic systems are somewhat different from gas turbine com-
bustors in that the former utilizes the heat flowing across the combustor walls while
the latter wants to minimize that flow and maintain heat in the fluid.

Hatfield et al. [32] studied catalytic combustion of propane/air at much smaller
scales than MIT microengines. Their combustor was 0.25 x 10- 3 cc in volume, which
is roughly a thousandth of the MIT micro-combustors. It was fabricated from quartz,
and contained a platinum coil inside the combustor to serve as a catalyst. The device
also had a counterflow heat exchanger, so that the fuel and air were premixed and
preheated by combustor exhaust before entering the combustion chamber. Reaction
temperatures over 1200 K were achieved at mass flow rates of 0.43 x 10- 4 g/sec.
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The Gomez group at Yale University is one of the research groups actively working

on microscale liquid-fueled combustors. They developed a miniature fuel atomizer

with multiplexed electrosprays. Kyritsis et al. [33] integrated the electrospray fuel

atomizer into a combustion system. Their combustors, however, are open-flame type

combustors as opposed to a closed-flame type of the MIT micro-combustor. So the

device volumes cannot be compared directly. With catalytic JP8 combustion, they

were able to achieve a catalyst temperature of 1500 K. Nominal air flow rate was on

the order of 0.1 g/sec, and the volume of the mixing chamber was 15 cc. Deng et al.

[34] reduced the size of these combustion systems utilizing MEMS technology. The

mixing chamber volume was reduced to 0.22 cc. They were able to sustain catalytic

JP8 combustion at air flow rates around 0.04 g/sec.

These research activities are summarized in Table 1.3. The power densities in the

table were calculated based on the flow rates, combustion temperatures, and device

volumes reported in each of the references. Since the device geometries are different

and the definition of combustor volume used are not completely consistent, the values

in the table should only be viewed to provide a rough sense of magnitude. The micro-

combustor being discussed in this thesis is different from all of these micro-combustors.

Unlike those of Yang et al. and Hatfield et al., the liquid-fueled micro-combustor

burns JP8 fuel, which has more energy stored per unit mass, is safely transportable

and storable, and is readily available on battlefields. The Gomes group [33, 34] at

Yale University is focusing on the development of a microscale fuel atomizer, and their

combustor configuration is different from MIT's. Their combustor is an open-flame

type, and the volume listed in Table 1.3 is that of the air and fuel mixing chamber

in which JP8 fuel is vaporized and mixed with air.

1.7 Micro-combustor challenges

Reduction in length scale poses several challenges on micro-combustors relative to

conventional-scale combustors. This section discusses these challenges.



Device Fuel Power Volume Power density Reference
Yang et al. hydrogen 10 W 1 cm3  10 MW/m3  [31]
Hatfield et al. propane 1 W 0.00025 cm3  4000 MW/m3  [32]
Kyritsis et al. JP8 100 W 15 cm 3  7 MW/m3  [33]
Deng et al. JP8 60 W 0.22 cm3  270 MW/m3  [34]
MIT catalytic propane 200 W 0.19 cm 1100 MW/mr [2]

Table 1.3: Comparison of micro-combustors from other research groups

1.7.1 Short residence time for high power density devices

Combustor power density is calculated as:

Power density 7 rnf hf
V

_ 7 (fhflj/*a) a h 1

V
ma

= 1 (mI/m°) ph )h

77 (mf/7 ma)p hf= q (7nf/ffna)p hf (1.2)
Tres

where 7 is combustor efficiency, rhf and rha fuel flow rate and air flow rate respectively,

hf heating value of fuel, V combustor volume, p fluid density in the combustion cham-

ber, and rres flow residence time. In general, power density is inversely proportional

to flow residence time; as we desire high power densities, flow residence times in the

combustion chamber become inevitably short. However, chemical reaction time is not

a function of size, but only temperature, pressure, and composition of reactants. As

we increase flow rates through the combustor, flow residence times decrease whereas

chemical reaction times do not vary significantly. Residence times approach reaction

times, and this eventually prevents complete combustion.

1.7.2 Large heat loss

Micro-combustors tend to have low thermal efficiencies. One of the reasons for this

is the large heat transfer coefficient at small scale. Since the dependence of Nus-

selt number on Reynolds number differs between the flow regimes of a conventional



combustor and a micro-combustor, the following three flow conditions are compared:

1. Laminar, fully developed

NUD = const. (1.3)

k NuD
h - Dh Dh (1.4)

If the length scale is reduced by a hundredth, the convective heat transfer

coefficiency increases by a factor of 100 times.

2. Laminar, entrance region (Sieder and Tate [35])

NUD = 1.86 ReD Pr 1/3 ( .14 c Re1/ 3  (1.5)

(when L oc D)

h oc D 2/3  (1.6)

For a hundredth the length scale, the heat transfer coefficiency increases by a

22-fold.

3. Turbulent (Dittus-Boelter equation [36])

NUD = 0.023Re4D/5 Pr oc Red/5 (1.7)

h oc Dh1/ s  (1.8)

If the length scale is reduced by a hundredth, the convective heat transfer

coefficient increases by a factor of 2.5 times.

In all flow regimes, the convective heat transfer coefficient becomes larger as the

length scale is reduced, so the device loses more heat per unit area. Particularly, the

flow in the micro-combustors is likely to be laminar that is influenced by the scale

the most.



Another reason for the micro-combustor's large heat loss is attributed to the low

Biot number. The Biot number is the ratio of conductive heat resistance to the

convective resistance:
hL

Bi - (1.9)
ka

where h is the convective heat transfer coefficient, L the length scale, and k, the

thermal conductivity of the structure. By the definition of the Nusselt number,

hL = k1 NUL (1.10)

where kI is the thermal conductivity of the fluid. Hence,

Bi = -NuL (1.11)

As seen in Equations (1.5) and (1.7), Nusselt number decreases with Reynolds number

in general. Therefore, for a low Reynolds number flow as in the micro-combustor, the

Biot number becomes small. Furthermore, thermal conductivity of silicon is about

150 W/mK at the room temperature, whereas that of steel is only about 50 W/mK.

This high thermal conductivity reduces the Biot number even more, so it becomes

approximately 0.01 for typical microengine settings. The low Biot numbers suggest

that the microscale silicon structure cannot sustain a temperature gradient. The

structure is nearly isothermal, so the inner wall is at relatively low temperatures, and

the outer wall at high temperatures (as opposed to a large difference between the

inner and the outer walls for a structure with a high Biot number). The device loses

more heat through the walls. A designer of a micro-combustor must carefully address

these heat transfer issues.

1.7.3 Materials and fabrication constraints

The microengine operates in nearly isothermal conditions due to low Biot numbers.

As a consequence, the rotating spool is at temperatures as high as the combustor.

Because these rotating components are under centrifugal load, the structure should



be kept below 900 K at which silicon starts to creep [37]. Lacking an active cooling

scheme on the rotating spool, the maximum operating temperature of the combustor

is limited by the material constraints. This exacerbates the residence time issue as the

low temperatures slow down the chemical reactions and demand longer flow residence

times.

1.7.4 Challenges specific to the use of liquid-fuels

Liquid-fueled micro-combustors inherit the issues of gaseous-fueled micro-combustors.

In addition, there are challenges specific to the use of liquid-fuels consisting of heavy

hydrocarbons.

Longer combustion times A combustion time-scale consists of vaporization, mix-

ing, diffusion, and reaction times:

Tcombustion = Tvaporization + Tmixing + Tdi ffusion + Treadion (1.12)

It is known that the gas-phase reaction time is not noticeably different between

light and heavy hydrocarbons. Levebvre et al. [38] published an experimental

report on ignition delays of various fuels7 . According to the report, the spon-

taneous ignition delay of premixed propane-air combustion is approximately

50 ms at the stoichiometric equivalence ratio and atmospheric pressure. With

the same conditions, it is about 30 ms for prevaporized and premixed JetA,

which is a kerosene-based jet fuel similar to JP8. The reason for this is because

heavy hydrocarbon molecules are less stable, so they tend to crack quickly into

light hydrocarbons that can react. Although detailed chemistry of catalytic JP8

combustion is not known, we may assume that there will not be a big difference

in the catalytic reaction time-scales between propane and JP8. However, the

diffusion time-scale, which is approximately one order of magnitude longer than

the reaction time-scale in the micro-combustor environment, is longer for JP8

7These experiments were conducted in a simple flame tube, which is different from the microengine
geometry. Therefore, only the relative numbers are meaningful.



fuel than for gaseous fuels such as propane because the diffusion rate of JP8

is around one half that of propane. As a result, for a prevaporized and pre-

mixed case, catalytic JP8 combustion will take longer than catalytic propane

combustion. The combustor volume needs to be increased accordingly.

The mixing time, which is usually longer than the diffusion time and the reaction

time8 , is also longer for heavy hydrocarbons due to their slower diffusion rates.

In addition, heavy hydrocarbon fuels that are in the liquid-phase at standard

temperatures and pressures need to be converted to the vapor-phase prior to the

chemical reactions. Following Kuo [40], the vaporization time of a fuel droplet

with a diameter Do is given by

Tvapoization = 8 p n(1 + B) (1.13)

where Pl and p, are the densities of the liquid-phase and the vapor-phase respec-

tively, a, the thermal diffusivity of the vapor, and B the transfer coefficient.

Using this formula, a fuel droplet with a diameter of 20 pm takes about 5 ms

to be vaporized at an ambient temperature of 700 K.

Considering these aspects, a strategy for a liquid-fuel burning micro-combustor

was chosen; the fuel would be prevaporized and mixed with air prior to enter-

ing the combustion chamber in order to minimize the required volume of the

combustion chamber. To further reduce the combustion time-scale, catalytic

combustion would be adopted.

Fuel vaporizer A fuel atomizer or a vaporizer is required to prevaporize the fuel. If

an atomizer was to be used, it would have to be able to generate fuel droplets

as small as 20 im in diameter, so that the droplets could be vaporized within a

few milliseconds. Atomizing a liquid-fuel into such small droplets is not trivial,

especially with constraints on the fabrication techniques and the size.

sAccording to Dodds and Bahr [39], of the typical 5-8 ms combustor residence time in a con-
ventional gas turbine, approximately 60% (3-5 ms) is devoted to fuel vaporization and mixing, and
about 40% (2-3 ms) to mixing of dilution air. The chemical reaction time is fairly negligible.



Another option is to vaporize the fuel on a hot surface. Due to the low Biot

number, the microengine is almost isothermal, and hot surfaces are readily

available. We may design a component, enclosed in the engine structure, with

enough surface area to provide the fuel with the required heat for vaporization.

This type of vaporizer has some advantages over others. First, it does not

need external power to operate. By vaporizing the fuel on the hot surfaces,

several watts of waste heat could be reused, enhancing overall efficiencies. The

fuel atomizer developed by the Gomez group [33, 34] operates across a high

voltage. The voltage has to be supplied by an external source, or be fed back

from the power output of the engine, which will compromise the efficiencies.

Second, a vaporizer with hot surfaces can be realized with simpler geometries

than atomizers.

Fuel decomposition (coking) Liquid hydrocarbon fuels, especially JP8, are known

to easily decompose at high temperatures and leave carbon residues. This could

be responsible for fouling or coking of the engine system. The phenomenon

might become significant on the fuel-vaporizing surfaces, the fuel injection holes,

and the catalytic insert. The residual carbons may clog the fluid paths or deteri-

orate the catalyst. Because the coking is heavily dependent on the temperature,

the surface roughness, and the geometry of the system, it is difficult to theo-

retically predict its characteristics. It should be assessed experimentally during

the course of the liquid-fueled micro-combustor research.

1.8 Organization of the thesis

This thesis consists of three main areas of development for a liquid-fueled micro-

combustor: design, fabrication, and experiment. Each aspect of the research is pre-

sented in the subsequent chapters.

The introduction is followed by Chapter 2, which provides information regarding

the experimental apparatus design. All the design models developed are explained in

this chapter. Detailed design of each part of the device is presented. This chapter also



offer general design guidelines that can be referred to in designing other hydrocarbon

micro-combustors of a similar size.

Chapter 3 reports how the liquid-fueled micro-combustor was fabricated, and how

the experimental setup was developed. Detailed steps of micro-fabrication are in-

cluded.

Chapter 4 discusses the experimental results from the liquid-fueled micro-combustor.

Experimental data acquired from the device are presented, and interpretations thereof

are also provided. Based on the experiments, a non-dimensional operating map was

generated. Design case studies are presented using the non-dimensional operating

map.

Finally, the main body of the thesis is concluded in Chapter 5. The research is

summarized and areas of future work are suggested.

Appendices A and B contain the photomask drawings for the micro-fabrication

and the mechanical drawings for the ultrasonically machined parts, respectively. Ap-

pendix C discusses a Monte-Carlo simulation conducted on the fuel vaporizer design

model. Appendix D introduces the heat transfer models that were used to estimate

heat loss from the device. Uncertainties in the experimental measurements and their

derivatives are reported in Appendix E.





Chapter 2

Experimental Apparatus Design

As discussed in Section 1.7.4, designing a JP8 combustor at this small length scale is

challenging because few data are available to reference in the design process. There-

fore, several design models had to be developed and used in determining the geome-

tries and dimensions of each component of the experimental test rig. This chapter

presents how the test rig was designed, and explains the details of each design model.

The design models developed for the liquid-fueled micro-combustor can be more gen-

erally referenced when designing similar micro-combustors in the future.

To design an experimental apparatus, its design requirements must be carefully

specified. The following is the key requirements for the testbed:

* It must be able to explore the feasibility of using JP8 fuel in the microengine

settings.

* It must serve as a platform to study flow physics and combustion chemistry of

the liquid-fueled combustor at microscale.

* It must have a geometry that would be compatible with the microengine system.

In order for the experimental test rig to be compatible for integration with the micro-

engine, it must have a geometry and a flow path that are similar to the microengine.

Hence, the combustion chamber will be a shape of an annulus, allowing the flow to

enter from the outer diameter, travel radially toward the inner diameter, and finally



exit through the inner diameter. Other operating parameters should also follow those

of the microengine. Table 2.1 specifies the operating conditions of the microengine

and thus, the liquid-fueled micro-combustor.

Parameter Value

total mass flow rate 0.3 g/sec
fuel flow rate 0.04 g/sec
combustor discharge temperature 1300 K
combustor pressure 2 atm

Table 2.1: Operational specifications of the liquid-fueled micro-combustor

2.1 Material selection

The MIT microengine is fabricated out of silicon. Silicon was chosen for several

reasons:

* To leverage existing fabrication technology developed for the integrated circuit

industry, allowing for batch fabrication (making several devices in parallel)

* Fabrication tools developed for silicon allow for precision control of feature size

and etch depth

The micro-combustor must be compatible with the MIT microengine, so silicon or

other MEMS-compatible materials should be used eventually. The goal of the present

project, however, is to explore the concept of liquid-fuel combustion at microscale.

To allow more flexibility in the device fabrication and experiments, it was decided

that materials other than silicon would be used for some parts. Complex compo-

nents with small features were fabricated out of silicon using the micro-fabrication

techniques. Less intricate parts such as the combustion chamber were made out of

sapphire. Sapphire is an excellent material for the micro-combustor for two reasons:

it is functional at high temperatures up to 2100 K [41], and offers visual access into

the combustion chamber. However, sapphire has some drawbacks as well. First, its



thermal conductivity differs from that of silicon1 , which makes it difficult for the test

apparatus to exactly replicate the thermal boundary conditions of the microengine.

In addition, because sapphire's thermal expansion coefficient does not match silicon 2,

it is not eligible for anodic bonding to silicon. To address this limitation, the device

stack was designed to be mechanically clamped instead of permanently bonded as it

was for previous silicon micro-combustors.

Another material used besides silicon was Hoya's proprietary SD-2 glass. This

specialty glass is designed for anodic bonding with silicon. An extended packaging

block on top of the fuel vaporizer was made with SD-2 glass as it can be bonded to

silicon while providing a visual window through the vaporizer. Section 2.5 will discuss

this in more detial.

