A Formal Framework for Specification-Based
Embedded Real-Time System Engineering

by
Martin Ouimet

B.S.E., Princeton University (1998)
S.M., Massachusetts Institute of Technology (2004)

Submitted to the Department of Aeronautics and Astronautics in
partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2008
(© Massachusetts Institute of Technology 2008. All rights reserved.

Author................ L
Department of Aeronautics and Astronautics
| 1 May 2§pd, 2008
Certified by............................ L .~
I. Kristina Lundqvist
Professor, Malardalen University
Thesis Advisor
o
Certified byooo e - —_
R. John Hansman
Professor, Massachusetts Institute of Technology
™~ 4 Docgoral Cpmm;;;tee Chair
Accepted by N
id L. Darmofal
ST Chairman, Department Committee on Graduate Students
OF TECHNOLOGY ’
AUG 0 1 2008 ARCHIVES |

LIBRARIES

. /A Ve’
Certified by. .. e Pl Ry A W
/ / Nancy A. Lynch
Professor, Massachusetts Institute of Technology

Thesis Supervisor

4

Certiﬁed by T et .r..'.:.';y....
Y Heidi C. Perry

Director, The Charles Stark Draper Laboratory

Thesis Supervisor

Certified by................ ..
| -~ Nicholas Roy
Professor, Massachusetts Institute of Technology

Thesis Supervisor

A Formal Framework for Specification-Based Embedded
Real-Time System Engineering
by

Martin Ouimet

Submitted to the Department of Aeronautics and Astronautics
on May 23rd, 2008, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

The increasing size and complexity of modern software-intensive systems present
novel challenges when engineering high-integrity artifacts within aggressive budgetary
constraints. Among these challenges, ensuring confidence in the engineered system,
through validation and verification activities, represents the high cost item on many
projects. The expensive nature of engineering high-integrity systems using traditional
approaches can be partly attributed to the lack of analysis facilities during the early
phases of the lifecycle, causing the validation and verification activities to begin too
late in the engineering lifecycle. Other challenges include the management of com-
plexity, opportunities for reuse without compromising confidence, and the ability to
trace system features across lifecycle phases. The use of models as a specification
mechanism provides an approach to mitigate complexity through abstraction. Fur-
thermore, if the specification approach has formal underpinnings, the use of models
can be leveraged to automate engineering activities such as formal analysis and test
case generation. The research presented in this thesis proposes an engineering frame-
work which addresses the high cost of validation and verification activities through
specification-based system engineering. More specifically, the framework provides an
integrated approach to embedded real-time system engineering which incorporates
specification, simulation, formal verification, and test-case generation. The frame-
work aggregates the state-of-the-art in individual software engineering disciplines to
provide an end-to-end approach to embedded real-time system engineering. The key
aspects of the framework include:

* A novel specification language, the Timed Abstract State Machine (TASM)
language, which extends the theory of Abstract State Machines (ASM). The
TASM language is a literate formal specification language which can be applied
and multiple levels of abstraction and which can express the three key aspects
of embedded real-time systems — function, time, and resources.

e Automated verification capabilities achieved through the integration of mature
analysis engines, namely the UppaAL tool suite and the SAT4J SAT solver. The
verification capabilities provided by the framework include completeness and
consistency verification, model checking, execution time analysis, and resource
consumption analysis.

¢ Bi-directional traceability of model features across levels of abstraction and
lifecycle phases. Traceability is achieved syntactically through archetypical re-
finement types; each refinement type provides correctness criteria, which, if met,
guarantee semantic integrity through the refinement.

o Automated test case generation capabilities for unit testing, integration test-
ing, and regression testing. Unit test cases are generated to achieve TASM
specification coverage through the rule coverage criterion. Integration test case
generation is achieved through the hierarchical composition of unit test cases.
Regression test case generation is achieved by leveraging the bi-directional trace-
ability of model features.

The framework is implemented into an integrated tool suite, the TASM toolset,
which incorporates the UppaAL tool suite and the SAT4J SAT solver. The toolset and
framework are evaluated through experimentation on three industrial case studies
— an automated manufacturing system, a “drive-by-wire” system used at a major
automotive manufacturer, and a scripting environment used on the International
Space Station.

Thesis Supervisor: I. Kristina Lundqvist
Title: Professor, Malardalen University

Thesis Supervisor: R. John Hansman
Title: Professor, Massachusetts Institute of Technology

Thesis Supervisor: Nancy A. Lynch
Title: Professor, Massachusetts Institute of Technology

Thesis Supervisor: Heidi C. Perry
Title: Director, The Charles Stark Draper Laboratory

Thesis Supervisor: Nicholas Roy
Title: Professor, Massachusetts Institute of Technology

Acknowledgments

First and foremost, I would like to thank my advisor and thesis supervisor, Professor
Kristina Lundqvist, for providing me with the guidance and with all the resources
that I needed to succeed. I have a tremendous amount of admiration and respect
for Professor Lundqvist as an intellectual leader, as a mentor, and as a friend. I
would also like to thank Professor John Hansman for accepting the role of doctoral
committee chair toward the end of my studies. Other members of my committee also
deserve praise - Professor Nancy Lynch, Professor Nicholas Roy, and Heidi Perry - for
taking time out of their busy schedules to guide me through the PhD process. Your
time and feedback was invaluable. Professor Daniel Jackson also deserves mention

due to his involvement in the general examination process.

On a research note, I would like to acknowledge JK Srinivasan, Professor Mikael
Nolin, Professor Egon Borger, Gustaff Naeser, Yuri Gurevich, David Wang, Guillaume
Berteau, and Matthieu Quenot, who have contributed directly and indirectly to the
research included in this thesis. Furthermore, the Charles Stark Draper Laboratory
deserves a special mention, since it has provided the funding for the project. Special
thanks go out to Lauren Kessler and Heidi Perry who were instrumental to make this
project a reality. I would also like to recognize Professor Charles Coleman for giving
‘me the opportunity to explore various areas and for encouraging me to satisfy my

intellectual curiosity.

On a personal note, I would like to give special consideration to my dear friends,
who have withstood my intermittent emotional outbursts and my constant state of
flux. Nicolas Dulac deserves special mention for being such a great friend. Michel
Duranceau was also there when I needed him the most, even while 350 miles away.
Etienne Parent was an awesome roommate and a true friend. Bart East and Jason
Smyczek remained supportive, even though I wasn’t always keeping in touch. Thank
you to the East family and to the Duranceau family for continuing to be wonder-
ful people. Yves Boussemart was always a source of positive attitude and occasional

memorable incidents. Thank you to other friends - MV, TM, MAC, CG, HH, JL, LO,

7

NP, DW, CL, EP, JP, CL, MF, ... The MIT hockey team provided much needed en-
tertainment and good times during my first years at MIT. The music crew also played
an important role in my intellectual and emotional development - Rusty Scott, Vic-
toria Chang, Elaine Kwon, Mark Kroll, Curtis Hughes, Mark Harvey, Tony Savarino,
and Yoko Miwa. I would also like to recognize the wonderful ladies of the Boston area
and beyond who, on various occasions, provided much needed emotional support and
fantastic companionship to discover the wonderful nightlife of Boston and beyond. At
the forefront, Wendy and Stella greatly contributed to my general well-being. WX,
SJ, JQ, NT, MT, YJH, SSC, JC, AC, RC, V, LR, SD, CY, MM, MN, ... thanks for
putting up with me, you are all awesome. Another thank you goes out to the fantasy
baseball crew of New Jersey and Laval and to the fantasy hockey crowd of Montréal.
The “Semi-Pro” crew, led by my uncle Michel, also deserves a wink.

Finally, a special “thank you” goes to my fé,mily who, at times, seemed more
worried than my advisor about whether or not I would complete the PhD program.
I have always maintained that if I could have half the heart of my father and half
the courage of my mother, I would be extremely proud of who I am. Hopefully, I will
get there some day. Thank you Gérard and Denise, you mean more to me than I can
convey in a few lines. Thank you also to my brother, Patrick, my sister-in-law Annie,
and their two sons Félix and Renaud. Your continuous support and distractions
continue to be indispensable. Thank you also to my cousins Daniel and Richard. I
promise that some day we will finally make it to Fenway Park. I am blessed to have a
large extended family who is always radiant. Since they are too numerous to mention,
I will not single them out individually; but kisses and firm handshakes go out to all
the aunts, uncles, and cousins on both sides of my family.

Dear mom and dad, although I will probably never stop being a student in the
figurative sense, I am convinced that the next time an acquaintance asks you what
your younger son does for a living, you will be extremely happy that you will no
longer have to answer “student”. Warm regards to all who helped make this a reality.
With love,

Martin

Remerciements

D’abord et avant out, j'aimerais remercier mon superviseur et ma directrice de thése,
le Professeur Kristina Lundqvist, qui m’a guidé dans ma recherche et qui m’a fourni
toutes les ressources nécessaires pour assurer mon succes. J’ai énormément d’admi-
ration et de respect pour le Professeur Lundqvist en tant que modéle intellectuel, en
tant que conseillére, and en tant qu'amie. Je voudrais aussi remercier le Professeur
John Hansman, qui a accepté le role de chaire du comité d’évaluation durant la fin
de mes études. Je me dois aussi de mentionner les autres membres de mon comité -
le Professeur Nancy Lynch, le Professeur Nicholas Roy, et Heidi Perfy. Merci d’avoir
pris le temps et d’'avoir eu la patience pour me guider & bon port. Vos efforts et
votre attention ont été grandement appréciés. Le Professeur Daniel Jackson mérite

également mes remerciements di & sa participation a ’examen général.

Du c6té de la recherche, je voudrais créditer JK Srinivasan, le Professeur Mikael
Nolin, le Professeur Egon Borger, Gustaff Naeser, Yuri Gurevich, David Wang, Guil-
laume Berteau, et Mathieu Quenot, qui ont tous contribué a la recherche inclue
dans cette these. De plus, le Charles Stark Draper Laboratory obtient une mention
spéciale, puisqu’il a subventionné ma recherche au cours de mes études au doctorat.
Un gros merci & Lauren Kessler et & Heidi Perry pour leur dévouement. Je voudrais
aussi remercier le Professeur Charles Coleman qui m’a donné 'opportunité d’explorer

mes intéréts a ma guise et qui m’a encouragé & satisfaire ma curiosité intellectuelle.

Du coté personnel, j’aimerais offrir ma profonde gratitude a mes chers amis, qui,
a un moment ou un autre, ont tous dd subir les répercussions de mes sautes d’humeur
et de mon incertitude constante. Nicolas Dulac a été de loin mon meilleur ami et com-
pagnon spirituel a Boston. Méme s’il était & 350 miles de Boston, mon meilleur ami
de longue date, Michel Duranceau, a toujours su étre 13 pour me remonter le moral.
Etienne Parent a été un ami exemplaire avec qui j’ai pu chialer plus souvent qu’a mon
tour. Bart East et Jason Smyczek ont su apporter leur support, méme si je n’ai pas
toujours été aussi communicatif que j'aurais di ’étre. Un gros merci & la famille East

et a la famille Duranceau qui continuent d’étre des gens extrémement chaleureux.

9

Yves Boussemart a toujours été unc source d’éncrgic positive et d’occasionnels inci-
dents mémorables. Merci aux autres amis - MV, TM, MAC, CG, HH, JL, LO, NP,
- CL?, EP, JP, DMW, ... Jai également découvert la musique lors de mon séjour aux
études - Rusty Scott, Victoria Chang, Elaine Kwon, Mark Kroll, Curtis Hughes, Mark
Harvey, Tony Savarino, et _Yoko Miwa - merci d’avoir été une source d’inspiration,
merci de votre enseignement, et merci de votre encouragement. Je voudrais aussi
mentionner ces divines demoiselles de Boston et d’ailleurs, qui ont su enflammer plus
d’une soirée, tout en apportant un support émotionnel indispensable et une complicité
remarquable, et avec lesquelles j’ai pu découvrir différents restos et bistrots de Boston
et d’ailleurs. En téte de liste, Wendy et Stella ont grandement contribué a mon bien
étre. WX, SJ, JQ, NT, MT, YJH, SSC, JC, AC, RC, V, LR, SD, CY, MM, MN, ...
merci de m’avoir toléré, vous étes sublimes. Je tiens aussi a remercier la gang du pool
de baseball du New Jersey et les gangs des pools de hockey et de baseball de Laval.
Clin d’oeil aussi a la gang du “Semi-Pro”, avec mon oncle Michel en téte.
Finalement, j’offre un remerciement spécial a ma famille, qui m’a supporté morale-
ment et financiérement tout au long de mes études. J’ai toujours cru que si j’avais la
moitié du coeur de mon pére et la moitié du courage de ma mere, je serais treés fier
de I’homme que je suis devenu. J’espére y arriver un jour. Merci Gérard et Denise,
vous étes plus importants pour moi que je ne puisse le témoigner en quelques lignes.
Merci aussi & mon frére Patrick, & ma belle-soeur Annie, et & mes deux neveux Félix
et Renaud. Merci aussi 4 mes cousins Daniel et Richard. Je vous promets qu'on ira
au Fenway Park éventuellement. Je me compte trés chanceux d’étre membre d’une
grande famille étendue. Malheureusement, ils sont trop nombreux pour étre nommés
individuellement; tout de méme, j’offre baisers et poignées de mains viriles & toutes
mes tantes, & tous mes oncles, et & tous mes cousins et cousines. Chers méman et
popa, méme si je ne cesserai probablement jamais d’étre un étudiant au sens figuré,
je suis convaincu que la prochaine fois olt une connaissance vous demandera ce que
votre plus jeune fils fait dans la vie, vous serez trés fiers de ne plus avoir a répondre
“étudiant”. Merci a tous ceux et celles qui ont contribué & mon succés. Avec amour,

Martin

10

Contents

1 Introduction 27
1.1 Motivations 27
1.2 Thesis Contributions 28
1.3 Relevant Publications. 29
14 ThesisOutline..........................7.... 30
1.5 Chapter Structure. 33
1.6 Notational Conventions oo v e, 34
1.7 Segueinto Chapter2 34
2 Background Information | 35
2.1 Real-Time Embedded Systems 35
2.1.1 The Nature of Time in Real-Time Systems 39

2.2 Systems Engineering 41
2.3 Software Engineering 42
24 Formal Methods. 45
2.5 Model-Based Software Engineering 46
2.6 Modeling Languages 48
2.6.1 The Time Paradox: Incorporating Time in High Level Models 50

27 AnalysisEngines 54
271 Model Checkers 54
272 SATSolvers PRV 56

28 CaseStudies. 57
2.8.1 The Production Cell 58

29

2.8.2 Electronic Throttle Controller

2.8.3 Timeliner Script Executor

2.8.4 Motivations for the Case Studies

Segue into Chapter 3

Framework Overview

3.1
3.2
3.3

. 3.3.4 Test Case Generation v v v v v o,

3.4

3.9

The
4.1

4.2

Introduction

Related Work

Capabilities
3.3.1 Modeling and Simulation
3.3.2 StaticAnalysis
3.3.3 Bi-Directional Traceability

Tool Architecture L
3.4.1 Front-End Components
3.4.2 Back-End Components
34.3 3rd Party Engines.
Segueinto Chapter 4

Timed Abstract State Machine Specification Language

Related Work
4.1.1 Usability of Specification Languages.
4.1.2 Abstract State Machines
4.1.3 The TASM Language v v v v v i v v v v
4.1.4 Other Specification Formalisms
4.1.5 Light Switch Example e e

The Timed Abstract State Machine (TASM) Language: Syntax

4.2.1 Basic ASM Specification
4.2.2 Light Switch Example Version 1
423 Time o e

4.2.4 RESOUICES . « « v v o e e e e

..............................

77
77
78
81
82
83
84
85
86
87
89
90
90

4.2.5 Light Switch Example Version2 113

4.2.6 Hierarchical Composition. 113
427 Light Switch Example Version 3 116
4.2.8 Parallel Composition 117
42,9 Light Switch Example Version4 118

4.3 The Timed Abstract State Machine (TASM) Language: Semantics . . 118
43.1 UpdateSet 121
432 Time 121
433 RESOULCES . . . v v vt e et 122
4.3.4 Light Switch Example Version 2 Revisited 124
4.3.5 Hierarchical Composition. <. .. 125
4.3.6 Light Switch Example Version 3 Revisited 129
4.3.7 Hierarchical Composition and Expressivity 131
4.3.8 Parallel Composition 135
4.3.9 Light Switch Example Version 4 Revisited 139
4.3.10 Summary and Other Extensions 141

4.4 Relationto Timed ASM 146
4.5 Segueinto Chapter 5 149
5 Static Analysis 151
5.1 Functional Analysis: Completeness and Consistency 151
5.1.1 Related Work 153
5.1.2 Completeness 154

5.13 Consistency 157
5.1.4 Mapping to SAT 160
5.1.5 Example e e 161

5.2 Functional Analysis: Model Checking 165
5.21 Mappingto UPPAAL 166
522 Example 167

5.3 Execution Time Analysis 168

5.3.1 Related Work 170

5.3.2 [Iterative Bounded Liveness 171
5.3.3 Example: The Scheduling Problem 177
5.4 Resource Consumption Analysis 182
54.1 Related Work 182
54.2 Approach 183
54.3 Example 186
5.5 Segueinto Chapter6 187
Bi-Directional Traceability 189
6.1 RelatedWork 189
6.1.1 Syntactic Change Management 190
6.1.2 Refinement Theory 191
6.2 Concepts . . . T IR 193
6.2.1 Types of Refinements 195
6.2.2 Correctness Criteria 200
6.3 Example 212
6.4 Segueinto Chapter 7 220
Test Case Generation 221
7.1 Related Work L 221
7.1.1 Coverage Criteria e 223
7.1.2 Abstract State Machinest 224
7.2 Test Case Generation Concepts v v v v v v v v v v v v v .. 224
721 Definitions 225
7.2.2 Operationson Templates 227
7.2.3 Machines and Test Suites 230
7.3 Unit Test Case Generation 231
7.3.1 Complexity Analysis 233
732 Example 234
7.4 Integration Test Case Generation 235

14

74.2 Complexity Analysis 239
743 Example e 239
7.5 Complete Test Case Generation Algorithm 241
7.5.1 Test Sequences it 244
7.6 Regression Test Case Generation 245
7.6.1 Refinement Types. S 247
7.6.2 Test Case Execution 251
7.6.3 Complexity Analysis 251
764 Example 252
7.7 Segueinto Chapter 8 256
Case Studies 257
81 ProductionCell 258
811 Model 258
8.1.2 Functional Analysis 272
8.1.3 Execution Time Analysis 281
8.1.4 Resource Usage Analysis 281
8.1.5 Test Case Generation 283
816 Discussion 285
8.2 Electronic Throttle Controller:
HighLevel Model 286
821 Model 290
8.2.2 Functional Analysis 292
8.2.3 Test Case Generation 301
824 Discussion 302
8.3 Electronic Throttle Controller:
Tasking Model 304
831 Model 307
8.3.2 Functional Analysis 307

8.3.3 Execution Time Analysis 311

83.4 Test Case Generation 312
83.5 Discussion Lo 312

8.4 Electronic Throttle Controller:
Low Level Model 314
84.1 Model 315
84.2 Traceability 325
8.4.3 Functional Analysis 328
8.4.4 Execution Time Analysis 332
8.4.5 Resource Consumption Analysis 335
8.4.6 Test Case Generation 337
84.7 Discussion Lo . 339

8.5 The Timeliner Script Executor:
Plant Control System 341
85.1 Model 343
8.5.2 Functional Analysis 355
8.5.3 Execution Time Analysis 358
8.5.4 Test Case Generation 361
85.5 Discussion 362
86 SegueintoChapter9 363
9 Conclusion 365
9.1 Research Objectives and Contributions 365
9.2 Framework Evaluation 368
9.2.1 The TASM Language 368
9.2.2 Static Analysis 370
9.2.3 Bi-Directional Traceability 371
9.2.4 Test Case Generation e e 372
9.2.5 Secalability 373
9.2.6 Overall Limitations 375

9.27 LessonsLearned. 376

9.3 Opportunities for Future Research 377
9.3.1 Language Extensions 377
9.3.2 Framework Features 378
9.3.3 AnalysisEngines, 379

94 Closing Thoughts 382
9.5 Segue into the Appendices 382
A TASM Language Reference 383
A1l TASM Objects e 383
A1.1 Specification e 383
A12 Project. e 384
A13 Environment 384
A.14 Main Machine Template 384
A.15 Function Machine 385
A16 SubMachine 385
A17 Configuration 386

A2 Syntax 386
A.2.1 Notational Conventions. 386
A22 Names 387
A23 Types e 387
A.2.4 Arithmetic Operators 389
A.25 Logical Operators 390
A26 Context-Free Grammar 391

A3 Semantics 400
A.3.1 Operator Precedence e e 401
A3.2 Calling Convention 401
A33 Types, 403
A.3.4 Relation to Abstract State Machines 403
A3.5 Sugaring/Desugaring 404

A3.6
A3.7
A338
A3.9

Resource definitions

Type definitions

Variables

B Translating TASM Models to SAT

B.1 Preliminaries

B.2 Translation Algorithm

B.3

B.2.1
B.2.2
B.2.3
B.24
B.2.5

Analysis

B.3.1
B.3.2
B.3.3

..........................

Function Machines

Boolean and User-Defined Datatypes

Integer Datatypes

Constraints with Symbolic Right-Hand Sides

Complete Translation Algorithm

Limitations

Complexity Analysis
Intractability

C Translating TASM Models to UppaaL ’s Timed Automata

C.1
C.2

C.3

Preliminaries

Translation Algorithm

C.2.1
C22

Variables and Datatypes

Machines and Rules.,

D Production Cell TASM Model

D.1 Environment
D.2 Main Machines e
D.3 Function Machines o

409
409
410
410
411
414
417
417
418
418
419
420

423
423
425
425
426
430
431

D.4 Sub Machines e P, 445

Electronic Throttle Controller TASM Model 457
E.1 HighLevel Model 457
E.1.1 Environment e 459
E.1.2 Main Machines e 461
E.1.3 Function Machines 466
E.14 SubMachines 470
E.2 TaskingModel 475
E.2.1 Environment 476
E.2.2 Main Machines 477
E.2.3 Function Machines 480
E.24 SubMachines L. 481
E.3 Low Level Model 486
E.3.1 Environment 488
E.3.2 Main Machines 491
E.3.3 Function Machines e e 497
E.3.4 Sub Machines e 499
Timeliner Plant Control System TASM Model 501
F1 Environment. 503
F.2 MainMachines 505
F.3 Function Machines 509
F.4 SubMachines 509

19

20

List of Figures

2-1 High level view of a mostly periodic reactive real-time system 37
2-2 Delay in system responding to an event of interest 38
2-3 Systems engineering process [19] L 42
2-4 'V software lifecycle model [242] 44
2-5 Timed automaton describing the behavior of a lamp [24] 49
2-6 Sample task graph 51
2-7 Top view of the productioncell 59
2-8 High level Simulink model of the ETC 67
29 ETCmodes i 68
2-10 ETC tasks and scheduler 69
2-11 Timeliner script organization [61] 72
2-12 Timeliner plant application 74
3-1 Architecture of the TASM toolset 87
4-1 Light switchexample 105
4-2 Hierarchical composition e e e e 129
4-3 Time history of variable values and resource consumption 141
5-1 Timed automaton for Listing 5.1 168
5-2 Observer automaton 175
A5—3 Task graph 178
5-4 Timed automaton for the TASK1 main machine 180
5-6 Timed automaton for the SCHEDULER main machine 181

21

5-6 Observer automaton to analyze schedulability 182
81 Top view of the productioncell 258
8-2 Timed automaton for the feed main machine 278

8-3 Observer automaton to verify the time needed to process 10 blocks . 281
84 ETCmodes e 288
8-5 Observer automaton to verify the execution time of the servo task . . 311

8-6 Simulink sliding mode controller to calculate driver throttle current . 326

87 'Traceability between different versions of the ETC model

8-8 Observer automaton to measure the end-to-end latency of the ETC for

| the vehicle torque being over the critical threshold 333
8-9 Automaton for the Scheduler main machine 354

8-10 Observer automaton to measure the execution time of one pass of Time-

ner e e e 358

8-11 Observer automaton to measure the end-to-end latency of Timeliner

for a temperaturedrop 360
C-1 Timed automaton for rule R; of Equation2 427
C-2 Timed automaton for Listing C.1 428
C-3 Timed automaton for the “Else rule "and the “t := next” annotation 429
C-4 Timed automaton for a TASM machine withnrules. 430
C-5 Timed automaton for the LIGHT_CONTROL machine 432
C-6 Timed automaton to enforce the urgent channel for the else rule of

machine LIGHT_CONTROL 432
C-7 Timed automaton for the FAN_.CONTROL machine 433
C-8 Timed automaton to enforce the urgent channel for the else rule of

machine FAN.CONTROLo . 433
D-1 Top view of the production cell 435

22

List of Tables

2.1
2.2
2.3
2.4
2.5

3.1

4.1

42

5.1
5.2

6.1

6.2

7.1
7.2
7.3
7.4

Examples of sources of explicit quantitative time 40
List of actuators used in the production cell system 60
Behavior of actuators based on polarity 61
List of sensors used in the production cell system 61
Durativeactions o 62

Comparison of the proposed framework with other frameworks for em-

bedded real-time systems engineering 82

Comparison of the features of the TASM language with other languages

for embedded real-time system specification 105
Update set combination operators 141
Maximum resource USage . - . . .« v v v v e e e e e 187
Minimum reSOUrCe USAZE . . » « « v v v v v v e e e 187

Truth table to verify the correctness criteria for the rule expansion

refinement between rule R; and rules S;;and S; L. 215

Truth table to verify correctness the criteria for the rule expansion

refinement between rule P, and rules Dy, Dy, and D3 218
Pre and post state for sample test case template for Listing 7.1. . . . 229
Coverage test case corresponding to the template of Table 7.1 230
Template test suite for the machine of Listing 73 235
Template test suite for the machine of Listing 7.5 240

23

7.5
7.6
7.7
7.8
7.9

8.1
8.2
8.3
8.4
8.5
8.6
8.7

8.8

8.9

8.10
8.11
8.12

8.13

8.14
8.15
8.16
8.17
8.18
8.19

Template test suite for the machine of Listing 7.6 242
Template test suite for the machine of Listing 7.7 243
Test suite template for the machine of Listing 7.10. 254
Test suite template for the machine of Listing 7.7 255
List of test cases that need to be executed to cover the refinement . . 256
List of main machines used in the production cell model 259
Number of rules for flattened main machines 277
Completeness analysis results for the production cell model 279
Consistency analysis results for the production cell model 280
Resource consumption analysis results for the production cell 283
Test case generation results for the production cell model 284
Sample test case template from the test suite for the Controller main

machine 285
Number of rules for flattened main machines for the high level ETC

model 208
Completeness analysis results for the ETC high level model 300
Consistency analysis results for the ETC high level model 301
Test case generation results for the ETC high level model 303
Sample test case template from the test suite for the CONTROLLER

main machineo 303
Execution time for floating point operations for a PowerPC 405 (in

clock cycles)o 305
Timing properties for the ETC tasks 305
Number of rules for flattened main machines 309
Completeness analysis results for the ETC tasking model 310
Consistency analysis results for the ETC tasking model 310
Test case generation results for the ETC tasking model 312
Sample test case template from the test suite for the SCHEDULER

main machine e 313

8.20 Truth table for the step expansion refinement between rule R; of model

7o and rules Ryj; and Rjgofmodel 77 317
8.21 Resource usage estimates for the ETC low level model 325
8.22 Number of rules for flattened main machines 330
8.23 Completeness analysis results for the ETC low level model 331
8.24 Consistency analysis results for the ETC low level model 332
8.25 End-to-end latency analysis results for the ETC low level model . . . 335
8.26 Resource usage analysis results for the ETC low level model 336
8.27 Test case generation results for the ETC low level model (part 1) .. 337
8.28 Test case generation results for the ETC low level model (part 2) .. 338
8.29 Sample test case template from the test suite for the TASKS main

machine, 339
8.30 Duration of transitions (in us) between labels of Listing 8.25 345
8.31 Duration of transitions (in us) between labels of Listing 8.26 345

8.32 Completeness analysis results for the Timeliner plant control system . 357
8.33 Consistency analysis results for the Timeliner plant control system . . 357
8.34 Execution time analysis results for the WCET of one pass of Timeliner 359
8.35 Execution time analysis results for the BCET of one pass of Timeliner 359
8.36 End-to-end latency analysis results for the plant control system . .. 361
8.37 Test case generation results for the plant control system 362

8.38 Sample test case template from the test suite for the Timeliner main

machine L 362
Al Reservedkeywords 388
A2 Operators 392
A.3 Operator precedence S e e e e e e e e e 402
C.1 Datatype translations 426
D.1 List of machines used in the production cell model 436
E.1 List of machines used in the high level ETC model 458

25

E.2
E.3
E.4

F.1

List of machines used in the tasking model of the ETC 475

List of machines used in the low level ETC model (part 1) 486
List of machines used in the low level ETC model (part 2) 487
List of machines used in the Timeliner plant control system model . . 502

26

Chapter 1

Introduction

This chapter serves as an “executive summary” of the work presented in this thesis.
The chapter contains information about the motivations for the presented research,
the contributions of the research, the list of presentations, posters, technical reports
and refereed publications related to the research, and the roadmap of the thesis. Each

chapter in the thesis follows a template structure, as explained in Section 1.5.

1.1 Motivations

In modern society, software systems can be found everywhere, including in airplanes,
in automobiles, and in consumer electronics. The proliferation of software increases
the dependency on the correct functioning of software and yields a new set of chal-
lenges in the engineering of software-intensive systems. The growing size and com-
plexity of modern software systems exacerbates the difficulty of delivering reliable
systems within aggressive budgetary constraints. In various engineering disciplines,
the use of models has proven a viable approach to mitigate complexity through ab-
straction [40]. However the use of models in the engineering of software is a relatively
novel approach to building software systems. The use of models not only helps to
control complexity, but if the models have formal underpinnings, the models can

be used to automate certain engineering activities such as verification and test case

generation.

27

The research presented in this thesis seeks to address five key challenges in the

engineering of embedded real-time systems:

e The high complexity of modern software systems, by providing a model-based

approach to software-intensive system engineering.

e The high cost of Verification and Validation (V & V) activities by leveraging

the use of models to automate engineering activities.

e The challenges in using formal methods in an engineering context by providing
a novel literate specification language and abstracting verification details in a

push-button approach.

e The lack of integration between disparate models by providing bi-directional

traceability across levels of abstraction.

e The lack of integration of the state-of-the art in individual disciplines by pro-

viding an overarching engineering framework.

These five challenges form the base motivation for the research presented in this
thesis. These challenges are addressed individually in subsequent chapters. In ad-
dressing these challenges, the research presented in this thesis makes a number of
research contributions in various areas. These contributions are outlined in the fol-

lowing section.

1.2 Thesis Contributions

The research presented in this thesis makes five key contributions to address the

challenges enumerated in the previous section:

e A new specification language for embedded real-time systems, the Timed Ab-
stract State Machine (TASM) language, which extends the theory of Abstract
State Machines (ASM). The TASM language integrates the specification of func-

tional and non-functional properties - function, time, and resources.

28

o A set of verification procedures for automated analysis of models, using generally
available analysis engines. The procedures include the analysis of completeness
and consistency, the analysis of execution time, and the analysis of resource

consumption.

o An approach to traceability of system models that incorporates syntactic change

and semantic integrity.

o A generic and extensible approach to automatically generate test cases for unit

testing, integration testing, and regression testing.

e An integrated framework for modeling, simulation, verification, and test-case

generation for embedded real-time systems.

e An integrated toolset implementing the capabilities of the framework.

1.3 Relevant Publications

The research presented in this thesis has led to presentations and poster sessions
presented at the “Real-Time System Symposium (RTSS)” in December 2006 [189), at
the “ARTIST Workshop on Tool Platforms for Embedded System Modeling, Analysis
and Validation” of the “Computer-Aided Verification Conference (CAV)” in July
2007 [196], at the “Real-Time in Sweden Conference (RTiS)” in August 2007 [197],
and at the “Asia-Pacific Software Engineering Conference (APSEC)” in December
2007 [204].

The presented research has also yielded a number of Technical Reports released
through the Embedded Systems Laboratory (ESL) at the Massachusetts Institute of
Technology [190, 195, 201, 202, 206]. A reference manual for the Timed Abstract State
Machine (TASM) language [185], as well as a user guide for the TASM toolset [186]
are also available through the Embedded Systems Laboratory [88].

The Timed Abstract State Machine language was presented to the real-time sys-

tem community at the “Real-Time and Network Systems Conference (RTNS)” in

29

March 2007 [199] and to the ASM community at the “Abstract State Machines Work-
shop (ASM)” in June 2007 [198]. A journal article about the TASM language is set
to appear in Volume 14 of the Journal of Universal Computer Science (JUCS) in July
2008 [205]. A critical look on how time is treated in modeling languages, motivating
the TASM approach to modeling time, was presented at the “Modeling in Software
Engineering (MiSE) Workshop” of the “International Conference on Software Engi-
neering (ICSE)” in May 2007 [194].

The case study involving the Electronic Throttle Controller (ETC) was presented
at the “Critical System Development using Modeling Languages Workshop (CS-
DUML)” of the “Model Driven Engineering Languages and Systems Conference (MoD-
ELS)” in October 2006 [187] and was selected as one of two best papers to appear
in Volume 4364 of Lecture Notes in Computer Science (LNCS) entitled “Models in
Software Engineering” [188]. The analysis of TASM models using a SAT Solver
was presented at the “Model-Based Testing Workshop (MBT)” of the “European
Joint Conferences on Theory and Practice of Software (ETAPS)” in May 2007 [192]
and appears in Volume 190 of “Electronics Notes in Theoretical Computer Science
(ENTCS)” [193]. The TASM toolset was presented at the “Computer-Aided Verifi-
cation Conference (CAV)” in July 2007 [200].

An overview of the framework will be presented at the “International Symposium
on Quality Engineering for Embedded Systems (QEES)” [203], a symposium held
jointly with the “European Conference on Model Driven Architecture Foundations
and Applications (ECMDA)”, in June 2008. A follow-up article will be submitted to

the journal entitled ”Software Tools for Technology Transfer”.

1.4 Thesis Outline

This section provides an overview of the content of each chapter contained in this

thesis.

¢ Chapter 1: Introduction

30

This Chapter provides an “executive summary” of the thesis and should be read

before other chapters.

e Chapter 2: Background Information

This chapter provides background information necessary to understand the ma-
terial contained in the research. This chapter covers a wide range of topics such
as information about real-time systems, software engineering, and descriptions
of the analysis engines used to implement the framework. The reader is invited

to browse sections of this chapter as needed.

o Chapter 3: Framework Overview

This chapter provides an overview of the capabilities of the framework as well

as the tool architecture used in the implementation of the framework.

o Chapter 4: The Timed Abstract State Machine Specification Lan-

guage

This chapter describes the Timed Abstract State Machine (TASM) Language,
its syntax, semantics, and modeling facilities, including how time and resources
are treated, hierarchical composition, ahd parallel composition. Throughout
the chapter, illustrative examples are provided to depict the concepts as they

are introduced.

e Chapter 5: Static Analysis

This chapter presents the types of analysis that can be performed in the frame-
work. The analysis procedures include completeness and consistency analysis,
execution time analysis, and resource consumption analysis. This chapter also
contains illustrative examples to demonstrate the analysis algorithms. The im-

plementation of the analysis facilities, performed in the TASM toolset, are also

described.

e Chapter 6: Bi-Directional Traceability

31

This chapter explains the bi-directional traceability capabilities of the proposed
framework. The approach to traceability establishes a relationship between
two or more TASM models and combines syntactic change management with

notions of semantic equivalence for the models.

e Chapter 7: Test Case Generation

This chapter presents the automated test case generation capabilities of the
framework for unit, integration, and regression test case generation. The re-
gression test case generation strategy uses the traceability approach described

in Chapter 6. Examples and implementation details are also presented.

¢ Chapter 8: Case Studies

This chapter contains the results of the three case studies used to evaluate the
research presented in this thesis — the production cell case study, an Electronic
Throttle Controller (ETC), and the Timeliner Script Executor. The case studies
are introduced in Section 2.8 but the models and analysis results are presented
in Chapter 8. The complete TASM models for each case study are provided in
the appendices.

e Chapter 9: Conclusion

This chapter provides a critical evaluation of the presented research, draws con-
clusions for the thesis, and describes directions for possible future developments

of the research.

e Appendix A: TASM Language Reference

This appendix contains the concepts involved with the implementation of the
TASM language in the TASM toolset. These concepts include the complete
Context-Free Grammar (CFG) for the TASM language and various implemen-

tation topics such as operator precedence and typing.

e Appendix B: Translating TASM Models to SAT

32

This appendix contains the details of the mapping from the TASM language to
SAT , for the purpose of static analysis, as explained in Chapter 5, and for test

case generation, as explained in Chapter 7.

Appendix C: Translating TASM Models to UpPAAL

This appendix contains the complete mapping from the TASM language to
UppaAL , for the purpose of timing analysis, as explained in Section 5.3. The

mapping to UpPPAAL is also used for model checking of functional properties.
'Appendix D: Production Cell TASM Model

This appendix contains the complete TASM model for the production cell case _
study, explained in Section 2.8.1 and studied in Section 8.1.
Appendix E: Electronic Throttle Controller TASM Model

This appendix contains the complete TASM model for the electronic throttle
controller for the case study, explained in Section 2.8.2 and studied in Sec-

tion 8.2, in Section 8.3, and in Section 8.4.

Appendik F: Timeliner Plant Simulator TASM Model

This appendix contains the complete TASM model for the Timeliner case study
involving the plant control system, explained in Section 2.8.3 and studied in

Section 8.5.

1.5 Chapter Structure

Individual chapters in this thesis follow a common template. At the beginning of

each chapter a paragraph explains the information contained in the chapter. The

last section of each chapter is named “Segue into Chapter N” and provides a brief

summary of the information provided in the current chapter and how it leads to the

following chapter. All chapters follow this template except for the appendices. Unlike

the thesis chapters, individual appendices do not follow a common pattern. However,

33

the first paragraph of cach appendix contains a brict description of its content. The
content of the appendices is summarized in Section 1.4. Appendices do not follow a

linear progression and serve as a reference that can be read in any order.

1.6 Notational Conventions

In order to enhance the readability of the thesis, special fonts are used to clarify

meaning in certain situations:

o [talic font is used for definitions and when referring to abstract syntax, such as

the names of machines or the names of rules.

e Teletype font isused when referring directly to the concrete syntax of a model,

such as a variable.

e “Quotation marks” are used to emphasize blocks of text that should be grouped

together.

Furthermore, the listings for models expressed in the Timed Abstract State Ma-

chine (TASM) language are expressed in teletype font.

1.7 Segue into Chapter 2

This chapter presented an ‘“executive summary” of the content of the thesis. The
following chapters expand on this summary. The next chapter, Chapter 2, provides

background information about the topics covered throughout the thesis.

34

Chapter 2

Background Information

This chapter presents background information related to the concepts explained in
the following chapters. The information contained in this chapter includes details
about the types of systems targeted by the presented research, details about how
the current work integrates into software engineering practice, information about the
“analysis engines used in the framework, and descriptions of the case studies used to

evaluate the presented framework.

2.1 Real-Time Embedded Systems

The primary goal of a computer system is to provide value, as defined by a user of the
system, by performing a set of functions. More specifically, a computer system must
provide a correct response (output) based on a given stimulus (input). The concept
of correctness is comprised of multiple facets such as functional correctness and non-
functional correctness. The functional correctness of a computer system is defined
through a set of requirements that the input-output behavior of the system must
satisfy [85]. The requirements describing the functional correctness of a computer
system can be described through safety properties, that is, statements about behavior
that should never occur, and liveness properties, that is, statements about behavior
that should eventually occur [30]. All functional behavior of computer systems can

be described in terms of safety and liveness properties [154].

35

While functional correctness is a critical aspect of all computer systems, certain
types of systems also require that non-functional aspects of the system, such as tim-
ing behavior, conform to stringent correctness criteria. The research presented in this
work addresses the engineering of embedded real-time systems, a class of systems
where non-functional properties are central to the system’s value. More specifically,
embedded real-time systems represent a special class of computer systems where
time plays a critical role in the correctness of the system. In a real-time system,
the system must not only produce a correct answer, but must also do so in an ade-
quately bounded amount of time [58]. The amount of time under which the system
must produce a response is termed a deadline. If a real-time system provides an
answer after a deadline has elapsed, the system is said to have missed a deadline.
With regards to correctness, the implications of missing a deadline depends on the
type of system. Real-time systems fall into two categories — hard real-time systems,
where missing a deadline is unacceptable, and soft real-time systems, where missing a
deadline may be acceptable under certain circumstances, depending on performance
requirements [155]. Nevertheless, time plays a critical role in defining the correctness
of a real-time system since a correct answer provided too late can be as erroneous as
providing an incorrect answer [49]. The timing analysis provided by the framework
does not make assumptions about whether the system being analyzed is hard or soft.
The framework provides generic timing analysis to determine the best and worst case
timing behavior, and it is up to the system behavior to decide whether the analysis

results are acceptable for the system being engineered.

In practice, real-time systems are also typically reactive, meaning that they do not
terminate, but are in continuous interaction with the environment, until the system
is switched off. Reactive systems are different than transformational system, where
the system terminates after producing an answer. In a reactive real-time system,
the timing correctness of the system is defined as the absence of missed deadlines
while taking into account the continuous interaction of the system with its environ-
ment. The types of systems targeted by the proposed framework are of the mostly

periodic nature [164], meaning that they operate in a continuous loop that samples

36

the environment through sensors, makes a decision on what action the system should
take based on the sensor values, and affects the environment by executing the action
through an actuator. A sample loop for the systems targeted by the proposed frame-
work is shown in Figure 2-1. It is important to note that which steps of the loop are
executed at each iteration is implementation dependent. As will be described in the
electronic throttle controller case study, the sampling of the state through sensors
could be done at a lower frequency than, for example, the frequency of deciding on

the action to be taken by the controller.

System

1. Read Sensors
2. Decide on Action
3. Output to Actuators

Sensors Actuators

Environment <

Figure 2-1: High level view of a mostly periodic reactive real-time system

In traditional real-time system theory, the concept of a deadline refers to the
Worst-Case Execution Time (WCET) [89] also sometimes called the worst-case com-
putation time, that is, the maximum time that can elapse when an individual task or
an individual process executes [58]. In this research, the traditional WCET definition
is made more general to include system properties. In the remainder of this work, the
term WCET is used to denote the maximum amount of time that can elapse when the
system completes a path between two states. The definition used in this thesis also
stipulates that such a path can consist of any two states. In this definition, the notion
of state can include both the state of the engineering artifact such as the program
counter and values of system \?ariables, and, the value of environment variables. This
definition is more general than the traditional definition and can capture important
concepts such as end-to-end latency all the while being able to express the traditional
definition. End-to-end latency refers to the longest reaction time of a system to an

environment stimulus, taking into account system properties such as environment

37

interaction, task interference, and delay in response. For example, in the loop of
Figure 2-1, the value of an environment variable could change while the system is
deciding on which action to take. Depending on the frequency of sensor readings, a
significant delay could result in the system taking a corrective action since there could
be a delay before the change is détected. Figure 2-2 shows a symbolic view of the
time that can elapse between an event occurring and the system taking a corrective
action. ‘The verification problem to ensure that there are no missed deadlines can be

summarized as:

dt = ty — t; < Required Deadline

The response latency, dt, refers to how much time elapses between the event and
the response. The proposed framework provides necessary facilities to calculate the
maximum value of dt, for any event and action modeled. The Required Deadline is
system-dependent and is provided by the performance requirements. It is also the
responsibility of the system designer to decide on which course of action to take if the
designed system does not meet the required deadline. The proposed system provides
only the necessary modeling and analysis facilities. Additional definitions related to

execution time are given in Section 5.3.

t1 ---------------- > t2

A

|

l
event system takes
occurs corrective action

Figure 2-2: Delay in system responding to an event of interest

Most real-time systems also fall into the category of embedded systems. Embedded
systems represent a special class of real-time systems where the software system is
not stand-alone, but is part of a larger system and must work with other components

to achieve the system’s goals [155]. Vehicle controllers, such as automotive electronics

38

and avionics, are typical examples of embedded real-time systems. In an embedded
system, resources such as communication bandwidth and memory are typically limited
and must be shared across multiple components. Consequently, the correctness of an
embedded real-time system is also dependent on the resource usage being adequately
bounded. In summary, for an embedded real-time computer system, the correctness
of the system is defined in terms of three key aspects — functional correctness, timing
behavior, and resource usage. These three aspects form the fundamental motivation

of the modeling and analysis capabilities provided by the proposed framework.

2.1.1 The Nature of Time in Real-Time Systems

Since time plays an important role in defining the correctness of a real-time system, it
is paramount to understand the role of time in the systems of interest. On a general
and global level, the time axis is a monotonic function that is used to order events
linearly according to some concept of progression [101]. A large body of research
has been devoted to establish that a computer system satisfies a correct ordering of
events [49]. This correct ordering of events, also called qualitative time, refers to the
ordering of events with respect to one another and is not concerned with the temporal
distance between events [212]. For example, in the well-known Simple Mail Transfer
Protocol (SMTP), an acknowledgement message (ACK) shall not be received before a
synchronization request (SYN) has been emitted. In other words, an ACK must occur
after a SYN and never before. However, in real-time systems, timing correctness does
not depend only on the ordering of events, but also depends on the numerical distance
between events, a concept called quantitative time [155]. For example, in the SMTP
protocol, after a SYN has been emitted, a timer is typically started while waiting for
the ACK. If, after a prespecified amount of time, the ACK has not been received, the
SYN sender might assume that the SYN request was lost. In such a situation, the
precise amount of time between the SYN and the ACK is of particular importance,
in addition to the messages occurring in the correct order.

Quantitative time appears in real-time system problems either explicitly or im-

plicitly. Examples of where quantitative time appears explicitly include performance

39

Source Example

Requirements | The data in the operator
console shall be refreshed 10
times per second

Physics It takes approximately 5 sec-
onds for a projectile shot
straight up in the air at a ve-
locity of 50 m/s to come to
rest at its apogee
Components || Pressure sensors can put

data on the system bus at a
rate of 10Hz

Table 2.1: Examples of sources of explicit quantitative time

requirements, local clocks, timeouts, scheduling, the physics of the problem, and
constraints of the components of the system. Examples of explicit instances of quan-
titative time are shown in Table 2.1. Examples where time appears implicitly, as
a side-effect, include software execution time and hardware execution time. List-
ing 2.1 shows a brief example of software code, written in the Timeliner scripting
language [61], borrowed from the Timeliner case study. The code represents a se-
quence used to maintain cabin temperature between 20 and 25 Celsius degrees [238].
In order to determine how long this snippet of Timeliner code takes to execute, many
other questions need to be answered. For example, the execution time of the script

depends on:

o The properties of the execution platform
e The semantics of the language
e The assumptions on the behavior of the environment

Once the code has been written and the system is implemented, these concerns
can typically be addressed to a satisfactory degree of confidence. For example, in [62],
precise timing measurements of each statement of the Timeliner language have been
measured through laboratory experiments for a specific execution environment. How-

ever, determining these execution times a priori remains a challenging endeavor.

