A Robust Motion Planning Approach for
Autonomous Driving in Urban Areas
by
Gaston A. Fiore

B.S., Aerospace Engineering with Information Technology
Massachusetts Institute of Technology, 2006

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
L e 20087
May 2008

© Massachusetts Institute of Technology 2008. All rights reserved.

Author ... _ S

Certified by...................... e T e
Jonathan P. How
Professor of Aeronautics and Astronautics

o . JQhesis Supervisor

- Certified by...............oooi Ll . Vﬂ

Emilio Frazzoli

Associate Professor of Aeronautics and Asgionautics

§",~\ { ,(} Thegis Swipervisor

Accepted by AT s g e e b
TMASSACHUSETTS INSTITUTE] ;

A A oy UTE Prof. Dawid L. Darmofal

Associate Department Head

AUG 0 1 2008 Chair, Committee on Graduate Students

LIBRARIES

ARCHIVES

A Robust Motion Planning Approach for Autonomous

Driving in Urban Areas
by
Gaston A. Fiore

Submitted to the Department of Aeronautics and Astronautics
on May 23, 2008, in partial fulfillment of the
requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

This thesis presents an improved sampling-based motion planning algorithm, Robust
RRT, that is designed specifically for large robotic vehicles and uncertain, dynamic
environments. Five main extensions have been made to the original RRT algorithm
to improve performance in this type of applications. The closed-loop system is used
for state propagation, enabling easy handling of complex, nonlinear, and unstable
dynamics. The environment structure is exploited during the sampling process, in-
creasing the probability that a given sample will be reachable. Efficient heuristics are
employed in the expansion of the tree and a risk penalty is incorporated to capture un-
certainty in the environment and keep the vehicle a safe distance away from hazards.
The safety of the vehicle is guaranteed with the assumption of no unexpected changes
in the environment, which is achieved by requiring that every trajectory sent for exe-
cution ends in a state with the vehicle stopped. Finally, risk evaluation follows a lazy
evaluation strategy, allowing the algorithm to spend most of the computation time
in the expansion step. The effectiveness of the Robust RRT algorithm for planning
in an urban environment is demonstrated through numerous simulated scenarios and
real data corresponding to its implementation in MIT’s robotic vehicle that competed
in the DARPA Urban Challenge.

Thesis Supervisor: Jonathan P. How
Title: Professor of Aeronautics and Astronautics

Thesis Supervisor: Emilio Frazzoli
Title: Associate Professor of Aeronautics and Astronautics

Acknowledgments

For the kids of today, who will probably see robotic cars as

commonplace when they reach my age.

Thanks to Jon and Emilio for their advice and insights, as well as to John for his

constructive feedback.

Thanks to my loving family, Esteban, Maria Luisa, and Romina, for their moral
support. Thanks also to my friends, who from time to time provided me with joyful

respites in a taxing project.

Thanks to the whole MIT DGC Team, in particular Yoshi, Justin, David, Ed, Albert,
and Sertac. 1 have learned a lot from you and I greatly enjoyed the time we spent

together in creating Talos.

Go as far as you can see; when you get there, you’ll see farther.

Thomas Carlyle

With all humility, I think “Whatsoever thy hand findeth to do, do it with
thy might” infinitely more important than the vain attempt to love one’s
neighbor as oneself. If you want to hit a bird on the wing, you must
have all your will in a focus; you must not be thinking about yourself,
and, equally, you must not be thinking about your neighbor; you must be

living in your eye on that bird. Every achievement is a bird on the wing.

Oliver Wendell Holmes

Contents

1 Introduction 17
1.1 What Is an Autonomous Automobile? 17
1.2 Why Develop Autonomous Automobiles? 18
1.3 The DARPA Urban Challenge 20

1.3.1 National Qualification Event 22
132 FinalEvent L 23
1.4 Thesis Structure. 27

2 Motion Planning 29
2.1 Basic Ingredients of Planning, .. 29
2.2 The Configuration Space 30
2.3 Algorithmic Considerations 31

2.3.1 Algorithm Completeness 31
2.4 The Motion Planning Problem 32
2.4.1 Obstacle Region for a Rigid Body 32
2.4.2 Basic Motion Planning 34

3 Existing Approaches for Motion Planning 35
3.1 Combinatorial Motion Planning 35
3.2 Sampling-based Motion Planning 37
3.3 Approaches Used in the DARPA Grand Challenge 39

3.3.1 Offline Smoothing plus Online Search of 2D Space of Maneuvers 41
3.3.2 Manual Preprocessing plus Online Conformal Search 42
3.3.3 Receding Horizon Control 43
3.4 Conclusion on Available Alternatives 44

4 Robust RRT Algorithm 47

4.1 Motion Planning Framework 47

4.1.1 System Dynamics

4.1.2 Urban Driving Problem Formulation
4.2 Algorithm Overview
4.2.1 Original RRT Algorithm
4.2.2 Robust RRT Algorithm
4.3 Use of Closed-loop System
43.1 Repropagation.
4.4 Exploitation of Environment Structure in Sampling
44.1 SamplingtheSpace
4.4.2 Physical Environment Structure as a Bias
4.4.3 Logical Environment Structureasa Bias
444 BatchSampling
4.5 Risk Evaluation with Low Computational Overhead
4.5.1 Configuration Space Cost Map.
4.5.2 Risk Evaluation Strategy
4.5.3 Lazy Evaluation.
4.6 Efficient Expansion of the Tree
4.6.1 Evaluation of the Distance to Samples
4.6.2 Expandingthe Tree.
4.6.3 Estimates of the Cost-To-Go
4.7 Construction of a Safe and Rich Tree
4.7.1 Improving the Richness of the Tree
4.7.2 Safety as an Invariant Property

4.7.3 Safe Maximum Speed and Lateral Acceleration

Robust RRT Evaluation
51 Simulation Data
5.1.1 Simulated Scenarios.
Scenario 1: Full Parking Lot
Scenario 2: Blocked Road
Scenario 3: Rectangular Track with Obstacles
Scenario 4: Dense Obstacle Field
Scenario 4.1: Dense Obstacle Field, 0° Initial Orientation . . .
Scenario 4.2: Dense Obstacle Field, 90° Initial Orientation .
Scenario 4.3: Dense Obstacle Field, 270° Initial Orientation .
Scenario 4.4: Dense Obstacle Field, Different Initial Location

85
86
86
88
91
93
95
97
101
105
109

Scenario 4.5: Dense Obstacle Field, Different Hazard Weights 113

Scenario 5: Narrow Passage 117

Scenario 6: Dead Endo 122

5.2 DARPA Urban Challenge Data 130
9.2.1 National Qualification Event 130

Parking 130

Road Blockage 131

Lane Following 131

5.2.2 Urban Challenge Event 136
Interaction with Virginia Tech’s Odin 136

Encounter of a Gate Blockage 139

First Interaction with CarOLO’s Caroline 142

Second Interaction with Caroline 146

Interaction with Cornell’s Skynet 151

6 Conclusions and Future Work 157
References 160

10

List of Figures

1-1

1-2
1-3

1-5
1-6

2-1

4-2
4-3
4-4
4-5
4-6
4-7

LUX is capable of autonomous driving yet it looks like a regular pro-
duction VW Passat.
MIT’s Talos driving in DARPAtown.
Austin Robot Technology’s Marvin the Land Robot waiting to merge
into traffic at one of the two T intersections in Area A.
Team Autonomous Solutions’ Ted driving along an S-shaped road in
Area B.
Team Jefferson’s Tommy Jr. at a busy intersection in Area C.

Talos driving along a two-way road during the Final Event.
Talos system architecture with motion planner module highlighted.

The motion planning problem is to find a path from g; to g¢ in Cyree.
The entire region represents the configuration space C = Cfree U Cops. -

The sampling-based planning philosophy uses collision detection as a
"black box”. In this way, it separates motion planning from the partic-
ular geometric and kinematic models. C-space sampling and discrete
searching are performed.

Stanley, Stanford’s robot that won the 2005 DARPA Grand Challenge.

Vehicle trajectories are generated by using the vehicle’s dynamical
model. The generated trajectories are then evaluated for physical fea-

sibility.

Closed-loop prediction.
Repropagation from the current states.
Example of the 2D Gaussian sampling.
Location of samples when the car is located in a lane.
Location of samples when the car is located in an intersection.

Location of samples when the car is located in a parking lot.

11

18
21

23

24
25
26
28

33

37
40

o6
59
61
62
63
64

4-8 Sampling biases during a U-turn maneuver.

4-9 Snapshot of the cost map.

5-1 Planning and control system architecture.
5-2 Robust RRT algorithm planning in a full parking lot. Figures show
the evolution of the tree as Talos drives towards the parking lot exit.
5-3 Path length distribution while planning in a full parking lot.
5-4 Robust RRT algorithm planning a U-turn maneuver.
5-5 Talos went around a rectangular track four times, passing stationary
vehicles and performing a U-turn.
5-6 The obstacle avoidance scenario used to evaluate the length of paths
for different initial conditions.
5-7 Planning through a dense obstacle field with an initial condition cor-
responding to far left and 0°.o
5-8 Planning through a dense obstacle field with an initial condition cor-
responding to far left and 0°..o
5-9 Distribution of path lengths for the initial conditions corresponding to
farleft and 0°.
5-10 Planning through a dense obstacle field with an initial condition cor-
responding to far left and 90°.o
5-11 Planning through a dense obstacle field with an initial condition cor-
responding to far left and 90°.o o000
5-12 Distribution of path lengths for the initial conditions corresponding to
far left and 90°.o
5-13 Planning through a dense obstacle field with an initial condition cor-
responding to far left and 270°.o
5-14 Planning through a dense obstacle field with an initial condition cor-
responding to far left and 270°.
5-15 Distribution of path lengths for the initial conditions corresponding to
far left and 270°. L
5-16 Planning through a dense obstacle field with an initial condition cor-
responding to far top and facing the goal.
5-17 Planning through a dense obstacle field with an initial condition cor-
responding to far top and facing the goal.
5-18 Distribution of path lengths for the initial conditions corresponding to

far top and facing the goal.

12

94

95

98

99

100

102

103

104

106

107

108

110

5-19 Planning through a dense obstacle field with hazard weight set to w = 0

and an initial condition corresponding to far left and 0°. 114
5-20 Planning through a dense obstacle field with hazard weight set tow = 0

and an initial condition corresponding to far left and 0°. 115
5-21 Distribution of path lengths for different values of the hazard weight

w and initial conditions corresponding to far left and 0°. 116
5-22 Planning in a narrow passage scenario with entrance segment set to

10m. e e 118
5-23 Planning in a narrow passage scenario with entrance segment set to

I5m. . o e 119
5-24 Planning in a narrow passage scenario with entrance segment set to

20m. . .. e 120
5-25 Success rate of the algorithm for a narrow passage with varying length

of the entrance segment into the passsage. 121
5-26 Planning in a dead end scenario with dead end width set to 50 m. . . 123
5-27 Planning in a dead end scenario with dead end width set to 50 m. . . 124
5-28 Planning in a dead end scenario with dead end width set to 75 m. . . 125
5-29 Planning in a dead end scenario with dead end width set to 75 m. . . 126

5-30 Planning in a dead end scenario with dead end width set to 100 m. . 127
5-31 Planning in a dead end scenario with dead end width set to 100 m. . 128
5-32 Success rate of the algorithm for the dead end scenario for widths of

0m,7m,and 100 m. 129
5-33 Talos parking inside the dirt zone during the third run of the Area B

test. ..o, 132
9-34 Talos performing a U-turn at the second blockage during the third run

ofthe Area Btest. 133
9-35 Talos performing a U-turn at the second blockage during the third run

ofthe AreaBtest. 134
5-36 Motion planner planning along a lane. 135
5-37 Talos interacts with Virginia Tech’s Odin at an intersection. 137
9-38 Talos successfully avoids Odin. 138
9-39 Talos successfully brakes in front of an unexpected gate in the middle

oftheroad. 140
5-40 Talos successfully brakes in front of an unexpected gate in the middle

oftheroad. 141
9-41 First interaction with CarOLO’s Caroline. 143

13

5-42 First interaction with CarOLO’s Caroline 144

5-43 Reaction of the motion planner to Caroline’s cutting across showing

views from the front-center camera in Talos’ roof. 145
5-44 Talos approaches Caroline in a zone. 148
5-45 Caroline chokes Talos against a fence inside the zone. 149
5-46 Caroline and Talos make contact in a minor collision. 150
5-47 Talos tries to pass Skynet’s chase car as it was moving slowly. 153

5-48 Having passed the chase car, Talos embarks to also pass a stopped
Skynet when it starts moving.o 154
5-49 Skynet is regarded as a static obstacle and Talos tries to merge back
but both cars collide. 155

14

List of Tables

1.1 UCE timing summary.

4.1 Land Rover LR3 characteristical constants

15

16

Chapter 1

Introduction

1.1 What Is an Autonomous Automobile?

An autonomous automobile is an automobile (or car) that drives entirely on its own
with no human driver and no remote control. Various sensors are used to form a repre-
sentation of the surrounding environment and various positioning systems determine
the precise location of the car in that environment. This information is then used by
the artificial intelligence module of the car to create a series of efficient commands
that drive the car safely through a course that reaches the desired destination.
Some developers of autonomous cars are also starting to focus on minimizing
the number of sensors used and concealing them in strategic places of the car. The
objective sought is to create a robotic car with a shape that is practically unmodified
from that of the original production car used as a platform. Beyond the aesthetics, the
aerodynamic performance of the vehicle can be seriously compromised by numerous
protuberances breaking the streamline of the original vehicle. As an example of
the progress that has already been made in this direction consider LUX, shown in
Figure 1-1, Team LUX’s entry for the DARPA Urban Challenge competition [56].
This car can drive autonomously, but it looks like a regular production Volkswagen

Passat.

17

Figure 1-1: LUX is capable of autonomous driving yet it looks like a regular produc-
tion VW Passat.

1.2 Why Develop Autonomous Automobiles?

First, autonomous automobiles have the potential to significantly decrease the num-
ber of road accidents and therefore increase passenger and pedestrian safety. Second,
autonomous automobiles, when coupled with an automated routing system, can re-
duce traffic congestion particularly on highways. Third, some of the technologies can
be implemented in today’s manned cars in the form of driver assistance systems to
aid the driver in preventing imminent collisions. Fourth, the technology can also be
easily adapted to other vehicles with major opportunities for positive impact in three
main areas: farming, mining, and construction [29, 60].

The vast majority of road accidents are due to human error, with less than 10%
caused by vehicle defects [71]. Every year, about 1.2 million people die in traffic acci-
dents worldwide [11]. In the United States, for 2005, there were nearly 6,420,000 car
accidents, 2.9 million human injuries, and 42,636 fatalities. The financial cost of these
crashes totalled more than $230 billion dollars [11, 24]. In the European Union dur-
ing 2000, road accidents killed over 40,000 people and injured more than 1.7 million.
The direct measurable cost of road accidents is on the order of €45 billion. Indirect
costs are three to four times higher. The annual figure is estimated at €160 billion,
equivalent to 2% of the EU’s GNP [71].

Autonomous cars have certain capabilities that human drivers lack, such as being

18

able to “see” in the dark and through dense fog. Autonomous cars could also bring
other benefits to society in addition to increased safety. They could transport anyone
who is not able to drive, such as geriatric grandparents, schoolchildren, or intoxicated
teenagers. They could turn commutes into productive time, because all of the vehicles’
passengers could now sit back and catch up on work or relax while the robot drives
toward the desired destination.

Autonomous cars could follow closely behind other cars in highways without com-
promising safety and thus increase the number of vehicles per unit area. In order to
make this possible, cars need to be able to realize the intentions of the car in front
with minimal delay. Developing cars that automatically follow each other at preset
small distances will make better use of highway space and reduce traffic congestion.
Most luxury car manufacturers have already developed primitive versions of such
technologies in the form of adaptive cruise control, which uses radar and laser sensors
to maintain a minimum distance from leading cars.

