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Abstract

Preprojective algebras Ilg of quivers @ were introduced by Gelfand and Ponomarev
in 1979 in order to provide a model for quiver representations (in the special case of
finite Dynkin quivers). They showed that in the Dynkin case, the preprojective alge-
bra decomposes as the direct sum of all indecomposable representations of the quiver
with multiplicity 1. Since then, preprojective algebras have found many other im-
portant applications, see e.g. to Kleinian singularities. In this thesis, I computed the
Hochschild homology/cohomology of I1g over C for quivers of type ADET, together
with the cup product, and more generally, the calculus structure. It turns out that
the Hochschild cohomology also has a Batalin-Vilkovisky structure. I also computed
the calculus structure for the centrally extended preprojective algebra, introduced by
P. Etingof and E. Rains.
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Chapter 1
Introduction

Let Q be a ﬁhite quiver with vertex set I, and let us write a € @ to say that a is an
arrow in Q. Let P = CQ be the path algebra of the double Q of the quiver Q (which
is obtained from @ by adding a reverse arrow a* for any arrow a € Q). We define
the preprojective algebra Ilg to be the quotient g = P/()_ [a,a*]). Let e;, ¢ € I be
the trivial path, starting and ending at the vertex 7. We ((ileef?ne the ring R = € Ce;.
Then Ilg is naturally an R-bimodule. tEI

Preprojective algebras of quivers were introduced by Gelfand and Ponomarev in
1979 in order to provide a model for quiver representations (in the special case of
finite Dynkin quivers). They showed that in the Dynkin case, the preprojective
algebra decomposes as the direct sum of aH indecomposable representations of the
quiver with multiplicity 1. Since then, preprojective algebras have found many other
important applications, see e.g. to Kleinian singularities [3].

Ironically, it is exactly in the case of finite Dynkin quivers, originally considered |
by Gelfand and Ponomarev, that preprojective algebras fail to have certain good
properties enjoyed by the preprojective algebras of‘other coﬁnected quivers. In the
non-Dynkin case, Il is. Koszul and has cohomological dimension 2. The situation is
completely different in the case of Dynkin quivers. The preprojective algebras of these
quivers are only almost Koszul and cohomology groups H H'(Ilg) # 0 for infinitely
many 1. - |

As a result of the Schofield resolution [22], the Hochschild cohomology of Il is
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periodic with period 6. The Hochschild cohomology ring was computed in [12] for
quivers of type .A. In this thesis, we do the computations for the quivers of type D
and F over a field of characteristic zero which yields the complete description of the

Hochschild cohomology ring of any quiver (over a field of characteristic zero).

We compute the Hochschild cohomology and homology structure in Chapter 2.
For the computation of the additive structure, together with the natural grading
(all arrows have degree 1), we use the periodic Schofield resolution (with period 6)
and consider the corresponding complex computing Hochschild homology. Using this
complex, we find the possible range of degrees in which each particular Hochschild
homology space can sit. Then we use this information, as well as the Connes complex
for cyclic homology and the formula for the Euler characteristic of cyclic homology to
find the exact dimensions of the homogeneous components of the homology groups.
Then we show that the same computation actua.lly yields the Hochschild cohomolqu

spaces as well. This work generalizes the results from [12].

The method to compute the cup product is the same one as in [12]: via the isomor-
phism HH(llg) = Hom(¥'Il, 1) (where for an Ily-bimodule M we write QM for
the kernel of iﬁs projective cover) we identify elements in H H*(Ilg) with equivalence
classes of maps Q(Ilg) — Ily. For [f] € HH“(HQ) and [g] € HH(Ily), the product
is [f]lg] := [foS¥g] in H H**(Ilg). All products HH'(Ilg)x HHI(Ilg) — HH*(Ilg)
for 0 £ @ < j <5 are computed. The remaining ones follow from the perodicity of

the Schofield resolution and the graded commutativity of the multiplication.

The Hochschild cohomology ring of any associative algebra, together with the
Hochschild homology, forms a structure of calculus. This was proved in [6]. In
Chapter 3, we compute the calculus structure for the preprojective algebras of Dynkin
quivers over a field of characteristic zero, using the Batalin-Vilkovisky structure of
the Hochschild cohomology. Together with ﬁhe results of [2], where the Batalin-
Vilkovisky structure is computed for non-ADE quivers (and the calculus can be easily
computed from that), this work gives us a complete description of the calculus for
any quiver. First, we compute the Connes differential on Hochschild homology by

using the Cartan identity. Since it turns out this differential makes the Hochschild
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cohomology ring a Batalin-Vilkovisky-algebra, this gives us an easy way to oompUte
the Gerstenhaber bracket and the contraction map. Then we use the Cartan identity

to compute the Lie derivative.

- Another bad property of preprojective algebras in the case of finite of Dynkin
quivers is that their deformed versions are not flat. Motivated by this, the paper [10]
introduces central extensions of preprojective algebrés of finite Dynkin quivers, and
shows that they have better properties, in particular their deformed versions are flat.
The following paper [9] computes the center Z and the trace space A/[A, A] for the
deformed preprojective algebra A; the answer turns out to be related to the structure

of the maximal nilpotent subalgebra of the simple Lie algebra attached to the quiver.

In Chapter 4, we generalize thé results of [9] by calculating the additive structure of
the Hochschild homology and cohomology of Ilg and the cyclic homology of II, and
to describe the universal deformation of IIg. Namely, we show that the (co)homology
 is periodic with period 4, and compute the first four (co)homology groups in each

.case.

Quivers of type T are introduced in the paper [20]. It turns out that preprojectve
algebras of T-quivers enjoy similar properties as in the ADE case, for example their
Hilbert series have the form A(t) = (1 + Pt*)(1 — Ct 4+ #?)~', where h is the Coxeter
number and P the permutation matrix corresponding to some involution of the vertex
set 1. In Chapter 5, we compute the calculus structure of the preprojective algébra,
together with the Hochschild cohomology and homology structure. It turns out that
in the T-case we have a projective resolution of the preprojective algebra which is
very similar to the Schofield resolution in the ADE-case which is also periodic with
period 6. And the Hochschild cohomology strucfure, together with its cu p product,
for quivers of type T, is very similar to the one for type A,,. But unlike the ADE-case,
where HH;(Ilg) & HH*™?"¥(Ilg), we have H H;(Ilg) & H HO™+5-i(I]).

19



1.1 The preprojective algebra

Given a quiver (), we define the preprojective algebra Il to be the quotient of the
path algebra Py by the relation )" [a,a*] = 0.

Given amonomial = a;as - aeai € Py, we write 2* to be the monomial a;, - - - a}aj,
and we extend this definition linearly to all elements in Pp.

We introduce a grading, such that each trivial path has degree 0 and each arrow

in Q has degree 1.

From now on, we assume that @ is of ADE type, and we write A = Il.

1.1.1 Graded spaces and Hilbert series

Let M = @ M(d) be a Z,-graded vector space, with finite diménsional homogeneous
d>0

subspaces. We denote by M [n] the same space with grading shifted by n. The graded
dual space M* is defined by the formula M*(n) = M(—n)*.

Definition 1.1.1.1. (The Hilbert series of vector spaces)
Let M = @ M(d) be a Z,-graded vector space, with finite dimensional homogeneous

d>0
subspaces. We define the Hilbert series hy(t) to be the series

has(t) = idimM(d)td.
d=0
Definition 1.1.1.2. (The Hilbert series of bimodules)
Let M = € M(d) be a Z.-graded bimodule over the ring R, so we can write M =
D M. das'e define the Hilbert series Hp(t) to be a matriz valued series with the
Zjnetlries

Hy(t);; =Y _ dim M(d)s ;2%

d=0
1.1.2 Frobenius algebras and Nakayama automorphism

Definition 1.1.2.1. Let A be a finite dimensional unital C—algebra, let A* = Homge (A, C).
We call it Frobenius if there is a linear function f : A — C, such that the form
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(z,y) = f(zy) is nondegenerate, or, equivalently, if there exists an isomorphism
¢: AS A* of left A—modules: given f, we can define ¢(a)(b) = f (ba), and given ¢,
‘we define f = ¢(1).

Remark 1.1.2.2. If f is another linear function satisfying the same properties as f
from above, then f(z) = f (ma) for some invertible a € A. Indeed, we define the form
{a,b} = f(ab). Then {—,1} € A*, so there is an a € A, such that ¢(a) = {—,1}.

Then f(x) {z,1} = ¢(a)(z) = f(za).

Definition 1.1.2.3. Given a Frobenius algebra A (with a function f inducing a bi-
linear form (—,—) from above), the automorphism 7 : A A defined by the equation
(z,y) = (y,n(x)) is called the Nakayama automorphism (corresponding to f).

Remark 1.1.2.4. We note that the freedom in choosing f implies that 7 is uniquely
determined up to an inner a,utomorphlsm Indeed, let (x) = f(za) and define the

b111near form {a,b} = f(ab). Then

{z,y} = f(zy) = f(@ye) = (2,ya) = (ya,n(x)) = f(yan(z)a™'a)
= (y, an(z)a™").

1.1.3 Root system parameters

Let wp be the longest element, of the Weyl groﬁp W of Q. Then we define v to be the
involution of I, such that wy(a;) = —a,,(;) (where o is the simple root corresponding
to ¢ € I). It turns out that 7(e;) = e, ([22]; see [12]).

Let m, i =1,...,7, be the exponents of the root system attached to Q, enumerated
in increasing order. Let h = m, + 1 be the Coxeter number in Q, i.e. the order of a
Coxeter element in W.

Let P be the permutation matrix correspohding to the involution v. Let r, =
dimker(P — 1) and r_ = dimker(P + 1). Thus, r_ is half thé number of vertices
which are not fixed by v,and ry =7 —r_.

A is finite dimensional, and the following Hilbert series is known from [20, Theorem
2.3
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Hu(t) = (1+ Pt - Ct+¢)71. (1.1.3.1)

It turns out that the top degree of A is h — 2 (i.e. A(d) vanishes for d > h — 2),
and for the top degree A*P part we get the following decomposition in 1-dimensional

submodules:

AP = A(h—2) = (P eiA(h — 2)e.q) (1.1.3.2)

iel

It is known that A is a Frobenius algebra (see e.g. [12],[20]).

1.1.4 The symmetric bilinear form, roots and weights

We write a € @ to say that a is an arrow in Q. Let h(a) denote its head and t(a) its
tail, i.e. for a : ¢ — j, h{a) = j and t(a) = i. The Ringel form of Q is the bilinear
form on Z! defined by

(04; ﬁ) = Z ;B — Z dt(a)ﬁh(a)
iel a€Q

for a, B € Z'. We define the quadratic form g(a) = (o, o) and the symmetric bilinear
form (a,8) = (o, B) + (B, ). It can be shown that ¢ is positive definite for a finite
Dynkin ‘quiver Q.

We define the set of roots A = {a € Z|g(c) = 1}.

We call the elements of C! weights. A weight u = (u;) is called regular if the
inner product (i, @) # 0 for all & € A. We call the coordinate vectors ¢; € C’ the

fundamental weights and define p to be the sum of all fundamental weights.
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Chapter 2

Hochschild cohomology and
“homology of ADE quivers

2.1 The main results

2.1.1 Additive structure

Let U be a positively graded vector space with Hilbert series hy(t) = 5 2™

i,mi<%

Let Y be a vector space with dimY = ry —r_ — #{1 : m; = %}, and let K =
ker(P + 1), L = (&;|v(i) = i), so that dim K = r_, dim L = r, — r_ (we agree that
the spaces K, L,Y sit in degree zero).

The main results are the following theorems.
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Theorem 2.1.1.1. The Hochschild cohomology spaces of A, as graded spaces, are as

follows:

HH(A) = U[-2| @ L|h - 2,
HH'(4)=U[-2],

HEMA) = K[-2),

HE*(4) = K*[-,

HHY(A) = U*[-2],

HHY(4) = U*[-2] @ Y*-h — 2],
HHS(A) = Ul-2h — 9] @ Y[~h — 2,

and HH*"V(A) = HH'(A)[-2nh] Vi > 1.

Corollary 2.1.1.2. The center Z = HH°(A) of A has Hilbert series

hz(ty= Y ™24 (rp —r )2

i,m.i<%

Theorem 2.1.1.3. The Hochschild homology spaces of A, as graded spaces, are as

~ follows:

HHy(4) = R,
HHy(A) = U,
HHy(A)=U e Y[,
HHy(A) = U*[2h] @ Y*[h,
HHy(4) = U*[2H).
HHqy(4) = K*[2A),
HHy(A) = K[2H)],

24



(Note that the equality HHy(A) = R was established in [20]).

Theorem 2.1.1.4. The cyclic homology spaces of A, as graded spaces, are as follows:

HCy(A) = R,
HCy(A) = U,
HCy(A) = Y*[H),
HCy(A) = U*[2H],

HCy(A) =0,
HC5(A) = K[2h),
Hcﬁ(A) =0,

and HHﬁn.H(A) = HH,(A)[2nh] Vi>1.

The rest of this chapter is devoted to the proof of Theorems 2.1.1.1,2.1.1.3,2.1.1.4

2.1.2 Product structure

From Theorem 2.1.1.1, we already know the additive structure of HH *(A). As the
main result of this paper, we present the product structure in H H*(A). The rest of
the paper is devoted to this computation. Since the product HH*(A) x HH(A) —
HH*"(A) is graded-commutative, we can assume 7 < j here. ‘

Let (U[-2])+ be the positive degree part of U[—2] (which lies in non-negative
degrees).

We have a decomposition HH®(A) = C & (U[~2])+ ® L[—h — 2] where we have
~ the natural identification (U[-2))(0) = C. _

Let p=1€C cU [~2] ¢ HH°(A) (in lowest degree 0),
6o the corresponding element in HH'(A) (in lowest degree 0),
1o the dual element of 2y in U*[-2] C HH®(A) (in highest degree —4), i.e. ¥(2) = 1,
Co the corresponding element in U*[—2] C HH*(A) (in highest degree —4), that is
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the dual element of g, (o(6p) =1,

wo : HHY(A) — HH®(A) the natural quotient map (which induces the natural iso-
morphism U[-2] — U[-2h — 2]) and
¢ the quotient map L — Y induced by ¢ in Theorem 4.0.8.

Theorem 2.1.2.1. (The product structure in HH*(A) for quivers of type A, D and
E)

1. The multiplication by ¢o(z0) induces the natural isomorphisms
@i : HH'(A) — HH'"%(A) Vi > 1 and the natural quotient map wy. Therefore,
it is enough to compute products HH'(A) x HHI(A) — HH"(A) with 0 <
1<J <o,

2. The HHO(A)-action on HH'(A):
() (U[-2])s-action)

The action of (U[-2])+ on U[—2] C HH(A) corresponds to the multipli-

cation

U-2)+ xU[-2] — U[-2],

(u,v) — u-v

in HH®(A), projected on U[-2] C HH"(A).
(U[-2])+ acts on U*[—2] = HH*(A) and U*[-2] C HH®(A) the following

way:
U-2)+ xU'[-2] — U*[-2],
(u,f) = wuolf,
where (uo f)(v) = f(uv).

(U[-2])+ acts by zero on L[k — 2] C HH(A), HH?*(A), HH*(A) and
Y*[~h— 9] C HH5(A).
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(b) (L[h — 2]-action)
L[k — 2] acts by zero on HH*(A), 1 <1< 4, and on U*[-2] C HH5(A).
The L[h — 2]-action on HH®(A) restricts to

Lh—2]xY*[-h—2] — U*[-2],
(@y) = y((a))po.

8. (Zero products)
For quivers of type Aspy1, D, E, all products HHY(A) x HHY(A) — HH"i(A),
1<i<j<5, wherei+j > 6 ori,j are both odd are zero except the pairings

HHY(A) x HH%(A) — HHS(A)

and
HH5(A) X HH5(A) — HHIO(A).

For quivers of type Aqy, all producté HH'(A)x HH’(A) - HH"t(A), 1<i<

J <5, where i, are both odd are zero.
4. (HH'(A)-products)

(a) The multiplication
HH'(A) x HH*(A) = U[-2] x U*[-2] —» HH(4)
15 the same one as the restriction of
HH°(A) x HH®(A) — HH5(A)

on U[-2] x U*[-2].

(b) The multiplication of the subspace U[—-2], ¢ HH(A) with HH'(A) where

t=2,5 18 zero.
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(c) The multiplication by 0y induces a symmetric isomorphism
a: HH*(A) = K[-2] — K*[-2] = HH}(A).
On HH®(A), 1t induces a skew-symmetric isomorphism
B:Y*[-h—2] - Y[-h—2] C HH*(A),

and acts by zero on U*[-2] C. HH*(A). a and 8 will be given by explicit

matrices M, amd Mg later.
5. (HH?*(A)-products)

HH*(A) x HHX(A) — HHY(A),
(a)b) = <a')b>CO

is given by (—,—) = « where « is regarded as a symmetric bilinear form.

HH?*(A) x HH?*(A) — HH?®(A) is the multiplication
K[-2} x K*[-2] — HH’(A),

(@,y) = yla)to.

6. (HH(A) x HH3(A) — HH®(A))

The restriction of this product to

Y*[-h -2 xY*[-h-2] — HH"(A),

(a,b) — Q(a,b)pa(Co)

is given by Q(—,—) = —0B where (3 is regarded as a skew-symmetric bilinear

28



form.

The multiplication of the subspace U*[~2] C HH5(A) with HH5(A) is zero.
7. (Quivers of type Aan: Products involving U*[-2] ).

(a) ((U-)*[~2)-action,). |
(U-)*[-2] c HH*(A), i = 4,5 acts by zero on HHI(A), j = 2,3,4,5.

(b) Let us choose a nonzero (' € (U*?)*[—2] € HH*(A), and 2’ € U*?[-2} C
HH(4), let§ = 6,7’ € U®|—2] ¢ HHY(A) and o = 6o(’ € (U*P)*[~2] C
HH5(4). | |

i. HH*(A)x HH*(A) — HH®(A). The multiplication withv € HH?(A)

gives us a map

Uy =2l — U*[~2h-2],
¢ = y(v)eo(d),

wherey : HH%(A) — C is a linear function, given in Subsection 5.7.7.

ii. HH*(A) x HH%(A) — HH'(A). This pairing
K[-2} x U*[-2] = U[-2h — 2]
is the same as the corresponding pairing
HH*(A) x HHY(A) — HH“(A);

ii. HH3(A)x HH*(A) — HH"(A). The multiplication withw € HH3(A)
gives us a map
U*P)*[-2] — U™[-2h— 2],
¢ = ylam (w))po(@).
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iv. HHY(A) x HH4(A) — HH8(A) and HH*(A) x HHY(A) — HH%(A).
¢" gives us a nonzero v € HH8(A). Then ('i/alpha(v) € HH®(A).
HH*(A) annihilates (U_)*[-2] C HH%(A).

2.2 Hochschild (co)homology and cyclic homology
of A

2.2.1 The Schofield resolution of A

We want to compute the Hochschild (co)homology of A, by using the Schofield reso-
lution, described in [22].

Define the A—bimodule N obtained from A by twisting the right action by 7, i.e.,
N = A as a vector space, and Va,b € A,z € N : a-z-b = azn(b). Introduce the
notation ¢, = 1if a € Q, ¢, = —1 if a € Q*. Let z; be a homogeneous basis of A and
z} the dual basis under the form attached to the Frobenius algebra A. Let V be the
bimodule spanned by the edges of Q. We start with the following exact sequence:

0> Nh > ARRAY B ARV ERAD ARRAB A0,
where

do(z ®y) = wy,
dl(:c®v_®y)=xv®y—:c®'vy,

dy(z®1t) = Zeaza®a*®t+26az®a®a*t,
aeQ aeQ

i(a) = azx,- ® ;.

Since 12 = 1, we can make a canonical identification A = N @ N (viaz — z®1),

so by tensoring the above exact sequence with A/, we obtain the exact sequence
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0— A2k} B AQNh+2] S A®RV ®r N[h] % A@r N[ 5 N[ -0,

~ and by connecting both sequences with ds = 5 and repeating this process, we obtain

the Schofield resolution which is periodic with period 6:

o ARARK B ARRN[L+2] B ARV @r N % A Nh]
B AQRAPR] B ARRV @R AB AR AB A 0.

This implies that the Hochschild homology and cohomology of A is periodic with
period 6, in the sense that the.shift of the (co)homological degree by 6 results in the
shift of degree by 2h (respectively —2h).

'2.2.2 The Hochschild homology complex

“Let A% be the algebra A with opposite multiplication. We define A=A ®gr A%,

Then any A—bimodule naturally becomes a left A°—~ module (and vice versa).

We make the following identifications (for all integers m > 0):
(A ®r A) ®ac A[2mh] = AR2mh] : (a ® b) ® c = bea,
(A®rV ®r A) ®4e Al2mh] = (V ®r A)F[2mh] : (a®@z®b) ® c= —z ® bea,
(A®R A) ®4c A2mh + 2] = AR2mh + 2] : (a ®b) ® ¢ = —bea,
(AQrN) ®4c A[(2m + 1)h] = NE[(2m + 1)h] : (a®b) ® c = —by(ca),
(A®rV ®rN) ®ae Al(2m + 1)h] = (V @r A)R[(2m + 1)) :
(@®z®b)®c=18 by(ca), |
(A®RN) ®4e A[(2m + 1)h+2] = NE[2m + 1)h+2] : (a®b) ® c = by(ca).

Now, we apply to the Schofield resqlution the functor — ®4, A to calculate the
Hochschild homology: : _ ‘ '
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.. ARpH] & NR[h+2}—5>(V®RN) Hd/

=Cp —‘Cs —C4
% AR G AR B (Veg AR B AR o,

——— N N N
=Cs =C; =Cy =Co

We compute the differentials:

di(a®b)=di(-10aQ®1)®aeb=(—a®@1+1Qa) Q4e b= [a,b],

dy(z) =do(-1 R 1) @pe z = —(Zeaa®a*®1+26a1 R®a®a*) @ge z

aGQ acQ
= — Zeaa* ® [a7x],
a€Q
5() = da(=1®1) ®ue () = - Z(xz ® ;) @aen Zm n(z)z;

= Zx;‘xxz = Z xizn(x

the second to last equality is true, since we can assume that each z; lies in a subspace

exAe,, , and then we see that

rin(x)e;, = xix, = wiex; if © = ex, k= v(k),

and zin(z)x; = 0 = xfzx; if k # v(k) or z =ej, j # k or degz > 0,

and the last equality is true because if (z7) is a dual basis of (;), then (x;) is a dual

basis of n(x}).

d(a®b) =di(1®a®1)Quenb) = (a®1—1Q a) @aen(b) = ab— bn(a),
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di(z) = d5(1®1) Qpe z = (Zeaa® Q1 -I—_Zeal Ra®a*) Qe x
aeQ aeQ

= Zeaa* ® (zn(a) — az),

" a€Q
dg(z) = ds(1® 1) Que = Z(xi QZ;) Que T = Zx:‘n(x)n(xi)

= me(x):c: = Zx,;mx;‘,

the second to last equality is true because if (z}) is a dual basis of (z;), then (z;) is
a dual basis of n(z), énd |
the last equality is true because for each j € I, ) zie;jz} = > dim(exAe;)w;, where -
we call w; the dual of e;, and dim(exAe;) = dim(exAeyj)) (given a basis in exAe;,
the involution which reverses all arrows gives us a basis in e;Aey, its dual basis lies
in exde,())- |

Since A = [A, A] + R (see [20]), HHo(A) = R, and H Hg(A) sits in degree 2h.

Let us define HH;(A) = HH;(A) for i > 0 and HH;(A) = HH;(A)/R for i = 0.
Then HHy(A) = 0. N

The top degree of Ais h _2 (since hy(t) = Tf_ic%; by [20, 2.3, and 4 is finite
dimensional). Thus we see immediately from the homology complex that H H,(A)
lives in degrees between 1 and h — 1, H Hy(A) between 2 a,nd.vh, HHj3(A) between h
and 2h — 2, HHy(A) between h+ 1 and 2h — 1, HHy(A) between h + 2 and 2} and
HHg(A) in degree 2h.

2.2.3 Self-duality of the homology complex

The nondegenerate form allows us to make identifications A = N*[h —2] and N =
A*[h—2] via £+ (-, T).
We can define a nondegenerate form on V® A and V ® N by

(@ ® 24,0 ® zp) = 84 pr€4(Za, Tb) (2.2.3.1)

where a,b € @, and d,, is 1 if z = y and 0 else. This allows us to make identifications
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VorA=(V@rN)hland V@rN = (V@ A)*[h]
Let us take the first period of the Hochschild homology complex, i.e. the part

involving the first 6 bimodules:

NER+2] 5 (v or MR % VB B ARR] B (Ve AR S AR o
S—— ~~ NN = S —
=Cs =C}y =C3 =C, =C; =Cb

By dualizing and using the above identifications, we get the dual complex:

d/ * d/ * dl *

@ 4R 'Y (Ve 4R € 4Ry — o)
N — N — N~
=C3[~2h =Cy[~2h] =Cs[~2h]

« (dB)* R CAN x (d3)*
WER+2)* & (v er M) B W WRR) @
" -~ \-\,_/

=Co[~2h =C1[-2h] =Cy[—2H)

We see that C; = C5_;. We will now prove that, moreover, d; = +(d§_,)*, i.e. the

homology complex has a self-duality property.
Proposition 2.2.3.2. One has d; = +(dg_,)".

Proof. (dy)* = d:

We have
O @@ wa),ds(y) = O _(a® ), Y cat” ® (yn(a) — ay))
a€Q acQ acQ
= (@2 yn(@) — ay) = O _la,z4},v)
aeQ : aeQ
e CAOCLEARY)
aEQ
() = ~d
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We have

(2,d,(} 0 ®a) = (@, ) _ aza — zan(a) = )_(~la,2],7a)

ae@ . aeQ : aeQ : ’
=Y e @, a®z) = (-d(),)_a®z)
acQ ae@ aeQ
(&) = d

————

We have

(x’dIB(y)) = (%Z%yﬂ(ﬁ)) = (Z 33’:.’3:]:'.,-, '!/) = (dg(x)>y)

2.2.4 Cyclic homology

Now we want to introduce the cyclic homology which will help us in computing the

Hochschild cohomology of A. We have the Connes exact sequence

0 — HHy(4) 2 HH(4) 3 HH,(4) B HH(A) B HHL(A) — ...

where the B; are the Connes differentials (see [19, 2.1.7.]) and the B; are all degree-
preserving. We define the reduced cyclic homology (see [19, 2.2.13.])

m(A) = ker(B,-.H': HHH.I(A) g HH,+2(A))
= Im(B; : HH;(A) — HH;11(A)).

The usual cyclic homoloéy HC;(A) is related to the reduced one by the equality
HC;(A) = HC;i(A) for i > 0, and HCy(A) = HCy(A)/R.
| Let U = HH;(A). Then by the degree argument and the injectivity of B, (which
follows from the fact that H Ho(A) = 0), we have H HZ(A) = U @ YI[h] where Y =

H Hy(A)(h) (the degree-h-component). Using the duality of the Hochschild homology
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complex, we find HHy(A) = U*[2h] and HHs(A) = U*[2h] ® Y*[h]. Let us set
K = HH;(A)[-2h).

So we can rewrite the Connes exact sequence as follows:

degree
0
1<deg<h-1 HHll(A)x U HCy(A) =0
B ~
1<deg<h Hle(A) S i’ ®Y[h HC(A)=U
_ . N l
Bt 1< deg < 2h— 1 HHy(A) —— U*[2Kj@Y*[h] HCx(A) = Y*[A]
S
h+1<deg<2h—1 Hfi;(A) —— U*[2h) HC3(A) = U*[28]
A o| |
2h HH;(A) — K21 HCy(A)=0
o
oh  HHyA) —— K[24] HCs(A) = K[2h]
oAl
2h+1 < deg < 3h — 1 HHy(A) === U[2A]
By

From the exactness of the sequence it is clear that B, and Bs restrict to é,n
isomorphism on Y'[h] and U*[2h] respectively and that By = 0. Bg = 0 because it
preserves degrees, so Bs is an isomorphism.

-An analogous argument applies to the portion of the Connes sequence from ho-
mologiéa.l degree 6n + 1 to 6n + 6 for n > 0. | |

Thus we see that the cydic homology groups HC; (A) live in different degrees:
HCpgny1(A) between 2hn+1 and 2hn+h—1, HCgpi2(A) in degree 2hn+h, HCgy13(A)
between 2hn + h + 1 and 2hn + 2h — 1, and HCgn45(A) in degree 2hn + 2h. So to
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prove the main results, it is sufficient to determine the Hilbert series of the cyclic

homology spaces.

This is done with the help of the following lemma.

Lemma 2.2.4.1. The Euler characteristic of the reduced cyclic homology Xmo(a)(t) =
> (=1)’hgp,a)(t) is

00

1 .
Zaktk = 1—;-"-{2-];(— Zthz - ’f’_t2h + (7‘+ — T'_)th).
k=0 v

Proof. To compute the Euler characteristic, we use the theorem from [8] that

ﬁu — k)= = ﬁdet H4(t*).
k=1 s=1

From [20, Theorem 2.3.] we know that

Hyt)= (14 Pth(1 - Ct+¢»)~L.

Sincer=r, +7_,

det(1 + Pth) = (1 + Py (1 — ¢y~

From 4.1.4.2 we know that

0 00
Hdet(l —Ct + t2s) — H(l _ t2k)—#{i:mzk mod h}‘
s=1 k=1
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So

ﬁu ke = ﬁdet Ha(t")
k=1 s=1

= JJ@ +th)+ (1 — the)™~ det (1 — Ct* + %)
s=1

H (1 _ ths)r_
— ls_fvgflt — ths)r+_,«_ H(l _ tzk)#{i:m,-sk mod h}_
sodd k=1

It follows that
Xacw) () = Zaktk =1+t + P+ (- Ztm" — 1t 4 (ry — v )th).
k=0 _

This implies the lemma. O

Since all HC;(A) live in different degrees, we can immediately derive their Hilbert

series from the Euler characteristic:

hacyay ()= Y ™,

i,m;<-g-
. B
hHC’z(A)(t) = (T+ —r-— #{z tmy = 5})t )

hHCa(A) (t) = Z t2mi,

z‘,m,->%

hucya(t) = r-t**.

It follows that hy(t) = >, 2™, dimY =7, —r_ —#{i:m; = %},.dimK =r_,
. i,’m,-(ﬁ
and Y, K sit in degree zero. ’

This completes the proof of Theorems 2.1.1.3,2.1.1.4.