2.2 Combustor volume

The combustor volume is chosen so that flow residence times in the combustor are

longer than reaction time-scales, i.e. the Damk5hler number larger than unity. Se-

lecting an adequate combustor volume is particularly crucial when designing a micro-

combustor because a high power density is desired, i.e. maximum power output should

be achieved for a given combustor volume. The combustor needs to be sized as small

as possible, but still be sufficiently large so that the residence time of the fuel-air

mixture is longer than the reaction time. As stated in Section 1.7.4, the fuel will be

vaporized and mixed with air prior to entering the combustion chamber. Only the

reaction time-scales determine the combustor volume. Therefore, it would be most

useful if one can estimate the reaction time-scales of catalytic JP8 combustion. To do

it accurately, we need to understand the reaction kinetics of catalytic combustion of

such hydrocarbons as n-octane(C8), n-nonane(C9), n-decane(C10), n-undecane(C11),

n-dodecane(C12), and n-tridecane(C13) as well as various aromatic species. However,

detailed kinetics data are not currently available for these chemical reactions. De-

kilicon = 150 W/mK vs. kaapphire = 40 W/mK [41]
2ailicon = 3.6 x 10- 6 K - 1 vs. asapphire = 7.3 - 8.1 x 10 - 6 K - 1 [42]



tailed surface reaction mechanisms for hydrocarbons heavier than ethane are yet to

be studied. For this reason, it was necessary to develop a simplified methodology to

estimate the reaction time-scales of catalytic JP8 combustion. Developing a compre-

hensive surface reaction mechanism for each species in JP8 requires intensive efforts

and resources, and was considered beyond the scope of the micro-combustor research

described here. Thus, we pursued a simplified design model that enabled us to esti-

mate the reaction time-scales of JP8 combustion over platinum catalyst.

2.2.1 Overview of the model

The model was constructed under the following assumptions:

* The combustor is a simple tube, and the fluid flow inside the combustor is

modeled as a steady, compressible, viscous flow along a circular tube with a

constant cross-section. The inner wall of the tube is coated with catalyst, and

the chemical reactions occur only on the walls. Thus, gas-phase combustion is

ignored.

* It is a constant-pressure combustion process like typical gas turbine combustors.

* The fuel is prevaporized and uniformly mixed with air before entering the com-

bustion chamber.

* The catalytic combustion of hydrocarbon fuels is a diffusion-controlled process;

the fuel molecules diffuse onto the catalytic surfaces slowly relative to the times

required for the fuel molecules to be consumed by chemical reactions. Moreover,

the diffusion of oxygen is approximately 70 times faster than that of the fuel.

So the diffusion rate of the fuel molecules dictates the overall reaction rate.

Spadaccini [2, 26] found that diffusion-based Damkdhler number" is in the range

of 5 to 20, which indicates that the combustion is mass transfer controlled [43].

Under these conditions, the concentration of the fuel species on the catalytic

3Da = Tdif
Treac



surfaces is less than 5% of the mean bulk value. But to further simplify the

problem, the surface concentration is assumed to be zero.

* JP8 is approximated as CnH. 8n with n = 13. Average molar weight of JP8 is

about 179 [44].

* Fluid properties in the bulk stream such as the density and the specific heat

were represented by those of air since the stoichiometric mixture has only 7%

of fuel by weight.

* There is no heat transfer to the wall (adiabatic walls).

With these assumptions, the reacting flow problem becomes a mass transfer problem.

The mass transfer equations can be applied without modeling the detailed reaction

kinetics, which is a considerable advantage. Under the assumptions listed above, the

fuel concentration forms a profile that becomes zero on the wall and peaks at the

center of the tube. This concentration gradient causes the fuel molecules to diffuse

onto the catalytic walls. And because the reaction rates are much faster than the

diffusion rates, the fuel molecules are immediately consumed by chemical reactions.

Using a mass transfer equation, it can be calculated how much fuel is transported

onto the wall via diffusion and thus converted. This fuel conversion can be traced

along the tube, and a lengthwise profile of the fuel concentration can be obtained.

Then, the axial location where the fuel concentration becomes 10% of the initial

concentration can be found, and the time for the flow to reach this location can

also be determined. This time is defined as the diffusion time-scale. Eventually,

the volume of the combustion chamber will be determined so that the flow residence

time4 in the combustion chamber is longer than the diffusion time; in other words,

the Peclet number larger than unity:

Pe - T> 1 (2.1)
Tdiffusion

4 pV4 Tresidence - -, p being the average density in the combustion chamber with a volume of V.

The validity of using an average density was demonstrated by Mehra [19].



Due to the exothermic reactions, the fluid temperature increases moving downstream.

The temperature changes, in turn, have an impact on the diffusion rates. Thus, there

is a coupling between the fuel concentration and the temperature, so the governing

equations of the model become a set of coupled equations.

2.2.2 Governing equations

Let us take the control volume just inside the tube as shown in Figure 2-1. The fuel

molecules are transported axially in and out of the control volume via the bulk fluid

flow, and some of them diffuse out of the control volume radially as well (diffusion in

the axial direction is ignored because the concentration gradient in the axial direction

is much smaller than in the radial direction).

r
t-X

Figure 2-1: Definition of the control volume for the combustor volume design model

Over the control volume, the fuel concentration may be balanced as:

u(r, x)C(r, x)27rrdr - u(r,x + Ax)C(r,x + Ax)27rrdr = J. 2rR. - Ax (2.2)

where

R : radius of the tube [m]

u(r, x) : local velocity of fluid [m/sec]

C(r, x) : local concentration of fuel [mol/m 3 ]

J : mole flux of the fuel species into wall [mol/m 2sec]



A bulk concentration is defined as:

Rf u(r, x)C(r, x)2rrdrQ(x) : [mol/m ] (2.3)
U(x)irR 2

where U(x) is the flow velocity averaged across the cross-section at the axial location

x. By plugging Equation (2.3) in Equation (2.2):

U(x + Ax)Cb(x + Ax) - U(x)Cb(x) 2J (2.4)Ax R

By taking Ax -+ 0,
d(UCb) 2J-= --- (2.5)

dx R

Because we are solving for the time for the flow to reach a certain location, it is more

convenient to write the equation in terms of the time variable, t, using the following

correlation5 :
d(UCb) 1 d(UCb)

(2.6)dx U dt

Substituting Equation (2.6) into Equation (2.5),

d(UCb) 2J- U (2.7)
dt R

According to Mills [45], the mole flux, J, can be expressed as the following:

S= hmC= ShDDab (2.8)2R

Here, hm is the mass transfer coefficient, which can be expressed as in Equation (2.8)

by the analogy between heat transfer and mass transfer. The Sherwood number,

5From
d(UCb) = 9(UCb)

+ (Ot ± V)(UCb)dt Ot
Because Cb was assumed to be steady and to vary only in the x-direction,

d(UCb) d(UCb)
dt dx



ShD, is analogous to the Nusselt number in heat transfer, and the molecular diffusion

coefficient, Dab, can be given by the Fuller correlation [43]:

Dab = 1.013 x 10- 2 T 1.75  1/Ma + 1/Mb [2/]

P 1(v/3 + 1/3)2

where

T: temperature [K]

P: pressure [Pa]

Ma, Mb : molecular weight of the species a and b

Va, vb : diffusion volume of the species a and b

Combining Equations (2.7) and (2.8),

d(UCb)

dt

And,
riU(t) = ()

p(t) 7rR2

ShDDab
R (UCb)R2

cc T(t)

Thus, Equation (2.10) becomes:

d(TCb)

dt

ShDDab
R 2 (TCb)R2

(2.12)

To find a correlation between the temperature and the concentration, power bal-

ance in and out of the control volume can be written as:

(rR 2)pUA(CpT) = -(7rR 2)hfA(UCb)

Hence,
d(CT)

dt

(2.13)

(2.14)_ hf d(UCb)

pU dt

(2.9)

(2.10)

(2.11)



dC, dTdT
dT dt

dT
dt

hf d(UCb)
pU dt

Using Equation (2.11),

dC, dT
dT dt

dT+CPdt
hf d(TCb)
pT dt

Finally,
dT -hf /p d(TCb)

dt + dC 2 dt
dT

where

hf : lower heating value of the fuel [J/mol]

p : local density (function of temperature and pressure) [kg/m 3 ]

C, : constant pressure specific heat of air (function of temperature) [J/kgK]

The constant pressure specific heat of air is given by:

Cp,N2= 39.060 - 512.79 (1 T-1 "

Cp,o, = 37.432 + 0.020102 ( T ) 1.5

100)

+ 1072.7 ( -0
100

-178.57 (T100

S820.40 -3- 820.40 (
100

+236.88( Q )100

C, = 0.79 Cp,N + 0.21 Cp,o2 [kJ
1000

= (0.79 Cp,N, + 0.21 Cp,o2) 28.9728-97

This correlation is known to be good within a temperature range 300 to 3500 K.

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
/ r \ -2

V/kmolK]

[J/kgK] (2.20)



Equations (2.12) and (2.17) constitute a set of coupled differential equations:

d(TCb) _ ShDDab
dt R 2

dT -hf /p d(TCb)

dt Cp dC dt
dT

Here, Dab, Cp, and p should be evaluated for the corresponding temperatures using

proper correlations such as Equation (2.9). In this set of equations, R and P are input

parameters that a designer can set, and Ma, Mb, va, Vb, and hf are the properties of

fuel or air. Due to small scale in the micro-combustor, the flow is laminar and fully

developed, so the Sherwood number, ShD, was chosen to be 3.66.

2.2.3 Results

This equation set was solved with appropriate initial conditions. Because the equa-

tions are coupled non-linear differential equations, solutions were obtained numer-

ically. The fluid properties listed in Table 2.2 were used when solving the set of

equations. Solutions for various conditions and design parameters are shown in Fig-

ures 2-2 through 2-4. A higher equivalence ratio results in a shorter diffusion time

(Figure 2-2) because the diffusion rate is proportional to the concentration. Since the

concentration gradient becomes larger when the tube diameter is smaller, increasing

the diffusion rate, the diffusion time becomes shorter for a smaller tube diameter

(Figure 2-3). And because the diffusion coefficient is inversely proportional to the

pressure (Equation (2.9)), meaning that a higher pressure hinders diffusion, the dif-

fusion time is shorter for a lower combustor pressure6 (Figure 2-4). This result is

distinct from the reaction time-scale of gas-phase combustion, which tends to become

shorter as the pressure increases.

6 Due to the slow diffusion at high pressures, catalytic combustion becomes slower than gas-phase
combustion above a certain pressure. For large-scale gas turbine systems with a pressure ratio over
10, a catalytic combustor is likely to be larger than a gas-phase combustor. In those cases, the main
reason for catalytic combustion is to reduce No, emission, not to reduce the combustion time. [43]



For most cases, the solutions indicate that the fuel concentration falls below 10%

of the initial concentration in less than 2.5 ms, so the flow residence time must be

longer than this to make the Peclet number larger than one. For the design flow

rate of 0.3 g/sec and the pressure of 2 atm, the corresponding combustor volume is

1400 mm3 .

Nomenclature Property Value Reference

ShD Sherwood number 3.66 [45]
Ma molecular weight of air 28.96 g/mol [43]
Mb molecular weight of JP8 179 g/mol [43]
va diffusion volume of air 20.1 [43]
Vb diffusion volume of JP8 260.83 [43]
hf heating value of JP8 7.73 x 106 J/mol [44]

Table 2.2: Fluid properties used for the solutions

Apart from the operating conditions and design parameters studied in Figures

2-2 through 2-4, the results depend on the properties listed in Table 2.2. As a con-

sequence, uncertainties in these fluid properties may affect the result of the model.

Table 2.3 summarizes the dependency of the model on those parameters. The baseline

case for this survey is ¢ = 1.0, P = 2 atm, and D = 700 pm. The result shows that

even with parameter variances as large as ±30%, the reaction time-scales estimated

by the model were within 2 ms for most cases.

Parameter Reaction time-scales [ms] due to parameter variances by
-30% -10% +10% +30%

ShD 2.18 (+41.6%) 1.72 (+11.7%) 1.37 (-11.0%) 1.18 (-23.4%)
Ma 1.28 (-16.9%) 1.45 (-5.8%) 1.63 (+5.8%) 1.72 (+11.7%)
Mb 1.46 (-5.2%) 1.54 (0.0%) 1.54 (0.0%) 1.55 (+0.6%)
Va 1.45 (-5.8%) 1.46 (-5.2%) 1.55 (+0.6%) 1.63 (+5.8%)
Vb 1.28 (-16.9%) 1.45 (-5.8%) 1.63 (+5.8%) 1.73 (+12.3%)
hf 2.18 (+41.6%) 1.72 (+11.7%) 1.37 (-11.0%) 1.18 (-23.4%)
Cp 1.09 (-29.2%) 1.36 (-11.7%) 1.64 (+6.5%) 1.95 (+26.6%)
p 1.09 (-29.2%) 1.36 (-11.7%) 1.64 (+6.5%) 1.95 (+26.6%)

Table 2.3: Variances in the estimated reaction times [ms] (and deviations from the
baseline value, 1.54 ms) due to uncertainties in the fluid properties



Based on a combustor volume of 1400 mm3 , the detailed dimensions were decided.

In order to replicate the flow geometry of the microengine, the combustor is the shape

of an annulus with the outer radius and the inner radius of 16.7 mm and 6.5 mm,

respectively. The values were rather set by the fuel vaporizer design, which will be

discussed in the next section. The height of the chamber must be 2 mm to make the

combustor volume 1400 mm3 . The resulting design is shown in Figure 2-5.

The combustion chamber layer has three thermocouple holes for temperature mea-

surements. Two thermocouples are buried in the sapphire structure and measure

structural temperatures near the inlet and the exit. Another thermocouple is ex-

posed to the exhaust gas at the exit of the combustor and measures the exit gas

temperature. The locations of the thermocouples are shown in Figure 2-6.

2.2.4 Summary of the combustor volume model

A reduced-order design model was developed to estimate the time-scale of catalytic

JP8 combustion. The model can be used for the catalytic combustion of any slow-

diffusing fuel if the diffusion time-scale is at least ten times longer than the reac-

tion time-scale. Under this condition, the reaction time is negligibly short, and the

combustion time can be approximated as the diffusion time. This approximation

eliminates the need for a surface chemistry kinetics model which is not available for

JP8 combustion. Based on the model results, the combustor volume was designed

to be 1400 mm3 , which is about seven times larger than the previous silicon micro-

combustor burning gaseous fuels. Considering that the catalytic propane combustor

had chemical efficiencies about 30%, and that the diffusion rate of JP8 is about half

that of propane, a seven-fold increase in volume seems reasonable.

2.3 Fuel vaporizer

In conventional gas turbine engines, fuel is usually injected directly into the combus-

tion chamber in the form of droplets. Then, the droplets evaporate as the combustion

reactions take place. For the micro-combustor applications, however, the fuel needs to
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be vaporized and mixed with air before entering the combustion chamber due to short

flow residence time in it. Therefore, a component that is capable of converting the

liquid-fuel into fuel vapor must be built in the microengine. There are many candidate

concepts for the fuel vaporizer. The Gomez group at Yale University [34] invented a

fuel atomizer driven by the electro-static force. But this type of fuel atomizer would

add complexity, and would be difficult to design within the microengine. Instead, we

focused on the fact that the microengine has readily available hot surfaces, on which

the liquid-fuel may be vaporized. Given that the fuel vaporizer has enough surface

area, and is kept at a temperature higher than the boiling point of the fuel, it will be

able to vaporize the liquid-fuel. Doing so would enable us to recuperate some of the

waste heat while vaporizing the fuel. In this section, a model used to design the fuel

vaporizer will be discussed.

2.3.1 Two-region heat transfer model

One effective way to design a fuel vaporizer with a large surface area is to build

an array of micro-channels in parallel. The liquid-fuel can be evenly distributed

among the channels, whose wall temperature is kept above the boiling point of JP8

fuel. In each channel, the liquid-fuel is heated to the boiling point, then evaporates

into the vapor-phase. To design such a fuel vaporizer, a heat transfer model was

developed, and the model was used to estimate the required surface area. Each

vaporizing channel was modeled as if it had two distinct regions of heat transfer

modes: single-phase heating and boiling, in succession. The number of the channels

and the hydraulic diameter of each channel were independently set as inputs to the

model, then the minimum length of each channel required to completely vaporize the

fuel was determined. The model was constructed using the following assumptions:

* The vaporizer is isothermal. This assumption is valid as long as the Biot number

is small, so the heat convected into the structure is distributed across the struc-

ture rapidly by conduction. Mehra [19] reported that the microengine typically



has a Biot number as low as 0.017.

* There is a clear-cut interface between the two heat transfer regions. Before the

interface, heating of the fuel in the liquid-phase happens exclusively, and boiling

prevails after the interface.

* The fuel flow is distributed evenly among all the channels. Once the number of

the channels is set as an input, the total fuel flow rate is divided by the number

of the channels, which gives the fuel flow rate for each channel.

Under these assumptions, the two-region heat transfer model can be depicted as in

Figure 2-7. For each heat transfer region, how much heat must be transferred from

the wall to the fluid can be calculated if the fuel flow rate is given. Equations (2.21)

and (2.22) account for the required heat in the heat-up region and in the boiling

region respectively.

qh ~9b

* I

_ -I liquid.......... liquidT=Tii ....... +vWa-- T=TB+

.P.