Autonomous cars use a variety of radar, laser scanners, and cameras to detect
the edges of the road and other cars. Those technologies are already applied by
companies like Cognex and Mobileye to make trucks safer. Lane departure warning
systems detect highway lane lines and set off an alarm when a driver begins to weave
sleepily over lanes. Sensor manufacturers including Germany’s SICK and IBEO, along
with car makers like GM, are working on similar sensors for consumer cars to detect
pedestrians or other vehicles and automatically stop or slow down the vehicle before
a collision can occur.

Repetitive off-road tasks like farming, lacking some of the complexities inherent
to urban driving, have already benefitted from automation. Tractor driving, for
example, does not involve recognizing different road shapes and widths, nor does it
involve avoiding other cars and obstacles. As a result, autonomous tractor-driving
technologies have existed for years. Trimble sells a device called EZ-Steer [72] that
attaches to a tractor’s steering wheel and automatically guides its path to within
eight inches.

Caterpillar’s bulldozers use some of the world’s most advanced applications of

19

robotic car’s technology. One feature, called AccuGrade [32], outfits a bulldozer
with GPS and fits laser sensors onto its blade. Using a 3D model of the construction
surface, the tractor gains a sense of where dirt should be added or removed. The driver
simply moves the vehicle back and forth, and the bulldozer’s blade automatically
guides itself up and down to create a perfectly flat surface.

Although autonomous farming and construction vehicles seem to be sufficiently
mature to be fielded in real applications today, autonomous cars are still far from be-
ing commercialized mainly because of the much harder problem at hand. An urban
environment is dynamic and uncertain, and accounting for moving obstacles where
their intentions are not well known is an extremely hard problem. The need for
autonomous vehicles, however, is considerable, particularly from the military. To cat-
alyze research and development of autonomous urban vehicle technology, the Defense
Advanced Research Projects Agency (DARPA) created the DARPA Urban Challenge
(DUC) competition. MIT, enticed by the challenge posed by the autonomous urban
driving problem, formed a team of faculty and students and entered the competition.

The DUC is presented in some detail next.

1.3 The DARPA Urban Challenge

The DARPA Urban Challenge was an autonomous vehicle research and development
program organized by the Defense Advanced Research Projects Agency (DARPA),
which is the central research and development organization for the Department of
Defense (DoD). The goal of the program was to develop technologies that will keep
warfighters safe off the battlefield and allow human resources to be used more effec-
tively. In the National Defense Authorization Act for Fiscal Year 2001, Public Law
106-398, Congress mandated in Section 220 that “It shall be a goal of the Armed
Forces to achieve the fielding of unmanned, remotely controlled technology such
that... by 2015, one-third of the operational ground combat vehicles are unmanned.”
DARPA conducts the Urban Challenge program in support of this Congressional
mandate [18]. Hopefully the previous section laid clearly that the application of this

20

Figure 1-2: MIT’s Talos driving in DARPAtown.

technology to civilian vehicles will have similar pervasive repercussions, particularly
at improving safety on the roads.

The program was an outgrowth of two previous DARPA Grand Challenge au-
tonomous vehicle competitions. The first Grand Challenge event was held in March
2004 and featured a 142-mile desert course. Fifteen autonomous ground vehicles
attempted the course with none finishing. In the 2005 Grand Challenge, four au-
tonomous vehicles successfully completed a 132-mile desert route under the required
10-hour limit, and DARPA awarded a $2 million prize to “Stanley” from Stanford
University.

The Urban Challenge Final Event (UCE) was held on November 3, 2007, at the
former George Air Force Base in Victorville, California. The competition required
teams to build an autonomous vehicle to drive through a simulated suburbia called
“DARPAtown”. The robots had to be capable of driving in traffic, perform complex

maneuvers such as merging, passing, parking, and negotiating intersections, while

21

executing a military supply mission. The course was approximately 60 miles long
(100 km) and the robots had to traverse it in less than 6 hours (therefore having to
achieve an average speed of 10 mph). This event was truly ground-breaking as it
constituted the first time that autonomous vehicles interacted with both manned and
unmanned vehicle traffic in an urban environment [18, 30, 31, 57].

Teams from around the world were whittled down through a series of qualifying
steps, beginning with technical papers and videos, and then advancing to actual
vehicle testing at team sites. Of the 89 teams to initially apply, 35 teams were invited
to the National Qualification Event (NQE), a rigorous eight-day vehicle testing period.
The NQE was co-located with the UCE in Victorville. DARPA offered $2 million for
the fastest vehicle to complete the given mission, and $1 million and $500,000 for

second and third place.

1.3.1 National Qualification Event

The NQE for the Urban Challenge was divided into three separate test areas, each
with its own distinct characteristics and set of challenges. These test areas were
simply called Area A, Area B, and Area C [18].

Test Area A featured a tight, circulating course with two T-shaped intersections
and tested robots on their ability to safely merge into and out of two-way traffic with
very fluid flow. The final score on the test was computed based on the number of laps
around the circuit that the robot completed as well as how safe the robot behavior
was while merging into traffic. Amazingly, in eight days of testing, only one traffic
vehicle was actually struck by a robotic vehicle.

Test area B featured a 2.8-mile meandering course that tested robots mainly on
their ability to stay within a lane while driving and on their ability to park in a tight
parking spot. One section, affectionately termed “The Gauntlet”, required the robots
to delicately maneuver through a series of parallel parked cars and road obstacles. The
parking test required the robots to find an assigned parking spot between adjacent
parked cars, then safely pull into and back out of the spot before proceeding on its

mission.

22

Bt T S
ikt e e———

Figure 1-3: Austin Robot Technology’s Marvin the Land Robot waiting to merge into
traffic at one of the two T intersections in Area A.

Test Area C was divided into two different halves. The course consisted of a series
of four-way stop intersections and in the second half various road blocks were added
along the course. For the first half, each intersection presented its own arrangement
of traffic and the robots were tested on their ability to negotiate these intersections.
Robots had to recognize the other vehicles, determine the order of precedence, and
then safely proceed through the intersection when it was their turn. For the second
half of the Area C test, various road blocks were emplaced and the robots were tested
on their ability to recognize the road block, execute a U-turn, and dynamically replan

a new route to complete their mission.

1.3.2 Final Event

After tallying all of the NQE scores, DARPA announced on November 1, 2007, that 11

teams would be competing in the UCE. And so at 7 am on November 3, one by one, all

23

Figure 1-4: Team Autonomous Solutions’ Ted driving along an S-shaped road in Area
B.

11 finalist robots were released from their starting chutes, followed by a chase vehicle
equipped with an emergency stop control. Thirty manned traffic vehicles were also
released onto the course to increase traffic density. This fleet of Ford Tauruses were
retrofitted with safety cages, race seats, fire systems, radios and tracking systems,
and were driven by professional drivers. In all, over 50 vehicles, both manned and
unmanned, were driving through DARPAtown simultaneously during the final event.

The course for the final event was communicated to the teams in the form of two
files, analogous to a map and a specific mission. The technical names for these two
files were Route Network Definition File (RNDF) and Mission Definition File (MDF),
respectively. The RNDF consisted mainly of a list of waypoints in GPS coordinates
describing a specific course, while the MDF consisted mainly of an ordered list of
checkpoints that the vehicle had to visit along with speed limits for each section.
Upon announcing the finalist selections on November 1, teams were given the RNDF

of the final course. However, each team did not receive their MDF until five minutes

24

Figure 1-5: Team Jefferson’s Tommy Jr. at a busy intersection in Area C.

before they launched on race day. With this approach, the teams had no a priori
knowledge of their missions, creating a truly autonomous driving test.

After strong starts by all the finalists, by mid-morning almost half of the robots
had been removed from the race for a variety of reasons. Terramax went awry in
a parking lot and was stopped moments before crashing against the old commissary
building. Team UCF pulled off the road and into a carport and was therefore removed
from the race by officials. Despite these problems, six teams emerged as strong
contenders as they executed their missions, with CMU and Stanford apparently taking
the lead. At 1:43 pm, Stanford’s “Junior” crossed the finish line first with a run-
time of just over four hours. A minute later CMU’s “Boss” crossed the finish line.
Eventually, six robots would cross the finish line and complete the race.

The final event was not just a timed race, however, and robots were also being
judged on their ability to follow California driving rules. DARPA officials analyzed

collected data throughout the night, examining each team’s infractions and elapsed

25

Figure 1-6: Talos driving along a two-way road during the Final Event.

run times. At the awards ceremony the next morning, DARPA announced the winning
order. Boss from Carnegie-Mellon University took first place and the $2 million,
Junior from Stanford University took second place and $1 million, and Odin from
Virginia Tech took third place and $500,000. After a substantial time correction to
account for an error in the specification of the MDF, Talos, MIT’s autonomous Land
Rover LR3, placed fourth (fifth to cross the finish line). The precise timings for each
of the six finishers and showing MIT’s fourth place were officially released by DARPA
and are reproduced in Table 1.1.

Note that the Urban Challenge was the first time that MIT participated in a
DARPA Grand Challenge. MIT was among the eleven teams selected to receive $1
million from DARPA for technology development. When the Urban Challenge kicked
off, DARPA announced an opportunity for teams to receive funding in amounts up
to $1 million to develop their autonomous vehicle. Sixty-five proposals were reviewed

and evaluated, and 11 recipients were announced, among them being MIT.

26

Table 1.1: UCE timing summary.

Team Wall Clock E-Stop Adjusted
Tartan Racing 5:17:22 3:52:09 4:10:20
Stanford Racing 5:36:54 4:04:16 4:29:28
Victor Tango 5:46:15 4:09:22 4:36:38
MIT 7:24:02 5:38:21 5:33:50
Ben Franklin Racing 6:41:30 5:11:48 5:41:32
Cornell 7:21:48 5:55:32 6:23:34

1.4 Thesis Structure

Developing a robotic vehicle that could complete the DUC was a major systems en-
gineering effort. It required the development and integration of state-of-the-art tech-
nologies in perception, planning, and control [35]. The overall system architecture
for MIT’s vehicle, a modified Land Rover LR3 named Talos, appears in Figure 1-
7. It comprises 10 different subsystems for which a report can be found in [52]. The
primary focus of this thesis is on the algorithmic and computational issues of the plan-
ning problem associated with the Urban Challenge. The design and implementation
aspects of the motion planner used in Talos will be thoroughly described.

This thesis presents a new incremental sampling and searching motion planning
algorithm based on Rapidly-exploring Random Trees (RRTs), called Robust RRT,
which is designed specifically for motion planning under differential constraints in
a cluttered environment. Robust RRT enables the on-line use of RRTs on robotic
vehicles with complex, unstable dynamics and significant drift, while preserving safety
in the face of uncertainty and limited sensing. This algorithm was implemented as

the motion-planning system for Talos. This thesis has the following structure:

e Chapter 2 presents the fundamentals of motion planning and gives an overview

of the relevant theoretical background.

e Chapter 3 reviews existing motion planning approaches and discusses their ap-

plicability for planning in an urban environment.

2t

Perception Sensors

=) o]
b =

—

Navigator

7l N

Motion

Planner 7 SICK
|

Controller Velodyne

ol Radars

Drivability Map k

IMU, GPS,
Odometry

Figure 1-7: Talos system architecture with motion planner module highlighted.

e Chapter 4 presents our main contribution, Robust RRT, which is a new sampling-
based motion planning algorithm specifically designed for planning in dynamic,

uncertain, and cluttered environments.

e Chapter 5 evaluates the performance of the Robust RRT algorithm on both real
and simulated data sets. The real data set corresponds to MIT’s autonomous

car as it drives during the DARPA Urban Challenge.

e Chapter 6 concludes with a summary of the algorithm presented and outlines

further extensions that could be implemented in the future.

28

Chapter 2

Motion Planning

In robotics, motion planning addresses the development of algorithms that convert
high-level specifications of tasks for a machine into low-level descriptions of how the
machine should move to accomplish those tasks. The motion planning problem is to
find a path from one configuration to another in a continuous state space. This thesis
tackles the motion planning problem from a control theory perspective. In control
theory and therefore in this thesis, the motion planning problem is solved by con-
structing inputs to a (generally nonlinear) dynamical system, which drive the system
from an initial state to a specified goal state. This chapter elaborates mathematically
the motion planning problem and introduces the technical background needed to un-
derstand the material presented in subsequent chapters. The material in this chapter

is based on that presented in [48].

2.1 Basic Ingredients of Planning

There are several ingredients that arise throughout virtually all of the topics covered
as part of planning [48]. These ingredients are presented in this section in the context

of motion planning for urban driving.

State Each distinct situation for the world that could arise is called a state and the

set of all possible states is called a state space. The state space of interest is a

29

continuous space. The state represents the position P = (z,y), orientation 6,

and speed v of the vehicle.

Time The planning problem involves a sequence of decisions that must be applied
over time. The problem is driving a car as quickly as possible through an

obstacle course and therefore time is explicitly modeled.

Actions The plan generates actions, as commonly called in artificial intelligence,
or inputs, as commonly called in control theory, that manipulate the state.
We specify how the state changes when actions are applied by an ordinary
differential equation. Explicit reference to time is avoided by directly specifying
a path through a continuous state space. Such paths are obtained by integrating

the differential equations.

Initial and goal states The planning problem involves starting in some initial state
and trying to arrive at a specified goal state. The actions are selected in a way

that aims to achieve this goal.

A criterion The criterion encodes the desired outcome of a plan in terms of the
state and actions that are executed. There are generally two types of planning

concerns based on the type of criterion:

Feasibility Find a plan that causes arrival at the goal state, regardless of its
efficiency.
Optimality Find a feasible plan that optimizes performance in some carefully

specified manner, in addition to arriving at the goal state.

A plan In general, a plan imposes a specific strategy or behavior on a decision maker.

The plan specifies a sequence of actions for the vehicle to execute.

2.2 The Configuration Space

For the purposes of planning it is important to define the state space. The state space

for motion planning is a set of possible transformations that could be applied to the

30

robot. In the context of planning, the state space is referred to as the configuration
space and its name is often shortened to C-space [48]. Having presented this concept,
we simply restrict ourselves to presenting two topological definitions that will later
be used in the thesis. The concepts to be presented are topological graphs and the

swath of a graph.

Definition 2.2.1 (Topological graph). Let X be a topological space. A topological
graph is a graph for which every vertex corresponds to a point in X and every edge

corresponds to a continuous, injective function 7 : [0,1] — X.

The image of 7 connects the points in X that correspond to the vertices of the
edge. The images of different edge functions are not allowed to intersect except at

the vertices.

Definition 2.2.2 (Swath of a graph). Let X be a topological space, G(V, E) a topo-
logical graph. The swath S of the graph is defined as

S =[Je([0,1]), (2.1)

ecE
where ¢([0, 1]) C X is the image of the path e.

The swath indicates the set of all points reached by the graph.

2.3 Algorithmic Considerations

2.3.1 Algorithm Completeness

The notion of completeness determines whether an algorithm guarantees finding a
- solution to a problem instance if that solution exists. There are three different levels
of completeness: completeness, resolution completeness, and probabilistic complete-
ness [48]. An algorithm is considered complete if, for any problem instance, it termi-
nates in finite time, and either finds a solution, or correctly reports that no solution

exists. It is assumed that the problem instance lies within the space of problems for

31

which the algorithm is designed. An algorithm is resolution complete if the algorithm
is complete for certain values of a scalar parameter describing the algorithm behavior
(e.g., if the resolution is high enough). These values may depend on the instance of
the problem. An algorithm is probabilistically complete if the probability that it finds

an existing solution converges to one as the number of iterations increases.