2.2.5 The Hochschild cohomology complex
Now we would like to prove Theorem 2.1.1.1.
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We make the following identifications: Homae(A®grA, A) = AR and Homse(A®r
N, A) = N'E, by identifying ¢ with the image ¢(1 ® 1) = a (we write ¢ = a o —),
and Home(A®r V @ 4, A) = (V ®r A)R[~2] and Homae(A ®r V ®r N, A) =
(V ®rN)E[-2], by identifying ¢ which maps 1®a®1 — z, (a € Q) with the element

Y €pea* @, (we write = 3 €g00* ® T4 0 —).
a€Q ' aeQ

Now, apply the functor Home(—, A) to the Schofield resolution to obtain the
Hochschild cohomology complex |

G NRI_B B AR 9 E (ve AR & AR 0
o AR2B) E NFh -2 E (Vo MR-h -9 &

- Proposition 2.2.5.1. Using the differentials d; from the Hochschild homology com-

* plez, we can rewrite the Hochschild cohomology complez in the following way:

ds|-~2h—2] NE[—H] dg[-2h~2] AR|-2] d[-2] Ve A)R[_2]. B2 4R 0
.. AR[—op] BB NRL_p 9 W2y @ AR — 2) B2
Proof.
d}‘(x)(l@a@lj =zo0d;(1®a®1) = ’20((1®1—_- 1®a)=[a,z],
so

di(e) = ) cara” ® [a,0] = dy(2).

aGQ

d;(Za@»xa)(lm) =0 a®z)o () ab®F Q1+ > al®bab)

aeQ aeQ beQ beQ
= Z(aﬂba — Zoa) = Z[a) Za),
ac@ acQ
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SO ' .

() a®w0) = Y (0,2 = di(Y" 1@ )

acQ acQ acQ

Gz)(1®)=zods(101) =20 () m®a}) =) zmaza},

so
dy(z) = ) _ mize} = dy(2).
dy(z)(1 ®a® 1)=z0di(l1®a®1)=z0(a®1-1Qa)=az — zn(a),
SO
@) =Y epa’ @ (az — o7(a)) = dy(2).
aeQ '
#Oaez)101) = a®z)o (D ab@b ®1 +) al®bab)
a€@. a€Q beQ beQ
| = Z(axa - xaﬂ(a)),
. aeQ
80
d;(za R x,) = Z(axa - %'fi(a)) = d:z(za ® xa)-
aeQ : ac@ . aeQ
(@181 =z0d(1@) =20 (Y 5 @) =) man(a)),

di@) = 3 mian(z}) = dy(a).

O

Thus we see that each 3-term portion of the cohomology complex can be identified,

up to shift in degree, with an appropriate portion of the homology complex.
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This fact, together with Theorem 2.1.1.3, implies Theorem 2.1.1.1.

2.3 The deformed preprojective élgebra

In this subsection we would like to consider the universal deformation of the prepro-
jective algebra A. If v = 1, then P = 1 and hence by Theorem 2.1.1.1 HH2(A) = 0
and thus A is rigid. On the other hand, if v # 1 (i.e. for types A,, n > 2, Dy, .1, and
Eg), then HH 2(A) is the space K of v-antiinvariant functions on I, sitting in degree
-2.

Proposition 2.3.0.2. Let A be a weight (i.e. a complex function on I) such that
vA = —A. Let Ay be the quotient of Py by the relation

Z[a, a‘] = Z)\.,-e,-.
aeqQ
Then grAy = A (under the filtration by length of paths). Moreover, Ay, with X a

formal parameter in K, is a universal deformation of A.

Proof. To pfove the first statement, it is sufficient to show that for generic A such that
v(A) = =, the dirhension of the algebra Ay is the same as the dimension of A4, i.e.
rh(h +1)/6. But by Theorem 7.3 of [3], A, is Morita equivalent to the preprojective
algebra of a subquiver Q' of @, and the dimension vectors of simple modules over
Ay are known (also from [3]). This allows one to compute the dimension of A, for
any A, and after a somewhat tedious case-by-case computation one finds that indeed
dim Ay = dim A for a generic‘ AEK.

The second statement boils down to the fact that the induced map ¢ : K —f.
HH?(A) defined by the above deformation is an isomorphism (in fact, the identity).
This is proved similarly to the case of centrally extended preprojective algebras, which

is considered in chapter 4. : O

Remark. For type A, (but not D and E) the algebra A, for generic A € K is

actually semisimple, with simple modules of dimensions n,n —2,n — 4, ...
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2.4 Some basic facts about preprojective algebras

2.4.1 Labeling of quivers

From now on, we use the following labelings for the different types of quivers:

Q = Dn+1

Figure 2-1: D, ;-quiver

A is the path algebra modulo the relations

aja; = 0,
Qip10iv1 = aa;, 1<i<n-3
Up-1Gy_1 = apa;, = 0
Up_10n-1 + Gp0n = Gn_ 20y s

Figure 2-2: Eg-quiver
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A is the path algebra modulo the relations

a10] = a4a; = asa;-

aja,
aZa4

a3a2 + a3as + azas

Q
I
&

*
a2012,

*
a3a3,

Figure 2-3: E;-quiver

A is the path algebra modulo the relations

a,a) = asa; = Gga;
a}‘al
a;ag
azas

aza3 + aza, + agag
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Figure 2-4: FEg-quiver

Q=Eg

A is the path algebra modulo the relations

Qoay = a5a; = dsaz
azao
a’l‘al
axas
0505

azas + a,a4 + agag

2.4.2 The Nakayama automorphism

Recall that A is a Frobenius algebra. The linear function f : A — C is zero in the
non-top degree part of A. It maps a top degree element w; € €;A%Pe,(;) to 1. It is
uniquely determined by the choice of one of these w; and a Nakayama automorphism.

For each quiver, we define a Nakayama automorphism 7 and make a choice of one

w; € eiAtapey(i):
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Q= Dny1, n odd

We define 7 by
na) = —a, (2.4.2.1)
n(a;) = a, (2.4.2.2)
and
W1 =07...0n o0r 10n—1Qp—2...01. ' (2.4.2.3)
Let

a’_i= (_1)ia‘i_1 e ala’; e a;_]a‘n—l R/ TR | V1 S ) S n— 2)

— * *
Ap—-1 = QAp-2 ...alal . “an—la

—_— * * *
Qp = —Gp_g Q1G] - * G 0y,

* * * * .
=0 Oy 1Oyt G10y Gy Vi<i<n-—2,

IS

* —_— - * . o @ *
Qp_1 = Qn-1- 010y - * Ay _g,

* *
= —QnGpn-2" " alal e an_z’

S

and w; = aa; V1 < i < n—1 (where w; coincides with the expression in (2.4.2.3)),‘
Wn = Op-10n—1, Wnt+1 = GnQn. Then Wit1 = @G5 Vi<i<n-— 2, and w; = a; - ("ai-)

Vi<i<n—1,wn =0 (—an) = Tpy1 - (—np1), wip1 = aga; V1 <i < m.

These w; define the function f (and the bilinear form) associated to the Frobenius
algebra A. Since {@7,...,@n,a},. .., a;} in A(h—3) is a dual basis of {ay, ..., an, a,...a%}
- in A(1) and {—ay,...,—an,a},...a}} in A(1) is a dual basis to {ay, . .., @n, a3, . ., 05}
in A(h — 3), it follows that the Nakayama automorphism associated to our bilinear
form is given by the equations (2.4.2.1) and (2.4.2.2). ‘
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Q = Dypy1, n even

We define 7 by
Vi<n—2: n(a) = -—a,
Vi<n-2: na) = aqf,
ﬂ(an-—l) = —ap,
(@) = d,
n(an) = —an-1,
n(a,) = @p_y,
W) =aj...0y o0y _1Gn-10n_3. .. 0] (2.4.2.4)
Let

@ = (=1)'aj_y---aal---a,_1Qn1- "t Qi1 Vi<i<n-2
T * * »
an—l = an_2 .. alal “ e angza:;’

a;)/-=-a'n_2'..alat-.'a*

n—1>

Tx % * * * .
QF = Qg Gy Oy OG-0y, V1<i<n-—2,

* — * *
an—l = an_l c e alal . .an_2,

-y * k
a:; = —QnQp_2" - 181" Gp_o

and w; = afa; V1 < i < n—1 (where w; coincides with the expression in (2.4.2.4)),
. Wp = Gn-18n_1, Wntl = Gn8y. Then wip1 = ai@; V1 <1 < n—2, w1 = ala’ and
wiy1 = aia; V1 < i< n—2, wy, = a}_jak, wny1 = aLa5_y, w; = 8- (—a;) V1 < i < n—2,
Wn = U5 - (—@g), Wn41 = Tp, - (—an—1)-

Again, these w; define the function f (and the bilinear form) associated to the

Frobenius algebra A. Since {aj,...,@,ai,-..,a.} in A( — 3) is a dual basis of
{ay,...,an,a},...a;} in A(1) and {—al,... ~Qp, —Qp-1,03,...05,ar_} in A(1) is

a dual basis to {a1,...,@n_1,8n,0%,---,05_1,a5} in A(h — 3), it follows that the
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Nakayama automorphism associated to our bilinear form is given by 7 above.

Q = Ee
We define 1 by
ﬁ(al) = ."'614,
n(a}) = q,
77(02) = —as,
n(az) = az,
77(05) = —as,
n(as) = az,
and
w3 = ajas(aasaias)?. ‘ (2.4.2.5)
Let
01 = —0203a;04030; 05030,

— * _*x * * %

dy = 030,040305050350,04,
J— * * % * %

a3 = (505Q30,0403050,01,
—— * ¥ % * %k
04 = —030505030,0403050],

* ¥ * % *
a5 = U50,0,02030,04030y,

aj = —010,030;04030505a3,
a} = —ajaazaialasazatas,
a} = —ajasa3aiasa}aaqas,
a; = —040305050307040303,

af = a505070102030,a4a3

and w; = a1dq, wy = o0z, Wy = aza; (which coincides with the expression in
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aja; and w = ajaj, wp = aja; = @1 - (~a4), ws = @ - (~a3) = T3~ (~a2) = T (—as),
wy = atay =ay - (—ay), ws = aja}, we = alal.

Again, these w; define the function f (and the bilinear form) associated to the
Frobenius algebra A. Since {@r,...,as,a],...,ai} in A(h — 3) is a dual basis of
{a1,...,a5,0a},...at} in A(1) and {—a4, —a3,—az, —a1, —as,a}, a3, as, a3, at} in A(1)
is a dual basis to {a@y,...,@,al,...ar} in A(h — 3), it follows that the Nakayama

automorphism associated to our bilinear form is given by 7 above.

Q= E;

We define 5 by

7)(“@) = ai,
na;) = a,
and
wy = (ajasalaz). (2.4.2.6)
Given the basis {a1,...,as,4a},-..a¢} in A(1), we claim that a dual basis

{ai,...,@,al,...,a5} in A(h — 3) is given by Let

T1 = —(20305060,0403030, 050504030507 ,
T3 = (30406030405030,05050403050101,

T3 = —Q5060,0405030,0505040305010102,
Ty = —a5050701020305060,0403030,0505,

*
G5 = (405050;01020305060,04030304 05,

—_— *
g = ;0405030405 05040305070102030,
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a} = —01020305060,0403030;0505040305,

a3 = —0}a1020304060,0405030305a50403,
@} = —030;01020305060,0403030; 035 a504,
0] = —030504030501010203050505040303,
a; = —asauaialala 020305050 0405030;,
a; = a6a2a4a§‘a3a2a§a5a4a§a;a*{a1a2a3

and w; = a;G% V1 <4 < 3, wip1 = 4@ V4 < i < 6, wy = ala;. Then wp = alay,
w3 = a3a}, ws = aja; = agag (Which coincides with the expression (2.4.2.6)), ws = aZa;

andw,-_——-a‘{a;“v’l_<_i_<_3,w,-+1=a_;‘q;‘V4§i§6,w,;+1=a_,--(—a,-)V1$i53,

wi =T (—a;) V4 <1 <5, wy =5 - (—ag).

Again, these w; define the function f (and the bilinear form) associated to the
Frobenius algebra A. Since {ar,...,8sa},...,a5} in A(h — 3) is a dual basis of
{ay,...,as,a},...a8} in A(1) and {—ay,...,—ag,a,...,a;} in A(1) is a dual basis
to {@1,...,,4a},...az} in A(h — 3), it follows that the Nakayama automorphism

associated to our bilinear form is given by 7 above.

Q=Es
We define 5 by
n(a) = -a,
n(a) = q,
and
ws = (ajasaias)’ : (2.4.2.7)
Then
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— * * * * * * * * * %k * k k%
(o = Q10203050604 040606030303030 0405030303005 0504030501y,

U1 = —Q2030 060404 0506050305030 04030305030, 0550405050} 4500,
@ = a3a§a6a2a4a’ga6a§a3a§a3a2a4a,;aga§a3a2d§a5a4a§a§a]‘a’5aoal,

U3 = —aga60,040506050305030, 0405030503050 A5A405040] Ag0oG1 a2,
U1 = —0gAeA30305030,04030305030, 05050403050, 0500012030400y,

_ XK Kk * * % * * * * * * %
Q5 = Q403090100 A1020305060 4006030303030, A4030305030405,

&
Il

* * * * * * * x ¥ * _k _k _k *
a4040606030303030,404030303030,4050504030501 030001 A2030¢,

. * * * * * * * * * %k EJPNE N
a001020304060,4040506030305030,040303030304050504030507,

=3
I

* * * * * * * * * * % * ¥
a1 = QnQpa1020305060,4040506030303030,404030303030,0505040305,
* * * * * * * * * * * %k *
Gy = Q10A0A1020306060,4040506030303030,04030303030 405050403,
* % x * * * * * * * * * %
a3 = Q010000 0A10203060604040506030303030,404A30303030,4050504,

—40506050305030,04050305030,10; A504050501 050001 02030506,

&
I

pr * ok _k ok * * % * * * * * *

S
I

A63A305030, 04050305030, Ar A5Q103050, AaGo01 020305060404

and w; = a;4; V0 < 4 < 3, wiy1 = a;a; V4 < i < 6, wy = aa;. Then wy, = alaj,
w3 = aias, ws = aia; = ajaf (which coincides with the expression (2.4.2.7)), ws = ajaz
andw¢=a_;‘a’{ V0 <1 <3, win -——Efa;“dél <1 <6, wig1 =0 - (—a;) V0 <2< 3,

wi =8 - (—a;) V4<4 <5, wy =75 - (—as).

Again, these w; define the function f (and the bilinear form) associated to the
Frobenius algebra A. Since {@g,...,,a3,...,a5} in A(h — 3) is a dual basis of
{ao,...,a, a3, ...a5} in A(1) and {—ao,...,—ag,a,...,ag} in A(1) is a dual basis
to {@g,..., T, g, - ag} in A(h — 3), it follows that the Nakayama automorphism

associated to our bilinear form is given by 1 above.
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24.3 Prepi'o jective algebras by numbers

We summarize useful numbers associated to preprojective algebras, by quiver:

Q exponents m; | h | deg AP degrees HH(A)

n odd | 0,4,...,2n—6,2n—2
Dy 1,3,...,2n—-1,n 2n | 2n—2

n even 0,4,...2n—4,2n — 2

Eq | 1457811  [12] 10 0,6,8,10

E | 1,57911,13,17 |18] 16 0,8,12,16

By |1,7,11,13,17,19,23,20 [ 30 | 28 0,12, 20,24, 28

We see that for quivers of type»D and FE, the degrees of the space U (which are

2m;, my; < %) are even and range from 0 to h — 2.

We get the following degree ranges for the Hochschild cohomology:

HHY(A) =U[-2]® Lk~ 2] 0<deg HH(A) < h -2
HHY(A) =U[-2] . 0<degHHY(A)<h-4
HHXA) =K[-2] o deg HH2(A) = —2
HH3(A) = K*[-2] deg HH3(A) = -2
HHYA) =U*[-2] —h < deg HH4(A) < —4
HHY(A) =U*[-21@Y*[-h—-2]  —h-2<deg HHY(A) < —4

HH%(A) =U[-2h-2]®Y[-h—2] —2h < deg HH%(A) < ~h-2
2.4.4 Basis of the preprojective algebra for @ = D,

We need to work with the Hilbert series and with an explicit basis of A. We do this
for each type of quiver separately.

We write B for a set of all homogeneous basis elements of A, B; _ for a hdmoge—

neous basis of e;4, B_ ; for a homogeneous basis of Ae;, B; ; for a basis of e;Ae; and
B, ;(d) for a basis of e; Ae;(d). | |

A basis of A is given by the following elements:
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Fork,j<n-1:

Bin = {(ar10}_al---a)_par ]0<1<k—1},
Bunr = {(@saly)ap-a)_at0 <1< k1),
n—1
== nodd,
Bn,n = {(an—la;ana;_l)lm < l < 2 },
=2 neven
n—1
= nodd,
Bntinsr = {(an@)_1an1a})!0 <1< 2 },
: =2 neven
. RN =3 nodd,
B’fH-lm = {ana’n—l(an—lana’ﬂa’n—l) ’0 < ! < })
2=2 neven
. . ol ”——;—3 n odd,
Brny1 = {an-1ay,(ana;_107-10,)'10 <1 < |
22 neven
Bn; = {an1an-2--aj(aj_1ai_)'10 <1 <5 -1},
Buyr; = {anan_2--aj(gj_1a]_)' 0 <1< 5 -1}
Fork<j<n-1,
By = {(ak-1a;_)'ap---a;,]0 <1< minf{k~1,n—j—1}}U

{(ak_laz_l)laz Oy 1On-10p—2- @0 < I <Ek—-1}U

{(ak—laIt—l)la}; Oy pln—2- 0|0 KT <k—1+47—n}.

Forj<k<n-1,

By; = {ak---a5(aa)'|0 <I<min{n—k—1,j-1}}U

*
n—2

{ay- - a5 _20n_1Gpn-10n—2" " aj(a;aj)l|0 <l<j—-1}jU

{a}- - ay,_o0,0n0n_2" - aj(a;aj)ll() <l<j—-14+k-—n}
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2.4.5 Hilbert series of the preprojective algebra for ) = Ej

We give the columns of the Hilbert series H4(t) which can be calculated from (1.1.3.1):

/1+ﬁ )
t4+t°+ 1

2+t 548
(Ha(t)in)1<i<e = ,
40+t
th 4+t

(et

/t—l—t5+t7 \
1482+ 14 4216 + ¢
(Ha(t)i2)1<i<e = t4 213 + 265 + 2t7 + ¢ |
t2 4+ 2t4 + 15 + 18 + 110
3¢5 449

\ 21t 1018

(ﬁ+#+ﬁ+ﬁ \
t+26% +2t° + 267 + #°

1+ 262 + 3t* + 318 + 268 + t1°
t4 23 + 215 + 247 4+ 9
2+t 8 48

\ T+ 21T 8 }

/ 3 4 15 4 ¢9 \
12 4 214 4 6 4 48 1 £10
(Ha(t)ia)i<i<e = t+ 213+ 265+ 27 +¢9 |
T+2+¢t+20 + 8
t+5 447
\t2+t4+t6+t8 )
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(Ha(t)is)i<i<e =

(Ha(t)is)1<i<e =

[ 14410 \
t+t° 4+
2t 10 18
t+t°+17
1+1¢8
14+ t7

(&40

4t 10+ 18
t4 3+ 260 + 17 41
24t 410 28
t2+ 1

\ 1+t +2°+10
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2.5 HH'(A)=2Z

From the Hilbert series (Corollary 2.1.1.2) we see that we have one (unique 1.1p' to a
constant factor) central element of degree 2m; —2 for each exponent m; < % We will
denote a degi(< h — 2) central element by z;.
From (1.1.3.2) and from the Hilbert series we can also see that the top degree
(= deg h — 2) center is spanned by one element w; in each e;Ae;, such that v(i) = 1.
The w; € L[h—2] are already given in section 1.1.2, and we will find the 2; € U[-2]
for each Dynkin quiver separately.

2.5.1 Q = 'Dn+1

We define the nonzero elements

bip = €,

bij=a;...05; 18i+j—1-..a; (where 1 < j <min{i—1,n—1~—4}),

Cij=0ar...a (a0} 5y an2...a; (I where 1<i<n—-2,1<j<i-1
ety = (Gnz0fg), 1< jSn—2 |

d=af...a o0 1an-1(an-20; o) 'ap-2...0;, 1 <i<n—1
d_O = €n,
d; = (an_10’ana’_,) for 1 < j <
j = (Gn-10pan0;_,) for 1 <5 < 2,
|
d6 = €n+1,

&; = (ana)_1an_10a;) for 1< j < g

and extend this notation for any other j, where b;;, c;;, d; and dj are zero.

The exponents m; are 1,3,...,2n —1,n and h = 2n. From Corollary 2.1.1.2 we
get the Hilbert series of Z, depending on the parity of n, since 74 =n + 1 for n odd |

and 7, =n — 1 for n even:
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nodd: hz(t)=1+t*+8+. . +t 04 (n+1)22

neven: hy(t)=1+t*+2&. . +t7 4 4 (n— 1)* 2.

The central elements of degree 45 < 2n — 2 are

n—1-2j 2j—1

245 = Z bi,2; + Z Cn—1~i,2j—i + dj + dj.
=2j+1 i=0 ’ '

The top degree central elements are w; = ¢, (1 < i < n — 1), and additionally

Wy, = dﬂ;_;, —Wp41 = dp_y if 1 is odd.
2
For j + k < %5 we get the following product:

24524k = Z4(j+k)-

If n is odd and j + k = %1, the multiplication becomes

13 .
Z4jRak = dn_;l + d@__;_l_ = Wy — Wpy-

2.5.2 Q= E;

The Coxeter number is h = 12, and the exponents m; < % =6arel, 4,5 ry =2

For the center, we get the following Hilbert series (from Corollary 2.1.1.2):
hz(t) = 1+ 1% + 18 + 21,

From the degrees, we see that the product of any two positive degree central
elements is always 0. The central elements are zp = 1, 25, 23, w3 and ws.

We give the central elements zg and zg explicitly (it can be easily checked that
they are central): '
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Proposition 2.5.2.1. 1. The central element of deg6 is

*

* * % * 2 * * * * 2 % * * %
26 = (1020303050, — a2(a3a3) ay — a5as503a3a505 + as(a3az)”al — asazazaqazal,
2. the central element of deg 8 is
* * * * * * 2 * * * * *

253 Q=E

The Coxeter number is h = 18, the exponents m; -’23 =9are1,5,7, 74 =7, and the
Hilbert series of the center is (see Corollary 2.1.1.2):

hz(t) = 1418 + 12 4+ 7416

The center is spanned by 2 = 1, 23, 212, w1, . . . ,ws. The only interesting product
to compute is 22 which lies in the top degree.

We give zg and 2,5 explicitly:

Proposition 2.5.3.1. 1. The central element of degree 8 is

* * _k _k * 2 % % * * *
28 = —010203050603050; — A203(0,04) 305 — A305a60;04040605

* 2 *
— aza4(a3as) a0 — 04030405060;040; + A504040506a,504a.

2. The central element of degree 12 is

. * * 2 * * 2
212 = —a3(aya40506) " aya403 — ajasagas(ajas)’agasalay

2
+ as(agasayas) agasay + as(azasagas)’asaqal.
Proposition 2.5.3.2. We get

2 __
Zg = w1 + Wz — wr.
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2.54 Q= Ep

The Coxeter number h = 30, and the exponents m; < % =15 are 1,7,11,13, r, = 8.
For the center, we get the following Hilbert series (from Corollary 2.1.1.2):

hz(t) =1+ 112 442 4 ¢ 4 8¢,

The center is spanned by zp = 1, 219, 220, 224, Wi,--.,ws. The only interesting

i 2
product is 2%,.

Proposition 2.5.4.1. 1. The central element of degree 12 is

* * * . * %k %k * * 2 % * ok

Z12 = G1020304060404050603050, + 203a4a4(a303) ajasa3a;
: * * 2 % * * * * 2 * * 2 _* *
+ az(ajasa5a6) 030403 + (a30303040303)° — as(agasay0q) agasay

* * 2 % * % * * 2 % *
+ asaqagas(azas)“agasaa; — ag(a3a405a6)°a;a405.

2. The central element of degree 20 is

290 = —a1a2a3(a2a4)2(a§a3)3(a2a4)2a§a§a’{ — a2a3(a§a6a2a4)2(a2a4a§a6)2a§a§
+ as(atasajas) atasal — (ajasatas)® + (afas(ajaq)®)adas

— (atasajas)® — as(alasatasalas)’a) — as(ajasalas)’ajaqag.

8. The central element of degree 24 is

— 2

2.6 HH'(A)

Recall Theorem 2.1.1.1 where we know that HH 1(A) is isomorphic to the non-
topdegree part of HH°(A). In fact, HH'(A) is generated by the central elements

in the following way:
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Proposition 2.6.0.2. HH(A) is spanned by maps

0 : (AQV @ A) — A,
(1®a®1)=0,
Or(l @a* Q1) = a’z.

Proof. These maps clearly lie in ker d3: Recall

ARA 2, ARV®A
TRY > Y &ra®a @Y+ ), r®a®a'y,

aeQ acQ

then

BGob(191) =6 €i®a’®1+ ) &l®a®a’)

aeQ v a€Q

= Z ai0; 2, — Za;‘aizk = Z[a,_,-, a;lzr = 0.
iel il iel
We will later see in section 2.9 that HH*(A) is generated by (i where (i(fx) = 1
under the duality HH*(A) = (HH'(A))* (which follows from the self-duality of the
Hochschild homology complex and the duality between Hochschild cohomology and
‘homology), so 6 is nonzero in HH'(A). ' D

2.7 HH*(A)

We know from Theorem 2.1.1.1 that HH?(A) = K[-2] lies in degree —2, i.e. in the
lowest degree of A%[—2] (using the identifications in 2.2.5), that is in R[—2]. Since
the image of d} lies in degree > —2, HH?*(A) = kerdj.

Proposition 2.7.0.3. HH?(A) is given by the kernel of the matri:b H4(1), where we
identify C! = R = @ Re;. ’
iel

Proof. Recall
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£M=Zmﬁ=222mﬁ

z;€B Jk€lx;€B; i
For each z; € epAe;, we see that ez} = d;wy.

It follows that for y = Y_ M\je; the map is given by
iel
d3(y) = Z.iniy
iel

where the vectors A = (A)ier € C' and p = (1;)ier € C! satisfy the equation

Ha()A=p. (2.7.0.4)

So the kernel of dj is given by the kernel of H4(1). O

Now, we find the elements in H H%(A) for the quivers separately.

2.71 @ =Dy, n even

[ 2

2 2 2 2 1 1)
2 4 4 4 4 2 2
2 4 6 6 6 3 3
246 8 8 4 4
Hay=|: 10~ S (2.7.1.1)
2 468 ... ... 2ln—=1) n—1 n—-1
1234 ...... n-1 2 n
1234 ...... n-1 % )

with kernel (e, — €,41). So a basis of HH?(A) is given by

{fn = [en - en+1]}‘
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2.7.2 Q= E;

(2-34322\
36 8 6 34

man=| 2240 (27.2.1)
36 8 6 34 |
23 4 322
\246424/

with kernel (e; — es, e, — €4). So a basis of HH?(A) is given by

{fi= ler — 5], f2 = [e2 — e4]}-

2.8 HH3(A)

We know that HH3(A) lives in degree —2. The kernel of dj has to be the top degree
part of N'E[—h] (since Im dj lives in degree —2), so o

HH3(A) = NE[-h)(-2)/Im d}.

Proposition 2.8.0.2. HH3(A) is given by the cokernel of the matriz Ha(1), where

we identify CT = AP = @ e,-A”"pe,,(i)'.
i€l

Proof. This follows immediately from the discussion in the previous section because

dj is given byr HA(I). O

Note that HH3(A) = (HH?(A))* (from the self-duality of the Hochschild homol-
ogy complex and the duality between Hochschild homology and cohomology). We
choose a basis h; of HH3(A), so that h;(f;) = &;.
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2.8.1 @ =Dy, n even
From H4(1) in (2.7.1.1) we see that:

d§(2€1 — 62) = 20.)1,
di(—ei—1 + 26, —€iy1) = 2w V2<i<n-2,

d5((~n = Venz + 21— Denoy = 2= Den) = (n— Vs,

d§(2en ~€n_1) = Wp Wy,
SO
HHg(A) = (NR)top[_h]/(wl =Wy =...=Wp-1~ O, Wn + Wp+1 = O)
with basis
{hn = [wn]}.
2.8.2 Q=Es

From H,4(1) in (2.7.2.1) we see that:

) = w +ws,
) = ws+ws,

di(—2ey + 2e3 — e5) = 2wy,
)

= 2&)6,

SO

HH3(A) = (NBYP[-h)/(ws = wg = w1 + ws = wp + w3 = 0)

with basis

{h1 = [w1], ko = [w2]}-
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2.9 HHY(A)

We have HH*(A) = U*[-2], so its top degree is —4, and its generators sit in degrees

'—4 — deg 2, for each central elément, one in each degree.

Proposition 2.9.0.1. Let {; € kerd} be a top degree element in
(V@ N)E[—h — 2], such that m((o) is nonzero, where m is the multiplication map.
Then HH*(A) is generated by elements (i € ker di which satisfy (2 = (o- '

Proof. f x € NE[—h] lies in degree. —4, then m(d;(x)) = 0, so {p is nonzero in
HH*(A).

For every non-topdegree central element z; we can find a (. satisfying the prop-
erties above, which is done for each quiver separately below.

For any central element z € A, we have that d;(zy) = d;(y)z. If {x = d}(y), then
by construction (o = (x2x = dj(2xy) which is a contradiction.

So these (i are all nonzero in H H*(A), and also generate this cohomology spa,ce.‘

O

A basis of HH*(A) is given by these (, and we choose them so that ¢x(6) = 1
under the duality HH*(A) = (HH'(A))*.

291 Q= Dy, nodd

We define

. n—3
Go =[a7_) ® an-107an(an_1an-10700) T
n—3
+ n-1 ® 6,000y 1(An-10nana; ;)7 |,

*

1 ‘ n=3
ik =5 1051 ® 10300 1n-1500) "5

. =3 __
+ an-1 ® apana,_;(an_1070,0;_;) 2 *
* N % n=3
-a, ® ana, —1an—1(a'nana;—lan-l) 7k

— 45 ® @},_10n10},(n0}_yan-10}) "7 7H.
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2.9.2 Q=

We define

2.9.3 Q=

We define

o =
6 =

(¢ =

2.94 Q=

We define

Co
Cs

<12

D1, n even

G =lan_, ® an—1(a;ana;_lan_l)ﬂ5_z—k
+ap1® a;(ana;_lan_la;)"‘_f—k],
Cak ‘_‘%[GZA ® @n—l(a;ana;_lan_l)n—“f“k
=2k

* *
+ ap-1 @ a,(ana, _ian-1a;,)
* * * n=2_p
—a; @ apla;_jan-1a,0,) 2

— Qp ® a*ﬂ(an_la;ana*,l)%z‘k}.

g

* * * 2 * * *\2
[a3 ® as(azasa3a3)” + a3 ® a3(axa3asa3)”),
1
. * * _ * * * * * *
4[ a; ® a3a302 — a3 ® ay0205 + a5 ® 20502 + A2 ® Asa2a3

*
—ay ® aga3a3 — ax @ azasa; + a3 @ azaias + az ® a3asay),

1 * * * *
—2-[a3®a3+a3®a2—a2®a2—a2®a3].