773)0- ----- 4

% I % I

Figure 2-7: Illustrative description of the two-region heat-transfer model

qh = rfCp(TB.P. - Tinlet) [W] (2.21)

qb = rmfhfhg [W] (2.22)

where rhf is the fuel flow rate, hfg the latent heat of evaporation of the fuel, TB.P.
the boiling point of the fuel, and Tinlet the temperature of the fuel at the vaporizer

7Bi = + [46]. In a typical microengine setting, it becomes about 10-2 (h n 103, L - 10- 3 , and
k - 102)

I



inlet. In Figure 2-7, Tiau is the temperature of the vaporizer wall, which is assumed

to be constant along the channel, and D is the hydraulic diameter of the channel.

In addition, Lh and Lb are the lengths of the heat-up region and the boiling region,

respectively.

Meanwhile, available heat flux from the wall to the fluid can be estimated by

applying appropriate heat transfer equations. First, the heat-up region is modeled as

a forced internal flow. For typical operating conditions, the Reynolds number is less

than 100, so the flow is considered laminar. The thermal entry length is on the order

of a few millimeters, so the entrance region should not be neglected. According to

Mills [47], the heat transfer in the laminar entrance region is

SNUh k2
q N= (Twau - Tfluid) [W/m 2 ] (2.23)

where,
0.065(D/Lh)ReDPr

1 + 1 {0.04(D/Lh)ReDPr}
2/3

Note that the heat flux is averaged over the length of the tube by using the average

temperature of the fluid, Tfluid. And, k is the thermal conductivity of the channel

wall, silicon in this case.

Second, the boiling region is modeled as a forced-convection boiling heat trans-

fer. For the boiling heat transfer, several empirical correlations can be found in the

literature, but the one proposed by Klimenko [48] has been selected because it is a

good compromise between simplicity and accuracy [47]. For the microengine operat-

ing conditions, the dominant mode of boiling is nucleate boilings . So the following

equation can be used [47]:

qb' Lcb (TwaT - TB.p.) [W/m 2 ]  (2.25)

If ( < 1.6 X 104, where - Ghg 1 x - 1 1/ , nucleate boiling is dominant

over film evaporation [48]. For typical microengine conditions, -t - 250.



where

NUb = 7.4 x 10- 3 q*0.6 p*0.5 Pr1/3 (kall 15(2.26)

q* q='L (2.27)
hfgpval

L = {(p-Pv)} (2.28)
g(pi - p,)

P* PLC (2.29)

The meaning and the value of all the symbols are listed in Table 2.4. Note that q"

also appears in Equation (2.27). Thus, Equations (2.25) through (2.29) need to be

evaluated via an iterative manner.

Nomenclature Property Value Unit Reference

PA density of liquid 635 kg/m 3  [49]
p, density of vapor 2.96 kg/m 3  [49]
P1 viscosity of liquid 2.53 x 10- 4 Ns/m 2  [49]
a surface tension 0.017 N/m [50]

C, specific heat 2640 J/kgK [49]
k, thermal conductivity of liquid 0.1034 W/mK [49]

hfg latent heat of evaporation 270 kJ/kg [44]

TB.P. boiling point 590 K [49, 51]

Table 2.4: Fluid properties of JP8

2.3.2 Results

Dividing Equation (2.21) by (2.23) gives the surface area needed to bring the fuel

temperature to the boiling point. In the same manner, the surface area required to

transform liquid-fuel into vapor can be determined by dividing Equation (2.22) by

(2.25). For a design fuel flow rate of 0.04 g/sec, a viable set of dimensions for the

vaporizer is listed in Table 2.5. This result shows that the required length of each

channel is about 5 mm for the listed design parameters. The result is influenced by

the fluid properties listed in Table 2.4. To examine the sensitivity to uncertainties

in each parameter, a Monte-Carlo simulation was conducted. Each parameter was



assumed to be normally-distributed with a mean value that is listed in Table 2.4 and a

standard deviation that matches 10% of its mean value. The required channel length,

is most significantly influenced by the difference between the boiling point of the fuel

and the wall temperature of the vaporizer. As long as the wall temperature is higher

than the boiling point of the fuel by 10 K, the required channel length was always

less than 5 mm. According the the Monte-Carlo simulation, uncertainties in each of

parameters had a combined effect of reducing the required length of the vaporizer

channel. Therefore, a design based on the values in Table 2.4 would be considered as

a safe and conservative approach. Details on the sensitivity analysis are included in

Appendix C.

g
p

C
c

Group Nomenclature
rhf

:eometric D
arameters N

and P
)perating TB.P.
onditions Tintet

Twall

required qh
heat flow qb

qtotal
heat-up qh
region SAh

Lh
phase q'

change SAb
region Lb
result Ltotal

Table 2.5: List
design model

Property
fuel flow rate
hydraulic diameter of the channel
number of the channels
vaporizer pressure
boiling point of fuel
temperature of fuel at inlet
vaporizer wall temperature
heating up to boiling point
latent heat of evaporation
total required heat flow
available heat flux
surface area required
length required
available heat flux
surface area required
length required
total length required

of the vaporizer design parameters and the dimensions set by the

Using the result shown in Table 2.5 as a baseline, some parametric variations were

studied as well. Figure 2-8 shows the modeling results for different design cases. For

most realistic cases, the required length of the vaporizer channels falls within 2 to

10 mm. Eventually, a case of 49 channels with a hydraulic diameter of 500 pm and a

Value
0.04
500
49

1
590
298
600

30.84
10.80
41.64

133959
230

2.99
71110

152
1.97
4.96

Unit

g/sec
pm

atm
K
K
K
W
W
W

W/m
mm2

mm

W/m
2

mm2

mm

mm



length of 10 mm for each was chosen. Because the channels were to be oriented radi-

ally, they would taper toward the exit. So, a hydraulic diameter of 500 Im would be a

lengthwise average in each channel. At the channel entrance, the hydraulic diameter

would be 600 ,im, and it would be 300 ,im at the channel exit. The fuel vaporizer was

designed correspondingly, and shown in Figure 2-9. Built in the fuel vaporizer layer

are pressure measurement ports, which connect the combustion chamber to external

pressure transducers.

2.3.3 Summary of the fuel vaporizer model

A two-region heat transfer model was developed to design the fuel vaporizer with an

array of micro-channels. The model assumes that the fuel is heated in the liquid-

phase to the boiling point, and then vaporized. The heat-up region was modeled as

laminar entrance region heat transfer by forced internal flow. The nucleate boiling

was the dominant boiling mode for the phase-change region. To supply the required

amount of heat for fuel vaporization, the model predicted that 49 channels with

an average hydraulic diameter of 500 im and a length of 10 mm would be needed.

The required length was strongly influenced by the difference between the structural

temperature and the boiling point of the fuel. However, when the structure is kept at

a temperature about 10 K above the boiling point, the required channel length was

shorter than 5 mm for all the simulation cases. For a given number of the channels,

larger hydraulic diameters require shorter lengths (Figure 2-8); although the heat

transfer coefficient becomes higher for smaller channels, the channels with larger

diameters have more surface area per unit length. This effect is more pronounced for

the boiling heat transfer region, so wider channels require shorter lengths.

2.4 Fuel injection holes and mixing chamber

Once vaporized, the fuel enters a mixing chamber through an array of fuel injection

holes at the end of each vaporizing channel. Figure 2-10 depicts these fuel injection

holes. The size of each hole needs to be properly determined so that the streams of
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Figure 2-9: Final design of the fuel vaporizer layer (a) and a zoom-in view (b)



fuel vapor injected through the holes spread and mix with the air flow. To simulate

how a stream of injected fuel vapor interacts with the air flow, a semi-empirical model

by Schetz [3] was used. This model can predict the vertical and lateral spreading of

a jet transversely injected into cross-flowing air (Figure 2-11). According to Schetz's

correlation, vertical spreading (along the y-direction in Figure 2-11) of the jet can be

approximated by:

- = 0.92 _L[(2.30)

And lateral spreading (along the z-direction) of the jet can be approximated by:

= 1.25 U2 [0x] (2.31)
dj Um d (Uj / U)

With proper values at the operating point, we can calculate the coverage of the

injected jet in the mixing chamber. Shown in Figure 2-12 is the normalized coverage

in the y- and z-direction. The y-direction coverage was normalized by the height of

the mixing chamber (450 m), and the z-direction coverage was normalized by the

circumferential spacing between adjacent injection holes. Because the flow area grows

as it goes radially outward, the spacing should be considered at the outer periphery,

which is about 2 mm 9. The modeling result indicates that the fuel injection holes

should be smaller than 100 am to cover both the entire circumference and height.

Therfore, the diameter of fuel injection holes was chosen as 100 tm. After being

vaporized, the fuel is injected into the fuel-air mixing chamber as shown in Figure

2-13.

2.5 Packaging and fluid connections

To run the liquid-fueled micro-combustor, liquid-fuel and pressurized air need to be

supplied. In the previous gaseous-fueled micro-combustors, metal tubes were attached

directly on the silicon structure to make fluidic connections [19]. This process was

9The periphery is 27r(15.7mm) = 98.6mm. Because there are 50 injection holes, the spacing
becomes 98.6 mm - 50 = 1.97 mm.
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Figure 2-10: Fuel injection holes viewed from above (a) and below (b)
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done in a furnace environment using glass frits at the interface between the tubes and

the silicon structure. However, the glass frit connections were found to be unreliable,

and often failed. Rubber o-rings were not deemed useable for this application since

even high temperature o-rings cannot tolerate the temperature that the liquid-fueled

micro-combustor is designed to operate at, about 900 K. For this build of a micro-

combustor, we modified the design to include a thermal isolation layer that would

allow the use of o-rings. A glass layer is anodically bonded to the combustor, and

extends past the combustor end. As shown in Figure 2-14, the extension block is

made from SD-2 glass, a specialty glass that was designed to be anodically bonded

to silicon. According to Hoya [52], the thermal expansion coefficient of SD-2 matches

silicon over a wide range of temperature, and certain additives (Na + ) assist anodic

bonding. In addition, because of its transparency, SD-2 glass can provide a window

for visual observation of the fuel vaporizer. Its small thermal conductivitylo also helps

in reducing the required length of the extension. Supplied via the packaging block

are air and fuel. In addition, pressure ports for measuring the combustor inlet and

exit pressure are built in the packaging block as well.

A finite element model, or FEM, was used to estimate how long the extension

needs to be. The maximum allowable operating temperature of silicone o-rings is

500 K [53]. Assuming that the core structure is at 900 K, the model provided the

length of the extension to make the packaging end below 500 K. The model is two-

dimensional, and assumed natural convection boundary conditions. On the upper

surface, the heat-transfer coefficient was assumed to be 10 W/m 2K. On the lower

surface, 5 W/m 2K was used. Shown in Figure 2-15 is the FEM result. It shows

that if the extension is 30 mm, the temperature of the packaging end would be about

360 K, which is below the temperature silicone o-rings can safely operate. Therefore,
with about 10% of safety margin, 33.6 mm was selected as the length of the extension.

10 kso-2 = 1.1 W/mK [52] as opposed to kailico = 150 W/mK
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2.6 Clamps

As stated in Section 2.1, the silicon parts and the sapphire parts cannot be perma-

nently bonded, so they were mechanically clamped instead. By opting for mechanical

clamps, the parts could be easily taken apart, and the catalytic insert could be exam-
ined or replaced as needed. The clamping blocks must exert enough clamping force to
prevent leakage, but not too much force to destroy the parts. After reviewing several
design candidates, the one as shown in Figure 2-16 was chosen. To securely clamp
the parts together, three of them were used on each side and the front (Figure 2-20).
Each one was fastened with a spring-loaded bolt, so that it can apply the required
clamping force. The clamps were made out of Macor, a machinable glass ceramic,
due to its high temperature capability and ease of machining. Between the combustor
structure and the clamps, pliant graphite pads were placed for thermal isolation as
well as for better traction.

*or blocks

Figure 2-16: Schematic of a spring-laoded clamp that holds the parts together

2.7 Final design

Using the design models described in the previous sections, the geometry and the
dimensions of the liquid-fueled micro-combustor were finalized. Key dimensions of
the apparatus are listed in Table 2.6. The experimental apparatus consists of six parts



that are either bonded or clamped as shown in Figure 2-17. Explained in Figure 2-18

are fluid flow paths in the device. Air and fuel are supplied through the holes near

the edge (@ and ) in Layer 2, go down along the channels in Layer 1, and enter

the device through the holes on the opposite end (@ and @) of Layer 2. The air goes

directly into the mixing chamber, and the fuel enters the vaporizer from the outer

diameter. Then, the fuel gets vaporized in the vaporizer channels, and injected into

the mixing chamber. The fuel and air are mixed flowing radially outward, then go into

the combustion chamber through the inlet slots (@). The fuel and air mixture gets

catalytically combusted in the combustion chamber flowing radially inward. Finally,

the combustion product exits the device through the exit nozzle. When all the parts

are put together, it would look as Figure 2-19. Shown in Figure 2-20 is the final test

bed with all the clamps and packaging blocks in place. Note that the assembly in

Figure 2-19 is placed upside down when put in the test bed to prevent hot exhaust

gas from damaging the test stand.

Group Parameter Value
overall overall die size 36.4 mm x 36.4 mm x 6.5 mm

packaging block 36.4 mm x 70.0 mm
combustion volume 1487 mm 3

chamber outer radius 16.7 mm
inner radius 6.5 mm
height 2 mm
flow area at the exit 0.77 mm 2 - 17.3 mm 2 (variable)

vaporizer number of channels 49
length of each channel 10 mm
inlet hydraulic diameter 595 /m
outlet hydraulic diameter 320 Im

fuel injection number of holes 50
holes diameter of the holes 100 ,m

Table 2.6: Key dimensions of the experimental apparatus
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Figure 2-19: Schematic of the experimental apparatus assembly
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Figure 2-20: Schematic of the fully packaged test bed



2.8 Chapter summary

In this chapter, an experimental apparatus was designed to explore the concept of the

liquid-fueled micro-combustor. During the design procedure, various design models

were developed and used. Among those design models, the most important is the

catalytic combustion model. It can be more generally applied when designing catalytic

combustors of similar configurations. Using the model, the reaction time-scale of

the catalytic combustion of JP8 was estimated, and the combustion chamber was

designed to have the mass flow rate capability of the design requirement. The fuel

vaporizer has been methodically designed as well. Utilizing hot structures in the

microengine, a fuel vaporizer with a compact size was designed. Fuel-air mixing

chamber was sized carefully, too. Finally, an experimental test rig with an overall

dimension of 36.4mm x 36.4 mm x 6.5 mm and a combustion chamber volume of

1.4 cc was designed. The next chapter will discuss the fabrication of the liquid-fueled

micro-combustor.



Chapter 3

Apparatus Fabrication and

Experimental Setup

Chapter 2 discussed how the experimental apparatus was designed. This chapter de-

scribes how it was built. The experimental apparatus is a hybrid structure consisting

of three different materials: silicon, sapphire, and SD-2 glass. Each material was ma-

chined with different methods. Figure 3-1 shows an exploded view of the apparatus

as well as the label, material, features, and the fabrication method for each part. The

sapphire combustion chamber (Layer 5), exit tube, and SD-2 packaging glass (Layer

2) were fabricated with ultrasonic machining by Bullen Ultrasonics. The three sili-

con layers were micro-machined in the Micro Technology Laboratory (MTL) at MIT.

The catalytic inserts were cut in the MIT machine shop, and coated with platinum

in MIT's Technology Laboratory for Advanced Materials and Structures (TELAMS).

Key fabrication steps will be explained in the subsequent sections in the chapter.

3.1 Silicon micro-fabrication

3.1.1 Overview

Layers 1, 3, and 4 (see Figure 3-1) were fabricated with silicon micro-machining

techniques. Layer 1, containing four channels for fuel supply, air supply, and two



Label Feature (material) Fa rcaton met o

Layed: Fluid channels 
DRIE

(silicon)

Layer2: Air/fuel inlets ultrasonic machining

~a( u-Z glass)
Layer3: Fuel vaporizer DRIE

(silicon)
Layer4: Mixing chamber DRIE

(silicon)
Catalyst (Pt on Ni foam) Dip coating

LayerS: Combustion chamber ultrasonic machining
(sapphire)

Exit tube (sapphire) ultrasonic machining

Figure 3-1: Label, material, features, and fabrication method for each part

pressure taps, involved Deep Reactive Ion Etching (DRIE) on one side of a silicon

wafer. Layer 3, the fuel vaporizer, involved DRIE from the both sides of a wafer;

half-way through from the front-side to define the vaporizer channels, and half-way

through from the opposite side to make through holes (fuel injectors and pressure

ports). Layer 4 was prepared in a similar manner; half-way from the front-side to

make the mixing chamber and half-way from the back-side to make the combustor

inlet slots as well as the pressure ports. In this micro-fabrication procedure of three

wafers, seven photomasks were used. Brief descriptions of each photomask are listed

in Table 3.1. A complete set of the photomask drawings is included in Appendix A.