40

Listing 2.1 Sequence TEMP_MONITOR [238]

SEQUENCE TEMP_MONITOR
EVERY 1
IF TEMPERATURE >= 26 THEN
SET TRYING_TO_COOL_SYSTEM TO TRUE
COMMAND COOLING, NEW_STATE=>ON
WHEN TEMPERATURE <= 22
SET TRYING_TO_COOL_SYSTEM TO FALSE
COMMAND COOLING, NEW_STATE=>QFF
END WHEN
END IF
IF TEMPERATURE <= 19 THEN
COMMAND HEATING, NEW_STATE=>ON
WHEN TEMPERATURE >= 22
COMMAND HEATING, NEW,_STATE=>QFF
END WHEN
END IF
END EVERY
CLOSE SEQUENCE

Even for software and hardware execution, time can also appear implicitly and
explicitly. For example, the code in Listing 2.1 contains one explicit timing state-
ment, the “EVERY 1” statement. This statement tells the runtime system that the
sequence shall execute at mOst once per second. Other examples of explicit timing
statements include the statements sleep and wait, which are present in many pro-
gramming languages such as C++ and Java [239]. In real-time system engineering, -
the explicit sources of quantitative time, outside of software and hardware, define the
timing constraints of the system that is to be built. One of the goals of real-time

system engineering is to build a system which meets these constraints.

2.2 Systems Engineering

Systems Engineering is the aggregation of multiple elements to perform functions that
could not be performed by the elements alone [152]. Systems engineering is an over-
arching discipline which includes aspects bridging people, documentation, software,
hardware, and other domains. Systems engineering efforts seek to develop processes,
tools, and techniques to ensure that a given engineering artifact satisfies all parties
involved throughout the lifetime of a system. In Section 2.1, the types of systems
targeted by the presented framework were presented, alongside definitions of the cor-

rectness of these systems. The goal of the systems engineering efforts go beyond the

4]

correctness aspects described in Section 2.1 and include concepts related to the stake-
holders, potential risks, safety concerns, and other factors affecting the engineering,
delivery, and operation of the system [166]. The goal of this section is to situate the
applicability of the presented framework in the wider sphere of systems engineering.

Figure 2-3 shows the steps of a generic systems engineering process defined in [19].
The framework presented in this research is applicable in the software and digital
hardware engineering facets of real-time systems, during the modeling phases and the

integration phases depicted in Figure 2-3.

State the Investigate tlodel the Intearate o Lm:::h Assess
Problem Alreruntives System Fgrate gl Svs!elm Perfonmancy
S . S N O N O)
Ifie-«mhm;eJ [Ra-ew!xmﬂ Re-evaiuan] [Rz»waiuahJ [£-avak I |"’-. Jruad |

Fy F 4 T4 &4 T 4 1

Figure 2-3: Systems engineering process [19]

The proposed framework assumes the existence of requirements on the functional,
time, and resource aspects of the system. The engineering of software and digital
hardware for an embedded system, such as the engineering of an avionics system, will
be performed in parallel with other systems engineering activities such as requirements
analysis and vehicle design. In the following section, software engineering principles

are reviewed as motivations for the presented framework.

2.3 Software Engineering

Software engineering is the set of techniques, processes, and tools used to develop com-
puter systems [242]. Typically, software engineering is divided into lifecycle phases
that traditionally include requirements engineering, design, implementation, testing,
and maintenance [255]. These different phases are carried out in sequence, with a
certain amount of overlap depending on the lifecycle model that is used [253]. Vali-
dation and Verification (V & V) activities are defined as the process of establishing

confidence into the correctness of the system. More specifically, validation refers to

42

the activities carried out to ensure that the system being engineered will meet the
user’s needs. Verification refers to the activities carried out to ensure that the soft-
ware behaves in accordance to the correctness criteria expressed as requirements. In
practice, these activities comprise a mix of testing, user interviews, mathematical
proofs, and various forms of human inspections [99]. V & V activities are typically

the large ticket item on software engineering projects and can comprise over 50% of |
the development costs [39, 255]. The purpose of performing V & V activities is to
eradicate defects from the system being engineered. A defect is a facet of the»system
which does not conform to the user’s needs or to the required correctness criteria. V
& V activities are typically carried out throughout all phases of the engineering life-
cycle. Empirical evaluations of software engineering projects have demonstrated that
the cost of finding and fixing a defect in a computer system increases dramatically
the later it is found in the lifecycle [38, 39, 255]. Consequently, finding and fixing
defects during the early phases of the engineering lifecycle can result in lower defect
fixing costs and lower V & V costs. A typical software lifecycle consists of a number
of phases that include requirements, design, implementation, testing, and mainte-
nance [38]. A popular example of a popular lifecycle, the “V Lifecycle Model” 242,
is depicted in Figure 2-4. In Figure 2-4, the engineering activities typically begin in
the top left corner and proceed diagonally toward the bottom and back up toward the
top right corner. However, software engineering lifecycle are typically iterative and
hence do not follow a strict linear progression, indicated in Figure 2-4 by the arrows

linking each phase.

Traditional approaches to software engineering have relied heavily on natural lan-
guage documents and natural language communication to capture the requirements,
design principles, and results of V & V activities relating to the system being engi-
neered [71]. However, since natural language is ambiguous by definition, performing
V & V activities based on natural language documents is error-prone and lack the
type of repeatability that can be provided through automated analysis [225]. With
the growing size and complexity of modern computer systems, relying solely on the

intellectual rigor of engineers can lead to unpredictable results [124]. The framework

43

'Y

Requirements

o | Acceptance &

7| system testing
Integration

testing
Unit testing

| Implementation

High level
design

Low level
design

Traceability

Figure 2-4: V software lifecycle model [242]

44

proposed in this research focuses on automating V & V activities, notably formal
verification and test case generation, to provide a repeatable and reliable engineering

approach that could lead to decreased V & V costs.

2.4 Formal Methods

Various efforts have attempted to remedy the shortcomings of natural langu'age through
the formalization of structured natural language [54, 73, 224, 246]. The need for a pre-
cise language and the benefits of automated analysis have motivated the development
of specification approaches based on mathematics [71]. These attempts, also known as
formal methods or formal specification, have yielded specification languages and proof
systems that have a wide range of analysis capabilities, mostly through mathematical
proofs. These approaches aim to address the lack of rigor of ad-hoc engineering tech-
niqﬁes by rooting the engineering in well-founded mathematical principles. However,
because many of these languages make use of advanced mathematics, they suffer from
a lack of usability and readability without the proper expertise [51, 71]. The benefits.
and drawbacks of using formal methods have been documented heavily [50, 51, 71].
Cited benefits include the detection of defects early in the engineering cycle [118], pre-
cise and concise specifications [248], and the capability for automated analysis [220].
Cited drawbacks include the heavy use of arcane mathematical notations [71], the
lack of scalability of most methods [50], and the large investment typically required
to use formal methods [51]. Besides the negative connotation that the term formal
- methods has taken in some circles [124], the benefits of unambiguous specifications
and the repeatability of automated analysis, throughout the phases of the lifecycle,
have been generally accepted in the software engineering community [37, 179].

The challenges of engineering real-time systems has also led to various efforts to
automate lifecycle activities. The lifecycle activities that can be automated include
verification [70], validation {98}, and test case generation [15, 222]. The automation of
these activities is typically centered around a formal specification language or centered .

around a mathematical formalism. These approaches, also called specification-based

45

development and model-based development, are finding increasing popularity within
the industrial community and within the various research communities [179]. The
terms model-based and specification-based are used interchangeably in the literature.
In the context of this thesis, these terms are also indistinguishable, but the term
specification is used to denote the description of behavior that can serve the dual
purpose of the documentation of the intended system behavior and a model that
can be analyzed. These approaches intersect with formal methods, under a different
name, in that they rely on a notation with well-defined formal semantics. However,
specification-based approaches focus on engineering activities and less on mathemat-
ical proofs, as is the case for formal methods [82]. In the model-based engineering
domain, the research community has yielded a large body of languages, approaches,
algorithms, and tools to specify, analyze, and automate engineering activities. While
there have been key contributions in individual areas, it is currently challenging to
incorporate the state-of-the-art in real-time system engineering into a cohesive frame-
work [49] that can be used to engineer systems. These challenges are partly due to
the lack of interoperability between existing approaches and tools {49, 179]. This
lack of integration creates the need for engineering frameworks that integrate formal
. methods with specification concepts, such as the framework presented in this the-
sis. Furthermore, tool support, such as the capabilities provided by the proposed
framework, also bridges the integration gap between modeling languages and formal

analysis.

2.5 yModel—Based Software Engineering

Model-based software engineering (MBSE), also called model-driven software engi-
neering (MDSE) and model-driven system engineering, is an approach to software
engineering where models play a central role in lifecycle activities [228]. The key
point of the approach is the existence of a set of models, which are abstractions of
the system to be implemented. The models contain information about the desired

behavior of the system and are used to drive the lifecycle phases. Some of the ben-

46

efits of having system models include the ability to simulate the prototype system
and to perform analysis before implementation begins [257], leveraging the economics
of software engineering to uncover defects as early as possible [38]. Model-based en-
gineering approaches typically employ graphical or structured models that can be
amenable to simulation and analysis, usually through a computer. As is the case
for formal methods, models with well-defined semantics are means to remedy the
ambiguity of natural language. A model-based approach is typically composed of a
notation, formal or informal, used to express system behavior, and a set of associated
methods and processes to ease engineering activities. The true benefits of a model-
based approach occur when a literate [151] notation with formal semantics is used,
so that the models can serve the dual purpose of an analysis mechanism and of the
documentation of intended system behavior [146]. A literate specification language is
‘a language which can be read like the English language and does not contain extrane-
ous symbols aside from basic operators from arithmetic [151]. Furthermore, given the
investment required to build models, the ability to automate engineering activities,
such as test case generation, can help alleviate the cost of building and maintaining

models [173].

Among the proponents of model-based software engineering, two professional orga-
nizations have proposed standards for the language and tools to be used for MBSE.
The Object Management Group (OMG) has drafted a set of standards to enable
model-driven software engineering, especially in the presence of disparaté tools [179].
The purpose of the standard is to define information exchange formats so that var-
ious models and tools can be incorporated. OMG’s efforts have been focused on
using the Unified Modeling Language (UML) [181] as the underlying language of its
model-driven efforts. The UML language relies heavily on object-oriented design ap-
proaches and has yet to adopt a standard formal semantics [138]. The Society of
Automotive Engipeers (SAE) preaches a similar model-based approach through the
use of the Architecture and Analysis Design Language (AADL) [223], targeted at
embedded real-time systems. The AADL language is an Architecture Description

Language (ADL) that can be used to express high level component interaction and

47

information flow. However, at the time of the writing of this thesis, AADL does not

contain facilities for specifying component-level behavior.

2.6 Modeling Languages

In order to perform model-based software engineering, models must be expressed us-
ing a suitable modeling language. Section 2.1 establishes the correctness criteria of
real-time systems, namely function, time, and resources. Furthermore, Section 2.1.1
describes how time is reflected in the engineering of real-time systems. In particulé,r,
Listing 2.1 shows an example of software code which expresses explicit and implicit
timing behavior. In modeling languages, quantitative time concepts are almost al-
ways explicit [144]. The type of modeling addressed in this research is behavioral
modeling, to capture the dynamic aspects of the system. Behavioral modeling is in
contrast to structural modeling, which captures the static aspects of the system, e.g;,
a class inheritance hierarchy or a multiplicity relationship [134]. In behavioral mod-
eling, system dynamics are typically represented as some form of transition system
where the system transitions from one state to another state based on a set of condi-
tions [144]. Traditional languages to represent state transition systems include finite
state automata [232] and statecharts [122]. For most modeling languages, untimed
versions of the language exist and time was added as an extension of the language.
This is the case for timed automata [5], time/timed Petri nets [60], timed process
algebra [159], the Timed Abstract State Machine language (TASM) [199], and the
real-time profile of the Unified Modeling Language (UML) [180].

While all of these languages have similarities, they also have significant differences
in how they represent and handle time. The two main time models are discrete time
and continuous or dense time. In a discrete time model, time progresses in fixed
constant steps dt € N*. In a continuous time model, time evolves continuously, and
any time-related value is taken from the Reals domain (¢ € R). Languages also differ
on how time evolves. Time can evolve either in states or during transitions. For

example, time annotations can be added to Petri nets in places or in transitions or in

48

both [60]. The difference lies in whether the subject of the description is the duration
of an action or the awaiting of an event. An example of a light switch, modeled in
the timed automata of UppaaL [157] is shown in Figure 2-5. The model describes
the behavior of a lamp in relation with possible user interactions [24]. If the lamp is
off and the switch is pressed, the lamp will turn on to the low setting. If, after the
light has been turned on, the switch is pressed again within 5 time units, the lamp
increases its intensity to the bright setting. On the other hand, if the lamp is on
and the switch is pressed again, but more than five time units have elapsed, the lamp
turns off. This example illustrates a model that describes the passage of time between
events. In this model, events are instantaneous but the precise timing between events

is of utmost importance.

press?

Figure 2-5: Timed automaton describing the behavior of a lamp [24]

Another way to represent time is to model events or actions as being durative in-
stead of instantaneous. In the Timed Abstract State Machine language (TASM) [189],
which will be presented in Chapter 4, time is attached to transitions to simulate du-
rative actions. Listing 2.2 shows the actions of the robot of the production cell
system [163], modeled in the TASM language. In the production cell problem, de-
scribed in Section 2.8.1, a robot takes commands from a controller and executes these
commands. When the robot is instructed to pick up a block, the action takes a cer-
tain amount of time to complete until the robot is available again to process other
commands. In Listing 2.2, the action to pick up a block lasts 1 time unit.

Whether a language predominantly favors time passage or duration of actions
in its notation is irrelevant from a pure expressivity perspective since both types of
notations can be used to represent both concepts [30]. The differences lie in what

paradigm better fits the problem being addressed. For the specification of real-time

49

Listing 2.2 Partial TASM model of a robot action to pick up a block

Ri: Arm B at press, block is available -> pick up block
{

t =1,
power := 2000;

if armbpos = atpress and armb = empty
and press_block = available then

press_block := notavailable;
press 1= empty;
armb 1= loaded;

systems, and for the modeling of software in general, the term execution time is used
in numerous contexts. Most of the time, this term refers to the time to execute actions
or, in other words, to the duration of actions. Verifying the correctness of a real-time
system involves establishing that the durations of the actions of the system meet the

time constraints of the requirements and of the problem domain.

2.6.1 The Time Paradox: Incorporating Time in High Level
Models

Section 2.1.1 explained how time is reflected in real-time systems and Section 2.6
described how modeling languages express time. This subsection explains the para-
dox encountered when attempting to model system behavior that is closely tied to
implementation details. In scheduling theory [63], the task graph [1] is the prevalent
modeling formalism. A task graph is a directed graph where nodes represent tasks
and edges represent precedence constraints between tasks. Each task is assigned an
execution time, that is, a duration. A sample task graph with 7 tasks is shown in
Figure 2-6. In Figure 2-6, each node represents a task and the numerical value next to
the task represents the execution time of the task. Each arrow represents the prece-
dence constraints, meaning that a task occurring at the beginning of an arrow must
complete before the task at the end of the arrow can begin. The scheduling problem
is concerned with finding a solution to scheduling the set of tasks on n processors,
while enforcing the precedence constraints [57] and some notion of optimality.

Analogously, the co-synthesis problem concerns itself with optimal allocation of

50

Figure 2-6: Sample task graph

a task graph to processing elements (e.g., reusable hardware (FPGA), application
specific integrated circuits (ASIC), and software) [76]. The similarities between these
two problems lie in the existence of a task graph, with known execution times for
individual tasks. For the co-synthesis problem, this assumption seems misleading
because the execution times will vary depending on which processing element a task
is allocated to. On the other hand, for the scheduling problem, the task graph can be
derived from an implementation. However, in real-time system engineering, the task
graph is an abstraction of an implementation and, conceptually, should be defined
before implementation begins. Defining the set of tasks and the dependencies between
tasks should be a design decision, not an implementation one. Relying on the set of
tasks to naturally emerge during coding causes development to remain an ad-hoc
process at best, with little support for predictability. Furthermore, the scheduling
problem also assumes that tasks have already been assigned to software, and therefore
makes co-synthesis challenging. It is one of the goals of model-driven engineering tol
remedy ad-hoc system development by structuring engineering activities through the
use of models. For real-time systems, can realistic models, such as task graphs, be
built before implementing the system?

There are many possible answers to this paradox. Conceptually, design is and has
always been an uncertain process where predictions that may or may not come true
are made [56]. Nevertheless, design has proved to be a valuable activity in terms of

cost and time saving, even in the face of uncertainty [37]. In a model-driven approach

51

to development, it is highly unlikely that model-driven engineering will be a purely
downstream activity flowing monotonically from model to implementation. More
likely, feedback from downstream activities will be incorporated into upstream activ-
ities, leading to an iterative model-driven approach, where models are being adjusted
as the implementation is being developed. Like any other topic in system engineer-
ing, experience with building models and experience with engineering using models
will dictate the successful use of models in real-time system engineering. Moreover,
rooting development around mature and predictable components, as is often the case
in aerospace systems [234], greatly enhances the predictions that can be made by
models.

At the modeling level, modeling notations are able to capture the uncertainty
involved with annotating models with time. The use of interval semantics for dura-
tions gives a lower bound and an upper bound on durations. An example of a TASM

specification with duration specified using interval semantics is shown in Listing 2.3.

Listing 2.3 TASM Model of an electronic throttle controller [187) (partial)
Ri: Driving Mode
{

t := (2, 6];

if controller_mode = driving then
throttle_v := Driving_Throttle_V();

}
R2: Limiting Mode
{

t := [3, 8];

if controller_mode = limiting then
throttle_v := Limiting_Throttle_V();
}

Furthermore, the level of abstraction where the modeling occurs determines whether
software times should be included in the model. For system models such as the pro-
duction cell system [163], the physics of the problem and the time constraints on the
system are on a scale much larger (on the order of seconds) than the time scale of
the software (on the order of microseconds). Consequently, as it often happens in
high level models, the software is fast enough given the problem definition and time

does not need to be immediately included for software components in the models.

52

This is certainly the case in the production cell system where controller actions are

approximated to be instantaneous [163].

A model-driven approach should have a notion of refinement [250], that is, a
methodology to build models at different levels of abstraction, by gradually adding
details to high level models. Furthermore, the refinement approach should have fa-
cilities to show a correspondence between two models at different levels of abstrac-
tion [17]. If such a notion is present, time estimates from high level models can
become constraints on lower level models and, eventually, constraints on implemen-
tation. If an implementation cannot satisfy these constraints, the models will need to
be adjusted in order to accommodate implementation characteristics. In this view,
task graphs can be designed and approximated using high level models, making the
schedﬁlihg problem and the co-synthesis problem relevant. During the design phase,
analyzing schedulability and possible allocations to hardware and software can be
useful to drive the implementation. In this research, the notion of refinement, as used
in the formal methods community [79], is combined with the notion of traceability,
as used in the system engineering community [217]. Traceability has traditionally
been used to denote the ability to relate the syntax of disparate artifacts, including
models, at different levels of abstraction. For example, in Figure 2-4, the traceability
across lifecycle phases is depicted by the gray arrow on the left side of the figure.
The benefits of traceability include the documentation of the dependency of various
assumptions made throughout lifecycle phases [94]. However, traceability typically
involves only the visualization of related artifacts and does not include notions of
semantic equivalence that can be enforced throﬁgh tool support. In contrast, notions
of refinement in the formal methods community concern mostly only semantic equiv-
alence between models and do not address the tracking of design assumptions [174].
Uniting these two notions, as performed in the proposed framework, combines the
best of both worlds and provides a basis for end-to-end bi-directional traceability

from high level models to implementation.

53

2.7 Analysis Engines

The growing need for more efficient software engineering has led to the develop-
ment of sophisticated tools for computer-assisted analysis of software artifacts [124].
Among these analysis engines, theorem provers [84, 210], model checkers [30, 67],
SAT solvers [175], Satisfiability Modulo Theory (SMT) Solvers [97, 229], and Linear
Programming (LP) solvers [96, 218] have attracted large research efforts. All of these
solvers support completely automated analysis, except for theorem provers. Because
automation of engineering activities is a central goai of the proposed framework, theo-
rem provers are not considered for the present version of the framework. Furthermore,
the use of linear programming solvers and SMT solvers are treated as part of Future
Work, in Section 9.3. The types and specific instances of analysis engines that are
used in the presented research are explained in this section.

In the formal verification realm, model checkers [70] and SAT solvers [175] have
been used to perform various types of analysis [140]. The popularity of model checkers
and SAT solvers can be attributed to the full automation capabilities of the analy-
sis, combined with the automated generation of a counterexample when a property
to be verified does not hold [30]. Furthermore, model checkers and SAT solvers are
generally available, and some finely tuned implementations are available in the bpen
source community, including the SAT4J SAT Solver [158] and the NuSMV model
checker [65]. A survey of model checkers and other tools for formal verification of
real-time systems is provided in [244]. While model checkers and SAT solvers have
similarities, their modeling and verification strategies differ significantly. Model check-
ers and SAT solvers were selected as the analysis engines for the proposed framework
because they represent two classes of mature and widely used analysis engines, from

two distinct communities.

2.7.1 Model Checkers

Model checkers are a class of analysis engines where the modeling formalism is a

variant of finite state automata [232] and the properties to be verified are expressed

54

using a variant of temporal logic {137]. Model checkers provide reachability analysis
facilities to establish liveness and safety properties of transition systems [67]. Model
checkers rely heavily on the ability to generate a finite state abstraction of the tran-
sition system model, which is then explored in a heuristic or systematic fashion [30].
The parallel combination of finite state automata gives rise to the infamous “state
explosion problem”, although the increase in computing power and the improved so-
phistication in state exploration algorithms has rendered model checkers applicable to
problems of industrial size [69]. The popularity of model checkers can be attributed
to the complete automation of the verification procedures and to the automated gen-

eration of a counterexample if a property of the model does not hold.

UpPAAL

The UpPaAL tool suite is a modeling and analysis environment, including model check-
ing, for réal—time systems [24, 157, 211]. Like all model checking systems, UPPAAL is
composed of a modeling formalism and a temporal logic. The modeling formalism of
UppaaL is a variant of Alur-Dill automata [5]. Alur-Dill automata, also called timed
automata, are an extension of finite state automata with real-valued clocks to ex-
press the passage of time. The timed automata of UrpAAL extends networks of Alur-
Dill automata with datatypes, communication channels, and location types [157].
UppAAL has been used as a verification engine for other formalisms such as Time Petri
Nets [100]. The temporal logic [212] used in UpPAAL s a subset of Timed Computation
Tree Logic (TCTL) [244], with facilities to express predicates over real-valued clock
variables [29]. TCTL is the timed extension of Computation Tree Logic (CTL) [137].
The version of UpPAAL used in this thesis is version 4.0.6, released on March 5th, 2007,
and available on the UppaAL web site (http://www.uppaal.com). The UppaaL model
checker is used in the presented research to verify the timing properties of TASM

models, as explained in Section 5.3.

55

2.7.2 SAT Solvers

The satisfiability problem, also known as SAT for short, is one of the archetypical
NP-Complete problem in the theory of computation [232]. The problem involves
determining whether a Boolean formula is satisfiable. A Boolean formula is composed
of a set of atomic propositions and operations. Atomic propositions are Boolean
variables that can take the values TRUE or FALSE. The propositions are connected
using parentheses and the operators NOT, AND, and OR, represented by the symbols
-, A, and V. A Boolean formula is satisfiable if there is an assignment of values
to propositions which makes the formula TRUF. If no such assignment exists, the
formula is unsatisfiable. A sample SAT problem is shown below. The proposition b;

represent Boolean variables:

(by V by) A (by V b3)

The SAT problem has found applications in artificial intelligence and in formal
verification [140]. The general interest of the SAT problem has led to the development
of commercial and academic SAT solvers, which are extremely efficient analytical
engines used to determine the satisfiability of Boolean formulas [175]. These solvers
are heavily optimized using heuristics that can yield acceptable performance in a
number of cases. The standard input format for many SAT solvers requires that the
Boolean formula must be in conjunctive normal form (CNF). As for model checkers,
SAT solvers rely on the fact that Boolean formulas are finite state. As opposed to
model checkers, who are used to verify the properties of a state-transition model
by computing a transitive closure of the system, SAT solvers are used to reason
about sets of constraints. SAT solvers find a state that satisfies constraints whereas
model checkers find a state of the model, reachable from initial conditions. SAT
reasoning makes no reference to initial states or to transition rules unless they are
included as constraints. SAT solvers have been heavily optimized and have been

standardized [140]. SAT solvers have been used for a variety of automated analysis,

56

including test case generation {149], [213]. Although the SAT problem is known to be
NP-Complete, the use of SAT solvers has been shown to be practical in a wide range

of cases.

SAT4J

The SAT4J SAT solver [158] is an open source solver fully implemented in Java. The
solver has a well-documented API such that the solver can be easily integrated into
other tools. The solver incorporates the architecture presented in [87] and has per-
formed well in SAT solving competitions. The SAT4] SAT solver is used in the pre-
sented research, mostly because of its Java library support and because of its perfor-
mance. The SAT4J solver is used to verify Completeness and Consistency [123, 125], as
explained in Section 5.1, to verify resource consumption, as explained in Section 5.4,
and for test case generation, as explained in Chapter 7. |

SAT solvers and model checkers show similarities in their benefits, namely automa-
tion of the verification procedure and automation of the counterexample generation.
SAT solvers and model checkers also show similarities in their drawbacks, namely the
potential for state space explosion and the resulting intractability of large state space

exploration.

2.8 Case Studies

The research presented in this thesis is evaluated using three case studies from three
relevant domains. The case studies have been selected to reflect the typical embed-
ded real-time systems that are targeted by the research. The first case study, the
Production Cell, comes from the industrial manufacturing domains and is a problem
used to evaluate formal methods in the research community. The second case study,
an Electronic Throttle Controller (ETC), comes from the automotive domain and is
an embedded controller used to optimize fuel consumption in automobiles. The final
case study, the Timeliner Script Executor, comes from the aerospace domain and is

a scripting environment in use on the International Space Station (ISS). This section

57

provides background information about these three case studies.

2.8.1 The Production Cell

The production cell system is an industrial case study that has been used to evaluate
formal methods [163]. The functional aspects of the system have been modeled and
analyzed in details using Abstract State Machines (ASM) in [45]. However, the time
and resource behavior have not been modeled using ASM. The system is based on
an industrial metal processing plant near Karlsruhe in Germany. The production cell
consists of a series of components that need to be coordinated to achieve a common
goal of stamping metal blocks. Blocks come into the system as raw and must leave
the system as stamped. The schematic view of the production cell system is shown in
Figure 2-7. Blocks are introduced into the system via the loader, which puts blocks
on the feed belt. The feed belt carries blocks from one end of the belt to the other.
Once a block reaches the end of the feed belt, the robot can pick up the block and
insert it into the press, where the block is stamped. Once a block has been stamped,
the robot can pick up the block from the press and unload it on the deposit belt, at
which point the stamped block is carried out of the system.

All components operate concurrently and must be synchronized to achieve the
system’s goals. The robot has two arms, arm a and arm b, which are perpendicular,
move in tandem and can pick up and drop blocks in parallel. For example, the robot
can drop a block in the press while picking up a block from the feed. To pick up
or drop a block, the robot arms must extend and magnets attached to each arm
must be turned on and off. A controller coordinates the actions of the system by
using actuators to operate the various components. The original problem definition
includes various safety requirements with respect to the actuators. For example,
blocks must be dropped only in the press and on the deposit belt and nowhere else.
The safety requirements of the original definition are listed in Section 8.1.2.

To make the TASM model easier to grasp, some simplifications and extensions
have been made to the original problem definition from [163]. For example, the

elevating rotatory table has been omitted. The traveling crane has been replaced by

58

Deposit Belt —

B

[-—Ad-'* PSS
Loader Feed Belt

Figure 2-7: Top view of the production cell

59

[Name Type Purpose

motor_press electric motor | operate the press
motor_arma electric motor | extend and retract arm a
motor_armb electric motor | extend and retract arm b

magnet_arma. electromagnet | pick up and drop arm a
magnet_armb electromagnet | pick up and drop arm b
motor_robot electric motor | rotate robot

motor_feed electric motor | activate and deactivate feed belt
motor_deposit || electric motor | activate and deactivate deposit belt

Table 2.2: List of actuators used in the production cell system

a loader, which is a component that simply puts a finite number of blocks on the feed
~ belt. We describe every component in details in following subsections. The controller
reads the state of the various compbnents through a set of sensors and commands the
various components through actuators. The set of sensors is shown in Table 2.4 and

the set of actuators is shown in Table 2.2.

Electromagnet actuators can be on/off. Motor actuators can also be on/off but
also have a binary direction, called polarity. The polarity of the motors determines
the direction of the actuation. For example, setting the polarity of the motor_arma
motor to negative and starting the motor will retract arm a. The combination of

polarities for the motors are shown in Table 2.3.

The switch and photoelectric cell sensors are discrete binary sensors that give
true/false information. The potentiometer sensors return a numerical value. The
model remains faithful to the reality of sensors, actuators, and components. The
controller uses only sensors and internal variables to make decisions. Furthermore,
the controller uses only actuators to command the components. Sensors are read-
only for the controller and actuators are read/write. Each component, other than
the controller, update the values of sensors. Actuators are commanded only by the
controller. This convention is congruent with the controller-environment separation
principle [208].

The original example has been extended to reflect the reality that certain actions
are durative, that is, they take a finite amount of time to complete. For example, the
time that it takes for the press to stamp a block is 11 time units. The example has

also been extended to include a resource, power consumption. For example, turning

60

[Name || Polarity | Meaning

motor_press positive operate the press

motor_press negative | operate the press

motor_arma positive extend arm a

motor_arma negative retract arm a

motor_armb positive extend arm b

motor_armb negative | retract arm b

motor_robot positive rotate robot counterclockwise

motor_robot negative | rotate robot clockwise

motor.feed positive | activate feed belt in the direction
loader to robot

motor_feed negative activate feed belt in the direction
robot to loader

motor.deposit || positive activate deposit belt in the direction
out of system to robot

motor.deposit |[negative activate deposit belt in the direction
robot to out of system

Table 2.3: Behavior of actuators based on polarity

| Name Type Purpose]
robot_angle potentiometer the position of the robot
press_status switch whether the press is busy or not
arma_position || potentiometer how far has arm a extended
armb_position || potentiometer how far has arm b extended
feed_begin photoelectric cell | is there a block at the beginning

of the feed belt

feed_end photoelectric cell | is there a block at the extreme

end of the feed belt

deposit_begin

photoelectric cell

is there a block at the beginning
of the deposit belt

deposit_end

photoelectric cell

is there a block at the extreme
end of the deposit belt

61

Table 2.4: List of sensors used in the production cell system

Component [| Action | Duration | Power |

Loader Put a block on the belt 2 200
Feed Move block 5 500
Deposit Move block 7 500
Robot Rotate 30° 2 1000
Robot Extend arm 3 1200
Robot Retract arm 2 1100
Robot Drop a block 2 800
Robot Pickup a block 3 1000
Press Stamp a block 11 3000

Table 2.5: Durative actions

on the press motor consumes 1500 units of power per time unit while the press stamps

a block. The list of durative actions, with their power consumptions, are shown in

Table 2.5.

All other actions are assumed to be instantaneous and are assumed to consume
no power. The controller actions are assumed to be instantaneous. While these
assumptions do not reflect reality, it is nevertheless reasonable because the timing of
the software is fast enough in relation to the timing of other components. The software
operates on the order of micro seconds while the hardware components operate on

the order of tenths of a second. This simplification is part of the original case study

definition in [163].

Loader

The behavior of the loader is to put blocks on the feed belt. The design of the loader
puts blocks on the belt either continuously or loads a specific number blocks and
stops after the blocks have been loaded. The loader is used as the environmental
component which drives the system. The behavior of the loader is to put a block on
the feed belt as soon as the feed belt is empty, that is, as soon as the robot picks up
a block from the feed belt. This behavior ensures that a block will be available to
the robot as soon as possible so that the robot doesn’t have to wait indefinitely. The
loader also communicates whether or not it is done putting blocks on the belt so that

the controller can take appropriate action.

62

Feed Belt

The feed belt is a simple component that takes a block from the loader to the robot.
The feed belt is activated by the motor_feed motor. If the motor_feed motor is turned
on and its pola.rity is positive, the belt moves from the feed to the robot (left to right
in Figure 2-7). The belt contains two sensors, one to determine whether there is a
block at the beginning of the belt (feed.begin) and one to determine whether there is
a block at the end of the belt (feed_end). Some of the requirements of the belt is that
it be stopped before the loader puts a block on it and that it be stopped before the
robot picks up a block from it.

Robot

The robot is made up of 3 components which operate in parallel - the base, arm a,
and arm b. The base can rotate clockwise and counter clockwise depending on the
polarity of the motor_robot actuator. If the polarity of the motor_robot actuator is
negative, the robot rotates in a clockwise direction in Figure 2-7. The positive polarity
rotates the robot counter clockwise. Requirements on the robot rotation are such that
it shouldn’t rotate while the arms are extended in order to avoid collisions with the
press and the belts.

The rotation of the robot can be controlled at the same time as the two arms. The
two arms can be extended and retracted and their respective magnets can be turned
on and off. The arms differ in their height such that only arm a can pick up from the
feed belt and only arm b can drop blocks on the deposit belt. Furthermore, only arm
a can drop a block in the press and only arm b can pick up a block from the press.
These restrictions are congruent with the original problem definition [163]. The arms
are operated using a motor whose polarity influences the behavior. For example, arm
a can be extended by turning motor_.arma on with its polafity set to positive. Arm
a can be retracted by reversing the polarity. Arm b can be operated in a similar
fashion. The magnets are used to pick up and drop blocks. For example, if arm a is

extended at the feed belt, a block is available at the feed belt, and magnet_arma is

63

turned on, the block is to be picked up by arm a and the feed belt becomes empty.
Blocks remain picked up as long as the magnet is on. Once the magnet is turned off,
the block is dropped. Requirements on the robot arms is that blocks should not be
dropped in places other than the press and the deposit belt.

Press

The press is a simple component that is either busy stamping a block or idle. The
press will begin stamping a block when the motor_press is turned on. The polarity
of the motor does not affect the behavior of the press. The press also contains a
sensor to indicate whether a block is ready or not. While the press is busy stamping
a block, the block is notfinished and the press is loaded. Once the press has finished
stamping the blockl, the block is finished and the press is loaded. There are no safety

requirements on the press other than it should not be turned on when it is empty.

Deposit Belt

The deposit belt is identical to the feed belt, except that its polarity is reversed and
the deposit belt is longer than the feed belt. In the model, the deposit belt is assumed
to “magically” remove blocks from the system once they reach the end of the belt.
The belt should not be turned on when it is empty and blocks should not be dropped
on it when the belt in on. The belt can be turned on using the motor_deposit motor.
When the motor has negative polarity, the deposit belt operates from the robot to
out of the system (right to left in Figure 2-7). If the polarity is reversed, the belt

operates in the opposite direction.

Controller

The controller uses the sensors and the actuators to operate the various components
of the system. There are three core situations that the controller needs to handle.
The first situation is the beginning of simulation, where there are no blocks in the
system. In this situation, the robot shall wait with arm a at the feed belt until a block

enters the system. Once a block enters the system, it should be picked up as soon as

64

possible and loaded in the press. The second situation occurs when there is a block
in the press. In this situation, the robot shall wait for another block to enter the
system through the feed belt. The robot shall also wait for the press to be finished
stamping the block. Arm a shall pick up a block at the feed and arm b shall pick
up the block from the press. When this situation is met, the robot shall be rotated
such that arm a will drop its block in the press and arm b will drop its block on the
deposit belt. Once this has been achieved, the robot returns to the feed and the cycle
resumes. The third situation occurs when there is a block in the press and the loader
is no longer loading blocks into the system. When this situation occurs, the robot
shall wait for arm b to pick up the block from the press and immediately unload it on
the deposit belt. After this situation has occurred, the robot shall return with arm a
at the feed belt and wait indefinitely until the first situation is encountered.

The controller can command all actuators in parallel and read the sensors at any
poiht. The assumption that the controller actions are instantaneous is fair since the
major concern is to ensure that the controller behavior is safe. Adding time to the
controller actions would reduce the parallelism of the controller. The production cell
case study is analyzed using the framework, and the results are provided in Section 8.1.

The TASM model for the case study is provided in Appendix D.

2.8.2 Electronic Throttle Controller

The Electronic Throttle Controller (ETC) is a “drive-by-wire” system that is cur-
rently in use at a major automotive company. The ETC was initially modeled by
Griffiths [111] as a hybrid system using Mathworks’ Simulink and Stateflow [167).
The ETC is used to optimize fuel consumption based on a set of criteria, including
environmental conditions such as temperature and altitude, the state of the vehicle
such as engine RPM and speed, and driver inputs such as cruise control and gas pedal
angle [48]. The throttle controller is a piece of software which sits between the oper-
ator and the engine and replaces the mechanical linkage between the gas pedal and
the engine throttle. The software interprets driver input and operating conditions,

through sensors, to decide on the desired angle of the engine throttle for optimal fuel

65

efficiency.

The throttle angle governs how much air can enter the engine and, consequently,
how much power is produced by the engine. The relationship between throttle angle
and fuel consumption is intuitive. The angle of the engine throttle determines how
much air can go in the cylinder, and hence controls thé volume of the charge. Con-
sequently, the throttle position governs the amount of torque produced. The fueling
system is responsible for injecting an amount of fuel so that, immediately before com-
bustion takes place, the Air-to-Fuel Ratio (AFR) is optimized. More specifically, the
AFR should be stoichiometric (i.e., as close to 14.7:1 as possible for regular fuel) in
order to allow for complete combustion, resulting in optimal efficiency. In order to
optimize fuel efficiency, there are two main parameters to control: the angle of the
throttle and the AFR as commanded by the fuel injectors. The ETC uses these two

outputs to control the behavior of the engine.

Figure 2-8 shows the top level of the ETC model in Simulink, with the two key
outputs — desired current (desired-current) and desired rate of fuel mass (dMfc).
The angle of the throttle is controlled by the amount of current fed to the throttle
servo. The desired current affects the position of the throttle and is determined based
on the position of the gas pedal (as activated by the operator) and other external
parameters (e.g., vehicle speed, Oy concentration in the exhaust, engine speed, and
temperature). The other controller output is the rate of fuel mass (dMfc). The dMfc
value controls how much gas is sprayed in the combustion chamber. That value needs
to be dynamically adjusted to maintain a stoichiometric combustion. The transfer
function that characterizes the relationship between these two quantities (desired
current and dMfc) is non-linear, and the model considered in this case study controls

both factors independently.

The throttle controller uses modes to decide the control laws that govern the
throttle actuation. For example, the throttle controller operates under different modes
that have a priority ordering, depending on environmental conditions such as engine
revolution, traction, cruise control settings, and driver input. The modes define

the desired throttle angle, commanded through a current output from the throttle

66

1 ms_clock é

L 2 fﬁg,etc_nmagef_fa@ e tg_ete_manager_fast
¢ uidg_ste_monitor, fasé*‘mw“ wirig_ste_monitor_fast
-»gortrolier_period T . T : ,
e HiG 81, 68rv0_COMITOl_tast “veu e e aa ™ WG_1C_sEMV0_control_fast
W trig_afr,fag’,i'ngm . ->ing_afr_fast
scheduler wits v tpel_volts
: et 161 O3 e witpg2_volts —
Mé@&?ﬁﬁt—&m:dm i ,m - desired_currantfusges- 20
- ’ £ 4% wglpha_cmd G@Sl{ed_cwrem
vt -
[ttt { -w actual_cument
............. " B
- cruise_set
- ‘
cruise_coast
SE—— cruise_acc
e B o2s
AFR_contro » !
(H mion on_off
yrae
& ,:, e %W
e
Ly
L dmfe Lo » 1
] *map dmi¢
~wPRNDL
~mrake_gwitch
*bp
i wMAF
AT
controlier_software

Figure 2-8: High level Simulink model of the ETC

67

controller.

During nominal operation, the major modes of the controller are grouped into
“driving modes” and “limiting modes”. The limiting modes, defined as undesir-
able environment conditions, take precedence over driving modes. Limiting modes
include “traction control”, where the wheels rotate with too little friction, and “rev-
olution control”, where the engine operates over a predefined threshold of rotations
per minute. The driving modes include “human control”, where the throttle is com-
manded via the gas pedal, and “cruise control”, where the throttle is commanded
based on the desired vehicle speed. The different modes are shown in Figure 2-9,
adapted from [111], represented visually as a Statechart variant. The “XOR” label
indicates mutual exclusion between modes and the “AND” label indicates parallel
composition of modes. The transitions to the “failure detected” mode are not shown
in Figure 2-9 to keep the figure simple. In each mode, a transition to the “failure
detected” is possible. The detection of failure takes precedence over all other modes
and the behavior of the ETC is to gradually decrease the vehicle speed until shutdown

is possible.

Figure 2-9: ETC modes

The modes of the throttle controller determine the desired throttle angle and,
consequently, the amount of current output from the controller. The mode switch-

ing logic, as well as the calculation of the desired current represent the functional

68

behavior of the ETC, dictating what the output should be based on various inputs.
Because the calculation of the dMfc is completely isolated from the rest of the sys-
tem, it is omitted from the case study. The study of the electronic throttle controller
functional behavior, as well as the functional requirements for the ETC are explained
in Section 8.2.

The ETC represents an interesting case study for the proposed framework because
the functional behavior is implemented using a set of tasks and a scheduler. The ETC
implementation is achieved using 3 tasks - a manager task, which sets the major and
minor modes of the ETC, a monitor task, which periodically appraises the health of
the system, and a servo task, which calculates and outputs the desired current based
on the controller mode and the health of the system. The tasks have different periods

and are driven by a scheduler with a 1 ms clock, as shown in Figure 2-10.

Clock
[0k 9] Scheduler

— | l

Task: Task: Task:
Manager Monitor Servo-control
10 ms 30 ms 3ms

Figure 2-10: ETC tasks and scheduler

The scheduler does not support preemption and the tasks have fixed priority. The
monitor task has the highest priority, followed by the monitor task, followed by the
servo task. The scheduling strategy is modeled and analyzed using the framework in
Section 8.3. The model in Section 8.3 contains only the scheduler and tasks and does
not contain any functional behavior. Modeling the system in this way enables the
verification of the scheduling strategy and the functional behavior strategy separately.
In Section 8.4, the functional model and the tasking model are combined into a
composite model through a series of refinements. The traceability approach described
in Chapter 6 is used to demonstrate that properties that were proved separately
about both the functional model and the tasking model are preserved through the
combination. The three TASM models corresponding to these three views of the ETC
are provided in Appendix E.

69

The ETC case study is used to exercise all aspects of the framework. Safety
and liveness properties are verified according to the requirements expressed iu [111].
Timing properties relating to the scheduling facets of the system are also studied. The
model also contains 2 resources, power consumption and memory, which are analyzed
for their best case and worst case conditions. Test case generation is performed based
on the functional model and the tasking model. Finally, the traceability approach
is exercised when combining the functional and tasking models, and is also used for
regression test case generation. The ETC proves to be a interesting case study because

it combines two types of models, functional and time, and utilizes all features of the

framework.

2.8.3 Timeliner Script Executor

The Timeliner system [61] has been developed by the Charles Stark Draper Lab-
oratory, in conjunction with the National Aeronautics and Space Administration
(NASA), as a scripting environment to automate procedural tasks typically performed
by human operators [177]. The system is composed of a high level input language,
a compiler, a run-time system, and a user interface. The system is currently in use
on the International Space Station (ISS) to automate a variety of tasks traditionally
performed by astronauts, including spacecraft operations, subsystem checkouts, and
failure detection [61].

The first component, the Timeliner language, was designed to allow easy defini-
tion of sequencing and control for complex systems. The Timeliner language is a
high level scripting language with control flow based on time conditions and general
Boolean conditions. Programs written in the Timeliner language are called scripts,
and are organized hierarchically in bundles, sequences, and statements. Each step
or decision point in a script is expressed as a series of Timeliner statements. These
statements are grouped together into a Timeliner sequence, and a series of related se-
quences are grouped together into a Timeliner Bundle. The statement, sequence, and
bundle groupings provide an organizational structure, as well as a control structure

for an operator interacting with the system, as shown in Figure 2-11. A Timeliner

70

script contains one or more bundles. A bundle contains one or more sequences and
a sequence contains one or more statements. Bundles and sequences can be active
or inactive. During execution, the Timeliner run-time system executes all active se-
quences in all active bundles. If a bundle is inactive, its sequences are not executed.

In the Timeliner language, there are six general types of statements:

e Block declaration statements — these define the boundaries of bundles, se-

quences, and subsequences
e Timing control statements — these affect timing or flow of execution

o Conditional control statements and their modifier clauses — these allow for spe-

cific conditions that control execution based on general system values

o Action statements — these are used to carry out actions affecting the target

system and support interaction with the operator

¢ Bundle/Sequence Control statements — these are used to manage bundles and

to control sequence execution

o Non-executable statements — these are used for definitions of symbols and re-

serving of local storage.

A sample script is given in Listing 2.1 and other example scripts are given in
Section 8.5. The complete Timeliner language is documented in [177].

On the International Space Station, the Timeliner script executor shares processor
usage with other tasks. The script executor is given a fixed slice of time in which
to execute sequences. One round of Timeliner execution is called a pass. In a pass,
the script executor will sequentially execute all active sequences in all active bundles.
Each sequence executes in round-robin fashion, until a blocking statement is encoun-
tered. Once a blocking statement is encountered, the execution for that sequence
will resume in the next pass, at the blocking statement. Blocking statements include
EVERY, WHEN, and WHENEV ER statements [177]. The execution times of

various Timeliner statements have been heavily studied by the Charles Stark Draper

71

Laboratory [62]. The measures were performed using the Timeliner Testbed, with
version CI_024 of the Timeliner Executor, using an embedded real-time 16MHz Intel
80836sx VME board with an 80387 floating point coprocessor. The execution times
contained in document [62] are used to model the scripts in the TASM language.