2.4 The Motion Planning Problem

This section describes the environment with obstacles and defines the basic motion

planning problem in that environment.

2.4.1 Obstacle Region for a Rigid Body

Suppose that the two-dimensional world W = R? contains an obstacle region @ C W
and that a rigid robot A C W is defined. Assume that both A and O are expressed
as semi-algebraic models. Let C denote the configuration space and g € C a particular
configuration of A, where q = (24, y:, 6) [48].

The obstacle region Cops C C is defined as the set of all configurations ¢ at which

the transformed robot .A(g) intersects the obstacle region O,
Cobs = {q ecC | ‘A(q) no 75 @} (22)

Since O and .A(q) are closed sets in W, the obstacle region is a closed set in C.

The configurations outside Cos define the free space Cgyee,
Cf'ree =C - Cobs- (23)

Since C is a topological space and Cys is a closed set, Cfre. must be an open set. This
implies that the robot can come arbitrarily close to the obstacles while remaining in

Cfree- If, however, the robot “touches” an obstacle, then that configuration results in

32

Figure 2-1: The motion planning problem is to find a path from g; to g¢ in Cyree.
The entire region represents the configuration space C = Cypee U Cops.

a collision. Mathematically, even if only the boundaries of A and C intersect,

int(O) Nint(A(g)) =0 (2.4)
ONAg) #9, (2.5)

then g € Cops (in the equation above, int means the interior of the set).

The idea of getting arbitrarily close to obstacles allows for a clean formulation of
the motion planning problem, even though this idea might be irrelevant for practical
applications. It is important to note that because Cy,.. is open it is impossible to
formulate some optimization problems such as finding the shortest path, and the

closure cl(Cyree) should be used instead [48, Section 7.7].

33

2.4.2 Basic Motion Planning

The basic motion planning problem is to provide a path that goes from an initial
configuration to a goal configuration while avoding obstacles in the environment [48].
It is conceptually illustrated in Figure 2-1. The basic motion planning problem has

the following components:
Formulation 2.4.1 (The Piano Mover’s Problem).
1. A world W in which either W = R? or W = R3.
2. A semi-algebraic obstacle region O C W in the world.

3. A semi-algebraic robot defined in W. It may be a rigid robot A or a collection
of m links A;, Ay, ..., An.

4. The configuration space C determined by specifying the set of all possible trans-
formations that may be applied to the robot. From this, Css and Cyre are

derived.

5. An initial configuration q; € Cyree.

[}

. A goal configuration qc € Cyree.

The initial and goal configurations together are often called a query pair or simply
query and designated as (g7, ¢g). The motion planning problem can then be defined

mathematically as follows:

Definition 2.4.2 (Planning in continuous state spaces). A planning algorithm must

compute a continuous path 7 : [0, 1] — Cfree such that 7(0) = g7 and 7(1) = ¢g.

The main difficulty of the problem is that it is neither straightforward nor efficient
to construct an explicit boundary or solid representation of either Cysyee or Cops. It
was shown by Reif [59] that this problem is PSPACE-hard, which implies NP-hard.
As a result, algorithms that solve the problem efficiently but not optimally might be

sought in order to render its solution tractable.

34

Chapter 3

Existing Approaches for Motion

Planning

There are many algorithms available for solving the motion planning problem in
continuous state spaces defined in Definition 2.4.2. All of these approaches, how-
ever, belong to either of two main categories: combinatorial motion planning and
sampling-based motion planning [46, 48]. This chapter introduces combinatorial and
sampling-based motion planning, presents the main algorithms available within each
category, and mentions some of the advantages, disadvantages, and shortcomings of
these algorithms for solving the urban motion planning problem to be formally stated

in Problem 4.1.1.

3.1 Combinatorial Motion Planning

Combinatorial approaches to motion planning find paths through the continuous C-
space without resorting to approximations [48]. Due to this property, combinatorial
approaches are alternatively referred to as exact algorithms. To solve queries virtu-
ally all combinatorial motion planning approaches construct a roadmap. A roadmap
provides a discrete representation of the continuous motion planning problem with-
out losing any of the original connectivity information required to solve it. A query

(g1,9¢) is solved by connecting each query point to the roadmap and then performing

35

a discrete graph search on G. Some of the algorithms first construct a cell decomposi-
tion of Cfye. from which the roadmap is consequently derived, whereas other methods
directly construct a roadmap without the consideration of cells.

Let G be a topological graph that maps into Cy.. and let S C Cy,e bet the swath
of the graph. Then a roadmap can be defined as follows [48].

Definition 3.1.1 (Roadmap). A graph G is called a roadmap if it satisfies the fol-

lowing two important properties:

Accessibility From any ¢ € Cy,.. it is simple and efficient to compute a path 7 :
[0,1] — Cjree such that 7(0) = ¢ and 7(1) = s, in which s may be any point in
S, the swath of the graph. Usually, s is the closest point to ¢, assuming C is a

metric space.

Connectivity-preserving Using the first condition, it is always possible to connect
some ¢; and gg to some s; and sy, respectively, in S. The second condition
requires that if there exists a path 7 : [0,1] — S such that 7(0) = ¢, and
7(1) = q¢ then there also exists a path 7/ : [0,1] — S such that 7/(0) = s
and 7/(1) = sy. Thus, solutions are not missed because G fails to capture the

connectivity of Cyree.

By satisfying these properties a roadmap ensures that the algorithm is complete.
The first condition ensures that any query can be connected to G and the second
condition ensures that the search always succeeds if a solution exists. Notice that
connectivity-preserving ensures that complete algorithms are developed.

When studying combinatorial motion planning algorithms, it is important to care-
fully consider the definition of the input. The specification of possible inputs defines
a set of problem instances on which the algorithm will operate. If the instances have
low dimensionality and convexity, then the combinatorial algorithm may provide an
elegant and practical solution. If the set of instances is too broad, then a require-
ment of both completeness and practical solutions may be unreasoble. Many general

formulations of general motion planning problems are PSPACE-hard (which implies

36

collision

p

| geometric models
algorithm

detection

performs

discrete searching C-space sampling

Figure 3-1: The sampling-based planning philosophy uses collision detection as a
"black box”. In this way, it separates motion planning from the particular geometric
and kinematic models. C-space sampling and discrete searching are performed.

NP-hard), and therefore such a hope appears unattainable. Representing the environ-
ment in an appropriate way is one of the maincomplications in combinatorial motion
planning. Nevertheless, there exist general, complete motion planning algorithms.
Early papers appear in [62]. The classical motion planning textbook of Latombe [45]
covers most of the methods in combinatorial planning. An excellent reference for ma-

terial on computational geometry is the book [19].

3.2 Sampling-based Motion Planning

Sampling-based approaches to motion planning conduct a search that probes the con-
tinuous C-space with a sampling scheme in order to avoid the explicit construction
of Cpps. The idea is outlined in Figure 3-1 [48]. Probing of the C-space is enabled
by a collision detection module, which the motion planning algorithm considers as
a “black box”. This enables the development of planning algorithms that are inde-
pendent of the particular geometric models. The collision detection module handles
concerns such as whether the models are semi-algebraic sets, 3D triangles, nonconvex
polyhedra, and so on.

This general philosophy has been very successful in recent years for solving prob-
lems that involve thousands and even millions of geometric primitives in such diverse

areas as robotics, manufacturing, and biological applications. Such problems would

37

be practically impossible to solve using techniques that implicitly represent Cn,. The
incremental sampling and searching framework features two main planning methods,
the Probabilistic Roadmap and the Rapidly-exploring Random Tree.

The Probabilistic RoadMap (PRM) offers several possible routes and therefore
deals well with wide open spaces. It circumvents the computational complexity of
deterministic, complete algorithms. The PRM approach was first introduced as a
fast and efficient algorithm for geometric, multiple-query motion planning [41]. The
original PRM planner is based on an off-line preprocessing phase and an on-line query
phase. The preprocessing phase is aimed at constructing a graph of feasible paths in
the entire configuration space (the roadmap), which would make future queries easy
to solve. The on-line query phase selects a suitable path from the already computed
roadmap, together with the computation of two paths to connect starting and ending
points to the closest nodes of the roadmap. The PRM algorithm is probabilistically
complete. Moreover, performance bounds have been derived as a function of the
expansiveness of the environment, meaning the growth rate of the set of points that
can be connected to the roadmap with respect to the number of nodes. These bounds
prove that the probability of correct termination approaches one exponentially fast
in the number of nodes.

For many motion planning applications, such as when dealing with a dynamic
and rapidly changing environment, building a roadmap a priori may not be feasible.
Another sampling-based motion-planning approach, called Rapidly-exploring Random
Tree (RRT) addresses this shortcoming. RRTs were introduced in [47, 50]. Many
variants of RRT's have been developed and used in several applications [6, 9, 10, 12, 13,
15, 20, 40, 54, 55, 65, 66, 69, 73, 74]. In particular, in autonomous vehicles [25, 42, 53],
humanoid robots [38, 39], and computer animation [28]. The RRT approach builds a
tree of feasible trajectories on-line by extending branches towards randomly generated
goal points, for é subsequent query phase. Although in the PRM approach the idea
was to explore the configuration space exhaustively in the preprocessing phase, the
RRT algorithm tends to achieve fast and efficient single-query planning by exploring
the environment as little as possible. Although most of the applications of RRT

38

to date have been for ordinary motion planning, they were originally developed for
planning under differential constraints and are therefore suitable for solving the urban

driving problem.

3.3 Approaches Used in the DARPA Grand Chal-
lenge

The DARPA Grand Challenge (DGC) was the predecessor of the DARPA Urban
Challenge and its goal was to develop autonomous vehicles capable of traversing
unrehearsed off-road terrain [17]. The DGC was arguably a simpler and easier version
of the DUC. Nonetheless, they share similarities in many aspects. Consequently, a
study of the approaches that some of the teams used to tackle the motion planning
problem during the DGC might give some insight on how the DUC planning problem
could be tackled.

The first DGC competition carried a prize of $1 million and took place on March
13, 2004. It required the robots to navigate a 142-mile long course through the Mojave
desert in no more than 10 hours. 107 teams registered and 15 raced, but none of the
participating robots navigated more than 5% of the entire course. The competition
was repeated on October 8, 2005, with an increased prize of $2 million. This time 195
teams registered, 23 raced, and 5 finished, with Stanford University’s robot “Stanley”
finishing the race in 6 hrs, 53 mins, and 58 s and winning the DGC. Figure 3-2 shows
Stanley just before traversing the “Beer Bottle” pass.

Teams were required to build an autonomous ground vehicle capable of traversing a
desert course up to 175 miles long in less than 10 hours. The first robot to complete the
course in under the time limit would win the competition and earn the $2 million prize.
Both the 2004 and 2005 races were held in the Mojave desert in the southwest United
States. The 2004 course started in Barstow, CA, approximately 100 miles northeast
of Los Angeles and finished in Primm, NV, approximately 30 miles southwest of Las

Vegas. The 2005 course both started and finished in Primm, NV. The course terrain

39

Figure 3-2: Stanley, Stanford’s robot that won the 2005 DARPA Grand Challenge.

varied from high-quality graded dirt roads to winding rocky mountain passes with
only a small fraction of each course featuring paved roads. Absolutely no manual
intervention was allowed during the race.

The specific race course was kept concealed from all teams until 2 hours before the
race. At this time, each team was given a description of the course on CD-ROM in
a DARPA-defined Route Definition Data Format (RDDF). The RDDF was a list of
2,935 waypoints in longitude and latitude coordinates defining the course, each also
associated with a corridor width and a speed limit. The width of the race corridor
generally tracked the width of the road and varied between 3 and 30 m. The speed
limits varied between 5 and 50 mph. The RDDF defined the approximate route that
robots would take and therefore no global path planning was required. The robots
all competed on the same course at the same time, starting one after another at 5-
minute intervals. However, when a faster robot was going to overtake a slower robot,
the slower robot would be stopped and passing would occur as if the slower robot

were a static obstacle. As a result, the race was primarily a test of high-speed road

40

finding, and static obstacle detection and avoidance in desert terrain.

The focus in this section is on the DGC 2005 because it is assumed that every
team improved or at least did not downgrade the capability of the motion plan-
ning algorithms used during the DGC 2004. In the next subsections, the planning
approaches for Stanford University, Carnegie Mellon Universiy (CMU), and the Cal-
ifornia Institute of Technology (Caltech) tearﬁs are briefly presented. These three
teams were chosen over others due to a combination of performance obtained during
the DGC, uniqueness of their approach, and prestige of the researchers involved in
‘the teams. For more information on the approaches of these and the other teams that

participated in the DGC 2005, please refer to [33, 34].

3.3.1 Offline Smoothing plus Online Search of 2D Space of

Maneuvers

The motion planner for Stanley, Stanford’s robot that won the 2005 DGC, was based
on the search of a 2D space of maneuvers that spanned the course corridor [68].
Stanley’s motion planner software consisted of two parts: the path smoother, which
generated the base trajectory before the race, and the online path planner, which was
responsible for determining the actual trajectory of the vehicle during the race. The
motion planner was formulated in a perpendicular distance or “lateral offset” to a
fixed base trajectory coordinate system. The base trajectory that defines the lateral
offset was simply a smoothed version of the skeleton derived from the official race
corridor data. Varying the lateral offset generated paths to the left or right of the base
trajectory that could be chosen to avoid obstacles along the course. A description of
the path smoother is not relevant for comparing different motion planning approaches.
Therefore, here it is simply mentioned that the path smoother computed the base
trajectory before the race in a four-stage procedure involving optimization and cubic
spline interpolation. Stanley’s online path planner is described next.

The online path planner was implemented as a search algorithm that minimized

a linear combination of continuous cost functions subject to a fixed vehicle model.

41

The cost functions penalized running over obstacles, leaving the course corridor, and
the lateral offset from the current trajectory to the sensed center of the road sur-
face. The soft constraints induced a ranking of admissible trajectories and the best
such trajectory was chosen for tracking. At every time step, the planner considered
trajectories drawn from a 2D space of maneuvers. The first dimension described the
amount, of lateral offset to be added to the current trajectory, allowing the vehicle to
move left and right while still staying essentially parallel to the base trajectory. The
second dimension described the rate at which the vehicle would attempt to change to
this lateral offset and controlled the urgency of obstacle avoidance. This change in
lateral offset spanned the spectrum of maneuvers appropriate for high-speed obstacle
avoidance. There were trajectories that featured fast changes for avoiding head-on
obstacles and trajectories with slow changes for smoothly tracking the road center.
All candidate paths were run through the vehicle model to ensure they obeyed the
kinematic and dynamic vehicle constraints. The motion planner process was executed

at 10 Hz.

3.3.2 Manual Preprocessing plus Online Conformal Search

CMU presented two robots in the DGC, Sandstorm and Hlghlander, both of which
used the same motion planner based on conformal search [70]. A detailed preplanned
path that was computed manually by improving on the official race corridor data
served as an accurate baseline. The motion planner consisted of two modules, named
geometric planner and speed planner, that adjusted the preplanned path based on
an evaluation of the terrain generated by the perception algorithms. The geometric
planner adjusted the path to avoid obstacles and minimized the cost of traversability
of the terrain that the robot was driving over. The speed planner operated on the
output of the geometric planner and pre-emptively slowed the robot if any sharp turns
resulted as a consequence of avoiding obstacles in the course. The speed planner was
responsible for ensuring that driving speeds were safe. Steering of the vehicle was
accomplished by using a pure-pursuit path tracking algorithm.