Photomask Layer Major features
Mask #1 Layer 1 alignment marks / die-saw lines
Mask #2 Layer 1 fluid connection channels
Mask #3 Layers 3 & 4 alignment marks / die-saw lines
Mask #4 Layer 3 front-side vaporizer channels / pressure ports
Mask #5 Layer 3 back-side fuel injection holes / pressure ports
Mask #6 Layer 4 front-side air/fuel mixing chamber / pressure ports
Mask #7 Layer 4 back-side combustor inlet slots / pressure ports

Table 3.1: Description of each photomask

Figure 3-2 schematically summarizes the micro-fabrication procedure used for Lay-

ers 3 and 4. Beginning with a 900 pm-thick double-side-polished wafer, approximately

3000 A of field oxide was grown to protect the bonding surfaces. After that, alignment

marks and die-saw lines were etched on the front-side by shallow DRIE (0.5 ym). For
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double-sided DRIE, both the front and the back side of the wafer were covered with

photoresist, and the patterns were transferred on both sides. Prior to etching, the

field oxide on the pattern areas was removed by Buffered Oxide Etch (BOE). When

one side of the wafer is being etched with DRIE in a vacuum chamber, the other side

is cooled with helium. To prevent helium leakage into the vacuum chamber, through

holes should not be present on a wafer during DRIE. Thus, the front-side was etched

450 /m deep, and the wafer was mounted on a blank wafer using photoresist as an

adhesive. Then, the back-side etch was performed. Layer 1 was prepared with a

similar procedure excluding the back-side etch. Layers 3 and 4 were then bonded at

the wafer level with aligned fusion bonding, which was followed by die-sawing. On

the other hand, Layer 1 was die-sawed first, and then anodically bonded to Layer 2

(SD-2 glass) at the die level.

3.1.2 Photolithography

Photolithography is a process used in micro-fabrication to define patterns on a thin

polymer film (photoresistJ deposited on a silicon substrate. The patterns on the

photoresist are used later as an etch mask during the silicon etch process. The fab-

rication of the liquid-fueled micro-combustor exclusively used dark-field photomasks

and positive photoresists. Two-dimensional features that would be removed from the

silicon substrate are defined as transparent areas on the photomask. The photomask

is aligned with the wafer coated with the photoresist, and the pair is exposed to

ultra-violet rays. During the development after the exposure, the photoresist on the

areas that were exposed to the ultra-violet rays dissolves away revealing bare silicon,

or silicon oxide if the substrate has a field oxide. The silicon oxide can be removed

by Buffered Oxide Etch (BOE) before the silicon etch process.

Depending on the etch depths, two types of photoresists were used in the fabrica-

tion of the liquid-fueled micro-combustor. For the shallow etch (0.5 /m) of the align-

ment marks and the die-saw lines, 1 im-thick OCG 825-20 photoresist was used. This

thin photoresist can be stripped off in an acidic etchant called Pirahna (H2 0 2:H2 S0 4

4:1) after the etch is done. For DRIE (450p m), 10 pm-thick AZ P4620 photoresist



1. field oxidation

plasma
1145111

plasma

K..

2. photolithography with thin photoresist

3. BOE: remove field oxide

4. alignment mark etch (shallow DRIE)

5. Piranha: remove photoresist

6. photolithography with thick photoresist

7. BOE

8. front side etch (DRIE)

9. back side etch (DRIE)

10. asher: remove thick photoresist

11. HF dip: remove oxide

Figure 3-2: Schematic description of the micro-fabrication procedure (not to scale)



was used. Due to the thickness, the ultra-violet exposure had to be two times, 9

seconds each, separated by an interval of 15 seconds. This thick photoresist is usually

removed by plasma ashing after DRIE.

3.1.3 Deep Reactive Ion Etching

Deep Reactive Ion Etching (DRIE) was performed using Bosch's proprietary tech-

nology, Time-Multiplexed Deep Etching (TMDE). This is an enabling technology for

many power-MEMS applications. It is a dual-mode etching process that uses sulfur

hexafluoride (SF 6) plasma for removing silicon, and deposits fluorocarbon (C4F8 ) for

sidewall protection. The continual switching between the etch mode (SF 6) and the

passivation mode (C4F8 ) results in a highly anisotropic etch. Aspect ratios of 30:1

can be typically achieved, and etch rates of 3 jpm/min are considered standard [54].

For the fabrication of the liquid-fueled micro-combustor, Surface Technology Sys-

tems's (STS) Inductively Coupled Plasma (ICP) etching machine was used. The

recipe was optimized by previous MIT researchers. For each cycle, the etch (SF 6)

time was set to 15 seconds, and the passivation (C4F8 ) time to 11 seconds. When the

etch time is too long, the sidewalls become wavy. When the etch time is too short,

the overall etch rate of the DRIE process is too slow or even non-existent because

the wall passivating polymer should first be removed before silicon is etched per each

cycle. The MIT recipe offers a good compromise between the sidewall smoothness

and the etch rate. Figure 3-3 shows a picture of the Layer 1 wafer after DRIE.

3.1.4 Silicon fusion bonding

Two silicon wafers can be bonded directly without an intervening layer or applying an

electric field. This is called silicon fusion bonding. Although the bonding mechanism

is not fully understood, a chemical reaction between OH groups in the oxide layers

is believed to be the cause [55]. Layers 3 and 4 were bonded at the wafer level with

silicon fusion bonding. In order for the wafers to be bonded, it is extremely important

that no particles are present on the bonding surfaces as they will cause a bonding



Figure 3-3: Layer 1 after Deep Reactive Ion Etching

imperfection, and possibly a leakage flow in the device. Thus, the wafers were first

cleaned with a rigorous procedure prior to the bonding:

1. Plasma ashing for 120 minutes to remove photoresist and C4F8 residues from

the DRIE process

2. Piranha for 10 minutes to remove organic contaminants

3. Hydrogen fluoride (HF) dip for 10 minutes to strip off the field oxides

4. RCA cleaning with the HF dip step omitted

After this cleaning procedure, the Layers 3 and 4 wafers were immediately brought

into contact. Alignment marks on the two wafers were precisely lined up using Elec-

tronic Visions's wafer aligner, EV510. When the wafers were put into contact, some

fringes were visible under an infrared camera (Figure 3-4 (a)). The fringes indicate

that there are voids between the wafers, perhaps due to particles or blemishes on the

wafers. The bonded wafer pair was pressed down around the fringes with a plastic

tweezer, and they became noticeably smaller as shown in Figure 3-4 (b). Then, the

bonded wafers were annealed for an hour in a furnace at 1000 oC, and most of the

voids disappeared (Figure 3-4 (c)). Figure 3-5 is a photograph after the silicon fusion



bonding of the Layer 3 and 4 wafers. Following the silicon fusion bonding, the bonded

wafer pair was die-sawed. Figures 3-6 and 3-7 show the front and the back side of

the completed part, respectively. In Figure 3-6, microscopic images of the vaporizer

channels and the fuel injection holes are also shown.

3.1.5 Silicon-to-glass anodic bonding

Anodic bonding is a commonly used technique for establishing a bond between sil-

icon and glass. For anodic bonding, silicon and glass are put into contact, and a

high voltage is applied across the two while keeping them at an elevated temperature,

typically 350 to 400 oC. Borosilicate glass is generally used for an anodic bonding to

silicon. However, the thermal expansion coefficients of silicon and borosilicate glass

differ at the bonding temperatures. Hence, when the pair is cooled down to room

temperatures, residual stress is formed, causing distortion in the device. To alleviate

this issue, the liquid-fueled micro-combustor used a specialty glass substrate, SD-2,

manufactured by Hoya. SD-2 is a glass substrate designed to match the thermal ex-

pansion coefficient of silcon throughout a wide range of temperature. It also contains

Na + ions, which boost bond strength. Figure 3-8 illustrates the scheme of silicon-to-

glass anodic bonding. The silicon piece is connected to the anode, and the SD-2 glass

to the cathode. When the voltage is removed, an electrostatic force is permanently

formed and holds the two pieces together. Layers 1 and 2 were anodically bonded at

the die level. First, Layer 1 was die-sawed and cleaned with the following procedure:

1. Acetone dip for 12 minutes with ultrasound agitation

2. Rinse with methanol

3. Rinse with isopropanol

4. Dry with a nitrogen blower

5. Plasma ashing for 60 minutes to remove C4F8 residues and photoresist

6. Piranha for 10 minutes to remove remaining organic contaminants
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Figure 3-4: Infrared images taken during the silicon direct bonding: immediately
after contact (a), after the voids were pressed down (b), and after annealing for an
hour (c)

Figure 3-5: Picture of the bonded wafers for Layers 3 and 4



n holes

Figure 3-6: Front side of the completed silicon piece (showing the front side of Layer
3)
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Figure 3-7: Back side of the completed silicon piece (showing the back side of Layer
4)

7. HF dip for 10 minutes to strip the oxide

8. Rinse with de-ionized water and dry with a nitrogen blower

Layer 2, which was ultrasonically machined by an outside vendor, was cleaned in the

Piranha solution for 10 minutes, followed by a rinse and dry.

graphi

Figure 3-8: Schematic of anodic bonding between silicon and SD-2 glass

After the cleaning procedure, the two pieces were put together and mounted on

an anodic bonding chuck as shown in Figure 3-9. The edges of the two pieces were
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carefully placed against the chuck, providing an alignment good enough to preserve

the flow paths. Then, the chuck was put in an oven set to 350 C. An electric

potential of 1200 V (DC) was applied across the silicon and the SD-2, which resulted

in an electric current of 4.7 mA. The current gradually decreased, dropping below

10% of the initial value within 10 minutes. Figure 3-10 shows the current trace versus

time. The voltage was removed after an hour, and the chuck was taken out of the

oven. Figure 3-11 shows the finally bonded pair of Layers 1 and 2.

Figure 3-9: SD-2 glass and silicon pieces mounted in an anodic bonding chuck

3.2 Ultrasonic machining

Ultrasonic machining is a fabrication technique that utilizes a tool vibrating at a high

frequency, typically 20 to 40 kHz. This ultrasonic vibration is acoustically transmitted

to abrasive slurry flowing through a narrow gap between the tool and the workpiece,

leading to microscale abrasion and material removal from the workpiece. This is an

effective way to machine a brittle material at a very small scale. Layer 2 (SD-2 glass),

Layer 5 (sapphire), and the exit tube (sapphire) were built using ultrasonic machining

techniques by Bullen Ultrasonics, Inc.. A complete set of mechanical drawings for
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Figure 3-10: Electric current across the silicon-SD2 interface during anodic bonding
under 1200 V
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Figure 3-11: Layers 1 and 2 anodically bonded
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these parts is included in Appendix B. The smallest features machined with this

technique were the thermocouple holes in Layer 5, which had a diameter of 250 rm.

Although the general tolerance for the ultrasonic machining was quoted as 127 pm, all

the dimensions were measured within 10 ,m. Figures 3-12, 3-13, and 3-14 show the

pictures of Layer 2, Layer 5, and the exit tube, respectively. Layer 2 was anodically

bonded to Layer 1 (refer to Figure 3-11 again), and the exit tube was slip-fitted with

Layer 5.

Figure 3-12: Picture of ultrasonically machined Layer 2 (SD-2 glass)

3.3 Preparation of the catalystic inserts

The catalytic inserts were prepared by plating platinum on nickel foams. The nickel

foam was purchased from Goodfellow Corporation, and came as a form of 1 mm-thick

sheet that is 94% porous by volume. The foam was cut in the MIT machine shop

into a shape of the combustion chamber. To fill the 2 mm-high combustion chamber,

two pieces were stacked together.

The nickel foams were coated with platinum in the MIT Technology Laboratory

for Advanced Materials and Structures (TELAMS) following the procedure that was
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Figure 3-13: Picture of ultrasonically machined Layer 5 (sapphire)

Figure 3-14: Picture of ultrasonically machined exit tube (sapphire)
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previously established by Spadaccini [2, 23]:

1. Clean the nickel substrates ultrasonically.

- Put the nickel substrates in a zipper-top bag filled with soapy water, and

put the bag in a ultrasonic bath filled with water.

- Run the ultrasonic bath for about two hours.

- Put the substrates in a bag filled with clean de-ionized water, and run for

another two hours to rinse.

- Take out the substrates, and dry them over-night.

2. Dissolve 2.5 g of dihydrogen hexachloroplatinate(IV) salt (H2PtC16 - 6H 20) into

20 mL of de-ionized water. This makes 12.5% platinate solution.

3. Dip the nickel substrates in the solution for 10 minutes.

4. Dry the substrates in a furnace with reducing environment.

- Run N2 at 100 OC for 2 hours to remove water.

- Run H2 at 300 'C for 2 hours to remove Cl.

The catalytic inserts prepared using this procedure are shown in Figure 3-15.

3.4 Experimental setup and diagnostics

Figure 3-16 shows the test stand built to support and provide fluidic connections

to the micro-combustor. The micro-machined parts were held together with three

spring-loaded ceramic clamps, and the assembly was mounted on the test stand as

in Figure 3-17. There are four fluid connections into the experimental aparatus: air

(premixed with hydrogen for ignition), fuel, combustor inlet pressure, and combustor

exit pressure, each of which is sealed to the test stand with a silicone o-ring.

Three temperature measurements were taken in the locations shown in Figure 2-6

using 0.010in sheathed type-K thermocouples. Pressures were measured near the
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Figure 3-15: Prepared catalytic insert

Figure 3-16: Test stand assembly built out of steel

107



Figure 3-17: Complete test rig

inlet and the exit of the combustion chamber with digital pressure transducers that

can measure up to 100psi with a 0.5% accuracy at full-scale. Two MKS 1359C flow

controllers were used to control the air and the hydrogen flow. They were calibrated

with air and hydrogen, respectively, and had a full-scale accuracy of 0.5%. For JP8

flow control, Porter's liquid flow controller was used. The JP8 flow controller was

calibrated with kerosene at the factory, and had the maximum range up to 0.04 g/sec.

All these data acquisition components were connected to a data acquisition box, NI-

SC2345, which eventually transfers the data to a computer. A thermal infrared

imaging camera was also used to assist the structural temperature measurement.

Figure 3-18 shows a schematic of the test facility. Specifications of each flow controller

and diagnostic equipment are listed in Table 3.2.

3.5 Chapter summary

This chapter summarized the fabrication of the liquid-fueled micro-combustor. First,

silicon micro-fabrication procedures were described. Photolithography, DRIE, and

bonding techniques were discussed. In addition, the ultrasonic machining technique
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Equipment
air controller
H2 controller
gas flow control box
JP8 controller
JP8 flow control box
pressure transducer
thermocouple
thermal infrared camera
data aquisition box

Model
MKS 1359C
MKS 1359C
MKS Type 247
Porter Liqui-Flow HCB-05-4-C-2
Porter
Omega PX139-100D4V
Omega 0.010in type-K
inframetrics ThermaCam
National Instruments SC-2345

Specification
10,000 sccm
2,000 scem
4-channel
0.04 g/sec
2-channel
up to 100psi
up to 1600 K

15-channel

Table 3.2: List of equipments in the experimental facility

and the parts fabricated with it were explained. Silicon-to-glass anodic bonding

was also reviewed. Preparation of the catalytic inserts by coating nickel substrates

with platinum was introduced. Finally, the assembly of the parts and mounting for

testing were presented. Experimental setup and diagnostics were explained as well.

Experimental characterization of the device will follow in the next chapter.
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Chapter 4

Experimental Characterization

Chapters 2 and 3 discussed the design and fabrication of the liquid-fueld micro-

combustor, respectively. In this chapter, experimental characterization of the device

and the interpretation thereof are presented. Catalytic combustion of JP8 was suc-

cessfully stabilized in the device, and experimental data were collected under various

equivalence ratios and mass flow rates. Two different configurations were tested in

the apparatus: one with the entire combustion chamber filled with a catalyst, and

the other with just two thirds of the chamber loaded with a catalyst. Temperature

and efficiency behaviors for each configuration are presented and compared. The data

taken from the test rig were used to construct a non-dimensional operating map. An

uncertainty analysis was performed, and 95%-confidence error bars are included in

the plots. Details of the uncertainty analysis can be found in Appendix E.

4.1 Ignition procedure of catalytic combustion

To initiate catalytic combustion, the catalyst must be activated first [43]. It is known

that platinum becomes activated for hydrocarbon combustion when it is heated to

temperatures above 600 K. To achieve this level of preheating, hydrogen is burned

in the device prior to switching over to hydrocarbon fuel. For these experiments,

the same procedure that was used to initiate earlier catalytic propane combustion

experiments [2, 23] was adopted. A typical procedure would be:
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1. Heat the combustor rig with an external heater up to about 450 K.

2. Supply premixed air-H2 mixture through the air supply channel in the test rig

usually at rh = 0.02 g/sec and 4 = 0.7.

- The mixture lights off on the platinum surface.

3. When the temperature reaches about 600 K, start the liquid fuel.

- Temperature rises by about 50 K.