Operator Commands:

Bundle Level Control:
HALT o | Bundle X

REMOVE
|
S
STOP
RESUME
T
1

Sequence Level Control:

HOLD AT
JUMP TO

Figure 2-11: Timeliner script organization [61]

The second component, the compiler, translates an ASCII representation of the
language into a form that the Timeliner execution engine can consume. The compiler
additionally supports the independent definition of system data object and command
information, such that Timeliner bundles can interact with a physical system without
the details of the system data formats needing to be embedded within the language.
Lastly, the corhpiler and the execution engine, known as the Executor, are designed
for ease of portability to different platforms. The third component, the Executor,
provides real-time monitoring and control based on the commands and conditions
defined in the Timeliner sequences. A compiled bundle may be installed, executed
and removed independently of execution environment software build. The Execu-
tor supports parallel execution and independent control of multiple bundles, which
themselves may contain sequences that execute in parallel. This execution may be
in either an asynchronous or synchronous manner. The Executor works together
with the final component, the user interface, to provide the ability to precisely track,
view, annotate, and interactively control an executing Timeliner script. Through the
displays, an operator can also monitor the status of and receive messages from ex-
ecuting scripts. Hence sequences can be executed completely autonomously or via

more interactive control.

72

Analysis

Traditionally, the Best-Case Execution Time (BCET) and Worst-Case Execution
Time (WCET) of one pass of the Timeliner script execution were obtained through
manual analysis and through systematic testing. However the timing properties of
Timeliner scripts can be obtain through static analysis. The purpose of using the
TASM language and framework is to determine the BCET and WCET for one pass
of the script executor, for a given script, by taking into account the execution of all
sequences and their potential interference. Determining these times will ensure that
a proper time slice can be selected for the script executor. The selected time slice
should Be large enough to handle the worst-case scenario, but small enough to ensure
optimal processor usage. To analyze the execution times of the Timeliner script ex-
ecutor, a set of sample scripts is modeled in the TASM language. These scripts stem
from a plant controller application. The plant controller application was selected be-
cause it is simple enough to clearly explain the analysis approach but complex enough
to verify interesting properties of the scripts. The details of the plant controller are

detailed in the following section.

Plant Controller

The Plant Controller is a simple Timeliner application where sequences are used
to maintain the cabin pressure and the ambient temperature of a plant between
predefined thresholds. A logical view of the application is shown in Figure 2-12. The
Timeliner script, which contains two sequences, has been obtained from [238]. The
first sequence, TEMP_MONITOR, is used to maintain the temperature of the cabin
between 20 and 25 Celsius degrees. The second sequence, HUMIDITY_MONITOR,
is used to maintain the humidity of the cabin between 40 and 60 percent. The
TEMP_MONITOR sequence is shown in Listing 2.1 and the HUMIDITY_MONITOR
is shown in Listing 8.24. When the temperature is greater than 25 Celsius degrees,
the sequence will command the cooling system to start. When the temperature is

below 20 Celsius degrees, the sequence commands the heating system to start. The

73

variable TRYING_TO_.COOL_SYSTEM is used to notify the HUMIDITY_MONITOR
sequence not to turn off the cooling system if the TEMP_MONITOR sequence needs
it to cool the cabin. The HUMIDITY_MONITOR sequence uses the cooling system
to reduce the humidity of the cabin and shares usage of the cooling system with the

TEMP_MONITOR sequence.

I Temperature] l Humidity. l

Figure 2-12: Timeliner plant application

This Timeliner script is fairly straightforward, but it is useful to demonstrate the
capabilities of the TASM language and framework, notably in terms of execution time
analysis. The analysis of the plant controller scripts is provided in Section 8.5. The

complete TASM model of the scripts is documented in Appendix F.

2.8.4 Motivations for the Case Studies

The three case studies provide an adequate basis to evaluate the proposed frame-
work. The case studies come from three different domains and serve to illustrate the
versatility of the TASM language in modeling different applications from multiple
domains. Furthermore, the combination of the three case studies provides modeling
and analysis of both functional properties and non-functional properties. The pro-
duction cell case study provides an application of medium size where the modeling of

the hardware components remove the need to model the time behavior of the software

74

controller. As explained in Section 2.6.1, this situation occurs because the hardware
components operate on the order of seconds, while the software operates on the order
of microseconds.

The ETC, on the other hand, does not model the time behavior of the environment.
Consequently, the time-based behavior of the controller can be modeled and analyzed,
at the task level. The ETC provides an application of industrial size that stretches the
limits of the analysis capabilities, as explained in Section 8.4.7. Since the application
is adapted from Mathworks’ Simulink and Stateflow, it also serves to demonstrate that
the TASM language can capture the semantics of Stateflow and some of the Simulink
semantics. The ETC also contributes to demonstrate the modeling of scheduling and
tasking alongside functional behavior.

Finally, the Timeliner case study serves to demonstrate modeling at the implemen-
tation code level, with precise timing behavior for individual code statements. In the
Timeliner case study, the time-based behavior of the environment is also abstracted
away and only non-deterministic changes in environment conditions are modeled. The
Timeliner case study is a case study of modest size, but serves to illustrate the test

case generation strategy and how it can be related to implementation code.

2.9 Segue into Chapter 3

This chapter presented background information related to the concepts used in the
subsequent chapters of this thesis. Included in this chapter was information about
real-time embedded systems, software engineering, and the case studies used to eval-
uate the presented research. Extended descriptions of the case studies, with detailed
models and analysis results, are presented in Chapter 8. In the next chapter, Chap-
ter 3, the various components of the engineering framework are presented, alongside

the tool architecture used to implement the framework.

75

THIS PAGE INTENTIONALLY LEFT BLANK

76

Chapter 3

Framework Overview

This chapter presents an overview of the different components of the framework.
Section 3.1 provides the motivations for the features of the framework, in light of
the objectives described in Section 1.1 and in light of the target systems described
in Section 2.1. Overviews of the different components of the framework are given
in Section 3.3. Each component of the framework is treated in detail in subsequent
chapters. This chapter also provides a description of the tool architecture that is used
to implement the framework. This chapter focuses on the capabilities, motivations,
and tool support of the framework while subsequent chapters describe in details the

language and algorithms used to achieve the capabilities of the framework.

3.1 Introduction

The proposed framework pfovides a specification-based approach to system engineer-
ing by rooting engineering activities in a formal yet readable specification language.
The benefits of a specification-based or model-based approach are explained in Sec-
tion 2.3. Furthermore, as explained in Section 2.1, the systems targeted by the pro-
posed framework are reactive embedded real-time systems. The aspects of interest
of these systems include function, time, and resources. Consequently, the proposed
framework provides fhe necessary facilities to model and reason about these three

aspects. Moreover, the proposed framework aims to reduce the high cost of V &

7

V activities by integrating and automating formal verification and test case gener-
ation. The framework also addresses the inherent design paradox of model-based
approaches, described in Section 2.6.1, by providing bi-directional traceability of sys-
temn models from high level models down to the implementation level. The integration
of a formal yet literate specification language, adequate for the target systems, formal
verification, test case generation, and bi-directional traceability provide a unique set
of features not available in other engineering frameworks. As explained in Section 1.1
and in Chapter 2, these features are paramount to tackle the increasing complexity
and associated challenges encountered when engineering the target systems. In the
following section, related frameworks are reviewed, in light of the capabilities of the

framework presented in this thesis.

3.2 Related Work

The need and benefits of model-based development have prompted a variety of lan-
guages and approaches to model embedded systems, as outlined in [49, 230, 231]. In
this section, related tool-supported approaches to real-time system engineering are
reviewed. The comparison between competing offerings and the proposed framework
is performed in the context of high level engineering capabilities. It is important to
note that if a given framework does not currently provide certain capabilities, it is
not necessary due to a shortcoming of the offering, but it is most likely due to the
goals of the given framework and the community to which it belongs. For example,
in the Ptolemy project [55], the focus is put on integrating different computation
models for real-time systems and to provide an overarching simulation environment.
Consequently, it is not surprising that PTOLEMY does not support code generation
since it is not meant as a complete systems engineering solution. Nevertheless, pop-
ular tool-supported engineering aids, however specialized they may be, are included
in this section for comparison with the proposed framework. Offerings which are
not tool-supported and which are not specifically targeted at real-time systems are

omitted. The offerings are compared along different dimensions, and the results are

78

shown in Table 3.1. The specifics of each offering are compared with the offerings
of the proposed framework in subsequent chapters. For example, all of the reviewed
offerings are rooted in a modeling language. These modeling languages are reviewed
as part of the related work in Chapter 4, where the TASM language is described. In
the remainder of this section, competing approaches to the proposed framework are

reviewed, in alphabetical order.

The CHARON language and associated framework and toolkit provide a rich envi-
ronment to incorporate continuous and discrete dynamics for hybrid systems modeling
and simulation [3]. The inbpt language of CHARON is a variant of Statecharts [120],
extended with continuous dynamics and the framework provides facilities for hierar-
chical modeling [6]. The CHARON suite of tools provides rich facilities for simulation
of hybrid systems, including graphing facilities to visualize time-dependent behavior
of continuous dynamics. The CHARON tool suite also includes a verifier, called re-
quiemn, which is used to explore the state space of CHARON models [4] in a model
checking fashion. The primary focus of CHARON is the modeling, simulation, and
verification of hybrid systems. HyTech is a symbolic model checker for linear hybrid
automata [127]. HyTech’s focus is primarily on modeling and verification through

symbolic manipulation techniques.

The IF toolset [52] is an integrated toolset for the design and analysis of real-time
systems. The IF toolset uses the Unified Modeling Language (UML) and the System
Design Language (SDL) as its input specification language. The toolset translates the
input languages to their own version of timed automata for analysis purposes. Recent
developments have included the development of semantics for both UML and the feal-
time profile of UML [182] as part of the Omega project [178]. The IF toolset contains
facilities for test case generation and for code generation and provides an offering
similar to the framework presented in this thesis. The core differences revolve around
the input languages, which are compared in Section 4.1, and in the lack of traceability
and refinement concepts. Furthermore, the analysis capabilities of the IF toolset do
not include execution time analysis and resource consumption analysis. Mathworks’

Matlab, Simulink, and Stateflow provide a rich set of facilities for modeling and

79

simulating hybrid systems [167]. Matlab is one of the success story of model-based
engineering since it is heavily used in the embedded system industry. One of the
drawbacks of Matlab is its lack of analysis capabilities beyond simple syntax verifying,

type checking, and model completeness.

The PTOLEMY project and associated tool environment aims to develop a generic
environment for simulation of timed systems [55]. The input language of Ptolemy can
incorporate disparate computation models for the sake of hybrid system modeling and
simulation. While PTOLEMY enables the integration of disparate computing models,
its focus is not on system engineering. On the other hand, the Specification Tools
and Requirements Methodology (SpecTRM) [160] is a suite of tools that incorporate
notions of safety engineering, system engineering, and intent specification [161]. At
the time of the writing of this thesis, SpecTRM contained rich facilities of system
level modeling and simulation in the form of requirements, but did not yet contain
facilities for software engineering activities. Consequently, the framework proposed

in this thesis could represent a suitable complement to SpecTRM.

In the modeling and analysis of embedded real-time systems, the visual formalism
Statecharts [120] and its associated tool STATEMATE [122] represent one of the
early formalisms applied to real-time system engineering [91]. Statecharts have been
heavily used in various domains and numerous semantics have been suggested and
adopted in different communities [122]. STATEMATE has transitioned to industry
and has become a rich tool suite for embedded systems engineering, which contains
facilities for test case generation and for code generation [121]. STATEMATE does
not contain refinement and traceability facilities and its input language, Statecharts,
belongs to a difference class of languages than the TASM language. The two languages

are compared in Section 4.1.

The Timed Input Output Automata (TIOA) is a language and mathematical
framework for the modeling and analysis of hybrid systems [147]. The framework
has been implemented through a set of tools using the PVS theorem prover and
the UPPAAL tool suite for analysis [171]. More recently, the Tempo language and

associated toolkit have been developed on top of the TIOA formalism [165]. The

80

main focus of the TIOA framework and associated language and toolset has been on
the composition semantics and proof methods to ensure correctness of TIOA models,
their composition, and their refinements. TIOA’s rich semantics and flexible analysis
capabilities could serve as an analytical basis for integrating continuous behavior with
the TASM language. By expressing TASM semantics using TIOA, hybrid systems
modeling and verification could be incorporated in the framework. This option is
investigated in Chapter 9 as part of future work. At the time of this writing, the
TIOA toolkit and the Tempo toolset did not contain facilities for test case generation
or code generation.

The UppaAL tool suite utilizes a variant of networks of Alur-Dill automata ex-
tended with finite variables, data structures, communication channels, and urgent
and committed locations [29]. The UPPAAL tool suite is comprised of an editor, a
simulator, and a sophisticated verifier which explores the state space of the timed
automata networks using TCTL [24]. Efforts have been undertaken to develop en-
gineering solutions on top of UppaAL , namely the TIMES toolset, which is a toolset
to describe a scheduler and a set of tasks that can be analyzed for schedulability
and synthesized to an implementation in C [9]. Furthermore, the COVER toolset is
a tool to generate test cases based on networks of timed automata [128]. However,
these separate offerings are not integrated into a cohesive offering and UpPAAL remains
largeiy an analysis engine, a model checker for timed automata, with various special

purpose tools developed on top of it.

3.3 Capabilities

This section provides an overview of the capabilities of the presented framework.
The capabilities include modeling and simulation facilities for the target systems,
static analysis of system models, bi-directional traceability of model features, and
automated test case generation. Each subsequent section provides an overview of the
different capabilities and provides forward pointers to following chapters describing

the features in details.

81

Name Hybrid | Simulation Model Other Traceability | Refinement | Test Case | Code
Model. Checking | Analysis Gen. Gen.

TASM X x x x X x

CHARON x x x x

HyTech X x X

IF . X X X X b

Matlab/ X x x x

Simulink

Ptolemy X x

SpecTRM X x x x

STATEMATE x X X

TIOA /Tempo X x X X X

UPPAAL X X X X

Table 3.1: Comparison of the proposed framework with other frameworks for embed-
ded real-time systems engineering

3.3.1 Modeling and Simulation

- The proposed approach to real-time system engineering promotes the use of models
in all phases of the engineering lifecycle. More specifically, models are used as the
primary abstraction to capture desired system behavior. During different lifecycle
phases, modeling occurs at different levels of abstraction, as depicted in Figure 2-
4. Consequently, an appropriate modeling language should be versatile enough to
express system behavior at different levels of abstraction. Furthermore, the notion
of system is a generic notion which can include environment behavior depending on
where the system boundary is drawn. As a result, an appropriate modeling language
should also include facilities to define the systerh boundary arbitrarily, depending on
the system being engineered, and to include the modeling of environment behavior
as needed. In the rest of this thesis, the term system is used to describe the behavior
captured in the specification of the system, which may or may not include a subset

of the behavior of the environment.

In the proposed framework, models are expressed using the Timed Abstract State
Machine (TASM) language, a novel specification language whose syntax and seman-
tics are described in Chapter 4. The TASM language is an extension of the theory
of Abstract State Machines (ASM) [42], adapted for the specification of embedded
real-time systems. ASMs provide a readable specification language that can model

behavior at various levels of abstraction [41], and includes a generic theory of re-

82

finement [43]. ASMs provide a flexible and generic computing model that can easily
be tailored to suit a particular purpose. The TASM language extends the theory of
Abstract State Machines by adapting the language to the specification of the target
systems.

Because the systems targeted by the research are embedded real-time systems,
functional and non-functional properties are an integral part of the system’s cor-
rectness, as explained in Section 2.1. Consequently, the modeling of non-functional
properties is an important feature of the proposed framework. The non-functional
properties that can be expressed in the TASM language are time and reséurce con-
sumption, two concepts which are added to the theory of ASMs. Because the TASM
language describes behavior as the computing steps of an abstract machine, models
expressed in the TASM language are executable by definition, a desirable property of
system models [98]. The simulation capabilities of the proposed framework include the
specification of environment behavior, encoded in the TASM Ianguage. Furthermore,
scenarios depicting different initial conditions are an integral part of the simulation
strategy. The details of the TASM language, alongside illustrative examples, are given
in Chapter 4.

While the modeling and simulation of system behavior provides a practical and
insightful approach to system engineering, using solely modeling and simulation to
gain insight into system behavior can be error-prone since it relies heavily on the
intellectual prowess of the user [135). Consequently, the ability to perform analysis of
system models is an important companion to simulation. The proposed framework

provides a rich set of verification capabilities, as explained in the following section.

3.3.2 Static Analysis

The modeling facilities of the framework and the TASM language center around the
expression of functional behavior, time, and resource consumption. The analysis capa-
bilities include automated analysis of functional behavior in the form of completenéss
and consistency, two important properties of system specifications [123, 125). These

two properties are formally defined in Section 5.1 in the context of the TASM lan-

83

guage and a verification approach is provided to automatically analyze the complete-
ness and consistency of TASM specifications. Furthermore, because the verification
approach includes model checking facilities [67], verification of functional properties
using temporal logic formulas [212] is provided by the framework. More specifically,
formal verification of the safety and liveness of TASM specifications, using a subset
of Timed Computation Tree Logic (TCTL) [244], is achieved by reusing the UppaAL
tool suite, as explained in Section 5.2.

The framework provides a rich set of analysis capabilities for functional properties,
but also addresses the analysis of time and resource consumption. The analysis of
timing properties includes the automated derivation of Best Case Execution Time
(BCET) and Worst Case Execution Time (WCET'), using an approach called sterative
bounded liveness, as explained in Section 5.3. The analysis of resource consumption
properties includes the automated derivation of best case and worst case resource
bounds for a given TASM model. Together, the analysis facilities comprise a set
of algorithms and approaches to verify properties of the three key aspects of target
systems, namely function, time, and resources. The complete analysis capabilities of

the presented framework are explained in Chapter 5.

3.3.3 Bi-Directional Traceability

Because modeling typically happens at different levels of abstraction, ensuring con-
sistency between different models can greatly enhance model maintenance {138]. Fur-
thermore, the benefits of traceability between levels of abstraction has been discussed
in Section 2.6.1, in terms of visualizing the propagation of design assumptions and
the propagation of changes, and in terms of ensuring notions of equivalence between
models. The traceability approach provided by the framework integrates notions of
syntactic change with facilities to ensure semantic integrity between models. The
integration of these two properties is an often overlooked problem in pure theories of
refinement [43]. The bi-directional traceability capabilities provided by the framework
supply a set of common refinement types that can explain the differences between two

models. The two models are related syntactically by mapping the features of the mod-

84

els, achieving -traditional notions of traceability [217]. The traceability approach can
be used to track syntactic changes between models and to follow the propagation of
changes and assumptions.

Furthermore, the traceability approach provided by the framework complements
pure syntactic mappings with notions of semantic equivalence. For each type of re-
finement used to explain the differences between models, a set of correctness criteria
are provided. If these correctness criteria hold for the refinement, a notion of semantic
equivalence is guaranteed between the two models. The specific notions of seman-
tic equivalence are explained in Section 6.2.2, for each type of refinement. The key
idea behind the semantic equivalence approach is to reduce the verification activities.
More specifically, if verification was performed on a given model, and this model is
refined and traced using the proposed approach, verification results will hold in the
refined model if the correctness criteria are met for the refinement. Consequently, ver-
ification performed on models before they are refined does not need to be repeated in
refined models, reducing the total amount of verification that needs to be performed.
In summary, the proposed approach to traceability provides bi-directional traceabil-
ity so that the effects of assumptions and changes can be propagated top-down or
bottom-up, verification results can be reused, and regression test cases can be gener-
ated, as explained in the following section. The traceability approach is explained in

Chapter 8.

3.3.4 Test Case Generation

Simulation and static analysis of system models provide practical and insightful means
to gain insight into system behavior. However, model simulation relies on the intel-
lectual discipline of the end-user to provide all necessary scenarios to exercise the -
relevant system behavior. This situation can lead to important simulation scenarios
being overlooked. Furthermore, while formal analysis provides mathematical guaran-
tees that a model has certain properties, scalability remains a hurdle of automated
formal analysis approaches such as model checking [69, 117, 124]. Consequently,

simulation could lead to error-prone validation and formal verification might not be

85

feasible on complex models. Nevertheless, simulation provides a lightweight and in-
tuitive approach to validation while automated formal analysis is desirable when it
can be applied. Given the limitations of simulation and of formal analysis, other
means of ensuring confidence into the system are necessary as a complement. In the
engineering community, the main V & V activity remains testing, in the form of unit
testing, integration testing, and regression testing [242]. For safety-critical systems,
testing is mandatory for certification and requires that the testing approach exercises
the system to a given level of coverage [216].

In a sense, testing resembles simulation since it involves devising a scenario and
observing the response of the system. However, the construction of test cases can be
done systematically, to exercise the system under test to a certain degree of confi-
dence. The presented framework provides facilities for the automated generation of -
test cases for unit testing, integration testing, and regression testing. The approach
to automatically generate test cases uses novel algorithms that utilize TASM models
to derive test cases for unit and integration testing, using the rule coverage criterion
from the ASM community [103], as explained in Section 7.2. Furthermore, the frame-
work uses the bi-directional traceability approach to identify the effects of changes at
different modeling levels, so that regression testing can be automated, as explained

in Section 7.6. The approach to generate test cases is described in Chapter 7.

3.4 Tool Architecture

The features of the framework are implemented in the TASM toolset [200]. The
TASM toolset uses literate and graphical facilities to create, edit, simulate, and ana-
lyze TASM specifications. The toolset is comprised of multiple components, divided
into front-end components, back-end components, and 3rd party analysis engines, as
depicted in Figure 3-1. The TASM toolset is completely written in the Java program-
ming language, and uses the Eclipse [183] graphical libraries for the Graphical User
Interface (GUI). The TASM toolset can be used on Windows XP and Vista and on

Linux. The TASM toolset is an open source project which is available, free of charge,

86

from the TASM web site [88].

Front-End Back-End 3rd Party Analysis Engines
TASM Editor
GUI Parser
. UPPAAL Tool
Syntax Verifier Suife
TASM - Simulator Simulator
GUI
Translator SATA4JSAT Solver
TASM Analyzer '
o e
TASM Model File UPPAAL Model UPPAAL Query SAT DIMACSFile
* tasm File * xml File *q *.sat

Figure 3-1: Architecture of the TASM toolset

3.4.1 Front-End Components

The front-end components of the toolset include facilities for creating and editing
TASM specifications, through the TASM Editor. The editor enables the specifica-
tion of functional and non-functional behavior, with standard facilities for syntax
highlighting and syntax checking. The TASM Simulator enables the graphical vi-

sualization of the dynamic behavior expressed in the specification in a step-by-step

87

fashion. Because time and resources can be specified using intervals, that is, using a
lower bound and an upper bound, the simulation can use different semantics for time
durations and resource consumption. For example, a given simulation can use the
worst-case time (upper bound) for all steps, to visualize the system behavior under
the longest running times. Other options include best-case time, average-case time,
and using a time non-deterministically selected from the specified interval. The same

semantics can be selected for the resource consumption behavior.

The TASM Analyzer is the component of the TASM toolset that performs anal-
ysis of specifications. The analyzer can be used to verify basic properties of TASM
specifications such as consistency and completeness [123]. In the TASM language,
completeness ensures that for all classes of monitored variable values, a rule will be
enabled. Consistency ensures that for all classes of monitored variable values, one
and only one rule is enabled. In other words, verifying consistency means verifying
that the rules of a given machine are mutually exclusive. Both completeness and
consistency are verified at the machine specification level. The analyzer GUI pro-
vides intuitive feedback to the user so that if a machine is incomplete or inconsistent,
a witness counterexample is automatically generated from the back-end components
and displayed to the user. The analyzer also provides the ability to export the com-
pleteness and consistency problems to a flat file, using the DIMACS file format, which
is a standardized file format for SAT solver input [158].

The TASM analyzer also provides graphical facilities to verify the execution time
of TASM models. The execution time is verified by mapping TASM specifications
to the timed automata formalism of UppaAL . The analyzer also provides facilities
for exporting the generated UppAAL model so that the model can be used for further
analysis such as functional verification using temporal logic formulas. The derivation
of minimum and maximum resource consumption is also provided by the TASM

analyzer through a GUL

88

3.4.2 Back-End Components

The back-end components of the TASM toolset provide most of the facilities available
in the Graphical User Interface (GUI). The parser is responsible for loading and saving
the TASM model to disk, using the “*.tasm” file format whose context-free grammar
is available in Appendix A. The syntax verifier is used to ensure that errors in
the rh_odels can be easily identified in the TASM editor through syntax highlighting
and detailed error messages. Once the syntax has been verified to be free of errors,
the simulator can explore various behaviors of the TASM model, through step-by-
step analysis and different initial conditions specified through the TASM simulator.
The simulator provides a rich interface, including the list of generated update sets,
the history of resource consumption, and the values of internal and external state

components.

The analyzer is the bridge between the GUI and the 3rd party engines. The
analyzer provides all of the necessary facilities so that a user of the toolset is unaware
that 3rd party engines are used in the analysis procedure. The analyzer provides a
rich interface to the TASM analyzer GUI so that feedback can be provided to the
toolset user in an intuitive fashion. The back-end analyzer achieves its tasks by
translating TASM models through the back-end translator. The translator is the
back-end component use;d to map between the TASM syntax to the syntax of 3rd
party engines. The translator understands the 4 main file formats used in the TASM
toolset, namely the TASM file format (*.tasm), the DIMACS file format (*.sat),
the UppAAL model file format (*.xml), and the UppaAL query file format (*.q). The
DIMACS file format is the standard input format of SAT solvers, including the SAT4J
SAT solver. The UppaaL tool suite uses its own version of XML as its input format
and saves temporal logic formulas in a separate file, called the query file (*.q). The
translator juggles these different formats to provide the necessary facilities to the

back-end analyzer and to provide import/export capabilities to the analyzer front-

end.

89

3.4.3 3rd Party Engines

The analysis of completeness and consistency is achieved by translating machine rule
guard expressions into a Boolean formula in conjunctive normal form [192]. The
Boolean formula can then be verified for satisfiability using a SAT solver. The TASM
toolset uses the SAT4J solver, an open source SAT solver [158]. The completeness and
consistency problem is formulated in such a way that an incomplete or inconsistent
specification leads to a satisfiable Boolean formula. Formulating the problem this
way ensures that the SAT solver can automatically generate a counterexample if the
speciﬁcation is inconsistent or incomplete. The SAT4J solver is a Java-based solver
which can be integrated seamlessly into any Java application. The TASM toolset pro-
vides the option to solve the completeness and consistency problems directly, without
requiring the user to know that the speciﬁcatibn is being translated to SAT . Because
the input format of SAT solvers is standardized, the TASM toolset provides the capa-
bility to export the generated SAT problem, so that the problem can be analyzed and
solved outside of the toolset. The mapping SAT4J SAT solver is also used to obtain
minimum and maximum resource consumption.

The Analysis of execution time is achieved with the UppaaL tool suite. The UppaAL
tool suite is also written in Java, but is not an open source project. Furthermore, the
UppPAAL tool suite does not have a public interface that can be used to manipulate
UppAAL models programmatically. However, UPPAAL contains an official library to
manipulate the XML model file. The UppAAL verifier is the component of UppPAAL
used to explore the state space of the timed automata model and contains a published
interface to load connect, load models, and execute temporal logic queries against the

model.

3.5 Segue into Chapter 4

In this chapter, an overview of the framework was presented, including high level
descriptions of each component of the framework. Furthermore, the tool architecture

used to realize the framework was presented. Each component of the framework is

90

treated in-depth in the following chapters. The next chapter, Chapter 4, describes
the language that is used as the specification basis for the framework, the Timed

Abstract State Machine (TASM) language.

91

THIS PAGE INTENTIONALLY LEFT BLANK

92

Chapter 4

The Timed Abstract State

Machine Specification Language

This chapter describes the Timed Abstract State Machine (TASM) language, the
modeling language which serves as the specification basis for the presented framework.
The TASM language an extension of Abstract State Machines (ASM) to include
facilities for specifying time and resource consumption. This chapter presents the
motivations for the choices of the concepts included in the language, in light of target
systems and related work. The syntax and semantics of the TASM language are
presented, accompanied by an illustrative example to explain the concepts as they
are introduced. The descriptive example concerns the behavior of a light and fan

controller and is detailed in Section 4.1.5.

4.1 Related Work

This section presents a large body of related work concerning the design of the TASM
language. The following subsection presents a review of usability concepts for speci-
fication and modeling languages, as support for the usability potential of the TASM
language. Since the TASM language is an extension of ASM, a brief overview of
ASM is presented, with related work concerning the inclusion of time in the ASM

formalism. An overview of the main features of the TASM language are provided, in

93

order to qualify the differences between TASM, ASM, and related formalisms. The
overview serves as an introduction to the motivations and features of the TASM lan-
guage before the language is explained in details in Section 4.2 and in Section 4.3.
Finally, this section concludes with a comparison of TASM with other popular for-
malisms used for the modeling and analysis of embedded real-time systems, for the

frameworks presented in Section 3.2.

4.1.1 Usability of Specification Languages

The term “Formal Methods” has historically been used to designate an approach
to system specification based on rigorous mathematical principles with an associ-
ated proof system to mathematically reason about properties of the system under
design (225, 248]. The benefits of formal methods have been heavily documented,
including specifications which are unambiguous and the ability to uncover defects
during the early phases of the engineering lifecycle [50, 117]. However, the mathe-
matical nature of early efforts in the formal methods community have yielded a set of
languages and proof systems that were challenging to use by practitioners not versed
in mathematics or computer science {71, 124]. But the benefits of unambiguous spec-
ifications, combined with the ability to detect defects early in the engineering cycle
have provided a value proposition attractive to practitioners. Consequently, efforts
have been made to combine the rigor of formal methods with a specification language
that can be readily used by practitioners [162].

The topic of “usability” of a specification language is a highly subjective sub-
ject and depends heavily on the experience of the specifier and on the quality of
the tool supporting the specification activities. Nevertheless, some basic notions of
readability of specification languages have been established in the literature [146].
The term literate is used to denote a specification that can be read, like the English
language [151]. Textual languages are traditionally more readable than graphical no-
tations such as statecharts, which can become cluttered, counterintuitive, and have
no clear starting point and end point for reading purposes [258]. The TASM lan-

guage was designed with readability in mind by avoiding the use of special symbols,

94

keeping the syntax minimal, and providing abstraction mechanisms to structure spec-
ifications [124, 146, 240]. Furthermore, in terms of real-time system specification, the
language makes the expression of timing concepts explicit, a desirable property of
real-time languages [254]. While no controlled experiments were conducted to inves-
tigate the usability of the TASM language, the principles of literate specifications were
maintained during the design of the language. Furthermore, since the TASM language
is based on ASM, the usability of TASM can be inferred from the past successes of
ASM in terms of readability [41]. Experience with industrial contacts, with fellow
undergraduate and graduate students, and with presentations of the TASM language
in various communities have served to reinforce the assumption that the TASM lan-
guage is a literate specification language which can be used and understood by almost

anyone who has basic programming proficiency [42].

4.1.2 Abstract State Machines

Abstract State Machines (ASM) provide an approach to specify, analyze, and verify
hardware and software systems at different levels of abstraction [42]. The motivations
and benefits of using Abstract State Machines (ASM), formerly known as evolving
algebras, for hardware and software design have been documented in [41]. On the
practical-side, ASMs have been used successfully' on a wide range of applications,
ranging from hardware-software systems to high level system design [42, 47]. ASMs
have also been shown to be scalable to industrial size systems [46]. Furthermore, there
is enough evidence to believe that ASMs provide a literate specification language, that
is, a language that is understandable and usable without extensive mathematical
training [71], as explained in Section 4.1.1. The preliminary evidence supporting the
ease-of-use of ASMs revolves around the small size of the syntax, the simplicity of
the semantics, and the avoidance of extraneous mathematical symbols. Moreover,
the semantic distance, that is, the amount of effort required to translate between one
model to another, for example between a design specification and an implementation,
appears to be “small” for ASMs. The term “small” is used in comparison to other

formalisms that are predominantly visual (e.g., timed automata) [258] or that make

95

heavy use of mathematical symbols (e.g., process algebra).

On the theoretical side, ASMs have well-defined formal semantics, which makes
ASM specifications unambiguous and subjectable to formal analysis. ASM specifica-
tions are also independent of a specific verification method and can be verified either
through manual proofs or through automated tools [249]. Furthermore, ASM theory
was developed as a methodology for high level system design [42]. Consequently, re-
finement, or the process of gradually adding details to a system design, is an integral
part of the theory, which makes ASMs applicable at various levels of abstraction.
Finally, ASM specifications are executable, a useful property in the construction and
validation of specifications [98]. The anecdotal evidence supporting the success of
the ASM method [41] suggests that tailoring the formalism to the area of embed-
ded real-time systems could achieve similar benefits. Abstract State Machines have
also been used to automate engineering activities, including verification using model

checkers [249] and test case generation [110].

The TASM language is an extension of Abstract State Machines (ASM), with fa-
cilities to specify time and resource consumption. The subset of ASM included in the
TASM language is the same as explained in [249], which includes conditional state-
ments and assignments, but excludes the forall construct and the choose construct.
The forall statement is excluded because the duration of this construct depends on
dynamic conditions and cannot be statically assigned. The choose construct is omit-
ted for similar reasons because it is counterintuitive to assign a static duration to
non-deterministic choice. The TASM language also excludes the import construct be-
cause safety-critical real-time systems discourage dynamic allocation. The omission
of these three constructs is not too restrictive since many ASM specifications have
not used these constructs, e.g., the production cell system in [45]. The concepts of
Abstract State Machines (ASM) revolve around the concepts of an abstract machine
and an abstract state. For an ASM, behavior is specified as the computing steps of
the abstract machine and its effects on the abstract state. More specifically, the dy-
namic behavior is expressed through the machine executing a step, which corresponds

to a group of atomic updates made to global state. An update set is the term used

96

to describe the set of atomic updates that are associated with a single step. A run of
an ASM, is a sequence of steps, that is, a sequence of update sets. The global state
after each step can be obtained by applying individual update sets sequentially.

The syntactical structure of a machine in the TASM language is an ASM in
canonical form, also called an ASM in block form [110]. In this form, a machine is
structured into a finite set of rules, written in precondition-effect style. Conceptu-
ally, block form is convenient for structuring specifications and analysis but it is not
necessary since any ASM can be converted to block form by introducing a program
counter variable [110]. For an ASM that contains n rules, a machine in block form

has the following structure:

Rl = Lf G1 then E] ,
Ry=if Gythen By | (4.1)

R, =if G, then E,

The guard G; is the condition that needs to be enabled for the effect of the rule,
E;, to be applied to the environment. The effect of the rule is grouped into an update
set, which is applied atomically to the environment at each computation step of the
machine. In the ASM community, ASMs have been used to model specific examples of
real-time systems [44, 72]. Some extensions have been proposed to the ASM theory to
include timing characteristics (221] but the extensions make no mention of how time
is to be specified (only the theoretical semantics are proposed) and do not address
concurrency. Related work from the ASM community concerning using ASM to

specify and analyze embedded real-time systems is reviewed in the following section.

Time in Abstract State Machines

The proposed approach to incorporate time in the Abstract State Machine (ASM)

formalism incorporates concepts from a variety of previous approaches from the ASM

97

community. In the ASM community, related work has revolved around two main
paradigms: instantaneous actions with time constraints, also called timed ASMs [72],
and durative actions [44]. In timed constrained ASMs, all actions are instantaneous
but rule guards can contain predicates over an external function called currtime,
which denotes a wall clock. The currtime function is a monotone function which
takes no argument and returns a value fromk the Reals domain. This approach has
been used to specify and analyze real-time concurrent algorithms such as the railway
crossing problem [22] and the Kermit protocol [136]. This approach is well-suited
for declarative specification and for event-based systems where the temporal dura-
tion between events is the primary representation of timed-based behavior. However,
the systems targeted by the TASM language are naturally specified using a duration
paradigm. The approach presented in this thesis also contains a function analogous to
the currtime function, called now, but the function is not an external function, moti-
vating the use of a different name. The underlying semantics of the currtime function
are highly dependent on the moves of agents being durative since time progression
is determined through agent actions. In timed ASMs and related approaches, the
concept of time is an external function that is not part of the system behavior [114].
The progression of time is dependent on the rule guards and not on the actions of

the specified system.

In contrast, the TASM language proirides facilities to specify the duration of ac-
tions performed by the specified system. A similar approach using durative actions
has been used in [44] to analyze Lamport’s bakery algorithm. In this approach, an
untimed version of the algorithm is presented and is refined with durative actions.
The refinement is shown to preserve the correctness of the untimed version. The ap-
proach is based on asynchronous ASM and the notion of partially ordered runs [115].
The durative moves are specified to occur during an open real interval (a, b) where a
and b are time values on the global time axis. Using the time specification, the moves
of agents are ordered linearly and the requirements of partially ordered runs are ex-
tended to include conditions for overlapping moves. The approach presented in [44]

provides no structured syntax to capture the duration of actions and the analysis of

98

the specification relies on creative proof methods. Furthermore, the moves of agents
are specified on the global time axis instead of in terms of relative duration of moves,

as used in TASM.

The approach adopted in the TASM language follows a durative action paradigm
but specifies moves of agents in terms of relative durations of moves. The duration
of a run is thus related to the summation of the moves of agents. Furthermore, the
concurrency semantics in the TASM approach is related to synchronous multi-agent
ASMs [47] since the moves of agents are synchronized using a global system clock.
In the TASM language, there are no external functions that are not controlled by
an agent of the specification. External functions are included into the behavior of
agents that represent the environment. While the lack of external functions might
seem counterintuitive to model embedded controllers, the external functions have
been replaced by functions controlled by agents representing the environment. In
this way, the system can be simulated completely without the need to hardcode the
values of external functions since the values in the environment can depend on the
behavior of the system. The TASM approach resembles the real-timé controller ASM
approach where runs are extended with state changes that occur at computationally
significant real-time moments [72]. However, the computation of the significant real-
time moments is a result of the actions of agents and is not determined a priori, as is

the case in [72].

The key difference between the Timed Abstract State Machine (TASM) language
and ASM is that steps are durative in TASM. In ASM, machine steps are instan-
taneous. Furthermore, in TASM, durative steps can consume a finite amount of
resources. In the case of single agent specifications, the durative steps of the agent
dictate the progression of time in the specification. In the case of multi-agent specifi-
cations, the durative steps are used to synch;onize agents with respect to one another.
In TASM, a step is the execution of a rule, which produces an update set. The update
set is applied atomically to global state. For the single agent case, the duration of
the step, reflected in the update set obtained through a rule execution dictates the

progression of time. At the completion of a step, the environment is updated by

99

applying the update set once the step duration has elapsed.

The concept of step is fundamental in the definition of ASM and in computation
theory in general since a step defines the atomic unit of progression of an abstract
machine. In TASM, the concept of step is augmented with a duration and a set
of resources consumed during the step execution to capture the physical reality of
embedded real-time systems. This abstract model adequately captures the physi-
cal reality of computer systems where steps are typically rarely instantaneous. The
durations and resource consumptions can be easily modified to capture behavior at
different levels of abstraction, to document system assumptions, and to relate mod-
els at different levels of abstraction, including non-atomic refinement. In concrete
computer systems, the notion of step varies depending on the level of abstraction.
For example, a step could be considered a clock cycle, a machine operation, or a
statement execution in a high level programming language. Throughout this chapter,
the terms step, rule execution, move of an agent, and action of an agent are used

interchangeably.

The composition extensions for ASMs presented in this chapter are based on the
XASM language [10]. However, the XASM language does not include time or resource
specification and only deals with single agent ASMs. The specification of resource

consumption has not been addressed in the ASM community.

The systems that are targeted by the TASM language are embedded real-time
systems. These systems include embedded controllers that monitor the environment
periodically, through sensors, and take action on the environment through actuators.
The important characteristics of such systems is that the values of sensors as read by
the system are directly related to the actions taken by the system. Consequently, the
behavior of the environment, typically represented as ezternal functions in previous
ASM approaches [72], cannot be hardcoded a priori since they depend on the actions

of the controller. More information about target systems is available in Section 2.1.

100

4.1.3 The TASM Language

At a high level, the concrete syntax of the TASM language extends the block form
of equation 4.1 to include time and resource consumption. The specification of time
and resource consumption is achieved through annotations of individual rules. The
concrete syntax of TASM resembles the ASM syntax presented in [104], with exten-
sions for time and resource annotations. To illustrate these concepts, a sample rule of
a block TASM is shown in Listing 4.1, expressed in the concrete syntax of the TASM
language. The rule describes the behavior of the feed belt from the production cell
case study [163]. For a description of the production cell system and a graphical rep-
resentation of its layout, the reader is referred to Section 2.8.1. The feed belt carries
blocks from the loader to the robot. According to the description of the system, mov-
ing a block from the loader to the robot takes 5 time units and consumes 500 units of
power. Listing 4.1 shows the rule with the time and resource annotations. The line
numbers are not part of the specification and are added to ease the description of the

listing.

Listing 4.1 Rule 1 of machine Feed

1 R1: Block goes to end of belt

2: A ‘

3 t 1= b

4 power := 500;

5:

6: if feed_belt = loaded and feed_begin = True and

7 motor_feed = on and motor_feed p = positive then
8 feed_begin := False;

9: feed_end := True;

10: }

In Listing 4.1, line 1 contains the name of the rule, line 3 contains the time annota-
tion, line 4 contain a resource annotation, line 6 and 7 contain the guard G of the rule,
and lines 8 and 9 contain the effect expression E of the rule. Semantically, rule R;
will be enabled when the guarding condition evaluates to True and when the machine
is not busy executing a rule. When rule R; is executed, the machine will be blocked
from executing other rules for 5 time units, at which point the effect of executing

the rule will be applied to the environment. Furthermore, during the 5 time units of

101

the rule execution, 500 units of power will be consumed. While a machine is “busy”
executing a rule, other parallel machines, if present, can execute rules in overlapping
time intervals and the durations of their rule executions determine the synchroniza-
tion of parallel update sets. The semantics of rule execution are such that a rule is
executed based on the state at the beginning of the rule execution. These semantics
are congrueﬁt with the target systems described in Section 2.1, which “cache” the
state read through sensors before making a decision about the output. Furthermore,
the TASM language uses relative duration at its time specification paradigm, in the
form of rule execution times. While the semantics of the TASM language could be
expressed using timed constrained ASM [114], the TASM language provides a concise
and readable notation to express the desired behavior of the target system. A map-
ping between the TASM language and ASM is provided in Section 4.4. The syntax
of the TASM language is explained in detail in Section 4.2 and the semantics are

explained in Section 4.3.

4.1.4 Other Specification Formalisms

In the academic community, numerous mathematical formalisms have been proposed
to specify and analyze real-time systems. The most popular formalisms developed
in academia can be classified into three main families: automata, process algebra,
and Petri nets [33]. These three families are reviewed and the languages of the
related frameworks described in Section 3.2 are compared to the TASM language,
with comparison results presented in Table 4.1.

In the automata family, timed automata are finite state automata extended with
real-valued clocks and communication channels [5]. The formalism has been used on
a variety of applications and is the formalism used in the UppPAAL tool suite [157]. The
formalism is well-suited for analysis by model-checking, but the lack of structuring
mechanisms makes abstraction and encapsulation difficult to achieve [34]. State-
charts and the associated tool STATEMATE [122] augment automata with structur-
ing mechanisms (superstates). Statecharts also include time concepts through the

use of delays and timers. Statecharts have been heavily studied in various com-

102

munities and many different semantics exist to describe the behavior of statechart
models [23, 122].

In the Petri net family, a large number of variations on the traditional Petri net
model have been developed, including various models of time [60]. Non-determinism
is an essential part of Petri nets, which makes Petri net unsuitable for the specification

of safety-critical real-time systems where predictability is of highest importance [34].

In the process algebra family, various offsprings of Communicating Sequential
Processes (CSP) [31] and the Calculus of Communicating Systems (CCS) [170] have
been defined, including multiple versions of timed process algebra [31]. However, in
this formalism, it is difficult to express non-functional properties other than time
(e.g., resource consumption). Timed LOTOS (ET-LOTOS) [31] is an example of a
language from the process algebra family. Other well known formalisms include the

Synchronous languages ESTEREL and LUSTRE [34].

In the industrial community, especially in the aerospace and automotive indus-
tries, the Unified Modeling Language (UML) [181] and the Architecture Analysis and
Design Language (AADL) [223] have come to dominate notational conventions. At
its onset, UML did not have formal semantics and remained a graphical language
with limited support for automated analysis. Since its inception, many tools have de-
fined their own semantics for UML, but the international standard [181] still does not
contain a standard definition of the formal semantics. In the UML community, two
real-time profiles have been proposed, the UML profile for “Schedulability, Perfor-
mance, and Time Specification (SPT)” [180] and the UML profile for “Modeling and
Analysis of Real-Time and Embedded Systems (MARTES)” [182]. The MARTES
profile is the latest profile that corresponds to version 2.0 of UML. While both pro-
files contain a large amount of syntax, the lack of a consistent semantics, as well as
disagreements among community leaders create challenges for widespread adoption
of the profiles [93, 107]. Furthermore, UML is predominantly tied to object-oriented
approaches 105, 108]. AADL contains formal semantics but is still in the early devel-
opment stage. It is unclear whether AADL can be used to specify low level functional

behavior. In its current form, AADL remains an Architecture Description Language

103

(ADL) and cannot express component-level behavior.

When comparing specification languages, numerous dimensions can be utilized
for the comparison, including usability [162], composition models, communication
model [144], and whether a language is graphical or textual. The comparison of
related languages to the TASM language is performed using the categories in the
headings of Table 4.1. These categories were selected based more on usability issues
and less on semantic richness [162]. For example, it was argued in Section 2.1 that
time specification using a duration paradigm is well-suited for the specification of the
desired behavior of the systems of interest. Furthermore, a textual representation
obeys the principles of literate specifications [146] while hierarchical composition is
paramount to structure specifications and for reuse [35]. One of the main differences
between the TASM language and languages like CHARON [4], TIOA /Tempo [147],
and Simulink and Stateflow [167] is that TASM does not currently have facilities for
specifying continuous behavior such as dynamics described by a differential equation.
This difference is debatable since the behavior of a software system is inherently
discrete. Continuous dynamics need to be included only when considering issues
of performance such as stability and steady-state error [218]. Nevertheless, verifi-
cation engines and notations that do not include continuous dynamics have proved
useful in specifying and analyzing systems, such examples include UppaAL [24] and
UML [179]. In the frameworks described in Section 3.2 the language SDL is not in-
cluded in Table 4.1 because that language is primarily applied to telecommunication
protocols [172], a type of system not targeted by the TASM language. Fur‘thermore,
UML uses a variant of statecharts, as does STATEMATE [121].