The geometric planning algorithm was a deterministic heuristic-based algorithm

42

based on conformal search. A search was constructed relative to the preplanned path
that conformed to the shape of the path and constrained the motion of the vehicle.
The spacing of the graph along the path was varied to increase stability as the speed
increased. The graph was regenerated each cycle and searched using A* to produce an
optimal path given the most recent sensor data. The nodes comprising the solution
were then connected by straight-line segments. In order to remove the sharp turns
that the output path tended to have, a greedy smoothing operator was applied to
the path. The smoothed path was only accepted if it had a cost approximately equal
to the non-smooth path. In most cases the search operated faster than 20 Hz on the
navigation computers but occasionally the search space was too complicated for the
search to be computed within a reasonable amount of time. To prevent lockup, the

search timed out after a 20th of a second returning the best path found at that time.

3.3.3 Receding Horizon Control

A numerical optimization method lied at the core of the planning system for Alice,
the Caltech’s robot for the DGC [16]. The motion planner was based on a Receding
Horizon Control (RHC) framework. A spline based on the skeleton derived from
the official race corridor data was used as the global plan. The RHC solver that
produced the higher-quality plan performed its computation to reach a point on the
lower-quality path a distance set to the range of the sensors of the vehicle.

The optimization problem consisted in trying to find trajectories that are fastest
while keeping the steering and acceleration control effort low. The objective function

used was

J=2S8 lld AO Y 2
-5 [s+ BIGE + Rala(e) P,

where s is the length along the trajectory, Sy is the total length of the trajectory, v is
the scalar speed, € is the yaw (measured from north to east), ¢ is the steering angle,
a is the vehicle acceleration, and k; and k; are tunable parameters representing the
weight of the steering rate and accleration terms. A discrete map that represented a

spatially dependent speed limit constructed from processing geometrical and terrain

43

data of the course corridor was used for obstacle avoidance. This meant that areas
outside of the course corridor and those that lie inside obstacles were not infeasible,
but bear a very low speed limit and are consequently suboptimal. The seeding al-
gorithm used for Alice’s planner consisted of a coarse spatial path selector, planning
several times beyond Alice’s stopping distance. Optimizer convergence speed was a
potential issue, but on Alice’s 2.2 GHz Opteron, an average rate of 4.28 plans/s was

achieved during the race.

3.4 Conclusion on Available Alternatives

Any motion planning algorithm to be used for an autononomous vehicle destined to
the DUC needs to be able to handle the car’s dynamics easily and be able to plan
in an urban environment. Before deciding on which motion planning approach might
be better suited for this application, we proceed to list the main challenges present

in urban driving. These challenges are:
1. the vehicle dynamics are unstable and complex and suffer from substantial drift,

2. the environment is time-varying and uncertain and the sensing capabilities of

the vehicle are limited,

3. the rules of the road impose additional temporal and logical constraints on the

vehicle’s behavior.

Based on the challenges above, none of the motion planning algorithms used in the
2005 DGC are applicable for an urban environment. In the DGC, the environment
was static and rules of the road did not exist. Consequently, a new planning algorithm
needed to be developed for the DUC in such a way that it was capable of handling
all of the three challenges mentioned.

After a careful analysis of the challenges involved in urban driving, we chose to
base the motion planning algorithm dsetined to planning in urban environments on a

sampling-based approach. More specifically, the planning algorithm to be described in

44

Chapter 4 is based on the Rapidly-exploring Random Tree (RRT) concept presented

earlier. The main reasons for this choice were:

1. sampling-based algorithms are applicable to very general and possibly nonlinear,

unstable, and complex dynamical models,

2. sampling-based algorithms plan incrementally, which facilitates their implemen-
tation in real-time, on-line applications, while still retaining certain complete-

ness guarantees,

3. sampling-based algorithms do not require an explicit enumeration of constraints,

but instead allow trajectory-wise checking of possibly very complex constraints.

In spite of their generality, the application of incremental sampling-based motion
planning algorithms to robotic vehicles with complex and unstable dynamics, such
as the full-size Landrover LR3 used by MIT in the DUC, is far from straightforward.
For example, the unstable nature of the vehicle dynamics requires the addition of
a path-tracking control loop whose performance is generally hard to characterize.
Moreover, the momentum of the vehicle at speed must be taken into account, making
it impossible to ensure collision avoidance by point-wise constraint checks. In fact, to
the best of the author’s knowledge, RRT's have never been used in on-line planning
systems for robotic vehicles with the above characteristics, but have been restricted
either to simulation, or to kinematic, essentially driftless robots (i.e., the robot can

be stopped instantaneously by setting the control input to zero).

45

46

Chapter 4

Robust RRT Algorithm

This chapter presents the Robust RRT algorithm, an efficient and reliable sampling-
based motion-planning algorithm based on RRTs. This algorithm enables the online
use of RRTs on robotic vehicles with complex and possibly unstable dynamics and
significant drift, while still preserving safety in the face of uncertainty and limited
sensing capabilities. The sections that follow describe in detail the main features of

the algorithm.

4.1 Motion Planning Framework

Before presenting formally the Robust RRT algorithm, we give an overview of the
dynamical system used as the model and provide a formal formulation of the motion
planning problem that the algorithm will solve. It is important to note, however, that
the Robust RRT algorithm can handle any complex and unstable dynamics and has

great flexibility to operate in any cluttered, dynamic, and uncertain environment.

4.1.1 System Dynamics

This section gives an overview of the interface between the motion planner and the

controllers as implemented in Talos. As a model for the car dynamics, a nonlinear

47

bicycle model was used, as presented below [44].

& = vcos(f) (4.1a)
y = vsin(8) (4.1b)
6 = %tan(é) - Glys(v) (4.1c)
6= Tid(ac —8) (4.1d)
v=a (4.1e)
a= Tia(ac —a) (4.16)
Amin < @ < Gmax (4.1g)
16]] < Simax (4.1h)
18] < Ormas (4.11)

The position z and y are defined at the center of the vehicle’s rear axle, v and a
are the speed and acceleration also at the rear axle, 8 represents the direction of the
car and is the angle between the z-axis of the body frame and the z-axis of the local
frame, 0 is the steering angle, and L is the wheelbase. The inputs to this system are
the steering angle command d. and the longitudinal acceleration command a.. These
inputs go through a first-order lag with time constants T, and T, for the steering and
the acceleration, respectively. The maximum steering angle is given by ... Because
of the particular actuator used in Talos, the steering rate is also limited, and the
maximum slew rate is given by Sma_x. The vehicle has a maximum deceleration am;,
and maximum acceleration a,.x. Values for these constants for the Land Rover LR3
used in the DUC appear in Table 4.1.

The function Ggs(v) in Equation 4.1c models the effect of the side slip. It is
computed as a steady-state gain of the resulting yaw rate 6 when the derivative of

the side-slip angle and the derivative of the yaw rate are both zero [1], and is given

48

Table 4.1: Land Rover LR3 characteristical constants.

Constant Value

L 2.89m

T, 0.05s

T, 0.3s

Grmax 6.0 m/s?

Gmin —1.8m/s?

<?max 0.544 rad

Omax 0.329 rad/s
by

Gaa(v) = ——

1 + (’U/’UCH)2

The parameter vcy is called characteristic velocity [1, 27] and can be determined
experimentally; the value used for Talos was 20 m/s. This side slip model has two
main advantages. First, it does not increase the order of the system and therefore
it does not increase the complexity of performing the model propagation; in other
words, the model behaves the same as the corresponding kinematic model at low
speeds. Second, this side slip model is very simple in that it requires only one tunable
parameter. Moreover, the model is similar to the nonlinear single track model [1] for
the urban driving conditions where extreme maneuvers are avoided and only speeds

up to 35 mph are considered.

4.1.2 Urban Driving Problem Formulation

An urban environment adds several additional complexities to the motion planning
problem. In particular, in addition to the dynamic and physical constraints typical
Qf robot motion planning with obstacles, an urban environment also features rules of
the road, which represent logical constraints on the vehicle’s motion. Furthermore, an
urban environment typically includes other moving vehicles (and pedestrians), which

represent dynamic obstacles moving according to their own control laws and goals,

49

and so there can be a large amount of uncertainty in their motion. Being a cluttered,
dynamic, uncertain environment with logical rules, the number of constraints needed
to fully represent the urban environment might turn out to be excessive. This impor-
tant characteristic was taken into account in the decision to solve the urban driving
problem by using a sampling-based motion planning approach.

Let H = [to,tf] C R be the planning horizon, and w : H — U, t — wu(t) be
a control input signal defined on such horizon; for simplicity, let U = R™, where
m is the number of independent control inputs. Let U be the set of all allowable
control inputs signals, defined, e.g., taking into account control input saturations and
rate saturation constraints. A trajectory for the system, under the control input
u € U, can then be represented as a function = : H — X, ¢t — «(t) satisfying
dz(t)/d(t) = f(x(t),u(t)), where X = R" is the n-dimensional state space and
f: X xU — X is a function describing the (nonlinear) dynamics of the vehicle.
Let X be the set of all trajectories, for all control inputs in . The environmental
constraints on the vehicle, such as avoiding static and dynamic obstacles, as well
as the rules of the road, limit the set of allowable vehicle trajectories further. Let
Xiee © X be the set of all allowable trajectories under such constraints. The urban

driving problem can then be defined as follows:
Problem 4.1.1 (Planning in an urban environment.). Given
e A planning horizon H = [to, ty],
e the current vehicle state xy € X,
e a specification for a set of allowable trajectories Xfee,
e a goal set Xgoa C X,
compute a control input w € U such that the resulting trajectory x has the properties:
® T € Xiree,

[] Ji(to) = Xo,

50

[:B(tf) € Xgoal-

The urban environment is dynamic and uncertain, and therefore the motion plan
must be generated online. Furthermore, to quickly react to sudden changes in the
environment, the planning time must be as short as 0.1 second. This thesis used a
car as the vehicle, but the approach discussed is easily applied to many other types

of vehicles.

4.2 Algorithm Overview

Robust RRT is a sampling-based motion planning algorithm based on the Rapidly-
exploring Random Tree (RRT) concept [49, 51]. The RRT algorithm generates a
tree of dynamically feasible vehicle trajectories by sampling numerous configurations
randomly. In order to generate an efficient path in a dynamic and uncertain envi-
ronment, however, the Robust RRT algorithm builds upon five main extensions that
have been made to the RRT approach presented in [25]. These five main extensions

are:

1. Use the closed-loop system for state propagation,
2. Exploit the environment structure in sampling,

3. Use efficient heuristics in the expansion of the tree,
4. Consider safety as an invariant property,

5. Risk evaluation following a lazy evaluation strategy.

Each of these five main extensions will be described in detail in their own sections
throughout this chapter. Here we limit ourselves to providing a brief overview of the

main features of the algorithm.

4.2.1 Original RRT Algorithm

Let C denote a metric space, Ctree C C be that part of the space that is free from

obstacles, a an infinite sequence of samples in C drawn from a probability distribution,

51

and «(i) the ith sample. An RRT is then a topological graph G(V, E) in which any
two vertices v € V are connected by exactly one edge e € E [48]. The original
RRT algorithm sets a first vertex, or node, containing the initial conditions (z,t;),
and incrementally builds a tree of trajectories (edges) that cover the space C. At
each step the idea is to add a new trajectory and a new node to the tree. The tree
grows in a way that exhibits a fractal appearance. Several main branches will first
be constructed as the tree rapidly reaches the far corners of the space, and gradually
more area will be filled in by smaller branches until in the limit the tree completely
fills the space. In other words, the tree gradually improves the coverage of the space
C as the iterations continue.

The RRT in the presence of obstacles is based on the determination of a sequence
of samples (i) that guide the vehicle to the desired configuration while avoiding
obstacles. As with any other sampling-based motion planner, the obstacle region
Cops is not explicitly represented. Therefore, it must be taken into account in the
construction of the tree. The procedure that expands the tree yields the nearest
configuration possible to the boundary of Cgy.., along the direction towards a(i). The
nearest node (x,,t,) € S is defined to be the same (obstacles are ignored in the
calculation of the distance to the sample) but, however, in the presence of obstacles
the new trajectory might not reach to (). In this case, a trajectory is made from
(Zp, t,) to (xs,ts), the last configuration possible before hitting the obstacle. It is
possible that (z,,t,) is already as close as possible to the boundary of Cfree in the

direction of a(%). In this case, no new node is added for that iteration.

4.2.2 Robust RRT Algorithm

The Robust RRT algorithm assumes the existence of both a high-level route planner
that is able to provide a short-term goal and a low-level controller that can track a
path and a speed command. The task of the algorithm is then to provide a path and
a speed command to the controller that guides the vehicle from its current location
to the short-term goal while avoiding obstacles and staying within lane boundaries.

To account for the dynamic nature of urban driving, the algorithm must be able to

92

quickly react to changes in the environment. The information about the environment
as perceived by the sensors has inherent noise, and therefore it also must be robust
to uncertainties in sensing.

The main steps involved in the Robust RRT algorithm are shown in Algorithm 1.
Similar to the original RRT algorithm, Robust RRT samples the space (line 5), selects
the best node to connect from (line 6), expands the tree (line 7), and evaluates physical
feasibility (line 9), in this order. The tree expansion continues until a time limit is
reached (line 23), and at that instant the best reference path is sent to the controller
for execution (line 28). As a result, the motion planner sends commands to the
controller at a fixed rate. The expansion of the tree is resumed after updating the
vehicle states and the environment information (line 2). Figure 4-1 shows an example
of a tree generated by the Robust RRT algorithm. As can be seen, the tree consists
of reference paths that constitute the input to the controller (shown in blue) and the

predicted vehicle trajectories (shown in green and red).

Feadibl h Obstacle collision
caslio i =>Infeasible path

Road departure

Divider crogsing => Infeasible path

=> Infeasibl¢ path

Car

Figure 4-1: Vehicle trajectories are generated by using the vehicle’s dynamical model.
The generated trajectories are then evaluated for physical feasibility.

53

Algorithm 1 Robust RRT motion planning algorithm
1: repeat

2: Receive current vehicle states and environment
3: Propagate states until time limit
4: repeat
5: Take sample for input to controller
6: Select node in tree using heuristics
7: Propagate from selected node to sample until vehicle stops
R Add intermediate nodes to path
9: if propagated path is feasible with drivability map then
10: Add sample and intermediate nodes to tree
11: else
12: if all intermediate nodes are feasible then
13: Add intermediate nodes to tree and mark them unsafe
14: end if
15: end if
16: for each newly added node v do
17: Propagate to goal
18: if propagated path is feasible with drivability map then
19: Add path to tree
20: Set cost of propagated path as upper bound of cost-to-go at v
21: end if
22: end for
23: until time limit is reached
24: Choose best safe trajectory in tree and check feasibility with latest drivability
map
25: if best trajectory is infeasible then
26: Remove infeasible portion from tree and goto line 24
27. end if

28: Send best reference path to controller
29: until Vehicle reaches goal

o4

Some of the preceding steps are similar, but nonetheless with notable differences,
to the main steps in the original RRT algorithm. First, at each iteration we try
to connect the sample to each one of the nodes currently in the tree in turn before
discarding the sample as unreachable. On the other hand, in the original RRT algo-
rithm only the closest node is tested for reachability. The RRT criterion of testing
the closest node translates into the heuristics of testing the nodes in ascending dis-
tance order. Second, the minimum-length Dubins path in the obstacle-free case is
used as a measure of distance in the selection of the nodes to expand. On the con-
trary, the original RRT algorithm expands the node in the tree which has the shortest
Euclidean distance to the sample that was picked. Third, although the sequence of
samples obeys a random probability distribution, it is deterministically biased in the
direction of the goal state by exploiting the environment structure. In the original
RRT concept the sequence of samples is completely random, with no deterministic
bias.

One fundamental difference with the original RRT algorithm is that the Robust
RRT samples the space of inputs to the vehicle controller, as opposed to sampling
the space of inputs to the vehicle directly. Each trajectory is obtained by running a
forward simulation of the closed-loop system consisting of the vehicle dynamic model
and the controller. By using a stable closed-loop system in the simulation instead of
the unstable open-loop vehicle dynamic model, this approach has the advantage of
being able to incorporate any nonlinear or unstable plant. Furthermore, the vehicle
controller generates commands to the vehicle at high rate and therefore the motion
planner can send commands to the controller at a low-rate without compromising
vehicle stability and path tracking performance.