4. Slowly turn H2 and the heater down and eventually off.

4.2 Catalytic JP8 combustion

Following the ignition procedure explained in Section 4.1, JP8 fuel was combusted

successfully in the experimental apparatus. Catalytic combustion can be character-

ized by bright glowing of the catalytic insert in orange color as shown in Figure 4-1.

Figure 4-2 was taken by a thermal infrared imaging camera, and illustrates the tem-

perature profile of the combustor. It shows that the hottest part of the device is

around the inlet of the combustion chamber. The thermal infrared imaging camera

measurement depends on a complicated calibration, which was not available, so its

use was limited to showing qualitative trends.

4.2.1 Temperature response

The temperature response of catalytic JP8 combustion is plotted in Figures 4-3 and

4-4. Temperature measurements are obtained by using 10-mil unsheathed type-K

thermocouples. As shown in Figure 2-6, the exit gas temperature is measured at

the exit nozzle, and the structural temperatures are measured around both the outer

rim and the exit of the combustion chamber. The two structural temperature mea-

surements differed by less than 10 K, which is within the 95%-confidence uncertainty

range. As included in each figure, 95%-confidence uncertainty for the exit gas tem-

perature measurements is ±32 K, and ±12 K for the structural temperature.

112



(b)
Figure 4-1: Photograph of the JP8 combustor in operation (a) and a zoomed view
(b)
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Figure 4-2: Thermal infrared image of the liquid-fueled micro-combustor during JP8
combustion (0 = 1.1, rh = 0.1 g/sec)

Figure 4-3 shows the exit gas temperature as a function of the equivalence ratio for
each mass flow rate setting. Although measured data lie within the uncertainty bands
of one another, a higher mass flow rate generally resulted in a higher temperature at
the same equivalence ratio. Catalytic JP8 combustion was stabilized at equivalence
ratios as low as 0.7 and as high as 1.4. Whereas there is normally a peak around
the equivalence ratio of 1.0 for gas-phase combustion, no peak was observed in this
experiment. This is because fuel conversion efficiency is low, and the combustion is
limited by the diffusion of the fuel. The higher the concentration of the fuel molecules
is, the higher the diffusion rate becomes, and more fuel can be burned, producing
higher temperature.

Figure 4-4 shows the exit gas temperature and the structural temperature as func-
tions of the mass flow rate. The structural temperature plotted is an average between
the two structural temperature measurements. JP8 combustion was stabilized at a
mass flow rate as high as 0.1 g/sec (Figure 4-4), and the corresponding exit gas tem-
perature was 780 K (0 = 1.1). In general, the temperatures increase with the mass
flow rates, which indicates that the performance of the combustor is not limited by
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chemical efficiencies in this range, showing a potential to allow a higher mass flow

rate. However, the design mass flow rate of 0.3g/sec was not achieved because of

a structure failure, which is believed to be due to excessive thermal stresses in the

sapphire. There is little difference between the exit gas temperatures and the struc-

tural temperatures, which is typical for catalytic combustion [43]. This is because

the chemical reactions occur on the catalytic surfaces, and the heat is transferred to

the bulk gas via convection (heat transfer by radiation becomes significant when the

catalyst temperature exceeds 800 K). Due to the existence of short conduction paths

with relatively small thermal resistance between the catalytic insert and the sapphire

structure, the heat tends to readily flow from the catalyst to the structure, resulting

in high structural temperatures.
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Figure 4-3: JP8 combustion result: exit gas temperature vs. equivalence ratio for
different mass flow rates
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Figure 4-4: JP8 combustion result: exit gas temperature (a) and structural temper-
ature (b) vs. mass flow rate for different equivalence ratios
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Based on the temperature data, the power density can be calculated by:

fluid power
Power density = fluid power

combustor volume

(r2Ta + nhf)hexit - 7ahiniet (4.1)
V

In the device, the mass flow rate was limited to 0.1 g/sec, due to a structure failure,

and the corresponding exit gas temperature was 780 K. Therefore, the maximum

power density achieved was somewhat low at 43 MW/m3 .

4.2.2 Efficiency breakdown

From the experimental measurements, the overall combustor efficiency can be calcu-

lated by dividing the enthalpy gain of the fluid by the maximum possible fuel power

that may be released [56]:

(ve (a + Tnfl)hexit - hahinet (4.2)
?]overall (4.2)

mfhf

where 7ha and rhj are the mass flow rates of air and fuel respectively, hiniet and hexit

are the specific enthalpies' at the inlet and the exit, and hf the lower heating value

of JP8. Using the structural temperature data, it can be estimated how much heat

is lost through the device (more details on the heat loss estimation can be found

in Appendix D). Adding the heat loss to the enthalpy gain of the fluid gives the

total amount of heat that has been released from the fuel. Dividing the total heat

release by the maximum fuel power that could have been released yields the chemical

efficiency:
[(r7KT + Thf)hexit - rhahintet] + qjoss (4.3)

•]chemical = (4.3)
rnfhf

Idh = CpdT. For ease of computation, values of C, were evaluated as if the working fluid is
pure air, which is obviously not the case. This assumption generally under-predicts C, by about
15% compared to the more rigorously estimated C, of the combustion reactants and products. So,
there are uncertainties in the efficiency calculations associated with this simplification. Detailed
uncertainty analysis is included in Appendix E.

117



Dividing the overall combustor efficiency by the chemical efficiency, it can be esti-

mated how much heat is retained in the fluid as opposed to how much heat has been

released from the fuel. This is defined as the thermal efficiency:

(Ti•a + hf )hexit - hfahinlet
[(thRa + rih)hexit - lahinlet] + q los

These efficiency components are plotted in Figure 4-5 for the equivalence ratio of 1.1.

As seen in Figure 4-4 (a), the exit gas temperature keeps rising with the mass flow rate

until the structural failure; more fluid power is generated as the mass flow rate goes

up. Therefore, the overall combustor efficiency increases with the mass flow rate. In

Figure 4-4 (b), likewise, higher mass flow rates lead to higher structural temperatures

and thus more heat losses. Hence, the chemical efficiency increases with the mass

flow rate as well. This implies that the device is not chemically-limited in this mass

flow rate range, showing that it could potentially be operated at higher mass flow

rates if the structure bears the thermal load. Shorter residence time caused by the

increased mass flow rate is still sufficient for combustion, and the high combustion

temperature leads to faster diffusion of the fuel species, augmenting the chemical

efficiency. The thermal efficiency increasing with the mass flow rate is a common

trend in the micro-combustor.

4.2.3 Non-dimensional operating map

It is critical in catalytic combustion to ensure that the fuel-air mixture stays in the

combustion chamber longer than it takes for the fuel molecules to diffuse through

the boundary layer and onto the catalytic surfaces, on which they react with oxy-

gen. Therefore, it is informative to analyze the performance of the liquid-fueled

micro-combustor using the Peclet number. The Peclet number is a non-dimensional

parameter defined as the ratio between the characteristic flow residence time and the

characteristic diffusion time of fuel molecules:

Pe = Tre (4.5)
Tdif

118



OU

70

60

E50
o 40

N 30

20

10

A

0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12

Mass flow [g/sec]

Figure 4-5: JP8 combustion result: efficiency breakdown for q = 1.1

A large Peclet number means the residence time-scale is sufficiently long compared to

the fuel diffusion time. At low mass flow rates, large Peclet numbers are typical. As

the flow rate is increased, however, the flow residence time becomes smaller; the Peclet

number goes down unless the fluid temperature increases appreciably to augment

diffusion and thus reduce the diffusion time-scale.

To evaluate the Peclet number, the flow residence time-scale is first calculated

with a density based on the average temperature2:

pV
Tres -

PV
VRT (4.6)

where P is the combustor pressure, V the combustor volume, rh the total mass flow

rate, R the gas constant for air, and T the average temperature in the combustion

2T _Tinlet + Tezit. The validity of using this average was demonstrated by Mehra [1]
2
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chamber. Recalling Equation (2.12) in Chapter 2,

d(TCb) ShDDab
(TCb)dt R2

Upon using the average temperature and molecular diffusion coefficient, which is

evaluated based on the average temperature, Equation (2.12) integrates to:

ShDLab
Cb(t) ShDDabt

=e R2 (4.7)
Cb(O)

Since the diffusion time-scale is defined as the time that the fuel concentration be-

comes 10% of the initial concentration:

ShDDab

e R2  dif= 0.1 (4.8)

Thus,

R2 In(0.1)
ShD Dab

2.30 R2

ShD Dab

Substituting Dab by the Fuller correlation (Equation (2.9)):

2.30 R2(vi/3 + Vb1/3) P

Tdif = R Va+v b- (4.10)( 1.013 x 10-2Sh-D• 1Ma + 1/Mb T1.75

Using the temperature and the mass flow rate measurements for each experimental

data point, the corresponding Peclet number can be computed by dividing Equation

(4.6) by Equation (4.10):

Pe= (1.013 x 10-2 VShD 1/Ma + 1/Mb TO0.75 (4.11)S1/3) 2  (4.11)
2.30 R R2(v/ 3 + vb/3

The Peclet numbers, evaluated based on the experimental measurements including
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T and rh, are plotted versus the mass flow rate in Figure 4-6. As stated earlier, the

Peclet number decreases with the mass flow rate mainly due to the reduction in the

flow residence time. Its dependency on temperature is weak relative to mass flow rate,

so the Peclet number is only a weak function of equivalence ratio in the liquid-fueled

micro-combustor.
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Figure 4-6: JP8 combustion result: Peclet number vs. mass flow rate

These experiment-based Peclet numbers are mapped out on a non-dimensional

space in Figure 4-7. The vertical axis represents the chemical efficiency, and the hor-

izontal axis represents the thermal efficiency. The product of the two is the overall

efficiency and is represented by the curvilinear axis in the plot area. All the experi-

mental data are plotted in the chemical efficiency-thermal efficiency plane, and each

data point has a corresponding Peclet number although the exact value is not marked

in the plot for the sake of legibility. Instead, shown in Figure 4-7 are the lines of con-

stant Peclet numbers, which were generated by fitting the experiment-based Peclet
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numbers with the least square method3 . The average error4 of the least square fitting

was 12.4%.

Thermal efficiency ( %I

Figure 4-7: JP8 combustion result: lines of constant
efficiency and thermal efficiency plane

Peclet numbers on a chemical

To better understand the non-dimensional operating map, the chemical efficiency

and the thermal efficiency were plotted as functions of the Peclet number in Figure 4-8.

Although there are broad uncertainty bands, Figure 4-8 displays a few general trends.

First, high Peclet numbers generally result in low thermal efficiencies. This is because

high Peclet numbers represent low mass flow rates (Figure 4-6), and the thermal

efficiencies have a tendency to increase with the mass flow rate as shown in Figure

4-5. The impact of the Peclet number on chemical efficiencies is rather unclear in this

plot. However, it can be said that low Peclet numbers do not significantly reduce the

3After inspecting the trend of the Peclet number distribution, a form of Pe = a + b
Tithermal 7

7chemicalwas used, then coefficients a and b were determined by the least square method.

4Err n Pek - a

4Err thermal,k lchemical,k
Sk=1 

Pekk=11
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chemical efficiency, which suggests that the device is not chemically-limited in this

mass flow rate range, i.e. the device has enough catalyst in the combustion chamber.

Second, chemical efficiencies appear to go down as the equivalence ratio is in-

creased, whereas thermal efficiencies are not influenced by the equivalence ratio. This

is likely because the thermal efficiency represents the heat transfer characteristics of

the device, and no chemistry is associated with it. On the other hand, the chemical ef-

ficiency renders how effectively the combustor can convert the fuel, so properties such

as the fuel concentration (equivalence ratio) are important. Other parameters that

may impact the efficiencies, e.g. catalyst geometry, fuel's diffusion characteristics,

pressure, temperature, and mass flow rate, are lumped in the Peclet number. Figure

4-9 diagrammically explains how all the relevant parameters can be grouped into non-

dimensional parameters. The chemical efficiency is a function of the Peclet number

and the equivalence ratio, and the thermal efficiency is a function of the Peclet number

and the thermal boundary conditions (fluid-structure interaction characteristics) of

the specific device. Therefore, this non-dimensional operating map is device-specific.

However, unless the thermal boundary conditions are altered drastically, the map can

also be used to predict the performance of a catalytic micro-combustor with different

fuel or volume to some limited extent, making it possible to use the map as a design

tool. Section 4.5 will discuss this in more detail.

It is these tendencies that make Figure 4-7 look as it does. Increase in the equiv-

alence ratio moves the operating point to the bottom of the map. As seen in Figure

4-6, the Peclet number is inversely proportional to the mass flow rate, so increasing

the mass flow rate pushes the operating point mainly to the right and slightly to the

bottom.

4.3 Catalytically-anchored gas-phase combustion

Although the use of a catalytic insert extends the mass flow rate capability, exit gas

temperatures tend to be lower than for gas-phase combustion. Moreover, the exit gas

temperature requirement of 1300 K is so close to platinum's melting point that the
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Figure 4-9: Relevant parameters divided into non-dimensional parameters

structural integrity of the catalytic insert becomes an issue for the catalytic micro-

combustor. Therefore, a concept of catalytically-anchored gas-phase combustion,

or hybrid combustion, was suggested [2]. This concept has been adopted in many

conventional gas turbine combustors, especially in ground-based power generators,

due to advantages in ignition, stability, and emissions [57, 58, 59, 60, 61]. Because

the flammability limit of hydrocarbon fuels is rather narrow around the stoichiometric

equivalence ratio, conventional gas-phase combustors have a fuel-rich primary zone

followed by a diluted secondary zone, which cools down the combustion product

with dilution air to a safe operating temperature of the turbine. Due to elevated

combustion temperatures, the primary zone produces much NO, emissions. Unlike

conventional applications, however, the concept of catalytically-anchored gas-phase

combustion was proposed for the liquid-fueled micro-combustor to achieve both high

reaction rates and high exit gas temperature without jeopardizing the catalyst. To

test this configuration, only the front two thirds of the combustor volume, instead of

the entire combustor, was filled with a catalytic insert.
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4.3.1 Temperature response

JP8 combustion was stabilized in the device at a mass flow rate as high as 0.2 g/sec,

at which point the combustion blew out. Figure 4-10 shows the temperature response

from the experiment. Unlike the fully-loaded catalytic combustor results, there is a

fairly large discrepancy between the exit gas temperature and the structural temper-

ature, suggesting that this configuration can provide better thermal isolation of the

combustion chamber and, thus higher thermal efficiencies. The efficiency breakdown

will be discussed in the next section. The maximum exit gas temperature obtained

was 723 K (ri = 0.07 g/sec), and due to extended mass flow rate, the maximum power

density was 54 MW/rn3 (r = 0.2 g/sec), the best achieved in the device. However,

the operational requirement of 1300 K was still not met. It appears that the combus-

tion has not transitioned to gas-phase combustion even though the fuel-air mixture

was at a temperature higher than the gas-phase autoignition temperature (typically

520 K at 1 atm). This inhibition of gas-phase ignition has been reported by other

researchers, including Dupont [62] and Griffiths [63]. Using methane, Dupont et al.

found that heterogeneous catalytic combustion prevailed up to 1400 K. The inhibi-

tion of gas-phase ignition was attributed to the depletion of fuel species in the gas.

Griffiths et al. explained the inhibition to be also associated with water vapor des-

orbed from the catalytic surfaces. The large amount of water vapor prevents favorable

conditions for gas-phase ignition by catalyzing reaction paths that consume the free

radicals H and CH 3, and form more stable species such as HO 2 and C2H6.

4.3.2 Efficiency breakdown

Figure 4-11 shows the overall, chemical, and thermal efficiencies as functions of the

mass flow rate for an equivalence ratio of 0.9. The large difference between the exit gas

temperature and the structural temperature, as noted in the previous section, results

in enhanced thermal efficiency. Since conductive heat transfer from the catalytic insert

to the structure is reduced due to smaller contact area, heat can be retained in the fluid

better. However, due to inhibition of gas-phase ignition, the non-catalytic portion of
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Figure 4-10: Partially-loaded catalytic micro-combustor result: temperatures vs.
mass flow rate for q = 0.9

the combustion chamber cannot be actively used, which results in the reduction of

the effective volume of the catalytic combustor. Therefore, the performance of the

combustor is chemically-limited at high mass flow rates, i.e. the chemical efficiency

declines with the mass flow rate, and eventually the reactions are blown out. This

will be discussed in more detail using non-dimensional parameters in the next section.

4.4 Device comparison

In this section, the results from the partially-loaded catalytic combustor are compared

with the fully-loaded catalytic combustor results. As discussed in the previous section,

the partially-loaded catalytic combustor has relatively high exit gas temperatures

and low structural temperatures. Figure 4-12 depicts these trends. This result is

attributed to different components of the efficiencies. As seen in Figure 4-13, the
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Figure 4-11: Partially-loaded catalytic micro-combustor result: efficiencies vs. mass
flow rate for / = 0.9

fully-loaded catalytic device has lower overall efficiencies even though it has higher

chemical efficiencies. This is due to much lower thermal efficiencies. In other words,

the fully-loaded catalytic device has more catalyst in it, so it can combust more fuel.