4.1.5 Light Switch Example

Throughout this chapter, a small example is presented to illustrate the features of
the TASM language. The example contains a light bulb, a fan, two switches and
two abstract state machines that operate in parallel and control the status of the
light and fans depending on the state of the switches. A schematic view of the

application is shown in Figure 4-1. This example is used throughout this chapter to

104

Name Continuous | Hierarchical Parallel Representation Time Communication
Dynamics | Composition | Composition Approach Model

[TASM I | X | X [Textual [Duration | Shared Vars |
Simulink/ X x X Graphical Timers Channels
Stateflow
Statecharts X X Graphical Timers Channels
TIOA/Tempo X X Textual Diff. Eq. 1/0
Timed X Graphical State Channels
Automata
SpecTRM-RL x X Text, Tabular Timers 1/0

Table 4.1: Comparison of the features of the TASM language with other languages
for embedded real-time system specification

illustrate concepts as they are introduced. Different versions of the example are used
to illustrate different concepts. For example, version 1 of the example, in Listing 4.2,
contains only the control for the light bulb, one switch, and the light bulb (the
fan components are omitted). The presented example also contains two resources,
memory and power, that the machines can use to perform their functions. While the
presented example is quite simple, it is useful to illustrate the concepts of the TASM

language. More substantial examples of TASM models are available in Chapter 8.

et o
\\J} -

LIGHT_CONTROL FAN_CONTROL

\/

T

|

Figure 4-1: Light switch example

105

4.2 The Timed Abstract State Machine (TASM)
Language: Syntax

This section describes the syntax of the TASM language. In Section 4.2.1, the syntax
of the ASM formalism is expressed with discrete mathematics concepts, in so-called
abstract syntax. The sample specification given in Listing 4.2 is expressed concrete
syntaz of the ASM language, that is, the syntax that can be implemented in a toolset
and input via a keyboard. In this section, the same convention is followed — the
TASM concepts are introduced using abstract syntax and illustrated in examples using
concrete syntax. The syntax used in Listing 4.2 and used in subsequent listings is
the syntax implemented in the TASM toolset. A complete description of the concrete

syntax of the TASM language is available in Appendix A.

4.2.1 Basic ASM Specification

The term specification is used to denote the document that results from the process
of writing down a system design. The term specification is used interchangeably
with the term model throughout this chapter. This section introduces specifications
that contain only a single abstract state machine, also known as basic or single-agent
ASMs in the ASM community [47]. This section provides the basis for expressing
the syntax and semantics of the TASM language by providing a simple definition
of a specification. The specification described is equally applicable to ASM or to
TASM because it does not utilize any of the features that distinguish TASM from
ASM. Consequently, the material presented in this section can be interpreted as a
formulation of ASM, in terms that will be useful to describe the features of the TASM
language.

A basic abstract state machine specification is made up of two parts - an abstract
state machine and an environment. The machine executes steps based on values in
the environment and modifies values in the environment. The environment consists

of two parts - the set of environment variables and the universe of types that vari-

106

ables can have. In the TASM language all variables are strongly typed. The machine
consists of three parts - a set of monitored variables, a set of controlled variables,
and a set of rules. The monitored variables are the variables in the environment
that affect the machine execution. The controlled variables are thé variables in the
environment that the machine affects. The set of rules are named predicates, writ-
ten in precondition-effect style, that express the state evolution logic. Formally, a

specification ASMSPEC is a pair:

ASMSPEC = (E, ASM)

Where:

e [F is the environment, which is a pair:

E = (EV,TU)
Where:

— EV denotes the Environment Variables, a set of typed variables
— TU is the Type Universe, a set of types that includes:

* Reals: RVU =R

* Integers: NVU ={..., -1,0,1,...}

* Boolean constants: BVU = {True, False}
* User-defined types: UDVU

o ASM is the machine, which is a triple:

ASM = (MV,CV, R)
Where:

— MV is the set of Monitored Variables = {mv | mv € EV and mv is read-
only in R}

107

— CV is the set of Controlled Variables = {cv | cv € EV and cv is read-write
in R}
— R is the set of Rules = {(n, r) | n is a name and r is a rule of the form if

C then A where C is an expression that evaluates to an element in BVU

and A is an action}

An action A is a sequence of one or more updates to environment variables, also
called an effect expression, of the form v := vu where v € CV and vu is an expression
that evaluates to an element in the type of v.

Updates to environment variables are organized in steps, where each step corre-
sponds to a rule ezecution. In the rest of this chapter, the terms step ezecution and
rule ezecution are used interchangeably. A rule is enabled if its guarding condition,
C, evaluates to the Boolean value True. The update set for the it* step, denoted U,
is defined as the collection of all updates to controlled variables for the step. An up-
date set U; will contain 0 or more pairs (cv, v) of assignments of values to controlled
variables.

An update set is said to be consistent if there are no conflicting updates in the
set, that is, no variable is updated twice with different values. That is, an update set

U is consistent if:
e For all two update pairs (cvl, v1), (cv2, v2)in U:
— if cvl = cv2 then vl = v2

A run of a basic ASM is defined by a sequence, potentially infinite, of update sets.
For an ASM that terminates after n steps, a run would yield a sequence of update

sets at each step:

U17 U2a sy Un-

The state progression can be obtained by applying the update set at each step.
For an ASM that terminates after n steps, the state progression the run of the ASM

yields n states:

108

SD; 311 SQ: teey Sn

The state Sp denotes the initial values of the environment at the beginning of
the machine execution. The operator o is introduced to denote the application of an

update set to the current state to yield a successor state. More specifically:

S;=8;_10U; (7>0)

The complete reference about ASM theory is available in [47].

4.2.2 Light Switch Example Version 1

Version 1 of the example contains only the light bulb and the corresponding switch.
Listing 4.2 shows a basic ASM specification describing the logic for switching the light
“on” or “off” based on whether the switch is “up” or “down”. The specification is
divided into sections, identified by capité,l letters followed by a colon. Comments in
the specification are preceded by the escape sequence “//”.

A sample run with the initial environment ((light, OF F), (switch, U P)) yields

one update set:

Up = ((light, ON))
The run of the machine becomes:
o So = ((light, OFF), (switch, UP))
o Uy = ((light, ON))

* 51 =5 o Uy = ((light, OFF), (switch, UP)) o ((light, ON)) = ((light, ON),
(switch, UP))

After the step has finished executing, the environment becomes: ((light, ON),
(switch, UP)). At this point, since the machine no longer has enabled rules, the

machine terminates.

109

Listing 4.2 Light switch example version 1

ENVIRONMENT:

USER-DEFINED TYPES:
light_status := {ON, OFF};

switch_status := {UP, DOWN};
VARIABLES:

light_status light = OFF;

switch_status switch = DOWN;

MAIN MACHINE:

MONITORED VARIABLES:
switch;

CONTROLLED VARIABLES:

light;
RULES:
R1: Turn On
{
if light = OFF and switch = UP then
light := ON;
}
R2: Turn Off
{
if light = ON and switch = DOWN then
light := OFF;
}

110

4.2.3 Time

The TASM approach to time specification is to specify the duration of a rule execu-
tion. In the TASM world, this means that each step will last a finite amount of time
before an update set is applied atomically to the environment. Syntactically, time
gets specified for each rule in the form of an annotation. The annotation is specified
as an interval [tmin, tmaz]. The lack of a time annotation for a rule is assumed to mean
t = 0, an instantaneous rule execution. Semantically, a time annotation is interpreted
as a closed interval over R>(. For a given run, a rule execution will last an amount ;
where ¢; is taken non-deterministically from the interval [tn, tmaz)- The approach
uses relative time between steps since each step will have a finite duration. The total
time for a run of a given machine is simply the summation of the individual step

times over the run.

Because time is used as a synchronization mechanism and because the specification
denotes the behavior of reactive systems, a special keyword can be used in time
annotations. This keyword, called nezt, is used with time specification, e.g. “t :=
next”, to denote that the duration of a rule execution will be determined by the
application of an update set generated by a parallel entity. For example, when a
machine executes a rule with the t := next annotation, the update set produced
by the rule will be applied at the time of the next state change, dictated by the
update set of another machine. This time annotation can be used to synchronize
parallel entities who are waiting for a handshake. Furthermore, this special time
annotation can be used to denote that a given machine will wait for a state change
before executing a rule. This construct could be used to specify that the machine
will not do any “useful” work until some outside party alters the value of one of its
monitored variables. The nert construct essentially states that time should elapse
until an event of interest occurs and is used to keep the machine “live” and prevent

termination or infinite loops.

111

4.2.4 Resources

The specification of non-functional properties includes timing characteristics as well
as resource consumption properties. A resource is defined as a global quantity that
has a finite size. Power, memory, and communication bandwidth are examples of
resources. Resources are used by the machine when the machine executes a rule.
Similarly to time specification, syntactically, each rule specifies, as an annotation,
how much of a given resource it consumes. The annotation is specified as an interval
[TTmins TTmaz]. The omission of a resource consumption annotation is assumed to
mean zero resource consur.nption. Semantically, a resource annotation is interpreted
as a closed interval over R>o. For a run, for each resource, a rule execution will
consume an amount rr; where rr; is taken non-deterministically from the interval
[FTmin, TTmaz). The semantics of resource usage are assumed to be wolatile, that
is, usage lasts only through the step duration. For example, if a rule consumes 128
kilobytes of memory, the total memory usage will be increased by 128 kilobytes during
the step duration and will be decreased by 128 kilobytes after the update set has been
applied to the environment. Time elapses and resources are consumed only when a
rule is executed. Determining whether a given rule is activated is instantaneous and
CONSUMES 10 resources.

Formally, a rule R of a machine ASM, described in Section 4.2.1, is extended to

reflect time and resource annotations:

R={(n,t,RR,7)
Where:
e n and r keep the same meaning
e ¢ denotes the duration of the rule execution is a closed interval over Ryq

e RR is the set of resources used by the rule where each element is of the form
(rr, ra) where rr € ER is the resource name and ra is the resource amount

consumied, specified as a closed interval on Ry

112

4.2.5 Light Switch Example Version 2

The light switch example from Section 4.2.1 is extended with time annotations and
resource annotations. The sample resources are memory and power. Memory has a
maximum size of 16, 000 units and power has a maximum size of 100 units. The
extended environment, as well as the extended machine specification are shown in
Listing 4.3. In Listing 4.3, the rules specify that the execution of the first rule of
the machine, rule R1, lasts between 4 and 10 time units. Furthermore, exeéution of
rule R1 consumes 200 units of memory and 25 units of power. The semantics of this
example, including sample runs, are given in Section 4.3.4. Listing 4.3 introduces the
special else rule, which is enabled when no other rule is enabled. The else rule is used

to prevent the machine from terminating when no other rule is enabled.

4.2.6 Hierarchical Composition

In complex systems, structuring mechanisms are required to partition large specifi-
cations into manageable blocks [6]. The partitioning enables bottom-up or top-down
construction of specifications and creates opportunities for reuse. Furthermore, modu-
larity enables separation of concerns and can help mitigate verification complexity [4].
The composition mechanisms included in the TASM language are based on the XASM
language [10]. In the XASM language, an ASM can use other .ASMS in rules in two
different ways - as a sub ASM or as a function ASM. A sub ASM is a machine
that is used to structure specifications hierarchically, similar to a Turbo ASM [42].
A function ASM is a machine that takes a set of inputs and returns a single value
as output, similarly to a function in programming languages, and similar to an ASM
macro [42]. These two concepts enable abstraction of specifications by hiding details
inside of auxiliary machines. In the TASM language, the definition of a sub machine

is similar to the previous definition of machine ASM given in Section 4.2.1:

SASM = (n, MV,CV, R)
Where n is the machine name, unique in the specification, and the other tuple

113

Listing 4.3 Light switch example version 2 — time and resource annotations

ENVIRONMENT:

USER-DEFINED TYPES:
light_status := {0ON, OFF};
switch_status := {UP, DOWN};

RESOURCES:
memory := [0, 16000];
power = [0, 100];
VARIABLES:
light_status 1light := OFF,;
switch_status switch := DOWN;
MAIN MACHINE:
MONITORED VARIABLES:
switch;
CONTROLLED VARIABLES:
light;
RULES:
Ri: Turn On
{
t 1= [4, 10];
memory 1= 200;
power 1= 25;
if light = OFF and switch = UP then
light := ON;
}
R2: Turn Off
{
t 1= 6; s
memory := 100;
power := 15;
if light = ON and switch = DOWN then
light := OFF;
}
R3: Else
{
else then
skip;
}

114

members keep the same definitions given in previous sections. The execution and
termination semantics of a sub ASM are different than those of a main ASM. When
a sub ASM is invoked, one of its enabled rules is selected, it yields an update set, and
it terminates.

The definition of a function ASM is slightly different. Instead of specifying moni-
tored and controlled variables, a function ASM specifies the number and typés of the

inputs and the type of the output:

FASM = (n,IV,0V, R)

Where:

n is the machine name, unique in the specification

IV is a set of named inputs (ivn, it) where fvn is the input name, unique in

IV, and it € TU is its type.

OV is a pair (ovn, ot) specifying the output where ovn is the name of the output

and ot € TU is its type.

R is the set of rules with the same definition as previously stated, but with the

restriction that it only operates on variables in IV and OV.

A function ASM cannot modify the environment and must derive its output solely
from its inputs. The only side-effect of a function ASM is time and resource consump-

tion. A specification, ASMSPEC, is extended to include the auxiliary ASMs:

ASMSPEC = (E, AASM, ASM)

Where;

e Fis the environment

o AASM is a set of auxiliary ASMs (both sub ASMs and function ASMs)

115

e ASM is the main machine

The auxiliary machines are purely syntactic construct to ease reuse and structuring
of specifications. As Theorem 4.1 and Theorem 4.2 state, the hierarchical composition
can be eliminated without modifying the semantics. A description of the semantics

of the concepts introduced in this section is available in Section 4.3.

4.2.7 Light Switch Example Version 3

The light switch example is extended to illustrate the use of auxiliary machines. The
example has been extended with a function machine called TURN_ON and a sub machine

called TURN_OFF. Sample runs for this example are given in Section 4.3.6.

Listing 4.4 Light switch example version 3 — hierarchical composition
FUNCTION MACHINE: SUB MACHINE:
TURN_ON TURN_OFF

INPUT VARIABLES:
switch_status ss;

MONITORED VARIABLES:
switch;

OUTPUT VARIABLE: CONTROLLED VARIABLES:

light_status ls; light;
RULES: RULES:
{ {
t = [4, 10]; t 1= 6;

memory := 128;

if ss = UP then

!

|

I

|

|

|

[

I

J

|

|

R1: Turn On | R1: Turn Off

|

!

I

| if switch = DOWN then
|
|
|
|
|
[
|
|

1s := 0ON; light := OFF;
} }
R2: Else R2: Else
{ {
else then else then
1s := OFF; skip;
} }

The two modified rules of the main machine from Listing 4.3 are shown in List-
ing 4.5. The remainder of the specification remains unchanged from Listing 4.2 and

Listing 4.3.

116

Listing 4.5 Light switch example version 3 — modified rules to use auxiliary machines
R1: Turn On

{

t = 1;

if light = OFF and switch = UP then

light := TURN_ON(switch); //uses function machine

}
R2: Turn Off
I

memory 1= 1024;

if light = ON and switch = DOWN then
TURN_OFF(); //uses sub machine

4.2.8 Parallel Composition

To enable specification of multiple parallel activities in a system, the TASM language
allows parallel composition of multiple abstract state machines. Parallel composition
is enabled through the definition of multiple top-level machines, called main machines,
analogous to multiple agents in [42]. Formally, the specification ASMSPEC is ex- »
tended to include a set of main machines M ASM as opposed to the single machine

ASM for the basic ASM specification of Section 4.2.1:

ASMSPEC = (E,AASM,MASM)
Where:
e Fis the environment
o AASMis a set of auxiliary ASMs (both sub ASMs and function ASMs)

o MASM is a set of main machines ASM that execute in parallel

The definition of a main machine ASM is the same as the definition given in

Section 4.2.3. Other definitions also remain unchanged.

117

4.2.9 Light Switch Example Version 4

In version 4 of the light switch problem, the example is extended to include an extra
main machine that operates in parallel. The extra machine is used to control the
fan. Listing 4.6 gives the environment definition, including the resources and the
extra variables corresponding to the fan control. The main machine for the light
control is shown in Listing 4.7. The main machine for the fan control is shown in
Listing 4.8. The fan control machine contains time and resource annotations. The
semantics of the parallel execution, as well as the consumption of resources are given

in Section 4.3.8.

Listing 4.6 Environment definition for resources and parallel composition
ENVIRONMENT:

USER-DEFINED TYPES:

component_status := {0ON, OFF};
switch_status = {UP, DOWN};
RESOURCES:
memory = [0, 16000];
power = [0, 100];
VARIABLES:
component_status light = OFF;
switch_status light_switch := DOWN;
component_status fan := OFF;
switch_status fan_switch := DOWN;

4.3 The Timed Abstract State Machine (TASM)
Language: Semantics

The semantics of the TASM language are expressed using the notions of step, state,
and update set introduced in Section 4.2.1. The TASM language extends the update
set concept with time and resource consumption. Updates to environment variables
are organized in steps, where each step corresponds to a rule erecution. In this
section, the terms step ezecution and rule execution are used interchangeably. A rule

is enabled if its guarding condition, C, evaluates to the Boolean value True. The

118

Listing 4.7 Light control main machine definition for resources and parallel compo-
sition
MAIN MACHINE:

LIGHT_CONTROL

MONITORED VARIABLES:
light_switch;

CONTROLLED VARIABLES:

light;
RULES:
R1: Turn On
{
t = [4, 10];
memory := 300;
power i= 25,
if light = OFF and light_switch = UP then
light := ON;
}
R2: Turn Off
{
t 1= 6;
memory 1= 100;
power 1= 15; ,
if light = ON and light_switch = DOWN then
light := OFF;
}
. R3: Else
{
t := next;
else then
skip;
}

119

Listing 4.8 Fan main machine definition for resources and parallel composition

MAIN MACHINE:
FAN_CONTROL

MONITORED VARIABLES:
fan_switch;

CONTROLLED VARIABLES:

fan;
RULES:
R1: Turn On
{
t = [1, 8];
memory 1= 100;
power = 35;
if fan = OFF and fan_switch = UP then
fan := ON;
}
R2: Turn 0ff
{
t = 2;
memory 1= 200;
power ;= 25;
if fan = ON and fan_switch = DOWN then
fan := OFF;
}
R3: Else
{
t = next;
else then
skip;
}

120

update set for the i** step, denoted Uj, is defined as the collection of all updates to
controlled variables for the step. An update set U; will contain O or more pairs (cv,
v) of assignments of values to controlled variables. A run of a basic ASM is defined

by a sequence of update sets.

4.3.1 Update Set

In TASM, when a machine executes a step, the update set that is produced contains
the duration of the step, as well as the amounts of resources that are consumed
during the step execution. The special symbol L is used to denote the absence of an
annotation, for either a time annotation or a resource annotation. Update sets are
extended to include the duration of the step, t € R>o U {L} and a set of resource
usage pairs rc = (rr, rac) € RC where rr is the resource name and rac € Ryo U {1}
is a single value denoting the amount of resource usage for the step. If a resource is
specified as an interval, rac is a value non-deterministically selected from the interval.

The symbol T RU; is used to denote the timed update set, with resource consump-
tions, of the ith step of a machine, where t; is the step duration, RC; is the set of

consumed resources, and U; is the set of updates to variables:

TRU; = (t;, RC;, Us)

The structure of the update set is explained in the following subsections by ex-

tending the update set presented in Section 4.2.1.

4.3.2 Time

When a time annotation is included in a rule, the specified time denotes possible
duration of the update set, specified as relative time between steps. The total time of
a run of a single machine is simply the summation of the individual step times over

the run. The update set concept is extended to include the duration ¢; of the update

set:

121

TUi = (tia U’L)
The set of variable updates, U, is unchanged from Section 4.2.1. A run of a
machine that terminates after n steps becomes:
TUI, TU2) ey TUn

The state concept is also extended to reflect the value of time for the given state.
While the time values in the update sets are relative to the previous steps, the time
values in the state are absolute. A given run starts execution at time ¢ = 0. The

Timed State, T'S;, where gt; denotes the global time is defined as:

TS,' = (gti, Sz)
The state S; is unchanged from Section 4.2.1. Given this definition of timed state,
the sequence of states for a run that ends after n steps:
TS, TSy, ..., TS,

The o operator is extended for the new definitions of state and update set:

TS;=TS;_10TU; = (gti-1, Si—1) o (ti, Ui) = (gti—1 + t;, Sic1 o Uj)

For a run that ends after n steps, the total time of the run would be gt, and would

be defined as the summation of the step times over the run:

n
gltn = Z t;
i=1

4.3.3 Resources

Update sets are also extended to reflect resource consumption at each step. Each

update set is extended to include a set of resource usage pairs rc = (rr, rac) € RC

122

where 77 is the resource name and rac is a single value denoting the exact amount
of resource usage for the step. If a resource is specified as an interval, rac is a value
taken from the interval. The symbol TRU; is used to denote the timed update set,
with resource usage, of the i** step, where t; is the step duration, RC; is the set of

consumed resources, and U; is the update set:

TRU; = (t;, RC;, Uy)

The execution semantics are also extended to reflect resource usage. Because
resources are limited quantities, if an executing ASM utilizes more than a resource’s
limits, execution halts. Execution is well-defined only if resource utilization falls
below the boundaries of the available resources. Resource usage is slightly different
than time in that the resource utilization for a given update set starts with the time
of the previous update set and lasts through the rule completion. The consumption
of a resource for an update set TRU; lasts during an open interval (g¢;_1, gt;]. The

state definition is also extended to reflect resource consumption:

TRS; = (gt;, SRC;, S:)

The sequence of states for a run that ends after n steps:

TRSo, TRS:, TRSy, ..., TRS,

For update sets with time and resources, the o operator is defined as follows:

TRS, = TRSi_l [¢] TRU, = (gti_l, RCi_l, S,;_l) [e] (ti, RO;', U,,)
= (gti—1 + t;, RC;, Si—1 o Uy)
= (gtiv RC’is SZ)

For all gt in the open interval (gt;_;, gt;), the state TRS will be (gt, RC;, Si_y).

This definition reflects the behavior that resource consumption will begin with the

123

start of a rule execution and will last until the rule execution is finished.
Concurrent resource usage by multiple components is assumed to be additive. For
example, if two components, z and y use the same resource A concurrently, where z
uses amount a, and y uses amount a,, then the total resource usage amount is a, +
a,. For the remainder of this chapter, the term update set refers to an update set of

the TRU; form and the term state refers to a state of the TRS; form.

4.3.4 Light Switch Example Version 2 Revisited

The semantics of a basic specification with time and resource annotations can be
illustrated using a sample run of the machine in Listing 4.3.

Three sample update sets for different initial conditions of variable values are

shown below:

e Initial condition: ((light, OFF), (switch, UP))
Update set: ((5, ((memory, 200), (power, 25)), ((light, ON))))

e Initial condition: ((light, ON), (switch, DOWN))
Update set: ((6, ((memory, 100), (power, 15)), ((light, OFF))})

o Initial condition: ((light, OFF) (switch, DOWN))
Update set: ({0, ({(memory, 0), (power, 0)), 0))

Formally, the behavior and state progression of the first set of initial conditions

can be expressed as follows:

e TRS; = (0, ((memory, 0), (power, 0)), ((light, OFF), (switch, UP)))
e TRU; = (5, ((memory, 200), (power, 25)), (light, ON))

e TRS; = TRSy o TRU; = (5, ((memory, 200), (power, 25)), ((light, ON),
(switch, UP)))

For all times gt in the open interval [0,5), the state TRS is (gt, ((memory, 200),
(power, 25)), Sp). The same logic can be applied to the other two sample runs.

124

Mapping the above update set and state on the time axis yields the following states

over time:

o t < 5: (((memory, 200), (power, 25)), ((light, OFF), (switch, UP)))

o t = 5: (((memory, 200), (power, 25)), ((light, ON), (switch, UP)))

e t > 5: (((memory, 0)), ((light, ON), (switch, UP)))

The duration of 5 time units was non-deterministically selected from the interval
[4, 10]. The sample run illustrates the execution semantics of interval duration. In
the Listing 4.3, the rule duration is specified using an interval, t := [4, 10];. Ina
run, the update set contains a single figure for the duration of the step. For a run to
be well-defined, the duration of the rule application for the step corresponding to this
rule must be in the interval. For the sample run, the duration of 5 time units was
selected non-deterministically and any value in the interval could have been used. The
200 units of memory resource are consumed from the beginning of the rule execution
to the completion of the rule execution. This execution model is simple and intuitive

and allows the specifier to explore various potential behaviors.

4.3.5 Hierarchical Composition

Semantically, hierarchical composition is achieved through the composition of update
sets. A rule execution can utilize sub machines and function machines in its effect
expression. Each effect expression produces an update set, and those update sets are
composed together to yield a cumulative update set to be applied to the environment.
To define the semantics of hierarchical composition, the semantic domain Rxo U {1}
is utilized. The special value L is used to denote the absence of an annotation, for
either a time annotation or a resource annotation.

Two composition operators are defined, ® and @, to achieve hierarchical compo-
sition. The ® operator is used to perform the composition of update sets produced

by effect expressions within the same rule:

125

TRU, ® TRU, = (t1, RCy, Uy) ® ({2, RCy, Us)

= (tl ® tQ, RCl ® RC2, Ul) U2)

The ® operator is commutative and associative. The semantics of effect expres-
sions within the same rule are that they happen in parallel. This means that the time

annotations will be composed to reflect the duration of the longest update set:

4

tl lftgz_l_
t1®t2:<t2 ift; = 1

maz(ty,ts) otherwise

\

The composition of resources also follows the semantics of parallel execution of
effect expressions within the same rule. The ® operator is distributed over the set of

resources.

RCY ® RCg = (rei, .- TCn) ® (TC21, ..., TCon)
= (rci1 ®reaty . -, TCin @ T'Cay)
= ((rri1,raci1) ® (rra1, raca), . . .,
(7710, TaC1R) ® (TT2n, TACI,))
= ((rry1,raci; ® raca), ...

((r71n, Tacin ® racsn))

In the TASM language, resources are assumed to be additive, that is, parallel
consumption of amounts r; and 72 of the same resource yields a total consumption

r1 + 7o

126

.
rac; if racg = L

rac; @ racy = ﬁ racy ifracs = L

racy +racy otherwise
\

Intuitively, the cumulative duration of a rule effect will be the longest time of an
individual effect, the resource consumption will be the summation of the consumptions
from individual effects, and the cumulative updates to variables will be the union of

the updates from individual effects.

The @ operator is used to perform composition of update sets between a parent
machine and a child machine. A parent machine is defined as a machine that uses
an auxiliary machine in at least one of its rules’ effect expression. A child machine is

defined as an auxiliary machine that is being used by another machine. For composi-
| tion that involves a hierarchy of multiple levels, a machine caﬁ play both the role of
parent and the role of child. To define the operator, the subscript p is used to denote
the update set generated by the parent machine, and the subscript ¢ to denote the
update set generated by the child machine:

TRU, ® TRU, = (t,, RC,, U,) ® (te, RC., U,)
= (tp ® te, RC, ® RC., U, U U,)

The @ operator is not commutative, but it is associative. The duration of the rule
execution will be determined by the parent, if a time annotation exists in the parent.

Otherwise, it will be determined by the child:

te ift, =1
t, ®t, =

tp otherwise

127

The distribution of the @ operator over the set of consumed resources is the same

as for the ® operator:

RCy ® RC. = (rcpt, .. -, TCpn) ® (TCety - - -, TCon)
= (rept ®TC, -+, TCon @ TCon)
= ((rrp1,racy) ® (rra, racy), . . .,
(T7pn, TACpn) ® (TTen, TaCH))

= ((’r'rpla TacCpy ©® Tacd), .

(TTpn,y TACHR D TACe))

The resources consumed by the rule execution will be determined by the parent,

if a resource annotation exists in the parent. Otherwise, it will be determined by the
child:

rac, ifrac, =1
rac, @ rac. =

rac, otherwise

Intuitively, the composition between parent update sets and child update sets is
such that the parent machine overrides the child machine. If the parent machine
has annotations, those annotations override the annotations from child machines.
If a parent machine doesn’t have an annotation, then its behavior is defined by the
annotations of the auxiliary machines it uses. These semantics enables the abstraction
of timing analysis common in the real-time community [89] where program units, such
as function calls, are annotated with timing bounds without analyzing the underlying
behavior of the units. Furthermore, these semantics enable bottom up construction
of specifications where the timing behavior can be defined by as the sum of the
parts. The hierarchical composition semantics maintain the semantics of ASM where

everything that occurs within a step happens in parallel. As in the case of ASM,

128

conflicting updates to variables yield update set inconsistency.

Figure 4-2 shows a hierarchy of machines for a sample rule execution. Each num-
bered square represents a machine. Machine “1” represents the rule of the main
machine being executed; all other squares represent either sub machines or function
machines used to derive the update set produced by the main machine. Machine “3”
is an example of a machine that plays the role of parent (of machine “7”) and child

(of machine “17).

I
[—1]
2 3 4
1
5 6 7

Figure 4-2: Hierarchical composition

Each machine generates an update set T'RU;, where 7 is the machine number. The-
derivation of the produced update set is done in a bottom-up fashion, where T RU, ¢

is the update set returned by the main machine:

TRU,es = TRUy ® ((TRU, ® (TRUs ® TRUG))®
(TRUs ® TRU;)®
TRU,)

4.3.6 Light Switch Example Version 3 Révisited

The semantics of hierarchical composition are illustrated using the example from
Listing 4.4 and Listing 4.5. Two sample runs are shown to illustrate the invocation

of a sub machine and of a function machine. The first step of two sample runs are

shown below:

e Initial environment: ((light, OFF), (switch, UP))

129

Update set: (1, ((memory, 128)), ((light, ON)))

o Initial environment: ((light, ON), (switch, DOWN))
Update set: (6, ((memory, 1024)), ((light, OFF)))

The first sample run invokes the function ASM and obtains the step duration from
the main ASM definition and the resource consumption from the function ASM. The
second sample run obtains the variable updates and rule duration from the sub ASM

and the resource consumption from the main ASM.

The first sample run can be detailed as follows:

o TRSy = (0, ((memory, 0)), ((light, OF F), (switch, UP)))
e Update set from function ASM: FTRU; = (5, ((memory, 128)), 0)
o Update set from main ASM: RTRU; = (1, ((memory, 1)), ((light, ON)))

o Combined update set: TRU; = RTRU; & FTRU, = (1 & 5, ((memory, 1))
® ((memory, 128)), ((light, ON)) U 8) = (1, ((memory, 128)), ((light, ON)))

e TRS; = TRSy o TRU; = (0, ((memory, 0)), ((light, ON), (switch, UP)) o (1,
((memory, 128)), ((light, ON))) = (1, ((memory, 128)), ((light, ON), (switch,
UP)))

The second sample run can be detailed as follows:

e TRSy = (0, ((memory, 0)), ((light, OF F), (switch, UP)))
¢ Update set from sub ASM: STRU; = (6, ((memory, 1)), ((light, OFF)))
e Update set from main ASM: RTRU; = (L, ((memory, 1024)), (0))

e Combined update set: TRU, = RTRU, & STRU; = (L & 6, ((memory,
1024)) @ ((memory, L)), 8 U ((light, OF F))) = (6, ((memory, 1024)), ((light,
OFF)))

130

e TRS; = Sy o TRU; = (0, ((memory, 0)), ((light, OFF), (switch, UP))) o (6,
((memory, 1024)), ((light, OFF))) = (6, ((memory, 1024)), ((light, OFF),
(switch, UP)))

The same operators can be used to detail the first sample run, which uses the

function machine.

4.3.7 Hierarchical Composition and Expressivity

While hierarchical composition facilities are necessary in practice to enable reuse and
to ease the management of complex models, hierarchical composition does not affect
algorithmic expressivity. As Theorem 4.1 and Theorem 4.2 state, the hierarchical
composition facilities of the TASM language could be eliminated without modifying
the semantics of the language.

In the proof of Theorem 4.1, the following notation is used: the function machine
is treated symbolically as “f(params)” where “f’ is the name of the function machine
and “params” is the list of parameters passed to the machine. The symbols “{ezp \
val}”, reused from programming language semantics, are used to denote “the resulting
expression where symbols in ezp are replaced by values in val’. More specifically, it
is used to replace the parameters in the function machine definition with the passed-
in parameters in the function machine call. A parameterized version of a function

machine, used in the proof of Theorem 4.1, is shown below:

FRy=1f FGy then out_var = oul_expy;

FRy =1if FGq then outvar = out_exps;

FR, =if FG, then outvar := out_expy;

Where out_ezp_i represents an expression used to compute the output value of the

function machine. With these definitions, Theorem 4.1 can be stated and proved.

131

Theorem 4.1. For every machine that uses a function machine, there is an equivalent

machine that does not use the function machine.

Proof. The theorem is proved by construction, by providing an equivalent machine
without the function machine. For a machine that uses a function machine, the
function machine can occur in either the rule guard G; or in the rule effect E;. Both

cases are considered separately:
¢ Case 1: Function machine in rule guard

If the function machine occurs in the rule guard, the guard will be of the form:

if g © var = f(params) o g, then E;

Where o represents a logical connective, gj; represents the part of the guard to
the “left” of the expression where the function machine occurs, and g,; represents the
part of the guard to the “right” of the expression where the function machine occurs.
The function machine call could be part of a complex expression but the simplified
version f(params) is used in the proof and can be easily generalized to any expression.

The equivalent machine can be constructed in the following way by replacing the
rule where the function call occurs with n new rules that are constructed in the

following way:

if g © var = {out_exp, \ params} o g A {FGi\params} then E;

if gu © var = {out_exp; \ params} © g A {FGy\params} then E;

if g o var = {out_exp, \ params} ¢ g N {FGn\ params} then E;

It can be easily seen that the guards of each of these new rules will be enabled
exactly when the function machine guards are enabled and when the guard of the

original rule is enabled. And by replacing the invocation of the function machine with

132

the return expression of the function machine definition ensures that the semantics
aren’t changed. Since evaluating rule guards does not consume time or resources,

annotations occurring in the function machine can be discarded.
e Case 2: Function machine in effect expression

If the function machine occurs in the rule effect, the rule where the function

machine call occurs will be of the form:

if Githen ey; var := f(params); ey

Where e; represents the part of the effect expression to the “left” of the function
machine expression, e,; represents the part of the effect expression to the “right”
of the function machine expression, and f(params) represents the function machine
expression. The function machine call could be part of a complex expression but the
simplified version f(params) is used in the proof and can be easily generalized to any
expression.

The equivalent machine can be constructed in the following way by replacing the

rule where the function machine call occurs with n new rules in the machine definition:

if Gi N{FGi \ params} then ey; var := {out_exp; \ params}; ey;

if Gi AN{FGy\ params} then ey; var := {out_exp; \ params}; e.;

if Gi N{FGy, \ params} then ey; var := {out_exp, \ params}; e;

It can be easily seen that the guards of each of these new rules will be enabled
exactly when the function machine guards are enabled and when the guard of the
original rule is enabled. And by replacing the invocation of the function machine
with the return expression of the function machine definition ensures that the se-
mantics aren’t changed. For function machines occurring in effect expressions, time

and resources can be consumed. How the annotations from the function machine

133

are included in the equivalent “flattened” machine follows the rules of hierarchical

composition of update sets described in Section 4.2.6.

These two cases can be generalized to any expression containing function machines

by being applied to all expressions containing function invocations.

A parameterized version of a sub machine, used in the proof of Theorem 4.2, is

shown below:

SRy =if SG; then SEj;
SRy =if SGy then SEy;

FR, =if SG, then SEy;

Equipped with this definition, Theorem 4.2 can be stated.

Theorem 4.2. For every machine that uses a sub machine, there is a equivalent

machine that does not use the sub machine.

Proof. This theorem is also proved by construction. Since sub machine invocations
can only occur in effect expressions, only one case needs to be considered. An effect

containing a sub machine call will be of the form:

if G; then ey; SUB.MACHINE(); ey;

The construction of the equivalent machine is even simpler than it is for the
proof of Theorem 4.1 since sub machines do not take in parameters. The equivalent

machine, without the sub machine call, can be constructed in the following way:

134

if G; ANSGi then ey; SEy; e
if G A\ SGy then ey; SEy; e

if Gi ANSG, then ey; SEy; eq;

It can be easily seen that the guards of each of these new rules will be enabled
exactly when the sub machine guards are enabled and when the guard of the orig-
inal guard is enhabled. The time and resource annotations from the sub machine
are included in the “flattened” equivalent machine following the rules of hierarchical
composition of update sets described in Section 4.2.6.

]

4.3.8 Parallel Composition

Because concurrency is an integral part of most real-time systems, the specification
formalism must be able to specify concurrent behavior. In the abstract state machine
world, this is achieved through multiple machines running in parallel. In the ASM
literature, concurrency is termed multi-agent ASMs [47]. There are two varieties of
multi-agent ASMs - synchronous and asynchronous. In the synchronous case, two
or more machines execute a single step in parallel and the resulting update sets are
checked for consistency, merged, and applied instantaneously to global state. In other
words, for m machines executing concurrently, each executing n steps, all groups of

step update sets, U;;, must be consistent. Us; denotes the i** step of the 5*» machine:

((Ull, U12’ reey Ulm)a ceey (Un17 Un2) e ,Unm))

If a group of update sets is consistent for a given step, the updates sets are
collected into a single update set and applied atomically to global state. The process

is repeated for each step. In the asynchronous case, there is no prespecified order in

135

which a machine executes a step. In fact, any ASM can perform any number of steps
at a given time. This lack of ordering enables the system designer to define the exact

semantics of parallel execution.

The semantics of parallel composition regards the synchronization of the main
machines with respect to the global progression of time. The global time of a run, tb,
is defined as a monotonically increasing function over Ryg. Machines execute steps
that last a finite amount of time, expressed through the duration ¢; of the produced
update set. The time of generation, tg;, of an update set is the value of tb when the
update set is generated. The time of application, ta;, of an update set for a given
machine is defined as tg; + t;, that is, the value of tb when the update set will be
applied. A machine whose update set, generated at global time tgy, lasts ¢, will be
busy until tb = tg, + t,. While it is busy, the machine cannot perform other steps.
In the meantime, other machines who are not busy are free to perform steps. This
informal definition gives rise to update sets no longer constrained by step number, but
constrained by time. Parallel composition, cofnbined with time annotations, enables

the specification of both synchronous and asynchronous systems.

The operator ® is defined for parallel composition of update sets. For a set of

update sets T'RU; generated during the same step by 7 different main machines:

TRU, ® TRU, = (tl, RC;, U]) © (tg, RC,, Uz)
p

(tl, RCy ® RC,, Ul) ift) <ty

= 4 (tg,RCl @RCQ,U2) if t; >ty

L(tl, RCl ® RCQ, U1 @] Uz) if t1 =1

The operator ® is both commutative and associative. The parallel composition of
resources is assumed to be additive, as in the case of hierarchical composition using

the ® operator:

136

RC, ® RCy = (reny, - .., rc1n) © (rean, . ., TCan)
= (rc1; @ T, - ., TC1n O TC2p)
= ((rri1, raci1) ® (rra1, raca), - - .,
(T71ns TaC1n) © (772, racay))
= ((rry1,racy © raca), ...

((rrin, racin ® Tacey,))

The parallel composition of resources is assumed to be additive, as in the case of

hierarchical composition using the ® operator:

4

racy if rac, = L

rac; O racy = rac, if rac; = L

kracl +racy; otherwise

At each global step of the simulation, a list of pending update sets are kept in an
ordered list, sorted by time of application. At each global step of the simula;tion, the
update set at the front of the list is composed in parallel with other update sets, using
the @ operator and the resulting update set is applied to the environment. Once an
update set is applied to the environment, the step is completed and the global time
of the simulation progresses according to the duration of the applied update set.

The concurrency semantics of the TASM language reduce to the concurrency
semantics of synchronous and asynchronous multi-agent ASMs. For a TASM speci-
fication where all machine steps have the same duration dt # 0, the specification is
essentially a synchronous multi-agent ASM specification with linear time progression:.
For a TASM specification where all machine steps have the same duration dt = 0,
the speciﬁcatibn is essentially an asynchronous multi-agent ASM specification. In

TASM, time plays the role of delaying moves of a machine until the delay of the rule

137

execution has elapsed and acts as a synchronization mechanism.

Parallel composition also introduces contention between machines for resource
consumption. In the TASM language, no machine is preempted from using a resource.
However, if the resource is exhausted, an exception is thrown and results in update set
inconsistency. The shared resource model is simple and useful to model many resource
types. Concurrent resource usage is additive. For example, if, in a time interval, two
different machines use the same resource (in amounts r; and r; respectively), the
total amount used would be 7 + ry. A more extensive application of the ® operator
is shown to demonstrate the parallel composition of two update sets produced by two

main machines that yield update sets with different durations:

e Update set by machine 1: TRU1 = (¢1, RC1, U1)

Update set by machine 2: TRU2 = (12, RC2, U2)

State when update set is produced: TRS; = (gt;, RC;, S;)

if 11 =12

— Combined update set: TRU = TRU1 ® TRU2 = (t1, RC1 + RC2,U1 U
U2)

— TRS;1 = TRS; o TRU = (gt; + t1, RC; + RC1 + RC2, S; ® (U1 U U2)

if 11> 12

— Combined update set: TRU; = TRU1 ® TRU2 = (t1, RC1 + RC2, U1)
— Combined update set: TRU;y; = TRU1 ® TRU2 = (¢2 - t1, RC1, U2)
— TRS;y1 = TRS; o TRU; = (gt; + t1, RC; + RC1 + RC2, S; © U1)
— TRS;42 = TRS;41 o TRUiyy = (gti + 2, RC; + RC2, Siy1 0 U2)

o if 11 <2
— Combined update set: TRU; = TRU1 ® TRU2 = (12, RC1 + RC2, U2)
~ Combined update set: TRU;y1 = TRU1 ® TRU2 = (1 - t2, RC2, U1)

138

— D4l = TRS; o TRUZ = (gti + t2, RCZ + RC1 -+ RC’2, Si O UZ)

— D42 & TRSH.] (@) TRUH_] = (gt,; + tl, RG,, + RCl, S,'_,_l o Ul)

4.3.9 Light Switch Example Version 4 Revisited

In Listing 4.6 and Listing 4.8, the light switch example is further extended to illustrate
the semantics of parallel composition. An extra main machine is added to represent
the control logic for a fan, operating in parallel with the light. The logic for the fan and
the light both utilize memory and power. For the initial environment ((light_switch,
UP), (light, OFF), (fan-switch, UP), (fan, OFF)), the trace of update sets is

shown below. Each machine will execute a single step that modifies the environment.

The update sets for the step of each machine are shown below:

e Step 1 of machine LIGHT CONTROL: (4, ((memory, 300), (powér, 25)), ((light,
ON))) |

e Step 1 of machine FAN_CONTROL: (1, ((memory, 100), (power, 35)), ((fan, ON)))

This example shows how steps from different machines can take a different amount
of time. The value of 4 time units for machine LIGHT_CONTROL and the value of 1 time
units for machine FAN_CONTROL were taken non-deterministically from the intervals.
Thé beginning of these steps happen at the same time, but the different durations
illustrate the semantics of parallel composition. The time values of interest can be

broken into five different intervals:

e t < 1. Execution of step 1 of both machines

e t = 1: Completion of step 1 of machine FAN_.CONTROL

1 <t < 4: Continued execution of step 1 of machine LIGHT_CONTROL

t = 4: Completion of step 1 of machine LIGHT_CONTROL

o t > 4: Waiting for a change in the environment

139

The combined update sets for each time interval are shown below. The execution
of both machines overlaps only in the interval t < 1. In the other intervals, the
behavior is that of individual machines. Updates to the environment are produced

only at the end of the step:

o t < 1: (((memory, 400), (power, 60)), @)

e t = 1: (((memory, 400), (power, 60)), ((fan, ON)))

1 <t < 4: (((memory, 300), (power, 25)), 0)

t = 4: (((memory, 300), (power, 25)), ((light, ON)))

e t > 4: (((memory, 0), (power, 0)), 0)
Formally, the state evolution can be tracked through the following stages:

o TRSy = (1, ((memory, 0), (power, 0)), ((light, OFF), (fan, OFF)))
o TRUpan.controL1 = (1, ((memory, 100), (power, 35)), ((fan, ON)))
e TRULiguT conTrOL1 = (4, ((memory, 300), (power, 25)), ((light, ON)))

o TRU; = TRUpanconTroL1 © TRULigur.conTroL1 = (1, ((memory, 400),
(power, 60)), ((fan, ON)))

e TRU; = TRUpan.conTroLt © TRULigHT.conTROL,L = (3, ((memory, 300),
(power, 25)), ((light, ON)))

e TRS; = TRSy o TRU; = (1, ((memory, 400), (power, 60)), ((light, OFF),
(fan, ON)))

e TRS, = TRS; o TRU, = (4, ((memory, 300), (power, 25)), ((light, ON),
(fan, ON)))

The time history of variable values and resource consumption for the run is also

shown in Figure 4-3.

140

light status fan status

ON — ON
OFF > OFF >
4 t 1 t
memory usage
power usage 400
60 300
25
0
0 >
1 4 [! 4 t

Figure 4-3: Time history of variable values and resource consumption

[Operator_[[Signature | Meaning ' |
o State x Update Set — State Used to apply an update set to the state
® Update Set x Update Set — Update Set | Used to combine two update sets generated through

hierarchical compaosition, for update sets from
different effect expressions

) Update Set x Update Set — Update Set | Used to combine two update sets generated through
hierarchical composition, for update sets between

a parent machine and a child machine

[0} Update Set x Update Set — Update Set | Used to combine two update sets generated through
parallel composition

Table 4.2: Update set combination operators

4.3.10 Summary and Other Extensions

From the point of view of the effects on the environment, there is no difference whether
or not an update set is generated from a single main ASM or through multiple parallel
main ASMs. The composition of main machines and the use of sub and function
machines is indistinguishable to the environment. The environment only sees a single
update set, that is produced at each "step” of the system. Once the composition
has been achieved, the composed system behaves as a single main ASM with no
composition. The difference oceurs in the internal merging of update sets. In the
case of hierarchical composition, that is, update sets produced by sub ASMs and
function ASMs, the ® and @ operators are used to obtain the resulting update set
from the use of auxiliary ASMs. For parallel composition, that is, multiple update
sets produced by main ASMs, the ® operator is used to obtain the resulting update
set that is to be applied to the environment. The update set operators are listed in
table 4.2,

141

Termination Semantics

As described in Section 2.1, the types of systems targeted by this research are reactive
real-time systems, that is, systems which continuously interact with their environment
in an infinite loop fashion [164]. In this model, the environment could be modified
outside of the machine’s control. To enable this behavior the first extension to the
ASM theory is to introduce the Else Rule construct. The Else Rule construct, denoted
by the else keyword as a rule guard, is used to indicate that the machine will continue
execution, even if no other rule is enabled. Furthermore, the use of the skip keyword
is used to denote that an empty update set is produced but that execution should

still continue.

A sample loop of such systems iterates through three stages. The first stage
involves inferring the state of the environment, typically through sensors. The sec-
ond stage involves taking some action, based on logic from the inferred state of the
environment. The third and final stage involves affecting the state of the environ-
ment, typically through actuators. This loop will run continuously until the system
is stopped by an outside source such as an operator or a failure. Applications using
these types of loops are common in process controllers such as avionics and automo-
bile electronics. The ASM metaphor, through the concepts of monitored variables,
controlled variables, and steps reflects the behavior of reactive systems.