Er

= [a;® a4a’3‘a3(af;a4a§a3)3 +as® a§a3a2(a4a§a3a2)3],

1
= —[a} ® ayaiazajasaias + ag ® a303030403030;

2 ,
* * * * * * * *
—a3 ® a30,0403030,04 — A3 @ ;04030300403

1
= —[a} ® aajas + as @ ajasa; — a3 ® azayas — a3 @ G;04a3).

2
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295 Q=E;

We define

G = la} ® auaias(ajasalas)® + ay ® afazal(aqaiaszal)®),
Clé = %[az ® asajas(ajasaias)® + as ® a§a3a2(a4a§q3a2)3
—a3 ® d3a2a4(a§a3aza4)3 — a3 ® djaqa3(asazasas)’),
‘ Qo = —;—[az ® a4a3a30,04a303 + a4 ® a3030,0403030;
—a} ® a3a}a4a5a3a}as — a3 @ ajasalazalasal),
(s = %[GZ ® aqazas + a4 ® azaza; — a3 ® a3aya4 — a3 @ A50403)-

2.10 HH5(A)

We have HH®%(A) = U*[-2]®Y*[-h—2]. We discuss these two subspaces separately.

2.10.1 U*[-2]

In U*[-2], like in HH*(A), we have generators conﬁng from the center in some dual
sense. | |

We have dz(U*[-2]) =0.
Proposition 2.10.1.1. Let 9y be a tép degree element [w;] in some
e;NEe;[—h — 2]. Then HH®(A) is generated by 1y € N'® which satisfy Yz = .
Proof. If 3 a®z, € (V QN)E lies in degree —4, then the imé,ge of di(z) = az, —
z.7(a), u::fér the linear map f (which is associated to A as a Frobenius alg(;bra) is
zer0 where f(w;) = 1. So 7y is nonzero in HH5(A).

For every non-topdegree central element z; we can find a (. satisfying the prop-
erties above, Which is done for each quiver sepa.ré,tely in subsection 2.10.3. |

For any central element z € A, we have that di(zy) = di(y)z. If ¥ = di(y), then
by construction vy = 92, = d}(2xy) which is a contradiction. |

So these 1), are nonzero in HH®(A) and generate this cohomology space. O
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The relation az, = z,n(a) then gives us that all w;’s are equivalent in HH%(A).

2.10.2 Y*[—h — 2]
We have to introduce some new notations.
Definition 2.10.2.1. We define F to be the set of vertices in I which are fized by v,
i.e.
F ={ie Ilv(i) = i}.
Definition 2.10.2.2. Let 7;; be the restriction of n on e;Ae; (i,j € F). Let n;'; =

dimker(m;; — 1) and n;; = dim ker(n;; + 1).

We define the signed truncated dimension matrix (H}); jer in the following way:
(HR)ij = nfy — ng;-

Now we can make the following statement:

Proposition 2.10.2.3. Y*[—h — 2] is given by the kernel of the matriz H}, where
we identify CF = @ Re;.

i€F v
Proof. Y*[—h—2] is the kernel of the restriction d§| xr[—p—2)(—h-2)=Rp[-h-2] = AR[—2h],
where Rpr is the linear span of e;’s, such that 1 is fixed by v,

HOEDIETCIEDY n(wj)yw;-‘-

z;EB z;€EB

then |
ds : Rp[—h — 2] — (A")F[-2h)

can also be written as a matrix multiplication
H}.CF - CF
under the identifications R = CF = @ e; APe;. O

ieF
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We compute the matrices H; and their kernels for each quiver separately.

Recall that dimY = ry — r_ — #{m;|m; = &} = dim Rp — #{mi|m; = &}. We
will find Y* explicitly for each quiver. | ‘ -

Q = EGaES

h

% is not an exponent, so Y* = RF.

Q@ = Dpy1, n odd

All basis elements of exAe; given in section 2.4.4 are eigenvectors of 7;.

For any of these basis elements z, n(x) = (—1)"*z where n, is the number of
no-star letters in the monomial expression of z. So H} can be computed directly, and

we get

(2

o
W]
o
fum—y
p—t
‘/

Hi=l20--20 1 1 [,
00 --00 0 0
Lo 1o s g
\10-10—2511@:2&/

and the kernel is given by
n—1
{e2k—1 — €1, €2k, (€n + €ny1) — 1]k < —2—)

Q =Dy, n even

 Since F = {1,...,n— 1}, we work only with exAe; for j,k < n — 1, and we have to

work with a modified basis, so that they are all eigenvectors of 7:
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Fork<j<n-1,

By = {(ak-10_1)'a}---aj_1]0 <1< min{k—1,n—j—1}}U
{(a-105_1)'ak - (a}_1@n-1 — Gnln)an-20;10 <1<k~ 1} U

{(ak-10i-1)'a} - (a7 _10n-1 + G0n)an20;0 SIS k=14 = n}.

Forj<k<n-1,

Br; = {ag-1---0;(a}a;)"|0 <! <min{n—k-1,j-1}}U
{ak - - an_s(ay_10n_1 — anan)an2 - -a;(aa;)!|0 < 1< j— 1} U

{ak -} 2(710n-1 + G}0n)an—2- - 0;(f0;)|0 S U< j— 1+ k= n}.

From that, we can calculate the matrix:

(20 ... 20 2\
00 --- 000
H) = :
20 --- 20 2|
\20 - 20 2)
and we get immediately its kernel
' n
(eak41 —e1,e2k|1 £k < §>

Q=E

We don’t use an explicit basié of A here. All we have to know is the number of no-
star letters in the monomial basis elements which can be directly obtained from the
Hilbert series H(t) in the fbllowing way: given a monomial z of length [ in exAe;,
nk; the number of arrows in ) on the shortest path from j to k of length d(k, i), x

contains ng; + l—“—‘—iéﬁ’ﬂ arrows in Q.
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So we obtain the formula

Ha(t)rs
(Hei = =Dk 2y ,
Alkj k.j 1d(k.5) t=\/(—_l)

where we can get‘HA(\/—l) from (1.1.3.1) and compute

(3 03 000 -3)
0 00 000 O
3 03 000 -3
Hj={ 000 000 0 |,
000 000 O
0 00 000 O
\-30 3000 3 )

and its kernel is

(61 + e7,ez,e3 + €7,€4, 65, Cﬁ)-

2.10.3 Result

Ndw we give explicit bases for each quiver where 1); € U*[—2] satisfy the properties
given in section 2.10.1 and €; € Y*[—h — 2] are taken from section 2.10.2.

Note the duality H H%(A) = (HH5(A))*, do(z0) € U[—2h—2), po(w;) € Y[—-h—2)].
‘We choose tp such that o (po(2)) = 1 (from that follows Vk(po(zr)) = Zk"ﬁk(% (20)) =
Yo(po(20)) =1 and ¢; such that ;(¢o(w;)) = di;-

Q_= Dyy1, nodd ,

We define
Yar = (@} 10n105,0,) T ),

n—1
2

€2k-1 = [Czk—l - eAl_]; €k = [sz],En = [(en + en+1) - 61], k<
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Q = D41, n even

We define
Yax = [a;_lan_l(a,’;ana;_lan_l)ﬂ%g* 1,
E2k+1 = [62k+1 - 61])62](: = [e2k]; 1 S k S _;_l'_ ~-1.
Q = Es
We define
Yo = [ajas(aiasaias)?],
1’[)6 = [_a§a3a’;a2]>
s = [a3a3 — ajas),
&3 = [es], €6 = [es].
Q = E7
We define
Yo = [(afasalas)?,
vs = [(ahaudias)?),
P1g = [ajaqaias),

£y = [61 —+ 67],52 = [62],83 = [63 =+ 87],54 = [64],65 = [65],56 = [66].
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Q= Es

We define
Yo = [(ajasa3as)’),
Yo = [(ajasdsas)?],
Yoo = [(ajas0303)%),
Yos = [ajasaias),

&1 = le1), €2 = [ea), €3 = [es), €4 = [eq], €5 = [es], €6 = [es], €7 = [e7], €8 = [es]-

2.11 HH%A)

HHS(A) = U[-2h — 2] ® Y[~h — 2] = HH°(A)/Im(dg), and Im(dg) is spanned by
the columns of the matrices Hj; which were computed in the previous section.

This gives us the following result: .

Proposition 2.11.0.1. HH®(A) is a quotient of HH°(A). In particular,

( HH(A) | Q= E;, Es

n-2
HH°(A)/(Y wi = 0,wn = wpt1) @ = Dpya, nodd
i=1 .
HH(A) = 4 . ) .
' HH(A)/(Y wi = 0), Q@ = Dpa1, neven

=1
odd

\ HH*(A)/(w1 + w3 — w7 = 0) Q=E;

2.12  Products involving HH(A) = Z

Recall the decomposition HHy(A) = C® (U[-2])+ ® L[h —2). It is clear that the C-
“part acts on H H*(A) as the usual multiplication ﬁth C, with 2y as identity. From the
periodicity of the Schofield resolution with period 6, it follows that the multiplication
with ¢(29) € HH®(A) gives the natural isomorphism H H*(A) — HH™%(A) for i > 1.

We summarize all products not involving the k-part.
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2.12.1 HHO(A) x HH(A) - HHO(A)

This is already done in the H H%(A)-section of this paper. We state the results:

Q = Dpy1, n odd

The products are

Z4(j+k) j+k<zt
7424k = Wp—wpy JHEk=251 .
: =1

Q =Dy, 1, n even

The products are
Z4li+k ] + k < 2=l
245 24% = G+ . n: .
0 j+k> =

Eg

All products are zero.

Eq

The only nonzero product is 22 = w; + w3 — wr.

Esg

The only nonzero product is 23, = za4.

2.12.2 HH°A)x HH'(A) - HH'(A)

From the definition of the maps 6, (which are generated by the central elements z),
it follows that the Z-action is natural, i.e. the multiplication rule is the same as with
the 2 counterpart: zxfy = 0Ok.

We state the other nonzero products:
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@ =Dpt1

~ We have 2404 = O4j4x) if 5+ K < 252

Eg

We have 212912 = 024.

2.12.3 HHO(A) x HHi(A) —» HH(A), i =2 or 3

HH?*(A) = K[-2] and HH*(A) = K*[-2] live in only one degree, so (U[-2]);+ C
- HH(A) acts by zero. '

' 2.12.4 HH(A) x HH*(A) - HH*(A)

We- defined (i, such that zx(x = (o holds. By degree arguments, only these other

products are nonzero:

Q = Dn+1

For | < k, zaCak = Cae—p) (since zae—p (zaiCar) = (zak-1yza1)Cax = Co), and Cyg—y) is

(ﬁp to a multiple) the only one element of degree —4 — 4(k — 1) in HH*(4)).

Q = Eg

We have 212(24 = (12 (since z12(212{24) = (212212)(24 = (o, and (12 is (up to a multiple) |

the only element of degree —16 in H H4(A)).

2.12.5 HH(A) x HH(A) - HH*(A)

By definition, zxir = 4o holds. Since 9; € U*[—2] corresponds to {; € U*[~2] in
- HH*(A) with the rule zxx = % corresponding to 2x(x = {p above, the multiplication
 rules of 9 with elements in HH°(A) can be derived from above.

Products involving w; € L[h — 2] C HH°(A) and

g = %Akek € Y*[~h — 2] are easy to calculate: wie; = Aifw;] = Mido.
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Proposition 2.12.5.1. The multiplication (U[-2]);) X Y*[=h — 2] — HH5(A) is

ZETO.

We will show this for any quiver separately.

Q@ = Dn41, 7 odd

Forl <k, zytg = 7/’4(k—l)'

The nonzero products involving w; € Llh—2] C HH(A) and ¢; € Y*[-h—2] are
Wok—1E2k—1 = WakE2k = WnEn = Wnt1€n = W1€2k-1 = W1y = Yy,

W1Eok—1 = Wi€p = —Yp.

We show (U[~2])4+ xY*[-h—2] S HH 5(A): by degree argument, 24€; = ANan—o—_ak.
Then zon_o_ar(Zak€i) = Azon_a_akWon—o_ar = My, and by associativity this equals

(Z2n—2—4kz4k)5i = (wn - wn+1)5i =0,s0 A= 0.

Q = Dp41, n even

For | <k, zatar, = Yage-1)-

The nonzero products involving w; € L[h—2] C HH%(A) and ¢; € Y*[—h— 2] are
Wok+1€2k+1 = WakEok = Yo,

Wi€2k+1 = —q.

We show (U[-2]); xY*[-h—2] 2 HH5(A): by degree argument, z4&; = Aon_2-4k-
Then Zon—o—4k(24kE:) = A2on_2-ak¥Pon—2—4k = Ao, and this equals (2on—2-arzar)ei = 0,

so A= 0.
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QgEs

The nonzero products involving w; € L[h — 2] C HH®(A) and ¢; € Y*[~h — 2] are
W3€3 = WeEg = Yp.
By degree afgument, (U[-2])+ x Y*[-h — 2] 2 HH5(A). |
Q=Er
| The nonzero products involving w; € L[h — 2] C. HH(A) and ¢; € Y*[—h — 2] are
W€y = Waky = W3€3 = Wyky = W5Es = WeEp = Wr€1 = WrEz = ¢o;

We show (U[—-2])+ x Y*[—-h — 2] S HH 5(A): by degree argument, only products

involving 23 may eventually be nontrivial,
26 = Mg, A €C.

Then
- 23(zg€;) = Azgths = My,

and by associativity this equals
ngi = (w1 + w3 — LJ7)E,; =0,

so A=0.

2.13 Products involving HH! (A)

2.13.1 HH'(A) x HH'(A) > HH?(A)
This follows by degree argument since deg HH'(A) > 0, deg HH?(A) = 2.
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2.13.2 HHYA) x HH*(A) - HH?*(A)

HH?(A) and HH?3(A) are trivial for Q = D, where n is odd and for Q = E7, Es.
We know that HH'(A) is generated by maps 6y and HH?(A) by f; (1 # v(i), and

we lift
it A®A2] — A,
1®1 €i — €u)
to
fiiA®AR] — A®A,
I®1 — € Qe — e e
Then

fds(1@1) = £ 2,03} = Y zje; @ &) — zien) © (n))-

z;€EB z;€EB

To compute the lift €f;, we need to find out the preimage of ) z;e; ® &;7} — zj€,() ®

ey(;)T; under d,.

Definition 2.13.2.1. Let by, ..., b be arrows, p the monomial £b; - - - b, and define
v =t(1Qb @by b +b1 @b ®bg---bp+...4+b1- b1 @0 ®1),

and for i < j,

J
’Uz(,i’j) = :i:Zbl 1 Qb @by - - by

l=1

We will use the following lemma in our computations.

Lemma 2.13.2.2. In the above setting,

di(vy) = £(by - b @1 —1@by---by).
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From that, we see immediately that when assuming all z; are monomials (which.

we can do), then

2 . 1,d 1,d *
fi( Z z; ® x;f) = di( 'Ua(c,e:;g;(m) iJeve(f)(:J))) +18 Z x,e, xjeu(i)xj)7
z;€B @jGB z;€EB

J

so we have

Qf;: P4 — Q4),
o (1,deg(z)) . (1,deg(z;)
1ol +— E vzjez;gj N vmjez:?):,z ’

Then

1,d 1,ds ' *
Ok(z v, e::Ug(ﬂ%)) ije;i(:’)))_zk( Y sls)ase; - Z s(z;)x;z;),

z;€B z;€B_ 4 z;€B_ )

~ where s(z;) is the number of arrows in Q* in the monomial expression of ;.

So we get

OroQf)1OD) =2( Y sz)wsz; ~ > s(y)ma)).

2;€B_. 4 z;€B_ L5

Under our identification in 2.2.5,

=13 Y s@u-3 S slew)] € HHA).

lel ijBl’.i lel xjeB;,,,(i)

All products are zero if 2z, lies in a positive degree, so we only have to calculate
the products where k = 0.
We make the following

Proposition 2.13.2.3. The multiplication with 0, induces a symmetric isomorphism

a: HH*(A) = K[-2] 5 K*[-2] = HH3(A).
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Now we have to work with explicit basis elements z; € Ae;, ¢ # v(1), so we treat
the Dynkin quivers separately and find the matrix M, which represents this map.
Q = Dyy1, n even

We can work with the basis given in section 2.4.4 and compute

Oofrn = ({wn+1] [wn)]) = —nhy (2.13.2.4)

because of the relation [wy] + [wny1] = 0 in HH*(A). « is given by the matrix

Es
We will write out the basis elements of Aeq, Aes:

By 1 = (e1,a10205a5a5a7),

* * ¥ * * * %
aj, 4205050507, 4203305050507 ),

By = {azasay, a3a5050507, A30505030305050507 ),

* * k¥ * * * ¥ * * * * ¥
= (a4a3050;, A40305A5050305050507 ),

Bg1 = {asasa}, asa303a5a50507),
and v
e;Aes = <7)(.’L’)[$ € 6,,(,;)1461),

where 1(a) = —¢,a and for any arrow a : ¢ — j, @ is the arrow j :— ¢, so 7 preserves

the number of star letters of a monomial z. From this, we obtain

o f1 = —4lwn] — 2[we] + 2[w4] + 4|ws] = —8hy — 4hs.
because of the relations [wi] + [wa] = [we] + [ws] = 0 in HH3(A).
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We do the same thing for Ae; and Aey:

Bi2 = (a1, 0102050503, 01020505030305),
Baa = (€2, 0203, 02050503, 20303050503, 020505030305, G205050303050505),
Bj; o = (a3, 030503, d§a3a;, 435030303, G30305 0505,
3030305030303, a§a5a§a3a§a5a§; 43a503030505030305),
By 2 = {asa3, azazasas, a3a§d3a§, a3a3a30;a505,
430505030305 Q505, a3a§a3q§a5a§a3a§a5d§),
B5’2 = (a4a3a§, a4a3a§a5a;, (140,30;(15(1;(13&;050;),

* * * * * * * * * *
Bs 2 = (a50;, 05030305, a50303050503, G503030505030303), A
and we get the basis elements for e;Aes from 7(z;) where z; € e,(;)Aes. Since 7

‘preserves the number of star-letters of a monomial, we can immediately calculate

Bof2 = —2[wi1] — 4lws] + 4[wa] + 2[ws] = —4h1 ~ 8hy
because of the relations [wi) + [wa] = [we] + [ws] = 0.in HH3(A).

So a is given by the sym'metric,nondegenerate matrix

—8 —4
—4 -8

M, = (2.13.2.5)

2.13.3 HH'(A) x HH3(A) > HH(A)

This follows by degree argument: deg HH'(A) > 0, deg HH3(A) = —2, but deg HH*(A) <
—4.
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2.13.4 HH'(A) x HH*(A) — HH5(A)

- Proposition 2.13.4.1. Given 6y € HH'(A) and { € HH*(A), we get the following
cup product:

kGt = iz ‘ (2.13.4.2)

Proof. It is enough to show 6,(o = to: 21(60(;) = 6o(otho implies that (6,() = ¥y, and

the equation above follows from 6 = 2.6.

Let in general = > a ® z, € HH*(A). Then z represents the map
aGQ

z:=AQVONh — A,
1®a; @1 — Lo

1®a; ®1 — x4,
and it lifts to

2:AQV RN — A®A,
1®a®l — —1Qz,

1®Ra"®1 — 1®x,.

Then

(Fods)1@1) = 2D €a@a®1+) ol®a®ad’)

a€Q) €@
- Yeon - Y1 emn0)+ Y a0 - Y18 @)
acQ a€Q a€qQ a€Q
= Za@xa—21 ®a:ca2a*®:ca* —Zl@a*xa*
acQ a€Q eeQ aeqQ
= d1(21®a®xa+1®a*®xa*)>
acQ
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so we have

Qz: B(4) — Q(A),
181 — ) 10a®7,+18a" @2,
' a€Q ' '

and this gives us

(Gpoz)(1®1)= Za*ma,,

aeqQ

so the cup product is '
bo-x = aTy. (2.13.4.3)

aeQ

It can be easily checked by using explicit elements that the RHS is 1/ for z = (o,

but we the reason here why this is true: for z = ) a ® z, = (o, the RHS becomes
aeQ

Z a*xa* = Z(a*> g+ ) [wt(g)] 3

a€Q a€Q

where (—,—) : A x A — C is the bilinear form attached to 4 as a Frobenius algébra
(see 1.1.2). '

But under the bilinear form on V' ® A, given in Subsection 2.2.3 which induces
the duality HH4(A) = (HH'(A))*, i

(@ ® 4,0 @ xp) = by pr€,(Za, Tp),

Z(a*)xa‘)‘z (907(0) =1.

a€Q

So for z = (p, equation (2.13.4.3) becomes

- boCo = (6o, Go)ho = %o, (2.13.4.4)

because [w;] =1y in H H(A) for alli € I. O
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2.13.5 HH(A) x HH*(A) — HHS(A)

We know that

0 < deg(HHY(A)) <h-—4,
—h—2 < deg(HH%(A)) < -2,

—2h < deg(HH®A)) < -h-2,

so the product is trivial unless we pair the lowest degree parts of HH'(A) (generated
by 6o) and HH?®(A) (which is Y*[~h—2]). The product will then live in degree —h—2
which is the top degree part of HH®(A), the space Y[~h — 2.

Given an element ¢ € HH*(A)(~h — 2)) which has the form

Y: AQNh+2] — A,
11 +— Zx\ze,ER

- ieF
this lifts to
Yv:AQNh+2] — A®A,
I®1 — > e Qe;.
icF
Then

Pds(181) = POz @) =9 n(z;) ®nla)

z;€B : z;€EB
> 2 Mm(zie @ e
z;€EB i€F
,d
O IPIP LR DY meez z,
i€F z;eB mJEB ieF

—0

so ¢ lifts to

Qp: Q%(A) — Q(A),
o1 — T R

i€F z;€B
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We get

(oo W)(1@1) =" Y Ns(z;)n(z)z],

i€F z;€B_ 4
where s(z;) is the number of arrows in Q* in the monomial expression of z; (or in
general if z; is a homogeneous polynomial where each monomial term has the same
number of arrows in @Q*, then s(xjA) is the number of Q*-arrows in each moriomial

term).

Under our identifications in Subsection 2.2.5

60¢=Z Z Ais(a:j)n(a:j)x; = Z Z Nis(z;)n(z;)x;-

i€F zj€B_; i,keF z;€ By
To simplify this computation, we will choose a Basis, such that all z; € exAe; for
 some k,l € I and that additionally z; is an eigenvector of 7 for k,! € F (since 7 is
an involution on ey Ae; for k,1 € F). Let B, be a basis of (ezAe;); = ker(n)e,ae, — 1)
and By a basis of (exAer)— = ker(n]e, e, + 1)
Let us define 7
Kkl = Z s(z;) — Z s(z;). (2.13.5.1)

ijB,':"l :cjeB,'c"l

Then the above equation becomes

' 90’(/) = Z Al Z nk,upo(wk). : (2.13.5.2)

leF  keF

Proposition 2.13.5.3. The multiplication by 6y induces a skew-symmetric isomor-
phism .
B:Y*-h-2]5Y[-h-2]

We will treat the Dynkin quivers separately and find the matrix My which repre-

sents 3 for each of these quivers.
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@ = Dp+q, n odd

We use the same basis as given in section 2.4.4. Recall that these basis elements have
the property n(z) = (—1)"z where n, is the number of Q-arrows in the monomial

expression of x.

We can compute that for k,l <n—1,

r

n—k+I1—1 kodd, Ilodd
l—n kodd, leven

-k keven, lodd

Kkl = A«

[ew}

keven, leven

Fkn = Kent+1 — y

n— %1 k odd
k
5 k even

Kpl = Kpt+1l =

)

keven

\
{ n— 1=l lodd

Bnn = Bpeln+l — )

4
n—1\°
Bnyin = Kpnyl = — 5 .

Y*[—h — 2] has basis E2k+1 = [62k+1 - 61] (0 < k < n"2_'~3>7 €k = [e2k] (k < 'n—;l)’
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€n = [en + en+1 — €1], and we can calculate the products

Oofakir = Y (Kisks1 — ki1)@o(wr)

i€F
n—2 . 2k
= 2k po(wi) =Y @olws) + kepo(wn + wnia),
oad cven
Oocar = Z(Ni,zkﬂ)%(wi)
i€F
2k—1 n—2
= (2k—n) Z pol(ws) + 2k Z wo(wi) + kpo(wn + wni1),
oad Todd
Ooen = Z(K/i,n + Knt1,1 — Ki,1)P0(ws)
icF
) n—2 n—1 n—1
= (n—1) z po(wi) — HZ%(M) + polwn + Wnt1)-
i=1,0dd ;;’i
We use the defining relations in Y[~k — 2],
n—2
po(wr) = ‘“900(}: wo(wi) — po(wn)),
i=3

a—&d

eolwnt1) = @0 (wn)

to write the RHS of the above cup product calculations in terms of the basis (w;)a<i<n:

2k
Oocars1 = —nzwo(wi),
1=2
n—2
Oocor = n Z wo(wi) + neo(wn),
i=2k+1

odd

n—1
00571 = _nZ(PO(wi)-
i=2 '

even
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B is given by the skew-symmetric, nondegenerate matrix

(0 -n 0 -n ... ... =n 0 —n O —n\
n 0 0 0 ... ... 00 0 0 O
0 0 0 —-n -n 0 —n 0 —n
n 0n O ...... 00 0 0 O

0 0 0 —n 0 —n 0 —n
Mg =
n 0 n 0 00 0 0 O
0 0 0 0 0 0 -n 0 —n
n 0 n O 0 n 0 O O
0 0 0 0 0 0 0 —-n
\n 0 n 0 0 n 0 n O/

with respect to the chosen basis €3, €3, .. .6, of Y*[—h — 2] and the dual basis
wo(w2), po(ws) . .. po(wn) of Y[—h —2]).

Q@ = Dp41, n even

We use the same basis as in section 2.10.2 for our computations.

For k,lI<mn-—1,

(n—k+l-1 kodd, lodd
l—n kodd, leven
g =
-k keven, lodd
0 keven, leven

Y*[—h — 2] has basis €ax = [ear], €2k41 = [e2ky1 —€1) (1 £ k < "—2-‘2), and we

calculate the products
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Boeaksr = > _(Kizke1 — Ki1)ipo(wi)
icF

n—1 2k
= 2k Z (po(Wq;) -n z (PO(wi))
i=1 i=2

s
odd even

Bocok = D (i.26) 0(wi)
icF
2%-1

= (2]9 - n) Z[wi] + 2]{3 2 ‘pO(wi);

i=1 i=2k+1
odd ¢ +

and we use the defining relation of Y[—h — 2],

polwr) = — i p(w;)

to write the results of the cup product calculations in terms of the basis

wo(wa), polws), . . ., Yolwn—1). We get

2
Oocaks1 = —nZSOO(Wi)

=2
even

n—1
Oocar = n Z (PO(wi)-

i=2k+1
odd

B is given by the matrix
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0 —n O
n 0 0
0 0
n 0 n
0
Mg =
n 0 n
0
n 0 n
0 0 0
\n 0 n

with respect to the basis €g, €3, . ..

wo(ws), polws), - - - polwn-1)-

-n -n 0 —n
0 0 0 0
-n -n 0 —n
0 0 0 0
0 -n 0 —-n
0 0 0 0
0 0 0 —n
0 0 n O
0 0 0 O
0 0 n O

,En—1 and its dual basis
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Q=5

We work with the bases

Bf; = {es, ajas — ajaz, (ajas — a3as)?, a;asa;aaa;%,
4345030305 050303, 03030505030305 050303 }, -
33 — {atas, ajasazas, aza50303, 030305050303,
azasasas(azas — a;a27)2, ajazaiasasa)(asas —ajaz)?},
Béts = {Gsagasagas,asagaaa’gasa;as),

* *( ¥ * )
5030305 a50303(0303 — 0502) },

Bgs = {as, asa3as, asazas(azas — a3az)},

Bis = {a;,d30sa5, (a303 — aja2)azazas},

B;g = {a§a5a§a3‘a§,a§a3a§a5a§a3a§,a§a3a§a5(a§a3)2a§},
B, = {esas0}asat0s(a}as)’a},

Bsg = {asajasaz, as(ajas)al}.

We immediately get the matrix

K33 K36 0 —6
. MB — —

Kes Ko 6 0
which represents the 3 with respect to the basis €3, and dual basis

wo(ws), o(ws)-

E;

For E; and Eg we don’t have to work with an explicit basis to calculate ki, since
for any basis element z, n(z) = . It is enough to know the following: given any
monomial z € exAe; of length [, ni; the number of arrows x € @ and d(k, 7) the
distance between the vertices k, j, we know that x contains ny ; + l—_ﬂzm arrows in @

and d(k,j) — nk,; + l—"%ﬂl arrows in Q. ‘
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We can derive the following formula:

The resulting matrix is

(12 6 9 30 3
-6 0 3 00 0 -3
| 15 -3 12 30 3 -12
(kkdki=] -3 0 -3 00 0 —6
0 0 0 00 -9 0
-3 0 -3 09 0 -6
\-15 3 -1260 6 12 )

A basis of Y*[—h — 2] is given by

€1 = [61 + 67]752 = [62],53 = [63 + 67],54 = [64],55 = [65]756 = [66],

(6ogi)1<1<6 is given by

(3 6 0 30 3 ) wo(wl)\
-9 0 0 00 0 0o (ws)
3 -3 0 30 3 wo(ws)
-9 0 -9 00 0 Po(ws)
0 0 0 00 -9 wolws)
-9 0 -909 0 Po(we)

\-3 3 0 60 6 |\ polwr)

Now use the defining relation of Y'[—h — 2],

%(M) = @o(w1) + wo(ws)
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_to obtain the matrix

/ 0 9 0 9

-9 0 0 O

' 0 0 0 9
Mg =

-9 0 -90

0 0 0 O

\ -9 0 -90

Eg

We can use (2.13.5.4) and get the matrix

(0 15 0 15

-15 0 0 0

0 0 0 15

. -15 0 -15 0

Mg = (Kk,j)kj =

0 0 0 O

0 0 0 O

1 o 0o o0 o0

\ % 0 15 0

o O O o o o

9
0
9
0

-9

0

)

} _

which represents 3 with respect to the basis €; . . . £ and its dual basis @g(w), - - -

00 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 —I5
0 15 0

15 0 15

~15 )
0
15
0
~15
0
_15

o )

which représents B with respect to the basis €1, . . . £g and its dual basis ¢ (w;), - .-

, Po(we)-

,SPo(ws)-'

Remark 2.13.5.5. With respect to our chosen bases (&;)icrr and ¢o(w;)icr, such that

the vertex set I’ C I, together with the arrows in I form a connected subquiver @',

Mj can be written in this general form:

- h
My =2 -(C),
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where we call (C")¢ the signed adjacency matriz of the subquiver @', that is

0 if 4,4 are not adjacent,
j j
(C"ij =< +1 if arrow i « j lies in Q*, (2.13.5.7)

—1 if arrow i « j lies in Q,

In the D, ,-case, we have

-1
[0 1 0 v eer e a0
-1 0 1 0 0
0 -1 0 1 O 0
Mg=mn- ’
0
. 1
\ 0 0 -1 0
in the Fg-case, we have 1
0 1
Mg = ,
-1 0

in the Er-case, we have

o)~

0
1 0 -1 0 0 0
01 0 -1 0 0
Mg=9- :
00 1 0 1 0
00 0 -1 0 1
\ 0 0 0 0 -1 0
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and in the Fg-case, we have

1
0

-1 0 0

1

-1

0
0—1000)

\OO

=15
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2.14 Products involving HH?(A)

We start with HH?(A) x HH*(A) — HH5(A) first and then deduce HH?%(A) x
HH?*(A) — HH*(A) from associativity.