However, due to the presence of a large contact area between the catalyst and the

sapphire structure, it loses more heat, and the overall efficiency becomes low.

To view this from a different perspective, Figure 4-14 was generated. It shows

the chemical efficiencies of the fully-loaded catalytic device and the partially-loaded

device for the equivalence ratio of 0.9. Besides the two solid curves for each device,

a new curve was generated, and is shown in a broken line. This additional curve

plots the chemical efficiency of the partially-loaded device against the Peclet number,

but the Peclet number was recalculated based on a volume that is occupied by the

catalyst (1 cc), not the entire combustion chamber (1.4 cc). Then, the new curve fits

quite well with the fully-loaded device. This appears to indicate that the reduction

of the catalyst caused the effective combustor volume to decrease.
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The two devices can also be analyzed on the non-dimensional operating map. On

Figure 4-15 are listed two data points: one representing the fully-loaded catalytic

combustor and the other representing the partially-loaded one. They are both for

a mass flow rate of 0.08 g/sec and an equivalence ratio of 0.9. With these same

operating conditions, the Peclet number (based on the actual catalyst volume, not the

whole combustor volume) for the partially-loaded device is smaller due to a shorter

residence time-scale. And because there is less catalyst, the chemical efficiency is

also reduced. However, increased thermal efficiency wins over the reduction in the

chemical efficiency, and the overall efficiency is higher.

60

50

40

30

20

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Peclet number

Figure 4-14: Comparison of chemical efficiencies vs. Peclet number between the fully-
loaded and the partially-loaded (with corrected Peclet number) catalytic combustors

4.5 Catalytic combustor design case studies

Figure 4-16 shows all the experimental results obtained from the liquid-fueled catalytic

combustor. Each experimental point was mapped out on a non-dimensional space;
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Figure 4-15: Device comparison on a non-dimensional operating space

the vertical axis represents the chemical efficiency, and the horizontal axis the thermal

efficiency. The product of the two is the overall efficiency, which is represented by the

curvilinear axis in the plot area. On top of the efficiencies, lines of constant Peclet

numbers are included. These lines were generated by fitting the experiment-based

Peclet numbers with the least square method. The average error of the least square

fitting was 12.4%.

This non-dimensional map can serve as a preliminary design tool when designing a

JP8-fueled catalytic micro-combustor as long as the thermal boundary conditions are

similar to those of the current device. For example, once design specifications such

as mass flow rate, equivalence ratio, and exit gas temperature are determined, the

required overall efficiency can be computed based on those specifications per Equa-

tion (4.2). For a catalytic combustor, it is known that the structural temperature

is similar or slightly below the exit gas temperature, so the structural temperature

can be estimated with reasonable accuracy. Then, by taking a proper value for the

surface area, the total heat loss can be estimated by using a method similar to the one
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introduced in Appendix D. Then, the thermal efficiency as well as the chemical effi-

ciency are calculated, and the operating point can be located on the non-dimensional

operating map, allowing the designer to read the corresponding Peclet number on the

map. This is the Peclet number required for the catalytic combustor to be operated

at these conditions. Using this Peclet number, as well as the design specifications

including the mass flow rate and the exit gas temperature, the combustor volume

can be eventually decided based on Equation (4.11). A couple of design cases will be

studied here.

1

0

U

0

Thennal efficiency [%]

Figure 4-16: Non-dimensional operating map of liquid-fueled micro-combustor

4.5.1 Case #1: Liquid-fueled micro-combustor revisited

The current design of the liquid-fueled micro-combustor could not satisfy the opera-
tional requirements. In particular, the exit gas temperature was too low. The device
can be characterized via the non-dimensional operating map (Figure 4-16), and a
suggestion on future micro-combustor design can also be made.
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The design mass flow rate of the liquid-fueled micro-combustor is 0.3 g/sec. From

Figure 4-17, which plots the Peclet number versus the mass flow rate for all the

data acquired in the device, it can be noted that the corresponding Peclet number

would have been about 0.55 if the design flow rate were achieved in the fully-loaded

configuration. At this Peclet number, the thermal efficiency is about 76% according

to Figure 4-18. If this operation point is located on Figure 4-16, it gives an overall

efficiency of approximately 20%, corresponding to an exit gas temperature of 900 K.

This implies that the current liquid-fueled micro-combustor would not have achieved

the required exit gas temperature of 1300 K at the design mass flow rate even if the

structure did not fail.

If the goal is to achieve the required exit gas temperature without increasing

the device volume, there may be two paths to be considered; one is to increase the

chemical efficiency, and the other is to increase the thermal efficiency. Increasing the

chemical efficiency without enlarging the combustor volume can be done by using a

denser catalyst [2]. Larger surface area of a denser catalytic foam will enhance the

diffusion rates and thus, increase the Peclet number for the given mass flow rate.

This movement will increase the chemical efficiency, but because the denser catalyst

will lead to more heat loss, the thermal efficiency will diminish. This was shown

by the fully-loaded catalyst configuration test; it had more catalytic surfaces in the

combustion chamber, but its overall efficiency was lower than that of the partially-

loaded configuration at the same mass flow rate. Therefore, using a denser catalyst

is not an effective way to improve combustor efficiency for the current liquid-fueled

micro-combustor.

To see the effect of a better thermal isolation scheme, another non-dimensional

operating map was generated for the silicon micro-combustor developed by Spadaccini

[2, 26]. Figure 4-19 shows this map. Compared with the operating map of the

liquid-fueled micro-combustor, for a given Peclet number and an overall efficiency,

the thermal efficiency is higher, confirming that this device has a better thermal

isolation of the combustion chamber. This is due to the existence of a recirculation

jacket, which is a wrap-around flow path thermally-isolating the combustion chamber
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Figure 4-19: Non-dimensional operating map of silicon micro-combustor based on
catalytic propane results (data obtained from Spadaccini [2])
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(see Figure 1-4). As stated in Section 4.2.3, the non-dimensional map is determined

by the thermal boundary conditions of the device. Thus, Figure 4-19, which was

synthesized for the propane silicon micro-combustor, can be also used to estimate

the performance of the liquid-fueled combustor if it had a recirculation jacket as the

silicon device did. Referring to Figure 4-18 again, the thermal efficiency would become

approximately 86%, for the design mass flow rate, if a similar recirculation jacket is

built in the liquid-fueled micro-combustor. On Figure 4-19, the Peclet number of

0.55 and the thermal efficiency of 86% correspond to an overall combustor efficiency

of about 28%, which translates to an exit gas temperature of 1100 K. This is still

short of the design requirement, but shows about a 200 K increase in the exit gas

temperature and an 8%-point gain in the overall combustor efficiency.

To further improve the efficiency of the combustor, the combustor volume may be

increased by 50% to obtain a Peclet number of 0.75 at the design flow rate, and/or

other schemes for better thermal isolation of the combustor may be adopted. One

possible solution would be to minimize the contact area between the catalyst and the

combustor structure by suspending the catalytic insert in the combustion chamber

on seats. However, Spadaccini [2] found that the existence of a bypass flow around

the catalytic insert discourages the fuel and air mixture from flowing through the

catalyst, so the seats must not allow a bypass flow path; concentric circles will work

the best. Large surface areas of the extended packaging block and the ceramic clamps

are responsible for the large heat loss as well. Reducing the size of these structures

will also be helpful. A surface treatment, such as low-emissivity coating, may be

applied on the exterior of the device to reduce radiative heat loss.

4.5.2 Case #2: Combustor for TPV application

The liquid-fueled micro-combustor is a potential heat source for microscale ther-

mophotovoltaic (TPV) systems. A fundamental difference between combustion sys-

tems for an engine and a TPV system is that the latter desires the structure to be

hot, and the heat transfer through the combustor walls to be large. The catalytic

combustor has shown these characteristics, so it becomes an attractive option for the
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TPV application. Let us design a catalytic JP8 combustor for a TPV system with

the following specifications:

Twa,, = 1200 K , Heat source power = 100 W

When the structural temperature is 1200 K, the exit gas temperature may be esti-

mated to be 1250 K from our previous experiences. Assuming a stoichiometric equiv-

alence ratio, this exit gas temperature matches with an overall efficiency of 33%5 . If

the combustor's surface area is 10 cm 2 , the total heat transfer across the structure

becomes about 100 W, resulting in 10 W/cm 2 of heat flux6 . Supposing the mass flow

rate to be 0.06 g/sec, the chemical and thermal efficiencies are computed to be 90%

and 35% 7, respectively. Now, according to the non-dimensional operating map, the

matching Peclet number is about 2.5. To achive this Peclet number with the exit

gas temperature of 1250 K and the mass flow rate of 0.06 g/sec, the combustor vol-

ume must be approximately 920 mm3 , according to the Equation (4.11). The design

parameters are summarized in Table 4.1.

Parameter Value

structural temperature (Twa 1) 1200 K
exit gas temperature (Texit) 1250 K
mass flow rate (irh) 0.06 g/sec
equivalence ratio (¢4) 1.0
heat source power 100 W
combustor volume 920 mm 3

combustor surface area 10 cm2

Table 4.1: A workable set of design parameters for liquid-fueled catalytic combustor
for a microscale TPV system

5This is a fluid power to fuel power efficiency as is usually defined for an engine combustor. For
a TPV system, however, the efficiency is usually defined by a heat source power to fuel power ratio.6This number is based on the heat transfer model described in Appendix D which assumes a
natural convention boundary condition. In TPV systems, however, the device is often actively
cooled on the opposite side of the photo-emitter, and it may induce more heat transfer.

7Again, this is a thermal efficiency based on the fluid power.
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4.6 Performance of the fuel vaporizer

Fuel boiling in the vaporizer channels was observed through the window on the SD-2

glass layer during the experiments. In addition, thermal infrared images (Figure 4-2)

show that the highest temperature occurs around the inlet region of the combustor,

which implies that the mixture lights off shortly after it enters the combustion cham-

ber. One can be certain that the fuel vaporizer and the mixing chamber work as

intended. Although the fuel enters the vaporizer through a single hole, the fuel was

distributed along the fuel plenum, and circumferential non-uniformity was not visible.

At the fuel flow rates below 0.006 g/sec, which is approximately a third of the design

point, the boiling front was formed in the middle of the fuel supply channel, not in

the fuel vaporizer (Figure 4-20). However, this was as predicted by the fuel vapor-

izer model'. At the fuel flow rates around 0.006 g/sec, the fuel started to enter the

vaporizer channels and was vaporized in them. The operability of the fuel vaporizer

was demonstrated at fuel flow rates up to 0.01 g/sec, which is about a quarter of the

design point because the total mass flow rate could not be increased further.

4.7 Assessment of device degradation

The catalytic combustion experiments were conducted for a total of over ten hours

with several light-up and cool-down cycles. There was no observable degradation

in terms of performance until the fully-loaded configuration cracked due to thermal

stresses. The exit gas temperature response was repeatable for the same conditions,

showing that catalysis was not lost. However, when the parts were taken apart and

observed under a microscope, considerable discoloration was notable. Figure 4-21

shows the fuel injection holes before and after operation. This discoloration was

attributed to deposition of decomposed carbon and oxidation of silicon. However,

pressure change in the fuel supply tube due to a blockage of the fuel flow path was

not observed.
8If 1 mm is used for the vaporizer's hydraulic diameter, 0.006 g/sec of fuel flow can be vaporized

in 30 mm, which is about the length of the fuel supply channel.
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Figure 4-20: Boiling front formed in the middle of the fuel supply channel at low fuel
flow rates

The catalytic insert showed even more discoloration (Figure 4-22). The insert

was observed in an SEM, and the images are also included in Figure 4-22. Such

damages as cracks, peel-offs, and agglomeration were visible. When using the SEM,
the specimen did not allow increasing the magnification power beyond 2000 x. This is

because a good amount of carbon is burnt by the electron beam, disturbs the detector,
and prevents the SEM from acquiring a clear image [64].

Even with some coking and oxidation, the performance degradation of the device
was not notable during about ten hours of operation. So, the device life is expected
to be at least several hours. However, the device was tested below the operational
requirement of 1300 K exit gas temperature. If the device operates at a raised tem-
perature, oxidation may become severe. How coking will be affected by the elevated
temperatures remains uncertain.

140



(a)

(b)

Figure 4-21: Fuel injection holes before testing (a) and after 10 hours of operation
(b)
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(b)

Figure 4-22: Catalytic insert before testing (a) and after 10 hours of operation (b)
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4.8 Chapter summary

The liquid-fueled micro-combustor was experimentally characterized, and the results

were presented in this chapter. With the combustion chamber fully loaded with a

catalyst, JP8 combustion was stably sustained at mass flow rates up to 0.1 g/sec,

at which point the structure failed due to thermal stresses. The highest exit gas

temperature achieved was 780 K, and the overall combustor efficiency ranged from

10 to 20%.

The combustor was also tested with just two thirds of the volume filled with a

catalyst. Catalytically-anchored gas-phase combustion was not initiated in this device

configuration, but the performance was like a catalytic combustor with two thirds of

the baseline volume. In this partially-loaded catalytic combustor, the mass flow rate

could be extended to 0.2g/sec without damaging the device. The corresponding

exit gas temperature was 640 K, leading to the best power density realized in the

device, 54MW/m3 . The overall efficiencies were as high as 19%. The partially-

loaded configuration gave higher thermal efficiencies over the fully-loaded device even

though the chemical efficiencies were lower, resulting in higher overall combustor

efficiencies. However, the operational requirement (Texit = 1300 K at ni = 0.3 g/sec)

could not be met in both configurations. Including a recirculation jacket around the

combustion chamber like the silicon micro-combustor would be necessary, as well as

other schemes for better thermal management, to reach the design requirement.

An analysis on the performance of the catalytic JP8 combustor was conducted

using a non-dimensional operating map, which was constructed based on the empirical

data. The map can explain the different characteristics of the fully-loaded and the

partially-loaded catalytic combustors. The map was also used to provide a suggestion

for future liquid-fueled micro-combustor. A design case study on TPV combustors

was also included in the chapter.

The performance did not degrade for over ten hours of operation, but coking and

oxidation were observed. The fuel vaporizer worked as intended as well.
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Chapter 5

Summary and Conclusions

This chapter summarizes the research described in this thesis and presents conclusions

and recommendations for future work.

5.1 Summary of research

As part of an effort to develop a microscale gas turbine engine using micro-fabrication

techniques, this thesis has presented work regarding the combustion system utilizing

JP8 as a fuel. Three aspects were covered in the thesis:

Design : The experimental apparatus was designed to explore the concept of the

liquid-fueled micro-combustor. Several design models were developed and used.

First, a catalytic combustion model was developed to estimate the catalytic

combustion time-scale of JP8. Based on this model, the volume of the combus-

tion chamber was determined to be 1.4 cc, corresponding to a mass flow rate

of 0.3 g/sec and an exit gas temperature of 1300 K. A two-phase heat transfer

model was developed to design the fuel vaporizer, and the vaporizer was de-

signed accordingly: 49 channels, each having a hydraulic diameter of 500 pm

and a length of 10mm to have a vaporizing capacity of 0.04g/sec. Detailed

design methodologies and important dimensions were presented in Chapter 2.

Fabrication : The apparatus was fabricated utilizing ultrasonic machining and sili-
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con micro-fabrication techniques. Ultrasonic machining was used in fabricating

the sapphire parts and the SD-2 packaging glass. The three silicon layers were

micro-machined in the Micro Technology Laboratory (MTL) at MIT. Direct sil-

icon fusion bonding and anodic bonding were used to establish bonding between

parts. Non-bondable parts were mechanically clamped with spring-loaded ce-

ramic blocks. The catalytic insert was cut out of nickel foam and impregnated

with platinum. Key fabrication steps were explained in Chapter 3.

Testing : The liquid-fueled micro-combustor was then experimentally characterized.

With the entire combustion chamber filled with a catalyst, JP8 combustion was

sustained stably in the micro-combustor at mass flow rates up to 0.1 g/sec, at

which point the structure failed due to thermal stresses. An exit gas temper-

ature of 780 K and an overall combustor efficiency of 19% were achieved. The

performance of the device was limited both by the chemical and the thermal

efficiencies. There is a possibility, however, that the thermal efficiency may be

improved by designing the flow path more carefully, whereas the low chemical

efficiency is inherently due to the small volume.

The combustor was also tested with just two thirds of the volume filled with

a catalyst, expecting that this configuration could provide extended mass flow

rate capabilities like a catalytic combustor as well as high exit gas temperatures

like a gas-phase combustor. However, gas-phase ignition was not realized, which

is believed to be because the presence of the catalytic combustion inhibited the

ignition of the gas-phase combustion. Instead, the performance resembled a

catalytic combustor with two thirds of the original volume. Therefore, the

performance was limited mainly by insufficient flow residence time at high mass

flow rates. In this device configuration, a mass flow rate of 0.2 g/sec, and a

corresponding exit gas temperature of 640 K were acquired, leading to the best

power density realized in the device, 54 MW/m3 .