Each node of the tree has two estimates of the cost-to-go: a lower bound and an
upper bound. The lower bound of the cost-to-go is set as the value of the Euclidean
distance between the location of the node and the location of the goal. On the other
hand, the upper bound is set as the sum of the cost of each edge that corresponds
to the best node sequence from the current node to the goal. When no physically

feasible trajectory to the goal is found, the upper bound of the cost to go is set to

95

r u - B
Controller F=>{ Vehicle
Model

Figure 4-2: Closed-loop prediction.

infinity. When no feasible trajectory is found while the car is already moving, an

emergency braking maneuver is commanded, although this is a rare event.

4.3 Use of Closed-loop System

The motion planner outputs a controller reference plan r that constitutes the input
to the stable closed-loop system consisting of the plant and the controller [44]. This
reference plan is constructed based on a quadruple (z,y, vq,d) at every point in the
path, where x and y are the Cartesian coordinates of the point in the plane, v, is the
desired speed of the vehicle at that point, and d is the driving direction of the vehicle
(forward or reverse).

While any stabilizing controller can in principle be used for this task, the particular
choice of controllers adopted for the DUC consists of a pure-pursuit steering controller
and a Proportional-Integral (PI) speed controller [44]. The pure-pursuit controller
takes as input a piecewise-linear reference path, and generates steering commands
that guide the vehicle along this path. The PI speed controller takes as input a
time-varying speed reference and generates gas/brake commands to track this speed.

By running forward simulation using the controller and the vehicle model, the
output & of the closed-loop prediction is obtained, as shown in Figure 4-2. The
feasibility of this output is checked against vehicle and environmental constraints, such
as obstacle avoidance. The planner’s role here is to generate a “large” signal in the
form of the controller’s input, and it is the controller’s task to track the commanded
path in a “small” signal sense.

This closed-loop approach has several advantages when compared to the standard

approach that samples the input u to the vehicle [25, 48|. First, by adding a stabilizing

56

controller, this approach works with vehicles exhibiting unstable dynamics, such as
cars and helicopters. Second, the use of a stabilizing controller reduces the prediction
mismatch typically caused by the modeling error of the vehicle. Third, the forward
simulation can handle any nonlinear vehicle model and/or controller, and the resulting
trajectory is dynamically feasible by construction. Fourth, a single input to the closed-
loop system can create a long trajectory (on the order of a few seconds) while the
stabilizing controller smoothly changes the input to the vehicle. This significantly
improves the efficiency of randomized approaches such as RRT, because it is difficult
to generate a good sequence of vehicle inputs if the input to the vehicle is drawn
randomly.

When the controller does not accurately track the reference path due to modeling
errors or disturbances, the planner could change the reference path so that the vehicle
achieves the original desired path. However, it introduces an additional feedback
loop, potentially making the overall system unstable. When both the planner and
the controller try to correct for the same error, they could be fighting with each other.

In our approach, the planner generates a large signal in the form of a reference
path, but it does not do any adjustments. It is the controller’s responsibility to track
the path in the small signal sense. Thus, the propagation of trajectories (line 7 of
Algorithm 1) starts from the predicted vehicle states at the node. Although the simu-
lation of the vehicle dynamics uses the closed-loop system, this method decouples the
motion planner from the low-level controller. Decoupling the planner and controller
eliminates the adverse interactions that could result if the planner continually updates
the input to the controller based on the latest states of the vehicle. The predicted
trajectory could extend several seconds into the future, and this could be dangerous
during the evaluation for collisions if the prediction error is significant. Consequently,
it is critical to keep the prediction error as small as possible to ensure that the actual

.vehicle indeed does not collide with any obstacles along the true path it follows. How

to efficiently keep the prediction error small is described next.

57

4.3.1 Repropagation

Errors in the model of the vehicle and /or the effect of external disturbances inexorably
affect the prediction of the vehicle states, resulting in a non-zero error between the
predicted path and the true path followed by the vehicle. One possible solution to
ensure that no collisions occur when the true path starts deviating from the predicted
path would be to delete the tree (keeping the current reference segment being executed
by the controller) and grow a new tree from scratch. However, this method is very
inefficient. All the computation time spent growing a rich tree would become wasted,
and growing a new tree that covers the free space densely will take several cycles.
Therefore, deleting the tree is very undesirable, particularly in real-time applications.

To address the errors that result in the vehicle state propagation efficiently, the
Robust RRT algorithm performs a repropagation of the vehicle states, in which the
controller inputs stored in the tree are reused to propagate anew from the current
vehicle states. The repropagation process is shown in Figure 4-3. Notice that the
repropagated trajectory is only used in the evaluation of collision with obstacles and
not for replanning from the current vehicle states, which would result in the motion
planner “fighting” the controller with detrimental consequences for performance. The
main advantage of the repropagation method is its efficiency in terms of avoiding
the deletion and subsequent need for a new tree. In this case, the tree is retained
independently of how large or small the error in the prediction is. Using a stable low-
level controller, the difference between the original prediction of the vehicle motion
and the repropagation will converge to zero in the limit.

When applying the repropagation to the RRT framework, one can repropagate
over the entire tree from the latest states. Although it keeps the controller input,
this approach is essentially discarding all the state trajectories that are previously
computed, and can be computationally expensive. A more efficient approach is to
repropagate from the latest states only along the best sequence of nodes at the end
of computation time limit, as shown in line 24 of Algorithm 1.

If the repropagated trajectory is collision free, the corresponding controller input

o8

=== |Nput to controller

== Predicted path
=nms Actual path

=== Repropagation

Current
states

Best path

Target

Figure 4-3: Repropagation from the current states.

is sent to the controller. Otherwise, the infeasible part of the trajectory is deleted
from the tree, and the next lowest-cost trajectory is selected. This method requires
very few re-evaluations for collision with obstacles while ensuring the feasibility of
the plan that is sent to the controller, even if the vehicle is not accurately following

the original prediction.

4.4 Exploitation of Environment Structure in Sam-

pling

Sampling the configuration space C blindly without any information about the struc-
ture of the environment would result in numerous samples being located over obsta-
cles. This is inefficient as computation time is wasted exploring the obstacle space
Cobs that could well be used for sampling the obstacle-free space C free and generating
paths with a very high probability of being collision-free. As a result, methods are

sought that would deterministically bias the random sampling of C in order to focus

59

as much as possible over the area of the environment that is potentially free from
obstacles [54, 55, 65, 69, 74]. The Robust RRT algorithm takes advantage of the
knowledge about the location of the vehicle and the structure of the environment to
try to focus the sampling over the space that is potentially free from obstacles or

other constraints.

4.4.1 Sampling the Space

A sample is a point S = (s,,s,) in Cartesian coordinates and is used as part of the
input to the steering controller. The sampling of the space occurs according to a
Gaussian distribution with a deterministic bias based on both the physical and the
logical constraints of the environment. This deterministic bias is achieved by altering
the shape and orientation of the Gaussian cloud of samples,
se| _ | %o oy cos(f) with r = 0.|n.| + 1o, (42)
Sy Yo sin(6) 0 = ogng + 6.
where (g, o) represents the origin of the Gaussian cloud measured in meters, n, and
ng are random variables with Gaussian distributions, o, is the standard deviation in
the radial direction measured in meters, oy is the standard deviation in the circum-
ferential direction measured in radians, and ry and 6y are offsets with respect to the
origin, measured in meters and radians, respectively. Figure 4-4 shows an example
with 100 samples and where the different parameters have been set to (zo, yo) = (0,0),
o, = 10, 09 = /10, ro = 3, and 6, = 7/4. The region enclosed by the solid lines cor-
responds to one standard deviation in both the radial and circumferential directions.
The value of these parameters change according to where the vehicle is located, such
as a lane, an intersection, or a parking lot, as well as in conformity with the rules of
the road such as whether passing is allowed, U-turns are allowed, etc.
Biasing the sampling significantly increases the probability of generating feasible
trajectories because in this way the sampling tends to be confined to the obstacle-free

space Cfree C C and abides by the rules of the road. This increases the likelihood

60

25

201

151

y [m]

101

samples
—1-cline

-5 0 5 10 15 20 25
X [m]

Figure 4-4: Example of the 2D Gaussian sampling.

of generating collision-free trajectories that do not violate any traffic regulations and
are therefore feasible. The sampling procedure is therefore both flexible and efficient.

It can handle the several different scenarios that occur in an urban environment.

4.4.2 Physical Environment Structure as a Bias

On a lane, the Gaussian distribution is tuned such that the sampling occurs along a
long and narrow region whose longitudinal axis tries to follow the estimate of the lane
center. To maximize the availability of samples along the lane, a random, uniformly-
distributed sampling along a line perpendicular to the lane at every point in the
estimate of the lane center and with initial width equal to the estimated width of
the lane is also used. The width of the sampling increases slightly with distance
from the vehicle to account for uncertainty in the true location of the lane as the
sensing range becomes longer. Figure 4-5 shows an example of the region where the
samples would tend to be located when the vehicle is driving along a lane. The radial

standard deviation value o, for the Gaussian distribution used when sampling along

61

Figure 4-5: Location of samples when the car is located in a lane.

the lane is set to the distance up to the goal but it never extends beyond 50 m. The
circumferential standard deviation value oy is set to op = 7/18 to confine the samples
along the lane corridor.

At an intersection, the Gaussian distribution is tuned in a way that the sampling
occurs in a wide and relatively short region that covers the open space inside the
boundary that delimits a typical intersection. Figure 4-6 shows an example of the
region where the samples would tend to be located while the vehicle is traversing an
intersection. The value of the radial standard deviation o, for sampling in intersec-
tions is set to the value of the distance to the goal. The value of the circumferential
standard deviation oy is set to g = 27/5.

In parking lots, sampling of the space is performed both around the vehicle and
around the parking spot where the vehicle should park. Around the car, the Gaussian
distribution is tuned so that the sampling occurs over a wide and long region mostly in
the direction that the vehicle is moving, while around the parking spot the sampling is
performed according to a uniform distribution along a line that has the same direction
as that of the goal inside the parking spot. While the broad sampling around the
vehicle aims to facilitate planning in an obstacle maze — as a full parking lot might

well resemble — the sampling along a line leading to the parking spot aims to refine

62

Figure 4-6: Location of samples when the car is located in an intersection.

the trajectories that make the vehicle precisely maneuver into its confined parking
place. Figure 4-7 shows an example of where the samples would tend to be located
if the vehicle needs to park. The value of the radial and circumferential standard
deviations used for the Gaussian distribution when sampling in zones is o, = 50 and

O = T.

4.4.3 Logical Environment Structure as a Bias

When the vehicle needs to pass another vehicle or some other obstacle on its lane, the
sampling is skewed toward the left in order to focus the search for feasible trajectories
along the opposite lane of travel. Once a feasible trajectory is found that arrives back

to the original lane of travel, this skew is eliminated.

63

Figure 4-7: Location of samples when the car is located in a parking lot.

When the specific circumstances for a U-turn arise, the planner will search for a
maneuver preferably consisting of a three-point turn that could be used to complete
the U-turn. In order to facilitate the emergence of a three-point turn, the random,
normally-distributed sampling of forward and reverse configurations is confined to
specific regions of the space that correspond to plausible regions that the vehicle
would have to traverse in case of executing a three-point turn. Therefore, sampling
with a forward direction of travel is confined to the front-left and rear-left of the
original position of the vehicle before executing a three-point turn, while sampling
for traveling in reverse is confined to the front-right and back of the vehicle.

The sampling strategy used for U-turns is shown in Figure 4-8. The location of

64

the different regions correspond to the different phases that constitute a three-point
turn. During a three-point turn, the vehicle first travels forward and to its left, it
then reverses aiming the original lane of travel, and finally the vehicle then moves
forward towards the opposite lane of travel, now heading in the correct direction of

the lane. The parameter values used for each of the three sample sets are:

or=95, o09=m[10, 19=3, 0y =4n/9 first cloud
o,=5 op=7/5, ry=3, 6y=—7/6 second cloud (4.3)
o, =10, op=m/4, 19=3, 0y =>5n/6 third cloud

In the parameters above, the angular offsets oy are measured from the z-axis of the
body frame for the car in its original configuration before initiating the U-turn, i.e.,
with respect to the longitudinal axis of the car with its original orientation before the
U-turn. The origin (zo, yo) of the Gaussian clouds is at the initial location of the car
before initiating the U-turn. Finally, note that an additional cloud of reverse samples
is also generated behind the vehicle in case it stopped very close to the road blockage,

therefore requiring a reverse maneuver before any U-turn is possible.

4.4.4 Batch Sampling

For the Urban Challenge, the car had to arrive at a given location with a certain
direction (heading). Consequently, the goal has a specific direction that, within some
threshold, any arriving path needs to satisfy in order for that path to be considered as
having reached the goal. To facilitate the satisfaction of this direction constraint, the
Robust RRT algorithm features a method of sampling called batch sampling. Batch
sampling refers to the sampling of multiple points simultaneously, which are then
joined to form an edge. In this way, the points forming the edge can be arranged
conveniently so that edge features some specific shape. Once the edge has been
formed, its first sample is then connected to a node in the tree, resulting in a single
edge analogous to any other edge in the tree.

Only sampling in zones, intersections, and U-turns feature batch sampling. Sam-

65

Figure 4-8: Sampling biases during a U-turn maneuver.

pling in lanes does not need batch sampling to improve performance since the free
space effectively narrows down the plausible set of paths to those having a direction
similar to that of the goal. Batch sampling is usually set to occur less frequently than
single sampling because, although it is beneficial for satisfying the direction constraint
of the goal, the whole path determined by the samples needs to be feasible. This path
is usually longer than the path resulting from a single sample, which means that there
is a higher probability that edges formed by batch sampling turn out to be infeasible
and are therefore discarded.

In zones, each batch of samples is comprised of four samples. The first sample is
drawn out of a Gaussian distribution covering a wide and long region in the direction
that the vehicle is moving, similar to the single sampling method, but with a radial
standard deviation value of o, = 20 in this case. This lower value is justified since
this sample will be the first in a group of four that will gradually guide the vehicle

towards the goal, and therefore there is no need for the first sample to be located

66

excessively far away from the vehicle. The second sample is drawn out of a uniform
distribution with a conic shape centered on the parking spot and with vertex 5 m away
from the goal, which as a result leads directly to the center of the parking spot. The
purpose of this conic sampling leading to the parking spot is to refine the trajectories
to those that make the vehicle precisely maneuver into the confined parking place.
The third sample is located at the vertex of the cone just described, and, together
with the fourth sample, which is located over the goal location, forms the last segment
of the path determined by the batch and has the objective of finishing to lead the car
straight into the spot.

In intersections, each batch of samples is composed of three samples. Similarly
to the single sampling case, the first sample is drawn out of a Gaussian distribution
covering a wide and short region, where the standard deviation values are now set to
o, = 10 and g4 = w/9. This region would cover most of the space inside the boundary
that delimits a typical intersection. The second sample follows a uniform distribution
with a conic shape centered at the beginning of the new lane after the intersection.
This cone leads to the center of the new lane and has as purpose to ensure that all
paths resulting from the batch sampling meet the goal direction constraint. As a
result, for the implementation of the Robust RRT algorithm used in the DUC, the
angle of the vertex located at the center of the new lane was set to 60° to match the
direction error threshold of the goal, which was £30°. The third and last sample is
drawn out of a uniform distribution and is confined to a square centered on the lane
and positioned such that one of its edges perpendicular to the lane pases over the goal
and the opposite edge is closer to the intersection. This square can be easily see in
Figure 4-6. It has a side length of 2 m so it can cover most of the width of a regular
lane.