2.14.1 HH?*(A) x HH3(A) — HH°(A)
We will prove the following general proposition:

Proposition 2.14.1.1. For the basis elements f; € HH?*(A), h; € HH3(A), the cup

product is

Proof. Recall the maps

h]A®N — A,

1®1 > wj

and lift it to

?@:A@N — A®A,

1®1 > 1®wj.

Then
fzj(d4(1®a®1))=ﬁj(a®1—-1®a)=a®wj=d1(1®a®wj),
SO
Qh; : QHA) — Q4),
 1®a®1 — 1®a®uw;.
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Then we have

Qh;(ds(1®1)) = QY €a®a*®1+) el®a®a’)

- 2€0Q a€Q
= ) €®d Qu=d(10w),
acQ » :
SO
0hi: Q(4) — QP(A),
11 » 1® wj.
This gives us

()10 1) = fi(1 ®wj) = bijw;,

i.e. the cup product v
fihs = bijlw;| = Gi5%o.

2.14.2 HH?*(A) x HH*(A) — HH*(4)

Since deg HH?(A) = —2, their product has degree —4 (i.e. lies in span((p), so it can

be written as

HH*(A) x HH*(A) — HH%A),
(@,b) ~ (@b,

where -(—, -y H HQ(A) x HH?(A) — C is a bilinear form. We prove the following
proposition: |

Proposition 2.14.2.1. The cup product HH*(A) x HH%(A) — HH*(A) is given by
- {=,=) = a, where a (from Proposition 2.138.2.8) is regarded as a symmetric bilinear

form.
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Proof. We use (2.13.4.2) to get
bo(fifi) = 6o((fi, £)C0) = {fi, fi)¥o. (2.14.2.2)
On the other hand, by Proposition 2.13.2.3 and Proposition 2.14.1.1,
(6ofi) f5 = a(fi) f; _ > (Ma)uhuf; = (Ma)sitho = (Ma)istbo- (2.14.2.3)
By associativity of the cup product, we can equate (2.14.2.2)_a.nd (2.14.2.3) to get
(i £5) = (Ma)is. | (2.14.2.4)

O
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2.14.3 HH(A) x HH4Y(A) > HH%(4)

This computation uses the Batalin-Vilkovisky structure on Hochschild cohomology,
introduced later in section 3.3: we have deg HH?*(A) = —2, deg HH*(A) > —h and
deg HH®(A) < —h — 2. So we know by degrée argument that

0 I>h-4

fa= S hp(ws) l=h—4 "

(2.14.3.1)

We use (3.3.0.14) and the isomorphism H H*(A) = H Hgp42-i(A) to get for the Ger-
stenhaber bracket on HH*(A):

[fi: Gl = AfG) — AR) Cz—fk\AiC_z),

=¥ )\s(% + m)hB™ (p(ws))

The Gerstenhaber brécket has to be independent of the choice of m > 0. This implies
that the RHS has to be zero, so all A; = 0. This shows that

fk(h—4‘=0, - (214382)

so we have that the cup product of HH 2(A) with HH*(A) is zero.

2.14.4 HH*(A) x HH5(A) > HH(A)

Let a € HH*(A) and b € HH®(A) be homogeneous elements, then ab = Xﬁk €
HH"(A) = U[-2h — 2], A € C. Then ' |

Mo = Mz = M0k(p = Ab(alx) =0,

the last equality coming from the product a(, € HH%(A) U HH4(A) = 0.
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2.15 Products involving HH?3(A)

2.15.1 HH3(A) x HH3(A) > HHS(A)

This follows by degree argument: deg HH*(A) = —2, deg HH%(A) < —h—2 < —4.

2.15.2 HH%(A) x HH4(A) > HH(A)

This follows by degree argument: deg HH*(A) = —2, deg HH*(A) > —h, deg HH"(A) <
~h—4<-h-2 |

2.15.3 HH3(A) x HH(A) > HH3(A)

This follows by degree argument: deg HH*(A) = -2, deg HH*(A) > —h — 2,
deg HH3(A) = —2h — 2 < —h — 4.

2.16 Products involving HH*(A)

2.16.1 HH*(A) x HH(A) > HH3(A)

This follows by degree argument: deg H H*(A) > —h, deg HH8(A) = —2h—2 < —2h.

2.16.2 HHY(A) x HH5(A) > HH%(A)

This is clear for @ = Dpy1, n odd, Q = Ey, Eg where HHY(A) = K[-2h — 2] = 0.

Let Q = Dpt1, neven or Q@ = Eg. Let a € HH*(A), b € HH5(A).The product
HH?*(A) x HH3(A) — HH®(A), (z,y) — (x,y){ induces a nondegenerate bilinear
form (—,—). If ab € HH*(A) = HH?(A)[—2h] is nonzero, then we can find a ¢ €
HH?(A), such that c(ab) = (. But this equals (ca)b = 0 since HH?(A) x HH*(A) A
HHS5(A) which gives us a contradiction.
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2.17 HH(A) x HH5(A) — HHY(4)

Proposition 2.17.0.1. The multiplication of the subspace U[—2]* with HH®(A) is
- zero. ' 4 o

The pairing on Y*[—h — 2] is

Y-h—2 x Y [-h—2] — HHY(4),
(a,b) — $Aa,b)pa(Co),

(2.17.0.2)

where the skew-symmetric bilinear form Q(—,—) is given by the matriz —Mp from

subsection 2.18.5.

Proof. We have deg HH5(A) > —h — 2 and deg HH™(A) < —2h — 4, so we can get
a nonzero multiplication only by pairing bottom degree parts of HH®(A) which is
Y*'[—h — 2]. The pfoduct lies in the top degree part of HH0(A) = H H4(A) [—2h]
which is spanned by ¢4((o). This gives us the pairing of the form (2.17.0.2). |

We want to find the matrix ((e;, 5;7’.)),;.,]’ where ¢; are a basis of

Y*[~h — 2], given in the section about HH°(A). Recall that the multiplication
-HH'(A)x HH®(A) — HH®(A) was given by a skew-symmetric matrix ((Mp)i ;)i jer,

so that foe; = = (Mp)x w0 (w)-
i keF

Wé multiply e;€; = Q(ei, €;)pa(¢o) with o (see 2.13.4.2):
Ho(EiSj) = Q(éi?sj)(p5(’(ﬁo). (21703)
Using associativity, this equals

(Boei)ej = ‘Z(Mﬁ)k,i%(wk)ﬁj = (Mp); %o = —(Mp)i,;05(to)- (2-17-0-4)
keF

We see from equations (2.17.0.3) and (2.17.0.4) that

Qi g5) = —(Mp)s ;-
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This completes the cup product computation of HH*(A). O

2.18 Presentation of HH*(A)

For each quiver, we give a presentation of H H*(A) as an algebra over C by generators

and relations. We write X for the element ¢o(zp) € HH®(A).

2.18.1 Q= D,.1, n odd

HH*(A) is generated by
1,24,(.1)1, R )w’n) 00;(277/'—67627 v 7€’IL7X
with relations (Vi,j =2,...,n,Vk,l=1,...,n)

ntl
('Z4) 2= 98 = <22n—6 = 248 = O>

n—2 el

zZywi = Oowi, = Con—eWr = WiWg = X E Wm = XZ42 =0,

m=1
m odd

. n=3
Wwig; = 513'24 2 eoczn_ﬁ,

n—3
gig; = —SUei, €)X 24° Can—s,
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where Q(—, —) is a skew-symmetric bilinear form given by the matrix

(O -n 0 —n ... ... =n 0 —-n 0 —n\
{ln 0 0 O ... ... 0 0 0 0 O
0 6 0 -, ... ...~ n 0 —n 0 —-n
n 0 n O ... ... 0 0 0 0 O
0 0 -n 0 —n 0 —n
n 0 n O 0 0 0 0 O
0 0 0 0 0 —n 0 —n
n 0 n O 0 n 0 0 O
0 0 0 0 0 0 —n
\n 0 n 0 00n 0 n 0)
2.18.2 @=D,.1,neven
HH*(A) is generated by
1,Z4,(,L)1, ceey W1, 607 fn7<2n—4752: s 7€n—-l)X

with relations (Vi,j =2,...,n—1,Vk,l=1,...,n—1)
(20)% =05 = 2ufn = 3y = Con-afn = 0,

Z4E; = fngi = 0,

n—1
24w = Oowk = frwk = Con—awi = Wiwp = X Y wy =0,

ma=]
m odd

n—

n—2
fi = —nz ? <2n—4
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n—2
— 2
wi€j = 0ij24 > GoCan—a,

n-z
€5 = —Q<€¢,€j)XZ4 ? <2n—4a

where Q(—, —) is a skew-symmetric bilinear form given by the matrix

/0 -n 0 -n ... ... =n 0 —n 0 —n
n 0 0 O ... ... 0 0 O 0 O
0 06 0 -n ... ....0m 0 —n 0 —n
n 0 n O ... ... 0 0 0 0 O

0 0 -n 0 -n 0 —-n
n 0 n O 0 0 0 0 0
0 0 0 0 0 -n 0 -n
n 0 n O 0 n 0 0 O
0 0 0 0 0 —n
n 0 n O 0 n 0 n O
2.18.3 Q= Eq

H H*(A) is generated by
1, 6, 28, w3, W, B, f1, f2, Ce, Cs, €3, €6, X
with relations (for u,v € {6,8}, k,l € {3,6}, i,5 € {1,2})
2y =03 = 2ufi = Gulo = Cufi = 2uek = fier =0,

Zywi = Howg = fiwr = (uwr = wiwg = 0,

23Cs = 265, wkel = Ok1bo2s(s,
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fifi = {fi, ch)ngs,

where (—, —) is the symmetric bilinear form, given by the matrix

-8 —4
-4 -8

‘Eké’l = —Q(&'k, el)XZSCS,

where Q(—, —) is a skew-symmetric bilinear form, given by the matrix

0 —6
6 0
2184 Q=FE;
HH*(A) is generated by
1; 28,212, W1, - - - 7“)67601 CS, <12a €1,--. ;EG)X

with relations (for u,v € {8,12}, k,l € {1,...,6})

2212 =08 = 22 = 2,6, = 0,

Zywi = Opwi = wywp, = ng =0,
288 = 21212,  wkér = Orifozi2iz,

exer = —Ue, &)X 212(12,
where (—, —) is a skew-symmetric bilinear form, given by the matrix
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9 0 90 9
-9 0 0 00 O
0 0 0 90 9
-9 0 -9 00 O
0 0 0 00 -9
\-90-9009 0
2.18.5 Q= Ejg
HH*(A) is generated by
1,1212,220,601,--.,ws,ao,Czo,Cm,El,---,66_,X

with relations (for u,v € {12,20},‘ k,le{l,...,8})

2_ .3 3
zuzon =05 =z, = 266 = 275, = 0,

2wk = Bowr = wywy = 0,
2 _
219624 = 22020, wk€l = 0x180220¢20,

excl= —SUek, €1) X 22020,
where Q(—, —) is a skew-symmetric bilinear form, given by the matrix
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-15

15 15

[ 0

0

-15 .0

—15

0

0

-15 0

-15 0

—15

-15

0 0 0

-15

15

15

15

15

15
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Chapter 3

The calculus structure of the

preprojective algebra

We recall the definition of the calculus.

3.1 Definition of calculus

Definition 3.1.0.1. (Gerstenhaber algebra) A graded vector space V* is a Gersten-
haber algebra if it is equipped with a graded commutative and associative product A
- of degree 0 and a graded Lie bracket [,] of degree —1. These operations have to be

compatible in the sense of the following Leibniz rule ‘

b Al = [rml Ae+ (=1)2 & Dy Ay, ), (3.1.0.2)
where v € V* and 7, € V*1. |
We recall from [4] that

Definition 3.1.0.3. (Precalculus) A precalculus is a pair of a Gerstenhaber algebra
(V*,A,[,]) and a graded vector space W* together with |

¢ a module structure to : V* QW™ — W~ of the graded commutative algebra V*
on W™°.
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e an action L, : VTP @ W™ — W~ of the graded Lie algebra V*t' on W™

which are compatible in the sense of the following equations

talp — (—1)lal('bl+l)£bLa = Uai], (3.1.0.4)

and

Lony = Loty + (—1)194, Ly, (3.1.0.5)

Definition 3.1.0.6. (Calculus) A calculus is a precalculus (V*, W*,[,], A, te, Lo) with
a degree 1 differential d on W* such that the Cartan identity,

Lo = dig — (=1)1.d, (3.1.0.7)

holds.

Let A be an associative algebra. The contraction of the Hochschild cochain P €

C*(A, A) with the Hochschild chain (ag, a1, ..., a,) is defined by

(aOP(al,...,ak),ak+1,...,an) n 2 k,

Ip(ag,ay,. .., a,) = { (3.1.0.8)

0 else.

We have

Proposition 3.1.0.9. (Yu. Daletski, I. Gelfand and B. Tsygan [6]) The con-
traction Ip together with the Connes differential, the Gerstenhaber bracket, the cup

product and the action of cochains on chains ([5, (3.5), page 46]) induce on the pair
(HH*(A,A), HH.(A, A)) a structure of calculus.
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3.2 Results about the calculus structure of the
Hochschild cohomology/homology of prepro-
jective algebras of Dynkin quivers

Notation 3.2.0.10. For ¢, € HH'(A), 0 < i < 5, we write c,(:) for the corresponding
cocycle in HH**%. We write c;, for the corresponding cycle in HH,q;, 0 < 5 < 5

(under the isomorphism D.

We state the results in terms of the bases of HH*(A) and HH,(A) which were
introduced in Chapter 2:

Theorem 3.2.0.11. The calculus structure is given by tables 8.1, 8.2, 8.8 and the
Connes differential B, given as follows

The Connes differential B is given as follows:

k
Bl+63(6k,s) = (1 + 5 + Sh)zk,Sa

Boraslon) = (5 +5)h0 (k)
BZ+63(Zk,s) = 07
Busas(nd = (s+Dh-1-15)c,,

B3+6s (Ek:,s) = 0,

Bytss = 0,
BS+63(hk,s) = (S + l)ha_](hk,s))
Bgyss = 0.
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Hl,t Wit 21t Yt &t Cl,t hy ¢ fl,t
zl(cS) (zkel)t-—s 6k0wl,t——s (zkzl)t_s (zkwl)t—s 5k05l,t—s (ZkCl>tvs 5k0h'l,t—s 6k0fl,t—s
W 0 0 OtoWr,t—s o Oki%o,t-s 0 0 0
0,(;) 0 0 (zlek)t—s (zkd)l)t—s 5k0/6(5l,t—s) 0 0 5k004(fl,t)
Opp_z(k+ 1) Oy p—3(k+ 1)
Igs) 5loa(fk,t_3_1) 0 6l0fk,t~—s——l 92’13;1(_3_1 ) 0 zl,t—j( ) 5kl¢0,t-—s (Ma)klgo,t—s
0y h—30p p_3°
n 0 0 Sioh—s-1 0 0 it 0 Srtbo s
’ h—3,t—s
Ok, h-301,h—3" Okh-30Lh-3' | Okh-30 na | Spp_s(l+ 1)
(s) 0 e ’ ’ 0 g , » l,35= k,h—3
Ck (21Wk) t—s-1 (21Ck)t—s—1 ofres, ) fosspor Orrs o
—(Ma)s -
6(3) —5loﬁ(€k,t-s) Okio,t—s—1 01,06k t—s—1 0 ( B)k’l 0 0 0
k CO,t—s—l
Ok h—301 h—3- Sk.h—3(l + 1)
(8) O e 0 0 k,h—301,h—-3 0 k,h—3
k 0 (kal)t ! C“(fh—3,t—s‘1) 9h—3,t—s

Table 3.1: contraction map ¢4(b)
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zl(t) wl(t) gl(t) fl(t) hgt) <l(t) €§t) wl(t)
k
(9) —Orosh- (5 — sh) —0kosh 0 0 (E — sh).
2, 0 ,6_1 (wl(s+t)) (zkzl)(s+t) 0 -1 (h§s+t)) (szl)(8+t)
h
(s) —(% + 1+ th)- 0
Wy, 0 0 0 0 ' 0 6klgés+t)
e (5% + (s =)L+ {(=1+ (s — O -2 + [+ th) [~ T+ th+ D2+ EE + (1 — s)h)
k (Zk91)(3+t) 5k0fl(s+t) 5k0h§s+t) (chl)(s+t) 5k05§3+t) (zkwl)(sm
—(k+1)
(1
) 0 (Lt o) 0 0 (1 + sh)-
Ok 5 (s+t+1)
1Lh—3%h_3
(s—t)h- | —(* +th) ((s —t)h — 21y
B (Mg "k Op, k=301, p-3° 0 Oy, 2=30) h—3-
(s+t) s+t+1) gletttD)
0 Zh—3 h—3
~(sh + EET)
() 0 0 Ok,h—301,h—3"
(s+t+1)
h-3
2
EQ 0 0
(s —t)h-
by Ok,h—301,h—3"
a( S,_‘S;;t+l))

Table 3.2: Gerstenhaber bracket [a,b]




N 0t Wit 2t (e ELt Qe hy i
: t—s+1)h
R e L e G () R ] R )L It el I (VI IR
k 2k01)t-s koWl t—s (2k21)t-s (z6t1)t—s Ok0E L t—s 2 Okohii—s k0 f1.t—s
(2kC1)t-s
® —(1 + sh)- 0 —(1 + sh)- 0 0 —(1 + sh)- 0
k 610 fk,t—s—1 0 5l’h_3Zh/:3it_s — 0k10,t—s
(th + 252)- (= s)h+23) (t+ Dk
hch) 6(1h+ th) 0 (S—lol(t}: I 6k,%6l’h“3' 0 5k,h_;_3 O1,h—3° (M3 (- g +1)h-
10k,t—s-1 o~ (P t-s-1) ) k1C0,t—s
h—3,t—s Zh—3,t—s wo‘t—s
—(sh + &£ —(sh + &),
](:) —(2+ % + sh): 0 0 Ok,h—301,h—3" 0 0 (5k,h_35l’_h;_3- 0
(21Ck) t—s-1 -f-h—;—z-,t—s—l hegi
(o (s +DhFD=((s+ )+ 1) 0 0 0 0 0 ;
k 010Ek, t—s—1 Ok1€o,t—s—1
(l+1)
1+ Lt th) ((t - s)h (th + 254)- (t—=s)h | (t+Dh ((t = s)h
X (2 102) 0 ~1 - kshy. Ok,h—301,h—3" 0 Ok h-30Lh-3 | Okn-3Oih-g | +1+252)
1K) t—s—1 (21CH) tmso1 a(frs s 1) fossy o On-3,t—s Ok,h—3
Zh—3,t—s
(s) (k — sh) —0kosh 0 (g — sh)- 0 0 (k — sh)-
“ (2k01) s BN wi—s) (25C)t—s a~ () 0
Ok (—1+h
(s) (1 + th)- 0 (3 +t—s)h 0 e ). 0 0 .
“ d10Wk,t—s B~ (wk,t—-s) (<0 :S) )

Table 3.3: Lie derivative £,(b)



3.3 Batalm—V11kov1sky structure on Hochschlld co-

homology

In 2.2.5.1, an isomorphism HH,(A) = HH® *(A)[2h + 2] was introduced. However,
because of the periodicity of the Schofield resolution (vﬁth period 6), we get for every .

m > 0 an isomorphism

D: HH,(A) 5 HH*™?*(4) [2mh + 2] (3.3.0.12)

It translates the Connes differential B : HH,(A) — HH,.1(A) on Hochschild
homology into a differential A : HH*(A) — HH*'(A) on Hochschild cohomology,

i.e. we have the commutative diagram

HH.(A) | _B, HH.,,(4)

b|~ ~|p

HH™+2=*(A)[2mh +2] —=— HHgmi1-0 (A)2mh +2]

Theorem 3.3.0.13. (BV structure on Hochschild cohomology) A makes HH* (A)
o Batalin-Vilkovisky a,lgebm i.e. for the Gerstenhaber bracket we get the following

equation:
[a,8] = A(aUb) — A(@) Ub~ (-1 Dl UA®),  Va,be HH*(A). (3.3.0.14)
The isomorphism D intertwines contraction and cup-product maps, i.e. we have
D(tyc) = n UD(c), Ve e HH,(A), n € HH*(A). -(3.3.0.15)
" Remark 3.3.0.16. Note that A in equation (3.3.0.14) depends on which m € N we

choose to identify D : HH,(A) = HH®*™*2-*(A)[2mh + 2], where the Gerstenhaber
bracket does not.
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Proof. We apply the functor

Homge(—, A ®¢c A) : A°~mod — A°—mod,
M - MY

on the Schofield resolution:

A4e4)Y & Ueves i Usag)vE uenm) L
L aevenN)VE AeNh+2)YE ey S ..
| (3.3.0.17)
An element in (A® A)Y or (A® N)V is determined by the image of 1 ® 1,
- An element in (A®V ® A)Y or (AQV ®N)Y by the images of 1®a®1 for all arrows
a€Q. |
: +1 = A,
Let us define o = ¢ .
1 Q=D,E

We make the following identifications:

(A ® A)[—2mh] = (A® A[2mh])":
we identify z ® y with the map that sends 1 ® 1 to ™y ®z,

(A®V ® A)[~2mh — 2] = (A® V ® A[2mh])":

we identify ) €,7, ® a* ® y, with the map that sends 1® a ® 1 to —0™y, ® z,,
acQ . :

(A® A)[-2mh — 2] = (A® Al2mh + 2])":
we identify x ® y with the map that sends 1 ® 1 to —c™y ® z,

(A® M)[—(2m + 1)h] = (AQN[(2m + 1)h])":
we identify z ® y with the map that sends 1 ® 1 to —o™n(y) ® z,

(AQVRMN[-2m+1)h—2] = (A®V N[(2m + DA):

we identify 3 €,2, @ 7(a*) ® y, with the map that sends 1®a®1 to o™ n(y,) @z,
' aeQ -

(AQN)[-2(m+ 1)k — 2] = (A® A[2(m + 1)h + 2))V:
we identify £ ® y with the map that sends 1 ® 1 to e™7(y) @ =,

so (3.3.0.17) becomes
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4

-

Aod) & Ueves®Ued-2) & aeN-m %

4 aeveN-h-% AeN-h-2) % Ueam) E
(3.3.0.18)

£

We show under the identification from above, the differentials d} corresponds to the

differentials from the Schofield resolution, i.e. (3.3.0.18) can be rewritten in this form:

kA B4 (A Al-2)) 2

B AoV @N[-h-2)
(A® Al-2n) “%2

(A®A) (ARVR®A —
ds[-ﬁil—Z] (A ®N[—h])

U A QN[-h—2)

da[-2h—2]
—
d3[-2h—2]
(3.3.0.19)
It is enough to show this for the first period.

H(rzoy)(1®a®l)=(z®y)o(@®1-1®a) =ay®z -y za,
SO

d (z®y) = Z & (za®a* @y—2r®a’ ®ay) = Zea(ma®a*®y+x®a®a*y) = dy(z®y),
aeQ aeQ

d() €t ®a" @u)(101) = () er.®a"®y,)o O ab@b @1+6l@bobY)

aeQ : aeQ beQ
—_ Z(Eaa*ya ® xa - 6aya ® xaa*),
aeQ '
SO

d;/(z €T, ® a* ® ya) = Z 6a($aa* QUYa— T ® a*ya) =d; (eaxa ®a*® ya)a

aEQ aEQ
dzRyY)(1®1) = (z®y)o Zx,,@x =~ley®a:x = - x})y ® xx;,
z;€EB z,€EB zteB
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SO

dvx®y

dz®y)(1Qa®1)=

me,@x nly) = ny:q@x;‘:ds(a:@y)

$¢€B fl'g‘EB

@®y)e(a®1-1®a)=—an(y) ®z +n(y) ® zn(a),

> cao(—z @n(a") @ nla)y +zn(a) @ n(a*) @ y)
acQ

Z(Gafca Ra"Qy+er®@a®a‘y)=ds(zQy),
aGQ

BT coa ®1(a") @ o)1 82D 1)

= (2 €z ®n(a’) ®ya) o (D (b @ ®@1+ 61 ®b6® DY)

SO
di(z®y) =
aEQ
a€qQ
=0 Z_(—
aeqQ
SO
dg/(z €aTq & ﬂ(a
aEQ
di(z®y)(1®1)
SO »

beQ

eN(Ya) ® Ty + €1 (Ya) ® 2an(a*)),

N®Ya = Z(_faxa ®n(a”)ya + €azan(a®) ® ya)
aeQ
= i) eama ©(a*) ® 3a),
aeQ

= (z®y)o Zx@c —UZ$z"7 ® xn(x])

ﬂheB w'LEB

= 0o Z x:ﬂ(y) Rrr; =0 Z CC: Q rYT;,

z;€B ;€8

di(z®y) = Z TYT; ® T = d3(m®y)v

z,€B
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- Fix m > 0. The map Whjch shifts the degree by —2mh — 2 produces the following

diagram which commutes by the computations above:

AQAPmh+2] 2% ARV ®Al2h] Zmt,

1 I

U4 I Aeved)|-7 2. ..

. I AVveAd -4, A A it A
Bt (A @V © A)-2mh—2] % (4@ A)-mh -2 ™ A

‘Similarly to the proof of [18, Theorem 3.4.3.], this self-dual morphism of the
Schofield resolution C* into the dual complex (C*) can be used to prove (3.3.‘0.15).
(3.3.0.14) follows, as in the proof of [18, Theorem 3.4.3.], from (3.3.0.15) and the

calculus structure. ’
O

3.3.1 Computation of the calculus structure of the prepro-

jective algebra

Since the calculus structure is defined on Hochschild chains and cochains, we have to
work with the on the resolution for computations. It turns out that we only have to
compute Ly, direcﬂy, the rest can be deduced from formulas given by the calculus

and the BV structure.

L, ApAl] % ARV EA Y AgA Ao
g | | |
LB, gl B, 4es b e

b°>A > 0
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These maps 1); gives us a chain map between the Schofield and the bar resolution:

pleyel) = 19y®1l,

w1el) = Y el®e®d el
: aeQ

us(l®1) = ZZeal®xi®a®a*®x2‘,

a€Q z:€B

and

M3H=Mizzz¢®a®a*®xj;
acQ z:€B ‘

Now, we apply the functor — ® 4¢ A on the commutative diagram:

LB AR B veAR s AR

% (A®3)R ‘bz‘; (A®2)R b (A®H)R . 0

where
mrey) = z0vy,
up(z) = Y €a®d e,
T aeQ .
ps(z) = Z Z €Zi ® a® a* ® z;n(z),
aGQ .’EieB
and

#’3+i=u’izz:a:¢®a®a*®xz.
- acQ z:€B

Now, we compute Lg,:
Lemma 3.3.1.1. For each z € HH;(A),

Lo (x) = xi“%(?l. | (3.3.1.2)
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Proof. Via i/, we already identified € H H;(A) with cycles in the Hochschild chain,
but we still have to identify 6, with an element in Home(A®3, A):

given any monomial b= b;...b;, b; € V, the map

(1®b®1)——2b1 z—l®b ®bz+1 b

makes the diagram
AQVRA B AgA 2.4 —0
- I
Y/ S L N RN
commute. |

Applying Hom se (_® A), we get a map

7* : Hom (V) — Homy(A),

such that
(Goor*)(br...br) = Zbl bi-160(bi)bit1 ... by = s(b) - b,

where for b= by ...b;, s(b) is the number of b; € Q*.
Recall from [5, (3.5), page 46] that the Lie derivative of 6 o 7* on Hochschild
chains is defined by ‘

Y ume ®@or)a) e - @a
i=1
k

= ) (s(ar) + - s(ar))ar ® - ® ax,

i=1

Lopor+(a1 @ - - - @ ax)

and it can easily be checked that for each z € H H;(A), Lgpor acts on pi(z), z €
HH'(A), by multiplication with 1 deg(z). o O
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The contraction map

From (3.3.0.15) we know that the contraction map on Hochschild homology is given by
the cup product on Hochschild cohomology which was computed in [12] for quivers of
type A and in Chapter 2 for type D and E. Table 3.1 contains these results, rewritten

in terms of the contraction maps.

The Connes differential |

We start with the computation of the Connes differential and recall the diagram from
Subsection 2.2.4:

degree
0
2<deg<h-1 H}f;(A)= U
el
- 2<deg<h HH2(A) == U &Y
B |
h <deg <2h -2 HH;(A) =—— U*[2hl®Y*[h]
_ N Nl 4
h+1<deg<2h-2 H}i;(A) = U*[2h]
' By ol
2h HH;(A) = K*[2h]
Bs ~
2h Hfi;(A) = K|[2h]
Bs ol

9h + 2 < deg < 3h — 1 HH7(A)

d

=
S
=
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Proposition 3.3.1.3. The Connes differential B is given as follows:

Buss(6Y) = (1 +§+sh)z,g’)_,
Buasf?) = (+9h87(wf?)
Bass(2)) = 0,

Bosasldf?) = ((s+ Dh—1-2)G,

Bsés (€§:)) = 0,

B4+63 = Oa
Bsras(h?) = (s+Dha”' ("),
Bﬁ-}—ﬁs = 0

Proof. We use the Cartan identity (3.1.0.7) with a € 6y,
Loy = Bu, + 14, B, (3.3.1.4)

where Ly, acts on z € HH; by multiplication by } deg(x) (sce Lemma (3.3.1.1)).
The above identities for the Connes differential follow since ¢g, acts on 9,(:) , w,(:), 'z/),(:)
and h,(f) by zero, and z,(:), ﬂ‘l(w,(ct)), C,it) and a‘l(hff)) are their unique preimages the

-~ contraction with g,. O
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The Gerstenhaber bracket

We compute the brackets using the identification

HHY(A) = HHgppoi(A)[—2mh — 2] for m >> 1 and the BV-identity (3.3.0.14).