The assumption of termination when an empty update set is produced is not valid
for reactive systems. The assumption may be valid for sequential algorithms, but,
as can be observed in the light switch example, the controller should continuously
monitor the state of the switch because the state of the switch could be altered

outside of the machine’s control.

Special Rule Durations

Since relative durations defines the underlying progression of time in the model, a
special annotation can be used to specify that a given machine will “wait” until some-

thing meaningful happens in the environment. This annotation is used to denote that

142

the machine will not execute any rules until something changes in the environment.
This special annotation is the “t := next” construct. When a rule containing this
time annotation is executed, the duration of the rule is “indeterminate” and the

update set will be applied once another rule in another machine is executed.

Non-Determinism

While the TASM language does not include the choose construct from ASM, non-
determinism is intrinsic to the TASM language. For example, time and resource
annotations can vary non-deterministically. Input/Ouput non-déterminism, in terms
of assignments to variables, can occur in TASM if one or more rules are enabléd
simultaneously for a given step of a given machine. In this case, a rule is chosen
non-deterministically from the enabled rules and it is executed. This type of non-
determinism differs from ASM where multiple enabled rules are executed within the
same step and the update sets are combined. In the TASM language, such semantics
would be confusing since durations Woula have to be added. Furthermore, the ability
to non-deterministically chose an enabled rule is convenient when modeling the en-
vironment to capture different simulation scenarios. The environment is inherently
non-deterministic [208] and modeling this behavior is paramount to achieve realistic

sirnulation scenarios.

The “Else” Rule

In the syntax of a TASM specification, the “Else” rule is used as shorthand notation
for “a rule that is enabled is no other rule is ena,bled”. While the simple keyword else
is straightforward to write and understand, the special “Else” rule does not augment
the semantics of the language. A machine definition containing an “Else” rule could
be rewritten without the “Else” rule, without affecting the semantics. If a machine
has n rules R;, whose guards are G; and where R, is the “Else” rule, the guard of

rule R, is equivalent to the following guard:

143

Go=(G1 V ... Guy)

Showing that these two guards are equivalent by definition because the “Else” rule
is enabled whenever no other rules are enabled, which is exactly the definition of the
negation of the disjunction of the guards of all the other rules. This substitution of
the “Else” rule for a predicate over variables is important because in the rest of this
thesis, the “Else” rule does not need to be treated differently than any other rule.
Consequently, the “Else” rule is mentioned only where it is not evident from context

that it could be replaced by a predicate over variables.

Internal State

In the presented discussion and examples, all variables are global. Extending in-
dividual machines with internal state enables encapsulation by limiting the scope of
variables. A new section is added to each ASM definition, the “INTERNAL VARIABLES”

section. This section is used to define the name and types of variables internal to the

ASM.

Constructors

Reuse of specifications can be beneficial, especially for the specification of redundant
systems. ASM definitions are extended with a “CONSTRUCTOR” section. The sec-
tion lists variables whose values must be specified before a specific instance of the
ASM specification can be used. This construct enables the creation of parameterized
specifications to empower reuse.

The constructor concept introduces a new type of ASM, the template ASM. The
template ASM is defined like any other ASM except that it contains an extra section,
the CONSTRUCTOR section. Like a function ASM, the constructor section specifies the
name and value types of arguments. Main machines can be defined based on template

ASMs by using the machine name as constructor in the following fashion:

144

MAIN MACHINE:
FAN_CONTROL := new FAN_TEMPLATE(OFF, 1)

Global Clock

Individual machines can obtain the current value of time by accessing the global clock.
The global clock can be accessed through the special keyword “now” that returns a
value denoting the current time, in the context of the querying machine. The value
returned by “now” is the time value before the execution of a rule, based on the

semantics of parallel composition from section 4.3.8.

Runs of Multi-Agent TASM Specifications

In [47], runs of synchronous and asynchronous multi-agent ASMs are described through
ordering of agent moves. Synchronous multi-agent ASMs runs are defined through a
total ordering of agent moves while runs of asynchronous multi-agent ASMs are de-
fined through a partial ordering of agent moves. In the TASM language, time plays a
key role in the synchronization of moves of agents. As mentioned in Section 4.3.8, de-
pending on the nature of the time annotations, multi-agent TASM specifications can
express both synchronous and asynchronous multi-agent ASMs. Consequently, the
TASM language can be considered a more general model that can express both asyn-
chronous and synchronous behavior, without modifying the underlying concurrency
model.

The requirements of runs of multi-agent TASM specifications can be described in
terms of partially ordered runs [115]. The ASM conditions on partially ordered runs
contains 3 criteria — finite history, sequentiality of agents, and coherence [47] (p. 209).
These three conditions also apply to runs of TASM specifications but the ordering
relation is extended to include durations. The partially ordered set (M, <) of moves
m is extended to include the timestamp of the move completion, ¢,. The set is ordered

with respect to ¢, and with respect to a partial order for moves whose timestamps are

145

the same. Using this ordering relation, the sequentiality of agents and the coherence
conditions follow naturally.

The complete description of the TASM language is available in [185]. The concrete
syntax of the TASM language as well as descriptions of the logical objects of the
language, as implemented in the TASM toolset, is available in Appendix A.

4.4 Relation to Timed ASM

In [114], the authors present a specification and verification of the railroad crossing
problem using a combination of ASM and the currtime external function (most re-
cently called now). The algebra presented in [114] provides a general approach to
timed system modeling. In order to demonstrate that TASM provides a more concise
notation, the semantics of the TASM language are expressed using Timed ASM. In
order to map a TASM specification into the Timed ASM language, two domains are
introduced, namely DT ASM and DASM to denote the domains of specifications ex-
pressed in the TASM language and the ASM language respectively. A function called
Desug that maps a TASM specification into an ASM specification is also introduced.
The “desugaring” function is defined for all individual elements of the TASM lan-
guage (specifications, variables, types, rules, etc.) and maps the TASM elements into

elements of the ASM language.

Desug: DTASM — DASM
Each resource definition, Rdef, in the environment is desugared into a global

shared dynamic function:

Desug/[[Rdef]| = shared Rdef

Type definitions, T'def get desugared into static finite domains:

146

Desugf[Tdef]| = static domain Tdef

Controlled and monitored variables inside of machines get desugared into nullary
controlled and dynamic functions, respectively.

The desugaring of the rules is the most complex desugaring in the TASM language,
because this is where time and resource utilization play a role. To illustrate the
desugaring of rules, the following abstract syntax for a rule definition is utilized:

e Rules = (R})

()

o R, = (t; v} if cond; then ef fect;)

In the TASM, the set of rules for a given machine is implicitly mutually exclusive.
In the ASM language, the mutual exclusion is explicit. The desugaring introduces
two variables, one to keep the time when the rule application will finish executing
and one to denote that the machine is “busy” doing work. These two variables are
denoted by tcompyresn, and mbusyyresh. The fresh underscore is used to indicate that
the variable name is introduced by the desugaring and enforces that it does not clash
with existing names. Both of these variables also desugar into controlled dynamic

functions:

Desug[[tcompgresn, [] = controlled tcomp initially -1

Desug[[mbusyresh [] = controlled mbusy initially False

Conceptually, once a rule is triggered, a machine sets the mbusy variable to True
and will not do anything until the rule duration has elapsed. Once the rule duration
has elapsed, the machine will generate the appropriate update set atomically and will

be free to execute another rule. The desugaring of a rule is expressed as:

147

Desug[[Rule]] = Desug[[(t; v} if cond; then ef fect;) J]
= if/else if cond; A —mbusyresn, then
Mmbusy fresh = True;
tCOMP fresh = now + get Duration(t;);
Titresn ‘= getResourceConsumption(r;);
elsé if now = tcompyresn A MbusYsresn, then

ef fects;
mbusy fresh = False;
tcompfresh == 1a

T‘ifresh = 07

The function getDuration is a macro that is created using the condition and
the time annotation of the rule. It returns the duration of the rule by selecting a
duration non-deterministically from the rule annotation. The introduction of the two
auxiliary variables and the time conditions will guarantee that the machine will not
produce any update sets and that no other rules will be enabled while the machine is
executing a rule. This behavior is exactly the desired behavior to simulate “durative”
actions. Function machines are desugared as macros and sub machines are desugared
just like main machines and they are “inlined” inside the rule where they are invoked.
The desugaring of the “t := nezt” construct is fairly straightforward albeit tedious. It
involves caching the state at the beginning of the rule execution and creating an extra
rule which compares the cached state to the current state. If there is a mismatch, the
machine immediately resumes executing rules. If there is no mismatch, the machine

simply waits until there is a mismatch.

The one area that remains to be formally specified is the execution semantics of

resources. For each resource that is defined in the environment, an agent is created

148

that is used to sum up all of the resources used by other agents. These new agents,
symbolically depicted in Listing 4.9, are used to ensure that resource usage falls within

the specified bounds.

Listing 4.9 Machine to compute resources
Agent RESOURCE;

controlled last sy initially 0
controlled totalresource,,,,, initially 0

if now = lastfresn, + dt then
totalresource;,,,,, = sum(ry)

else

if totalresource;,,,,, > resource;,,, then

RESOURCE_EXHAUSTED

The role of the sum macro is to sum up all of the resource annotations from
executing agents. The RESOURCE_EX HAUSTFED macro simply halts execution

to note that a given resource has been exhausted.

4.5 Segue into Chapter 5

This chapter described the Timed Abstract State Machine (TASM) language through
its syntax and semantics. The following chapter, Chapter 5, describes the types of
automated analysis that can be performed on models expressed in the TASM lan-
guage. More specifically, Chapter 5 describes how functional, timing, and resource
consumption behavior of TASM models can be statically analyzed using the frame-

work.

149

THIS PAGE INTENTIONALLY LEFT BLANK

150

Chapter 5
Static Analysis

This chapter describes the analysis of models that can be performed using the frame-
work. The analysis that can be performed using the proposed framework include
Completeness and Consistency, Safety and Liveness, Ezecution Time, and Resource
Consumption. These four types of analyses are included in the four sections of this
chapter. The analysis is performed with readily available analysis engines, namely
the UppAAL tool suite [157] and the SAT4J SAT solver [158]. The analysis is achieved
by mapping TASM models to the input language of these engines. Summaries of the
translation algorithms are given in this chapter but a complete version of the trans-
lation to SAT is available in Appendix B and a complete version of the translation

to UpPaAL is given in Appendix C.

5.1 Functional Analysis: Completeness and Con-
sisténcy

Consistency and completeness were identified as useful properties of specifications
in [123] and in [125]. In the context of the specification of embedded systems, com-
pleteness of the specification is defined as the specification having a response for every
possible class of inputs. In the same context, consistency is defined as the specification

being free of contradictory behavior, including unintentional non-determinism [125].

151

Formal definitions of these properties, in the context of TASM specifications, are given
in Section 5.1.2 and in Section 5.1.3. Traditionally, verifying these properties was ac-
complished manually by system specifiers, through inspection of specifications [66].
Because a specification is likely to evolve during the engineering lifecycle, the ability to
verify these properties automatically can ease and shorten the analysis process [124].
Language-specific verification algorithms have been proposed in [123] in the context of
the RSML requirement language and in [125] in the context of the SCR requirement
language. In contrast, the analysis approach proposed in this chapter is not language
specific and can be reused for other languages. The proposed approach achieves ver-
ification by translating specifications to formulas in propositional logic, formulating
completeness and consistency as a Boolean satisfiability problem (SAT) [232], and
automating the verification procedure k;y using a generally available solver, a SAT

solver [175].

More specifically, the verification is achieved by mapping TASM specifications
to Boolean formulas in Conjunctive Normal Form (CNF). The specified mapping is
derived using the structural properties of the specification and does not require the
generation of a global reachability graph, thereby avoiding the infamous state space
explosion problem [125]. The proposed mapping could also be applied to specifications
in other languages expressed using transition systems, such as ASM specifications,
because the mapping does not consider the time or resource annotations of the TASM
language. The mapping to Boolean formulas in CNF allows for automated verifica-
tion using any SAT solver which conforms to the “DIMACS” format [158]. Using
a standard input format provides flexibility in the choice of specific solver as opti-
mizations and heuristics are constantly improving [229]. The mapping from TASM
to a Boolean formula is achieved in such a way that consistency and completeness are
expressed as unsatisfiability of the Boolean formulas. If the TASM specification is
incomplete or inconsistent, the SAT solver will generate an assignment which makes
the Boolean formula satisfiable. This assignment serves as the counterexample to
exercise the incompleteness or inconsistency of the specification. Throughout this

section, the “block form” of TASM from Equation 4.1 is used to define the concepts

152

as they are introduced.

5.1.1 Related Work

The definition and automated verification of completeness and consistency of specifi-
cations were originally introduced in [123] and in [125]. In [123], the RSML language,
a hierarchical state-based language, is used to express requirements. The language is
automatically analyzed for completeness and consistency using an algorithm specif-
ically developed for the RSML language. In [125], a similar approach is used for
analysis of requirements expressed in the SCR language. These two approaches rely
on special purpose algorithms for the efficient and automatéd analysis of consistency
and completeness. Consequently, the proposed algorithms cannot be reused for other
languages. In contrast, the approach proposed in this work utilizes a general purpose
solver, a SAT solver. The proposed translation from TASM specifications to Boolean
formulas in CNF can be reused for other specification languages. Furthermore, the
use of a mature SAT solver guarantees that the analysis procedure is optimized since

mature implementations of SAT solvers are generally available [229].

In the ASM community, various derivatives of the ASM language have been de-
veloped, including the ASM-SL language used in the ASM Workbench [59] and the
Abstract State Machine Language (AsmL) used at Microsoft [116]. A mapping be-
tween ASM-SL and finite state machines, for the purpose of model checking, was pro-
posed in [249]. A mapping between the AsmL language and finite state machines was
proposed in [109, 110]. The mapping proposed in this thesis resembles the mappings
proposed in these two approaches except that it ignores the effect of rule applications
and does not need to generate a global reachability graph. The proposed mapping
is concerned only with relationships between rule guards inside a single machine and
hence produces a smaller state space than might be generated through a complete

reachability graph.

153

5.1.2 Completeness

Informally, completeness is defined as the system specification having a response for
every possible input combination. In the TASM world, for a given machine, this
criteria means that a rule will be enabled for every possible combination of its moni-
tored variables. The monitored variables are the variables in the environment which
affect the machine execution. Formally, the disjunction of the rule guards of a given
machine must form a tautology. The letter S is used to denote an instance of the
) SAT problem. The completeness problem can be expressed as a SAT problem in the
following way:

For a given machine, for n rules:

SEﬁ(G1VG2V VGn)

complete if S not satisfiable
TASM =

incomplete if S satisfiable

The completeness problem is casted as the negation of the disjunction so that
counterexamples can be generated by the SAT solver. If S is satisfiable, all the
assignments that make S satisfiable can be automatically generated by the SAT solver.
If S is not satisfiable, the specification is complete.

Trivial cases happen when an individual rule guard represents a tautology. A
specific example of a trivial case is the else rule. The else rule guarantees that thg
specification of a given machine is complete since the else rule will be enabled if no

other rule is enabled.

Theorem 5.1. Completeness is preserved through hierarchical composition using sub

machines

Proof. Per the definition of completeness, for a sub machine SM with m rules whose

guards are of the form SGj, if SM is complete, its rules form a tautology:

154

SG,V SGaV ...V SGn =T (1)

Consider a machine M which uses sub machine SM in its effect expression, in
rule R,. Per the definition of completeness, if machine M is complete, its rules form

a tautology:

G1Vsz...VGpV...VGnET (2)

Per Theorem 4.2, an equivalent machine M’ can be obtained by eliminating sub
machine SM from rule R,. The proof must demonstrate that M’ is complete. Per
the definition of completeness, it must be shown that the disjunction of the guards of

the rules of machine M’ form a tautology:

Gy VGV ...V
(Gp N SG1) V (Gp AN SG2) V ... V (G, AN SGp) V ... V G, (3)

Equation 3 can be rewritten by grouping the guard G; and the guards SG; and
using the distributive law of A over Vv [28]:

GiVGyV ...V
[Gp A (SGL V SGa V ... V SGu)] V ... V Gn (4)

By gathering terms and using the associativity of V, equation 4 can be rewritten:

155

[GiV Ga V ... V GV
Gy A (SGL V SG3 V ... V SGn)] (5)

Equation 5 can be expanded through the distribution law of V over A [28] and

gathering terms:

[G1V GV ... VG,V ... VG A
(Gi VGV ... VG, V(SGL V SGy V ... V 8Gp)] (6)

Given Equation 1 and Equation 6, it naturally follows that Equation 6 is a tau-
tology since it can be reduced to the conjunction of two tautologies. Consequently,
machine M’ is complete and completeness is preserved through hierarchical composi-
tion using sub machines. The proof can be easily generalized to multiple sub machines

within a given rule and across multiple rules.

Theorem 5.1 states that if a sub machine is complete and if a machine which uses
the sub machine is also complete, then the equivalent machine without hierarchical
composition (see Theorem 4.2) is also complete. This property is important because it
implies that machines can be verified in isolation for completeness and those results
still hold when combined hierarchically. These results are meaningful because it
greatly reduces the complexity of the verification procedure since the derivation of
the equivalent machine quickly leads to state explosion through exponential growth
in the number of rules. Consequently, given Theorem 5.1, if all machines in a TASM

specification are complete, then the specification is complete.

156

5.1.3 Consistency

Informally, for a state-based specification, consistency is defined as no state having
more than one transition enabled at the same time [123]. The definition given in [125]
is similar but is extended'to include other properties of the specification such as
syntactical correctness and type checking. The definition of consistency adopted in
this approach is the same as in [123]. In terms of TASM specifications, this definition
states that, for a given machine to be consistent, no two rules can be enabled at the
same time. This definition will lead to a set of SAT problems to define consistency:

For a given machine, for each pair of rules R;, R; where1 < i< j < m:

SEG,;/\GJ'

consistent if S not satisfiable
TASM = '

inconsistent if S satisfiable

.n .
This definition yields a set of SAT problems. The individual SAT prob-
2

lems can also be composed into a single SAT problem. As for completeness, the SAT
problem is defined in such a way that if the specification is not consistent, a coun-
terexample is automatically generated. If S is satisfiable, all the assignments that

make S satisfiable can be automatically generated by the SAT solver.

S = (Gl A Gg) \% (Gl AN G3) \% (Gl A Gn)V
(G2 AN Gs) V (Ga AGy) V ...(Ga A Gp) V

(Gn-1 N Gp)

157

A trivial case occurs if there is only one rule. Other trivial cases happen if there
are only two rules, one of which is a guarded rule and the other rule which is the
special else rule. Before the SAT instances are generated, the else rule, if it exists,
is removed from the machine specification being analyzed. It is important to note
that consistency is a desirable property of specifications but not a requirement. For
example, if the behavior of the environment is modeled, non-determinism can be
introduced in the specification. But the remainder of the specification can be verified
to be consistent even though the complete specification might not be consistent by
choice. Similarly to Theorem 5.1, consistency of a machine can be verified in isolation

and generalized to the complete specification.

Theorem 5.2. Consistency is preserved through hierarchical composition using sub

machines

Proof. In this proof, the notation from the proof of Theorem 5.1 is reused. Given a
consistent sub machine SM with m rules and a consistent machine M with n rules,
it is shown that two tautologies follow from the definition of consistency.

Since machine M is consistent, for each pair of rules R;, R; of machine M where

1<y <ne

_'(Gi A GJ) = _\Gi \% —'Gj =T (1)

Since machine SM is consistent,, for each pair of rules SRy, SR; of machine SM

where 1l < k <l <m:

—l(SGk A SGl) = -SG V 285G, =T (2)

Per Theorem 4.2, an equivalent machine M’ can be obtained by eliminating sub
machine SM. The proof must demonstrate that M’ is consistent. Per the definition

of consistency, it must be shown that the conjunction guards of the rules of machine

158

M/ are invalid (that their negation forms a tautology). Since it is already known that
the guards not affected by the sub machine call are already consistent with respect
to each other, it is sufficient to show that the affected rules are consistent. If the sub
machine call occurs in rule R,, the guards of the affected rules in M’ will be of the

following form, per theorem 4.2, for 1 < k < m:

(Gp A SG) 3)

When determining the consistency of the rules of machine M’, two cases need to
be considered. The first case involves the consistency of an affected rule with respect
to an unaffected rule. Symbolically, it involves showing that Equation 4 forms a

tautology, for 1 < k <m, 1 <i < n,and i # p:
=((Gp A SGk) N Gy) (4)
Equation 4 can be expanded using DeMorgan’s Laws [28] and the terms can be
rearranged using the associativity of V:
((=Gp V =Gi) V =SGy)) ()
Given Equation 1, it is obvious that Equation 5 is a tautology. The second case
involves the consistency of two modified rules with respect to one another. Sym-

bolically, it involves showing that Equation 6 forms a tautology, for 1 < k < | <

m:

~((Gp A 8Gk) A (G A SGY)) (6)

159

Equation 6 can be expanded using DeMorgan’s Laws [28] and the terms can be

rearranged using the associativity of V:

(—Gp V (=SG, vV =SGy)) (7)

Given Equation 2, it is obvious that Equation 7 is a tautology. Consequently,
machine M’ is consistent and consistency is preserved through hierarchical compo-
sition using sub machines. The proof can also be easily generalized to multiple sub

machines within a given rule and across multiple rules.

O

5.1.4 Mapping to SAT

To implement the automated verification of completeness and consistency of TASM
models in the TASM toolset, rule constraints are translated to Boolean formulas and
verified using the SAT4J SAT solver. In order to translate TASM specifications to
SAT | each variable included in the rule guards must be reduced to finite domains
and mapped to Boolean propositions. The complete translation approach is detailed

in Appendix B and the algorithm is summarized below:

1. Create problem instance S depending on the property to be checked (consistency

or completeness), as explained in Section 5.1.2 and in Section 5.1.3
2. Replace function machine calls with extra rules, as explained in Section B.2.1

3. Replace symbolic right-hand sides with values from the chosen configuration,

as explained in Section B.2.4

4. Reduce integer variables to user-defined type variables, as explained in Sec-

tion B.2.3

5. Iterate through all monitored variables and create at least one clauses and at

most one clauses, as explained in section B.2.2

160

6. Convert problem formulation S to conjunctive normal form and create the full

SAT instance, as explained in Section B.2.2

The details of each step of the translation algorithm are explained in Appendix B.
Some restrictions are imposed on TASM specifications that can be mapped to a
SAT instance. In the current implementation of the TASM toolset, specifications
containing float variables cannot be mapped to SAT unless a simple interval reduction
is possible, as explained in Appendix B. The input format of popular SAT solvers is
standardized according to fhe “DIMACS” format and must be input in Conjunctive
Normal Form (CNF) [158]. The resulting SAT problem is automatically analyzed
using the open source SAT4J SAT solver [158]. The toolset also provides the capability
to “export” the generated SAT prbblem, so that the problem can be analyzed and
solved outside of the TASM toolset.

5.1.5 Example

In this section, an example of the translation algorithm and the verification of com-
pleteness is provided. The example is a machine definition of the production cell case
study presented in Section 2.8.1. The specification is for the behavior of the “loader”
component, which is the component of the system responsible for putting blocks on

the feed belt. The machine specification, expressed in the TASM language, is shown
in Listing 5.1.

For the verification of completeness, the translation to SAT, for initial conditions

where “number = 5”, yields 7 unique propositions:

161

Listing 5.1 Definition of the loader machine

R1: The feed belt is empty, put a block on it
{

t = 2,

power := 200;

if loaded_blocks < number -~ 1 and feed_belt = empty then

feed_belt 1= loaded;
loaded_blocks = loaded_blocks + 1;
feed_begin = True;
}
R2: This is the last block...
{
t = 25
power := 200;
if loaded_blocks = number - 1 and feed_belt = empty then
feed_belt := loaded;
loaded_blocks = loaded_blocks + 1;
feed_begin := True;
loader_done = True;
}
R3: The feed belt is loaded, do nothing
{
t := next;
if feed_belt = loaded and loaded_blocks < number then
skip;
) s

162

by : loaded_blocks <= 3

by : loaded blocks = 4

bs : loaded blocks >= 5

by : feed belt = empty

bs : feed-belt = loaded

be : feed block = available

by : feed block = mnotavailable

Once the mapping between TASM variable values and SAT Boolean propositions
has been established, the rule guards, G;, can be expressed in terms of the Boolean
propositions. The completeness problem, S, is then constructed according to the

definition of completeness:

G, =b; AN by N by

Gy =by A by A by

Gs =bs A (b1 V by)
=-(G1 VvV Gy V Gj)

The complete translation to SAT , in CNF, yields 13 total propositions:

163

((ﬁlh V =by V —|bl) A

(_!b7 \Y% "lb4 \% “1b2) A

Sin CNF ¢
(=b1 VvV —bs) A
[(=by V' =bs) A
((bl V by V bs) A
At least one clauses § (by V bs) A
| (bs v br) A

.
(mby V —by V —by) A

(bl \% —!bz \ _"b3) A
At most one clauses { b ’ o

(mby V =y V b3) A

(mby V —bs)

>

L (—bs V —br)

The SAT problem resulting from the translation is relatively small and running
it through the SAT4J solver yields a solution in negligible time. For this machine,
the rule set is not complete. The TASM toolset uses the SAT4J solver to generate
the set of counterexamples in which no rule is enabled. An assignment to proposi-
tions that makes the problem satisfiable is “by = true, by = true, bg = true” and
all other propositions are assigned false. In terms of the TASM specification, the
counterexample which is generated is the set “loaded_blocks = 4, [eed _bell = emply,
feed_block = available”. To check the consistency of the rule set for the “loader”
machine, the same set of propositions is generated, but the set of clauses grows to
159. However, many of the clauses are redundant, due to the long form used for the
conversion to CNF. Future work in tool development will improve the translation to

CNF by removing redundant clauses. Nevertheless, theset of SAT problems can be

164

verified to be unsatisfiable in negligible time. In other words, the rules of machine

“loader” are consistent.

5.2 Functional Analysis: Model Checking

As mentioned in Section 2.1, the functional correctness of a system can be formu-
lated as a set of liveness and safety properties [154]. Formal verification through
model checking represents one of the big successes from the formal methods commu-
nity because it provides an approach to verification which is fully automated and can
generate a witness trace [71]. Safety and liveness can be verified using a model check-
ing approach by formulating the properties as temporal logic formulas. As mentioned
in Section 2.7, a model checking approach is composed of some automata variant as
a specification formalism and a temporal logic for property specification [67). In the
proposed framework, the model checking of functional properties utilizes the UppaaL
tool suite [24] which is a toolset for the modeling and verification of timed automata.

In order to verify the safety and liveness properties of TASM specifications using
UppaaL , the TASM models need to be translated to the timed automata of UppaaL
[29]. UppaAL is a suite of tools to analyze real-time systems and is composed of an
editor, a verifier, and a simulator [24]. Because the UppaAL tool suite contains a
model checker, the UppAAL verifier, the translation to UppaAL can be leveraged to
also verify timing properties of TASM specifications using a combination of temporal
logic and observer automata [129]. Safety assertions and liveness properties can be
formulated in the temporal logic of UppAAL , a subset of Timed Computation Tree
Logic (TCTL) [244], and analyzed using the UppaaL verifier. The verification of
timing properties is described in Section 5.3. The TCTL of UppPAAL contains facilities
for specifying quantifiers over variables, which are applied to paths and to states
along the paths. The path quantifiers include “A”, which means “for all paths” and
“E”, which means “there exists a path”. The state quantifiers include “[]”, which
means “for all states” and “<>”, which means “there exists a state”. The formula

¢ is a predicate over variable values. The various combinations of the path and

165

state quantifiers arc given below, including the special quantifier “-->". A detailed

description of UppaaL’s TCTL is provided in [24].

e A [1 ¢: For all paths, ¢ holds in all states.

o A > ¢ Forl all paths, there exists a state where ¢ holds.

e E []1 ¢: There exists a path where ¢ holds in all states.

o E <> ¢: There exists a path where there exists a state where ¢ holds.

e Y —-> ¢: In all paths, if ¥ holds, ¢ will eventually hold at a later point in the
path.

5.2.1 Mapping to UppaaL

To implement the automated verification of safety, liveness, and timing properties of
TASM specifications in the TASM toolset, TASM models are translated to UppPAAL
's timed automata. The translation of TASM to timed automata involves remov-
ing function machines, sub machines, and translating TASM variables to UpPPAAL s
datatypes. The complete translation approach is detailed in Appendix C and the

algorithm is summarized below:

1. For each main machine in the TASM model, remove hierarchical composition

according to the rules of Theorem 4.1 and of Theorem 4.2
2. Translate the environment:

(a) Discard resource definitions

(b) Translate each user-defined type to a corresponding bounded integer type

of UpPAAL , as explained in Table C.2.1

(c) Translate each variable and corresponding datatype to the bounded integer

type of UpPaAL , as explained in Table C.2.1

3. For each “flattened” main machine

166

(a) Create a timed automaton to represent the machine
(b) Create an initial urgent location called “pivot”

(c) For each rule R; of the machine, add a branch from the “pivot” state

according to the approach explained in Section C.2.2

(d) If the machine contains an “else” rule, add an extra branch according to

the approach depicted in Section C.2.2

(e) For rule that contains the “t := next” annotation, build an urgent edge

using an extra automaton and an urgent channel

The details of each step of the translation algorithm are explained in Appendix C.
Some restrictions are imposed on TASM specifications that can be mapped to timed
automata. In the current implementation of the TASM toolset, specifications contain-
ing float variables cannot be mapped to timed automata. The toolset also provides
the capability to “export” the generated UpPAAL problem, so that the problem can

be analyzed and solved outside of the toolset.

5.2.2 Example

The example from Section 5.1.5 is reused in this section to illustrate the transla-
tion from TASM to UppaAL and the verification of safety and liveness properties
using UpPPAAL ’s TCTL. The TASM specification given in Listing 5.1 is translated to
UppaAL ’s timed automata, and the result is given in Figure 5-1. The automaton
in Figure 5-1 has three locations, corresponding to the three rules of Listing 5.1.
The “Loader_.R2_go” channel is an urgent channel used to enforce the transition af-
ter a state change has occurred, corresponding to the “t := next” annotation. The
datatypes of TASM are translated to the bounded integer datatype of UppaaL . In
the case of the user-defined types of TASM, the enumeration members are converted
to integers, as is the case for the feed_begin variable.

Once a TASM specification has been translated to timed automata, the UppaaL

tool suite can be used to verify safety and liveness properties of the specified system.

167

For example, for the timed automaton of Figure 5-1, a safety property stating that
“the loader will never stop loading blocks until it has loaded all the blocks” can
be formulated in TCTL. Furthermore, the liveness property “eventually, the loader
loads the total number of blocks” can also be formulated in TCTL. Both properties

are shown below:

e A [] loader_done == 1 imply loaded_blocks == number

e A <> loaded_blocks == number

c>=2
feed _belt =2,
Loader R1 feed_begin =1, LoaoﬁriRz
c<=2__ loaded_blocks = loaded_blocks + 1 c <=

loaded_blocks == aurr
feed_belt ==

loaded_blocks < nir
feed_belt == 1
c>=2
feed belt = 2,
pivot loaded_blocks = loaded_blocks + 1,
feed_begin = 1,
loader_done = 1

c=0

feed_belt ==278&&
loaded_Blocks < number

(loaded_blocks == number - 1 &&
feed_belt ==

(loaded_blocks < number - 1 &&
feed belt == 1)

Loader_R3_go?
Loader_R3

Figure 5-1: Timed automaton for Listing 5.1

9.3 Execution Time Analysis

This section provides a general approach to verify the minimum time and the maxi-
mum time that it takes for a TASM model to complete a path from an arbitrary state
to another arbitrary state in the model. The time that can elapse in a TASM model
is determined by the explicit time annotations contained in the specification. In the
real-time system community, the terms Worst-Case Execution Time (WCET) and

Best-Case Execution Time (BCET) [89] are used to denote properties of execution

168

times of software and hardware implementations. In the real-time community, the
BCET and WCET refer to execution times resulting from implementation artifacts
where time passage is typically not explicitly stated and must be obtained through
analysis. In this section and in the remainder of this thesis, the terms WCET and
BCET are used, but in the context of a model where time passage is expressed ex-
plicitly. WCET and BCET are formulated as reachability problems in terms of the
system states defined in the model. The execution time analysis approach can be
used to perform a variety of time-related analysis, including schedulability analysis
and system level analysis such as end-to-end latency. For example, in terms of sys-
tem states, the traditional definition of the WCET of a task can be expressed as the
maximum time that it takes for a task to reach the state ezecution complete from a

state where the task is ready for ezecution. A similar formulation can be made for

the BCET of a task.

Similarly to the verification of safety and liveness presented in Section 5.2, the
verification of timing properties is achieved by mapping a TASM model to the input
formalism of the UppaaL analysis engine. For the verification of execution time, the
timed automaton [5] formalism is used as the input language to define system states
and system behavior. More specifically, the version of timed automata used is the
extended version of the Alur-Dill formalism supported by the UppaAL tool suite [29).
In the proposed approach, the timing analysis of system models is achieved automat-
ically using the standard functionality of UppaAL and modeling patterns — observer

automata, the bounded liveness pattern, and temporal logic formulas [157].

The presented approach provides an approach to obtain WCET and BCET be-
tween any two system states, using an algorithm called iterative bounded liveness.
The approach formulates execution time analysis as a reachability problem, which
has been shown to be decidable for timed automata [7]. The use of observer au-
tomata removes the need to modify system models with extraneous annotations for
the sole purpose of timing analysis, as is the case in [25], and in the bounded liveness
pattern in [157]. In Section 5.3.3, the presented approach is illustrated through the

analysis of a example problem depicting a simple scheduling problem. More complex

169

examples are available in the case studies presented in Chapter 8.

5.3.1 Related Work

WCET analysis is an active research area in the real-time system community and so-
phisticated algorithms, models, and tools have been developed to analyze execution
time of implementation languages for various hardware configurations. Thorough sur-
veys of WCET techniques for programming languages and execution environments
are available in [89] and in [150]. The output of these approaches can be used to
annotate formal system models with timing properties, for the purpose of analyzing
correctness with tools such as UppaaL or Kronos [89]. The use of a formalism like
timed automata can be used to analyze both timing correctness and functional cor-
rectness [157). Furthermore, timed automata can be used for top-down analysis, to
gain insight into system behavior before the system is implemented, when defects are
typically cheaper to correct [37]. The approach to execution time analysis presented
in this section can be considered a complement to the WCET analysis techniques of
implementations, as performed in the real-time community. The iterative bounded
liveness approach can be used in a top-down fashion before implementations exist,
and can later be validated using bottom-up analysis provided by WCET approaches
for software and hardware, once the system is implemented.

The use of high level system models for timing analysis has been performed in the
context of statecharts [91] with compilation techniques. The approach }Sresented in
this work differs in that it relies on the explicit timing expressed in the model instead
of translating the model to code to extract timing metrics. A similar approach was
conducted in the context of Petri Nets [236] and in the context of priced timed au-
tomata [25]. The approach presented in this section differs in that it does not require
modification of the system models for the purpose of timing analysis. Annotating the
system model can inadvertently result in changes in the semantics of the model and
clutters readability for the sole purpose of performing analysis. The use of observer
automata is similar to the work on test case generation and time optimal test suites,

summarized in [36], and in [128]. Using observer automata provides a flexible and

170

non-intrusive way to analyze system models. The iterative bounded liveness approach
is beneficial in that it provides flexible and reusable means of measuring minimum and
maximum execution times between any two states of timed automata models, with-
out modifying the system model. The approach' is flexible and can be used to verify

timing properties of system models such as schedulability and end-to-end latency.

5.3.2 Iterative Bounded Liveness

The approach to analyzing execution time is formulated using timed automata. In the
rest of this section, it is assumed that a TASM specification has been translated to the
timed automata of UpPAAL using the translation approach described in Appendix C.

The timed automaton formalism, also called Alur-Dill automata [5], extends finite
state automata with a set of real-valued clocks to denote the passage of time. In a
timed automaton, all transitions are instantaneéus, but time elapses between transi-
tions. Transition guards can contain predicates over clocks to enforce time passage
before a transition is taken. State invariants are used to enforce upper bounds on the
timé passage in a given state. The timed automata used in UppaaL extend Alur-Dill
automata with Integer'variables, Boolean variables, committed and urgent locations,
and communication channels [24]. In UppaAL s timed automata, a location is equiv-
- alent to a state in Alur-Dill automata. Urgent locations are used to denote that time
should not elapse in a location. ‘

A brief review of the syntax and semantics of the timed automata of UppaaL ,
combining terminology and notation from [29], [157], and [36] is provided. Formally,

~ a timed automaton is a tuple { L, Iy, C, V, I, E), where:

o L is a set of locations
e [y € L is the initial location
e (U is a set of real-valued clocks

o V is a set of variables

171

e [: B(C) — L is a mapping of simple clock constraints to locations, denoting

location invariants
e ECL x G x A x Lis a set of edges between locations where:

— G is a predicate over variables V, simple clock constraints B(C), and
channel communications
— A is a set of output actions, including clock resets, variable assignrhents,

and channel communications

The semantics of a timed automaton are defined as a transition system over system

states. A state s € S is a tuple ([, o, u), where:

e | € L is an automaton location
e 0: D — V is a mapping of values to variables

e u: Ryy — C'is a valuation function for each clock in C

The initial state is (lp, gg, {0} — C), where all clocks are assigned the value 0.

A transition is a relation 7 C S x S whose members satisfy the following conditions:

e (lLoju) — (o, u\r+t)U{0} - r))iV 0<{<t=u+te
I(l) and

e Jee E=(l,g,a,l') such that:

— g is satisfied in ([, o, u)
— the variable assignments in a yield ¢’ from o
— t is the amount of time elapsed in ([, o, u)

— 7 is the set of clock resets in a

These definitions can be easily extended to networks of timed automata by using
vectors. For a more detailed description of the syntax and semantics of UppAAL s

timed automata, the reader is referred to [29].

172

Maximum and Minimum Execution Time

In the analysis of system specifications, the analysis of execution time is of special in-
terest to understand the semantic properties of specifications that contain concurrent
entities. The notation a — b denotes the “small-step” transition from a state a € S to
a state b € S. The relation 7 is used to denoté the set of all “small-step” transitions
a—b e T C S x S. The notation a — b denotes the “big step” transition from
state a to state b. The “big step” transitions can be defined in terms of “small-step”

transitions:

a—b=a— 8 > — 8, —b
where: a — 81,8, > beTA

VO<i<n:s; o841 €T

In other words, — is the transitive closure of 7. The duration of a “small-step”
transition, ¢,_.;, is defined as the time ¢t > 0 that can elapse during a transition a — b
€ T. The duration of a “big-step” transition ,,.; is defined in terms of durations of
“small-step” transitions where 45 = (T2 tsms01) + tamsy + tsnob tmas,.., and

tmin,.., are defined as:

tmaza.,b = {t;Hb‘v ta'—*b ; ta’—’b S t:u—-»b}

tm‘i‘ﬂa.-»b = {t;r—»blv tasb © lamb 2 t;.i—»b}

When analyzing execution time of timed automata models, the properties of in-
terest are BCET and WCET. Ezecution time is defined as the time, tpy.p,, that it
takes to go from a state py to a state p;. The Best-Case Execution Time (BCET)
is the lower bound of tp,.p,, that is, Eminggp, and the Worst-Case Execution Time
(WCET) is the upper bound of tyg.p,, that is, tmaz,,..,, -

These properties can be analyzed using the UppaAL tool suite and temporal logic

173

formulas. The general problem of determining execution time of programs is unde-
cidable because termination is undecidable, although approximations yield adequate
results [89]. For specifications expressed using timed automata and verified using
temporal logic, the reachability problem is decidable [7]. To verify execution time of
timed automata, a combination of observer automata and the bounded liveness pat-
tern [24] is used. Bounded liveness is a temporal logic formula pattern, combined with
an augmentation of the model, which can be used to verify that execution time is ap-
propriately bounded. The pattern is of the form ¢mqe, = “A [[(b imply (2 <= t))”
where b is a fresh_ Boolean variable and z is a fresh clock. Both b and z augment the
timed automata model for the purpose of performing execution time analysis. The
trick is for b to be true whenever the property p being checked holds. The clock z
is reset when the property p begins to hold. Informally, the temporal logic formula
states “the property p holds for at most ¢ time units”. The same idea is used, but it
is grounds into an observer automaton instead of modifying the system model. The
analysis also seeks to “find” the value of ¢, instead of “verifying” whether a model
satisfies a ¢t given a priori. To achieve this, the model is queried iteratively, to converge

on the t corresponding to BCET or WCET.

Observer Automata

An observer automaton is a timed automaton which is not part of the system model,
but which can be used to monitor certain properties of the system model. For exam-
ple, observer automata have been used successfully in [36] to monitor coverage criteria
with respect to test case generaﬁion. To verify execution time between two arbitrary
states of the system model, the properties of the states that are monitored must be
stated. The specification of properties is limited to predicates over variables and
omit locations and clock values of the system model. In the context of the observer
automaton, the time t,,.p,, means that there exists some trace (*, o, *) — ... —
{ %, 0/, x) where pp C ¢ and p; € ¢’. This meaning does not affect the semantics
of the model since it is part of the obsérver automaton and has no side-effect outside

of the behavior of the observer automaton. The observer automaton is built using

174

the concept of bounded liveness and using the state path to be verified. A sample
observer automaton is shown in Figure 5‘-2, where z is a fresh clock variable, py (a
predicate over variable values) is the initial state from which to measure time, and p,
(a predicate over variable values) is the final state to which time is measured. The
observer automaton contains a Boolean variable b which is true (b==1) in all paths
from py to p;. Furthermore, the clock z is added and reset for each transition out of
po; the OBSERVER_go variable is an urgent channel, used to ensure that the only
time that elapses in the observer automaton is time that elapses in the system model.
Whenever a transition is enabled in the observer automaton, it is taken without delay.
Location ¢2 is marked urgent to ensure that no time elapses in that location.

p0 p1
OBSERVER_go? OBSERVER_go?

0,
0

4o

z
b

OBSERVER_go!

z=0,b=0

Figure 5-2: Observer automaton

Algorithm

In order to verify the execution time, the bounded liveness pattern of [157] is utilized
iteratively. The temporal logic formula ¢min = “A [|(b == 1 imply (z >= L)
states that “the property p holds for at least ¢ time units”. Conversely, the formula

maz = “A[](b == 1imply (z <= 1))” states that “the property p holds for at
most ¢ time units”. @, is used to obtain tmazpgp, 3N Pmin is used to obtain
bminpgsp, © Umawpgp, 1S Obtained by iteratively verifying ¢pq, with increasingly large
values for t until ¢,q, is satisfied. Conversely, tminggp, 18 Obtained by iteratively
verifying ¢, with smaller values for ¢ until ®min 1S satisfied. Because the UppaAL
model checker generates a counterexample when a temporal logic formula does not
hold, the values of z given by the counterexample can be used as the value of ¢ for

the following iteration. The notation 7.4 denotes the timed automata system model.

175

The notations @min (%) and @mes(z) also denote Pmin and Pmqa; Where ¢ is substituted
for z. The algorithm used to obtain the WCET is shown in Listing 5.2. The algorithm

to obtain the BCET can be obtained by replacing ¢,m.: by ¢min and WCET by BCET
in Listing 5.2.

Listing 5.2 Iterative bounded liveness algorithm to calculate WCET
o Verify ¢;n;; on timed automata model 7 A

o If ¢ni: is satisfied, let t.s; = 2, using the value of clock z stored in the UppaaL
simulator illustrating that ¢;,;; is satisfied

o Loop until @maz(test) is satisfied

— Verify @maz(test) on timed automata model 7.4

— if Pmaz(test) is not satisfied, let tes = 2z, using the value of clock z stored
in the UppAAL simulator

e WCET = test

The initial value of ¢ used for the iteration can be obtained using the UppAAL
simulator and the simple reachability formula ¢iniy = “E <> o0a.q2” where 0a.q2 is
the state of the observer automaton that is reached when the path has been observed.
If ¢iniz can be satisfied, there is at least one path from py to p; from the initial state
of the system model. Once Eminggep, and tmazyg,.p, have been established, the UppAAL
simulator can be used to generate the sequence of steps that lead to tmin,,,., and
tmazpgp, T€SPECtVEly. FOI tmin, . ., this can be achieved by setting ¢ = tmin, .,
+ 1 in @ and reading the counterexample trace in the UppaaL simulator. For
bmazpyp, » this can be achieved by setting ¢ = tmazyg.,, — 1 in Pmez and reading the
counterexample trace in the UppAAL simulator. tmin,, ., is bounded from below by
0. If tmazy,,.,, is unbounded, ¢mq, will never be satisfied. Depending on the problem
definition, a maximum value of ¢ in @mq, should be agreed upon to determine that
tmazpge.p, 18 Unbounded. It is important to note that a cycle in the state transitions
will not lead to unbounded tma,,.,, because the clock z is reset on all transitions
out of po. Unbounded tmez,, ., can occur purely as a side-effect of the properties

of locations en route to p;. For example, if a location on the path py — p; has no

176

location invariant, ¢ could be unbounded. However, given the restrictions

MATpgrpy
put on the models, this situation will never happen and tmazpyep will converge, as

explained in the following subsection.

Unbounded Delays and Convergence of Execution Time

In order for iterative bounded liveness to converge, the timed automata system model
must not contain unbounded delays that can occur while the observer automaton
of Figure 5-2 is in state ¢I. In timed automata, delays can be bounded either by
setting a location invariant to limit how much time can elapse in a given location, or
by having an urgent edge out of a given location. With these two conditions, delays
are guaranteed to be bounded, given that urgent edges will become enabled within a
bounded amount of time. While these restrictions might seem limiting, in the context
of WCET analysis, all delays must be bounded, or a bound must be estimated as is the
case of approximations for loop bounds in program analysis [89]. For systems that
have unbounded delays, execution time analysis can occur for BCET, but WCET
analysis would be pointless. The limitations on delays are similar to the restrictions
in [235] where timed automata are restricted to be output urgent for the sake of

testability.

5.3.3 Example: The Scheduling Problem

This subsection provides an illustrative example to illustrate the analysis of execution
time. The example deals with the scheduling of the task graph shown in Figure 5-3.
The task graph contains four tasks, each annotated with BCET and WCET figures.
The arrows describe the precedence constraints for execution of the tasks. In order
for the TASM system model to have unbounded delays, it is assumed that tasks will
start executing as soon as the processor is free and when their dependencies (if any)
have completed execution. This assumption is congruent with scheduling theory and
prevents unbounded delays before the beginning of a task’s execution.