The purpose of randomizing the location of the last sample is to account for
uncertainty in the sensed environment. For example, suppose that the road that the
car will be turning to has a wall directly over one of its sides. If the wall is perceived
as closer to the road than what it really is, there is a high probability that it might be
perceived as partially blocking part of the road. If the last sample in the batch were

67

located exactly over the goal, it might be the case that all of the resulting paths are
infeasible because the side of the car touches the perceived wall. As a result, the car
will never leave the original lane to go through the intersection as no feasible path is
reaching the goal and driving and stopping over an intersection is purposefully not
allowed as it is not safe. On the other hand, by randomizing the location of the last
sample there will eventually be a feasible path that reaches the goal but closer to the
side of the road opposite to the wall. Having a feasible path, the car will proceed
normally through the intersection and then keep driving along the new lane.

For U-turns, each batch of samples is composed of four samples. Similarly to
the case of single sampling, the location of the different samples corresponds to the
different phases that form a three-point turn, with the addition of a last fourth sample
to help guide the car forward along the opposite lane. The parameter values used for

each of the four sample clouds are:

o,= 8, 09g=7/10, 19=3, 0y =4xn/9 first cloud
o, =10, g9g=m/10, ro=5, 6y =—n/4 second cloud
o, =12, o9=7/10, 10="7, 0y =>5n/6 third cloud
o, =10, gy=w/10, r9=05, Gp=m fourth cloud

In the parameters above, the angular offsets oy are measured from the z-axis of the
body frame, i.e., with respect to the longitudinal axis of the car, for the car in its
original orientation. The origin (zg,yo) of the first Gaussian cloud resides at the
location of the vehicle before initiating the U-turn maneuver, whereas the origins of
the other three clouds reside at the location of the sample from the previous cloud,
respectively. Sampling of the regions corresponding to each cloud occurs in sequence,
i.e., first a sample corresponding to the first cloud is obtained, then this sample is
used as a reference for determining the origin of the cloud for the second sample, etc.
This sequential procedure increases the probability of obtaining a nice three-point
turn, as the location of each individual sample is with respect to each other and not
with respect to a global location. Therefore, if one of the samples is far from the

mean and thus poorly located in the space, the probability that the next sample will

68

be inconveniently located with respect to this sample and contribute even more to a
poor maneuver is independent of the poor location of the previous sample.

U-turn batch sampling was restricted to only 50 trials in the implementation used
in Talos. This is because any portion that is infeasible would result in discarding
the whole maneuver. Since U-turns happen near obstacles, this probability might be

considerable. Single sampling was used the rest of the time.

4.5 Risk Evaluation with Low Computational Over-

head

4.5.1 Configuration Space Cost Map

The evaluation of whether a trajectory collides with obstacles or violates any rule of
the road is done through a configuration space cost map, also called drivability map, in
the local frame of reference. This cost map is implemented using a grid-based lookup
table with a resolution of 20 cm since this value gave enough accuracy while keeping
the table size manageable. As a result, the configuration space takes discrete values
and is only approximate, but this limitation is taken into account by ensuring that
the representation of the obstacles is never smaller than their perceived size. The cost
map processes static and moving obstacle data, lane tracking data, and road surface
hazard data to render the environment and classify three different regions according
to their drivability characteristics.

The three different regions that the gridmap displays are infeasible, restricted, and
high cost. Infeasible regions represent obstacles and are impossible to traverse due
to an imminent collision. Restricted regions are used to prevent the vehicle from
violating minor traffic regulations, and therefore may be driven through but only if
the vehicle can then drive out of them. High cost regions are drivable but incur a
penalty on the cost-to-go for being close to obstacles or lane boundaries, thus posing
a potential safety hazard. Figure 4-9 shows a snapshot of the cost map. The white

arrow with a green background indicates the short-term goal location, red indicates

69

Static obstacles

Figure 4-9: Snapshot of the cost map.

the infeasible regions that the vehicle can not reach, blue indicates the restricted
regions that the vehicle may only enter if an unrestricted region further ahead can be
reached, and white or gray indicates the high cost regions that the vehicle can drive
over.

Restricted regions have their main application in ensuring that the car stops with
the required standoff distance from obstacles while traveling along a lane. Consider
the case where some obstacle is blocking the lane along which the car is traveling and
therefore a passing maneuver is necessary. Thanks to the restricted region around
the obstacle, the car stops the required distance away because there is no other area
where the vehicle can drive to from inside the restricted region. When the opposite
lane becomes free to drive, however, the car can then go over the restricted region
to pass the obstacle in the lane because now the car is able to leave the restricted
region. In this way, restricted regions provide a certain level of constraint without

completely banning access to the region they cover. This prevents the vehicle from

70

potentially getting stuck due to artificial constraints that are not present in the real

environment.

4.5.2 Risk Evaluation Strategy

The Robust RRT algorithm uses a hazard penalty value to represent the risk due to
hazards in the environment such as getting close to obstacles and lane boundaries, or
traversing certain curb cuts that are too faint to be declared as non-drivable. This
hazard penalty value will then form part of the cost associated with a particular
edge. When evaluating the feasibility of trajectories using the cost map lookup table,
the penalty for getting close to hazards that is stored in the map is also obtained.
A hazard penalty is associated with every point forming a given path. The hazard
value of a certain edge (path) is then defined as the path integral of the penalty at
each point,

hedge = W / pdl, (4.5)
!

where l.q4 is the length of the edge, p is the hazard penalty at each point in the
edge, and w is a constant representing the desired weight to give to ensure that the
vehicle stays far from obstacles and away from lane boundaries. The weight used for
the implementation of the algorithm for the DUC was w = 0.005. This value gave
enough repulsion from obstacles without compromising the path lengths substantially
and, fundamentally, it gave a strong bias for the vehicle to stay close to lane centers,
something that produced a nice behavior when turning at intersections because the
car tended to avoid cutting corners. The value was determined by trial-and-error until
the behavior of the car satisfied the designer. The availability of and edge hazard value
results in the car normally maintaining a prudent distance from obstacles and lane
boundaries, while still allowing it to get close to constraints when no other alternative
is possible such as is the case of narrow roads.

The hazard penalty is represented with a byte and can therefore take values rang-
ing from 0 to 255, where 0 means no penalty and 255 means there is a collision with

an obstacle or the vehicle is over a lane boundary or touching any infeasible region.

71

In the case both an obstacle and a deviation from the lane center where contributing
to the penalty value at a given point, the highest value among the two contributions
is taken as the hazard penalty at that point. When signaling the danger of a potential
collision, the penalty increases as the vehicle gets closer to obstacles. On the other
hand, when penalizing the deviation from the lane center, the penalty increases as
the perpendicular distance between the lane center and the vehicle increases. In this
way, the vehicle will be repelled from getting close to obstacles but it will be attracted
to stay close to the lane center as it drives along a lane.

In the implementation of the Robust RRT algorithm, the functions used to rep-
resent these two penalties were different. A cosine function with a long decay rate
was used to model the cost around obstacles, whereas a linear function with a much
shorter tail was used to penalize deviations from the center of the lane. The cosine
function ensured that getting very close to obstacles was very costly, which models
the very high risk that driving next to obstacles entails due to the danger of a po-
tential collision. The long tail has the effect that, among two trajectories of similar
length, the one furthest away from obstacles is preferred and chosen as best. In the
case of lane following, getting close to lane boundaries is not desirable but not as
dangerous since the space beyond a boundary is usually free, and therefore a linear
penalty function with a short tail penalizes gradually as the vehicle deviates from the

lane center.

4.5.3 Lazy Evaluation

Sampling-based motion planning algorithms typically spend most of the execution
time evaluating trajectories for collision with obstacles, and methods are sought to
reduce the number of collision checks [§]. In a dynamic and uncertain environment,
the feasibility of each edge in the tree should be evaluated against the latest available
sensory information. Because the environment in constantly changing, however, each
of the edges in the tree would need to be re-evaluated for feasibility every time that
something changes in the environment. A rich tree might have thousands of edges

and collision evaluation would therefore require significant computation time. Any

72

time that is spent evaluating for collisions is time that can not be used for growing
the tree.

During the early design stages of the Robust RRT algorithm, an analysis was
performed to try to estimate the cost of the collision checking procedure. The planning
algorithm was run on a scenario with obstacles, first with collision evaluation enabled
for every trajectory, and later with collision evaluation completely disabled. The
average number of samples in both cases was then measured and compared. For the
case when collision evaluation was disabled, the number of samples generated was
approximately 100 samples per second. On the other hand, when collision evaluation
was active, the number of samples generated dropped to about 60-80 samples per
second. This result corresponds to a 20-40% decrease in the number of samples per
second that were generated. From this result, it was concluded that a method to
reduce the number of collision checks was necessary.

To reduce the number of collision checks performed per iteration while still en-
suring that any trajectory executed by the vehicle is feasible with respect to the
latest sensory information a lazy evaluation strategy for collision evaluation was im-
plemented. The Robust RRT algorithm re-evaluates the feasibility of a certain edge
only if that edge is selected as part of the best path sequence to be sent to the con-
troller. If the best trajectory is found infeasible, the infeasible portion of the tree
is deleted and the next best sequence is selected for re-evaluation. Lazy evaluation
enables the algorithm to focus mainly on growing the tree, while ensuring that the
executed trajectory is still feasible according to the latest information about the en-
vironment.

One disadvantage of the lazy evaluation strategy is that the hazard penalty values
stored in the tree may not be based on the latest perception data. As a result, on
the rare occasions when unexpected obstacles appear in the environment, the selected
trajectory might pass close to these new obstacles. It should be noted, however, that
the feasibility of the trajectory is nonetheless guaranteed, as the trajectory is indeed
checked for collisions and discarded if found infeasible. As long as the trajectory is

feasible with the latest map, the planner will send it for execution to the controller,

73

and will discard it otherwise. As a result, the lazy evaluation strategy reduces the

computation overhead without compromising the safety of the vehicle.

4.6 Efficient Expansion of the Tree

The main function to be performed at each step in the iteration is the expansion of
the tree. The expansion is aimed at adding new nodes to the tree in such a way that

the space covered by the tree increases as fast as possible.

4.6.1 Evaluation of the Distance to Samples

As a measure of distance, the Robust RRT algorithm uses the value of the minimum-
length Dubins path between a node in the tree and the sample a(i). A full charac-
terization of optimal Dubins paths is given in [22] and a further classification in [63].
We present some results on the analysis of the length of Dubins paths for a single
vehicle from an initial configuration to a given point in the plane as developed in [23].
These results were used in the implementation of the planning algorithm.

Consider a nonholonomic vehicle 7 constrained to move along a path with bounded
curvature, and let 1/p be the maximum curvature. Without loss of generality, we
assume that the vehicle moves at constant speed v = 1. Based on this, let the
configuration g; € SE(2) of the vehicle be given in coordinates by ¢; = (z;,y:, 6;),
where x; and y; are the projections of the vehicle’s position into the local inertial
reference frame, and 6; is the orientation of the vehicle’s longitudinal axis pointing
forward with respect to the x-axis in the local frame. The dynamics of Dubins vehicle

i are then described by the differential equations

t; = cos(0;), (4.6a)
yi = sin(@i), (46b)
0; =wi, wi€[=1/p.1/p]. (4.6¢)

Note that for a given vehicle 7 and considering unit speed v = 1, Equations 4.6a and

74

4.6b are equivalent to Equations 4.1a and 4.1b, and Equation 4.6¢ is equivalent to
Equation 4.1c for a circle of radius p. In other words, the Dubins vehicle model is a
simplified but representative model for characterizing the vehicle motion.

Let L,(g) : R* — R be the minimum length of the path satisfying Equation 4.6.
This path steers a Dubins vehicle from the identity in SE(2) to a point ¢ in the
plane without any constraints on the final heading, i.e., to any configuration in the
set {q} x S' € SE(2). The characteristics of paths of minimal length with such
boundary conditions have been studied in [67]. There it is proved that all such paths
are a concatenation of and arc of a minimum-radius circle either in the positive or
negative direction, with an arc of a minimum-radius circle in the opposite direction,
or with a straight segment. The length of the circular arcs is upper bounded by 27p,
and all subpaths are allowed to have zero length. In the Dubins formalism, such
paths are called either of CC (circle, circle) or CL (circle, line) type, and include the
subtypes C or L, arising when the length of either one of the two subpaths is zero.

It can be shown that the optimal paths are of type CC when ¢ lies within the
interior of one of the two circles of radius p that are tangent to the vehicle’s direction
of motion at the initial configuration, and are of type C'L otherwise. In other words,
having defined D; = {g € R?: [lg — (0, p)|| < p}, D, = {g € R?: |lg — (0, —p)| < p},
if g € D} UD;, the optimal path is of type CC, otherwise it is of type C'L. Based on

these results, the minimum length of a Dubins path can be quantified as follows [23].

Theorem 4.6.1 (Minimum-length Dubins path). The minimum length L,(q) of a
Dubins path steering a vehicle from go = (0,0,0) € SE(2) to a point q = (z,y) € R?

is given by:

Vaiq) —p*+p (GC(Q) — arccos d£> ¢ ¢ DfUD;,

L,=
. de(q) sin(6:(q)) , psin(¢(q))) :
p | 2 — ¢(q) + arcsin + arcsin —————— otherwise,
(@ 37) 31()
where d.(q) = /22 + (Jy| — p)? and 0.(q) = arctan(z, p — |y|) are polar coordinates

of the point q with respect to the center of either D+ or D, , whichever is the closest,

75

= /22 + (ly| + p)? is the distance of q from the other center, and

5p* — dy(q)*
®(q) = arccos (I :

Note that in the implementation the range of the atan2 function must be set
to be [0,27) to give a valid distance. Theorem 4.6.1 is used in the computation of
the distance between a node and the sample in the Robust RRT algorithm. This
analytical calculation can be used to quickly evaluate all the nodes in the tree for a

promising connection point.

4.6.2 Expanding the Tree

The easiest way to determine to which node the sample should be connected to is to
follow a random ordering of the nodes in the tree. According to results found in [25],
however, some performance improvements result if evaluation for potential collisions
of the trajectory reaching the random sample «(7) is tested from tree nodes in a more
efficient way. In the Robust RRT algorithm the heuristics used to add new nodes
to the tree are an extension of the ideas presented in [25]. For more information on
other efficient nearest-neighbor searching approaches, refer to the recent survey [36],
and [2-5, 7, 14, 26, 37, 43, 58, 64, 75].

Before a feasible trajectory has been found, the tree is grown mainly according
to an ezploration heuristic, in which the emphasis of the algorithm is on adding new
nodes to the tree that enlarge the space it reaches. To enhance exploration while
keeping the number of collision checks to a minimum, the tree nodes are sorted in as-
cending order of distance to the sample «(7). In this way, physical feasibility is tested
first from the nodes that are closer to the sample and therefore more likely to provide
a collision-free trajectory. This results in a lower number of calls to the collision-
checking procedure and in general reduces computation time more than the increase
produced by the sorting of the nodes and evaluation of the distances. Note that in
this exploration heuristics potentially every node in the tree could be tried during the

expansion step. In the actual implementation of the algorithm the maximum number

76

of nodes to try to expand from was limited to 10 to bound the computation time.
Once a feasible trajectory has been found, the tree is instead grown primarily
according to an optimization heuristic, in which the focus of the search shifts from
exploration to the optimization of the computed trajectory. To make the new trajec-
tories progressively approach the shortest path, the nodes are now sorted in ascending
order of total cost to reach the sample a (7). This total cost consists of the accumulated

cost up to the particular node v plus the cost-to-go from v to a(7),

Ctotal = Ceum (V) + Ly(a(3)), (4.7)

where Ceyum (v) represents the cumulative cost from the root of the tree to the particular
node v. To enhance the quality of the computed solution, the tree nodes are sorted
in ascending order of total cost to the sample a(7) and as a result physical feasibility
is tested first from the nodes that provide the shortest trajectory to the sample and
therefore are closest to the shortest path. This is at the cost of the computation time
required to sort the nodes and evaluating the Dubins path length.