Brackets involving HH®(A):

By degree argument these brackets are zero:
W with HHY6{(A), HH2{(A), HH*®(A), HH*®(A), and ¢, € HH " (A).
From the BV-identity (3.3.0.14), we see that brackets of z,(f) with zl(t) € HHS(A),
HH**{(A), HH*%(A) and sgt) € HH5%5(A) are zero because A acts by zero on
U[-2th — 2] C’HHﬁt(A), HH?%(A) and HH*5(A).

We compute the remaining brackets: -

t (s) (1) (s) () (8) ®
[z,(f),wl( )] = Az Uw’) — A(zks ) Uw;” — zks UA(w”)
=0

sy _ 9 -
= GAw™) — (5 + (m—Dh)5” U (W)

= %o(% +(m—s— t)h)ﬁ‘l(wl(s‘”)) _ (% + (m - t)h),@‘l(w,(”t))

= —broshB (W),

7,60 = AGD e - AT UgY - 47 uA@EY)
=0
! s
= A((a0)) = (14 5 + (m— D))z 7
= (1 + k—;'-—l + (m - 8= t)h)(zkzl)(s+t)
—(1 + é‘ -+ (m — t)h)(zkzl)(s”)

= (&~ sh)(aa)*,
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AP = A UK - AU 20 U A
= 5,;0A(h§8+“)—(h:)( —t— D)2 Ua (M)
= Go(h+ (m—s—t—1)h)a" (AHY)

—bro(h+ (m—t — D)o ()
= —Grosha™ (h{"H), |
27,9 = AEY U - A L - 77 uAE®)
— |
= A(@g)) ~ (b= 1= )af?
S )
~((m~ h— 1~ 1) ()"

= (5~ sh) ()

= (m—s—th—-1-

W, )

_ A(w(s) U g(t)) ( )) U S(t) w,(cs) U Agl(.t)
=0
| . s
= AGuds™) = (5 + (m = B ) Uel?
h

= Gulh—1+(m—s—t— DS - 5u(= +

5 (m — s)}h)Go

h
= 5kl(—§ —1—th)
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Brackets involving HH't5(A):

6,671 = A7 ua”) - A ue +67 uae?)
=0
k . :
= ~(L+5+(m~ s )26 + (1 + é + (m — t)h))6" 2"

= (54 (s DR ()

6., 171 = A7 VD) - A0 U467 UARY)
\—;6—/
= (A = 1+ (m— ) ;)
= Gro(h+ (m—s—t— D) — (14 (m—s)h) £+

6,07 =A@ URY) - A Uk +67 UART)
=0
= —(1+(m—-s)h+ k) O URD + (h+ (m—t — DR)ES U o (B
= (1 + (m — s)h)h§s+t)
+6po(m — t)hA{THY

= bro(—1+ (s — )R)AH)

60,69 = AP ug?) -aE v +60 ua?)
= AlE)) — (1 + 5+ (m- s U
-k

= (h=1-—=+(m—s—t = Dh)(=)

(4 5 )2 )

l
= —(2+ 5+ th) (zx) Y
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0%,

[0

(s) (1)
ks )

]

_ A(el(:) le(ﬁ)) SNC (8)) ¢(t) 9}(:) UA(wl(t))
(L S

=0

a4k (m—s)h) 2™ + (h—1 - é +(m

2

@ S (- ) ),

AWBY UeD) — A Ue? + 6 UAED)
N

=0

@@@@WM—@M+(-ﬁm+)@Hﬂ

h
5k0(§'

—Gro(1+ (t+ = )h)e““)
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Brackets involving HH?*%(4):

By degree argument, the bracket of HH?+5%5(A) with HH**%(A) is zero.

A B

t
A2, ¢

[ f(3>, l(t)]

t
10,600 =

= AGTURD) = AU URY - £ UAGE)
N e’

=0

Aty — (B + (m—t = DR) £ Ua L (RY)
bi(h—14+(m—s—1t - 1)h)¢o — b (m — t)h(o
_5kl(1 —+ Sh) és+t)’

AT VA = A - 17 U AE?)
=0 =0
orh-3(k + 1)A( ) =0,

AP U = A U — P UA®RY)
\..\,../

A u”) = (- 1—%+(m—t- DR £ U
Sun—s(k + 1AGCTY)

—Oip—3((m—t)h —1 — #)(h + 1)
Sunz(k+1)(1+ h—_—2_—?i 4 (m—s—t— 1)h)2HHD
—Gps((m—t)h —1— h—i——%)(k + 1)z
—bip_s(k + 1)(1 4 sh)zHH,

A( (s)) Uggt)) \—g’k(s-))/Uegt) _ Af,ﬁs’ U\Afﬁ: 0
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Brackets involving HH3t%¢(A):
We have

PR = AR UKD~ ARS)URY + B UARY)

= —(h+(m—s—1h)a ' (AU hgﬂ
+(h+ (m—t-Dh)AS Ua (BY)
= (s—tha ' (W) URY = (s = Y (M) ui,

[ (S) C(t)] _ ( (3) t)) ( (3))U<(t)+h§;)UA(Qt))
=0
= 81003 AOE D) = (m - 5)ha ™ (h) U ¢V
h-3 (s+t+1)

= ‘Sk,@&,h—z((l -+ — +(m—-s—t—-1)h)z
_(m )hz(s+t+l)) '
h+1 (s+t+1)

= 5]:) h— 35lh 3(—T - th)zh_B

We have

B 0] = AW UY) — AW U + 1 U AEY)
\H,._/

=0
= —(m - s)ha ' (B Ug® + (m— 1) — l)h(s) U
= —(m— s)hdy, hs Sihe 39(s+t+1)
+({(m—-t)h—1- _)5k B 6(s+t+1)
= 51,;1_36;3,%((3 —t)h— h )0(s+t+1),
PO = AG U - A U - a8 U A
N~

= —(m—-s)ha Y (B U = 0.
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Brackets involving HH*%(A):

The bracket [ (t)] A( ,gs) U C(t)) (g(s’) U C(t) C,Ef) U A((l(t)) = 0 because
A is zero on HH**% and HH*t5s,

0] = AU - M)l - P uae?),
——0
= G s sA@UEE) ~ (om =~ 1 - )¢ U ()
= Opn30p3(m—s—t— 1)hf(s+t+1) (m—-t)h—-1- EE—S) ﬁfgt“)
= Gensdin_s(—sh — h’; Sy

The bracket of HH5%(A) with HH5%(A):

il = A ) -aw) vl e UAWY),
=0
= ~(lm—h—1- D) Uy + (m - )b~ 1~ S U

= Okn-301h-3(s — t)ha( (g;m)).
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The Lie derivative L

We use the Cartan identity (3.1.0.7) to compute the Lie derivative.

HH55(A)-Lie derivatives:

From the Cartan identity, we see that
Lal(:) = BLG’(:) + Laz(cs)B'

On 6,4, wi s, Yr s and hyy, the Connes differential acts by multiplication with § degree
and taking the preimage under ¢4,, and Lo® acts on them by zero. B acts by zero
on zl(t), eg), Gt and fi;. Since B is degree preserving, this means that f’o,(;’) acts on
014, wit, Y1 and kg by multiplication with % their degree times z,(:), and on 24, €k,
1+ and fi; by multiplication with z,(cs) and then multipﬁcation with 1 degree of their

product. So we get the following formulas:

[
[:9)(:)(9;,,5) = (14 5 + th)(zkﬁl)t_s,

kE+1
Lo (ze) = (14 —=+ (= )h)(za)s,

1
ﬁe,(f)(wl:t) = 5k0(’2‘+t)hwl,t—s,

1
Low (e = Oro(5+ (= s)heyss,
[

Loo (hie) = ((E+1h—1- 5)(Zk¢l)t—s,
L) = (-s+Dh-1-E)eq),,

Eel(f)(hl’t) = 5ko(t+1)hhu_3,

Lyor(fiz) = ot — s+ Dhfies
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HH?**5s( A)-Lie derivatives:

We compute £ ok

Lflgs)(el?t) = B(/fflge*)(el,t))"’Lflgs)(B(Hl,t»

[
= B(opa(fit-s—1)) — (1 + 5+ th))bfl(ca)zl,t
= it — )P fri—s1 — O10(1 + th) fit—s—1 = =010(1 + 8h) frt—s,
ﬁfés)(fl,t) = B( "f](cs) (fl,t) ) =0,

N e’
€HHyy6(t—0)

Ef)gs)(Zz,t) = OB (fet-s) =0,

. 1 _
L (wi) = B (LflgS)wl,t) + Lf'ga)B (wit) = (5 + t)htféwﬁ Ywrt) =0,
N —

=0
Lio(er) = Blyw(ean),

=0

Loo(re) = Blogo (W) =ty BW) |

= B(op_s(k+1)0hs—s) — (t+1)h—1- §)Lf,ga>(Cl,t)
h—3
= 5l,h—3(k + (1 + '—2_ + (t— 8)h)Zh—3,t—s
2

= ——(55 n3(k + 1)(1 + sh)zh 3,t—8)

L (Gy) = B Ly (Gr)) = Bk h—32h-3-5) = 0,

Lo () = B(yo (hug)) — Ly B (Pa,t)

k
= B(bksos-s) — (t+ 1)h1/f£5)04_1(hl,t)

= Su((t =5+ 1)h = 1)Cot—s — Ot + 1)hlo—s
= —Ou(sh+1)Cot-s

(k4 1)+ DR = 1= )on s
(
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HH3*%( A)-Lie derivatives:

We compute £ NGk
k

th’) (91( t))

Ly (210)

,Ch;:) (wl,t)

’Chgf) (e1,t)

Ly (W)

Ly (G

[:h;(:) (hl,t)

Ly (fz)

l .
B(thce) (Hl(t))) + th‘s)B(el,t) = (1 + 'é' + th)th@)Z[,t

0

Oio(1 + th)hkt—s-1,
B(Biohk,t-s-1) = dio(t — s)ha™ (g p-s-1),

B th(:) (wie) + [’h,(c’)B(wl’t) =0,
— ——

=0 cup product in HH3(A) x HH5(A)
B Lh,(ca)€l,t =0,

=0
By,0 (1)) + 1 B(dre)
=0
2¥10) h+1
((t+Dh =1 = G = & neabios(th + —5=)0h-5,-s,
B (th@ (Ge) = (5;3,% B(01,1-30n-3,t—s)
h—1

= Oh-3((t — s)h + )Zh-3,ts)

2
By () + 1y B(hug) = (¢ + Dhey oo™ (hyy)
e’ .

=0

(¢ + 1)R(MZ utbo,s-s
By (fie)) = B(0wtbo,i-s) = du((t — s+ 1)h = 1)Co,—s
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HH**%s(A)-Lie derivatives:

We compute £ Ok
k

[
EC}(;) (0e) = BLC;cs)(f)l,t) = LC,E”B (01,t) = B((z191)t—5-1) — Lg{:’(l +tg+ th)zy,

k ; l)(ZzCk)t-s—l - (1+ é + th)(z1Ck )1—s-1

k
= (—sh—-2- ‘2')(21Ck)t-s—1,
£<(8) (wl,t) = 07
k

= ((t—s)h-1—

LCI(:) (Zl,t) = BLCJ(CS)(zl’t) — LC;(:) B(zl,t)

=0
= BC(ZICk)t—s—l) =0,

ch;‘" (1) = B Lc,ﬁ‘“’(wl’t) - LC;C@B (Y1)
{
= Orh-sOun-sBlalfaze 1)) = Lo ((E+1)h =1 2)Gs

= Okn-30ih-s((t — $)hfrzs 4

h—3
“((t‘l' 1)h— 1- )f%,t—sﬂ)
h+1
= Opn—30p-3(—sh — )f b3y o1
LCJ(:) (5”) = B LC’(Cs) (e1t) —LC;(f) B(j)l’t) =0,
=0 -
ﬁ(,(f)((l’t) = BLCI(:B)(Cl,t) —L® B(G,t)
=0

= Oph—301h-3B(frzz s o) =0,

CCi(cs)(hl’t) = BLC]SS)(hl’t) — LC,(:)B(hl’t)
- 51,%&@_33(9}1_3,%3) —(t+ UhLC;(f)a_l(hl’t)’

h—3
= Oy n=a0pn-3zh-3-s((1+ ——+ (t — s)h) — (t+ 1)h)
h+1
= 5z,h_;3. 5k,h—3zh—3,t—s(——2 — sh),
ngc@(fl,t) = B (fr.e) — Lo B (fie)

=0
= (I +1)0kn-3B(2h-31-5) =0
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H H%%5(A)-Lie derivatives:

We compute £a§:):

L@ = B (o 6up) + o0 B (01,4
B buBekemet) + (L 5 )i (1)
Sl 5= Dhepimact + (14 th)icrios
= (s )+ Dénhomen |
Lw(ag) = Bl (214)) = Blek,t-s-1) = 0,
L) = Blew (wi4)) + ¢ 0 Blwiy)
= B(0utho-s-1) + (% + t)htgie)ﬁ_l(wz,t)
= Ou((t—8)h—1){ot-s-1~ 5kz(% +t)hCo,t-s-1
= b1+ (5 + Moo

Loy = B(r0 (W12)) + ¢ 0 B (i)

0

l
(4 D= 1= 5w =0,
Lwley) = Blywle) = B(—(Mp)rilot-s-1) = 0,

LG = Bt G) =0,

N
=0

L) = Bt 0 (b)) + (¢ + 1)hL€§:)a—1(hl,t) =0,

Lolfin) = Bt (fie)) =0

0
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We compute £ ek

LyoBre) =

5%(5) (zp) =

£¢£“) (wir) =

LW) () =

ﬁ%(f) (e1) =

ﬁif’;(f) (Gr) =

L‘Pff) (hiy) =

E'l/))(:) (fl,t). =

1/)“*) (6h,¢) +2, @ B(6:4)
e

=0

{ {
Lozl = +th) = ()1 (1 + 5 + th),
¥ 2 2
Buyo (210) + ¢y Blae)

=0

B((z10r)t—s-1) = ((t — 8)h — 1 — k—

7 l)(ZzCk)t—s—h

B Lt/);(f) (wl,t) +L¢§f) B (wl,t)
=0
1 1 _
(5 + t)hbw’(:;),@ (wit) =0,
Bt o) (W1e) + 0 B(re)
i Py
N —’

=0

{
(t+1Dh=-1- '2')L¢I(C8)Cl,t

h—-3
Ok h—30Lp—3((t +1)h =1~ T)a(fh—;:*,t—s—l)>

=th‘+ﬁ"—’2Ll
B Ly® (e1t) +L¢)(:) B(ei) =0
s + ¢, B((i,t)
'Ib( ) (Cl t) w (——O t
Sph-30Lh-3Bla(frzz oo 1))

Ok h—30Lh—3(t — S)hfnzs o 1,
B Lw;:)(hl’t) +L¢I(ce) B(h) = L?ﬁ;(cs)a—l(hl’t) (t+1)h
e —r’

=0
Ok,h—30; h=3 (t + 1)hOp—3t-s

1/}m(fl ¢) + Ly B(ft)
=0
(1 + 1)0k h—3B(Oh-3,1—s)

(l+1)(1+(t—-s)h+h;

)0k h—32h—3,t—s
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H H%t%(A)-Lie derivatives:

B;acts on 64, wis, ¢1t and hy; by multiplication with % degree and taking the
preimage under ¢, On 2z, €14, G and fiz, B acts by zero. Since the spaces U,
U*", K, K*, Y and Y* are z-invariant and _ZI(:) has degree k — 2sh, Lz’(:) acts on
05, wit, Y and hyy by multiplication with l,j- — sh and taking the preimage under g,
and multiplication with z,(c’), and on 24, €14, ¢i,¢ and fi; it acts by zero. Wei have the

following formulas:

k
ﬁz’(:)(ﬁ’z,t) = (§_Sh)(zk91)t—s>
Lwlaz) = 0,
L) = —broshB™ (wi-s),

ﬁz,‘;”wl’t) = (g — sh)(2k€t)i—s»
[,z;:)(ez,t) = 0, |
Lw(Gs) = 0,

Lo = (5= sh)a™(uecd),
'Czl(f)(fl’t) =0

Now we compute £ ):
k

We observe that ¢, (€14) = Oktbos—ss L, (214) = O1owk,t—s, and

L@ (016) = 10 (i) = 0 (ie) = ¢, () = ¢ 0 (g) = 0 (frr) = 0.
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Then we have

Lwley) = Brp (€1,6) = S B(Wo-s)

= du((t—s+1h =1
Lwlar) = Bu o (2) = 810 B (wi,t—s)

— bl +t— B (wkens)
L) = 1B () = (1+ % +th) @2

= 6l0(1 + th)wk,t-—m

and

L o) = Lo (@he) = Lo (G) = ['w’(:)(hl,t) =L o (fi) =0
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Chapter 4

The centrally extended

preprojective algebra

4.0.2 Definition

Let p = (u;) be a regular weight. We define the centrally extended preprojective
algebra A = A* to be the quotient of P[z] (z is a central variable) by the relation
Y- la,a*] = 2(3_ piei). By taking the quotient A/(z), we obtain the usual prepfojec-

acQ iel

tive algebra g = P/( Y [a,a*)).
aeqQ
The grading on A is given by deg(R) = 0, deg(a) = deg(a*) = 1 and deg(z) = 2.

From now on, we assume yu to be a generic weight or p = p.

4.1 Hochschild homology/cohomology and cyclic
homology of A

4.1.1 Periodic projective resolution of A

Let V' be the R-bimodule which is generated by the arrows in Q (i.e. the degree
1-part of A). For a Z—graded R-bimodule M, we denote M[i] to be the bimodule
M, shifted by degree i (i.e. M(d) = M[i](d +1)).
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We want to compute Hochschild homology and cohomology of A, so we want to

find a projective resolution of A.
 Let
. C—l = A7 }
Co = A ®R A,
Ci=(A®rV ®rA)® (AR A)[2],
C:=(A®rV ®r A)[2] ® (A®r A)[2],

Cg = A ®R A[4],
C4 = Co[zh]

We define the following A—bimodule-homomorphisms d; : C; — Cj_;:

7 do(b1 ® b)) = blb2,

dl(bl ®O£®bg,b3®b4)=b1a®bz—b1®db2+bgz®b4"bs®2b4,

| d2(b1®a®b2,b3®b4)=(——blz®a®b2+bl®a®zb2+26ab3a®a*®b4

ae@
+ Z €bs ®a®a*by, —bsu @by +bja®by — by ® abs),
a,EC_Z '
_ , +1 a€qQ
- where we introduce the notation ¢, = ,
-1 ae@

d3(b1 ® bg) = (Z eabla ® a* ® b2 + Zeabl ®a® a*b2,’b12 ® b2 —"bl ® Zbg),

acQ ae@

da(by ® ba) = > byzi @ z}ba,

where {xz} is a basis of A and {z}} the dual basis under the (symmetric and non-

degenerate) trace form (z,y) = Tr(zy) introduced in [9, Section 2.2.]. It is easy to
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see fhat dy4 is independent of the choice of the basis {z;}. It is clear that all d; are

- degree-preserving.

Using the trace form, it is easy to show that ) az; ® 2} = > z; ® z}a for any

a € A

Zaxi Rz = ZZ(axi,x;)xj ®z; = ZZ:I:, ® (x;a,z;)x; = in ® zia.

This imp]jés .
da(b1 ® b2) = by(b1 ® be) Zxﬁ ® (l::

- Theorem 4.1.1.1. From the maps d; we obtain the following projective resolution

C. of A with period 4:

B B o Bl ap S e 8 a8 a b a B as

~ Proof. Let us first show that these C;, d; define a complex. We show that d;d;+; =0
- for 4 < 3 and dyd;[2h] = 0:

dody(by ® @ ® ba, b5 @ by) = do(bra ® by — by ® aby + b3z @ by — b3'® 2by) =0,

dida(br ® @ by, b3 @ by) =
=di(-bz@a®b+bh ®a®2bh+ Y aba®a’ @b

A aeQ
+ Z €b3s ® a® a*by, —b3p @ by + bra ® by — by ® aby)
aeQ '
=—bza @by + b2 Q@ aby + bia ® zby — b; ® azby + Z €.b3aa* ® by
. acQ '
- Z €.b3a ® a*by + Z €.bsa ® a*by — Z €ab3 ® aa*by — b3zu @ by
aeQ acQ aeQ

+ba ® 2bs + b1z @ by — b ® 2bo — byz ® aby + by ® zaby = 0
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(since Y eqaa™ = zu),
aeQ

dad3 (b1 ® by) =
= dZ(Z 6abla ®a* ® b2 + Zﬁabl RKa® G*bg, b1Z & b2 — b] &® Zbg) =

aeQ ae@
= (— Zeablaz ®Ra* by + Z esb1a @ a* ® zby — Z €12 ® a ® a*bsy
aeQ aeQ aeQ '
+ z €0 ®a® za*by + Z €biza @ a* @ by + Z €b12 ® a ® a*by
aeQ aeQ Y=te]
- Z eba®a* ® zby — Z €01 ® a ® a*2by,
aeQ aeQ
—blz,u X bz -+ bl ® Z/Lbz + Z eablaa* ® b2 - Zeabla ® CL*bz
aeQ ac@
+ Z €abia ® a*by — Z €01 ® aa*bz) =0,
aeQ a€qQ

dady(by ® by) = d3 (D _ briz; @ x}hy) =

= (Z Z eb1zia ® a* ® T} by + Z Z €ab17i ® a ® a*z}by,

aeQ aeQ
Z biziz ® x7by — Z biz; ® zx;bs).

Using the trace form, it is easy to show that Y z;a ® 7 = > x; ® az} for any

a € A:

Zx,;a Rz = Z Z(xia,x}‘)xj Qi = ZZ:C, ® (ax;,z;)x; = Z:c,- ® ax;.

It follows that > biz;z @ x7bs — > biw; ® 227ba = 0.
Similarly, Y- r;a @b ® zf = Y x; ® b® ax; for any a € A. Therefore
Z eb1zia @ a* @xiby = Z €1 Z; ® a* @ axiby = Z&;blxi ®a®a‘x;bs,

=—¢q
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SO d3d4 = 0.

d4d1 [2h](b1 RKa® b27 b3 ® b4) =
= do(b10 ® by ~ b ® atby + by @ by — by ® 2bg) Y @z = 0.

Now we show exactness. Since the complex is periodic, it is enough to show

exactness for Cy, C}, C2 and Cs.

We recall the definition of Anick’s resolution [1]. Denote TgW to be the tensor
algebra of a graded R-bimodule W, TEW its augmentation ideal. Let L C TaW be
an R-graded bimodule and B = TRW/(L). Then we the following resolution:

| B@RL®RB—a+B®RW®RBi>B®RB—n1>B—>O, (4.1.1.2)
where m is the multiplication map, f is given by
f(bl ®w®b2) =biw ® by — by @ whoy

and 0 is given by -
6(()1 ®l®bz) =b] D(l) . b2> )

D:TEW — B®erW ®gB,

n
W Q... 0w, Z(w1®...®wp_1)®wp®(wp+l®...®wn),

p=1
where bar stands for the image in B of the projection map.

In our setting, W =V @ Rz, L the R-bimodule generated by 3" €,aa* — iz and
. ~ a€Q
az — zaVa € Q. Then B = A.

In Anick’s resolution, m = dy, A g W ®g A can be identified with C; (via A® rA[2) =
A ®r Rz ®g A), so that f becomes d;. Then Im(8)=Im(d,) C C;. This implies

exactness in Cy and Cj.
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For exactness in 2 and 3¢ term, we show that the complex
Co=GCo2h B B0, 30,508 4=0_, -0
is selfdual:

By replacing Cy = Cy[2h] by Cy = Im(dy), we get the complex

Now, the map Y byz; ® zfbs — biby allows us to identify Im(ds) = A[2h] as
A—bimodules so d4 becomes multiplication with ) z; ® z.

We introduce the following nondege_herate, bilinear forms:
On A®g A, let
(z ®y,a®b) = Tr(xb)Tr(ya),

and on AQrV ®gr A, we define
(z®a®y,a® Bb) =Tr(zb)Tr(ya)a, 5), |
where we define the form on V' by

(o, B) = €larp
_ 1
(a,ﬂ_éQandéab={0 )-

Via the trace form (z,y) = Tr(zy), we can identify A = A*,v z — (z,—), and
similarly we can use the forms from above to identify A @z A = (A ®r A)* and
AQnV ®r A= (A®gV ®g A)*, which induces an identification C; = Cj_,.

We claim the following: di = da, & = —d3 and d5i = dy, '
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where «(z,y) = (—z,y):

([dafa), (1 @) = (Y oz @],bi @ ba) = 3 Tr(aziba)Tr(alb)
= Z(bzx, z;)(x;,b1) = (baz, by) = (z, b1by)
= (z,do(by ® bo)). |

For o, B € Q,

(—Js(x RY), (b1 @ @@ ba, b3 ®by)) =

= ((—Zﬁam@a*@y— Zea:c®a®a*y,—:cz®y+x®zy),
acQ aeQ
(b1 ® @ ® be, bs ® by))

= ~Tr(zaby)Tr(yb) + Tr(xb)Tr(ayb) — Tr(xzbs)Tr(ybs)
+Tr(xby)Tr(zybs)

= Tr(zb)Tr(ybia) — Tr(zab:)Tr(yby) + Tr(xby) Tr(ybsz)
—Tr(xzby)Tr(ybs)

=(z®Y,ba®by— b @ aby+ b3z @ by — by ® 2by)

= (2®y,di(b1 ® a® by, by B by)),

(da(br @ & ® by, b3 @ by), (1 ® BR a3 D ¢y)) =

=((—b1z®a®b2+b1®a®zbg+26ab3a®a*®b4'
a€Q

| +Zeab3®a®a*b4,-b3,u®b4+bla®bz-—b1®ab2),
aGQ
(c1®B®c, c3®cy))

= —Tr(blzcz)Tr(bzcl)(d, B) + Tr(bico)Tr(zbacr) (e, B)
+T'7(bsBcz)Tr(bycy) — Tr(bsco)Tr(Bbycy) |
—Tr(bspucs)Tr(bacs) + Trbiacy) Tr(bocs) — Tr(bicy)Tr(abycs)
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= Tr(bico)Tr(bec12) (e, B) — Tr(brzce) Tr(beci ) (a, B)
—Tr(bics)Tr(bacsa) + Tr(byacy) Tr(bocs)
—Tr(bspcs)Tr(bscs) — Tr(bsco)Tr(bger B) + Tr(bsBey)Tr(bycy)
= (i ®a®b,bs®by),(c1208Rca— 1 QBR zcy

+ZEaC3G &® a* ® C4 + ZEaCB ®a a*C4,
a€Q a€Q
—c3 @ ucy — 1S @ ca + ¢ @ fey))

= ((b1 ® @ ®ba, by @ by),do(—c1 ® B® ca,¢3 ® c4)).

Now, the selfduality of our complex C, and exactness in Cy and C, implies exact-

ness in Cy and Cs. O

4.1.2 Computation of Hochschild cohomology/homology

Now we use the projective resolution C, to compute the Hochschild cohomology and

homology groups of A. Let us write A* = A ®g A®.

Theorem 4.1.2.1. The Hochschild cohomology groups of A are:

HH®(A) = Z (the center of A),

HE™(4) = (Znu YA, AD[-2nh —2),

HH"2(4) = A/([A A+ uZ)[~2nh — 2,
(A)
(A)

HH™3(A) = A,/[A, Al[-2nh — 4],

HH*"%(A) = Z/Awp[-2(n+ 1)h]

where n > 0, and Aoy is the top-degree part of A.

Proof. Apply the functor Home(—, A) on C, identify
Homac(A@gr A, A) = AR

(¢ € Homye(A ®g A, A) is determined by ¢(1 ® 1) = a € A and observe ra =
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¢(r®1)=¢(1®r) = ar, Vr € R. We write a o — for ¢) and
Homu(A®rV ®r A, A) = (A®R V)F[-2]

(> z,®a* is identified with the homomorphism 7 which maps each element 1®a®1
a€Q _ ’
to z, (a € Q), we write ), z, ® a* for ¥(-))

1=l
to obtain the Hochschild cohomology complex
, (A®rV)*[—4]  (A®rV)F-2]
o AR[on] B AR g & o & o E AR o,
AR[-2] 7 AR[-2]

di(z)(b1 ® @ ®bo,bs ®bg) =z 0d1(b1 ® @ ® ba, b3 @ by) =

= bjaxbs — blélabz + b3zxbs — bsx2by = by [CM, :L‘]bz,

SO

4i() = (Y la, 7 @a",0).

aeQ

Let =) rqa, 7, € R.

acQ

(D) . ® a*,0) (b1 @ by, by ® by) = 3 ze®a%)o da(bro:® by, by @ by) =

aEQ aGQ
=) @®a)o(-hz@a®b+bh®a®zb+ Y ebsf® L @by
" aeQ : BeQ
+Z 63b3 ® ,3 ® ,B*b4) =
BeQ
= Z(—blzraxabg + b1742a2bo) — Z €abza*z by + Z €ab3z,a%by
aeé : aeQ aEQ
= Z €qb3 [xa) a*]b4a

aeQ
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SO

dy( Zxa@)a 0) Z alZa,a®)).

a€Q acQ

d3(0,y)(b1 ® 0 ® by, b3 ®by) =y o da(b1 @ & ® by, b3 @ by) =

=yo (—~b3/_1,7® by + b1 ®by — b1 ® abz) = ——bguyb4 + b104ybz - blyab2>

80
d3(0,9) = (= ) [y, 0] ® a*, —py).
) ac@
Putting this together, we obtain:

d;(zxa b2y a*,y) = (_ Z[y’a} ®a, —py + Zfa[xa: a*])

aeQ} acQ acQ

Zxa®a ,0)(01 ® by) = Zma®a ody(by ® by) =
acQ acQ

= (Zxa ®a*)o (Zeabla(@a* ® by + Zeabl ® a® a’by,
aeQ acQ , ac@
blz® b2 — b] ®Zb2) =

= (—€ab10"Taby + €ab12,0°b) = ) _ €aby[Ta, a’]br,
ac acQ
d3(0,y) (b1 ® bp) =

=yo (D bia®a @b+ Y b1 @ ® a'by,b12® by — by © 2bs)
aéQ . aEQ
= blzybz — blyZbQ = 0,

so we get

d;( Zaza@)a,y Z alTa, @]

acQ aeQ

&(@) (b ®b) =70 (D bz @ ziby) = Y bizizaibs,
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SO

dy(z) = Zx,xx;"

Now, we want to compute the Hochschild cohomology (since the complex is pe-
riodic, HH*(A) = HH(A)[2h] Vi > 1, so it is enough to do the calculations until
HHY):

HH(A) = Z (the center of A), since a cocycle z € kerd;} lies in A® and has to

satisfy Y [a,z] ® a* =0, i.e. commute with all a € Q. |

HHale(il) =(Znp A AD[-2]: (X 2. ®a*y) is a cocycle if I [y,a] ®a* =0
(ie. y € Z)‘ and y = p? z_ea[aca,a cet’?] (since y is invertible) W‘llligh implies y €
p A, A]. Since )3 ea[a*,xaizez 0 implies that z, = [a,z] (we refer to [9, Corollary
3.5.] where this s'::&ment follows from the exactness of the complex in the 1% term)

for some z € A, and Y [a,z] ® a* lies in Imd}, HH(A) is controlled only by y €
aeQ : ' V :
(ZNp A, A])[-2). Since [A(1),A] = [4, 4], any y € (Z N u~Y[A, A])[-2] also gives

rise to a cocycle.