The TASM model describing the scheduling problem is shown in Listing 5.3, in

177

Figure 5-3: Task graph

Listing 5.4, and in Listing 5.5. Listing 5.3 shows the environment definition. A task
can be in 3 possible states — wait, ezecute, and done. The wait state is used to denote
a task that has not executed yet, the state ezecute is used to denote a task that is
executing, and the state done is used to denote a task that has completed execution.
"The processor can be in 2 possible states — free and busy. The meaning of the processor
states is self-evident. Listing 5.4 shows the definition of the scheduler that enforces
the precedence constraints. It is interesting to note that the scheduler contains non-
determinism, meaning that the set of rules are not consistent per the definitions given
in Section 5.1.3. However, the non-determinism is introduced purposefully because
given the problem definition, taskl and task2 can execute in any order because they
do not have precedence constraints. Listing 5.5 shows the behavior of task 1. When
the task is executing, it will take between 5 and 10 time units to complete, per the
definition given in Figure 5-3. Each task is modeled as a main machine and TASM
models for task 2, task 3, and task 4 are similar to Listing 5.5. The complete TASM

model contains 5 main machines - 1 for the scheduler and 1 for each task.

The UppaaL model, obtained through the translation algorithm described in Ap-
pendix C is shown in Figure 5-4, Figure 5-5, and Figure 5-6. Figure 5-4 shows the
timed automaton for the TASK1 main machine of Listing 5.5. In the TASK1 au-
tomaton, location pivot is used to denote the initial location, location TASKI_R1 is
used to denote that the task is executing, corresponding to the execution of rule R
in the TASM main machine specification. The clock ¢ is used to enforce the lower
and upper bounds on the execution times of the task, through an invariant at loca-
tion TASK1_R1 and through a clock guard on the edge from the TASK1_R1 location

and the pivot location. The variable proc is used to signal that the processor is free

178

Listing 5.3 TASM environment for the scheduling problem
ENVIRONMENT:

USER-DEFINED TYPES:

task_status := {wait, exec, done};

proc_status := {free, busy};

VARIABLES:

task_status taskl ;= wait;

task_status task2 := wait;

task_status task3 := wait;

task_status task4 := wait;

proc_status proc := free;

(proc == 1) or busy (proc == 2). There are 4 binary variables in the model, task1,

task2, task3, task4 to denote whether a given task has finished executing (taskb ==
3) or not (taskn == 2). The TASK1 automaton has an urgent edge, enforced by the
urgent channel TASK1_else, which ensures that a task starts executing as soon as it

is capable, to avoid an unbounded delay before execution begins.

The goal of the example is to study the BCET and WCET of completing all
the tasks with their precedence constraints. In the formulation of the problem, this
property is equivalent to verifying the maximum and minimum amount of time for
a path that goes from the state where none of the tasks have started executing
(taskl == 1 && task2 == 1 && task3 == 1 && task4 == 1) to a state where all
of the tasks have completed execution (taskl == 3 && task2 == 3 && task3 ==
&& taskd == 3). Following the convention of Section 5.3.2, the observer automaton
encodes these two conditions as edge guards, and uses the clock z and the binary

variable b to measure the time that elapses in location gI of the observer automaton

of Figure 5-6.

Using the iterative bounded liveness approach, the BCET for all tasks to execute
can be verified to be 55 time units and the WCET can be verified to be 85 units. It
is trivial to verify that this result is correct because the BCET and WCET of the

sequential execution of all the tasks is simply the summation of the individual BCETs

179

Listing 5.4 SCHEDULER main machine describing the behavior of the scheduler

for the scheduling problem
R1: Execute task 1

{
if taskl = wait and proc = free then
taskl := exec;
proc := busy;
}
R2: Execute task 2
!
if task2 = wait and proc = free then
task2 := exec;
proc := busy;
¥
R3: Execute task 3
{
if task3 = wait and taskl = done and proc = free then
task3 := exec;
proc := busy;
}
R4: Execute task 4
{
if task4 = wait and task2 = done and task3 = done and proc = free then
task4 := exec;
proc := busy;
}
R5:
{
t = next;
else then
skip;
}
c>=5
task1 = 3, task1 ==
proc =1 TASK1_else?
TASK1_R1 TASK1_ELSE
c<=10 N\
task1 == task1 !=2
c=0

Figure 5-4: Timed automaton for the TASK1 main machine

180

Listing 5.5 TASK1 main machine describing the behavior of task 1 of the scheduling

problem
R1:
{
t := [5, 20];

if taskl = exec then
taskl := done;
proc free;

t := next;

else then
skip;

SCHEDULER_R2
c<=0 SCHEDULER_R3
/ cesg

task2 == 1 &&
proc == c>=0

c=0 ask3 = 2
SCHEDULER R1 . _. S
iy task1 = 2,

taskt == 1 &&

{(taskt == 1 && proc == 1
(task2 == 1 && proc == 1
(task3 == 1 && task1 ==

&& proc == 1) ||
(task4 == 1 && task2 ==
&& task3 == 3 && proc == 1))

(task1 == 1 && proc == 1) |
=1l

(task2 == 1 && proc ==
(task3 == 1 && task1 ==
&& proc == 1) ||
(task4 == 1 && task2 ==
&8 task3 == 3 && proc == 1)

SCHEDULER _else?
SCHEDULER_ELSE

Figure 5-5: Timed automaton for the SCHEDULER main machine

181

task1 == 1 8& task2 == 1 && task1 == 3 8& task2 == 3 &&

task3 == 1 && task4 == 1 task3 == 3 && task4 == 3
OBSERVER_go? OBSERVER_go?
z2=0,
b=0 b=1

Figure 5-6: Observer automaton to analyze schedulability

and WCETs of each task. However, the purpose of this example was not to yield in-
sight into the scheduling problem, but to give an illustrative example of the approach.
The scheduler could also be extended to reflect a multi-processor architecture and the
scheduling algorithm could be analyzed using the same observer automaton. More
complex examples of observer automata and execution time analysis are available

through the case studies presented in Chapter 8.

3.4 Resource Consumption Analysis

This section presents an approach to analyze the minimum and maximum amount
of resources consumed by a TASM model, per the resource annotations. These mini-
mum and maximum amounts are determined through an algorithm analogous to the
algorithm to determine completeness and consistency presented in Section 5.1. The
algorithm is implemented in the TASM toolset using a combination of the translation
to SAT described in Appendix B and the translation to timed automata described in
Appendix C.

5.4.1 Related Work

The analysis of resource usage, such as memory and stack usage has been performed
in the context of programming languages [89, 119]. In the model based community,
modeling of resources is gaining popularity [180], especially in the Quality of Service

(QoS) community [252]. The approach presented in this section is unique in that

182

it uses generally available solvers to calculate the best-case and worst-case resource
consumption. Furthermore, the presented approach can calculate a safe upper bound
and lower bound on resource consumption, without generating a global reachability
graph, mitigating the state explosion problem. The proposed approach is flexible
and can accommodate different levels of accuracy depending on the complexity of the

problem at hand.

5.4.2 Approach

Because parallel resource usage is additive in the TASM language, the maximum
amount of resources consumed will occur when the summation of the resource con-
sumptions of parallel machines is at a maximum. To determine this maximum
amount, the algorithm iterates through the rules of each machine and tries to find a

set of rules for each machine that satisfies the following conditions:

For a TASM model with n main machines, for 1 < i < n, where the subscript ¢
denotes the i** machine, and res; denotes the amount of resources consumed by the
" machine, and G; denotes the guard of the i** machine for the rule corresponding

to the res; resource consumption:

n

totres = Zresi (5.1)

i=0
(Gy A Gy A ... AN Gy) is satisfiable (5.2)
totresmas = {totres |V totres': totres’ < totres} (5.3)

183

The state that satisfies Equation 5.2 is reachable (5.4)

The first condition simply restates the additive properties of the parallel consump-
tion of resources. The second property states that the maximum amount of resources
consumed must occur in a state where all rules consuming resources can be executed
simultaneously. The third condition defines the maximum amount of resources con-
sumed. The fourth condition states that the state that satisfies Equation 5.2 must

be a reachable state.

Listing 5.6 Algorithm to determine maximum resource usage
e Remove hierarchical composition from all main machines M; according to the
approach explained in Theorem 4.1 and in Theorem 4.2

o tolres = —1
e Loop over all sets of rules:

— Select a set of rules that includes one rule from each machine M;
— Calculate totres’ using Equation 5.1
— if totres’ > totres then

* if Equation 5.2 is satisfiable and Equation 5.4 holds then totres =
totres’

® [olreSmaer = LOlres

The first step of the algorithm calculates the “flattencd” version of each main
machine so that hierarchical composition is removed, to enable the direct comparison
of rule guards. The algorithm loops over all sets of rules to try every combination
of parallel rules to test the resource consumption of possible parallel behaviors. For
each combination of rules, the resource consumption is calculated and the conjunction
of the rule guards is checked for satisfiability. Satisfiability is a weaker notion than
the logical properties introduced in Section 5.1 because there can be multiple states
satisfying the disjunction of the rule guards. The first concern of the analysis is to

determine whether Equation 5.2 is satisfiable. The following step of the algorithm

184

concerns itself with determining whether the state that satisfies Equation 5.2 is a
reachable state of the system. If reachability is not verified, the calculated version of
totresm,q, will yield a safe overapproximation. In other words, the calculated value
provides a valid upper bound, but that upper bound might not be attainable in
reality. For many systems, this approximation might be sufficient, in which case
the reachability analysis can be skipped. However, if an exact measure is required,
the reachability analysis will ensure that the algorithm yields an optimal value of
totresmqz. Clearly, the algorithm described in Listing 5.6 can be repeatéd for every
resource in the specification. Furthermore, an analogous algorithm can be derived to

calculate the minimum amount of consumed resources.

Implementation

The implementation of the algorithm in the TASM toolset follows the strategy of
Section 5.1 and of Section 5.3. The implementation strategy uses mapping to both
SAT and to UppaaL ’s timed automata to perform the analysis. The algorithm of
Listing 5.6 does not specify how the sets of rules are assembled. The method used to
select the set of rules can yield performance optimizations depending on the proper-
ties of the model. For example, the rules of individual machines can be sorted and -
totresmq, can be calculated using a breadth-first search approach. Other heuristics
can be used to perform the calculation. In the TASM toolset, the approach sorts the
rules of each machine and uses an exhaustive search. Possible optimizations could
be performed and will be considered in future work. However, for the case studies of
Chapter 8, the performance of the brute-force search proved adequate.

Verifying Equation 5.2 in the TASM toolset is achieved by translating the con-
junction of the rule guards to SAT , following the approach presented in Appendix B.
If there is a state s that satisfies Equation 5.2, the SAT solver will return the state s
to the TASM toolset. The state s is returned to the toolset as a set of variables and
associated values. The reachability analysis is implemented using the timed automata
model and UppaaL . The timed automata model can be obtained using the approach

presented in Appendix C. If a timed automata model has already been generated for

185

functional analysis or for execution time analysis, this model can be reused for the
reachability analysis. The generation of the timed automata model needs to happen
only once. To verify the reachability properties of state s, a simple reachability tem-

poral logic formula can be used, with state s translated to the language of UppaAL

E < s

If state s is reachable, the UppaAL verifier will confirm that the formula holds.

5.4.3 Example

This section provides an example to illustrate the approach to verify minimum and
maximum resource usage. The example reuses version 4 of the light switch example
from Section 4.1.5, described in Listing 4.6, Listing 4.8, and Listing 4.7. Since this
example does not contain hierarchical composition, it does not need to be flattened.
Furthermore, since there are 3 rules in each main machine, there are 9 possible com-
binations of rule pairs that contain 1 rule from each machine. For each machine, the

rules and corresponding memory consumptions are summarized below:

LIGHT_CONTROL : (R;, memory = 300) (Ry, memory = 100) (R3, memory = 0)

FAN_CONTROL : (R, memory = 100) (R, memory = 200) (R3, memory = 0)

Iterating through the possible pairs of rules, it is easy to see that the maximum
memory consumption occurs when rule R; of machine LIGHT_CONTROL is executed
and when rule R, of machine FAN_CONTROL is executed simultaneously. However, it
must be determined whether the rule guards of these two rules can be enabled at the

same time, that is, if the following formula is satisfiable:

(light = OFF and light_switch = UP) and
(fan = ON and fan_switch = DOWN)

186

| Name Value | Rules | State

memory 500 | Ry, Ry | ((light, OFF), (light_switch, UP),
(fan, ON), (fan_switch, DOWN))
bandwidth | 60 Ry, Ry | ((light, OFF), (light_switch, UP),
| (fan, OFF), (fan_switch, UP))

Table 5.1: Maximum resource usage

Name Value | Rules | State

memory 0 Rs, Rs | ((light, ON), (light_switch, UP),
(fan, ON), (fan_switch, UP))
bandwidth | 0 Rs, R3 | ((light, ON), (light_switch, UP),
(fan, ON), (fan_switch, UP))

Table 5.2: Minimum resource usage

Translating this formula to SAT and running it through the SAT solver shows that
the formula is satisfiable with the state ((light, OFF), (light.switch, UP), (fan, ON),
(fan_switch, DOWN)). Encoding this state in a temporal logic formula and verifying
the formula with the UppaAL tool suite demonstrates that the state is reachable.

The same algorithm can be used to determine the maximum bandwidth usage for
the model. Furthermore, the dual version of the algorithm can be used to determine
the minimum memory and power usage for the model. The results of the analysis for
the maximum resource usage are shown in Table 5.1 and the results of the analysis

for the minimum resource usage are shown in Table 5.2.

5.5 Segue into Chapter 6

This chapter described the types of analysis that can be performed on TASM speci-
fications using the proposed framework. More specifically, this chapter detailed how
the completeness and consistency, safety and liveness, execution time, and resource
consumption prdperties of TASM models can be analyzed automatically using the
framework. The following chapter, Chapter 6, describes how two or more TASM

models at different levels of abstraction can be meaningfully related. More specif-

187

ically, Chapter 6 provides an approach to trace model features syntactically and
integrates syntactic traceability with notions of semantic equivalence to establish a
notion of semantic equivalence between the models. The presented approach enables
bi-directional traceability of TASM models through levels of abstraction all the while

ensuring semantic integrity under certain conditions.

188

Chapter 6

Bi-Directional Traceability

This chapter presents an approach to relate the syntax of two disparate TASM mod-
els. The proposed relationship, called bi-directional traceability, enables the track-
ing of model features throughout lifecycle phases and levels of abstraction, both for
functional properties and for non-functional properties. Section 6.2.1 presents seven
“standard” types of changes that can occur between two TASM models, as surveyed
through modeling literature and experience with modeling.. Each type of change is
expressed as a syntactical mapping between the machines and rules of two TASM
models. As presented in this chapter, traceability is a purely syntactical concept;
however, in Section 6.2.2, for each proposed type of change, a set of correctness cri-
teria is given to ensure that, if the criteria are met, the proposed change preserves
the semantics of the original model. Section 6.3 provides an illustrative example
to demonstrate the traceability approach combined with the use of the correctness

criteria to ensure semantic equivalence throughout the change.

6.1 Related Work

The growing popularity of model-driven software engineering is yielding a new set
of challenges for model management, model maintenance, and model evolution [168].
Since modeling typically happens at different levels of abstraction, often across lifecy-

cle phases, the ability to relate disparate models to one another is becoming increas-

189

ingly important to ensure consistency between models. For example, in the context of
the Unified Modeling Language (UML), efforts have been exerted to define and enforce
consistency between different diagrams [138]. Furthermore, the features of a model
typically depend on a set of design decisions or assumptions. The ability to trace and
visualize the effects of these features, and hence of associated decisions and assump-
tions, is important in complex system engineering [217]. Furthermore, traceability
provides means to visualize and analyze the effects of changes to the specification,
* throughout the lifecycle of the system being engineered. However, traceability is, by
definition, a syntactical concept, in the style of versioning systems, and provides no
notion of semantic equivalence between the related artifacts. In the formal methods
community, where models have precise semantics, theories of refinement have been
developed to demonstrate semantic equivalence between two different models [174].
In these refinement approaches, the emphasis is put on correctness and imposes strict
restrictions on system designers to ensure semantic correctness. In this chapter, a
novel approach to model management is presented. The proposed strategy merges
the benefits of syntactical traceability, for change management, and refinement cor-
rectness, for semantic integrity. The approach presented in this chapter provides an
agile approach to relate models at different levels of abstraction and to relate models
representing different aspects of the system such as functional behavior and timing
behavior. The proposed traceability approach supplies benefits because it provides
syntactic bi-directional traceability, augmented by a set of correctness criteria that

can guarantee semantic integrity.

6.1.1 Syntactic Change Management

In the software engineering community, models of traceability have been developed
for architecture models [94, 226] and for requirements [217]). In these approaches,
change management and heterogeneous model integration is the key motivation. Fur-
thermore, traceability models that cross lifecycle phases have been developed in [168]
using the concept of connectors. Syntactic change management, in the context of pro-

éramming languages, is widely used in the software engineering communities {78, 139].

190

In the context of programming language, the term “Software Configuration Manage-
ment (SCM)” or “Version Control” are used to describe the set of tools and processes
used to visualize program changes and to create software versions. A vast suite of
tools are available to implement version control including open source offerings that
include the Concurrent Versions System (CVS) [241]. In the software engineering
community at large, notions of refinement correctness are typically overlooked and
the focus is put on change management and syntactical mapping. The primary focus
of traceability in the software engineering community is to visualize and control the
changes that are made to product implementations, without concerning itself with
the correctness of the changes.

In contrast, this chapter presents an approach to traceability that incorporates
both syntactical traceability, to track changes, and a set of correctness criteria to
maintain semantic integrity. Furthermore, in the engineering of real-time systems,
different types of models are used, such as high level models, component models, and
task graphs. The approach presented in this chapter enables traceability of model
features throughout these disparate models, all the while ensuring semantic integrity

under certain conditions.

6.1.2 Refinement Theory

The idea of software development being conducted in a controlled and provably correct
fashion, in incrementai steps, goes back to the days of Niklaus Wirth [250], and Edsger
Dijkstra [80]. Since these seminal ideas, refinement theory has found widespread
adoption and development in the formal methods community. In the formal methods
community, the majority of refinement schemes revolve around two principles — the
principle of “substituvity” and the principle of state equivalence. In the principle
of “substituvity”, the core idea revolves around the idea that a program could be
replaced by another program and the change would be undetectable by the user [79)].
In such a scheme, a refinement is deemed “correct” if the observable behavior of a
program/model is undetectable after a refinement has occurred. The observations

can take the form of input-output pairs, pre/post states and invariant preservation

191

as can be found in the B method [2]. In the principle of state equivalence, the
states of the two models to be related are enumerated, and a mapping is defined
between the sets of states [43]. Furthermore, the semantic equivalence between two
models can be established through a notion of trace equivalence through a subset
relation and bisimulation, as can be found in the process algebra community [95, 131]
and in the Input/Ouput Automata (I/OA) formalism [147]. The bisimulation proof
method serves as the basis for many refinement approaches in the formal methods
community and can express both “substituvity” or state equivalence, depending on

what information the traces contain [227).

There has been a significant amount of theory developed around refinement, such
as the refinement calculus [17], Morris’ basis [174], and Roever’s Data refinement [77].
These schemes aim to provide rigorous means by which refinement correctness can
establish semantic equivalence. However, they do not address the syntactic nature of
change management introduced by a refinement. The Abstract State Machine refine-
ment approach is more general and can support many popular refinement schemes
[43]. The ASM approach uses commuting diagrams as a mapping between states of
interest and an equivalence notion (=) between data in locations of interest in cor-
responding states. The approach proposed in this work is a subset of the general
ASM refinement approach, by selecting a suitable set of criteria to establish basic
correctness locally, without considering the complete semantics of the models. The
correctness criteria proposed in this work do not preclude a more general notion of
equivalence between models, as advocated in [43]. Formal approaches to refinement

can be used in conjunction of the strategy proposed in this chapter, if desired.

From a practitioner’s perspective, the motivations for establishing semantic equiv-
alence between two models aim to reduce verification effort. In an ideal world, if
verification was performed on a given model, the verification results would still hold
in the refined model and the verification efforts would not need to be repeated. The
philosophy of the approach presented in this chapter is to provide a set of correctness

criteria which, if met, guarantee that verification results hold in the refined model.

192

6.2 Concepts

The concept of traceability establishes a mapping between two models. In the con-
text of model-driven engineering, traceability typically happens between two models
at different levels of abstraction, where the lower level model is assumed to be a re-
finement of the higher level model [168]. In general, the refined version of a model
contains more details than the original version, although this property does not neces-
sarily hold. For example, an optimization is a refinement which could remove defails
from an original model. This definition is also congruent with refinement concepts
such as simulation relations in the formal methods communify [174]. In this chapter,
the concept of traceability and the concept of refinement correctness are differenti-
ated. Traceability is defined as an invertible function between two models, mapping
syntactical elements. The mappings can fall under different categories, depending on
the differences between the two models. Refinement correctness can be established
though a set of correctness criteria for the different types of syntactical mappings.

In the context of the TASM specification language, traceability is defined as a
function between the rules of two models [202]. In the TASM language, rules are
contained inside of machines. However, in the definition of traceability, the machine
structure is ignored without loss of generality since rules can be renamed using the
name of the machine as a preﬁx. The machine to which a rule belongs becomes
important when specifying correctness criteria, but is irrelevant for the syntactical
mappings. '

Formally, traceability between model M; and model M, is defined as a partial
function T over the set of rules X; of model M; and the set of rules X, of model
Mo

T : P(X1) — P(Xy)

The partial function is defined over the power set of X; and the power set of Xs,

as a function between arbitrary sets, to reflect the possibility that traceability does

193

not have fixed arity and can be many-to-many. In the context of a partial function,
the domain of definition is the set of elements in the domain for which the function
is defined. In the context of a partial function, the codomain of definition is the set
of elements in the image for which the function is defined. Two function operators

are introduced, ddef and codef, which operate on T:
e ddef(T) £ domain of definition of T
e codef(T) £ codomain of definition of T

Although the function T is defined in a one-way fashion, bi-directional traceability
can be achieved by taking the inverse of T. The ability to invert the function requires
that the partial function be a bijection over ddef(T) and codef(T). Furthermore, to
define the properties of T, a definition of a partition is given, where the empty set
can be an element of the partition. Formally, a set P of subsets of X is a partition if

it has the following properties:

e The union of the elements of P = X

e The pairwise intersection of the elements of P = &

With the definitions of ddef, codef, and partition, the formal definition of bi-
directional traceability between two models can be formulated. The definition is

given in terms of the properties of the function T:

e T is a bijection over ddef(T) — codef(T)
e ddef(T) must form a partition of X,

o codef(T) must form a partition of X

The requirement that the function be a bijection over the domains of definition
ensures that the furiction is invertible. This is a necessary condition for traceability to
be bi-directional. The partition requirement on the domains of definition ensures that
every rule in X; and X, is involved in one and only one mapping for each refinement
level. This requirement is necessary when trying to ensure semantic equivalence

between the two models using the correctness criteria.

194

6.2.1 Types of Refinements

In the previous section, traceability through levels of abstraction was established as
a mapping between the rules of two TASM models. In this section, categories of
mappings are defined so that the differences between the two models capture the
rationale for the change. More specifically, this section defines seven categories of
refinements, defined formally as elements of the function T,' defined in the previous
section, which share a common property and arity. Each category defines a conceptual

type of refinement that can be traced bi-directionally.

The list of refinement types have been motivated by synthesis of refinement ap-
proaches as found in the literature [17, 174] and through experience with developing
models using stepwise refinement. At a high level, in the context of TASM models,
a refinement is defined as the addition, deletion, or modification of rules in a model
My, ‘resulting in a refined model Mjy. The types of refinement described in this sec-
tion attempt to express the motivations for performing a refinement. It is important
to restate that traceability does not depend on a particular type of change since the
types of changes are simply elements of the function T, that is, mappings between
rules. But the categories are helpful syntactically, to convey the rationale behind the
mapping, and semantically, when trying to establish semantic equivalence between
the models. The categories are used in Section 6.2.2 where criteria are defined, for
each category, to establish the correctness of the refinement. The refinement cate-
gories are expressed as ordered pairs of sets of rules. For example, the reﬁnefnent
described below denotes an arbitrary mapping between n rules of one model and m

rules. of another model:

({Ri, Rz, ..., Ru},{S1, So, ..., Su})

The subscripts of the rules denote the ordinal of the rule in the ordered set. For
certain categories, the ordering of rules is irrelevant but for other categories, the

ordering is important. When the ordering matters, it is used to denote a sequence of

195

execution starting with the first ordinal and terminating with the last ordinal.

Step Expansion

A step expansion refers to a type of refinement where a “step” in model M; is refined
into multiple steps in model Ms. In the formal methods community, such a refinement
is called a “non-atomic” refinement [79]. In the context of the TASM language, since
a step is the execution of a rule, the expansion of a step implies a mapping between

one rule and multiple other rules, a one-to-many relationship:

Tsezp é ({Rl}» {Sh SQa ey Sm})

In a step expansion refinement, the ordering of the rules S; is important, especially

when the correctness criteria are defined.

Step Contraction

The step contraction refinement is the dual of the step expansion refinement. A step
contraction refinement refers to a type of refinement where multiple steps in model
M are refined into a single step in model Mjy. The refinement is a many-to-one

mapping:

Tscon £ <{R11 R?) SRR Rn}; {Sl}>
As for the step expansion refinement, the order of the rules R; is important.

Rule Expansion

A rule expansion refinement is a one-to-many mapping. In the context of a single
rule, a rule expansion refinement is used to add or modify a time annotation, to add

or modify resource annotations, to add more conditions to the rule guard, and to add

196

extra, effect expressions. The rule expansion refinement can also be used to expand a
rule into multiple rules, resulting in a one-to-many mapping. Syntactically, the rule
restriction refinement is similar to the step expansion refinement. The differences
occur in the correctness criteria used to establish the semantic equivalence between
the mapped rules. Conceptually, the step expansion refinement is meant to describe
a refined sequential execution, where the extra rules are executed in sequence. The
rule expansion refinement is meant to describe the expansion of the state, through
the addition of variables to the model or by expanding the list of members in a user-
defined type. The added state components can lead to added conditions in the rule

guards and added assignments in the rule effect expressions.

Trres '—A‘ ({Rl}, {Sl, y e Sm})

Rule Contraction

Similarly to the step contraction refinement, the rule contraction refinement is also
a many-to-one mapping. The rule contraction refinement is the dual of the rule
expansion refinement. The rule contraction refinement is used to remove or modify
a time annotation, to remove or modify resource annotations, to remove conditions
from the rule guard, and to remove effect expressions. The refinement is also used
to remove state components from the model, through the removal of variables or the
removal of members of user-defined types. Removing variables can lead to a reduced
number of rules as the number of items in the rule guards and in the rule effect

expressions are reduced.

Trez'p £ <{R1’) Rﬂ}’ {Sl})

Rule Addition

Rule addition refers to a type of refinement where behavior is added to a model, caused

by expansion of the state space. In terms of the TASM language, this refinement

197

corresponds to the addition of one or more rules to an existing set of rules, a zero-
to-many mapping. The difference between the rule addition refinement and the rule
expansion refinement, concerns the correctness criteria. A rule addition refinement

which adds p rules to a set of m rules would yield the following mapping:

Tadd £ <{ }7 {Sm-Hv SRR Sm+p}>
Rule Deletion

A rule deletion refinement is a refinement where a set of rules is removed from an
existing set, caused by a reduction in the state space. The rule deletion refinement is
the dual of the rule addition refinement, and it is defined as a many-to-zero mapping,.
A rule deletion refinement which removes p rules from a set of m rules would yield

the following mapping:

T = ({R1, -, Rmep)t, {})
Any

While the three categories of refinements defined above, with their associated dual,
represent common refinement types as surveyed through the literature and identified
through modeling experience, it is possible that other types of refinements are nec-
cssary. Furthermore, since traceability is not dependent on the types of refinements,
it is important not to restrict the usability of the traceability features by requiring
the strict use of refinement types. Because of these motivations, a “wild card” type
of refinement is defined, to define traceability without intent. This wild card, called
an “any” refinement, is simply a generic many-to-many mapping between the rules

of two models:

198

({Rh R27 RN Rn}»{Slv 52) sy Sm})
Complete Traceability Relationship

These seven types of refinements are also complemented by the identity refinement,
T4, which maps a rule from model M, to an identical rule in model M,. Conceptu-
ally, the identity reﬁnemeﬁt is simply a special case of all seven types of refinements;
consequently, it is not described as a separate refinement, but it is introduced as
special notation that is useful when establishing semantic equivalence. Given these
relationships, define the complete traceability relationship between a M; and a re-

fined model M can be defined, through the partial function T:

T = Tsezp U Teeon U Trres U

Trezp) Ta,dd U Tdel) Tany U Tz'd

Where each T, is a set whose elements are refinements of type T}, corresponding
to the types of refinements defined in previous subsections. Given the definition of T,
the definition of the various categories of reﬁnéments, and the relationship between
the categories and the function T, a syntactical basis for bi-directional traceability of
software models is established. In Section 6.2.2, the syntactic notion of traceability
is complemented with the semantic notion of equivalence through defining notions
of refinement correctness. The semantic integrity is achieved by giving correctness
criteria for each category of refinement. The idea behind the correctness criteria is
such that, if a criterion holds for a given refinement, then an established property
of the original model will hold in the refined model without needing to repeat the

verification efforts.

199

6.2.2 Correctness Criteria

To define the correctness criteria for each category of refinement, the internal details
of individual rules must first be syntactically related according to the traceability
approach. Listing 6.1 and Listing 6.2 contain two symbolic rules, rule Ri (1 <i < n)
from model M; and rule Sj (1 < j < m) from model Mj. Rule Ri contains a time
annotation, tr, and p resource annotations, rk. Similarly, rule Sj contains a time

annotation, ts, and p resource annotations, sk.

Listing 6.1 Symbolic rule for model M;
Ri: Rule of Model M1
{
tr
ri

[rai, rbil;
[qil, rill;

I}

rp := [qip, ripl;

if RGi then
REi;

Listing 6.2 Symbolic rule for model M,
Sj: Rule of Model M2

{ .
ts := [saj, sbjl;
s = [uji, ujil;
sp := [sjp, ujpl;
if SGj then

SEj;

}

The correctness criteria for each refinement type apply to the three aspects of the
TASM language - funbtion, time, and resource consumption. The correctness criteria
are expressed as relationships between the annotations, the guards, and the effect
expressions of the rules contained in the sets of mappings. If certain annotations
are not present in a model, there are no restrictions on the behavior of the refined
model concerning those annotations. The goal of the correctness criteria is to establish

semantic integrity between the two sets of rules, to ensure that semantics are preserved

200

between the two models. For the step expansion, rule expansion, and rule addition
refinement types, the idea surrounding the refinement correctness stipulates that if a
given semantic property holds in the original model, it will also hold in the refined
model if the correctness criteria are met. If the correctness criteria do not hold,
no semantic equivalence can be guaranteed by the approach given in this section,
although ad-hoc arguments can be used to prove correctness and verification efforts
can be exerted to ensure correctness. The correctness criteria do not need to hold for
the refinement to be correct, but if they do hold, the amount of verification that needs
to be performed on the refined model is reduced because the refined model comes with
the semantic guarantees of the original model. If no criteria hold, the refinement
comes with no guarantees and verification must be performed on the refined model

as if the model is an entirely new model.

The step expansion, rule expansion, and rule addition refinement types capture
refinements as introduced through top-down design. The general philosophy sur-
rounding the correctness criteria is that the higher level model dictates the behavior
that the refined model must exude. This philosophy relies on the reality that higher
level models might typically exist before lower level models. Consequently, higher
level models are deemed to be “correct” since analysis can be performed on the high
level models before the low level models are developed. The dual of these refinement
types, namely the step contraction, the rule contraction, and the rule deletion re-
finement types, capture refinements as introduced through bottom-up design, with
properties that hold in the lower level model being guaranteed to hold in the higher
level model, if the correctness criteria hold. For each correctness criterion, the cri-
terion is given, followed by a proof that if the criterion holds, the semantics of the

original model are preserved in the refined model.

In this chapter, the term semantics is used as a general term to denote a property
est,ablished in a model using the analysis approaches described in Chapter 5. The idea
behind the correctness criteria is such that if the criteria are met for the refinement,
properties established in the original model will also hold in the refined model. In the

context of the TASM language, the established properties that could hold through the

201

refinement include safety and liveness, expressed as reachable and unreachable states,
BCET and WCET, and minimum and maximum amounts of resource consumption.
The motivations behind the approach is to reduce the amount of veriﬁcation that
needs to be performed on the refined model. Since traceability is a useful syntactic
concept to track and understand design assumptions, adding notions of semantic
equivalence to the traceability approach can reduce the duplication of verification
activities. The correctness criteria govern the three aspects of the TASM language
— function, time, and resources. The correctness criteria are defined for these three
aspects by defining conditions that need to hold in the mapping for properties of
the original model to hold in the refined model. These conditions govern the three

aforementioned aspects:

e Function, through relating the rule guards and rule effects
e Time, through relating the time annotations

e Resources, through relating the resource annotations

In the following subsections, the correctness criteria for each type of refinement
is defined in terms of these three aspects. The phrase “semantics are preserved” is
used for brevity when stating the theorems to establish the preservation of proper-
ties between two models. What is meant by “semantics are preserved” is primarily
that safety and liveness analysis performed on the original model is maintained in
the refined model. Furthermore, if the conditions relating the time and resource an-
notations are strict equalities instead of inequalities, and the criteria governing the
rule guards and effect expressions hold, WCET and BCET analysis is also preserved.
A similar argument can be made for the resource annotations; for the preservation
~ of minimum and maximum resource consumption analysis performed on the original

model.

Step Expansion

The correctness criteria for a step expansion refinement is such that the parent rule

defines constraints on the set of expanded rules. The step expansion refinement is

202

used to divide the execution of a single rule into two or more consecutive steps. The
division is typically achieved by adding an extra variable to the state space, which
acts as a program counter to enforce the sequential execution of the refined rules.
The refinement of timing behavior requires that the total execution time of refined
rules be less than equal to the execution time of the parent. This relationship is
- logical since the time behavior of the children rules represents a subset of the time
behavior of the parent. If verification has been performed on the higher level model,
it is logical to assume that established functional properties will still hold in the child
model given the subset relationship. Formally, for the rule R; shown in Listing 6.1,
which is expanded to m rules S, one of which is shown in Listing 6.2, the correctness

criteria for the time annotations are shown below:

IN-

ra; say + sag +...+ sa,

by > sby + sby +...+ sb,

Since time annotations are non-deterministic execution times for the rule, verifi-
cation performed on the model will consider all possible times inside the annotation
interval. For the quantitative timing behavior to be preserved through the refinement,
such as worst-case execution time, the relationship between the time annotations must
be equality instead of inequality. This is necessary since execution time analysis, for
WCET and BCET, depends on quantitative values of rule executions and not only
on the possible interleavings of rule executions. The correctness criteria for resource
consumption follow a similar pattern. However, since resource consumption is addi-
tive through parallel steps but not through sequential steps, the relationship involves

the maximum and minimum resource consumptions:

203

qu = min(sy, S21, ..., Sm1)
Gn1 2 min(snl, Sn2, -, Snm)
ri1 < maz(ug, Usi, ...y Umi)
Tn1 < maz(tin, Usn, ..., Umn)

As for time annotations, for the results of the resource consumption analysis per-
formed on model M; to hold in model M, the inequalities should be equalities.
Furthermore, for resource consumption semantics to hold, the correctness criteria
regarding the rule guards must also hold. For the guards, the correctness criteria be-
tween M; and M is such that the expanded model must not change the semantics
of the guard RG;. Formally, this relationship implies that the disjunction of each
guard SG; must be logically equivalent to RG|:

RG1=(SG, V ... V SGn)

Essentially, this relationship states that the disjunction of guards of the expanded
rules must form a tautology whenever the guard of rule Ry is enabled. In other words,
on of the expanded rules must execute whenever R; would execute. For the effect
expressions, the correctness criterion requires that everything that happens in RE;
must also happen as a result of executing the sequence of refined rules S;. Per TASM
semantics, the effect of executing the rule is applied after the rule execution has
completed. Consequently, this effect expression relationship can be expressed as the
effect expression of rule R; being contained in the intersection of the effect expression

of rule R; and the union of the effect expressions of the various S;:

204

RE, N (SE, U SE, U ... U SE,,) = RE

Furthermore, the added effects in the rule effect expressions of the refined rules
must not affect the execution of any other rule R; in the model. This restriction also
concerns the execution of the original rule R;. The last condition necessary for the
correctness of the refinement requires that the refined rules S; are executed in an
atomic sequence. This means that, for every 1 < ¢ < m, the effect of executing rule
S; causes the guard of rule S;;; to be enabled. Furthermore, no other rule in the
model can change the sequence of execution.

These four correctness criteria involving the time, resource consumption, guard,
~and effect expressions of the two sets of rules form the basis of the correctness cri-
teria for the various types of refinement. If the listed criteria hold, safety, liveness,
completeness and consistency results from model M; will hold in model Mj. Fur-
thermore, for the execution time analysis to hold, strict equalities must hold for the
time annotation criteria. Similarly, for the resource consumption analysis results to
hold, strict equalities must hold for the resource annotation criteria. In the following
sections, the correctness criteria of other refinement types are explained_reusing the
notation introduced in this section and the notation from Listing 6.1 and from List-
ing 6.2. For each type of refinement, the correctness criteria are stated, followed by
a argument to prove that, if the criteria holds, the semantics are preserved through

the refinement.

Theorem 6.1. If the correctness criterion for the step expansion refinement holds,

the semantics of model M; are preserved in model M.

Proof. Suppose that rule R, of model M; is enablea in state STy and that executing
rule R; in state STy yields state ST;. Let ST,; be the refined state containing STy,
with the added variable to enforce sequential execution. Since the disjunction of the
refined rules S; form a tautology when rule R; is enabled, one of the refined rules

must be enabled in state ST;. The ordering of the execution of refined rules can

205

be selected arbitrarily without loss of generality. In this case, the index of the rules
is selected as the order of execution. Let rule S; be the enabled rule in state STy,
Executing rule S; in state ST(; yields an intermediate state STjy;. Since the execution
of the refined rules is required to be sequential, the execution of the rules will yield
J — 1 intermediate states. Since the effect of executing rule Ry must be included in
one of the effect expressions of the refined rules, state ST, will be contained inside one
of the intermediate states and eventually into the final state resulting from executing
the refined rules in sequence. From the requirement that no other effect expression
can affect any other rule, including rule Ry, it naturally follows that the final state

resulting from executing the sequence of refined rules S; will be ST O

Step Contraction

The step contraction refinement is the dual of the step expansion refinement, with
the direction of the refinement being reversed. Consequently, the correctness criteria
detailed in the previous section are exactly the same for this refinement type, but in
the reverse direction, including the reversal of the containment relationships. In the
rule contraction refinement, the total time of the rules in the refinement for model

M specify the constraints on the rule in model Ma:

ray + rag +...4+ ra, < sap

rby + rby +...+ 7b,, > sb
A similar relationship can be defined for the correctness criteria for resource con-
sumptions. This relationship is omitted for brevity. For the relationship between the

guards and the effect, the criteria are similar to those detailed for the step expansion

refinement:

206

(RGu V RGia V ... V RGlm) = SGy
RE, N (RE, U RE, U ... U RE,)N SE; = SE,

Theorem 6.2. If the correctness criterion for the step contraction refinement holds,

the semantics of model My are preserved in model M;.

Proof. The proof of this theorem is identical to the proof of Theorem 6.1, in the

reverse order. O

Rule Expansion

The rule expansion refinement adds information to a rule, in the form of a modified
time annotation, modified resource annotations, an expansion of the guard, or an
expansion of the effect expression. For time and resource annotations, the correctness

criteria require that the annotations in rule R; be contained in the annotations of

rule R;. In other words:

ral<saj, Vj = 1...m

i
3

rbl > sbj, V j
glk<sjk,Vj=1...m k =1...p

rlk>ujk,Vj =1...m, k = 1...p

The presented relation between the annotations of both models will ensure that
functional behavior is maintained for the model, as explained in Theorem 6.3. For

execution time analysis and resource consumption analysis to be preserved, the an-

notations must be equalities instead of inequalities.
If the guard is expanded by adding extra conditions to the guard, the disjunction
of the S; guards in the mapping must be logically equivalent to the guard of R;.

207

What this means is that the S; guards must not be true with variable assignments

that make R; false and one of the S; guards must be true whenever R; is true:

RG1=(SG1 V ... V SGy)

If the effect expression is expanded, by adding extra assignments of values to

variables, the effect expression of R; must be contained in the effect expression of S5;:

Furthermore, for any other unchanged rule R; from the unrefined model, the
added items in the refined effect expression must not change the value of the guard
of rule R;. The idea behind the rule expansion refinement is that the behavior of the
refined rules are contained within the behavior of the unrefined rule. Consequently, if
verification involving the unrefined rule was performed, those results should still hold

in the refined rules.

Theorem 6.3. If the correctness criterion for the rule expansion refinement holds,

the semantics of model My are preserved in model Ma.

Proof. Since the disjunction of the guards of the refined rules are logically equivalent
to the guard of the original rule, at least one of the S; guards of model M, will be
enabled whenever rule R; of model M, is enabled. And since the effect expression
of rule R; of model M is contained in every refined rule of model My, the effect of
executing rule R; is preserved. Furthermore, since the expanded effect expressions
do not affect the evaluation of the guards of other rules, the refinement is, in effect,

limited to the refined rule and hence preserves the semantics of model M;. |

208

Rule Contraction

Rule contraction is analogous to rule expansion and concerns the modification of the
time annotation, the modification of resource annotations, the modification of guard
conditions, the modification of effect expressions, and the consolidation of rules. The
rule contraction refinement would be used when removing variables from the state,
resulting in a contraction of the state space and of the number of rules contained in
the model. The correctness criteria are similar to the correctness criteria for the rule

expansion refinement, but apply in the reverse order:

rai<sal, Vi = 1...n
rhi<sbl, Vi = 1...n
qgik>slk, Vi =1...n, k = 1...p
rik<ulk,Vi =1...n, k = 1...p
SG,=(RG; V ... V RG,)
SE;, C RE;, Vi = 1...n

The idea behind the rule expansion refinement is that the behavior of the unrefined
rules is contained inside the behavior of the refined rule. Consequently, if verification

involving the refined rule is performed, these results will hold in the unrefined rules.

Theorem 6.4. If the correctness criterion for the rule contraction refinement holds,

the semantics of model My are preserved in model M,.

Proof. This proof is identical to the proof of Theorem 6.3. O

Rule Addition

The rule addition refinement refers to a refinement where a set of rules is added to

a model. This refinement can be used to add steps in sequential execution or to add

209

parallel rules to handle new conditions resulting from an extended state space. For
sets of rules, completeness and consistency have been defined in Section 5.1. The
correctness criteria concern the preservation of completeness and consistency through
rule addition. The functions comp and cons are defined between a set of rules and the
set { True, Fulse}. The function returns the value True if a set of rules is complete
(consistent) and vice-versa [123]. Using the notation from Section 6.2, X is the set
of rules of model M; and X, is the set of rules of model My. Using these definitions,

the correctness criteria for rule addition ca be defined:

cons(X1) — cons(Xs)

comp(X1) — comp(X>)

What this criteria mean is that adding a rule to an existing rule set must not
introduce non-determinism. Non-determinism introduced through the addition of a
rule would preserve the semantics only if the effect expressions of the two inconsistent
rules would be identical. However, it is not clear why adding a rule that is essentially
a copy of another rule would be a useful refinement. If the rule is added to add parallel
behavior to handle an extended state space, its effect expression must contain only
updates to variables in the extended space. If the rules are added to augment the
number of steps in a sequence of execution, updates to the variable representing the
order of execution are acceptable, as long as the order of effect expressions is preserved

from the original set of rules and do not affect rules outside the machine where the

rule is added.

Theorem 6.5. If the correctness criterion for the rule addition refinement holds, the
semantics of model M are preserved in model M.

Proof. The behavior of rules added to reflect the addition of sequential steps is ana-

lyzed first. Suppose that m rules S; are added as intermediate steps between original

rule Ry and Ry. The proof follows the principles of the proof of theorem 6.1. Suppose

210

rule R; is enabled in state ST and yields state ST1, in which state rule Ry is enabled
and yields state ST} after execution. The addition of the rules must follow an atomic
sequence where rule must be modified such that executing R; must yield a new state
ST} where S; is enabled. The added rules must yield an atomic sequence of rule
executions that will yield state ST such that executing rule Ry will complete the
chain. Since the added rules are required to not have side-effects on other rules, the

behavior is preserved.

For rules that are added to handle an extended state space in parallel, the guaran-
tees of completeness and consistency ensure that the rules do not conflict with existing
rules in the machine. Furthermore, the requirement that the rules be side-effect free
is a restricted case which guarantees that the semantics aren’t changed since the rules

do not interfere with existing rules. a

Rule Deletion

Similarly, the correctness criteria for rule deletion must not affect the completeness
the rule set or the consistency of the rule set where it is added. For example, if a set
~ is complete, removing a rule must not make it incomplete in order to preserve the

semantics.

cons(X1) — cons(X3)

comp(X1) — comp(Xy)

Theorem 6.6. If the correctness criterion for the rule deletion refinement holds, the

semantics of model My are preserved in model M.

Proof. This proof is identical to the proof of Theorem 6.5.

211

Any

The any refinement type does not contain correctness criteria and does not carry
guarantees of semantic equivalence. This refinement is used purely for syntactic

traceability with no semantic guarantees.

Identity

The correctness criteria for the identity refinement simply ensures that the mapping

does not modify the rule:

ir=ts
si=r,Vi=1...m,m=n
RG, = 5G,
SE; = REy

It is straightforward from this identity mapping to verify that the mapping does

not modify the semantics of the model.

6.3 Example

In this section, an example is provided to illustrate the concepts explained throughout
this chapter. In Chapter 8, the Electronic Throttle Controller (ETC) case study
provides a more complex example of bi-directional traceability between disparate
models, with the correctness criteria ensuring semantic guarantees between models.
The refinements and the traceability properties of the ETC case study are presented
in Section 8.4. In this section, the light switch example, originally presented in
Section 4.1.5, is refined, first by expanding the state space and secondly through the
addition of tasks and a scheduler. The light switch example contains two components,

a light bulb and a switch. The controller software is responsible for turning on the

212

light based on the switch position. A high level model might contain simple logic
to describe the behavior of the software, as shown in Listing 6.3. The model of
Listing 6.3 describes the requirement “if the switch is UP, the light shall be ON” and
the requirement “if the switch is DQWN , the light shall be OFF”.

Listing 6.3 Model 1 of light switch
R1i: Turn on

{
if switch = UP then
light := ON;

3

R2: Turn off
{
if switch = DOWN then
light := OFF;

A refinement of the requirements might extend the functionality of the light by
introducing additional conditions on the behavior of the software, leading to a refined
model. For example, Listing 6.4 describes behavior that meets the same requirement
as in Listing 6.3 but incorporates the extra requirement “when turning the light
ON during day time, the light intensity shall be LOW while it shall be HIGH during
nighttime”. This extra functionality is added to the model of Listing 6.3 by expanding
the state spacc. Two new uscr-defined types are added — one to describe the time
of day (values “DAY” and “NIGHT”) and one to describe the intensity of the light
(values “LOW” and “HIGH”). Two extra variables are added to the state to denote
the time of day and the light intensity.