A non-dimensional operating map was generated from the experiments. Using

the non-dimensional operating map, it was found that the exit gas temperature
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requirement would not have been achieved even though the mass flow rate could

be pushed to the design point (0.3 g/sec). If the device had a recirculation jacket

like the silicon micro-combustor, the overall efficiency and the exit gas temper-

ature would have been improved to 28% and 1100 K respectively, which is still

short of the design requirement (1300 K). To achieve the operational require-

ment of the microengine without increasing the combustor volume, therefore,

other thermal management schemes must be included along with the adoption

of the recirculation jacket. The non-dimensional operating map can also provide

preliminary guidance for designing a catalytic combustor with similar thermal

boundary conditions.

Durability of the device was also assessed. The performance of the catalyst did

not degrade for over ten hours of operation although some local destruction of

the structure was visible under a microscope. The fuel vaporizer was tested for

over ten hours without failure, but it showed some coking and oxidation. The

device life was proven to be at least five to ten hours.

5.2 Review of contributions

The contributions of this research project can be summarized as:

* Demonstration of JP8 combustion in an environment replicating

the MIT microengine

Catalytic JP8 combustion was achieved at a mass flow rate of 0.2 g/sec within

a combustor volume of 1.4 cc. This results in a combustor power density of

54 MW/m3 and an overall efficiency over 20%. The device did not meet the

operational requirement with the designed combustor volume because of poor

thermal efficiencies. The thermal efficiency may be enhanced by including a

thermally-isolating flow path around the combustion chamber.

* Development of a design methodology for catalytic combustion time-

scales
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To estimate the required volume of the combustion chamber, a simplified model

was developed. The model can predict the time-scale of catalytic combustion,

whose reaction mechanism is not known. The model can be more generally used

to approximate the time-scales of diffusion-limited catalytic combustion.

* Development of a heat transfer model for a fuel vaporizer

A two-region, dual-phase heat transfer model was constructed and used in de-

signing an on-board fuel vaporizer.

* Design, fabrication, and integration of an on-board MEMS fuel va-

porizer

An on-board fuel vaporizer was designed using the above heat transfer model,

and fabricated with silicon micro-fabrication techniques. Its operability was

demonstrated at fuel flow rates up to 0.01 g/sec, which is about a quarter of

the design point because the total mass flow rate could not be increased further.

* Construction of an empirical non-dimensional operating map

A non-dimensional operating map was generated based on all the experimental

data acquired in the liquid-fueled micro-combustor. Via the non-dimensional

operating map, it was shown that the design requirement could be achieved by

improving the thermal isolation of the combustion chamber without increasing

the combustor volume. The operating map is useful in both explaining the char-

acteristics of liquid-fueled catalytic micro-combustors and designing a catalytic

combustor with similar thermal boundary conditions.

* Investigation of device deterioration

After ten hours of operation including several heat-up and cool-down cycles,

minimal degradation of the device was observed. Although some localized de-

struction of catalyst was detected, the exit gas temperature response was re-

peatable for the same conditions, showing that the catalyst did not lose its

catalysis. Deposition of decomposed carbon was observed on the walls of the

device, especially along the fuel flow path. However, pressure change in the fuel

148



supply tube due to a blockage in the fuel flow path was not observed.

5.3 Recommendations for future work

Based on the conclusions of this thesis, the following is additional work recommended:

* Development of a scheme for better thermal isolation

It has been shown that the current design of the liquid-fueled catalytic micro-

combustor cannot satisfy the exit gas temperature requirement because of low

thermal efficiencies. If the device had a recirculation jacket like the silicon micro-

combustor, the performance would have been improved, but it would still have

not achieved the design requirement. A possible solution would be suspending

the catalytic insert in the combustion chamber using some structures such as

seats. But there must be no bypass flow path around the catalyst, so seats with

the geometry of concentric circles may work the best. The exterior of the device

may be coated with a low-emissivity material to reduce radiative heat loss.

* Use of a more thermally durable material

The fully-loaded catalytic device failed at one-third of the design mass flow rate.

Thermal stresses induced by temperature gradients in the sapphire structure is

believed to be the reason for the failure. A material that can better distribute

the thermal load may be pursued. Silicon has a thermal conductivity that is

a few times larger than that of sapphire, so it would significantly reduce the

thermal stresses. However, use of a better thermal conductor can compromise

the thermal efficiency of the combustor further. Hence, a scheme for better

thermal isolation must be implemented as well.

* Integration with the microengine

The models developed and experimental results obtained in this work indicate

that a catalytic JP8 micro-combustor is compatible for integration into the

MIT microscale gas turbine engine for demonstrating self-sustaining operation.

A combustor volume of 1.4 cc should be adequate to achieve an exit gas tem-
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perature of 1300 K at a mass flow rate of 0.3g/sec as long as better thermal

management schemes are adopted relative to the micro-combustor presented

in this work. This combustor volume is equivalent to the 1.4 cc volume of the

self-sustained microengine (SSE) [65]. Thus, adding a fuel vaporizer layer to

the SSE design as well as including catalyst in the combustion chamber could

be a good starting point for integrating a liquid-fueled combustor with the mi-

croengine with minimal design changes. The fuel vaporizer can be built in the

engine without a major modification.

* High-efficiency liquid-fueled micro-combustor

The current work focused on maximizing power density by trying to achieve

the required enthalpy rise of the flow within a combustor volume as small as

possible. Catalytic combustion was a good option for this objective because

it allowed stable combustion even with small combustor volume and low effi-

ciencies. Had it not been for the catalytic combustion, it would not have been

possible to sustain JP8 combustion at the mass flow rate of interest in this

device size. Although it was shown that the operational requirements could be

met without increasing the combustor volume, this approach led to poor com-

bustor efficiencies. Ultimately, a high-efficiency liquid-fueled micro-combustor

must be pursued. Since the required exit gas temperature is rather low com-

pared to the adiabatic flame temperature of stoichiometric JP8 combustion, the

high-efficiency combustor should be operated at low overall equivalence ratio.

To efficiently burn JP8 fuel at low equivalence ratio, the combustor must be

either a dual-zone gas-phase combustor or a multistage catalytic-homogeneous

hybrid combustor. Either of them is likely to require much larger combustor

volume. In particular, hybrid combustors are typically larger and heavier than

gas-phase combustors [43], so their use is almost exclusively limited to reduce

toxic emissions for ground-based power-generating engines. Comparing figure

of merits of those two combustors and optimizing between high power density

and efficiency are no trivial task, and thus open to further research.
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Appendix A

Drawings of Photomasks
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Appendix B

Mechanical Drawings of

Ultrasonically Machined Parts

Figure B-I: Layer 2 (SD-2 glass)

159



f r--;"-r7-*-~-p--i-g --- ·---------
"i--r

_ t

SN

00l

Figure B-2: Layer 5 featuring the combustion chamber (sapphire)
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Appendix C

Monte-Carlo Simulation on the

Fuel Vaporizer Design Model

The fuel vaporizer design model introduced in Chapter 2 uses the fluid properties

of JP8, properties of silicon, inlet temperature of the fuel, and wall temperature

of silicon. There are uncertainties associated with these values. To see how these

uncertainties in the parameters affect the model results, a Monte-Carlo simulation

was conducted. Each input parameter was expressed as an independent, normally-

distributed random variable. All the fuel properties and the thermal conductivity of

silicon were modeled to have a standard deviation that matches 10% of the mean

value. The model cannot calculate the result when the boiling point is lower than the

wall temperature, so those parameters were adjusted so that the upper limit of the

boiling point is 594 K, and the lower limit of the structural temperature is 596 K. The

inlet temperature of the fuel must have relatively small uncertainty, so its standard

variation was set to 1% of the mean. All the random variables, their baseline value,

standard deviation, upper and lower limits are summarized in Table C.1.

A Monte-Carlo simulation was conducted on the vaporizer design model using

10,000 randomly generated parameter sets, and the result is shown in Table C.2. The

result shows that the model required the channel length to be less than 2.66mm for

90% of all the simulation cases. In fact, it predicted 5 mm or shorter over 99% of the

time. Whereas the required length was about 5 mm based on the mean value, the
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mean of all simulation cases was shifted to 1.8mm. Uncertainties in each parame-

ter had a combined effect of reducing the required length of the vaporizer channel.

Therefore, designing based on the baseline values would be a conservative and safe

approach. The Monte-Carlo simulation result also indicates that the boiling point of

the fuel is the parameter that affects the result most strongly. Following next are the

structural temperature, the thermal conductivity of JP8, and the specific heat of JP8

in order. Other parameters have relatively little influence on the model results.

Parameter

pi [kg/m3 ]
Pv [kg/ m3 ]
PI [Ns/m 2]
o [N/m]
C, [J/kgK]
k, [W/mK]

hf, [kJ/kg]
TB.p. [K]

kwall [W/mK]
Tin•et [K]
Twal1 [K]

Mean (baseline)
635
2.96

0.000253
0.017
2640

0.1034
270
590
80

300
600

Std. deviation
63.5
0.296

0.0000253
0.0017

264
0.01034

27
59
8
3

60

Lower limit
381
1.78

0.000152
0.0102
1584

0.0620
162
354
48
288
596

Upper limit
889
4.14

0.000354
0.0238
3696

0.1448
378
594
112
312
840

Table C.1: Input parameters for the Monte-Carlo simulation

Required channel length [mm]

2.66
2.30
2.05
1.86
1.69
1.53
1.37
1.19
0.97
0.12

Percentile
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Table C.2: Monte-Carlo simulation result: percentile
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Appendix D

Heat Loss Model

Overall combustor efficiency is computed directly from the thermocouple measure-

ments at the combustor inlet and exit. To understand the performance of the combus-

tor better, the overall efficiency is decomposed into thermal and chemical efficiencies:

?7overall = T7chemical X 27thermal (D.1)

where,

overall - (riha + rt 1)hexit - rhahinet (D.2)
rloverall = (D.2)

[(iha + rhf)hezit - fhahiniet] + qtos(
lchemical = (D.3)tfhf

(7iZla + r7f)hexit - ,hahinlet

[(rha + ?hf)hexit - ihahinietl + qloss

Hence, it becomes necessary to quantify the total heat loss out of the device. The

total heat loss can be estimated by summing up convective and radiative heat losses.

Conductive heat loss turns out to be less than 1 W for most cases, which is only a

few of percent of the convective or radiative heat losses. Thus, conductive heat loss is

neglected. Heat flow from the test rig to the ceramic clamp blocks is insulated with

graphite, so the temperature of the clamps is below 400 K. Conductive heat loss to

the clamps are therefore neglected as well. The control volume was taken as Figure
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D-1, and each heat transfer mode was investigated.

convection

control volume

Iradiation
ductinn

Figure D-1: Control volume for heat loss calculations

D.1 Convective heat loss

Convective heat loss can be calculated based on natural convection:

qconv = (huAu + hlAi)(Twau - Too) (D.5)

where the subscripts u and 1 indicate the upper surface and the lower surface, respec-

tively. The heat transfer coefficients can be evaluated with Equations D.7 through

D.10 [46].

NuL

NujL

Nuu

Nut

RaL

= 0.54Ra .25

= 0.27Ra0.25

-g/L
3

(Twall - Tambient)VaO

(D.6)

(D.7)

(D.8)

(D.9)

(D.10)
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D.2 Radiative heat loss

Radiative heat loss is estimated as:

qrad = Ea(A, + A,)(TMai - To)

The emissivity of the structure was assumed to be 0.8.

D.3 Conductive heat loss

Heat conduction is calculated by:

AT
cond = Rthema

Rthermal
LRthermal =

kCA

Since L - 5 mm, k - 10 W/mK (for SD-2 glass), A - 50 mm 2, and AT - 10K, the

conductive heat loss is on the order of 1 W.

Finally,

qtoss = qconv + qrad (D.13)
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Appendix E

Uncertainty Analysis on

Experimental Measurements

E.1 Uncertainties in the independent measurements

Table E.1 lists the 95%-confidence uncertainties of the independently measured quan-

tities such as the flow rates, pressures, and temperatures. These numbers were quoted

by their manufacturers. An exception is the gas temperature. Tzeng [31] found that

exposure to flame causes type-K thermocouples a drift by roughly 20 K. Thus, the

95%-confidence interval was set to ±32 K for the gas temperature measurement al-

though the same type of thermocouple was used as the wall temperatures.

Measurements
air flow rate
JP8 flow rate
pressures
wall temperature
gas temperature

95%-confidence uncertainty

* 0.0015 g/sec
* 0.0004 g/sec

+ 0.5 psi
± 12 K
+-32K

Table E.1: Uncertainties of the independently measured quantities
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E.2 Uncertainties in the derived quantities

E.2.1 Equivalence ratio

The equivalence ratio was computed as:

S= (E.1)
(7il /74a)stoichiometric

Unlike hydrogen or propane, JP8 fuel is a mixture of various species. Since the

exact composition is unknown, there is a precision uncertainty in the stoichiometric

fuel-to-air ratio:

p = ((rtf/ria)stoichiometric) P(/hf a)stoichiomet (E.2)

JP8 was modeled as CnH. 8sn (n = 13), and the stoichiometric fuel-to-air ratio was

taken to be 0.0693. But for liquid hydrocarbon fuels, it is known that hydrogen-

to-carbon ratio may vary from 1.6 to 2.0. Therefore, the stoichiometric fuel-to-air

ratio can range from 0.0680 to 0.0707, or ±0.0014. The precision uncertainty in the

equivalence ratio, po, becomes +0.0195.

There is also a bias uncertainty caused by the flow rate measurements:

b4 = b", + bmb

1 1 myl -ra mb

(?flf/7ha)stoichiometric m7a 2 ma]

S i[bmfbiba] (E.3)

Here, bm, and bmf are 0.0015 g/sec and 0.0004 g/sec, respectively (Table E.1). Among

the data presented in this thesis, the maximum bias uncertainty occurred at an equiv-

alence ratio of 1.3 and a mass flow rate of 0.05 g/sec. The corresponding uncertainty

was +0.1540.
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The overall uncertainty can be calculated as the following [66]:

u= Vp=bi b (E.4)

Finally, 95%-confident uncertainty is ±0.1552, and this value was included in Figure

4-3. The large uncertainty in the equivalence ratio is mainly because the fuel flow

controller was operated only up to 20% of its full capacity.

E.2.2 Overall combustor efficiency

The overall combustor efficiency is calculated by:

(?iha + •7if)hexit - 7hfahinlet
7overall 7hffh f

( (7a + f ) )Cp,exitTexit - fnaCp,inletTinlet (E.5)
7mfhf

A precision uncertainty is introduced because of the uncertainties in the fluid property

values such as C, and hf:

Due to a small fraction of the fuel (less than 7% by weight at stoichiometry), the

enthalpy was estimated assuming the fluid was just air. Thus, C, was supposed

to have a large uncertainty due to this simplification, and assumed to be uncertain

within +15% 1. The heating value of JP8 is well documented [50], and is reported

to be 43,240±210 kJ/kg. Among the experimental data presented in the thesis, the

maximum precision uncertainty is +2.53%.

The bias uncertainty is propagated from the measured values such as the mass

1At the inlet conditions (300K and latm), C, of the JP8-air mixture is approximately
1066 J/kgK [50], which 6% larger than pure air's 1005 J/kgK. At a typical exit condition (1000 K
and 1 atm), Cp of air is 1143 J/kgK, whereas that of equilibrium, frozen, and fixed composition
burned gas is about 1300 J/lkgK (0 = 1 with CnH 2n fuel) [44], which is 14% larger than the air's.
This is why +15% used.
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flow rates and the temperatures:

b = overa = O erall bm + '910,va + oeal abit (E.7)
&Tflf Ona ( + Texit

The maximum bias uncertainty is +4.72% (0 = 0.7, rh = 0.05 g/sec).

The total uncertainty in the overall combustor efficiency is:

Uover = p + b2  = -5.36% (E.8)

E.2.3 Chemical efficiency

The chemical efficiency is given by:

[(iha + frlf)hexit - rfahinietl + oss (E.9)
Tlchem = (E.9)

rnfhf

For ease of calculation, a new variable, (, is defined as:

= los (huA, + hlAI)(Twall - Too) + ea(Au + A)(T - T) (E.10)
(E.10)

rf ihf rf• hf

Then,

7lchemical = 77 overall + ( (E.11)

Let us first evaluate the uncertainties in the variable ( using the same procedure

as the previous analyses,

2 • \2 2 + 2 + p 2(

= -- Ph + (-' Ph,) + -P + -q-Ph) (E.12)

The two heat transfer coefficients were assumed to have uncertainties of +10%. And

an uncertainty of +0.1 was assumed in the value of e. For phf, +210 kJ/kg was used

as before. Then, the precision uncertainty for ( is computed to be +3.70%.
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The bias uncertainty in the variable ( is:

(E.13)b= = b-,f + bT_=1 += 8.72%
hf wallt

Using pnoverall = ±2.53% and bnoveral = +4.72%,

Plchem~cal = povera,• + p = +4.48%

hemical = bnoverall + b4 = +13.44%

=V/p +b 2  = +14.17%O7 chemical PTnchemical 
1

chemical

Finally,

(E.14)

(E.15)

(E.16)

Again, high uncertainties in the fuel flow rate measurement propagate through, and

result in a large uncertainty in the chemical efficiency.