HH?*(A) = A/([A, A] + pZ)[—-2] : An element (3 z,®a*,y) is aco"cycle if > eglzq,a*] =
_ ‘ aeQ aeQ
0, so z, = [z,a] for some z € AR (where z is unique up to a central element),

so cocycles are of the form () [z,a] ® a*,). The coboundaries are spanned by
. a€Q ’ ‘

(Y. [z, a] ®a*, pz) (where the first component determines z uniquely modulo Z) and

- ae ’ ' ' :

(0, 3 €a[za,a*]) (where the image is [A, A]%). It follows that

a€Q

HHH(A) = A%/ (4, A + u2)-2] = A/((A, A+ u2)[-2).

HH3A) = A, /[A, Al[-4] : We denote A, to be the positive degree part of A.
di(z) = > zizx} is zero if z has positive degree (since z;zx} exceeds the top degree |
oh— 4) | |

Observe also that dj injects R into Ay
Since A = ®eiAe;, we can choose a basis {z;}, such thdt these elements all belong to

a certain subspace exAe; for some k,j. We denote {z’;*} the subbasis of {;} which
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spans exAe;.

Assume that 0 = dj( Z Aje;). Then Vk,

0 = ;)\jTT(gekxiej Zx\ Z z,, Z)\ dlmekAe,

j=1 i3,k Jj=1

- Z,\jzd:dimekfl[dkF Z/\ (2 C)

The last equality follows from [10, Theorem 3.2.]. Since the matrix % is nondegen-
erate, all A; = 0.
So we see that the images dj(e;) are nonzero and linearly independent. So the

cocycles are the elements in A%, and the coboundaries are Y €,[x,, a*] which generate
: aeQ
[A, A]E. Therefore HH?3(A) = AR/[A, AJR[-4] = A, /[A, A][-4].

HHY(A) = Z/Aip|—2h): Since df = df, the cocycles are the central elements.

From the above discussion about the image of dj and the fact that A,,, is r-dimensional,

it follows that the coboundaries are the top degree elements of A. O
Similarly, we compute the Hochschild homology groups of A.

Theorem 4.1.2.2. The Hochschild homology groups of A are:

HHy(4) = A/[A 4],
HHini1(A) = A/(A, A+ pZ)[2nh +2),
HHyn2(A) = (ZN0p7'[A, A])2nh + 2],
HHpmis(A) = Z/Awp2nh + 4],
HHinya(A) = Ay/IA A2+ Dh).

Proof. Apply the functor (A ®4. —) to C,, identify
A ® ge (A ®RA) >~ AR

(a® (b®c)=cab®1®1 > cab and observe
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VaeAreR:ar=a®(r®1)=a®(1®r)=ra) and
A®s (AQRV @r A) = (A®g V)E

(viaa® b®a®c)=cab® (19 a® 1)+ cab® ).

We get the following periodic complex for computing the Hochschild homology:

C(A@RV)RY  (A®rV)F
o ARRR] % AR & & & o B4R
AR2] AR[2]

The differentials become:

4 2®ay)=10d() 7.0a01,y11)

aeQ aeQ
=1® (Zxaa® 1 —Zxa®a+yz®1—y®z) = Z[a:a,a],
aeQ a€Q aeQ

dg(Zxa®a,y) =1 ®d2(2xa Rae®l,yR1) =

acQ aeQ
=10(-) 2.20a@1+) 7,0a®z+ Y eya®a*®1
acQ acQ aeQ
+Zeay®a®a*,—yu®1+Zxaa®1—2xa®a)

aEQ aeQ ae(:)

=(_Zxaz®a+2zxa®a+Zeaya®a*+Zeaa*y@’aa

acQ acQ : ae@ agQ

—yp + Zxaa - Zaxa) = (z Ga[y: a’] ® o, Z[xa,a] — YW,

acQ ae@ acQ a€Q

di(z)=10ds(z®1) =

=(1® (Zewa@a* ®1 +Zeax®a®a*),1® (zz2@1 -2z ® 2))
acQ aeQ
= (Zewa@a* + Zeaa*x® a,rz — 2x) = (Zea[x, al ® a*,0),

acQ aeQ aeQ
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dj(z) =10d(z®1) =1 ®Zx:c,- Q] =fo:c:c,

Now, we compute the homology (and since the complex is periodic,
HH;(A) = HH;4(A) for i > 0, so it is enough to calculate the homology up to H Hy):

HHy(A) = A/[A, A]: the boundaries are of the form Y [za,a], and they generate
: a€Q

[A, A]R. So HHy(A) = AR/[A, AJR = AJ[A, A] follows.
HH,;(A) = A/([A, Al + pZ)[2]: The cycle condition Y [z,,a] = 0 implies z, =

aEQ
€a]z, a*] for some z € A (again, we refer to the result H; = 0 in

[9, Corollary 3.5.]), so the cycles are (3 ¢[z,a*] ® a,y).
ae@
The boundaries are of the form (3 ¢,[z,a*] ® a, Y [z4, @] + puz) (where the first
aeQ o€Q
component determines x uniquely modulo Z. So '

HH\(A) = A%/([A, AR + u2)[2) = A/([A, Al + p2)[2)

HHy(A) = Z N p'[A, A][2]: The cycle conditions are ) exly,a] ® o* = 0 (this

. acQ
tellsusy € Z) and Y [z,,a]—yu = 0,s0y € u~![A, A] and x, unique up to an element
a€e@
of the form ¢,[z, a*] for some z € A. So the cycles are of the form ()" z, ® a,y),
aeQ

y € ZN YA, 4], z, uniquely controlled by y (mod ¢,[z,a*]) , and the boundaries
have the form () &[z,a*] ® a,0), i.e. homology is controlled only by y now. So

HHy(A) = Z 0 1[4, A2

HHj3(A) = Z/Aip[4]: The cycle condition )’ €[z,a] ® a* = 0 implies that the
cycles are the central elements Z. The bounda;iegs >~ xfxx; consist of the top degree
part of A, so HH3(A) = Z/Aw,[4).

HHy(A) = A, /[A, A)[2h]: ker dy = AR, Im ds = Imd; = [A, A]R, therefore H Hy(A) =
ARJIA, AR = A, /1A, AL O

4.1.3 The intersection Z N p[A, A].

We found ZNp~1[A, A] as the (4i+2)—th homology and (4i+1)—th cohomology group,

so to understand the (co)homology of A better, we are interested in its structure.
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Now, we define the followipg Hilbert series:

q(t) = hZﬂp.“l[A,A] (t)a

¢:(t) = hajqa,a14+uz)(t)-

To relate both to each other, we prove the following
Pr.opositidn 4.1.3.1. The trace form defines a nondegenerate pairing
(Z N p YA, A]) x A/([A, Al + p2) — k.

Proof. Since the trace form is nondegenerate on A, it is enough to show that (Z N
A, At C [A, A + uZ, or equivalently
(14, Al + nZ)t € Znp'[A, A]. The latter follows from [A, A]* C Z, since

(@, [y1,92]) = Tr(zfn, val) = Tr(fz, yiye) = ([z, y1l,92) =0Vy, 2 €A

implies [z,y1] =0, i.e. z € Z. O
Corollary 4.1.3.2. g(t) and q,(%) are palindromes of each éther, i.e.
q(t) = t*~*q.(1/%). -

| Let us define the Hilbert series p(t) = ha/,-114,4)(t). We recall from [9, end of
section 2.2.] that p(t) = Er:(l + 12+ ... + t*™~1) where the m; are the exponents
of the root system. Sinc;::‘éhe trace form also defines a nondegenerate pairing Z x
AJ[A, A] — k (see [9, Corollary 2.21]), it follows for the Hilbert series Di(t) = hz(t) |
that p(t) = t**~*p,(1/t). Since zZ C u~'[A, A] is spanned by even degree elements,
we see that Z is generated as.a k[z]—module by elements of degree 2(m; — 1).

Proposition 4.1.3.3. We have

r r
() 2 p(t) = DMV =Y (14244 2D,

=1 i=1

Proof. From the exact sequence

0— Z/(ZNu'[A, A]) — A/u~Y[A, A] - A/ YA Al + Z) -0
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we obtain the equation

(1) = p(t) — hz/zru11a,4)(t).

Since 2Z C p™YA, A] (z=p"" Y [a,a*] € u[A, A]), we have the inequality
aeQ

hz/zop-11a,4) (t) £ hzaz(t) = th(”ni—l),

i=1

and our inequality

.
g.(t) > p(t) = > ?mD
=1

follows. O

Theorem 4.1.3.4. The inequality from above is an equality:

a(t) =p(t) = Y _ ™D,

1=1

We will prove this in the next section where we compute the cyclic homology

groups of A. From this, we get a result for our intersection space:

Corollary 4.1.3.5. ZNu~l[A Al = 2Z.

4.1.4 Cyclic homology of A

The Connes differentials B; (see [19, 2.1.7.]) give us an exact sequence
R HHy(A) B HH (A) 2 HHy(A) 2 HHy(A) 3 HH,(A) 2
In our case, we have the following exact sequence:

RESAJA A AJ(A, A+ p2)2) B Z0u A, All2) 2 Z/Aul)
B ALJIA AR 2 .
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and the B; are all degree-preserving.

We define the reduced cyclic homology (see [19, 2.2.13.])

HCi(A) = ker(Biyy : HHi11(A) — HH;5(A))

Theorem 4.1.4.1. We get the following cyclic homology groups:

HCun(A) = Ay/[A, A][2nh],
H04n+1(A) = 0,
HC4n+2(A

) = Z/Auwnh + 4,
HCyp3(A) = 0.

Proof. First we observe that By, = 0, since the elements of Z/A;,,[4] have degree
< (2h —6) +4 = 2h — 2 and the elements in A, /[A, A] [2h] have degree > 2h+ 1. So
we have for each n the exact sequences
A ARl A A+ uZ

Bing2 i[2nh +4] — 0.
Asop

2nh +2] P57 (Z 0 YA, A])2nk + 2)

0—

The only thing to show is that W := HCy,,(A) = ImByyn4; = 0. We will use the

following theorem from [8]:

Theorem 4.1.4.2. Let xgp(4)(t) = 3 axt*, the Buler characteristic of HC(A). Then

o0

[e 0] o0 1_t2hs>7" 1
1—tF)=% = [T det Hu(t*) =
( ) g o Halt) H(l—t?s) det(1 — Ct* + t25)’

k=1 s=1

where C' is the adjacency matriz of the quiver Q.

Since

1
Xmo(a)(t) = Fﬁ(% /14,4)(8) — hw (t) + hz/a,,, ()Y,
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to show W = 0, it is enough to show that if we set

1 ' :

then ‘
0 b 00 1—¢2\T"
[Ta-#%=T] (1 , tzm) det(1 — Ct* +¢*).
‘ k=1 : s=1 N7
We have
r 12 — 2
ha,naa®) = pt)—r= Z g end

i=1
r
t2(m,-—l) — t2h—4 T t2’m,~+2 _ t2h
4 4 __ —
h’Z/Atop (t)t - Z 1 — t2 t - Z 1 _ t2

From these, we get that

o0 T ’
Dobth =+t ) (P £ M0 222,

by =0if k is odd
0 if k is divisible by &
r—#{i:m;=p} ifk=p modh .

bak =

ﬁ(l _ tk)bk _ H (1 - tzn)'r/ H(l _ t2(m»i+nh)) .
k=1 .

n#o "mod h ?GZ ]0

Now, it comes down to showing that
oo e o]
[T det(1 — cte +£2) = [0 - g5,
s=1 K k=1

' 0 if n is divisible by h
where g = t2? and n; =
—#{i:m;=p} ifn=p modh

(recall that the m; are the exponents of our root system), for the different Dynkin
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quivers of type An—1, Dny1, Es, E7 and Eg. Here we will use the idehtities for
1. .
det(1 — Ct + %) = ] (t* — e*"™i/h) from [21, Corollary 4.5.].
o =

Case 1: Q = An;l
The exponents are 1,...,n — 1 and the Coxeter number is h = n.
1—¢
det(1 - Ct+1?) = :
et ( +t°) -

so if we set
. 0 1— qns

T - ™ = [ aeti - cee 42 = [ —
k=1 s=1

s=1
{ 0 ifnlk
ng = )

-1 ifn [k :

then

Case 2: Q@ = Dy

The exponents are '1,3, ...,2n — 1,n and the Coxeter number is h = 2n.

(1—t4)(1 —¢t*)
(1—82)(1 — )’

detr(l ~Ct+t*) =

SO

o0 ) A"'k"'= o . e o (l—qzs)(l—qéns)
g(l ) gdet(l cr+1*) =[] 0= )1 =)

s=1
implies that
ng = div(k, 2n) — div(k, n) + div(k, 2) — 1,

1 if qlp

where we denote div(p, q) = .
0 ifg fp
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(0-04+0—1=-1 koddk#0,n mod2n
0-0+4+1-1=0 keven,k#0,n mod 2n
ng=4 0—-1+1—-1=-1 keven,k=n mod2n

0-140-1=-2 kodd,k=n mod2n

| 1-141-1=0 k=0 mod2n

Case 3: Q = E; |
The exponents are 1,4, 5,.7, 8,11 and the Coxeter number is A = 12.

(1 -1 —tH)(1 -5
(1-t12)(1-8)(1 —2)’

det(1 - Ct +t*) =

then
o0 o0 o
' (1-g¢™)(1-¢*)(1—g%)
(1—g"m™ =]]det(1 - Ct* +1*) =
116 - =] L et =1l ma @
implies

ng = div(k, 12) + div(k, 2) + div(k, 3) — div(k, 6) — div(k, 4) — 1.

Observe that if we have a prime factorization ¢ = a?b (a, b distinct), then

div(k, q) + div(k, a) + div(k,b) — div(k, ab) — div(k,a?) — 1

is —1 if k and q are relatively prime or if k = la® mod ¢ (I # 0) and
0 else.

This proves our case for 12 =2%- 3.

Case 4: Q = E4
The exponents are 1,5,7,9,11,13,17 and the Coxeter number is
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(1)1 -t (1 -t |
(1 —¢18)(1 — ¢12)(1 — ¢2)’

det(1 — Ct + t2) =

0]

me s 4 g8 (1—¢")(1—g*)(1-g*)
;_1(1- ¢) Hdet(l Ct* +1%) = H (1_qgs)(1_ 00

implies

ni = div(k, 18) + div(k, 3) + div(k, 2). - div(k,9) — div(k,6) — 1.

We use the same argument as above, for 18 = 2 32,

Case 5: @ = Eg
The exponents are 1,7,11,13,17,19, 23,29 and the Coxeter number is
h = 30. ’

2y _ (1 —t%)(1—¢°)(1 - 2°)(1 - ¢f)
det(1 - Ct+1t°) = @) (1 t29)(1 mr T

" then
_ N e s 28 (1 — 308)(1 B 58)(1 — 38)(1 28)
g(l ? Hdet(l e )“H ™)1~ )1~ )1~ )

iinplies

g = div(k, 30) + div(k, 5) + div(k, 3) + div(k, 2)
— div(k, 15) — div(k; 10) — div(k, 6) — 1.

We use a similar argument here: If we have a prime factorization g = abe (a, b, ¢

distinct), then

div(k, q) + div(k, a) + div(k, b) + div(k, c) — div(k, ab) — div(k, bc) — div(k,ac) — 1
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is —1 if k£ and q are relatively prime and 0 else.

This proves our case for 30 =2-3 - 5.

Proof. (of Theorem 4.1.3.4):

From the isomorphism

(ZNp™ A AN 2 Z/ A,

T
we obtain the equation $2q(t) = t4 3" (£2™i~D 4 4 ¢2h-6) o

=1

r

g(t) =) (™ + ... ).

i=1

Recall the duality of exponents, i.e. m,41_; = h —m;. Then we get
™
@(t) = Pig(1/t) =) T g )
i=1

r
=1
r r

= S+ A2 = () =Y D,

1=1 =1

4.2 Universal deformation of A

Definition 4.2.0.3. For any weight A = ()\;), we define the algebra

A(N) = Plz]/ (Z[a, a*] = zp + Z Aiei)

=] i=1
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and introduce o deformation parametrized by formal variables ¢}, 1<i<r,1<j <
h—1:

r h—1
AN)e = Pl2)[[c]]/ Z a,a’] = zu + Z/\ e + Z e
acQ =1 j=1
Theorem 4.2.0.4. This deformation is flat VA € R, i.e. A(A). is free over C[[c]],

and

A(N)e/(c) = A(A).

Proof. Tt is sufficient to check flatness for generic A. From [10, end of section 3.2,
we know that for generic A, A(A) = ®EndV,, is a semisimple algebra. So it suffices to
show that the representation V,, can be deformed to a representation of A(A). for all
A

We recall from [3, Theorem 4.3.] that V3 € R, such that 8- a = 0, it exists an

a—dimensional irreducible representation V, of P, such that

Z[a, a*] = Z /81'6,5.

acQ

If we set z =~y € C in A()\)., then the relation becomes

Z[aa]—Z A+ +e)+yE 4.

aeQ =1

T
Then for a = ) ase;, since the trace of [a,a*] is zero, the condition to have an
i=1

a—dimensional representation of A()). (i.e. a representation of P satisfying the

above relation) is

Zaz N+ +¢) +PE+..)=0.

i=1
By Hensel’s lemma, this equation in C[[c]] has a unique solution 7, such that its

,
constant term g € C satisfies Y~ a;(A+ ) =0= vy = _%‘ .
i=1

In particular, if we treat A as formal parameter, then A(A). is a flat deformation
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of A(0).

Let E be the linear span of 27¢;, 0 < j < h—2,1 < i < r. From [9, Proposition 2.4.]
we know that the projection map E — A/[A, A] is surjective. Then the deformation
A(]). is parametrized by E which gives us a natural map 7 : E — HH?(A). On the
other hand, the isomorphism H H?*(A) = A/([A, A]+ uZ) in Theorem 4.1.2.1 induces
a projection map # : E — HH?(A). | |

Proposition 4.2.0.5. The maps 0,n: E — HH?(A) are identical.

Proof. We have the following commutative diagram which connects our periodic pro-

jective resolution with the bar resolution of A,

(A®V ® A[2)) (ARV ® A)
e 8 ARA-4
(A® Af2)) (A® Al2))
| | L
A% — A®® — A% s 4
da d - do

where we define
filby ® @by, by @ by) = by ® @@ by + by @ 2 @ by
and

fz(bl®a®bz,b3®b4)=—bl®z®a®bg+b1®a®z®b2+§:eab3®a®a*®b4‘.
acQ )

Let us check the commutativity of the diagram:

Jlfl(bl Ra® bz,bg ® b4) =
=bia @by — by @ aby + b3z @ by — b3 ® 2by = d1(b1 @ & ® bz, b3 ® bs),
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fida(by ® & @ by, bs ® by) =

=fl(—blz®a®b2+b1®a®zb2+Zeabga®a*®b4
6]
+) eabs ® a® a*ba, —bsp ® by + bra @ by — by ® aby)
aEQ
=-0120a@®@b -0 ®2Q0ab+b16R2Qby+ b @ a ® zbs

+) ebsa®@a’ ®b4~b3®zu®b4+Zeab3®a®a by
=] acQ
= dzfz(bl ®Ct®b2,b3 ®b4)

We apply Home(—, A) to the above diagram:

(A V)E[2] (A® V)E[2]
(AR[2]) AR

d e |

HomAe(A®4 A) e HOmAc(A®3 A) — AR
(d2)* (dy)*

The map f; induces a natural isomorphism on HH?(A), so via this identification

we want to prove that fin=46.

The element v := 3.~/ 2¢;, v/ € C defines the 1-parameter deformation

r h-2
A" = A[[A] /Z[aa —z-l—ﬁZ%ez-i-ZZqﬂze‘
a€eq i=1 j=1

so the cocycle n(y) is defined to be a bilinear map m on A X A (where we identify
Hompe(A®*, A) = Homp(A ® A, A)
here), such that for a,b € A,

a*b=ab+ km(a,b) mod K
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lI 14

where is the product in A”. This gives us:

Jan(7)(b1 ® a ® by, b3 ® by) = 1(7) fa(b1 @ & @ by, b3 @ by) =

=1N(-b©z0a8b+h®a@2Oh+) aGh®a®a Oby)
aceQ

= bl (m(z> a) - m(a> Z))b2 + b3(2m(aa a* - m(a >a))b4
a€Q
r h-2

Z%eﬁzzwﬂz ei)bs = 0(7) (b1 ® o ® by, by @by).

=1 j=1

We obtain the second to last equality by:
0+ A(m(z,a) —m(a,2)) =2z+a—a*xz=0 and

zu+ h(z m(a,a*) —m(a* a)) = Z(a *a* —a*xa)

aeqQ aceQ

r h-2
—-zu—%—h(Z%e,+ZZy’z’e,).

=1 j=1
This finishes our proof that fin = 6. O

We see that the map E — HH?(A) induced by the deformation A()). is just the
projection map. From this we can derive the universal deformation of A very easily.
Let E' C E be the subspace which is complimentary to
ker(6 : E — A/([A, A] + pZ)) with basis w;, ..., ws, and choose formal parameters
ti,...,ts. The subdeformation A’ of A, parametrized by E' C E is:

aGQ

A =Pt tll/ | D la, el =pz+ Ztiwi) .

Theorem 4.2.0.6. A" is the universal deformation of A.

Proof. n: E' — HH?(A) is the map induced by the deformation A’. Since ¢ induces
an isomorphism E' — A/([A, Al + uZ) = HH?*(A), by Proposition 4.2.0.5 7 is an

isomorphism and therefore induces a universal deformation. O
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4.3 Results about the_ calculus structure of the
Hochschild cohomology/homology of the cen-
trally extended preprojective algebras of Dynkin
quivers

Theorem 4.3.0.7. The calculus structure os given by tables 4.1, 4.2 and 4.8 and the

Connes differential as follows:

Bys((1*/c)s) = (2h —4 — deg(c) + 2nh)Eu®/c,
B4s+l = 0,
Busso((c- Eu)s) = (deg(c) +4 +2sh)c,
Bysyz = 0.
SO o | @ | @B | @0
‘ cts) (el*/)i—s | (¢ Eu*[d)i—s | (cc - Eu)i_g (c)i—s
| (c- Eu)® 0 (c1*/c)s_s 0 (¢ - EFu)s_,
(Bu*/c)® 0 0 (€17/c)s-s | (< - Bu*[c)ss
(1*/c)® 0 0 0 0
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Table 4.1: contraction map ¢, (b)




) b (cl)(t) (c - Eu)(t) (Eu*/c’)(t) (1*/01)(1&)
¥ 0 (deg(c) — 2sh)(cc) B+ 0 (deg(cr) —2sh)(c- Eu*/c
(c- Eu)' (deg(c) — deg(c) + 2(s — t)h)(cd - Eu)**D | (2(1 — t)h — 8 — deg(d))(c- Eu*/d)HD | (2(s —t + 1)h — 8 — deg(c) —
Ea /@ | 0 0 , 0
(1*/c)®¥ 0 0 0 0

Table 4.2: Gerstenhaber bracket [a, b]



GO

a (1*/)y (Bu*/d)y (¢ Eu)y
cl®) (deg(c) — 2sh)(c- Eu*/c)i_s 0 (deg(c) — 2th)(cd)i—s 0
(c- Eu)® 0 (c1*/c)_s 0 (cd - Eu)y_s
(Eu*/c)®) 0 0 (2(1 — s)h — 8 — deg(c))(c - Eu*/c)ss 0
(1*/c)® 0 0 0 0

Table 4.3: Lie derivative £, (b)




4.4 Batalin-Vilkovisky structure on Hochschild co-

homology

We recall {17, Section 4] the following: we have an isomorphism D : HH,(A) —
HH%+5-*(A) Vm > 0. It translates the Connes differential B : HH,(A) — HH,,,(A)
on Hochschild homology into a differential A : HH*(A) — HH*"'(A) on Hochschild

cohomology, i.e. we have the commutative diagram

HHO(A) '-—-B—-> HHO+1 (A)

Dl~ glm
HH*™3-*(A)2mh — 4] —2— HH™2-*(A)[2mh ~4]

Theorem 4.4.0.8. (BV structure on Hochschild cohomology) A makes HH*(A) a
Batalin- Vilkovisky algebra (defined in Theorem 8.5.0.13)

Proof. We refer to [17, Theorem 2.4.65]. _ O

Remark 4.4.0.9. Note that A depends on which m € N we choose to identify D :
HH,(A) = HH*"3*(A)[2mh — 4], where the Gerstenhaber bracket does not.

4.4.1 Computation of the calculus structure of the centrally

extended preprojective algebra
Cup product

As described in [17, Section 4], we fix an isomorphism D : HH;(A) = H Hz_;(A)*[2h]
and use the elements Eu € HH'(A) (where Eu is the Euler vector field), Eu* €
HH?(A) and 1* € HH3(A). Then we can describe all elements in HH'(A), HH?*(4A)
and HH3(A) by c- Eu, Eu*/c, 1*/c for c € HH(A), where cU Eu*/c = Eu* and
cU1*/c = 1*. We have Eu U Eu = 0 by graded commutativity and Eu U Eu* from
* [17, Theorem 2.4.27). Cup products HH*(A) U HHI(A) for i + j >4, i,j < 3 are

Z€ero.
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Notation 4.4.1.1. For ¢, € HH'(A), 0 < 1 < 3, we write c,(:) for the corresponding
cocycle in HH*4. We write ck,t‘for the corresponding cycle in HH; 4, 0 < j < 3

(under the isomorphism D.

The contraction map

From (3.3.0.15), we know that the contraction map on Hochschild homology is given
by the cup product on Hochschild cohomology. Table 4.1 contains the results, rewrit-

ten in terms of contraction maps.

The Connes differential

Proposition 4.4.1.2. The Connes differential B is given by

Bys((1*/c)s) = (2h —4 — deg(c) + 2nh)Eu*/c,
B4s+1 = 0)
Bysya((c- Eu)s) = (deg(c) + 4+ 2sh)c,

B4s+3 =

Similar to Subsection 3.3.1, we can see that for any © € HH;(A), Lu(z) =
x deg(zx). We use the Cartan identity (3.1.0.7),

£Eu = BLEu + LEuB. (4413)
We compute
(2h = 4 — deg(c) +25h)(1"/c)s = Lru((17/2)s) = Bluza((1*/0)s) +imu(BA*/c),),
N, e’

=0

SO

B((1*/c)s) = (2h — 4 — deg(c) + 2sh)(Eu*/c),.

Since B? = 0, it follows that
B((Eu*/c)s) = 0.
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We compute

(deg(c) + 4+ 2sh)(c- Eu)s = £Eu((ch)s) = BLEU((ch)s) + LEUB((CE‘U)S),

=0
SO

B((cEu),) = (deg(c) + 4)cs.

Since B? = 0, it follows that
B(cs) = 0.
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The Gerstenhaber bracket

We compute the brackets using the identification HH*(A) = HHypy3_i[—2mh + 4]
for m >> 1 and the BV identity (3.3.0.14).. We rewrite the results from Proposition
- 4.4.1.2: '

Ay = 0,
A((c- Ew)®) = (deg(c) +4+2(m — s)h),
A((Bur/9)¥) = 0,
A((1*/e)®) = (2h— 4 — deg(c) + 2(m — n)h)(Bu*/c)™.
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Brackets involving HH*(A):

We have

9, 0]

[, (¢ Bu)]

[, (Bu*/d)®)

[, (1* /)] =

A((ed)=t) = A U — D UACE®) =0

)

A(cd - Eu)) — A(d)u(d - Euw)?
=0
—c®) - A((d - Ew)®)

(deg(cc) + 4 + 2(m — s — t)h)cdH)

—c® U (deg(c') + 4 + 2(m — t)h)d®

(deg(c) — 2sh)cc/*+,

A((cEu* /)y — A(c®)) U (Bu*/d)®

—c UA((Bu*/¢)®) =0,

A((e1*/)0) — Ay u (1%/)®

—uA((1/)Y)

(2h — 4 + deg(c) — deg(¢) + 2(m — s — t)h)(c- Eu*/c)+)
—(2h — 4 — deg(c) + 2(m — t)h)(c - Eu*/d)+D)

(deg(c) — 2sh)(c- Bu*/d)*+
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Brackets involving HH'™45(A):
We have

(c- Ew)®, (¢ - Bw®] = A((c-Ew)® - (¢ - Eu)®)
—(deg(c) + 4 + 2(m — s)h)(cc - Bu)*+?
+(deg(c') + 4 + 2(m — t)h)(cc - Fu)t?)
= (deg(c) — deg(c) + 2(s — t)h)(cc’ - Bu)t+Y),

[(c- Ew)®, (Eu /)] = A((cl*/)) = A(c - Eu)®) U (Bu*/d)®
+(c- Ew)® U A((Eu*/d)D)
= (2h— 4 +deg(c) — deg(c') + 2(m — s — t)h)(c- Eu*/c)+)
—(deg(c) +442(m — s)h)(c- Eu*/c)t |
= (2(1 = t)h — 8 — deg(c))(c- Eu*/c)+Y,

(- Bw)®, (17/)0] = A(e- Ew)®) U (1*/) +c- Bu® . A(1*/c)®)
= —(deg(c) +4+2(m — s)h)(c1*/d)H)
+(2h — 4 — deg(c') + 2(m — t)h)(c1* /) e+
= (2(s —t+1)h — 8 — deg(c) — deg(c))(c1*/c)*+?