Employing one or the other expansion heuristics in a binary way based on having
reached the goal is not the best strategy. Even before having a trajectory that reaches
the goal and consequently when the focus should be on exploration, using the opti-
mization heuristics to reduce wavy trajectories is beneficial. Similarly, once a feasible
trajectory to the goal has been found and therefore the focus should be on refining
the available solution, some exploration of the environment is beneficial for example
in case an unexpected obstacle blocks the area around the feasible solution, or for
having a richer tree when the goal switches to the next. Based on this reasoning, each
expansion heuristic is used mostly in the particular case they were conceived for, but
the other heuristic is also used with a small probability. When implementing the
algorithm, the ratio of exploration vs. optimization heuristic used was 70% vs. 30%

before a trajectory to the target was found, and 30% vs. 70% once it was found.

7

4.6.3 Estimates of the Cost-To-Go

There are two estimates of‘ the cost-to-go at each node in the tree, a lower bound on
the cost-to-go and an upper bound on the cost-to-go.

As a measure of the lower bound we use the Euclidean distance between the
position of the node and the position of the goal. Then, if the position of the node
is given by V' = (v,, v,) and that of the goal by G = (¢4, g,), the lower bound of the

cost-to-go at the node v becomes

Clp = \/(U:r - gI)Q + (vy - gy)Q' (48)

The Euclidean distance is a lower bound since the shortest distance between any two
points (z1,41), (x2,y2) € R? is given by a straight line.

On the other hand, we use a more complicated metric as the upper bound on the
cost-to-go. Assume that a trajectory from v to the goal g exists and let j be the
number of nodes along that trajectory, including g but not v. The upper bound of
the cost-to-go at the node v is then given by the sum for every node j of the sum of
the length and the hazard value of the edge associated with each node 7. When no
trajectory from v to g exists, then the upper bound on the cost-to-go for that node

is set to infinity. Mathematically,

le +hj, j€(v,g], if goal reachable,
Cub — J (49)

00, if goal not reachable,

where ; is the length of the edge associated with node j and hj; is the hazard value
given by Equation 4.5. For nodes that are considered as reaching the goal, their
upper bound cost-to-go is set equal to their lower bound. Avoiding to give a zero
cost to every node having reached the goal has the advantage of still being able to
differentiate between those nodes exactly over the goal and those on the boundary
of the threshold defining when the goal is considered reached. In this way, for paths

with similar lengths, those ending right over the goal are prefered.

78

Each time a sample a(i) is added to the tree, a trajectory to the goal is generated
and evaluated for collision with obstacles. If the trajectory results to be collision-free,
then we have found a path that guides the vehicle from the initial condition to the
final goal point along the feasible space Cjye., therefore solving the motion planning
problem. However, we are interested in finding a very efficient trajectory satisfying
the feasibility problem and not just any trajectory.

For this reason, every time a new feasible solution is found, the estimates of the
upper bound on the cost-to-go of the nodes in the path from the newly added node to
the root of the tree are updated. To update these costs we traverse the tree backward
toward the root. At each node we compare the old upper bound on the cost-to-go
with the new cost resulting from the newly found trajectory. If the new cost is lower
than the old one, we update the upper bound and continue the process from the
parent. Otherwise, the process stops, indicating that there exists another subtree
from the parent node that presents a lower upper bound on the cost-to-go.

The upper bound on the cost-to-go is the cost used to choose the shortest trajec-
tory that reaches the goal after a feasible trajectory has been found. Before a feasible
trajectory is found, the lower bound is used, and the search for the best trajectory
follows an essentially greedy approach. Among the trajectories that have terminal
nodes within a small distance from the terminal node that is the closest in terms of
lower bound to the goal, the trajectory with the smallest penalty due to obstacles
and deviation from the lane center is chosen as the best alternative. This approach

maximizes exploration while still keeping the vehicle safe from collisions.

4.7 Construction of a Safe and Rich Tree

4.7.1 Improving the Richness of the Tree

Consider the tree at some point in time. The tree is composed of two different types

of nodes, stopping nodes and intermediate nodes, which are defined as follows.

Definition 4.7.1 (Stopping node). A stopping node is defined as any node where a

79

given trajectory ends and where the state corresponds to zero speed or the vehicle

being completely stopped.

Definition 4.7.2 (Intermediate node). An intermediate node is defined as any node
along a given trajectory and where the state corresponds to the vehicle being in

motion.

Given these definitions, we can now proceed to discuss what happens when a
sample is added to the tree.

Suppose that a new sample has just been added to the tree as a node. Each node
that was formerly a sample by construction brings the vehicle to a complete stop. In
this way, the tree has numerous nodes that ensure that the vehicle will eventually
reach a safe state where it is completely stopped, as opposed to making the car follow
a path where it is not known when and if the vehicle will be able to eventually come
to a complete and safe stop. Stopping nodes, however, are not considered as potential
connection points for the samples. This is because it would be very inefficient if the
vehicle stopped periodically along a given trajectory when it is not required to do so.
As a result, we need to generate other nodes in the tree to which samples could be
connected to.

The trajectory spanning between the newly added stopping node and its parent
can be split into n > 1 segments where the breakpoints are intermediate nodes and the
endpoint is the stopping node. Because the vehicle is in motion along the trajectory,
the intermediate nodes are the ones made available as potential connection points to
the samples during future tree expansion steps. In the implementation of the RRT
Algorithm for the DUC the number n of intermediate nodes was fixed and set to
n = 4 for every trajectory (unless it was too short, in which case the number of
intermediate nodes added was less or zero). '

In the RRT approach presented in [25], if the propagated trajectory was deter-
mined to be colliding with an obstacle, then the entire trajectory was discarded. On
the other hand, in the Robust RRT algorithm, if the last portion of a propagated

trajectory is found infeasible because of collision with an obstacle, then the feasible

80

portion of the trajectory is still added to the tree. The point of the trajectory before
collision with the obstacle will be added to the tree as a node and called an unsafe

node, defined next.

Definition 4.7.3 (Unsafe node). An unsafe node is defined as any node where a given
trajectory ends but where the state of the vehicle at that node does not correspond

to zero speed and consequently the vehicle is in motion.

By keeping the feasible portion of an overall infeasible trajectory, this method
avoids wasting the computation time spent in sampling the space, propagating, and
evaluating for collisions, and contributes to making the tree richer as well since the
feasible portion of the path up to the obstacle is kept. The unsafe node might be
later marked as a normal safe node if a safe trajectory ending in a stopped vehicle
configuration is later connected to the node. When selecting the best trajectory to
send to the controller (refer to line 24 in Algorithm ??), the unsafe nodes are excluded.
Therefore, although unsafe nodes contribute to building a rich tree that explores the

space as much as possible, the safety of the vehicle is never compromised.

4.7.2 Safety as an Invariant Property

Ensuring the safety of the vehicle is a key feature of the Robust RRT algorithm,
given that it was designed to plan in dynamic and uncertain environments. Before

proceeding any further, we need to define a safe state.

Definition 4.7.4 (Safe state). A given state is defined as a safe state if the vehicle
can remain in that state for an indefinite period of time while avoiding collisions with

obstacles and without violating the rules of the road.

In this definition, both static and moving obstacles are considered, where the
latter are assumed to maintain their paths at the instance in time the given vehicle
state was declared to be safe. In particular, safe states are such that the vehicle is
stopped outside a non-restricted region as defined in Section 4.5.1 (e.g., outside of

intersections). More general notions of safe states are available, for example, in [25,

81

61]. Having given the definition of a safe state, we can now state that of a safe

trajectory.

Definition 4.7.5 (Safe trajectory). A trajectory is said to be safe if it terminates in

a safe state.

In the Robust RRT algorithm only predicted trajectories that are safe can be
selected for execution. In other words, the ability to eventually come to a safe stop is
maintained as an invariant, by requiring that any trajectory that is executed brings
the vehicle to a complete stop. The existence of the stopping nodes guarantees that
there is always a feasible way to come to a safe stop when the car is moving. In other
words, unless there is a safe stopping node at the end of the chosen trajectory, the
vehicle will not start executing it.

It should be noted that this safety guarantee applies if and only if there is no
unexpected change in the surrounding environment. In the eventual case that this
happens and all previously safe paths become infeasible, the motion planner will
search for a new feasible path. If none is found, then the planner will command an
emergency braking maneuver to the controller in order to bring the car to a stop as

fast as possible.

4.7.3 Safe Maximum Speed and Lateral Acceleration

The speed limit as determined by a speed sign might be dangerous if the road presents
tight curves or if its configuration cannot be properly sensed for any reason. As a
result, the determination of the maximum speed at which the vehicle should travel
along a given road section follows a special procedure with the objective of ensuring
safety at all times. The maximum speed that the vehicle can reach at a given point
along its trajectory is depends on the maximum speed v,,,, that is assigned to the
space sample (i) used in the propagation. This vy,,, is determined as the minimum

of three quantities:

1. The speed limit from corresponding segment of the original Route Network

Definition File (RNDF),

82

2. The speed limit that arises from a bound on lateral acceleration, and
3. The speed limit that arises from a bounded deceleration constraint.

The lateral acceleration constraint is based on an estimate of the curvature of the
road and forces the vehicle to slow down appropriately in turns. To estimate this
curvature easily, we consider the radius r of the unique circle that passes through
the current vehicle location and the goal and is tangential at the vehicle location
to the vehicle direction (heading). We bound the lateral acceleration of the vehicle
to a. =~ 0.5 m/s? and not less to give the vehicle enough agility to be able to avoid
obstacles in curved segments of the course. With these values known, the maximum
safe speed based on the lateral acceleration constraint that might be assigned to any
sample a(3) is

VUmaz = \/ QcT, (410)

where a, = 0.5m/s? is the maximum lateral acceleration allowed and r is the radius
of the circle.

The bounded longitudinal deceleration constraint is set to 6 m/s2. As a result
of this limit, for the particular implementation of the algorithm in the DUC, the
maximum safe speed was capped to 25 mph. The purpose of this limit was to enhance
the vehicle safety by reducing the potential braking distance in case an unexpected
obstacle or perception problem arose at high speed. At 30 mph with a deceleration of
6m/s? the braking distance is 15.0m, whereas if the speed of the vehicle is reduced to
25 mph, that distance reduces to 10.4m. This is a decrease greater than 30 %. Based
on this result, it was decided that the corresponding increase in safety in case of poor
sensing information outdid the resulting increase in travel time, and the maximum
speed that the vehicle could reach during the race was set to 25 mph.

The maximum safe speed based on the lateral acceleration given to each sample
does not guarantee that the vehicle will never exceed that value. The result of the
calculation performed is not an upper bound, and moreover the road can certainly
have tight turns between the current location of the vehicle and the goal, particularly

if they are far from each other. The objective of limiting the speed at the sampling

83

level is to avoid having speed values that are much higher than those achievable by
the vehicle, but not to guarantee safety. As a result, an extra measure is taken at the
trajectory propagation level to guarantee that the lateral acceleration of the vehicle
does never result in rollover.

During the simulation of the vehicle motion, if the lateral acceleration exceeds a
pre-specified limit set to a,,,, = 4 m/s?, the propagation is stopped and returns in-
feasibility. In this case, repropagation occurs using the same controller reference path
but lowering the speed limit to 6% of the original value and increasing the maximum
lateral acceleration limit to a,,,, = 4.7m/s?. The maximum lateral acceleration value
is set lower during the regular propagation step in order to decrease the probability
that the limit could be exceeded again during the repropagation step. If the lateral
acceleration still exceeds its limit during repropagation, then that sample is discarded.
In this way, the vehicle is guaranteed to never execute a trajectory that could exceed

the specified maximum lateral acceleration.

84

Chapter 5

Robust RRT Evaluation

This chapter discusses the effectiveness of the Robust RRT algorithm based on the
analysis of both simulation and real data collected during the 2007 DARPA Urban
Challenge. Robust RRT was implemented as the motion planner for Talos, the robotic
Land Rover LR3 that was MIT’s entry in the Challenge [52].

The planning and control system architecture of Talos is presented in Figure 5-1.
The motion planner computes a path to reach a goal location, which is specified by
a higher-level route planner (the Navigator). This path must avoid collisions with
static obstacles and other vehicles, as well as abide by the rules of the road. As with
any sampling-based motion planning approach, collision detection and evaluation is
performed externally to the planning algorithm (the Drivability Map). The output
of the motion planner is in turn fed to a low-level controller, which interfaces directly
to the vehicle. The low-level controller is responsible for the execution of the motion
plan.

It is interesting to note that Talos used a single motion planner for the entire race.
To the author’s best knowledge, MIT was the only participating team in the DUC
that used a single planner for all the different driving scenarios encountered during
the race. Being able to use a single planner given the nontrivial differences in the
characteristics of the varied scenarios encountered during urban driving shows the

flexibility and the extensibility of the Robust RRT motion planning algorithm.

85

 feasibility,
Drivability Map risk
(collision

detection)

Navigator
(route planning)

reference path

TS vchicle pose |
(vehicle state
estimation)

gas/brake and
steer commands

Land Rover LR3

Figure 5-1: Planning and control system architecture.

5.1 Simulation Data

The robust RRT algorithm has been tested extensively in simulation early on in the
program and then on the vehicle itself. This enabled the team to achieve a level
of code stability before the algorithm was tested on the car, thus cutting testing
time and costs as well as increasing safety both for the operators and the testing
platform. After the Urban Challenge competition, we used simulation to evaluate the
performance of the algorithm on more extreme cases of envir;mmenta,l structure than
those encountered during the race. The next section presents the simulations that
were performed and discusses the performance of the Robust RRT algorithm for each

scenario.

5.1.1 Simulated Scenarios

There are six different test scenarios that were analyzed: full parking lot, blocked
road, rectangular track with obstacles, dense obstacle field, narrow passage, and dead

end. The full parking lot, blocked road, and rectangular track scenarios evaluate the

86

peformance of the planner in a urban setting and its ability to plan in an obstacle
field, to perform U-turns, and to plan along regular roads. On the other hand,
the dense obstacle field, narrow passage, and dead end scenarios deviate from those
encountered in a urban setting. These scenarios have the purpose of evaluating the
flexibility /performance of the algorithm (essentially unmodified from the race) in
planning over non-urban environments. Any modification made to the algorithm
had the goal of facilitating the analysis of the particular algorithm property being
evaluated and will be described along with the description of the particular test that
was conducted.

The properties of the goal are common among all the test scenarios presented in
this chapter. The goal is represented by a green arrow over a dark green rectangle.
The arrow indicates the direction that the car needs to have when it reaches the goal
location. The goal has a zero speed, and as a result the car will come to a complete
stop when reaching the goal. The car is considered to have reached the goal when
the vehicle has covered at least half of the area of the rectangle determining the goal.
A hard constraint of 30° is used as the tolerance for the direction of the car at the
goal. In other words, any path that arrives at the goal with a direction of £30° with
respect to the direction of the goal is considered as reaching the goal.

The visualization of the tree is also common among all test cases. A given tree
might display seven different colors: orange, purple, yellow, green, light brown, red,
and cyan. Orange edges correspond to the tree of reference paths for the controller,
purple edges correspond to paths that reach the target, yellow edges to paths that
within 10% of the cost of the best available path, green indicates the predicted tra-
jectory of the car, light brown represents paths that are safe but that do not reach
the target, red represents unsafe paths, and finally cyan indicates the paths that are
to be traveled in reverse.