Establishing syntactical traceability between model 1 and model 2 is fairly straight-
forward. The refinement type for the mapping between the two rules is of the “Rule
Expansion” type, where rule R; is mapped to rules S;; and Sj2. In the refinement,
items are added to the rule guards and to the effect expressions. Formally, the syn- .

tactical mapping is:

213

Listing 6.4 Model 2 of light switch

Sii: Turn on, low {
if switch = UP and timeofday = DAY then
light 1= 0ON;
intensity := LOW;

}
S12: Turn om, high {
if switch = UP and timeofday = NIGHT then
light := ON;
intensity := HIGH;
}
S2: Turn off
{
if switch = DOWN then
light := OFF;
¥

214

T = T'rezp U Tid = (({Rl}’ {Slla Slg})) U (({R2}’ {32}>)
= (({Ra}, {Su, Si}), ({Re}, {S2}))

Since the guards of the rules are changed in model 2, the correctness criteria for
the rule expansion refinement must establish guard equivalence. The equivalence
can be visualized in Table 6.1 for rule R;. The truth table clearly shows that the

disjunction of rule S;; and rule Sy is equivalent to the guard of rule R;.

switch | timeofday | timeofday
= = = Ry | S | S1z | Su V iz
Up DAY NIGHT
T T F T | T F T
T F T T| F T T
F T F F| F F F
F F T F | F F F

Table 6.1: Truth table to verify the correctness criteria for the rule expansion refine-
ment between rule R; and rules S;; and Si,

Since the model contains only one machine, no time annotations, and no resource
annotations, it is clear that the correctness criteria hold for the rule expansion refine-
ment. Furthermore, the changes in the effect expressions of the refined rules do not
affect any other rules, preserving the semantics of model 1. What this means is that
a statement made about the possible traces of the model 1 will hold in the refined
model. For example, the property that a “state where the switch is UP will eventually
always be followed by a state where the light is ON” will hold in both models.

In order to add interesting features to the model, a scheduler driven by a 1 ms
clock is added to the model. The scheduler fires a task that has a period of 30 ms.
The task has an execution time lasting between 1 and 10 ms. The scheduler is added
as an extra main machine, in order to drive the system and switch the task’s status
between “wait” and “exec”. The task is another. main machine which simply waits

to be activated. The scheduler is shown in Listing 6.5 and the task is shown in

Listing 6.6.

215

Listing 6.5 Model of the scheduler with 1 ms clock, firing a task with a period of 30
ms
T1: Fire
{
t = 1;

if tick = 30 then

tick := 1;
task := exec;
}
T2: Tick
{
t = 1;
else then
tick := tick + 1;
}

Listing 6.6 Model of the task, model 3
P1: Execute

{
t :=[1, 10];

if task = exec then
task := wait;

}

P2: Wait
{

t := next;

else then
skip;

216

In Listing 6.4, the task is simply a placeholder which does not provide any func-
tionality other than consume time. The model of the task can be combined with
model 2 of Listing 6.4 to wrap the functionality of model 2 inside of the tasking

model. The resulting model is shown in Listing 6.7.

Listing 6.7 Combined model with task implementation, model 4
D1: Turn on, low

{
if task = exec and switch = UP and timeofday = DAY then
light = ON; '
intensity := LOW;
switch 1= wait;
}
D2: Turn on, high
{
if task = exec and switch = UP and timeofday = NIGHT then
light := ON;
intensity := HIGH;
task 1= wait;
}
D3: Turn off
{
if task = exec and switch = DOWN then
light := OFF;
}
D4
{
t = next;
else then
skip;
}

Because model 4 is a refinement of model 3 and a refinement of model 2, the
traceability relationship yields two branches. The branch between model 3 and model

4 yields the following syntactic traceability relationship:

217

T = Trezp U Tia = (({P1}, {D1, D2})) U ({2}, {Da}))
= (({P}, {D1, D2}), ({P2}, {Da})

The correctness criteria for the rule expansion refinement between rule P; and
rules Dy, Dy, and Dj is shown in Table 6.2. Since the variables involved in the
refinement are binary variables, there is no need to include columns for the value
“NIGHT” and for the value “wait”, since these values are captured in the columns
for the value “DAY” and for the value “exec”. It is clear from the table that the
correctness criteria hold for the guards of the refined rule. The time and resource

annotations also conform to the correctness criteria. The mapping between rule P,
and rule Dy is trivially correct because the two rules are exactly the same since it is

an identity refinement.

switch | timeofday | task ‘

= = = P | Dy | Dy | D3| Dy V DyV Dy
Up DAY exec

T T T T T F F T
F F F F | F F F F
T F F F | F F F F
F T F F F F F F
F F T T | F F T T
T T F FI|F F F F
T F T T T F F T
F T T T F F T T

Table 6.2: Truth table to verify correctness the criteria for the rule expansion refine-
ment between rule P; and rules Dy, Dy, and D3

Furthermore, since the added effect expressions from model 3 to model 4 concern
only the newly introduced variables, the locality condition of the correctness criteria
also holds. It is interesting to note that the refinement from model 3 to model 4 could
have been achieved through hierarchical composition, by wrapping the functionality

of model 2 inside a submachine. In this case, the correctness criteria with regards to

218

the guards would require the sub machine to be complete, leading to the appropriate
correctness criterion for the guards, according to Theorem 5.1. The machine depicted
in Listing 6.7 corresponds to the “flattened” machine that would be obtained by
removing the hierarchical composition, as explained in the proof of Theorem 4.2.
Since the correctness criteria hold for the refinement frdm model 3 to model 4, the
properties of model 3 are preserved in model 4. For example, the worst-case execution
time of each task is preserved, as are the schedulability attributes. A similar approach
is used in Section 8.4 for the ETC case study, where the functionality of the controller

is implemented using a set of tasks.

Model 4 can also be viewed as a refinement of model 2. The traceability branch

between model 2 and model 4 yields the following syntactic traceability relationship:

T = Trep U Taaa = (({Su}, {D1}), ({Sr}, {D2}), ({Se}, {Ds}) U
(({} D}, ({1 {71 T}
= ({({Su}, {D1}), ({S12}, {D2}), ({S2}, {Ds}),
{{}, Da), ({1 {71,)

The correctness criteria for the mapping between rule S; and rule D3 resembles
the criteria for the mapping displayed in Table 6.2. To be more thorough and for the
correctness criteria to hold, extra rules should be added to model 4 to reflect the cases
where the task is in the “wait” state. However, this mapping is guaranteed by the
“Else” rule. The mapping preserves the semantics of model 2 since the modifications
are local to the expanded state space. A similar argument can be made for the rule
expansion refinements of rule Sy; and rule Sj;. The correctness criteria get a bit more
complex to visualize for the rule addition refinements since the addition of the “Else”
rule is done to modify the termination semantics of the machine and to handle the
case where the task is in the “wait” state. Such a dual purpose refinement makes the
model simpler, but exacerbates the proof of the preservation of semantics. In order to

make the preservation easier to demonstrate, model 2 could have already contained

219

the “Else” rule and model 4 could have contained 3 extra rules to handle the case
where the task is in the “wait” state. Furthermore, the addition of the scheduler,
which acts on the refined rules, complicates the problem. Nevertheless, using simple
arguments, it is possible to see that the addition of the scheduler does not affect the
order of execution of the functional model, and the property “if the switch is UP, the
light will always eventually be ON”, from model 1 still holds. Properties from model
2 with regards to the light intensity also hold.

This simple example provides an illustration of the concepts outlined in this chap-
ter. The example provides an interesting application of the proposed approach, to
combine a tasking model and a functional model, all the while preserving some be-
havioral semantics during the refinement process. In the first branch of traceability,
scheduling attributes were preserved while in the second branch, functional attﬁbutes
were preserved. Section 8.4.2 uses-a similar technique to achieve traceability and re-

finement correctness on a more complex example using the Electronic Throttle Con-

troller (ETC) case study.

6.4 Segue into Chapter 7

This chapter presented an approach to relate different TASM models syntactically,
through a mapping between the rules of the two models. The proposed strategy
also presented a set of archetypical refinement types, as surveyed through literature
and experience with modeling. Each refinement type is accompanied by a set of
correctness criteria which, if satisfied, preserve certain semantic aspects between the
two models. The approach was demonstrated using an extended version of the light
switch example from Section 4.1.5. The following chapter, Chapter 7, presents an
approach to generate test cases automatically based on TASM specifications. The
presented method enables the automated generation of unit test cases, integration

test cases, and regression test cases.

220

Chapter 7

Test Case Generation

This chapter presents an approach to automatically generate test cases based on a
model expressed in the TASM language. The generation of test cases is achieved for
unit testing, integration testing, and regression testing. The test cases are generated
to achieve coverage.of the TASM model according to the rule coverage criteria, as
defined in the ASM community. Unit test cases are generated in the context of
an individual machine without hierarchical composition. Integration test cases are
generated by combining unit test cases hierarchically. The traceability relationship,
described in Chapter 6, is leveraged to provide an approach to the generation of
regression test cases. The generation of unit, integration, and regression test cases is
provided in separate sections and illustrative examples are given at the end of each

section.

7.1 Related Work

Testing remains the main activity in industry and in software engineering circles to
build confidence into the system being engineered [220, 242]. Even though testing
can never establish the absence of defects [81], the popularity of testing has grown the
practice and theory considerably, leading to well-established definitions and concepts
in the software engineering community [26, 169, 176].

The growing popularity of testing has led to various approaches to automatically

221

generate test cases [74, 86] and to the development of various tools [27]. More re-
cently, the advent of model-based software engineering has given birth to model-based
testing, an approach to test case generation where a model or specification is used
as the basis to generate test cases [32, 130, 222]. Model-based testing builds upon
previous results from the requirements engineering community where requirement
specifications are used to generate test cases {75, 112, 245]. In model-based testing,
two key approaches are used to automatically generate test cases, constraint-based
test case generation [214] and test case generation using model checkers [8]. Test case
generation using model checkers relies on some form of automata model to gener-
ate test sequences that are used to cover certain aspects of the model such as states
and transitions [102]. Notably, the UpPAAL tool suite has been used to generate test
cases for real-time systems in [128]. In [128], synchronization channels are used to
model the inputs and outputs of the system and the automata model is assumed to
be “input enabled and output urgent” to ensure that the generated test suite is time
optimal [36]. The approach described in [128] is not applicable to TASM specifica-
tions because the language does not contain synchronization channels. Furthermore,
the generation of test sequences, as performed using model checkers, relies on as-
sumptions about the system under test, which may not be applicable in practice, as
explained in Section 7.5.1. The approach presented in this chapter does not preclude
the generation of test sequences, but provides a more generic a,ppfoach to test case

generation which can be tailored to a specific purpose.

The test case generation strategy presented in this chapter relies on constraint
programming and symbolic combination of test cases, a strategy related to the ap-
proach presented in [15] and in [16]. However, the definition of templates is unique
to the TASM-based approach although it resembles the theory of equivalence classes
explained in [176]. The approach presented in this chapter uses the specification as
an oracle, that is, as the authority on the correct input/output behavior of the system
under test [219]. In other words, the specification describes the expected output of the
system for each class of inputs. Much of the theory on test case generation concerns

unit testing; the strategy described in this chapter extends unit testing capabilities by

222

combining unit test cases to achieve integration testing. Furthermore, the approach
presented in this chapter uses traceability attributes to generate regression test cases
in the occurrence of specification modifications or extensions. The regression test case
generation uses structured model changes as the basis for test case generation, similar
to mutation-based approaches were a well-defined set of defects are used to generate
test cases [247]. This section reviewed the popular approaches to test case generation
at a high level and situated the proposed approach in light of past efforts. In the fol-
lowing subsections, different coverage criteria are reviewed and test case generation

efforts within the Abstract State Machine (ASM) community are reviewed.

7.1.1 Coverage Criteria

The purpose of performing testing activities is to achieve a desired level of confidence
into the functionality of the system being tesfed. However, in order to achieve a
satisfactory level of testing, some criteria need to be put in place to decide what
to test and when to stop the testing activities. For this reason, traditional ad-hoc
approaches to testing have been replaced with structured approaches to testing whose
aim is to achieve a predetermined level of coverage of the system under test [176]. The
possible levels of coverage are captured into coverage criteria, which express properties
of the system under test, such as program branch coverage and program variable
definition and usage coverage. The list of possible coverage criteria is quite large and
a good survey is provided in [256]. In the field of safety-critical systems, the DO-178B
standard requires that an implemented system of a certain criticality level be tested
to achicve the Modified Condition/Decision Coverage (MC/DC) criterion [64, 216].
Standard DO-178B also requires that requirements be tested, expressing that the
testing of the implemented system also cover all requireménts. In the field of model-
based testing and specification-based testing, the coverage criteria used for generating
test cases refer to coverage items of the model such as states and transitions [153, 184].

In the context of Abstract State Machines (ASM), coverage criteria have been
defined in [103]. The coverage criterion used in the approach presented in this chap-

ter is the rule coverage criterion presented in [103]. The rule coverage criterion is

223

analogous to the transition coverage criterion described in [184] and in [256] which

concern variants of automata.

7.1.2 Abstract State Machines

In the ASM community, test cases have been generated automatically based on spec-
ifications, using model checking techniques [104]. The approach generates test se-
quences to achieve different coverage criteria, including rule coverage. The approach
presented in this chapter differs from the approach presented in [104] in that it uses
constraint logic programming to generate test cases. Furthermore, the approach pre-
sented in this chapter also generates test cases and not test sequences. Another
approach in the ASM community generates test cases based on the AsmL language,
an ASM derivative developed at Microsoft [116]. The test case generation approach
derives a finite state machine approximation of an AsmL specification for the purpose
of generating test cases using established algorithms [110]. The test case strategy is
accompanied by a tool for automated generation [109]. The AsmL approach to test
case generation provides an underapproximation of the true finite state machine, as
explained in [110] through the execution of the specification. The approach presented
in this chapter differs from the AsmL approach in that it does not rely on generating
a finite state machine. However, the concept of hyperstate described in [110] is closely
related to the concept of test case template described in this chapter. A benefit of the
approach described in this chapter is the ability to generate test cases incrementally
and locally, and combining the test cases to achieve coverage of the specification.
Furthermore, the generation of regression test cases has not been addressed in the

ASM community.

7.2 Test Case Generation Concepts

This section provides definitions of concepts that are used in the three subsequent sec-
tions when describing the test case generation algorithms. The provided definitions

are defined by the presented research. However, many of the concepts have already

224

been defined in test case generation theory [176]. Where dpplicable definitions bor-
rowed from the testing community are cited. The concept of a template is unique to
the test case generation approach presented in this chapter although the notion of

template has been used extensively in other software engineering branches.

7.2.1 Definitions

‘The test case generation strategy uses concepts from set theory to generate test cases
symbolically. Throughout the description of the algorithms, the terms template and
instance are used to explain the approach. At a high level, a template is a generic
concept which describes a family or a set of items which share a common property.
This definition is analogous to the definition of a set in discrete mathematics [232].
‘Analogously, an instance'is a single member of a template, analogous to an element
of a set in discrete mathematics. The terms template and instance are used over set
and member because the terms are well-established terms in the software engineering
community. Furthermore, for a template/instance pair, the term template is used to
describe the properties of the members of the template while the term instance will
be generally omitted for brevity. For example, in the rest of this section terms like
variable template and test case template are used to denote a set of items sharing a
given property while the terms variable and test case are used to denote instances of
the templates.

A variable template is a variable name accompanied by a set of possible values for
the variable. A variable template is analogous to a datatype but the term template is
used to maintain consistent naming across concepts. For example, a variable template
for an integer variable named a with a lower bound of -11 and an upper bound of
50 would be defined as “a{~-11 < a < 50}”. A wvariable instance or variable for
short, is the variable with an associated value taken from the template, which, in this
case, is the interval [-11, 50]. For example, the variable “a = 0” is an instance of
the variable template “a{-11 < a < 50}". Analogously, a state template is a set
of variable templates. A state instance, or state for short, is a member of a state

template where each member of the state are variables which are, in turn, instances

225

of the variable templates defined in the state template. The definition of a test case
instance is given before the definition of a test case template to avoid crowding the

definitions with the word template.

A test case instance or test case for short, T'C), is a pair of state instances (S, S’)
where S is the pre state and S’ is the post state. - A test case describes expected
behavior of a model as follows: “if a step of the model is executed in state S, the
resulting state will be state S™. It is important to note that the state S does not
need to be a complete state, that is, a state containing values for all the variables of
the model. The state S should contain enough variable values to exercise an aspect
of interest of the model, for example, a specific rule. Similarly, the state S’ also does
not need to be a complete state, but needs to contain the expected changes in the
state caused by the test case. Item of the state not included in the pre state or in the

post state are assumed to have no effect on the purpose and outcome of the test case.

A test case template, TCT, is a family or set of test cases which exercise the same
aspect of the model. A test case template is composed of a pre state template, ST,
and of a post state template, ST'. For example, a test case template might dictate
that the pre state “a > 3, b < 10” exercises a desired aspect of the model with
expected post-state “a = a + b”. The provided test case template describes a set
of test cases containing numerous, potentially infinite, possibilities for test cases that
satisfy the template. A test case is an instance of a test case template, whose pre
state and post state are contained in the pre state template and in the post state
template of the test case template. For example, the test case (“a = 5, b = 67, “a
= 11”7) is an instance of the test case template (“a > 3, b < 10”, “a = a + b”).

If some form of model coverage is the goal of the test case generation, the test
case and the test case template concepts can be augmented to include the intended
coverage item for the test case or test case template. A coverage test case (alterna-
tively, coverage test case template) is a pair that relates a test case T'C' (alternatively,
test case template TCT) with a coverage item CI: (TC, CI) (alternatively, { TCT,
CI)Y).

A test suite instance or test suite for short, T'S, is a set of coverage test cases

226

which achieves a specific purpose. A coverage test suite is a set of coverage test cases
which seeks to achieve a specific level of coverage. A coverage test suite is said to be
adequate if its set of taste cases collectively achieve a desired coverage criterion of the
model. A coverage test suite is said to be minimal if its set of test cases is adequate
and no two test cases exercise the same coverage item. The definitions of adequate
and minimal are congruent with established test case generation theory [176].

In these definitions, the assumption is such that the model can be started in any
state and that the state is fully observable. The post stéte is observed after executing
a single step of the model. While this assumption might not be immediately adequate
in practice, it provides greater flexibility when generating the test cases. As explained
in Section 7.5, the test case generation strategy is generic and can be adapted to the
specific properties of the system being tested.

In the presented framework and in this chapter, the coverage criterion used for
test case generétion is the “rule coverage criterion”, which requires that all rules of
the speéiﬁcation be exercised [103]. Given this definition, an adequate test suite for
a given TASM specification would be a set of test cases which collectively exercise all
rules in all machines of a TASM specification. Given the rule coverage criterion, in
the context of TASM, a coverage test case CT'C; would be of the form ((S, 5"), {
R; }), where “{ R; }” denotes a set of rules covered by the test case. For a TASM
specification M with n rules {Si, ..., S;, ..., Sp}, for an adequate coverage test
suite for specification M, the union of the coverage items in each coverage test case

contained in the test suite must be equal to the set of rules in the TASM specification

M.

7.2.2 Operations on Templates

In Section 7.4, test case templates generated for unit testing are combined to de-
rive integration test case templates. In doing so, operations are performed on test
case templates. Because the templates are defined hierarchically, test case templates
contain state templates, which, in turn, contain variable templates. To perform the

combination of templates, operations from set theory are used, including intersec-

227

tion (N) and union (U). The combination operations are distributed inward and are
applied in a manner congruent with traditional set theory. For example, taking the
intersection of two test case templates would involve taking the intersection of the two
pre states. Taking the intersection of the two pre states involves taking the intersec-
tion of the two sets of variable templates. When taking the intersection of the variable
templates, the result of the intersection contains only the variables common to both
sets. Furthermore, the definition of each variable template would be intersected. For
template definitions defined as enumerations, the intersection is applied using tradi-
tional set theory. For template definitions defined as inequalities, the intersection is

applied according to the principles of interval arithmetic.

In its basic form, interval arithmetic is the definition of operations where the
operands are intervals. In the test case strategy, interval arithmetic is useful in two
facets — when combining test case templates and when computing the post state
template based on a pre state template. Since variable templates for integer and
for real variables can be expressed as equalities using >, <, <, and >, calculating
the post state template involves performing operations on templates. For templates
that contain sets of values for a variable, normal set operations apply and arithmetic
operations are defined as the cartesian product of operations. If a variable is “free” in a
test case template, that is, it appears only as a right-value, bounds on the values of the
variable can be provided by the user or can be obtained from the variable definition in
the TASM specification. The following subsection describes the principles of interval

arithmetic used in the test case generation strategy.

Interval Arithmetic

The operations performed on integer-valued and real-valued variables expressed as
intervals follow the basic conventions of interval arithmetic, as described in [148] and
in [145]. These operations are summarized below, following the convention that “[”
and “]” are used to express inclusion for a bound of the interval, while “(" and “)”

are used to express exclusion for the associated bound of the interval.

228

[Pre State | Post State |

number {10}, loaded blocks{[LB + 1,10),[21,UB + 1]}
loaded blocks{[LB,9),[20,UB]}, | feed begin{True},
feed belt{empty} feed_belt{loaded}

Table 7.1: Pre and post state for sample test case template for Listing 7.1

[a,b) + [ed] = [a+cb+d]
a.0] - [ed = |

[a,b] = [c,d] = [min(ac,ad, be,bd), maz(ac,ad,be,bd))

[a,b] / [cd] = [min(a/c,a/d b/c,b/d),maz(a/c,a/d,b/c,b/d)]
[a,b] N [c,d] = [maz(a,c), min(b,d)]

[a,b] U [c,d] = [min(a,c), maz(b,d)]

O} oo L1} = (G0

The last operation denotes that an operation between an inclusive bound and an
exclusive bound results in an exclusive bound. It is important to note that set oper-
ations and interval arithmetic can be combined. For example, for the rule given in
Listing 7.1, the relevant test case template and test ca,se. instance involves set opera-
tions and interval arithmetic. In the rest of this chapter, the notation “varnameval,,
..., val,” is used to denote that variable “varname” can take on any value “val;”,
where “var; can be an interval. The example from Listing 7.1 yields the test case
template described in Table 7.1. In the table, the interval bounds LB and UB denote
the upper bound and lower bound values of the variable, as specified in the TASM
environment definition. Since the variable number is free in the test case, its value
was arbitrarily selected to be 10, although an interval for the variable could also have
been derived from the variable definition in the TASM specification. |

The test case template given in Table 7.1 can be easily converted to a coverage
test case template by adding the R; rule to the pre state and post state pair. Fur-
thermore, since a template describes a family of test cases, it can be instantiated to

yield a coverage test case. An instance of the coverage test case template is shown in

229

Listing 7.1 Rule for sample test case template
R1: The first rule

{
if (loaded_blocks < number - 1 or loaded_blocks >= 20) and feed_belt = empty then

feed_belt 1= loaded;

loaded_blocks = loaded_blocks + 1;

feed_begin = True;
}

| Pre State | Post State | Coverage Item |
number{10}, loaded blocks = 11, | R,

loaded_blocks = 8, | feed_begin = True,
feed_ belt = empty | feed_belt = loaded

Table 7.2: Coverage test case corresponding to the template of Table 7.1

Table 7.2. It is fairly straightforward to see that the test case shown in Table 7.2 is,

indeed, an instance of the test case template shown in Table 7.1.

7.2.3 Machines and Test Suites

The strategy presented in this chapter uses a combination of unit test case generation
and integration test case generation to generate test suites to cover all the rules of all
machines in a TASM specification. In the test case generation strategy, a generated
test suite is associated with a given machine in the TASM specification. In the
following sections, the terminology “the test suite of machine M” is used to describe
the test suite that covers the rules of machine M. Regardless of whether the test
suite is generated for unit testing or for integration testing, the generated test suite
is derived to cover a specific machine and remains associated with that machine. The
association can be visualized as a pair between a machine and a test suite (M, T'S).
Of course this relationship also holds for other variations of test suites such as test

suite templates and coverage test suites.

230

7.3 Unit Test Case Generation

Unit testing refers to the testing of a piece of software in isolation. In programming
language terms, unit testing could concern the testing of a function, the testing of
a class, or the testing of an algorithm [176]. The term unit is used to denote that
a small piece of the total program (in this case a small piece of the specification) is
targeted and that other pieces of the program are abstracted away in the test case
generation and execution. In terms of a TASM specification, the basic units of struc-
tural organization are rules and machines. While the rules are used as the coverage
items, the machines are used as the basic units for test case generation. In the unit
test case generation strategy, it is assumed that the machine for which test cases.are
being generated is “flat”, meaning that it does not contain hierarchical composition.
Per Theorem 4.1 and Theorem 4.2, any machine with hierarchical composition could
be “ﬂattened”. However, the test case generation strategy does not necessarily re-
quire that a machine with hierarchical composition be flattened before generating test
cases. While this approach would work using the unit test case generation algorithm
presented in this section, Section 7.4 considers hierarchical composition as part of the
integration test case generation strategy; treating hierarchical composition as part
of the integration testing strategy leads to better complexity results than flattening
the machine and using the unit test case generation algorithm. Any TASM model
that contains hierarchical composition will also contain at least one machine which
does not contain hierarchical composition. The complete test case generation algo-
rithm described in Section 7.5 explains how the unit test case generation algorithm is
used on machines that do not use hierarchical composition and how the integration
test case generation algorithm combines the unit test cases for machines that use

hierarchical composition.

Since the algorithm performs the calculation of the pre state template and of the
post state template for each rule, the generated test suite template will be adequate
if, for each rule, the guard of the rule is satisfiable. Furthermore, if the machine

is consistent, the test suite will be minimal. The unit test case algorithm can be

231

Listing 7.2 Unit test case generation algorithm for a machine M
o For each rule R; of machine M:

— Create pre state template PreS;:

* Bind each free variable in the guard G;
* For each other variable v;; in the guard G;
- Find sets of values that make G; True

— Create post state template PostS;:

x Calculate the post state template by executing R; on the pre state
template

- FCreate test case template TCT;:
x TCT; = { (PreS;, PostS;), R;)
* Add the test case template TCT; to the template test suite TCTS

o Associate the test suite TCTS with machine M: (M, TCT'S)

232

implemented by reusing the mapping to SAT described in Appendix B, for TASM
specifications whose rule guards meet the characteristics described in the appendix.
The SAT4J SAT solver provides the set of all solutions that satisfy the propositional
formula given as the SAT instance. Given the “discretization” of the state involving
integer and real variables, as explained in Appendix B, the iteration of solutions can
easily be aggregated to yield the pre state template and the post state template can

be calculated using the operations described in Section 7.2.

7.3.1 Complexity Analysis

Because the algorithm described in Listing 7.2 operates on a machine that does not
contain hierarchical composition, the generated number of test case templates gener-
ated will be equal to the number of rules for machine M. The number of generated
test case templates will always be fixed for the algorithm in Listing 7.2. However,
the properties of the guard of each rule greatly affects the complexity of generating
the test case. For an implementation using a SAT solver, the complexity analysis for
the translation is available in Section B.3.1. However, contrary to the usage of the
SAT solver for the verification of completeness and consistency where demonstrating
the existence of a solution is the goal, the test case generation algorithm needs to
iterate through all solutions and aggregate the results into the pre state template.
The performance of the aggregation will be linear in the number of solutions since
each variable can be expanded as needed depending on the properties of the solu-
tion. For generating the post state template, simple arithmetic is necessary, leading
to linear performance in the number of variables. The complexity of test case gener-
ation resides in the translation of the rule guards to SAT and executing the resulting
problem through the solver. The complexity of the test case generation itself is fairly

straightforward.

233

7.3.2 Example

A short example is provided to illustrate the algorithm described in Listing 7.2. The
example provides 3 rules of a sample machine from thé Timeliner case study, with
some modifications to illustrate the concepts of interval arithmetic and test case
templates. The Timeliner case study is analyzed in details in Section 8.5. In the
context of the example, the meaning of the machine is irrelevant as it is used solely
to generate test cases. In Listing 7.3, the variable NOMINAL_TEMP_MID is a constant
equal to 25 and the lower bound of the temperature variable is -10 and its upper

bound is 40, inclusively.

Listing 7.3 Rules of the SEQUENCE_TEMP_MONITOR_WORXK sub machine (par-
tial)
R7: b3 -> b4 {

t := 2390;

if temp_seq_b = b3 and temperature <= 19 then

temp_seq_b := b4;
heating := on;
delta = NOMINAL_TEMP_MID - temperature;

}

R8: b4 -> b4 {
t := 1630;

if temp_seq_b = b4 and temperature < 22 then
temp_seq_b := b4;
temp_seq_s := done;

}

RO: b4 -> b0 {
t := 3195;

if temp_seq_b = b4 and temperature >= 22 then

temp_seq_b := bO;
heating = off;
temp_seq._s := done;

The generation of unit test cases for the machine of Listing 7.3, yields 3 coverage
test case templates, one to cover each rule of the machine. The 3 test case templates
are listed in Table 7.3. The calculation of the post state template for rule Ry utilizes

the interval arithmetic rules from Section 7.2 for subtraction. While this example is

234

Pre State [Post State | Coverage Item

temp_seq_b{b3}, temp_seq_b{b4}, Ry
temperature = {[—10,19]} | heating{on},
temperature{[6, 35]}

temp_seq b{b4}, temp_seq-b{bd}, Rs
temperature = {[-10,22)} | temp_seq_s{done}
temp_seq_b{b4}, temp_seq.b{b0}, Ry

temperature = {[22,40]} heating{of f},
temp_seq-s{done}

Table 7.3: Template test suite for the machine of Listing 7.3

somewhat ‘simple, it is taken almost verbatim from the case study. This example will
also be reused in Section 7.4 and in Section 7.6 to illustrate the integration test case

generation strategy and the regression test case strategy.

7.4 Integration Test Case Generation

Integration testing concerns testing the combination of two or more units, eventually
resulting in the complete system being exercised. In the context of TASM specifi-
cations, the combination of units occur during hierarchical composition, where one
unit uses another unit in an effect expression either as a sub machine or as a function

machine.

7.4.1 Hierarchical Composition

In the TASM language, hierarchical composition is achieved via function machines
and sub machines. According to Theorem 4.1 and Theorem 4.2, hierarchical composi-
tion can be removed, yielding an equivalent “flattened” machine without hierarchical
composition. Consequently, the algorithm for generating unit test cases could be
applied to the equivalent “fAattened” machine, removing the need for a special al-
gorithm to generate integration test cases. However, there are two main reasons
justifying the need for an algorithm for integration testing. First, unit testing typi-
cally happens before integration testing, meaning that the set of unit test cases for

different machines will have already been generated when integration testing begins.

235

Consequently, reusing the unit test cases would save a certain amount of work since
the test case generation strategy does not need to start fresh. Secondly, obtaining the
equivalent “flattened” machine through the approach explained in Theorem 4.1 and
in Theorem 4.2 can lead to exponential growth in the number of rules of the “flat-
tened” machine, if multiple units of hierarchical composition are used within a rule.
The integration test case generation described in this section eliminates the need to

flatten the machine, hereby avoiding possible exponential growth in the numbers of

rules.

To make the generation of integration test cases slightly simpler, the approach as-
sumes that there are no function machines used in the rule guards. This assumption
is valid since the rule guards could easily be rewritten without the use of function
machines, as explained in the proof of Theorem 4.1. Furthermore, another simplifi-
cation involving function machines is used to ease the generation of integration test
cases. A function machine can be converted to an equivalent sub machine by convert-
ing the arguments to the function machine into fresh environment variables, which
become monitored variables of the sub machine. Furthermore, the variable to which
the return value of the function machine is assigned can be added as a controlled
variable of the sub machine. In the function machine, the output variable is replaced
by the controlled variable. Given these two simplifications, the test case generation
algorithm can be expressed as the combination of unit test cases of sub machines, as
explained in Listing 7.4. Suppose that a given machine M uses a sub machine SM in
the effect expression of one of its rules, rule R;. Also suppose that a coverage test
suite template has been generated for submachine SM using the algorithm described
in Section 7.3. Machine M and sub machine SM could share monitored variables. If
they do, the algorithm must take into account the possibility that the rules of the
two machines could be enabled under different conditions for the same variables. It is
assumed that the machines do not share controlled variables because this would result
in update set inconsistency per ASM theory [42]. In the description of the algorithm,
it is assumed that the coverage test suite template for machine SM contains m test

case templates, of the form TCTsar; = ({ PreSsm,, PostSsum,;), S;), where the

236

subscript SM, 7 is used to denote the machine to which the test case belongs, in this
case machine SM and the rule covered by the test case, in this case the 5¢* rule effect

expression.

In the algorithm of Listing 7.4, if the two machines do not share monitored vari-
ables, the resulting test suite is simply the union of the test case templates for machine
SM with the test case template for rule R; or machine M. If the two machines share
monitored variables, the variable templates for the shared variables are intersected
using the set intersection and the interval arithmetic described in Section 7.2.2. In
theory, the intersection of the pre states could be empty, but this situation would oc-
cur only if the guards of the sub machine contradict the guards of the machine which
uses the sub machine. If this situation is encountered, it would result in the rules of
the sub machine never being enabled. Such a situation would not occur purposefully,

otherwise there is no point in using the sub machine in the model.

The algorithm provided in Listing 7.4 is given for hierarchical composition for
a single sub machine. It can easily be generalized for p sub machines SM; used
in the effect expression. For k& machines that do not share va.ria.bleé, rules can be
selected arbitrarily, one for each machine and can be aggregated into the test case
template using the union operator. If the sub machines do not contain the same
number of rules, some rule coverage will be repeated for some machines, but the
combination of rules covered by each test case template will be unique. The total
number of test case templates generated fof k sub machines will be equal to the
number of rules of the sub machine that has the largest number of rules. If the
machines share monitored variables, the generated test case templates are assembled
using the intersection operator for the pre state, following the approach of Listing 7.4,
but for k machines. In this instance as well, the total number of generated test case

templates is equal to the number of rules of the sub machine that has the largest

number of rules.

237

Listing 7.4 Integration test case generation algorithm for a machine M and a sub
machine SM. Machine M uses sub machine SM in the effect expression of rule R;

o Generate the pre state PreS; for rule R; of machine M using the approach given
in Listing 7.2

— If machine M and sub machine SM do not share variables:

* Generate the post state PostS; for rule R; of machine M, for the
effect expressions not containing hierarchical composition, using the
approach given in Listing 7.2 ,

* For each test case template TCTsyy; for sub machine SM:

x Create m test case templates for machine M:

- TCT; = ({PreS; U PreSsu,j, PostS; U PostSsa,;), (Ri, S;))
— If M and sub machine SM share monitored variables:
* let PreSSeum; C PreSsu,; be the set of variable templates of machine
SM for monitored variables which are shared with machine M
let PreSNsm; = PreSsu,j \ PreSSsu,;

let PreSS; C PreS; be the set of variable templates of machine M for
monitored variables which are shared with machine SM

let PreSN; = PreS; \ PreSS;

calculate the new pre state PreS] = (PreSS; N PreSSgy;) U
(PreSNi U P’I"CSNSM’J')

Generate the post state PostS; for rule R; of machine M, for the
effect expressions not containing hierarchical composition, using the
pre state PreS; and the approach given in Listing 7.2

For each test case template T'CTsy,; for sub machine: SM:
Create m test case templates for machine M:
. TCT, = ((PT‘GS,Z, POStS,; U POStSSM,j), (R4, SJ»

*

*

*

*

*

* %

238

7.4.2 Complexity Analysis

Generating the integration test case templates using the algorithm described in List-
ing 7.4 avoids the exponential growth that would result from generating a “flattened”
version of the machine. Generating a flattened machine which uses multiple sub ma-
chines in its effect expression adds a number of rules to the host machine equal to the
product of the number of rules of the sub machines. A coverage test suite template for
the flattened machine would contain one test case per rule and hence an exponential
number of test cases. For the algorithm given in Listing 7.4, the number of test cases
necessary to cover the host machine and the sub machines is equal to the number of
rules of the machine with the largest number of rules. The complexity for generating
the pre state template of machine M is identical to the complexity of generating the
pre state template for unit test cases, as explained in Section 7.4.2. Combining the
test suite from machine M with the test suite from machine SM is linear in the number
of rules for both machines. Calculating the post state template and the combination

of the pre state template depends on the properties of the variables used in the rules.

7.4.3 Example

The example from Section 7.3.2 is extended to illustrate the generation of integration
test cases. Two machines are added to the machine described in Listing 7.3. The
first machine added, shown in Listing 7.5, does not contain hierarchical composition,
and is analogous to the machine given in Listing 7.3. The humidity variable has a
lower bound equal to 0 and an upper bound equal to 100. The test suite template
for the machine of Listing 7.5 is given in Table 7.4 and has been obtained using the
algorithm described in Listing 7.2.

The second machine which is added to the example uses both the machine from
Listing 7.3 and the machine from Listing 7.5 in one of its rule effect expression. The
machine is also adapted from the Timeliner case study with extensions to illustrate the
generation of integration test cases. The machine of interest is shown in Listing 7.6.

The coverage test case template for rule P, is easily generated using the algorithm

239

Listing 7.5 Rules of the SEQUENCE_HUMIDITY_MONITOR_WORK sub machine

(partial)

S9: c4 -> c0 {
t := 1950;

if humid_seq_b =

humid_seq_b
humid_seq_s

}

S10: ¢c5 -> ¢c5 {
t = 1630;

if humid_seq_b =

humid_seq_b
humid_seq_s

¥

S11: ¢5 -> c0 {
t := 3195;

if humid_seq_b =

1= c0;
:= done;

1= cb;
:= done;

c4 and humidity > 39 then

c5 and humidity < 50 then

c5 and humidity >= 50 then

humid_seq_b := c0;
humidifier := off;
humid_seqg_s := done;
}
| Pre State | Post State | Coverage Item |

humid_seq.b{cd},
humidity = {(39, 100]}

humid_seq.b{c0}
humid_seq_s{done}

Sy

humid_seq-b{c5}, humid_seq b{c5}, Sio
humidity = {[0, 50]} humid_seq_s{done}
humid_seq_b{cb}, humid_seq.b{c0}, S1y

humidity = {[50,100]}

humidi fier{of },
humid_seq-s{done}

Table 7.4: Template test suite for the machine of Listing 7.5

240

from Listing 7.2. The generated test suite is shown in Table 7.5 and contains 4
coverage test case templates. The test suite covers all the rules of the machines. The
generated test suite shows the benefits of the integration testing strategy compared
to generating a “flattened” machine and using the unit test case generation strategy.
Generating an equivalent “flattened” machine would yield 10 rules, requiring 10 test
cases to cover all the rules of the “flattened” machine. By using the integration test
case generation algorithm described in Listing 7.4, 4 test cases are sufficient to cover

all the rules of both machines.

Listing 7.6 Rules of the EXECUTE_PLANTSIM_SEQUENCES sub machine

P3: Execute sequences

{
if exec_seq = not_done then
SEQUENCE_HUMIDITY_MONITOR_WORK();
SEQUENCE_TEMP_MONITOR_WORK() ;
exec_seq := done;
}
P4: Bundle finished
{
if exec_seq = done then
plantsim_s := done;
exec_seq := not_done;
}

In order to add another level of hierarchical composition, which will prove useful
in Section 7.6.4, an extra machine is introduced, which uses the machine shown in
Listihg 7.6 in rule V;. The definition of the machine is shown in Listing 7.7. The test
suite for the machine can easily be generated using the integration testing algorithm
shown in Listing 7.4, combined with the test suite template shown in Table 7.5. The

resulting test suite template is shown in Table 7.6.

7.5 Complete Test Case Generation Algorithm

‘The complete test case generation algorithm combines the unit test case generation
approach from Section 7.3 and the integration test case generation strategy described

in Section 7.4. The algorithm described in this section can be used on a machine at

241

| Pre State | Post State | Coverage Item |
exec-seq{not_done}, ezec_seq{done}, Ps, Sy, Ry
humid_seq_b{c4}, humid_seq.b{c0},
humidity = {(39, 100]}, humid_seq.s{done}
temp.seq_b{b3}, temp_seq_b{bd},
temperature = {[—10,19]} | heating{on},
temperature{[6, 35|}
exec_seq{not_done}, exec.seq{done}, Py, S19, Rg
humid_seqb{c5}, humid_seq.b{c5},
humidity = {{0, 50}, humid_seq.s{done}
temp_seq_b{bd}, temp._seq-b{bd},
temperature = {[-10,22)} | temp_seq.s{done}
ezec.seg{not_done}, exec.seq{done}, P3, 811, Rg
humid_seq_b{c5}, humid_seq_b{c0},
humidity = {[50,100]}, humidi fier{of f},
temp_seq b{bd}, humid_seq-s{done}
temperature = {[22,40}} temp_seq b{b0},
heating{of f},
temp_seq_s{done}
exec_seq{done}, exec_seg{not_done}, | Py
plantsim_s{done},

Table 7.5: Template test suite for the machine of Listing 7.6

Listing 7.7 Rules of the PLANTSIM_BUNDLE sub machine

if plantsim_bundle_status =
EXECUTE_PLANTSIM_SEQUENCESQ);

if plantsim_bundle_status =
plantsim_s

Vi: Bundle Active

V2: Bundle Inactive

:= done;

active then

inactive then

242

| Pre State | Post State | Coverage Item |

exec-seq{not.done}, ezec.seq{done}, Vi, Ps, So, Ry
humid_seq.b{c4}, humid_seq_b{c0},
humidity = {(39, 100]}, humid_seq_s{done}
temp_seq.b{b3}, temp_seq_b{bd},
temperature = {[—10,19]}, heating{on},
plantsim_bundle_status{active} temperature{[6, 35}
ezec_seq{not_done}, ezec_seq{done}, Vi, Ps, S, Rs
humtd_seq_b{c5}, humid_seqb{c5},
humidity = {[0,50]}, humid_seq_s{done}
temp_seq-b{b4}, temp._seq-b{bd},
temperature = {[-10, 22)}, temp_seq-s{done}
plantsim_bundle_status{active}
exec.seq{not_done}, ezec_seq{done}, Vi, P3, S11, Rg
humid_seq_b{c5}, humid_seq_b{c0},
humidity = {[50, 100]}, humidi fier{off},
temp_seq-b{b4}, humid_seq_s{done}
temperature = {[22,40]}, temp_seq-b{b0},
plantsim.bundle_status{active} heating{off},

temp_seq.s{done}
exec-seq{done}, exec_seq{not_done}, | V1, P4
plantsim_bundle_status{active} plantsim_s{done}
plantsim_bundle_status{inactive} | plantsim_s{done} Va

Table 7.6: Template test suite for the machine of Listing 7.7

243

any level. The core idea behind the test case generation strategy is that a test suite
can be associated with an individual machine to test the machine. The test cases are
generated in a “bottom-up” fashion, by reusing the test suites already generated for
machines which are combined through hierarchical composition. The complete test

case generation algorithm is given in Listing 7.8.

Listing 7.8 Complete test case generation algorithm for a given TASM specification
e For a given TASM specification:

— For each machine M; which does not contain hierarchical composition:
* Generate a coverage test suite template TCT'S; using the algorithm
described in Listing 7.2
* Associate the test suite with the machine: (M;, TCTS;)
* Add the pair to the test suite for the specification
— For all remaining machines A; which do not have a test suite associated
with them:
s Gather all machines Py used for hierarchical composition in N

* Loop recursively until all machines P, have an associated test suite in
the model:

. Generate a template coverage test suite, T'C' ST}, for machine Py
using the algorithm described in Listing 7.4

. Associate the test suite with the machine: { Py, TCTSy)
- Add the pair to the test suite for the specification

* Generate a coverage test suite template, TCST; for machine N using
the algorithm described in Listing 7.4

+ Associate the test suite with the machine: { N, TCTS;)
* Add the pair to the test suite for the specification

* Loop until all machines are included in the test suite for the specifi-
cation

7.5.1 Test Sequences

The test case generation strategy described in this chapter concerns the generation
of test cases to exercise a single rule, and hence a single step of the specification. The
assumption; as stated in Section 7.2, is that the specification can be executed in any

state and that the state resulting from a step execution is fully observable. However,

244

in practice, this is not necessarily the case since intermediate steps could be present
between the consumption of inputs and the generation of outputs. For this reason,
related approaches to test case generation often produce test sequences, which are
sequences of inputs and outputs used to exercise the specification and the underlying
system under test. The approach presented in this chapter could certainly be used to
generate test sequences but provides a more flexible strategy to the execution of test
cases. Since the test case templates are used to exercise a single rule, sequences could
be generated by concatenating test case templates whose post states and pre states
are congruent. Furthermore, a generic approach to test case generation could be
devised by describing the properties of initial states and by describing the properties
of observable states. Which such a theory, test sequences could be assembled using
the concatenation of test case templates, with the pre state of the first test case
- template in the sequence meeting the property of the initial state and the final test
case template in the sequence containing a post state which meets the observability
criteria.

The test case generation strategy can be viewed as generating a set of ordered
dominoes, where the top face is the pre state template and the bottom face is the
post state templates. The dominoes can be assembled linearly to achieve a desired
purpose, in the form of a test sequence. As long as all the test case templates from a
given test suite are involved in a test sequence, the rule coverage criteria would still
be preserved. These ideas are explored in the Timeliner case study in Section 8.5 and

as part of future work in Chapter 9.

7.6 Regression Test Case Generation

Regresston testing concerns the testing of an existing system which has already been
tested to a certain extent, after changes have been made to either the system itself or
to the specification. Conceptually, regression testing occurs after both unit and inte-
gration testing have been accomplished, to validate the correctness of a change made

to the system or to the specification, during a late of the lifecycle [176]. Such a change

245

could be the fixing of a defect, a change in requirements, or the introduction of new
functionality. During regression testing, it is generally assumed that it is not feasible
to complete repeat the unit testing and the integration testing efforts, due to time
and budgetary constraints. If the unit and integration testing efforts can be repeated
without too much toil, there is no need for a specific approach to the generation of
regression test cases. The goal of regression testing is to identify a subset of both unit
and integration testing that should be performed to adequately validate the change in
the system or in the specification. In terms of a TASM specification and the concepts
introduced so far, the regression test case generation strategy focuses on two aspects
— which test cases need to be generated and/or modified to accommodate the change
and which test cases need to be executed and/or repeated to validate the change. The
goal of the strategy is to provide a minimal set of tasks that need to be performed to
gain confidence into the correctness of the change, as opposed to repeating the entire
testing activities for every single change that occurs. However, it is generally under-
stood that the validation of the correctness of the changes could equally be achieved
through repeating the unit and integration testing activities described in the previous

sections, albeit at a higher cost.