Brackets involving HH?**4(A) or HH3t*(A):
We have

(Bu* /o)), (Bu* /)] = A((Bu'/e) U (Bu®/c)) — A((Eu*/ )Y U (Bu* /)
—(Bu*/c)¥ U A((Bu* /)P = 0,

[(Bu* /), (1%/)P]) = A((Bu*/e) U (1*/)®) — A((Bu*/e)) U (17 /)
—(2h — 4 — deg(c') + 2(m — t)A)(Eu*/c)® U (Bu* /)P = 0,

[(17/)9, (17/)9) = A((1*/c)) U (1%/¢)D) — A((1*/e)(s)) U (1% /c)®
+(1*/0)P UAQT /O =0
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The Lie derivative £

We use the Cartan identity (3.1.0.7) to compute the Lie derivative.
HH'*%3(A)-Lie derivatives:

Lopu@((1*/)e) = Biopuo((1"/)e) + te.pun B(1*/):)
= (2h— 4 — deg(c) + 2th)i gy (Bu* /<),
= (2h — 4 — deg(d) + 2th)(c1*/)oes
Lopu(Eu'/)) = Bropyw (Bu*/d)e) + topuw B((EW/C):)
= B((c1*/d)i-s)
— (2h— 4+ deg(c) — deg(c) + 2(t — 8)h)(Bu* /)o_s,
L.puo((c - Eu)) = Blopyw((€ - Eu)t) + tepuw B((¢ - Eu);)
= (deg(c') + 4+ 2th)ic. gy (()s)
= (deg(c') + 4+ 2th)(cc - Eu)s—s,
Lopuo((€)) = Brepu@((€)e) + tepu@ B(()e)
| = B((cc' - Bu)i-y)
= (deg(cd) +4+2(t — 8)h)(c)ees
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HH*5(A)-Lie derivatives:

Ly oy (1*/):)

‘C(E'u,* Je)(®) ((E’LL*/C,)t)
Lipy 10y ((¢' - Eu)y)

‘C‘(Eu* /e)(® ((C')t)

Bugys sy ((17/)e) + tpye sy BI(17/)s)

—(2h — 4 — deg(c) = 2th)t gy ey (Bu*/C):) = 0,
Bigys joyo (Bu*/€)) + tpyr sy B((Eu*/c)y) = 0
Bigys sy (¢ - Bu)t) = t(gys sy B((c - Eu)y)
B((c'17/c)i—s) — (deg(c) + 4 + 2th)i pye sy ()¢

(2h — 4 4 deg(c') — deg(c) + 2(t — s)h)(d - Bu*/c)s—s
—(deg(c) + 4 + 2th)(c' - Eu*/c);_,

(2h — 8 — deg(c) — 23h)(c’ -Eu*/c)is,

'BL(Eu*/c)<s>(( )e) — L(E'u*/c)(")B ((¢'- Eu)y)
B((¢ - Bu*/c)i—s) = 0
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H H3*$(A)-Lie derivatives: Since L1+ jey» = 0, it follows that

;C(l*/c)(e) = BL(]*/C)(S) + L(lxk/c)(a)B.

HH**5(A)-Lie derivatives: We have

Lo ((17/)) = B ((17/¢)) = ten BI(17/)e)
= B((c1*/d)is) — (2h — 4 — deg(d) + 2th)(c - Bu* /),
= (2h — 4 +deg(c) — deg(c) +2(t — s)h)(c- Bu"/c)is
—(2h — 4 + deg(c) + 2th)(c- Eu*/c)i—s

= (deg(c) — 2sh)(c- Eu"/c)ts,

Loo(Bu*/d)) = Buyo(Eu*/d)) — tun B((Bu*/)s)
= B((c- Bu"/)i-s) =0,

Lo ((c'-Bu)) = B ((c - Eu)i) — ten B((' - Eu)y)
= B((cd - Eu)ys) — tyo (deg(c) + 4 + 2th)(c'),
= (deg(c’c) + 4+ 2(t — s)h)c'c — (deg(c) + 4 + 2th)(c'c)i_s
= (deg(c) — 2th)(cc')s-s

~ Leo(()) = B () — tew B((<)e) =0
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Chapter 5

| Hochschild cohomology /homology
and calculus structure of the

prepro jective_ algebra of type T

5.1 The preprojective algebra

Let @ be a quiver of type T. We call the loop b. Let @' = Q \ {b}.

We define (Q')* to be the quiver obtained from @' by reversing all of its arfows.
We call Q' = Q'U(Q")* the double of @'. Let C be the adjacency matrix corresponding
to the quiver Q = Q' U {b}.

~ We define the preprojective a,lgebm'_IIQ to be the quotient of the path algebra Py
by the relation } [a,a*] = b®. It is known that IIj is a Frobenius algebra (see [20]).
' aeQ’ ' 4

From now on; we write A = Ilg.
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5.2 The main results

Definition 5.2.0.1. We define the spaces

U= @ HH°(A)(d)[2] and

d<h-2

K = HHYA)2)

Theorem 5.2.0.2. The spaces U and K have the following properties:

(a) U has Hilbert series

n—1

hy(t) =) % (5.2.0.3)

1=0

(b) K is n-dimensional and sits in degree zero.

Theorem 5.2.0.4 (Hochschild cohomology). The Hochschild cohomology spaces

are given by

= U2 eRh-2],

HH%A) = U*[-2],
HH%(A) = U[-2h-2],
HH®*(A) = HH'(A)[-2kh] Vi> 1.

Theorem 5.2.0.5 (Hochschild homology). The Hochschild homology spaces are
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given by

HHy(A) = U*h@R,
HH,(4) = U*[R],
HHy(4) = K*[A],
HHy(4) = K[b],
HH(4) = UK,
HH;(A) = Ulnj,
HHs(A) = U*[3h],
HHeyi(4) = HH(A)RKR Vi 1.

Theorem 5.2.0.6 (Cyclic homology). The cyclic homology spaces are given by

HC)(A) = U*h]®R, -

HCi(A) = 0, =
HCy(A) = K*[h),
HC3(4) = 0,
HCy(4) = Ul
HCs5(4) = 0,

HCs(4) = U*[3h,
HCo4i(4) = HHi(A)2kh] Vi>1.

Let (U[—2])+ be the positive degree part of U[—2] (which lies in non-negative
degrees). '

We have a decomposition HH°(A) = C® (U [-2])+ @ L[~k — 2] where we have
the natural identification (U[—2])(0) = C. This identification also gives us a decom-
position HH*(A) = C ® HH*(A),. | |
We also decompose U = U™ @ U_, where U'® is the top degree part of U and a

one-dimesional space.
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We give a brief description of the product structure in H H*(A) which will be

computed in this paper. Since the product HH'(A) x HH/(A) — HH™I(A) is
graded-commutative, we can assume ¢ < j here.

Let zp=1¢€ C C U[-2] C HH(A) (in lowest degrée 0),
6y the corresponding element in H H'(A) (in lowest degree 0),
1o the dual element of z in U*[—2] C HH?3(A) (in highest degree —4), i.e. ¥(2) = 1,
(o the corresponding element in U*[—2] C HH*(A) (in highest degree —4), that is
the dual element of 8y, (o(fo) = 1,
wo : HHY(A) — HH®(A) the natural quotient map (which induces the natural iso-
morphism U[—2] . U[-2h —2]).

Theorem 5.2.0.7 (Cup product). 1. The multiplication by po(20) induces the
natural isomorphisms
w; : HHY(A) — HH"%(A) Vi > 1 and the natural quotient map wo. Therefore,
it is enough to compute products HH'(A) x HH(A) — HH"W(A) with 0 <

1<j <.
2. The HH°(A)-action on HH'(A).

(a) ((U[-2])4-action).
The action of (U[~2])y on U[—2] C HH'(A) corresponds to the multipli-

cation

U-2D+ xU[-2] — U[-2],

(u,v) — u-v

in HHO(A), projected on U[—2] C HH(A).
(U[=2])4 acts on U*[~2] = HH4(A) and U*[-2] C HH°(A) the following
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way:

U-2D)+ x U"[-2] — U[-2],
(w,f) = wuolf,

where (uo f)(v) = f(uv).
(U[-2])+ acts by zero on R*[h — 2] C HH°(A), HH?*(A) and HH*(A).

(b) (R*[h — 2]-action).
R*[h — 2] acts by zero on HH*(A)4.

8. (Zero products).
For all odd i, 7, the cup product HH'(A) U HHI(A) is zero.

4. (HHI(A)—products).
(a) The mﬁltiplication
HH'(A) x HH*(A) = U[-2] x U*[-2] — HH*(A)
is the same one as the restriction of

HH(A) x HH3(A) — HH%(A)

on U-[—2] x U*[-2].

(b) The multiplication of the subspace U[-2]y C HHA) with HH?*(A) is

Zero.

(c) The multiplication by 6y induces a symmetric isomorphism

a: HH*(A) = K[-2] — K*[-2] = HH*(A),
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given by the matriz (2n + 1)(2 — C")™', where C' is obtained from the

adjacency matriz by changing the sign on the diagonal.
5. (HH?*(A)-products).

HH?*(A) x HH*(A) — HH(4),
(a)b) and <a)b>C0

is given by (—,—) = a where « is regarded as a symmetric bilinear form.

HH?*(A) x HH3(A) — HH®(A) is the multiplication

K[-2] x K*[-2] — HH"(4),

(a,y) = yla)o.

6. (Products involving U*[-2] ).
(a) ((U-)*[—2]-action). |
(U_)*[-2) ¢ HH'(A), i = 4,5 acts by zero on HHI(A), j =2,3,4,5.

(b) Let us choose a nonzero {' € (U*P)*[-2] € HH*(A), and 2’ € U*?[-2] C
HHO(A), let0 = 6z’ € UtP[-2] ¢ HHY(A) andy/ = 6’ & (U'P)*[-2] C
HH(A).

i. HH?(A)x HH*(A) — HHS(A). The multiplication with v € HH?(A)

gives us a map

(U [-2] — U*[-2h-2],
¢ = W)e(?),

where v : HH%(A) — C is a linear function, given in Subsection 5.7.7.
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i HH(A) x HH(A) » HH'(A).. This pairing
K[-2] x U*[-2] — U[~2h — 2]
is the same as the corresponding pairing
HH?(4) x HH‘*(A) — HHS(A).

iii. HH*(A)x HH*(A) — HH"(A). The multiplication withw € HH3(A)

gives us a map
U**)[-2] — U [-2h-2],
¢ = (e w))po(d).
iv. HHY(A) x HH*(A) — HH8(A) and HH*(A) x HH5(A) — HH(A).

(" gives us a nonzero v € HH3(A). Then ('y'alpha(v) € HH(A).
HH*(A) annihilates (U_)*[-2] C HH(A).

Comparing this theorem (With the results of the explicit compoutation of the

T-case later in this chapter) with the results about the A-case in [12], we get the

following:

Corollary 5.2.0.8 (Relation to the A-case). Let w,...,wn be a basis of R*[h —
2] C HH°(A). Then we have '

HH"(Iz,) = HH* (U)o, . wnl (RYA = JHE[Lay,),). (5.209)

We can write HH*(Il4,,) as a quotient

HH*(Ig,,) = HH* (Ilg,)/(R* [} — 2]). (5.2.0.10)
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5.3 Results about the Calculus

We will introduce for every m > 0 an isomorphism
D: HH,,(A) = HH* " (A)[(2m + 1)h + 2] (5.3.0.11)

which intertwines contraction and cup-product maps.

In Section 5.6, we will introduce basis elements 2z, € U[-2] € HH°(A), 6 €
HHY(A), fr € HH?*(A), hy € HH3(A), { € HH*(A) and ¢, € HH%(A).

For ¢, € HH'(A), 0 < ¢ < 5, we write cgf) for the corresponding cocycle in
HH™%_ We write ¢ for a cycle in HHj,¢, 1 <j < 6 which equals D‘l(cgf)).

The map o : K — K*, given by a matrix M,, is introduced in Subsection 5.7.3.

We state the results in terms of these bases of HH*(A) and HH,(A).

Theorem 5.3.0.12. The calculus structure is given by tables 5.1, 5.2, 5.8 and the
Connes differential B, given by

Bes(Yr,s) = ((25+1)h—2—k)(ks,

Bl+6$ = 07
B2+63 (hk,s) = (25 + 1)h05—1 (hk,S):
BB+63 = 07

B4+63(9k,s) = ((28 + 1)h -+ 2 + k)Zk,s,
Bsies = 0.

182



— 1 ;]

b
N wl,t Cl,t hl,t fl,t 9l,t Zit
1
2y, (zkP1) t=s (2kC1) t—s Skohi,t—s Skof1i-s (2k01)1-s (2k21)t—s
wr 0 0 0 0 0 | 0
IS 0 2k ts 0 Sroc{ fui—s) 0 (210k) s |
& p_zk- &1 1 _ak-
és’ Gl’h s bh~3 dkitbo,t—s (M) kiCo,t-s 100 fri—s) | Oiofkt—s
h—3,t—s—1 2l t—s—1
B 0 OrnOLh—s 0 Stoss 0 | bohis
Op—3,t—s—1 ’
(s) Sk n—301,h—3" Ok h—301,h—3" Sk h—301n" O, h—al"
: ( a(f'n,t—s—l) fn,t——s—l ek,t-s—l Zk,t—s—1 (zlwk)hs (ZLCk)t_s
(9) Ok h—301,h—3" Ok, h—3l"
0 ’ ' 0 ' 0 _
Vi a(fn,t—s-l) On—3,t—s—1 (zkwl)tﬂ

Table 5.1: contraction map ta(b)



¥81

Zl(t) Wy Ql(t) l(t) hgt) Cl(t) ,d)l(t)
() (k — 2sh)- —20k0sh (k — 2sh)-
K 010 (Zkzl)(s+t) 0 _1(h§s+t)) 0 (zkél)(sﬂ)
on 0 0 0 0 0 0
o) (1 — k4 2(s — t)h)[-2(1 +th){2(=1 + (s = t)h)(—(4 + | + 2th)-|— (4 + k + 1 + 2(t — s)h)-
k (Zkel)(s+t) 6k0fl(8+t) 5k0h§8+t) (szl)(s+t) (kal)(s—’—t)
—2(k +1)-
—-2(1 h
79 0 5( Cztjt) ) 0 (1+ sh)-
150 Jl,h_?’z;b\igt-l‘l)
2(s —t)h —(h+ 1+4+2th){ (2(s—t)h—(h—1))
) (M3 ) Oy, b=301,n—3° Oy, n=301,h—3-
és+t) Zhs-JrstH) : 9](}j3t+1)
—(2sh+h+1)-
Igs) 0 Ok,h—301,h—3"
(s+it+1)
b_;g
2(s —t)h-
& Ok,h—301,h—3"
a( ’(1'—-82—3?5-}‘1))

Table 5.2: Gerstenhaber bracket [a, b]




"»bl,t Cl,t hl,t fl,t 9l,t 2Lt
”0 ((2t+'1)h-2_z)-((2(g“31) +k1>h (@4 Db | @ —9)+ Dhe (2 +1Dh+2+ D20 = 8)+ Dh+2+k+ 1)
k —2-1+k) Skoh 5 9
(21 t—s kohi,t—s k0 fl,t—s (2k01)¢-s (2621)t-s
(ZkCl)tws
() —2k(1 + sh)- 0 —2(1 + sh)- 0 —2(1 + sh)- 0
k 5l,h~32h~3,t—s—1 5le0,t—s 5l0fk,t—s
e ihot U 2= =11 DR o, o) (@ Dh+2): | de—s) + Uh
k knOlLh-3" k,nOl,h—3" (Ma )lk' 5 Sinh -1 h
leo,t-s 10k t—s « ( k,t——s)
9h—3,t—a—1 Zh—3,t—3—1 wo,t—a
(@s ¥+ DR 1) (@5 + DA+ 1),
8 - 2 h 4 k ‘
C/g ) Ok,h—301,h—3" 0 Ok, h—301n" 0 ( ?2121;) o 0
Srt—s—1 Zh—3 t~s—1 b-s
I
@th+1) |2t -s) - Dh| (2t+1)h 2(t — s)h (2t + Dh ((2(t = s) + DA
e Ok,h—301,h—3" Ok,h—301,h—3" Ok, h—301,n" -1)- +2 +1)- -2 —k+1)
. ol frt-s-1) frt—s—1 On—3,t-5—1 Ok,h—3 (21%K) t—s (21€k)t-s
Zh—3,t—s—1
(s) (k — 2sh)- 0 (k — 2sh)- (k — 2sh)
0
% (2 o-s o™ (hyg) (2460)es 0

Table 5.3: Lie

derivative £,(b)




5.4 Properties of A

5.4.1 Labeling

We choose a labeling of the quiver Tj,.

Figure 5-1: T,-quiver

5.4.2 Bases and Hilbert series

From [20], we know that Ha(t) = (1 +t")(1 — Ct +t?)~, where C is the adjacency
matrix of the underlying graph. By choosing the labeling of the quiver above, we get

(1 11 -+ .. 1 1 ]
1 2 2 ... ... 2 2
123 ... ... 3 3
(dime;Aej)ijer = Ha(l)=2-| ¢ ¢ 1 ", P . (5.4.21)
123 .+ -+ n—-1n-1
| r23 .- - n—1 n ]

~ We will work with explicit bases B; of e;Ae;. The it diagonal entry of H,(t) is
1__21 t¥% 4 t*1-% | and since in A all paths starting and ending in the same vertex
%:i(’)ch the same length are equivalent, we can say that bases of B; are given by paths
of length 25,0 < j<i—land2n—1-25,0<j <i—1 (one ofeachvlength),- We
call ¢; ;, to be a nonzero element in A, represented by a path of length k, starting and

ending at <.
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5.4.3 The trace function

For the T-quiver, the Nakayama automorphism is trivial. The bilinear form (—,—)
which comes with our Frobeniﬁs élgebra A is given by a trace function Tr : A —» C
of degree —(2n — 1) by |

(z,y) = Tr(zy). We work with an explicit trace function which maps a polynomial of
degree 2n — 1 to the sum of its coefficients. Given the basis (e;);cr, we denote (w;)ier

as its dual basis, i.e. w; is the monomial of top degree in e; Ae; with coefficient 1.

5.4.4 The quotient A/[A, A]

The quotient A/[A, A] turns out to be different than in the ADE-case.

Proposition 5.4.4.1. The quotient is
A/[A, Al = R (V] iodd).

Proof. The commutator [A, A] is the linear span of |
o paths pi; = [p, €;] from ¢ to k, 7 # k and

® pii — Dj; = [pij, pji], where py € exAey, i.e. all differences p;; — p;; where p’ﬁ and
p;; have same degree > 0. Since all paths in e; Ae; of degree > 0 give us a zero
' element in A, this gives us that

eide;(d) C [A,A] Vi€ I and even d > 0.

From above, we get e;Ae; C [A, A]. Since all paths in e; Ae; of even degree > 0 give
us a zero element in A and p;; — p;; € [A, A] for any pair of paths of same degree, this
implies that e;Ae;(d) C [A, A] Vi € I and for all even d > 0. |

RN[A, A] = 0 since R is a commutative ring.

So the quotient A/[A, A] is spanned only by R and by odd degree paths p;; € e;Ae;,
and the only relations binvolving those is p;; = p;;. Let pi; have odd degree d < 2n—1,
then (a}a;) mzl_dpii = wj, 80 p;; # 0in A. So if take one path p; € e;Ae; (for some
i € I) in each odd degree < 2n — 1, we get a basis in A/([A, A] + R). Speciﬁcélly we

can choose odd powers of b as a basis. : 0
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5.5 Hochschild and cyclic (co)homology of A

In this section, we prove Theorems 5.2.0.4 and 5.2.0.5: we construct a projective
resolution of A, prove duality theorems and compute the Hochschild and cyclic coho-

mology/homology spaces.

5.5.1 A periodic projective resolution of A

Let ¢ be an automorphism of A, such that ¢(a) = aVa € Q' and ¢(b) = —b. Note that
¢ = —Id on A*®. Define the A—bimodule ; A4 obtained from A by twisting the right
action by ¢, i.e. 14, = A as a vector space, and Vz,z € A,y € 144 : 2-y- 2 = 2yd(2).
Introduce the notation €, = 1 if a € Q', ¢, = —1 if @ € (Q')*, and let €, = 1. Let x;
be a homogeneous basis B of A and z] the dual basis under the form attached to the

Frobenius algebra A. Let V be the bimodule spanned by the edges of Q.

We start with the following complex:
Se: 0 Agh] > AQRAR] B AGRVORAD ARrAB A0,
where

do(z ® y) = 2y,
hi(z®UeYy)=1v®Yy—TQUY,

n n
dz(z®t)=Zeaizai®a2‘®t+26a,.z®a,-®a;*t

—2bRb®t—20bQbt,
@)=z Y ¢(z:) @z

z;EB
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did;+1 = 0 for ¢ = 0, 1,2 is obvious. We show ds7 = 0: We have

d(i(1)) = daD d(z:) @ x})

z;€8B
n : n
= Z Z €a; P(Ti)a; ® af @ z] + Z Z €a; $(%i) ® a; ® alx}
z;€B j=1 v z,€B j=1
=Y $@)bobes; - Y d(z) @b@ b
z;€B ;€B

The first two terms cancel since

VaeQ': ) $z)a®a* @] = Y ($(z:)a,—¢(z}))(z;) @ a* ® 1]

z;EB %;,%;€B
= Y ¢(z;) ®@a” ® (az}, i)z}

z;5,%;EB

= Z d(z;) ® a* ® azx;.

z;€B

The last two terms cancel since

Y d@pebos = Y (pzb —d(x)b(z;) @bt

z;€B z;,3;€8
= Y ¢(z;) @b (~ba}, i)

z5,2;EB

=) $(z:) @b @ bay.

z;€B

I

Lemma 5.5.1.1. S, is self dual.
Proof. We introduce the nondegenerate forms
* (z,9)s = Tr(zd(y)) on 4,
e z®7,y®y )y = Tr(zg(y'))Tr(z'y) on A ®g A and

* Z®a®r,y®B®Y)s = Tr(z¢(y))Tr(z'y)(c, B) on A Qg V ®g A, where we
define the form on V to be (a, 8) = 6, ges.
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We apply the functor (—)* = Homg(—, C) and make the identifications
A~ A (AQrA)* ¥~ A®rAand (AQrV ®g A)* ~ AQrV ®g A by the map
T (—,2)4

We have

(i(2),y @ 2)p = (D_ 2(z:) @],y ®2)p = Y _ Tr(xp(z:)¢(2))Tr(x]y)

z;€B z;€B
= — Z Tr(p(z)z;2) Tr(z}y) = — Z Tr(z¢(x)z;) Tr(z]y)
z;€B z;€B

= —Tr(2¢(2)y) = Tr(zd(y2)) = (z,y2)s
- (ZE, dO(y ® Z)),

y — Ak
so 1 = dj.

We have

n n
(2@V®Y,d(z®@))s=(TR®VRY, Y €20;@0 Ot+ Y €0z @ 0 @at

1=1 =1

—hRb®t— 2@ bR bt),,
which gives us Va € Q'
(z®a®y,d(z®1))y = —Tr(z¢(t)) Tr(yza) + Tr(z¢(at)) Tr(yz)

and

(z®@b®y,da(2®1))y = —Tr(xd(t)) Tr(yzb) — Tr(zd(bt)) Tr(yz),
ie. forveV,
(z ®@vQy,da(z ®1))y = —Tr(zd(t)) Tr(yzv) + Tr(zd(vt)) Tr(yz)

— Tr(zve(t)) Tr(yz) — Tr(z()) Tr(vyz)

=(wRy—r@vy,z2Q01t)s = (di(z®v®Y),2@Y)s,

so dp = df. O
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Proposition 5.5.1.2. S, is an ezvact sequence.

Proof. We recall the definition of Anick’s resolution [1]. Denote TrW to be the tensor
algebra of a graded R-bimodule W, Tf W its augmentation ideal. Let L C TAW be
an R-graded bimodule and A’ = TrW/(L). Then we have the following resolution:

ARrLOrA D AR Ward L Aord D A -0, (5.5.1.3)
where m is the multiplication map, f is given by
f(di ®@w®ad)) = djw R ay — a) @ wal

and 0 is given by
0(a; ®1l®ay) =aj - D(I) - ay,

D:TiW — A @rW®erA,

n
W R...Quw, > Z('wl®...®wp_1)®wp®(wp+1®.‘.®wn),
p=1"

where bar stands for the image in B of the projection map.

In our setting, W = V, L the R-bimodule generated by i €5, a0 — b?. Then
A=A -
It is also clear that Im(0)=Im(ds) C A ®gr V ®g A, so from Anick’s resolution we
know that the part

AR ARl B AGRVRRAB AgrAB A0

is exact. Exactness of the whole complex S, follows from its self duality. O

Since ¢* = 1, we can make a canonical identification A = 144 ®414,4 (Via z —

z ® 1), so by tensoring S, with A4, we obtain the exact sequence
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0— ARR 5 A®r 1 Aslh+2] B A®RV ®r 1Aglh] % A®R 1A4[H] L 144[h] — 0.

By connecting this sequence to S, with d3 = ij and repeating this process, we obtain

the periodic Schofield resolution with period 6:

o AQARK S A®R 1Ay +2] B ARV ®r144[h] X A®r NI
BARRAY B ARRV @rAB AGRAB A 0.

This implies that the Hochschild homology and cohomology of A is periodic with
period 6, in the sense that the shift of the (co)homological degree by 6 results in the
shift of degree by 2h (respectively —2h).

From that we get the periodicities for the Hochschild homology/cohomology

- HHjy6i(A) = HH;(A)[2ih], HH?*%(A) = HH'(A)[-2h), Vi1
' (5.5.1.4)

5.5.2 Calabi-Yau Frobenius algebras |

Let us define the functor

Hompe(—, A ®c A) : A°—~mod — A°—mod,
| M - M.

We recall the definition of the Calabi-Yau algebras from [17].

Definition 5.5.2.1. A Frobenius algebra A is called Calabi-Yau Frobenius of
dimension m if

AV =~ Q™A (5.5.2.2)
If there is more than one such m,. then we pick the smallest one.
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If additionally A has o grading, such that the above isomorphism is a graded iso-
morphism when composed with some shift, then we say that A is a graded Calabi-
Yau Frobenius algebra. More precisely, if AV[m'] ~ Q™1 A is o graded isomor-
phism, where [I] is the shift by | with the new grading, then one says that A is graded

Calabi- Yau Frobenius with dimension m of shiftm’.
Proposition 5.5.2.3. A is Calabi- Yau Frobenius with dimension 5 of shift h+2, ie.
AV[h+ 2] ~ QPA. (5.5.2.4)

“Proof. This follows from [17] since A is symmetric and periodic with period 6. O

From [17], we can deduce the dualities

HH;(A) = HH;_j(A)*[]2R], (5.5.2.5)
HH'(A) = HHs_i(A)[~h -2, (5.5.2.6)
HHY(A) = HH"(A)*[-2h—4]= HH(A)*[-4]. (5.5.2.7)

5.5.3 Hochschild homology of A

Let A” be the algebra A with opposite multiplication. We define A° = A @ A®.

Then any A—bimodule naturally becomes a left A°*— module (and vice versa).

Now, we apply to the Schofield resolution the functor —®4, A to get the Hochschild

homology complex

o ARRR S AR+ 2 B (Vg Ag)R[R] 4

% AR B AR B (v er AR S AR 0.

Let HH;(A) be HHy/R for i = 0 and H H;(A) otherwise. We have the Connes
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exact sequence
0 - HHo(A) B HH,(A) B HH(A) B HH;(A) BHH(A) — ..., (5.53.1)

where the B; are the Connes differentials (see [19, 2.1.7.]) and the B; are all degree-

preserving.

In our case, HHo(A) = A/([A, Al + R) = U*[h] (see Proposition 5.4.4.1), where
U*[h] = (b|iodd). From (5.5.3.1), we know that U*[h] C HH;(A). Denote X =
HFH.(A)/U*[A]. Since deg HHy(A) < 2h, HHy(A) = HHy(A)*[2h] and the Connes
differential maps H Hp(A)/X isomorphically to its image in HH3(A), HHy(A)/X
sits in degree h. We call this space K*[h], where K* sits in degree 0. HH3(A) =
X*[2h] ® K[h] and H Hy(A) = U[2h] & X*[2h] follow from the duality (5.5.2.5). The
Connes differential maps HHg(A)/U[2h} isomrphically into its image in HHg(A).
Since deg HHs(A) < 2h and HHg(A) = HHs(A)*[4h] (5.5.2.5), H Hs(A)/U[2h] sits
in degree 2ﬁ. We call that space Y[2h] where Y sits in degree 0.

From our discussion, we get the homology spaces

HHy(A) = U*[h @R,
HHy(4) = U*Rh|&X,
HHy(A) = K*[heX,
HHy(A) = KI[h]® X*[2h],
HH(A) = U@ X*[2A],
HHs(A) = Ul @ Y[3h],
HHg¢(A) = U*[3h] ®Y*[3h],
HHgyi(A) = HH(A)[2kh] Vi>1.
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5.5.4 Hochschild cohomology of A

We make the identifications

Home(A ®g A, A) = AR = Homge(A ®g 144, A) by identifying ¢ with the image
0(1®1) =a (we write ¢ = ao—) and

Homu:(A®rV ®rA, A) = (V®r A)%[—2] = Homue(A®rV ®R 144, A) by identifying
@ which maps 1® a® 1 — z, (a € Q) with the element Zn:lea;a’{ ® x4, (we write

p= (Eea;ag‘ Q Zg, +b® xp) 0 —).
i=1
Now, apply the functor Homge(—, A) to the Schofield resolution to obtain the
Hochschild cohomology complex

G ARh & AR—2) & (Ve A2 & AR — 0
e AR E AR E v ARh-9 &

and compute the differentials. We have

Giz)(1®y®])=z0di(1®y®1)=z0(y@1-10®y) = [y,z|,

SO
di(z) = Z €a10; ® [ai, 2] + b @ [b, 2].

1=1

We have

n n n
d;(Zcu@a:ai +b6@x)(1®1) = (Za,-@xai +b®xb)o(Zeajaj ®a; @1

+Zeaj1®aj®a;—b®b®1—1®b®b)

j=1

= (ai%ta, — To,a:) — (bzp + D)
1=1

= Z[%%J" (bzy + xD),
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SO

n

(> 0 ®Ta +b@ ) =Y _lai, za)] — (bzs + z3b).

i=1 1=1

We have

G@)(181) =zods(1@1)=xz0()_ ¢m)®1}) =Y ¢(z;)aa] =0,

z;€EB z;€B

SO

dj(z) = ) lw;)za},

z,€EB

n . n
and we evaluate this sum: let p = Y (—1)""¢;, then p*> = 3. e; = 1, and for all
i=1 =1

1
monomials x € A, pd(x)p = (—1)%€=)x. We write z = py (where y = pz), then
di(@) = Y bz = p Y (pd(@)p)yzs = p Y (—1)9EDzyar.
T €B z;€B ziEB

The map y — Y. (—1)%€@)x,yz? is zero in positive degree, and the restriction
z;€EB

to degy = 0 is a map @,.; Ce; — @,.; Cw;, given by the matrix Hu(—1) = (1 +
(=1)")(2 4+ C) = 0, since the Coxeter number k = 2n + 1 is odd. This implies that

d; = 0.

We have
dZ(:c)(Al Ra®1)=20di(1®a;®1)=z0(;®1 - 1® a;) = a;x — z¢(a;) = [a, z],
and

A(z)(1®b®1)=20d1(1Qb@1)=20(b®1—-18®b) = bx — zé(b),

SO

di(z) =Y a0} ® [a;, 7] + b ® (zb + bx),

1=1
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We have

d;(Zai Ly, +b@xp)(1®1) = (Zai®xm+b®xb)o(Zea,.a,-@aa;‘@l

=1 i=1 i=1

n
T+ el®a®d)

i=1

= Z(a‘ixa'i — x4,0(a;)) + (bxp + fBbd’(b));
i=1 :

SO

ds(z,y) = [z, ).