The implementation of the Robust RRT algorithm used in Talos is capable of
performing advanced driving maneuvers as specified by the DUC requirements. These
advanced maneuvers include navigating and parking in a potentially full parking lot

and performing a U-turn maneuver in case the lane of travel were blocked. It is

87

important to note that the same motion planning algorithm is used even for the

generation of this special set of maneuvers.

Scenario 1: Full Parking Lot

Figure 5-2 shows Talos driving through one of the parking lots of the UCE course
with several obstacles simulating parked cars. Each of the obstacles is placed over
a parking space and occupies it completely, and therefore measures approximately
3 m wide by 5 m long. Talos’ initial condition is next to the right boundary of the
zone with a direction of 180° with respect to the horizontal. At the beginning of the
simulation, as shown in Figure 5-2a, several paths successfully reach the goal while
still other paths explore the space around and between obstacles. As Talos progresses
through the parking lot, as can be seen in Figure 5-2b, the path that the car follows is
refined. There are also paths that reach the goal by going to the right of the obstacles,
although these paths are not selected as best because they are longer.

Figure 5-3 shows the distribution in the length of the paths for the parking sce-
nario. The number of trials was 20. The length of the obstacle-free minimum-length
Dubins path between the car initial location and the location of the goal for this
scenario is 55.2197 m. The figure shows that in 85% of the trials the path length
was between 55-60 m and therefore no more than 8.7% longer than the obstacle-free
path. These results indicate that the Robust RRT algorithm produces paths that are

efficient in length and have small variability range.

88

(a) Beginning of the simulation.

(b) Approaching the first row of parked cars.

Figure 5-2: Robust RRT algorithm planning in a full parking lot. Figures show the
evolution of the tree as Talos drives towards the parking lot exit.

89

percentage [%]

100

90

80

70 +

60 A

50 {

40 |

30 A

20

10

55-60 60-65 65-70

Figure 5-3: Path length distribution while planning in a full parking lot.

90

Scenario 2: Blocked Road

Figure 5-4 shows a sequence of instances corresponding to Talos performing a U-
turn maneuver. The road where the maneuver takes place corresponds to one of
the roads in the UCE course and is 10 m wide. The road is two lanes wide, but
Talos is restricted from proceeding forward by the obstacles in both lanes in front
of the vehicle (red rectangles in the road). In Figure 5-4a, Talos reverses away from
the obstacles blocking the road and tries to move as close as possible to the right
boundary of the road. As can be seen, even at this early stage, there are several
trajectories that reach the goal (opposite lane, behind Talos), although the tree has
still not grown very rich. In Figure 5-4b, Talos steers in the left direction as much as
possible and starts to move forward to perform a U-turn. By this time, the tree has
grown very rich and covers almost the whole road, with a large number of trajectories
reaching the goal. In Figure 5-4c, Talos is already driving along the opposite lane of
travel.

Notice the elegance of the path followed by the car during the execution of the
U-turn maneuver. The particular width of this road allowed the planning of a U-turn
in just two maneuvers. When the dimensions of the road are such that they allow the
execution of a U-turn in just two segments, the two-segment maneuver is preferred
and selected against a three-point turn maneuver for two reasons. First, the U-turn
consisting of just two segments is shorter and therefore faster to execute. Second,
during a three-point turn maneuver, the car needs to come to stop and change gears
an additional time, which further increases the length of time spent executing the
three-point turn. Therefore, the U-turn consisting of just two segments is faster and

therefore preferred when the dimensions of the road allow it.

91

(

a) Beginning of the U-turn.

Figure 5-4:

Robust RRT algorithm planning a U-turn maneuver.

(b) Starting the forward leg. (¢) Finishing the U-turn.

92

Scenario 3: Rectangular Track with Obstacles

The Robust RRT algorithm yielded very good results for driving around a circuit
where in addition to lane following, several passing maneuvers and a U-turn were
also involved. Figure 5-5 shows the trace of the path taken by the vehicle. The
test consisted in two clockwise and two counter-clockwise loops around a rounded
rectangle. Three stationary cars were distributed along the course on both directions.
One of these cars was parked over a very tight turn (bottom left), requiring a difficult
passing maneuver from the passing vehicle. Even so, the paths indicate that Talos
was able to execute the maneuver repeatably. In order to switch from the clockwise
to the counter-clockwise looping direction, a U-turn was needed at one of the stub
roads.

Figure 5-5 shows that as the vehicle repeated a given loop in the course, both
paths are very close to each other. They are not identical as the paths are efficient
but not optimal, even though arguably a human driver would probably not produce
paths that are as similar to each other, particularly in passing when there is no lane
center for the driver to follow. Notice how the turns are not very rounded, and
nonetheless the paths described by the vehicle feature very smooth turns. This is
possible thanks to the availability of a rich tree that covers most of the lane without
following the piecewise linear characteristics of the road. When passing obstacles, the
motion-planning algorithm produces paths that start the passing maneuver and come
back to the lane at safe distances from the 6ar being passed. Even in the case of the
passing maneuver along the turn, the paths taken do not come close to the obstacle.
Having no lane constraints at the end of the stub road, the planning algorithm easily
finds a simple U-turn maneuver that positions the vehicle in the opposite lane for it

to move in a counter-clockwise direction.

93

Figure 5-5: Talos went around a rectangular track four times, passing stationary vehicles and performing a U-turn.

Scenario 4: Dense Obstacle Field

The next set of tests were designed to analyze the length of the paths generated by
the algorithm in a very dense obstacle field. Given that Robust RRT is a sampling-
based motion planning algorithm that does not run any optimization routines, it is of
great interest to determine whether the paths generated are of efficient length or not.
The tests were run in the scenario shown in Figure 5-6. Each obstacle in the field
has a size representative of that of a big car and is 2.5 m wide and 5 m long. The
location of the goal is the same for all tests, whereas the initial condition of Talos will
vary among tests and will be described as each particular test is presented. The tests
analyze the length of paths for different initial conditions of the vehicle, where the
initial orientation and location of the vehicle in the scenario are varied. In addition,
a sensitivity analysis of the hazard weight factor described in Section 4.5.2 is also

performed and recommendations for the value of the weight are provided.

Figure 5-6: The obstacle avoidance scenario used to evaluate the length of paths for
different initial conditions.

95

Before presenting each particular test, it is convenient to highlight important prop-
erties of the paths generated by the Robust RRT algorithm particularly as compared
to the standard RRT algorithm. The particular findings corresponding to a given
test in the set will be explained when that test is presented. In contrast to the dis-
advantages commonly attributed to RRT-based algorithms [21], the paths generated
by Robust RRT are smooth and not squiggly, meaning that the paths do not bear
excessive waviness throughout their length. This desirable behavior of the generated
paths results from the closed-loop approach used in the generation of paths as well
as the efficient heuristics used when connecting samples to the tree. Nonetheless, the
Robust RRT algorithm does not loose the rapid exploration capabilities that is one
of the main qualities of RRT. In the tests that follow, it can be seeh that the tree
covers most of the free space early in the planning process and reaches to far ends of

the field.

96

Scenario 4.1: Dense Obstacle Field, 0° Initial Orientation

The first test in this set corresponds to an initial condition with the vehicle located
next to the left boundary of the zone with a direction of 0° with respect to the
horizontal and is represented in Figures 5-7 and 5-8. Figure 5-7a shows this initial
condition. Figures 5-7b and 5-8a show the evolution of the tree as Talos drives towards
the goal. In Figure 5-7b, several paths come very close to the goal but none of them
reach it because they do not satisfy the direction threshold constraint. Then, the
path chosen as best and followed by the vehicle is that which comes closest to the
goal but at the same time does not come excessively close to obstacles. Given this
best estimate of how to proceed, Talos moves along the path diagonally to the left.
About half way between the snapshots shown in Figures 5-7b and 5-8a, a path that
reaches that goal by exploiting the free space along the diagonals is found and starts
being followed by the vehicle. Figure 5-8a shows numerous paths that successfully
reach the goal and will later be refined as the vehicle gets closer to the goal. At
one point Talos turns right and reaches the goal by driving essentially straight to it.
Figure 5-8b shows the entire path followed by Talos, which had a length of 95.44 m.

Figure 5-9 shows the distribution in the lengths of the paths for the same initial
condition. The number of trials was set to 100. The length of the minimum-length Du-
bins path for this initial condition and scenario but without obstacles is 80.9028 m.
This value would suggest that the optimal path length in the presence of obstacle will
be around 85 m, since given the location of the obstacle the vehicle must drive around
some of them to avoid a collision. According to Figure 5-9, more than 70% of the
paths have a length of 110 m or less, or equivalently, are no more than 30% longer
than the optimal path. Overall, the results show that the paths have a length that
is efficient. In particular, one should consider that the paths that are selected as
best and followed by the vehicle are not the shortest paths found but those that are

relatively short but also safe by maintaining a prudent distance from obstacles.

97

(b) Early in the planning process

Figure 5-7: Planning through a dense obstacle field with an initial condition corre-
sponding to far left and 0°.

98

=N

B 6

(a) Final stages of the planning process.

L
® @

€
0O o

0

10

(b) Talos having reached the goal.

Figure 5-8: Planning through a dense obstacle field with an initial condition corre-
sponding to far left and 0°.

g9

90

80

70

60

B e e - R

percentage [%]

40

30

20

10

0,_._-, . ,l,.;_,._—_,‘_._,______,___—,,____,___—.,.1

80-90 90-100 100-110 110-120 120-130 130-140 140-150 150-160 160-170 170-180 >180

Figure 5-9: Distribution of path lengths for the initial conditions corresponding to
far left and 0°.

100

Scenario 4.2: Dense Obstacle Field, 90° Initial Orientation

The second test in this set corresponds to an initial condition with the vehicle in the
same location as before but with a direction of 90° with respect to the horizontal and
is represented in Figures 5-10 and 5-11. Figure 5-10a shows this initial condition.
Figures 5-10b and 5-11a show the evolution of the tree as Talos drives towards the
goal. In Figure 5-10b, some paths come very close to the goal but they fail to reach it
because they do not satisfy the direction threshold constraint. Note that, as a result,
the tree is very expansive as the algorithm explores almost the entire zone looking for
a feasible solution. Even without a feasible path to the goal it is apparent that Talos
is heading towards the goal along a reasonable path. In Figure 5-11a, now further
into the planning process, several paths now successfully reach the goal. A path going
initially diagonally up and towards the goal and later diagonally straight to the goal
was found and therefore this path was selected as the best available route. Therefore,
even though the car was originally heading straight to the goal, it ended following the
path shown because that path satisfied the direction threshold constraint. Figure 5-
11b shows the entire path followed by Talos. Its length is 102.53 m.

Figure 5-12 shows the distribution in the lengths of the paths for this initial
condition. The number of trials was set to 100. The length of the minimum-length
Dubins path for this initial condition and scenario but without obstacles is 83.6 m.
One might expect that the optimal path length in the presence of obstacles could be
considerably larger than this value, as the car must avoid several obstacles in order to
reposition itself and navigate towards the goal. The figure shows that more than 80%
of the paths have a length of 120 m or less. Considering the numerous obstacles and
the adverse initial orientation of the car (it does not even face towards the goal), these
paths appear to be relatively efficient. For example, the length of the path in Figure 5-
11b is 102.5 m, and it is clear that it does not wander around obstacles aimlessly.
We can note that the harder initial condition shifts the distribution towards the right
as compared to the previous cases, which indicates that, on average, the paths have

slightly longer length.

101

(b) Early in the planning process.

Figure 5-10: Planning through a dense obstacle field with an initial condition corre-
sponding to far left and 90°.

102

(b) Talos having reached the goal.

Figure 5-11: Planning through a dense obstacle field with an initial condition corre-
sponding to far left and 90°.

103

100 e e S o e S e e

80 g O e S i

70 S P S e

percentage [%]

0 —

. S |

{

20 +—————J. e !
10 o |
0 . . . = ~g.-___ﬂ_,_,~__,_,._M—W.,.,,N..—...rm..__“_.,_ﬂrM,m-- e i

80-90 90-100 100-110 110-120 120-130 130-140 140-150 150-160 160-170 170-180 > 180

Figure 5-12: Distribution of path lengths for the initial conditions corresponding to
far left and 90°.

104

Scenario 4.3: Dense Obstacle Field, 270° Initial Orientation

The third test in this set corresponds to an initial condition with the vehicle located
in the same position as the previous two tests but now with an initial direction of
270° with respect to the horizontal. This test is represented in Figures 5-13 and 5-
14. Figure 5-13a shows this initial condition. Figures 5-13b and 5-14a show the
evolution of the tree as Talos drives towards the goal. In Figure 5-13b, as in the
two previous tests, several paths come very close to the goal but still none of them
reach it because of not satisfying the direction threshold constraint. Notice that the
tree covers a substantial portion of the free space and reaches to far and intricate
places. In Figure 5-14a now numerous paths successfully reach the goal. A path was
found that satisfied the direction threshold constraint by going up diagonally and
then coming back in the opposite diagonal direction. As a consequence, the car veers
to its left before an obstacle and starts following this path. Figure 5-14b shows the
entire path followed by Talos, which has a length of 98.7 m. We will see that this path
happened to be very short based on the distribution of path lengths to be discussed
next.

Figure 5-15 shows the distribution in the lengths of the paths for these initial
conditions. The number of trials was set to 100. The length of the minimum-length
Dubins path for this initial conditions and scenario but without obstacles is 84.0 m.
It is impossible for the vehicle to follow a path even close to the obstacle-free path,
as there are numerous obstacles between the initial position of the vehicle and the
goal. Consequently, we should expect the optimal path length in the presence of
obstacles to be noticeably larger. The figure shows that more than 80% of the paths
are shorter than 140 m. The path in Figure 5-14b has a length of 98.7 m and is
very efficient. Most of the paths have a length in the range 110-120 m, which is only
10-20% longer than the very efficient path shown. Note that the initial orientation in
this test, where the car faces in the same direction of the goal but is located behind
it, is the hardest among the tests that have been considered. The results clearly show

the corresponding increase of the path lengths.

105

(a) Initial condition of Talos.

(b) Early in the planning process.

Figure 5-13: Planning through a dense obstacle field with an initial condition corre-
sponding to far left and 270°.

106

(a) Final stages of the planning process.

(b) Talos having reached the goal.

Figure 5-14: Planning through a dense obstacle field with an initial condition corre-
sponding to far left and 270°.

107

100

90

80 +- PRSP

70

60 S —

50 e e e S ————

percentage [%]

40

30

20

e , | | B e N

80-90 90-100 100-110 110-120 120-130 130-140 140-150 150-160 160-170 170-180 >180

Figure 5-15: Distribution of path lengths for the initial conditions corresponding to
far left and 270°.

108

Scenario 4.4: Dense Obstacle Field, Different Initial Location

The fourth test in this set corresponds to an initial condition with the vehicle located
next to the top boundary of the zone with a direction similar to that of the goal.
The purpose of this case is to serve as a control case showing that a different initial
condition of the vehicle would still produce similar distributions to the ones already
found. The initial results are in Figures 5-16 and 5-17. Figure 5-16a shows this initial
condition. Figures 5-16b and 5-17a show the evolution of the tree as Talos drives
towards the goal. For this case, even early in the planning process several paths
already reach the goal, as shown in Figure 5-16b. As time progresses and Figure 5-
17a shows, the paths that reach the goal are further refined and the vehicle follows a
straight line path towards the goal. Figure 5-17b shows the entire path followed by
Talos. The length of this path is 74.5 m.

Figure 5-18 shdws the distribution in the lengths of the paths for these initial
conditions. The number of trials was set to 50. The length of the minimum-length
Dubins path for this initial conditions and scenario but without obstacles is 73.0 m.
The figure shows that more than 90% of the paths have a length of 80 m or less. In
other words, more than 90% of <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>