The generation of regression test cases is achieved by combining the approaches
for unit test case generation and for integration test case generation with the trace-
ability approach explained in Chapter 6. The idea behind the test case generation
strategy is to provide a mapping between the original specification and the modified
specification, using the archetypical refinement types from Section 6.2.1. For each
type of refinement, the correctness criteria explained in Section 6.2.2 are used to
guide the generation of test cases. It is important to distinguish specification changes
between defect correction and functionality addition. This distinction is important
because defect correction purposefully alters the semantics and the goal of the change
is not to preserve semantics. Consequently, the refinement would most likely be of
the “any” variety. However, if the defect correction is limited to a single rule, the
regression test case strategy can handle this case appropriately. For changes that

span multiple facets of the model and where no refinement types can be applied, the

246

generation of test cases would most likely need to be started anew using the algorithm
of Section 7.5. In the following subsection, each type of refinement from Section 6.2.1

is listed and its effect on generation of regression test cases is analyzed.

7.6.1 Refinement Types

The regression test case generation strategy revolves around two basic concepts —
adding/removing test cases to/from a test suite and modifying existing test cases.
The specific approach depends on the type of refinement. Furthermore, the regression
test case generation approach propagates changes upstream and downstream through
hierarchical composition. When exploring the different types of refinement, 3 cases
are considered. The first case considered is the situation where the change happens in
a machine that is not involved in any sort of hierarchical composition. The second case
to consider is the case where the modified machine is used for hierarchical composition,
in the effect expression of another machine. Finally, the third case concerns the
use of hierarchical composition in the rule of the machine where the change occurs.
While these three cases are not mutually exclusive, they can be studied in isolation
and the results can be generalized to a situation involving more than 1 of these
situations. While the traceability approach presented in Chapter 6 aimed to provide
an incremental approach to specification building, the regression test case strategy
can be used as an incremental approach to test case generation. In the following
subsections, it is assumed that unit test suites and integration test suites exist before

the change is performed and the regression test cases are generated.

Step Expansion and Rule Expansion

As a reminder, the step expansion refinement is used to divide a step into multiple
steps. Furthermore, the rule expansion refinement is used to modify an existing rule
by adding items to the rule guard or to the effect expression. While both types of
refinements capture different purposes, the regression test case generation strategy

is the same for both of these types of refinements. As explained in Section 6.2.1,

247

both types of refinements are one-to-many mappings where the rule of the original
machine M;, R, is divided into m rules of a modified machine M}, S; (1 < j <
m). For the case where M is not involved in hierarchical composition, the coverage
test case template that covers rule R; is removed from the test suite, and m new
coverage test case templates are generated using the approach described in Section 7.3,
corresponding to the added rules in the modified machine. The rules S; of machine
M are used as the coverage items. The new test case templates can be added to the
test suite without any changes.

For the case where a modified rule S; uses hierarchical composition in its effect
expression, each test case template which covers rule R; is removed from the test
suite. Integration test case templates can be generated and added to the test suite
using the approach described in Section 7.4 for each respective rule S;.

For the case where the machine is used in the effect expression of another machine,
M, the test suite of machine M, needs to be regenerated for the test case templates
where rule R; is in the coverage items. For each test case template containing rule
R;, m new coverage test case templates are generated, to cover the rule where the
hierarchical composition occurs in machine Mj and the new rules S; used for the
step or rule expansion. The changes in the test suite of machine Mj are then prop-
agated bottom-up, wherever a test case template covers a rule involved in the chain
of changes. The algorithm which incorporates the three concepts is summarized in

Listing 7.9.

Rule Addition

The test case generation strategy for the rule addition refinement is similar but slightly
different than it is for the step and rule expansion refinements. Because the rule
addition refinement introduces a new rule S; which is unrelated to any rule in machine
My, the rule cannot already be involved in existing test case templates. Consequently,
the rule addition refinement will introduce new test case templates, but does not need
to remove or modify existing test case templates. If a rule is added to a machine,

a test case template is generated for the added rule according to Listing 7.2 if the

248

Listing 7.9 Regression test case gencration for a step or rule expansion refinement
o Generate test suite for machine M} by duplicating the test suite for machine
M,

e For rule R; of machine M;:

— If rule R; does not contain hierarchical composition:

* Remove the test case template which covers rule R;
* Generate new test case templates for each refined rule S; using the
approach described in Listing 7.2
— If rule R; contains hierarchical composition:
s For rules S; which contain hierarchical composition, generate test case
templates using the approach described in Listing 7.4

* For rules S; which do not contain hierarchical composition, generate
test case templates using the approach described in Listing 7.2

* Add all generated test case templates to the test suite for machine M}

— If machine M, is used for hiera,rchical composition in another machine My:

* Remove test case templates in machine M; where rule R; is in the
coverage item

+ For each rule D) of machine My which uses machine M; in its effect
expression: '

- add m new test case templates to the test suite of machine M,
using the approach described in Listing 7.4

249

added rule does not use hierarchical composition, and according to Listing 7.4 if the
rule contains hierarchical composition. If machine M; is used by another machine
through hierarchical composition, coverage of rule S; needs to be propagated upwards
by adding a new test case template to each test suite associated with a machine which
uses machine M; as a sub machine in one of its rule effect expressions. As is the case
for the step and rule expansion refinements, when the modified machine is used for
hierarchical composition the changes to the test cases need to be propagated upwards

throughout the chain of hierarchical composition.

Step Contraction, Rule Contraction and Rule Deletion

For a step contraction refinement, a rule contraction refinement, and a rule deletion
refinement, the regression test case generation strategy is different because rules are
removed and hence test case templates must be removed. If the rules being removed
do not contain hierarchical composition, the corresponding test case templates can
be removed directly in the test suite of machine M; and in all other test suites
where a removed rule is part of the coverage criteria. However, if a removed rule
contains hierarchical composition, the situation is more complex. For the rule deletion
refinement, the corresponding test case templates can be removed directly because
the hierarchical composition will no longer be part of machine Mj. The deletion
of test case templates can be propagated 'upwards. A problem occurs if there are
multiple levels of hierarchical composition involving machine M;, where the rule is
removed. If multiple levels are present, removing the rule and the associated test
case template upwards could cause the coverage test suite of a given machine to be
incomplete. If this case occurs, the template test suite for the faulty machine can
be generated anew, using the algorithm described in Listing 7.4. Furthermore, the
test suites of all affected machines should also be regenerated fresh, using the same

algorithm.

250

The Any Refinement

Since the “any” refinement is a type of refinement used for refinements that do not fit
the listed types, the mapping is defined as a many-to-many mapping. Because there
is no clear structure for the “any” refinement, regression testing strategies cannot be
devised. If the arity of the refinement is analogous to the arity of the refinements
mentioned previously, the strategies previously expressed could be used. However,
if the arity of the refinement does not match the cases mentioned previously, the
test case generation must start anew, using the algorithm described in Listing 7.8,

invalidating all machine test suites affected by the “any” refinement.

7.6.2 Test Case Execution

The primary purpose of the regression testing strategy is to modify existing test
suites to accommodate the changes introduced in the specification. In what has been
discussed so far, the goal of the approach is to minimize the amount of test case
generation that needs to be berformed, if unit and integration test suites already
exist. However, another important facet of regression testing is identifying which test
cases need to be executed to fully exercise the changes introduced in the specification.
Given the structure of the test case generation strategy expressed in Section 7.3 and
in Section 7.4, the test suite associated with each machine contains coverage criteria
for each test case template by listing covered rules. Determining which test cases need
to be executed to exercise the change is fairly straightforward because the influenced
rules can be easily identified through the coverage criteria. Consequently, by using
the traceability approach from Chapter 6, and the regression test case generation
strategy described in the previous section, the test cases that need to be executed

can be easily identified.

7.6.3 Complexity Analysis

The worst-case scenario for the generation of regression test cases occurs when all the

test suites of all the machines need to be regenerated, leading to the complexity of

251

the complete test case generation algorithm described in Listing 7.8. The complexity
of that algorithm builds on the complexity of the unit test case generation algorithm
and on the complexity of the integration test case generation.

For test case generation where only a subset of the test suite needs to be re-
generated, the complexity of the test case generation will depend on the number of
affected rules and of affected test case templates. In turn the number of affected test
case templates will depend on the hierarchical composition properties of the TASM
specification. In the worst case for hierarchical composition, the affected number of
test cases will vary linearly with the number of machines in the specification and the

number of modified/added rules in the changes made to the specification.

7.6.4 Example

The example from Section 7.4.3 is modified to demonstrate the test case generation
strategy for regression testing. The machine shown in Listing 7.6 is refined through
a step expansion refinement into two rules. The resulting machine is shown in List-
ing 7.10. In Listing 7.10, rule P; from Listing 7.6 is refined into two rules, rule Dj

and rule D4. The traceability relationship for the refinement can be expressed as:

T = Teeqp U Tig = (({Ps}, {Ds, Da})) U (({Pa}, {Ps}))
= (<{P3}’ {D3> D4}> <{P4}’ {P4}>)

For all other rules of all other machines in the example, the traceability is achieved
through identity refinements.

Given the approach described in Section 7.6.1 for the step expansion refinement,
only the test cases involving the P; rule as a coverage item need to be regenerated and
executed. The test suite of machine SEQUENCE_HUMIDITY_MONITOR_WORK,
shown in Table 7.3, and the test suite of the machine SEQUENCE.TEMP_MONI-
TOR_WORK, shown in Table 7.4 do not need to be modified. For the EXECU-
TE_PLANTSIM_SEQUENCES, only the last row of the test suite shown in Table 7.5,

252

Listing 7.10 Rules of the refined EXECUTE_PLANTSIM_SEQUENCES sub ma-

chine
D3: Execute sequences

{
if exec_seq = not_done and seq = humid then
SEQUENCE_HUMIDITY_MONITOR_WORK();
seq 1= temp;
}
D4:. Execute sequences
{ .
if exec_seq = not_done and seq = temp then
SEQUENCE_TEMP_MONITOR_WORK() ;
exec_seq := dome;
seq := humid;
}
P4: Bundle finished
{
if exec_seq = done then
plantsim_s := done;
exec_seq := not_done;
} .

253

Pre State | Post State | Coverage Item
ezec_seq{not_done}, humid_seq_b{c0}, D3, Sg
seq{ humid}, humid_seq_s{done},
humid_seq_b{c4}, seg{temp}
humidity = {(39, 100]}
exec_seq{not_done}, humid_seq_b{c5}, D3, Sio
seq{humid}, humid_seq_s{done},
humid_seq_b{c5}, seq{temp}
humidity = {[0, 50]}
exec_seq{not_done}, humid_seq_b{c0}, D3, S1;
seq{humid}, humid_seq_s{done},
humid_seq_b{c5}, seq{temp},
humidity = {[50, 100]} humidifier{of f}
exec.seq{not_done}, exec_seq{done}, Dy, Ry
seq{temp}, temp_seq.b{bd},
temp_seq_b{b3}, heating{on},
temperature = {{—10,19]} | temperature{[6,35]},
seq{ humid}
exec_seq{not_done}, exec_seq{done}, Dy, Rg
seq{temp}, temp_seq b{b4},
temp_seq-b{bd}, seq{humid}
temperature = {{-10,22)}
exzec_seq{not.done}, ezec_seq{done}, Dy, Ry
seq{temp}, temp-seq-b{b0},
temp._seq-b{bd}, heating{of f},
temperature = {[22,40]} | seq{humid}
exec_seq{done} exec_seq{not_done}, | Py
plant_sim_s{done},

Table 7.7: Test suite template for the machine of Listing 7.10

the test case template which covers rule P;, does not need to be regenerated. The
test case templates to cover the refined rules, rule D3 and rule Dy, are regenerated
using the algorithm given in Listing 7.4. The resulting test suite is given in Table 7.7.
It is important to note that the EXECUTE_PLANTSIM_SEQUENCES machine is
used as a sub machine in a rule effect expression of machine PLANTSIM_BUNDLE,
in rule V1, as shown in Listing 7.7. Consequently, the changes in the test suite for the
EXECUTE_PLANTSIM_SEQUENCES need to be propagated in the test suite of the
PLANTSIM_BUNDLE machine. The resulting test suite for the PLANTSIM_BUN-
DLFE machine is shown in Table 7.8.

254

Pre State | Post State Coverage Ttem |
ezec_seq{not_done}, humid_seq_b{c0}, Vi, D3, So
seq{humid}, humid_seg_s{done},
humid_seq-b{c4}, seq{temp}

humidity = {(39,100]},

plantsim_bundle_status{active}

exec_seq{not_done}, humid_seq.b{c5}, Vi, D3, S1wo
seq{humid}, humid_seq_s{done},
humid_seq-b{cb}, seq{temp}

humidity = {[0,50]},

plantsim_bundle_status{active}

exec_seg{not_done}, humid_seq_b{c0}, Vi, D3, 511
seq{humid}, humid_seq_s{done}, '
humid_seq-b{cb}, seq{temp},

humidity = {[50,100]}, humidi fier{of f}
plantsim_bundle_status{active}

exec_seq{not_done}, ezec_seg{done}, Vi, D4, Ry
seg{temp}, temp.-seq b{b4},

temp_seq-b{b3}, heating{on},

temperature = {[—-10,19]} temperature{[6, 35},

plantsim _bundle_status{active} seq{humid}

erec.seq{not_done}, exec.seq{done}, Vi, D4, Rs
seq{temp}, temp_seq _b{b4},

temp_seq_b{bd}, seq{humid}

temperature = {[—10,22)},

plantsim_bundle_status{active}

exec.seq{not_done}, ezec.seq{done}, Vi, D4, Ro
seq{temp}, temp_seq-b{b0},

temp_seq.-b{b4}, heating{of f},

temperature = {[22,40]}, seq{humid}
plantsim_bundle_status{active}

exec_seq{done}, exec_seg{not.done}, | V1, Py

plantsim bundle.status{active} plantsim_s{done}
plantsim_bundle_status{inactive} | plantsim.s{done} Vo

Table 7.8: Test suite template for the machine of Listing 7.7

255

| Machine | Test Case |

EXECUTE_PLANTSIM_SEQUENCES | D3, Sq
Dy, Ry

PLANTSIM_BUNDLE Vi, D3, Sio
Vi, D4, Ry

Table 7.9: List of test cases that need to be executed to cover the refinement
Test Case Execution

Based on the generation of regression test cases, only a subset of the test case tem-
plates need to be executed to validate the correctness of the change. The set of test
cases which need to be executed are shown in Table 7.9, for each machine affected by
the change. Because there was no change to the S; rules and to the R; rules, only rule
D3 and rule Dy need to be exercised in machine EXECUTE_PLANTSIM_SEQUENCES.
A test case template to cover each rule was selected arbitrarily from Table 7.7. A
similar approach is used for machine PLANTSIM_BUNDLE, where only 2 test case

templates need to be executed to validate the effect of the change.

7.7 Segue into Chapter 8

This chapter presented an approach to automatically generate test cases based on
a specification expressed in the TASM language. More specifically, facilities were
presented to automatically generate unit test cases, integration test cases, and re-
gression test cases. The test case generation capabilities represent the final feature of
the proposed framework. In the next chapter, Chapter 8, experimentation using the -

presented framework is performed using three case studies.

256

Chapter 8

Case Studies

This chapter presents the results of the three case studies that are used to evalu-
ate the capabilities of the prese.nted framework. The applications used for the case
studies are explained in details in Section 2.8. In this chapter, each case study is pre-
sented in a separate section and each section presents the TASM specification of the
~ case study, the functional analysis results, the execution time analysis results, the re-
source consumption analysis results, and the test case generation results. In addition,
he Electronic Throttle Controller (ETC) case study, analyzed in Section 8.2, in Sec-
tion 8.3, and in Section 8.4, utilizes the bi-directional traceability strategy by relating
three separate models of the ETC - a high level model, and tasking model, and a low
level model. The ETC case study is also used to demonstrate the test case generation
approach for regression testing. The other case studies are used to demonstrate the
unit and integration test case generation capabilities of the framework.

For each case study, the TASM model is described in each respective section, but
only a subset of the model listings are provided. The complete TASM models for each
case study are provided in the appendices. The model for the production cell case
study is provided in Appendix D, the model for the ETC case study is provided in
Appendix E, and the model for the Timeliner case study is provided in Appendix F.
Furthermore, for each case study, the UppaAL model obtained through the translations
is described, but the resulting complete UpPAAL model is not included, for brevity.

Each case study is followed by a brief discussion of the results and a commentary

257

on the practical usefulness of the framework features. The overall evaluation of the
framework, in light of the results of the case studies, is presented in Chapter 9.
Chapter 9 also recapitulates the contributions of the thesis in light of the research

objectives presented in Chapter 1.

8.1 Production Cell

The production cell case study is an automated manufacturing system which is based
on an industrial plant in Karlsruhe in Germany [163]. The case study is described
in details in Section 2.8.1. As a reminder, the logical view of the production cell is
provided in Figure 8-1 and contains 5 hardware components to achieve the system’s
goals — a loader, a feed belt, a robot, a press, and a deposit belt. The embedded
controller must command each component to stamp blocks, which are introduced in
the system by the loader. The controller reads the state of the system through a
set of sensors, listed in Table 2.4 and commands the various hardware components

through a set of actuators, listed in Table 2.2.

Deposit Belt —

Loader Feed Belt

Figure 8-1: Top view of the production cell

8.1.1 Model

The TASM model of the production cell is described in great detail for this case

study, because it is the first case study presented. The models pertaining to the other.

258

{ Name | Type | Purpose
Controller || Main | Commands the actuators
Loader Main | Loads blocks onto the feed belt
Feed Main | Carries blocks from the loader to the robot
Robot Main | Simulates the rotation of the robot
ArmA Main | Simulates arm a
ArmB Main | Simulates arm b
Press Main | Stamps blocks
Deposit Main | Carries blocks out of the system

Table 8.1: List of main machines used in the production cell model

case studies are described in less details. In the production cell TASM model, each
component of the production cell is modeled as a main machine, except for the robot.
As a reminder, in the TASM language, a main machine is a unit of concurrency. The
robot component is modeled as three separate main machines to capture the parallel
behavior of the motion base, arm a, and arm b, all of which can be commanded
independently. Sub machines and function machines are used, mostly to structure
the actions of the controller. The complete list of main machines is shown in Table 8.1.
In the following sub sections, as each main machine is explained,.the sub machines
and function machines that are used in the model are given. The complete list of all
machines used in the production cell case study model, is available in Table D.1 in

Appendix D.

The Environment

As a reminded, in a TASM model, the environment contains the list of user-defined
types, the list of global variables, and the list of resources used in the model. The
list of user-defined types used in the production cell model is given in Listing 8.1.
The status type is used to keep track of whether various parts of the system (e.g.,
the belts, the arms; and the press) are loaded or empty. The armposition type is
used to represent the position of the arms with respect to the robot angle, in discrete
steps. For example, if arm a is at the feed or at the press, the controller takes certain
actions. If arm a is neither at the feed nor at the press, the arm is in transit. This

“discretization” is used because if an arm is not at the press, at the deposit belt, or

259

at the feed belt, it makes no difference to the controller whether the robot angle is
31, 32, or 33 degrees. The discrete positions of the arms were obtained through the
specification of the desired behavior of the controller in the problem definition [163].

The models for the arms use a slightly different approach than the rotation of
the robot base. Instead of relating a continuous length to a set of discrete values,
two discrete values of interest are used via the armextension type - retracted and
extended. The Actuator type is used to indicate whether a motor or a magnet is
on or off. The Polarity type is used to set the polarity of the various motors. The
Stamp data type is used to set the block status in the press. Finally, the Error type is
used to catch certain types of errors when performing safety analysis of the controﬂer.
The use of the Error type and the topic of functional analysis and verification are

treated in Section 8.1.2.

Listing 8.1 User-defined types of the production cell model

status := {empty, loaded};

armposition = {atfeed, atpress, atdeposit, intransit};
armextension = {retracted, extended};

Actuator = {on, off};

Polarity := {positive, negative};

Stamp = {notfinished, finished};

Error = {none, invaliddrop, invalidpickup};

The user-defined types of the model are used to restrict the set of values that the
variables of the system can take. A subset of the variables that are used in the model,
with their associated initial conditions, are shown in Listing 8.2. The complete list of
variables is given in Listing D.2 and in Listing D.3 in Appendix D. The variables are
grouped into sensors, which correspond to the sensors of Table 2.4, actuators, which
correspond to the actuators of Table 2.2 and Table 2.3, constants, and redundant
infor'mation. The redundant information is used to keep track of the system’s state,
inside the software, as the controller performs actions. For example, the feed belt is
loaded once the loader puts a block on it and stays loaded until the robot picks up
the block. The loaded_blocks and the processed blocks variables are used to keep
track of how many blocks have been inserted in the system and how many blocks

have exited the system. The wait variable and the robot_wait variable are used to

260

synchronize the controller and the robot rotation. Essentially, they are used to enforce
fairness [30], to make sure that the system’s state can progress and that the robot
can process a command from the controller. More specifically, since the controller
actions are instantaneous, the wait variable is used to enable the environment to
~ make progress between controller actions. Without this constraint, the controller
could perform an infinite number of actions before other components get a chance to
perform a single action, leading to so-called Zeno runs [30].

The convention of the robot_angle variable is that it is 0 when arm a is at the feed
and arm b is at the press, as in Figure 8-1. As the robot rotates counter clockwise,
the angle increases by 30 degrees. When the value of the robot_angle variable is 90,
arm a is at the press and arm b is at the deposit. For the controller strategy used
in this model, the value of the robot_angle variable will remain between 0 degrees
and 90 degrees inclusively. The model also contains one resource, power, which gets
consumed when the hardware components are operating.

Throughout the model, as a convention, capital letters are used to describe con-
stants and sub machine calls. The ROTATION_ANGLE constant is used as the discrete
angle by which the robot is rotated when the motor_robot actuator is on. The value
“30” was selected as the delta of rotation because it fits the problem description of
the durative actions listed in Table 2.5.

In the following subsections, the main components, modeled as main machines, are
described one by one. The description of the ArmB main machine and of the Deposit
main machine are omitted because they are similar to the ArmA main machine and to
the Feed main machine, respectively. The complete TASM model for the production

cell case study is available in Appendix D.

Loader

The loader is the component that drives the system by putting blocks on the feed
belt. The rules of the Loader main machine are shown in Listing 8.3. In the listing,
the variable number is an integer variable that is internal to the Loader machine.

This variable is used in the constructor to determine how many blocks the loader will

261

Listing 8.2 Variables of the production cell model (partial)

//sensors

Integer[0, 90] robot_angle 1= 0;

Stamp press_block := notfinished;
Boolean feed_begin := False;
armextension armaext 1= retracted;
armextension armbext := retracted;
Boolean feed_end := False;
Boolean deposit_begin := False;
Boolean deposit_end 1= False;

//redundant info, derivable from sensors

armposition armapos := atfeed;
armposition armbpos := atpress;
status arma 1= empty;
status armb := empty;
status feed_belt := empty;
status deposit_belt - i= empty;
status press 1= empty;

//other variables

Boolean wait := False;
Boolean robot_wait := False;
Integer[0, 50] loaded_blocks 1= 0;
Integer [0, 50] processed_blocks 1= 0;
Boolean loader_done := False;
Error error 1= none;
armposition robot_destination ;= atfeed;
//actuators

Actuator motor_press := off;
Actuator motor_arma 1= off;
Actuator motor_armb := off;
Actuator magnet_arma .= off;
Actuator magnet_armb = off;
Actuator motor_robot 1= off;
Actuator motor_feed 1= off;
Actuator motor_deposit 1= off;
Polarity motor_press_p 1= positive;
Polarity motor_arma_p 1= positive;
Polarity motor_armb_p 1= positive;
Polarity motor_robot_p 1= positive;
Polarity motor_feed_p 1= positive;
Polarity motor_deposit_p 1= negative;

262

insert in the system. The first rule, rule R, loads blocks on the feed belt as soon as
the feed belt is empty. Per the properties of the actions listed in Table 2.5, loading
a block on the bélt takes 2 time units and consumes 200 units of power. Once the
action is complete, the feed belt is loaded and the feed_begin sensor is set to true, to

notify the controller that there is a block on the feed belt.

Listing 8.3 Rules of the Loader main machine
R1: The feed belt is empty, put a block on it

{
t

power :

2;
200;

v
on

if loaded_blocks < number - 1 and feed_belt = empty then

feed_belt = loaded;
loaded_blocks = loaded_blocks + 1;
feed_begin := True;
}
R2: This is the last block...
{
t 1= 25
power := 200;

if loaded_blocks = number - 1 and feed_belt = empty then.

feed_belt ;= loaded;
loaded_blocks := loaded_blocks + 1;
feed_begin := True;
loader_done 1= True;

}

R3: The feed belt is loaded, do nothing

{

t .= next;

if feed_belt = loaded and loaded_blocks < number then
skip;

Rule R2is used to put the last block on the feed belt and to notify the controller
that the loader will no longer put blocks on the feed belt, through the loader_done
variable. The last rule, rule R3, is used to wait and elapse time until the next state
change. The “t := next” construct is used to keep the machine alive until a change
to monitored variables occurs. Once all blocks have been loaded in the system, no rule

will be enabled for the Loader machine and the machine will stop, per the semantics

263

of the TASM language described in Section 4.3.

Feed Belt

The Feed main machine is a simple machine that contains only two rules. The rules of
the machine are shown in Listing 8.4. Rule R1 is the only rule that changes the state.
The rule is enabled when there is a block on the belt, that block is at the beginning
of the belt, the motor is on, and the polarity of the motor is positive. When this
condition is met, the rule will take 5 time units to complete and will consume 500
units of power, per the description in Table 2.5. The effect of executing this rule
will be such that the block will move from the beginning of the feed belt to the end,
and the appropriate state change is reflected in the sensors feed_begin and feed_end by

setting the appropriate variables.

Listing 8.4 Rules of the Feed main machine
R1: Block goes to end of belt
{
t
power

5;
500;

if feed_belt = loaded and feed_begin = True and
motor_feed = on and motor_feed_p = positive then

feed_begin := False;
feed_end := True;
1
R2: Else
{
t := next;
else then
skip;
}

Rule R2 will be enabled and fired whenever rule R! is not enabled. Rule R2
has no effect on the environment and is used solely to keep the machine running.
Once again, the “t := next” construct is used to indicate that the machine will not

perform any steps until a change to its monitored variables occurs.

264

Press

The Press main machine is similar to the Feed main machine. It simply reacts to the
motor being on and causes the state change to take place once the stamping of the

block is completed. The rules of the machine are shown in Listing 8.5.

Listing 8.5 Rules of the Press main machine
Rl: Press is loaded, motor is on

{
t = 11;
power := 1500;

if motor_press = on and press = loaded and press_block = notfinished then
press_block := finished;

}

R2: Else
{

t := next;

else then
skip;

The Deposit main machine is also similar to the Feed main machine shown in
Listing 8.4. It is interesting to note that the three components described so far
update the state only through the sensors and react to state changes only through
the information available through actuator values. The Loader main machine is a
bit different than the other machines explained so far because it is used to drive the
system and is an active component, in contrast to the feed, press, and deposit which

are purely reactive components.

Robot

The Robot main machine is used to describe the rotation of the base of the robot.
The machine, whose rules are shown in Listing 8.6, uses the robot_wait variable
to give a chance for the controller to stop the motor before rotation resumes. This
behavior could also have been enforced by the use of a communication channel. The

Robot main machine differs from other machines described so far because it uses

265

a sub machine called ROBOT_-MOTION. As a refresher, a sub machine is a unit
of hierarchical composition. The behavior of the main machine is defined in terms
of the sub machine by merging the update set yielded by the sub machine with
update sets yielded by other sub machines, if applicable and with other updates to
variables included in the rule effect expression. For rule R1, the updates to variables
yielded by the ROBOT_MOTION sub machine will be merged with the update to
the robot_wait variable. Since rule RI does not have a time or resource annotation,
the duration and resource consumption of the rule execution are defined by the sub
machine annotations, if they are present. In the case of the ROBOT_MOTION sub
machine, the machine contains time and resource annotations, which will be used to

determine the time and resource behavior of the Robot main machine.

Listing 8.6 Rules of the Robot main machine
R1: do
{
if robot_wait = False then
ROBOT_MOTIONQ);

robot_wait := True;
}
R2: wait
{
t := next;
if robot_wait = True then
robot_wait := False;

The use of a sub machine can be viewed as a nested if statement. Sub machines
are nothing more than syntactic sugar to help structure specifications, as explained in
Theorem 4.2. The rules of sub machine ROBOT_-MOTION are shown in Listing 8.7.

In Listing 8.7, rules R1 and R2 are used to rotate the robot clockwise and counter
clockwise depending on the polarity of the motor. Rule R1 of the sub machine uses
two function machines, rotateClockwise and armPosition. In the TASM language,
function machines are macros that are analogous to functions in programming lan-
guages. Function machines have no side-effect in that they do not change environment

variables. The rotateClockwise function is used to return the resulting angle of doing

266

Listing 8.7 Rules of the ROBOT_-MOTION sub machine

Rl: rotate clockwise

{
t = 2;
power 1000;

if motor_robot = on and motor_robot_p = negative then .
robot_angle := rotateClockwise();

armapos = armPosition(ARM_A_FEED_ANGLE, ARM_A_DEPOSIT_ANGLE,
ARM_A_PRESS_ANGLE, rotateClockwise());
armbpos = armPosition(ARM_B_FEED_ANGLE, ARM_B_DEPOSIT_ANGLE,

ARM_B_PRESS_ANGLE, rotateClockwise());

}
R2: rotate counterclockwise
{
t =2,
power = 1000;
if motor_robot = on and motor_robot_p = positive then
robot_angle := rotateCounterClockwise();
armapos := armPosition(ARM_A_FEED_ANGLE, ARM_A_DEPOSIT_ANGLE,
ARM_A_PRESS_ANGLE, rotateCounterClockwise());
armbpos = armPosition(ARM_B_FEED_ANGLE, ARM_B_DEPOSIT_ANGLE,
ARM_B_PRESS_ANGLE, rotateCounterClockwise());
}
R3: Else
{
else then
skip;
}

267

one rotation step. The function machine also ensures that the angle doesn’t go below
0 or over 360. Essentially, it returns (robot_angle + ROTATION_ANGLE) modulo
360. The armPosition function machine is used to set the position of each arm based
on the resulting robot angle. Since the robot.angle will not be updated until after
the rule has been completed, the armPosition function machine needs to anticipate
what the robot angle will be, which explains the call to the rotateClockwise function
machine as a parameter. The rules of the function machine armPosition are shown
in Listing 8.8. The durations and power consumptions used for the robot rotation, in
rules R1 and R2, are in accordance with the problem definition given in Table 2.5. For
the armPosition function machine, the new robot angle is passed in through the value
parameter. The other parameters include feed_angle, deposit_angle, and press_angle.
These values are used to determine whether the rotation will result in a given arm

being at the feed, at the press, at the deposit, or in transit.

Listing 8.8 Rules of the armPosition function machine
R1: CCW rotation will put arm at feed
{
if value = feed_angle then
out := atfeed;

}
R2: CCW rotation will put arm at deposit
{
if value = deposit_angle then
out := atdeposit;
}
R3: CCW rotation will put arm at press
{
if value = press_angle then
out := atpress;
}
R4: Else, CCW rotation will put arm in transit
{
else then
out := intransit;
}

268

Arm A

The ArmA main machine is used to simulate the behavior of arm a. The action that
arm a can perform include extending, retracting, picking up a block, dropping a block.

The main machine uses two sub machines, DROP_ARM_A and PICK_.UP_ARM_A.

Listing 8.9 Rules of the ArmA main machine
Ri: Extend arm
{

t 1= 3;

power := 1200;

if motor_arma = on and motor_arma_p = positive and
armaext = retracted then
armaext := extended;

}

R2: Retract arm

{
t = 2;
power := 1100;

if motor_arma = on and motor_arma_p = negative and
armaext = extended then
armaext := retracted;

}

R3: Pick up block
{
if magnet_arma = on and arma = empty and
armapos = atfeed and feed_end = True then
PICK_UP_ARM_AQ;

}
R4: Drop block
{
if magnet_arma = off and arma = loaded then
DROP_ARM_A();
}
R5: Else
{
t := next;
else then
skip;
}

The rules of the DROP_ARM_A sub machine are shown in Listing 8.10. The sub

269

machine is interesting because it uses the error variable to communicate an erroneous
state. More specifically, the sub machine will set the error variable to invaliddrop
if the controller commands the arm to drop a block and the arm is not extended, if
the controller commands the arm to load the press and the press is already loaded, or
if the controller commands the arm to drop a block while the arm is in transit. The
controller should not command the magnet to drop a block under these conditions.
Using the variable is not necessary to detect that an erroneous state is reachable, but
it illustrates the clever use of rules. The safety requirements to ensure that blocks
are not dropped under undesirable conditions could be phrased using the value of the

variable, such as “the value of the error variable is never equal to invaliddrop”.

Listing 8.10 Rules of the DROP_ARM_A sub machine
R1: Drop at press

{
t = 2;
power := 800;
if armapos = atpress and arma = loaded and
armaext = extended and press = empty then
arma = empty;
press = loaded;
press_block = notfinished;
¥
R2: Invalid drop
{
if armapos != atpress or arma = empty or
press = loaded or armaext != extended then
error := invaliddrop;
}

As a reminder, rule R4 of Listing 8.9 does not contain time or resource con-
sumption annotations. Consequently, the duration and resource consumption of the
rule execution will come from the DROP_ARM_A sub machine, since that machine

contains time and resource annotations.

Controller

The Controller main machine is the most complex machine of the model. In a fash-

ion similar to the Robot main machine, the Controller machine uses a variable called

270

wait to enable the environment to make progress before performing an action. For
the controller, this waiting is necessary because all the actions of the controller are
instantaneous and the environment must be given a chance to make progress. Other-
wise, the controller could perform an infinite number of steps hefore an environment
change happens. In real-time system terms, the Controller main machine can be
viewed as a sporadic task which gets released whenever a sensor value changes. The
rules of the Controller main machine, shown in Listing 8.11, make heavy use of sub
machines. The semantics of sub machines and hierarchical composition are such that
all sub machines operate in parallel and the resulting update sets of each machine are
composed with one another. The commanding of all of the actuators are performed

independently, in parallel.

Listing 8.11 Rules of the Controller main machine

R1: Issue Commands

{

if wait = False then

OPERATE_FEED(Q) ;
OPERATE_DEPOSIT() ;
OPERATE_ROBOTQ) ;
OPERATE_ARM_AQ);
OPERATE_ARM_B();
OPERATE_PRESS();
wait := True;

R2: Wait for a step
t := next;

else then
wait := False;

The rules of the OPERATE_DEPOSIT sub machine are shown in Listing 8.12.
The listing shows how the controller uses only sensor values to interpret the state of
the system, and uses only the actuators to command the various components of the
system. Listings for other sub machines of the “OPERATE_ABC” nature are similar

and are given in Appendix D.

271

Listing 8.12 Rules of the OPERATE_DEPOSIT sub machine

R1: turn on motor

{
if motor_deposit = off and deposit_begin = True then
motor_deposit_p 1= negative;
motor_deposit 1= on;
}

R2: turn off motor
{

if motor_deposit = on and deposit_end = True then

motor_deposit := off;
}
R3: nothing to do
{
else then
skip;
}

Complete Model

The complete production cell TASM model contains 8 main machines, one for each
component shown in Figure 8-1, and one for the controller. The model also contains
3 function machines, and 16 sub machines. The complete production cell model is

documented in Appendix D where the list of all machines is given in Table D.1.

8.1.2 Functional Analysis

The purpose of the production cell case study, as outlined in [163], is to evaluate and
compare different formal methods. Part of the problem definition is to understand
how different approaches model and prove properties of the production cell case study.
Some of the properties that should be proved include restrictions on the commands
that the controller sends out to the hardware components. For example, the controller
shall not command the robot to drop blocks in places other than the press and the
deposit belt. Furthermore, the robot should never be rotated when the arms are
extended. In order to verify these properties in the TASM model, model checking
presents a natural fit since the model is finite and the safety properties can be easily

formulated as temporal logic properties over the variable values of the model.

272

Safety and Liveness Properties

For this case study, three safety properties are verified using a model checking ap-
proach. The safety properties are verified using two different strategies. The first
strategy uses a simple safety invariant property over the variable values of the model,
to express that “a certain state shall never be reached”. Two safety properties are
verified using this strategy. The first safety property states that “the robot shall
not rotate while an arm is extended”. The second property states that “arm a shall
only be extended at the press and at the feed belt” The temporal logic formulas

corresponding to the two properties are shown below:

o A G (motor_robot = on) — (arma = retracted A armb = retracted)

o A G (arma = extended) — (armapos = atpress V armapos = atfeed)

The first temporal logic formula states that it is always true in the model that
whenever the robot motor is on, the arms are retracted. The second temporal logic
formula states that it is always true in the model that whenever arm a is extended,
arm a is at the press or arm a is at the feed. The second strategy to verify safety
properties involves embedded error values inside of the model, in a manner analogous
to assertions in programming languages [132]. In the TASM model, the user-defined
type Error in Listing 8.1 is used to create errors that can be embedded in the model.
For example, in Listing 8.10, the error variable is set to invaliddrop if the controller
tries to drop a block from arm a at a place other than the press. Similar rules
were added to.the DROP_ARM_B, PICK.UP_ARM_A, and PICK_.UP_ARM_B sub
machines. The first safety property wraps a set of safety assertions, including “the
robot shall not drop blocks in places other than the press and the deposit belt”, “the
robot shall not drop a block in the press if the press is already loaded”, and “the
robot shall not drop a block if the arm is not extended”. The second safety property

also wraps a set of safety assertions similar to the first safety property, but concerns

273

the picking up of blocks. The included properties in the assertion include “the robot
shall not pick up blocks in places other than the press and the feed belt”. These two
properties can be easily stated using the error variable and éxpressing the assertion

as a simple safety invariant on the values of the variable:

o A G error != invaliddrop

o A G error != invalidpickup

The temporal logic formulas state that the error variable is never set to invaliddrop
and is never set to invalidpickup. The assertions could be formulated in other
ways, and other assertions could also be added to verify all of the properties specified
in [163]. However, for the sake of the case study, these four properties are sufficient to
demonstrate the functional verification capabilities of the framework using modeling
and model checking.

Because the TASM model of the production cell is finite, it can lend itself quite
naturally to the model checking capabilities of the presented framework, using the
UppaAL tool suite. Furthermore, the safety properties that have been expressed as
temporal logic formulas can be easily translated to the query language of the UppaaL

model checker.

UppaaL Model

In order to model check the TASM model for safety assertions, the production cell
TASM model leverages the UppaAL model checker, using the translation approach
documented in Appendix C. The UppaAL model is generated only once and is also
used to analyze execution time of the production cell system in Section 8.1.3. Because
the timed automata used in UppaaL do not have hierarchical composition facilities,
the TASM main machines need to be “flattened” per the approach described in the

proof of Theorem 4.1 and in the proof of Theorem 4.2. The removal of hierarchical

274

composition can lead to exponential growth in the number of states in the “flattened”
machine when multiple units of hierarchical composition are used in the same rule.
For all machines in the production cell TASM model, except for the Controller main
machine, the flattening of the machines is tractable because the machines make lim-
ited use of hierarchical composition. However, the Controller main machine makes
heavy use of hierarchical composition within its main rule, and a basic flattening of
the main machine yields over one million rules (3 ¥ 3*3*3*2*8*3*g*7*3*
6*6+ 1=1, 765 969). Clearly, this approach is not feasible to generate the UppaaL
model. This explosive growth occurs because rule R; of machine Controller uses 6 sub
machines, which, in turn, make use of other sub machines. One way to mitigate the |
exponential growth is to operate each component in sequence, instead of in parallel.
The sequential operation can be achieved by using an extra variable, which orders the
operations in sequence. In_order to maintain the semantics of the original model, the
values of the sensors and actuators are “ca.ched’;, through “dummy variables”, at the
beginning of the opération bhase and the.outputs are “buffered”, also through tem-
pbrary variables, until the end of the operation phase. The Controller main machine
is modified to use the cached variables in its decisions and to output to the buffered
variables. The modified Controller main machine is shown in Listing 8.13. The mod-
ified main machine contains 9 rules and the “flattened” version of the machine in
Listing 8.13 contains 48 rules — 1 rule to flatten rule R;, 3 rules to flatten rule Ry,
3 rules to flatten rule Rs, 10 rules to flatten rule Ry, 13 rules to flatten rule Rs, 13
rules to flatten rule Rg, 3 rules to flatten rule Ry, 1 rule to flatten rule Rg, and 1 rule
for rule Ry. Clearly, this definition of the machine is more manageable. The original
model is maintained in order not to affect the modeling because of the translation
details. If it can be demonstrated that the Controller model of Listing 8.13 is equiv-
alent to the model of Listing 8.11, then the modified model can be used to generate

the UppaAL timed automata for the controller behavior without loss of semantics.

In order to show equivalence between the machine of Listing 8.13 and the machine
of Listing 8.11, two basic principles are invoked. The first one relies on the fact that

all controller actions are instantaneous and, hence, occur in the same quantitative

275

Listing 8.13 Rules of the modified Controller main machine
R1: Cache {

if wait = False and seq = cache then
CACHE_DATAQ);
seq := operate_feed;

}

R2: Feed {
if wait = False and seq = operate_feed then
OPERATE_FEED() ;
seq := operate_deposit;

}

R3: Deposit {
if wait = False and seq = operate_deposit then
OPERATE_DEPOSIT() ;
seq := operate_robot;

}

R4: Robot {
if wait = False and seq = operate_robot then
OPERATE_ROBOT() ;
seq := operate_arma;

}

R5: Robot {
if wait = False and seq = operate_arma then
OPERATE_ARM_A () ;
seq := operate_armb;

by

R6: Robot {
if wait = False and seq = operate_armb then
OPERATE_ARM_B() ;
seq := operate_press;

}

R7: Press {
if wait = False and seq = operate_press then
OPERATE_PRESS () ;
seq := output;

}
R8: Press {
if wait = False and seq = output then
QUTPUT() ;
seq := cache;
wait := True;
}
R9: Wait for a step {
t = next;
else then
wait := False;
}

time period. Furthermore, the operations do not depend on one another and can be
performed in parallel or in any sequence since they do not share variables. Also, by
using the “dummy variables” to cache the state and buffer the output, the decisions

at each step are not affected by the actions of other main machines or by the output

276

Machine Rules | Flattened Rules
Loader 3 3

Feed 2 2

Robot 2 6

ArmA 5 7

ArmB 5 7

Press 2 2

Deposit 3 3

Controller || 2 1, 765 969
Controller’ || 9 48

Table 8.2: Number of rules for flattened main machines

of each operation. This semantics is equivalent to the semantics of performing each
operation in parallel in a single step. The second principle relies on the fact that
all changes that modify sensor values involved in the decisions of the controller are
achieved through durative actions of other components. The two principles guarantee
semantic equivalence because each output of the controller will appear in the sensors
after a time delay, hence after a controller step has been performed. The number of
rules for each flattened main machine of the production cell TASM model is shown
in Table 8.2.

The complete UppaaL model contains 14 timed automata, including 8 automata
for each main machine of the TASM model and 6 automata to enforce the “Else rules”
of 6 of the main machines. The timed automata for the Feed main machine is shown
in Figure 8-2. The safety pfoperties given as temporal logic formulas can be easily
translated to UppaaL ’s TCTL query language. The UppAAL queries corresponding to

the safety properties described in the previous section are shown below:
o A[] (motor_robot == 1) imply (armaext == 1 && armbext == 1)
o A[] (armaext == 2) imply (armapos == 1 && armapos == 2)

e A[] (error != 2)

277

e A[] (error != 3)

feed_belt == 1 &&

c>=5 feed_begin == 1 &&
feed_begin = 0 motor_feed == 1 &&
feedend =1 motor_feed_p == 1

: Feed_else?
Feed R1€) Feed_ELSE
c<=8 Bt
feed_belt == 1 && l(feed_belt == 1 &&
feed_begin == 1 && feed_begin == 1 &&
motor_feed == 1 8&& motor_feed == 1 8&
motor_feed p ==1 motor_feed_p == 1)
c=0

Figure 8-2: Timed automaton for the feed main machine

These properties were verified successfully by running the queries through the
UppaAL verifier. The model can also be queried to verify certain liveness properties.
For example, the property “eventually, all blocks loaded into the system get car-
ried out of the system” can be expressed in the query language of UppAAL . This
property can be formulated as the liveness property “E<> processed_blocks ==
loaded blocks”. Other liveness and safety properties can be formulated in a similar
fashion, as needed. The UppaAL model derived in this section is reused in Section 8.1.3

when execution time is analyzed.

Completeness and Consistency

The analysis of completeness and consistency was performed using the approach de-
scribed in Section 5.1. The results of verifying completeness are shown in Table 8.3.
The table shows, for each machine, the number of propositions, the number of clauses,
and whether or not the machine is complete. For machines that are trivially complete,
the number of propdsitions and clauses is listed as “N/A”. A similar table, Table 8.4,
presents the results of verifying the consistency of each machine.

In Table 8.3, the only machine which is not complete is the Loader main machine.
The machine is not complete because it stops after loading the predefined num-

ber of blocks. The counterexample generated by the SAT solver is the state where

278

Name [l Propositions | Clauses | Complete |
Loader 5 11 No
Feed N/A N/A Yes
Deposit N/A N/A Yes
Press N/A N/A Yes
Robot 2 4 Yes
ArmA N/A N/A Yes
ArmB N/A N/A Yes
Controller N/A N/A Yes
armPosition N/A N/A Yes
rotateClockwise N/A N/A Yes
rotateCounterClockwise {| N/A N/A Yes
OPERATE_FEED N/A N/A Yes
OPERATE._DEPOSIT | N/A N/A Yes
OPERATE_ROBOT N/A N/A Yes
OPERATE_ARM.A N/A N/A Yes
OPERATE_ARM.B N/A N/A Yes
OPERATE_PRESS N/A N/A Yes
PICK_UP_ARM_A |l 10 23 Yes
PICK_.UP_ARM.B 10 23 Yes
DROP_ARM_A 10 23 Yes
DROP_ARM._B 10 23 Yes
ARM_A FEED N/A N/A Yes
ARM_A_PRESS N/A N/A Yes
ARM_B_DEPOSIT N/A N/A Yes
-ARM_B_PRESS N/A N/A Yes
ROBOT_MOTION N/A N/A Yes
ROTATE_ROBOT || N/A N/A Yes

Table 8.3: Completeness analysis results for the production cell model

“loadedblocks >= number, feed_belt = empty’. The machine was designed to
stop after the number of loaded blocks exceeds the predefined threshold, so the in-
completeness is to be expected. In Table 8.4, main machines Deposit, ArmA, and
ArmB are inconsistent. These components model the environment of the controller
and hence the lack of consistency uncovers assumptions about the behavior of the
environment. For the Deposit main machine, the counterexample generated by the
SAT solver is the state where “deposit_belt = loaded, deposit_begin = True,
motor_deposit = ofx, motor_deposit_p = negative, deposit_end = True”. In this
counterexample, rule R; and rule R are both enabled. The assumption about the
environment is that deposit_begin variable and the deposit_end variable cannot

be true at the same time. This assumption is congruent with the problem definition

279

| Name | Propositions | Clauses | Consistent
Loader 5 71 Yes
Feed N/A N/A Yes
Deposit 10 15 No
Press N/A ' N/A Yes
Robot<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>