We have

@181 =z0ds(1®1) =z0 () ¢(®)®x) =) dlm)ad(z}) =— Y zuza},

z;€B z;€B z;€B

SO

dg(z) =— Z XX .

z;€B

- From our results about Hochschild homology and the dualities (5.5.2.6), we obtain
the following spaces for the Hochschild cohomology (for HH(A), keep in mind that
we get HH®(A) = HH(A)[-2h]/Imdg, and the image of d? lies in top degree). The

cohomology spaces are

HH(A) = U[-2]® Lk -2,
HHY4) = U[-2]® X*[h-2],
HHY4) = K[-2]® X*[h-2],
HH¥A) = K*[-2]® X[-h -2,
HHY(A) = U*[-2]® X[-h—2],
HHYA) = U*[-2]®Y*[-h-2),
HH%(A) = U[-2h-2]@Y[-h~2,
HH*Y{(A) = HH'(A)[~2kh] Vi> 1.
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We have L[h — 2] = R*[h — 2]. Since there is no non-top degree element in A
which commutes with all a € @’ and anticommutes with b, ker dj lies in top degree
—2 which implies that' the space X has to bé ZEro. -

From the discussion in Subsection 5.5.3, we know that K is a degree-zero space,
so HH?(A) sits entirely in degree —2. Since d§ = 0 and the image of dj lies in degree
> -2, K= @D.c; Cei, so K is n-dimensional. This proves Theorem 5.2.0.2 (b).

The map dg can be viewed as a map @,; Ce; — @,.; Cw;, given by the matrix
—H(1) = —2(2 — C)~L. Since it is nondegenerate, the space Y is also zero.

Theorems 5.2.0.4 and 5.2.0.5 follow..‘
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5.5.5 Cyclic homology of A

The Connes exact sequence and reduced homology were defined in Subsection (2.2.4).

We write down Connes exact sequence, together with the Hochschild homology

spaces:

0
HTy(4) —— U*[H]
2 ~|
A (4) —— U[h] TICo(4) = U*[A
B 0
HT(A) —— K*[h] HCi(A) =0
B NJ
T (A) —— K[h] HCy(A) = K*[h]
B3 0
AM(A) —— U HCy(4) =0
By ‘ ~
TH(4) —— U] HCW(A) = Ul
Bs 0
Ay (A) —— U*[3h] HCy(A) =0
Bg 0
I (A) —— U*[BHLHCH(4) = U°[3)
By

This proves Theorem 5.2.0.6.
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5.6 Basis of HH*(A)

Now we construct a basis of HH *(A).

5.6.1 HH°(A)=7Z

We compute the structure of the center.

Proposition 5.6.1.1. The non-topdegree central elements lie in even degrees, one in

each degree (up to scaling). They are given by
- h—3
k= Y Gk 0<k<——— (5.6.1.2)

Proof. First we prove that a degree 2k-element z is a multiple of Zok: 2 commutes
with all e;, hence lies in €D, , e;Ae;. From the discussion, in Subsection (5.4.2), we
can write
n n
= Z AiCik = Z /\i(afai)k-
i=k+1 i=k+1
Now,
Vj > k + 1, )\j a; (a;aj)k = Qjz = z0; = )\j+1(aja;)kaj
#
0

which implies that all A; are equal. So each even degree central is a multiple of zo.

Since 23, = 291 and 2o, commutes with all a;, 2o, also commutes with all aj.
Commutativity with b is clear, since each element in e,Ae, can be expressed as a
polynomial in b.

So zor = Zn: Ci ok 18 the central element in degree 2k.

Now, let zz:lgél of odd degree < h — 2. From Subsection (5.4.2), we can write

n
z= E /\iCi,2k+1,
i=n—k

where

2i—2n+2k
Cioks1 = Qf ~ .- BT, g
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and the law Vi > n — k,

*  p2%-2n+2k42
-a?_ b ,

(0 75)0401',2194-1 = :4.1 T apn—1...° 0 = Ci+1,2k+1ai‘,

- 50 we have

An—k Cn—k,2k+10n—k-1 = Z0n—k—1 = Op_k-12 =0
£0

and
Vi>n—k, AGjCiak+1 = 0jZ= 2a; = Aj11Ci11,2k+10 = AG;Cj2k41-
This implies that all A; =0, so we have no non-top odd degree central elements.
-

Theorem 5.2.0.2 (a) follows.

5.6.2 HH'(A)

Since HH*(A) = U[-2], we know from the previous subsection that the Hilbert series
h=3 :

of HH(A) is i t%. It is easy to see that

=0

h—3

n n ) }
Ok 2=Zm@afzzk—ZaI®aiz2k+b_®bz2_k, 0<k< 5

i=1 i=1 .

lie in ker d¥. The cup product calculation HH(A)U HH*(A) will show that each 6y

is nonzero (since the product with (5 is nonzero).

5.6.3 HH?(A) and HH3(A)

HH?(A) and HH®(A) sit in degree —2 and both are n-dimensional. So HHZ(A)
is the bottom degree part of AR[—2] and HH?(A) the top degree part of AR[—h]. -
Denote f; = [e;] € HH?(A) and h; = [w;] € HH3(A), we have

HH2(A)=éCf,~,' : HH3(A)=éCh,-. |
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5.6.4 HH*(A)

h—3
The Hilbert series of HH*(A) is t=* i t~2. We claim that a basis is given by
i=0
Cz.,; = [-*b ® bh—3—2i].
It is clear that (y; all lie in ker d%. Since the image of d% has zero trace, (o is nonzero

in HH*(A). And (y; # 0 follows from Zéi(zi = (p-

5.6.5 HHO5(A)

From Proposition 5.4.4.1, we know that the space
HH5(A) = AR/([A, A]® + R)[-h — 2] = A/([4, A] + R)[~h — 2] is spanned by

Wy = [p"3%].

5.7 The Hochschild cohomology ring HH*(A)
The degree ranges of the Hochschild eohomology spaces are

0 <deg HH(A) <h—2,
0 <deg HHY(A) <h-3,
—2 = deg HH?(A),
_2 = deg HH3(A),

—h—1 <degHH*A) < —4,
—h—1 <degHHS5(A) < —4,
—2h < deg HH®(A) <-h-3

We compute the cup product in terms of our constructed basis in HH*(A) from

the last section.
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5.7.1 The Z-module structure of H H*(A)

HH(A) is a local ririg, with radical generated by z2. In HH°(A), we have 2zyi2p; =
Zo(i4j) for 20 4+ 25 < h — 3, and the producﬁ is 0 otherwise. HH'(A) are cyclic
Z-modules for 7 = 1,4,5, _genefated by 0o, (-3, Y3 respectively. The Z-modules
HH?*(A) and HH?(A) are annihilated by the radical of Z.

5.72 HH'(A)UHH/(A) for i, odd

All cup products HH*(A) with HHI(A) for 1,7 odd are zero by degree argument.

5.7.3 HH(A)U HHY(A)

By degree argument, ¢; f; = 0 for i # 0.
Proposition 5.7.3.1. The multiplication with Gy gives us a map
HH*(4) = K[-2 & K*[-2] = HH3(A),

given by the matriz

2 -1 0 0
-1 2
0
h

0
0 0 -1 2 -1
0O --- .-« 0 -1 3

5 i

Proof. Let x € K[—2], represented by the map

f,,:A@A[Z] — A,

1®1 > 1z,
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which we lift to

fw:A®A[2] — A®A,

11 — 1®2x.

Then we have

fxds(l ®l)= fm(z b(z;) ®x}) = Z o(z;) ® zz;.

zjeB ] z;€B
To compute the lift f;, we need to find out the preimage of )  ¢(z;) ® zx; under

szB
ds.

Definition 5.7.3.2. Let by,...,b; be arrows, p the monomial b, - - - by, and define
Up == (1®b1 ®b2"‘bk+b1®b2®b3"'bk+...+b1"'bk_1®bk®1).
We will use the following lemma in our computations.

Lemma 5.7.3.3. In the above setting,
di(vp) =(by-- br ®1—1®by---by).
" From that, we immediately see that

E P(z;) ® zx} = dy( E Vgp(z)T;) +1® _S_ d(z;)z],
z;EB z;€B z;€B
\——/
=0

so we have

Qf, : B3(4) — QA),

1 - qu,(xj)xx;.

z;€B
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Then we have

00> vsepanl) = 3 deg(a;)p(a;)za:,

. z;€B z;EB
So we get |
Oofe =Y deg(m;)p(z;)az; =Y > deg(w;)p(z;)w].
) z;€B ) kl=1z;€By .
#(z;) is z; if the number of Vs in z; is even and —z; if it is odd. Observe that the
number of b’s in z; and deg(z;) — d(k,l) (where d(k,l) is the distance between the
vertices k and ) have the same parity. So ¢(x;) = (—1)d8@)~dkdg, and so the

multiplication with 6, induces a map

HH*(4) = K[-2] 5 K*[-2] = HH*(4), (5.7.3.4)

given by the matrix
(Hj{) = Z (—1)deeE)—dkD) deg () = (—1)40d) (iHA(t)kl) . (5.7.3.5)
kil dt "I
h;i€By, : t=-1
Let us define

HE = (%HA(t))L:_I.

Then we have

Hj = ((1 + t")%(l — Ct+ ) + (1 - Ct+ tz)‘l)

t=-1

=h(2+C)L

For any nondegenerate matrix M, call M_ the matrix obtained from M by chang-
ing all signs in the (4, j)-entry whenever d(i,j) is odd. It is easy to see that for
matrices M = N~!, M_ = (N_)~'. In our case, we have Hj = (H3)_. This implies

HS =h(2+C)_)™. (5.7.3.6)
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5.7.4 HHY(A)U HH(A)
Since HH'(A) = Z6, and HH*(A) = Z(;,;;;;, it is énough to compute p(p_3.

Proposition 5.7.4.1. Given 6, € HH'(A) and (-3 € HH*(A), we get the cup
product

OoCh—s = Pr-3. (5.7.4.2)

Proof. (}_3 represents the map

(h3: ARV ®144[H] — A,
1b®1 +— —e,,
1®a;®1 = 0,
1®a;®1 — 0,

and it lifts to

bz ARV ®144h] — A®A,
1Qb®1 — —e,Qen,
1®a;®1 — 0,
19a;®1 — 0.

Then

(Grsods)(1®1) = b3 enai®a @1+ ) 6 ®a®a
) =1 i=1

b1 -10b18D)
— R1-10b=di(1®b®1),
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so we have

Qhs : B°(4) — Q(4),
181 = 1®b]1,

and this gives us
(6o 0 Cr-3)(1®1) =,

so the cup product is
Oolp—3 = [b] = p_3. -~ (5.7.4.3)

O

5.7.5 HH2(A)U HH3(A)

We compute the cup product in the following proposition.

Proposition 5.7.5.1. For the basis elements f; € HH?(A), h; cH H3(A), the cup

product is
 fihi = bijio. | (56.7.5.2)

Proof. Recall the maps

hi:A®1As — A,

I®1 — wj
and lift them to

":&jZA®1A¢ — A®A’
191 = 1Qu;.

207



Then Ya € Q we have
hi(d(1®a®1) =hi(a®1l-10a) =a@w;=d(1®adw;),
SO

Qh; : Q4A) — Q(A),

10a®1 — 1@aQu;

Then we have

n n
Qhi(ds(1®1)) = () €a®a®1+) 6l®ad®ad
i=1 i=1

-bRbR1-10b310)

= O ewti®a —b@bOw; = dy(1 ®w),

1=1

SO

Q%h;: Q5(A) — OQ*(A),
This gives us
[ @h)(1©1) = fi(1 ®w)) = ywj,

i.e. the cup product
fihi = bij[w;} = bijho.

5.7.6 HH?(A)UHH%(A)

Since deg H H?(A) = —2, their product has degree —4 (i.e. lies in span((p)), so it can

be written as
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HH?*(A) x HH*(A) — HH*(A),
(.’L‘, y) = ("’) _)C0>
where (—,—) : HH?*(A) x HH?*(A) — C is a bilinear form.

Proposition 5.7.6.1. The cup product HH?*(A) x HH?*(A) — HH*(A) is given by
(—,—) = a, where a (from Proposition 5.7.8.1) is regarded as a symmetric bilinear

form.

Proof. We use (5.7.4.2) to get

Oo(fif5) = 6o({fs, fi)o) = (fi> fi)dbo- (5.7.6.2)

On the other hand, by Proposition 5.7.3.1 and Proposition 5.7.5.1,

n

o)y =(ffy =) (HR) s = (H3) wo=(HE) wo  (5:763)

I=1

By associativity of the cup product, we can equate (5.7.6.2) and (5.7.6.3) to get

O
5.7.7 HH*(A)U HH%(A)

By degree argument, fi(; = 0 for j < h— 3 and f;(4-3 = Aiwo(2n—3) for some ); € C.

Proposition 5.7.7.1. We have
fiChos =14 zp-3. C(5.7.7.2)

Proof. Let x € HH?(A). z is represented by a map' fz
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fiA® AR - 4
181 — gz,

and we lift it to

ARA2] — A, -
1®1 - 1Q®z.

We know that for h; € HH3(A) and = 3" r;f; the cup product is zh; = 7;f;. This
i=1 ‘ _ '

determines the lift

Of, : (4 — Q(4),
1®1 — =z

Then

Vfds(1®1) = () dle) @z} = (z;) @ 2p(x})

z;€B z;€B
= =) 5@z} =di(~ Y vs,28(z})).
z;€EB zjEB
For each term v, zé(z}),
0 if z; contains even number of ¥'s-

Ch—3(ve;x(5)) = {

—=gz} if z; contains odd number of ¥'s,

where for a monomial z;, the expression ” Ebi” means removing one letter b (and it

doesn’t matter which one you remove). Denote B°% (resp. B°'*" a basis of exAe
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which have odd (resp. even) number of b’s in their monomial expression. Then

*
;2]

s o (101 = Y
zjEBodd
The automorphism 7 which reverses- all arrows of a path is the identity on A*®. Let
(z;) be a basis of A, (z7) its dual basis. Then (y(z;)) is a basis and (y(z})) its dual
basis. This shows that '

SO

The (h — 3)-degree part of A lies in e, Ae, and is spanned by 2z;,_3b"~%. This means

that 42 = z;,_3 and % = 0 for i < n. We get

st = 5 (Ha(D) 0(znms) = 1~ polncs). (5.7.7.3)

5.7.8 HH?*(A)U HH%(A)
By degree argument, f;3); =0 for j % h — 3.

Proposition 5.7.8.1. We have
fiCh-3 =@~ o(On-3). (5.7.8.2)
Proof. Since vp_3 = 6y(x_3, we have

~ fitbh—3 = (fiCh-3)00 = @ - Yo(zn—3)60 = 7 - Po(Oh—3).
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5.7.9 HH3*(A)U HHY(A)
hi¢; =0 for j <h —3 and hi(p—3 = Aiwo(fr_3) for some \; € C.
Proposition 5.7.9.1. We have
hiCh-3 = Oino(Oh-3)-
Proof. Let A\; be from above. From (5.7.7.2), we get
0o fiCh—3 = - @o(Oh-3),

and we use (5.7.3.1) to see that

/)\1\ -2 -1 0 - .- 0-(1\
Ao | ~1 2 o : 2
1 0 :
2n+1 P P |
0 o0 -1 2 -1
\)\n I 0 0 -1 3 | \n)
5.7.10 HHY(A)U HH*(A)

(5.7.9.2)

By degree argument, (;(; =0ifi <h—3orj<h—3and (?_5= > Awo(fi)-
k=1

Proposition 5.7.10.1. We have
<}2L—3 = cPO(Jcn)'
Proof. Let A be from above. Then we have, using (5.7.5.1),

hiCi_s = Nio.
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Using (5.7.9.2), the LHS becomes
Oinbh-3Ch—3 = Oino,

SO

Al = Oin-

5.7.11 HHY(A)U HH5(A)

By degree argument, (;¢; =0ift <h—3orj <h-—3.

Proposition 5.7.11.1. We have
Cheston-s = Y _ itpo(h).
i=1

Proof. We use (5.7.3.1), (5.7.4) and (5.7.10.2) to obtain

Ch—3¥h—3 = C}%—aeo = fabo = Zi%(hq:)-
i=1

The last equality follows from

- ~ -1

[0

2 -1 0 0
-1 2
0
(2n+1) :
0
0 0 -1 2 -1
_O 0 -1 3
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5.8 Batalin-Vilkovisky structure on Hochschild co-

homology

From general theory, we have an isomorphism D : HH,(A) — HH®™+5=*(4) ¥m >
0. It translates the Connes differential B : HH,(A) — HH.4+1(A) on Hochschild
homology into a differential A : HH *(4) - HH *=1(A) on Hochschild cohomology,

i.e. we have the commutative diagram

HH,(A) N HH..1(4)
nl~ | | ~lm |
HH™5=*(4)[(2m + 1)h + 2] —2— HH™=*(A)[(2m + 1)k + 2]
Theorem 5.8.0.3. (BV structure on Hochschild cohomology) A makes HH*(A) a
Batalin-Vilkovisky algebra, defined in Theorem 3.5.0.13

Proof.. We refer to [17, Theorem 2.4.65}. | O

Remark 5.8.0.4. Note that A in equation (3.3.0.14) depends on which m € N we
choose to identify D : HH,(A) = HH 6"“”".’(A) [(2m + 1)h 4 2], where the Gersten-

haber bracket does not.

5.8.1 Computation of the calculus structure of the prepro-

jective algebra

Since the calculus structure is defined on Hochschild chains and cochains, we have to
work with the on the resolution for computations. It turns out that we only have to
compute Lg, directly, the rest can be deduced from formulas given by the calculus

and the BV structure.

LB ARAR 2 ARVEA B ARA > A — 0
s e | |
Lk, per B, ges M, oper B,y 0
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These maps 9; give us a chain map between the Schofield and the bar resolution:

m(leyel) = 18y®1,

p(1®1) = ) 6l®eead ®1l-10b0b@1,
aEQ

(191 = YN @lodE)sasa 0

GGQ xq,EB

=) 1®¢(z;)®bRbO 1],

z; €8

and

Wapi = I ZZeaqb(xi)(@a@a*@:c’{—Zgb(xi)@b@b@x;‘

acQ z;€B z;€B
Now, we apply the functor — ® 4« A on the commutative diagram:

B AR B veaR B AR

4| d |
LB, (gesyR b, (A92)R 1, (qenR __, g

where

mEey) = 8y,

po(z) = Zeaa®a*®x~b®b®x,
aeQ

wy@) = DY €d(n) @a®a" @iz — d(z:) @b b ]z,
aeQ z;€B
and

Hai =4 | DY @) @ava*®al - Y ¢@)0bobed

acQ ©;€B zi€B

Now, we compute Ly,:
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Lemma 5.8.1.1. For each x € HH;(A),
Loy (z) = deg(z)x (5.8.1.2)

Proof. Via y/, we already identified z € H H;(A) with cycles in the Hochschild chain,
but we still have to identify 6o with an element in Homg.(A®?, A):

given any monomial b=b,...b;, b; € V, the map

ﬂ1®b®1y_§:m bio1 ®b; @by ... by

makes the diagram

AQRV®A 25 AQA -2 4 > 0
| | |
A, Aer R, 4

commute.

Applying Hom4e(_ ® A), we get a map

7" : Homg (V) — Homy(A),

such that
(Ooor)(br-..bu) = Zbl bi—100(b:)bi41 - . . by = deg(b) - b,

~ Recall from [5, (3.5), page 46] that the Lie derivative of f, o 7* on Hochschild
chains is defined by

Cego'r-"‘ (al ®:--® a‘k)

S e @lor)we: - oa

i=1

k |
= 3 (deg(ar) + -+ + deg(ar))ar ® -+ ® ax,

i=1
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and it can easily be checked that for each € HH;(A), Lgyore acts on fi(z), z €
HH'(A), by multiplication with deg(z):
(]

Notation 5.8.1.3. For ¢, € HH'(A), 0 < i < 5, we write c,(cs) for the corresponding
cocycle in HH"%. We write ¢ for the corresponding cycle in HHj ¢, 0 < j <5

(under the isomorphism D.

The contraction map

From (3.3.0.15) we know that the contraction map on Hochschild homology is given
by the cup product on Hochschild cohomology. Table 5.1 contains these results,

rewritten in terms of the contraction maps.

The Connes differential

We start with the computation of the Connes differential and refer the reader to the
Subsection 5.2.0.6.

Proposition 5.8.1.4. The Connes differential B is given by

B (ks ((2s + 1)h =2 = k)(k,s,

Biigs = 0,

Baves(hrs) = (25 +1)ha™ (hys),
Bigs = 0,

Byies(Ors) = ((2s+ 1)h+2+k)z s,
Bsies = 0.

Proof. We use the Cartan identity (3.1.0.7) with a € 6,
,Ceo = Bbeo + LgOB, (5.8.1.5)

where Ly, acts on x € HH; by multiplication by deg(z) (see Lemma (5.8.1.1)). The
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above identities for the Connes differential follow since ¢, acts on ks, ¥k, and A
by zero, and 2 s, (ks and a~!(hxs) are their unique preimages the contraction with

Lgg- O

The Gerstenhaber bracket

We compute the brackets using the identification _
HH(A) = HHemys—i(A)[-2(m+1)h—2] for m >> 1 and the BV-identity (3.3.0.14).
We rewrite the results from Proposition 5.8.1.4:

ABP) = (1+2(m—s)h+k+2)z2,

A(FP) = o,

ARD) = (1+2(m— s))ha™ (hY),
AGY) = o,

AWY) = ((1+2(m—s)h—k—2)¢,

AN = o.

The cup products relations involving our basis of HH*(IIz;,) are the same onéé
as the relations in the Ap,-case. When comparing the diﬁére‘ntial A with the one
in the Ag,-case where we identify HH'(Il4,,) = HHemya-i(Tla,,)[—2mh — 2] for
m >> 1, we have to multiply the coefficients by 2 émd add h. In the BV-identity
(3.3.0.14), we use only cup product and A to compute the Gerstenhaber bracket. In
these computations, when comparing to the As,-case, we get the same results with

the factor 2. So using the results from Table 3.2, we get Table 5.2.
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The Lie derivative £

We use the Cartan identity (3.1.0.7) to compute the Lie derivative.

HH“%(4)-Lie derivatives:

From the Cartan identity, we see that
EO’(:).= BLGI(:) + L'GS)B.

On 0,4, ¢+ and hy;, the Connes differential acts by multiplication with its degree and
taking the preimage under ¢g,, and Logo acts on them by zero. B kills z4, (;; and

fut- Since B is degree preserving, this means that [la’(:j acts on Oy, ¥ and hy; by

multiplication with their degree times z,(f), and on 2, (;; and f;; by multiplication

with z,(:) and then multiplication with the degree of their product. So we get the

following formulas:

Lo he) = (2 + 1Dk =2 =D (2dh)e-s,

Lo (@) = (2= 5)+ Dh—2 = 1+ B)(@C)ime
Ly (i) = Bia2+ Dy,

Lyo(fie) = Bia(2(t = 8) + Dhfiss,

L) = (2t +1Dh+2+1)(200)ss,

Lyo(ze) = (20— 8) +1h+2+ 1+ k) (z2)—s-
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H H?**%(A)-Lie derivatives:

We compute £ ok

L £ (Y1)

Ly (Ge) =
k
L 7@ (hy) =

Lo (fir) =

ﬁf]gs) (6) =

L £ (21,4)

= B( 70 (re)) — ¢ /@ B(¥n,)

B(dip-skbhss-s-1) = (2t + Dh = 2= ey (Ce)
Sun k(20 = 5 — 1) + Dh = Dzhosimsm

— G psk((2t+ Dh =2 = Dzh-gi-s-1
~20pp—3k((1 + sh)2h-3,t~s-1,

B (Lfl(f) (G4)) = B(k6ip-32n-3,~s5-1) =0,

B(Lf;:) (hit)) — Lf’(:)B(hl,t)

B0 1tot-s) — (20 + l)hbf‘(ce)a’l(hl,t)

8 ((2(t — 8) + 1)k — 2)Co,0s — Oi(2t + 1)RCo,t—s
—265a(sh + 1)Co,t-s)

B( Lf,g-")(fl,t) ) =0,

N
€HHy6(t—s)

B(upo (01)) — Ly (B(61t))

B(80afiis)) — (2t + Dh+2+ Doz
510(2(t — 8) + Dhfrtms — 010((2t + DA +2) fri—s
—2610(1 + 8h) fi s

810 B(frt-s) = 0,
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H H3*%(A)-Lie derivatives:

We compute ﬁhl(:):

Ly () =

‘ch;:) (Cl,t) =

ﬁh,(:) (hl,t) =

ﬁhin(fl,t) =
‘Chf) (al,t) =

th) (z12) =

B(. h(s)(lb £)) + Lh<s)B(¢l )
\_....\,_../

=0

((2t +1)h — Q—Z)Lh(a)flt OknOLh—3(2th + 1)0n_3 ¢ s-1,
Bt () nB(01h-30h-3t-s-1)

Okn01,n—-3((2

)=

(t—s— 1)+ Dh+2+h—3)z 30y
Okt n—3((2(t — 8)h — 1)2p_34-s-1,

)+

B(Lh(a) (hit)) + h(s) B(hiy) = (2t + 1)th,(:) a—l.(hl,t)
=0

(2t + DA(M; o s _
By, (fi)) = B(8atho,i~s) = 0ua(2(t — s + 1)h — 2)Go s,
B(t, 67)) + th(cmB(é’z,t) =((2t+1)h+2+ l)LhI(:a)zl,t

N A

=0
G10((2t + 1)k + 2)hi s,

B(biphi-s) = 00 (2(t — 5) + 1)ha ! (hgp—s)-
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H H**%(A)-Lie derivatives:

We compute £ (o
k

Lo () = B (1e) — LB (1,t)
= Okh-30in-3B(a(fap-s1)) = L (2 + 1h =2 =D
= Okh-30h-3((2(t — s — 1) + Dhfps-s-1
—(2t+1h—h+1)fri—s-1)
= Okh-30,h-3((=25s — Dh — 1) fr-s-1,

Lo (Ge) = Broo Q) = ¢ B(Ge)
=0
= Okh-30Lh-3B(fnt-s-1) =0,

ﬁﬁff) (hiy) = B Lo (hye) — tew B (Put)
= Onlkh-3BOh-3t-s-1) — (2t + 1)hLC}(C‘9)a_l(hl,f)7
= 5l,n6k,h—3zh-3,t—-s—1((2(t — 85— 1) + l)h -+ 2 + h - 3 —_ (2t -+ 1)h)
= OOk h—32h—3t-s—1(—(25 +1)h — 1),

ﬁcl(cs)(fl,t) = BLCIES)(fl,t)_LC’(:)B(fl,t)
~0
= I0kh-3B(2p-31-5) =0,

EC‘(CS)(el,t) = Buw(0) — 12 B0) =B ((z1t)e—s) — oo (2 + DR+ 2+ D2
= (2@t —s)+Dh—2— (k= D)(ak)i-s = (2t + Dh+ 2+ )(ak)t-s1
= (~2sh —4 - k)(21lk)t-s

L.o(zt) = Br.o(zi) — Lo Blzi)
o o ORI~
=0

= B((z1lk)e-s) = 0.
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H H®"%s( A)-Lie derivatives:

We compute £ yok

»Cwl(ce)(d)l,t) = B Lwl(cs)(l/)z,t) +L¢}(ce>3(¢z,t)

=0
= ((2t -'I— 1)h - 2 - l)L’t/),(:)Cl’t

= Oph-30ih-3((2t + 1)h — 2= (h — 3) o fr,t-s-1),

=2;};+1
Ly (Ge) = Buyo (o) + 1y B(G)
=0

= Opn-30Ln—3B(a(fri-s-1))

= Opp-30h-3(2(t —5s—=1)+ Dhfpi-s1

= Oph-301h-3(2(t — 8) — 1) fy 1—s-1,
,Cd}’(cs) (hl,t) = B Lﬂ/);(cs) (hl,t) +L¢£8)B(hl,t) ‘

=0
= b¢£s>a_1(hl,t)(2t + 1A
= Opnr-301n(2t + 1)hOh_34—s-1,

Lyofie) = Bryo(fie) +ty0 B(fir)
=0
= 0 ph-3B(Oh_34-5-1)
= l((2(t — 8 — 1) + 1)h + 2+ (h - 3))6k,h_3zh_3,t_5

= 1(2(t = 8)h — 1)0kh-32h—3,t—s—1,
ﬁw’(cs) (el,t)‘ = B L":!"I(ca) (el,t) +L¢£3)B(6l,t)
\-—\,—/

= L¢]<ce)zz,t((2t + Dh+2+1) = (2%)=s((2t + 1)h + 2+ 1),

Lyo(ae) = Bryo () + ty0 Blay)
=0

= B((ath)i-s) = ((2(t — 8) + 1D~ 2 = (k — 1)) (218 )s-s.
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HH%t%( A)-Lie derivatives:

Bactson 84,1, and hy; by mulfiplication with its degree and taking the preimage
under t5,. On 214, (¢ and fi;, B acts by zero. Since the spaces U, U*, K and K* are
zp-invariant and z](cs) has degree k—2sh, Lzéo) acts on 61+, and hy ¢ by multiplication
with k£ — 2sh and taking the preimage under tg, and multiplication with z,(f), and on.

211, (e and fi4 it acts by zero. We have the following formulas:

L) = (k= 25h)(2()t-s,

Lo =0,

L (8)(hlt) = (k- 2sh)a™ (lus),

Lo(fie) =0,

L) = (k= 2sh)(zz)i-s,
)

(s) (th = 0.

This concludes the computation of the calculus structure for quivers of type 7.
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Appendix A
Correction to [12]

We want to make a correction to the HH 27(A).‘U HH?(A)-computation in [12]: the
calculation of HH?(A) U HH?(A) in (5.7.7.2) shows that the bilinear form on K is
given by the matrix M,, defined in Subsection 5.7.3. This is a general computation
which also applies to quivers of type A. But the results in [12] suggest that the bilinear

form on K is given by a matrix different from M, which is incorrect.

I verified that the matrix M, from HH'(A) U HH 2(A) in [12] correct, therefore
the result of HH?(A)UH H?*(A) is wrong: similarly to the computation in Subsection
5.7.3 of this paper, you can calculate the matrix M, by using the derivative of H4(t).
Then you get (by labeling the.A-vquiver as in [12])

2 -1 0 0
-1 2
0
M,=h
0
0 0 -1 2 -1
| 0 0 -1 2
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for type Aont1 (and also Dy, E,) and

for type Ag,.
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