E.2.4 Thermal efficiency

The thermal efficiency of the combustor is calculated by:

7ithermal =
(7ha + hif)hexit - lhahiniet (E.17)

[(hia + rif )heit - 7nahinlet] + qo088

The precision uncertainty and the bias uncertainty are given by:

( TthermalpCoc, c (OTthermal+,

+ athermalO exit bTezit +

+ (jthermal

Or/thermal bTwai- = 2.24
CTwaii

= +3.80%

(E.18)

1% (E.19)

Therefore, the uncertainty in the thermal efficiencies is:

uph 2 + b2  = +4.41%
Uthermal 7thermal +lthermal
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E.2.5 Peclet number

Peclet number is defined as the ratio between the flow residence time-scale in the

combustion chamber and the diffusion time-scale of the fuel molecules onto catalyst

surfaces:

Pe = Tres
Treac

pV

h r R 2 (E.21)
(-In(0.1)) ShDab

ShD Dab

This can be rewritten as:

(P1.013 x o10-2pToVShD 1/Ma + 1/Mb 5
e (E.22)

(-ln(O.1))PoR2(v /3 + v1/3)2 / Th

Because Peclet number is a comparison between characteristic time-scales, it is only

meaningful in the context of relative numbers. Therefore, precision uncertainties

associated with values that are constant throughout the experiment do not need to

be considered. Only bias uncertainties in the values of Tae and rh propagate:

9Pe 9Pe
bpe = Tae bTave + Pebm (E.23)

Using bT,,c = +16 K 2 and bm = +0.0015 g/sec, the uncertainty in the Peclet number

calculation is 0.183.

Table E.2 lists the 95%-confidence uncertainties of the derived quantities including

the equivalence ratio, efficiencies, and Peclet number.

12 bT.,, = - bit2
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Measurements

equivalence ratio
combustor efficiency
chemical efficiency
thermal efficiency
Peclet number

95%-confidence uncertainty
: 0.1552
± 5.36%
± 14.17%
± 4.41%

S0.183

Table E.2: Uncertainties of the derived quantities

175



176



Bibliography

[1] A. Mehra, X. Zhang, A. A. Ayon, I. A. Waitz, M. A. Schmidt, and C. M.

Spadaccini. "A Six-Wafer Combustion System for a Silicon Micro Gas Turbine

Engine". IEEE/ASME Journal of Microelectromechanical Systems, Vol. 9, No.

4, pp. 517-527, December 2000.

[2] C. M. Spadaccini. "Combustion Systems for Power-MEMS Applications". PhD

thesis, Massachusetts Institute of Technology, Department of Aeronautics and

Astronautics, 2004.

[3] J. A. Schetz. "Injection and Mixing in Turbulet Flow". AIAA Progress in

Aeronautics and Astronautics, Vol. 68, 1980.

[4] "ICAO Approves Methanol Cartridges on Planes". Fuel Cells Belletin, Vol. 2006,

Issue 1, pp. 6, January 2006.

[5] Specialists in Business Information. "U.S. Market for Residential Generators"' .

http://www.sbireports.com, September 2007.

[6] Smart Fuel Cell. http://www.efoy.de.

[7] A. H. Epstein, S. D. Senturia, O. Al-Midani, G. Anathasuresh, A. Ayon,

K. Breuer, K-S. Chen, F. F. Ehrich, E. Esteve, L. Frechette, G. Gauba, R. Gh-

odssi, C. Groshenry, S. A. Jacobson, J. L. Kerrebrock, J. H. Lang, C-C Lin,

A. London, J. Lopata, A. Mehra, J. O. Mur Miranda, S. Nagle, D. J. Orr,

177



E. Piekos, M. A. Schmidt, G. Shirley, S. M. Spearing, C. S. Tan, Y-S Tzeng, and

I. A. Waitz. "Micro-Heat Engines, Gas Turbines, and Rocket Engines - The MIT

Microengine Project -". AIAA 97-1773, 28th AIAA Fluid Dynamics Conference,

4 th AIAA Shear Flow Control Conference, Snowmass Village, CO, June 1997.

[8] A. H. Epstein, S. A. Jacobson, J. M. Protz, and L. G. Frechette. "Shirtbutton-

sized Gas Turbines: The Engineering Challenges of Micro High Speed Rotating

Machinery". In Proceedings of the 81h Int'l Symposium on Transport Phenomena

and Dynamics of Rotating Machinery (ISROMAC'8), Honolulu, HI, January

2000.

[9] S. A. Jacobson. "Aerothermal Challenges in the Design of a Microfabricated

Gas Turbine Engine". AIAA 98-2545, 29th AIAA Fluid Dynamics Conference,

Albuquerque, NM, June 1998.

[10] J. M. Protz. "An Assessment of the Aerodynamic, Thermodynamic, and Manu-

facturing Issues for the Design, Development, and Microfabrication of a Demon-

stration Micro Engine". PhD thesis, Massachusetts Institute of Technology, De-

partment of Aeronautics and Astronautics, 2000.

[11] N. Savoulides. "Development of a MEMS Turbocharger and Gas Turbine En-

gine". PhD thesis, Massachusetts Institute of Technology, Department of Aero-

nautics and Astronautics, 2004.

[12] B. Philippon. "Design of a Film-Cooled Micro Turbine". Master's thesis, Mas-

sachusetts Institute of Technology, Department of Aeronautics and Astronautics,

2001.

[13] S. W. Evans. "Thermal Design of a Cooled Micro Gas Turbine". Master's

thesis, Massachusetts Institute of Technology, Department of Aeronautics and

Astronautics, 2001.

178



[14] L. G. Frechette. "Development of a Microfabricated Silicon Motor-Driven Com-

pression System". PhD thesis, Massachusetts Institute of Technology, Depart-

ment of Aeronautics and Astronautics, 2000.

[15] C. C. Lin. "Development of a Microfabricated Turbine-Driven Air Bearing Rig".

PhD thesis, Massachusetts Institute of Technology, Department of Mechanical

Engineering, 1999.

[16] C. W. Wong. "Desing, Fabrication, Experimentation and Analysis of High-

Speed Microscale Gas Bearings". Master's thesis, Massachusetts Institute of

Technology, Department of Mechanical Engineering, 2001.

[17] L. X. Liu. "Theory for Hydrostatic Gas Journal Bearings for Micro-Electro-

Mechanical Systems". PhD thesis, Massachusetts Institute of Technology, De-

partment of Mechanical Engineering, 2005.

[18] C. J. Teo. "MEMS Turbomachinery Rotordynamics: Modeling, Design and

Testing". PhD thesis, Massachusetts Institute of Technology, Department of

Aeronautics and Astronautics, 2006.

[19] A. Mehra. "Development of a High Power Density Combustion System for

a Silicon Micro Gas Turbine Engine". PhD thesis, Massachusetts Institute of

Technology, Department of Aeronautics and Astronautics, 2000.

[20] I. A. Waitz, G. Gauba, and Y-S Tzeng. "Combustor for Micro Gas Turbine

Engines". ASME Journal of Fluids Engineering, Vol. 20, pp. 109-117, March

1998.

[21] Y-S Tzeng. "An Investigation of Microcombustion Thermal Phenomena". Mas-

ter's thesis, Massachusetts Institute of Technology, Department of Aeronautics

and Astronautics, 1997.

179



[22] J. Lee. "Computational Modeling of a Silicon Microcombustor". Master's thesis,

Massachusetts Institute of Technology, Department of Aeronautics and Astro-

nautics, 2000.

[23] J. Peck. "Development of a Catalytic Combustion System for the MIT Micro

Gas Turbine Engine". Master's thesis, Massachusetts Institute of Technology,

Department of Aeronautics and Astronautics, 2003.

[24] C. M. Spadaccini, A. Mehra, J. Lee, X. Zhang, S. Lukachko, and I. A. Waitz.

"High Power Density Silicon Combustion Systems for Micro Gas Turbine En-

gines". ASME Journal of Engineering for Gas Turbine and Power, Vol. 125, pp.

709-719, July 2003.

[25] C. M. Spadaccini, X. Zhang, C. P. Cadou, N. Miki, and I. A. Waitz. "Preliminary

Development of a Hydrocarbon-Fueled Catalytic Micro-combustor". Sensors and

Actuators A: Physical, Vol. 103, pp. 219-224, January 2003.

[26] C. M. Spadaccini, J. Peck, and I. A. Waitz. "Catalytic Combustion Systems for

Microscale Gas Turbine Engines". Journal of Engineering for Gas Turbines and

Power, Vol. 129, pp. 49-60, January 2007.

[27] A. A. Ayon, C. C. Lin, R. Braff, R. Bayt, H. H. Sawin, and M. A. Schmidt.

"Etching Characteristics and Profile Control in a Time Muliplexed Inductively

Coupled Plasma Etcher". Solid State Sensors and Actuator Workshop, Hilton

Head Island, SC, June 1998.

[28] A. A. Ayon, J. Protz, R. Khanna, X. Zhang, and A. H. Epstein. "Applica-

tion of Deep Silicon Etching and Wafer Bonding in the MicroManufacturing of

Turbochargers and Micro-Air Vehicles". 4 7th International Symposium of the

American Vacuum Society, Boston, MA, October 2000.

180



[29] N. Miki, X. Zhang, R. Khanna, A. A. Ayon, D. Ward, and S. M. Spearing.

"Multi-Stack Silicon-Direct Wafer Bonding for 3D MEMS Manufacturing". Sen-

sors and Actuators A: Physical, Vol. 103, pp. 194-201, 2003.

[30] A. Mehra and I. A. Waitz. "Development of a Hydrogen Combustor for a Micro-

fabricated Gas Turbine Engine". The Solid-State Sensor and Actuator Workshop,

Hilton Head Island, SC, June 1998.

[31] W. M. Yang, S. K. Chou, C. Shu, H. Xue, Z. W. Li, D. T. Li, and J. F. Pan.

"Microscale Combustion Research for Application to Micro Thermophotovoltaic

Systems". Energy Conversion and Management, Vol. 44, pp. 2625-2634, 2003.

[32] J. M. Hatfield and R. B. Peterson. "A Catalytically Sustained Microcombustor

Burning Propane". IMECE, New York, NY, November 2001.

[33] D. C. Kyritsis, B. Coriton, F. Faure, S. Roychoudhury, and A. Gomez. "Opti-

mization of a Catalytic Combustor Using Electrosprayed Liquid Hydrocarbons

for Mesoscale Power Generation". Combustion and Flame, Vol. 139, pp. 77-89,

2004.

[34] W. Deng, J. F. Klemic, X. Li, M. A. Reed, and A. Gomez. "Liquid Fuel Micro-

combustor Using Microfabricated Multiplexed Electrospray Sources". In Proceed-

ings of the Combustion Institute, volume Vol. 31, No. 2, pp. 2239-2246, January

2007.

[35] E. N. Sieder and G.E. Tate. "Heat Transfer and Pressure Drop of Liquids in

Tubes". Industrial and Engineering Chemistry, Vol. 28, No. pp. 1429-1435, 1936.

[36] R. H. S. Winterton. "Where did the Dittus and Boelter equation come from?".

International Journal of Heat and Mass Transfer, Vol. 41, Issue 4-5, pp. 809-810,

1998.

181



[37] K-S. Chen. "Materials Characterization and Structural Design of Ceramic Mi-

croturbomachinery". PhD thesis, Massachusetts Institute of Technology, 1999.

[38] A. Lefebvre, W. Freeman, and L. Cowell. "Spontaneous Ignition Delay Charac-

teristics of Hydrocarbon Fuel/Air Mixtures". Technical report, NASA Contractor

Report 175064, Lewis Research Center, February 1986.

[39] W. J. Dodds and D. W. Bahr. Combustion System Design, Design of Modern

Gas Turbine Combustors. Academic Press Limited, 1990.

[40] K. K. Kuo. Principles of Combustion. Wiley, 1986.

[41] Goodfellow Corporation. "Technical data: sapphire".

http://www.goodfellow.com.

[42] W. M. Yim and R. J. Paff. "Thermal Expansion of AIN, Sapphire, and Silicon".

Journal of Applied Physics, Vol. 45, Issue 3, March 1974.

[43] R. E. Hayes and S. T. Kolaczkowski. Introduction to Catalytic Combustion.

Gordon and Breach Science Publishers, 1997.

[44] J. Heywood. Internal Combustion Engine Fundamentals. McGraw-Hill, first

edition, 1988.

[45] A. F. Mills. Basic Heat and Mass Transfer. Prentice Hall, second edition, 1999.

[46] F. P. Incropera and D. P. DeWitt. Fundamentals of Heat and Mass Transfer.

Wiley, fifth edition, 2002.

[47] A. F. Mills. Heat Transfer. Prentice Hall, second edition, 1998.

[48] V. V. Klimenko. "A Generalized Correlation for Two-phase Forced Flow Heat

Transfer". Int. J. Heat Mass Transfer, Vol. 31, pp. 541-552, 1988.

182



[49] National Institute of Standards and Technology. Chemistry Standard Reference

Database.

[50] Coordinating Research Council. Handbook of Aviation Fuel Properties, 1983.

[51] National Renewable Energy Laboratory. Advanced Vehicles and Fuels Research.

[52] HOYA Corporation USA. corporate literature. http://www.hoyaoptics.com,

Fremont, CA, 2007.

[53] Apple Rubber Products Inc. "MicrOringTM Seals from Apple Rubber", 1996.

[54] F. Laermer and A. Schilp. "Method of Anisotropically Ethcing Silicon". Robert

Bosch GmbH: U.S. Patent 5,501,893.

[55] M. J. Madou. Fundamentals of Microfabrication. CRC Press, second edition,

2002.

[56] J. L. Kerrebrock. Aircraft Engines and Gas Turbines. The MIT Press, second

edition, 1992.

[57] R. A. Dalla Betta, J. C. Schlatter, D. K. Yee, D. G. Loffler, and T. Shoji. "Cat-

alytic Combustion Technology to Achieve Ultra Low NO,, Emissions: Catalyst

Design and Performace Characteristics". Catalysis Today, Vol. 26, Issue 3-4, pp.

329-335, December 1995.

[58] R. A. Dalla Betta. "Catalytic Combustion Gas Turbine Systems: the Prefered

Technology for Low Emissions Electric Power Production and Co-generation".

Catalysis Today, Vol. 35, Issue 1-2, pp. 129-135, March 1997.

[59] R. A. Dalla Betta and T. Rostrup-Nielsen. "Application of Catalytic Combustion

to a 1.5 MW Industrial Gas Turbine". Catalysis Today, Vol 47, Issue 1-4, pp.

369-375, January 1999.

183



[60] K. W. Beebe, K. D. Cairns, V. K. Pareek, S. G. Nickolas, J. C. Schlatter, and

T. Tsuchiya. "Development of Catalytic Combustion Techonology for Single-

digit Emissions from Industrial Gas Turbines". Catalysis Today, Vol. 59, Issue

1-2, pp. 95-115, June 2000.

[61] R. Carroni, V. Schmidt, and T. Griffin. "Catalytic Combustion for Power Gen-

eration". Catalysis Today, Vol. 75, Issue 1-4, pp. 287-295, July 2002.

[62] V. Dupont, S.-H. Zhang, and A. Williams. "High-Temperature Catalytic Com-

bustion and Its Inhibition of Gas-Phase Ignition". Energy and Fuels, Vol. 9, No.

6, pp. 1576-1584, 2002.

[63] J. F. Griffiths, K. J. Hughes, and R. Porter. "The Role and Rate of Hydrogen

Peroxide Decomposition during Hydrocarbon Two-stage Autoignition". Proceed-

ings of the Combustion Institute, Vol. 30, Issue 1, pp. 1083-1091, January 2005.

[64] W. Kim. Personal communication. Massachusetts Institute of Technology, De-

partment of Materials Science and Engineering, 2007.

[65] S. A. Jacobson. Personal communication. Massachusetts Institute of Technology,

Gas Turbine Laboratory, 2008.

[66] T. G. Beckwith, R. D. Marangoni, and J. H. Leinhard. Mechanical Measure-

ments. Addison-Wesley Publishing Company, fifth edition, 1993.

184


