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Abstract

Preprojective algebras HQ of quivers Q were introduced by Gelfand and Ponomarev
in 1979 in order to provide a model for quiver representations (in the special case of
finite Dynkin quivers). They showed that in the Dynkin case, the preprojective alge-
bra decomposes as the direct sum of all indecomposable representations of the quiver
with multiplicity 1. Since then, preprojective algebras have found many other im-
portant applications, see e.g. to Kleinian singularities. In this thesis, I computed the
Hochschild homology/cohomology of IHQ over C for quivers of type ADET, together
with the cup product, and more generally, the calculus structure. It turns out that
the Hochschild cohomology also has a Batalin-Vilkovisky structure. I also computed
the calculus structure for the centrally extended preprojective algebra, introduced by
P. Etingof and E. Rains.
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Chapter 1

Introduction

Let Q be a finite quiver with vertex set I, and let us write a E Q to say that a is an

arrow in Q. Let P = CQ be the path algebra of the double Q of the quiver Q (which

is obtained from Q by adding a reverse arrow a* for any arrow a E Q). We define

the preprojective algebra IIQ to be the quotient IIq = P/( E [a, a*]). Let ei, i E I be
aEQ

the trivial path, starting and ending at the vertex i. We define the ring R = e Cei.
iEI

Then II is naturally an R-bimodule.

Preprojective algebras of quivers were introduced by Gelfand and Ponomarev in

1979 in order to provide a model for quiver representations (in the special case of

finite Dynkin quivers). They showed that in the Dynkin case, the preprojective

algebra decomposes as the direct sum of all indecomposable representations of the

quiver with multiplicity 1. Since then, preprojective algebras have found many other

important applications, see e.g. to Kleinian singularities [3].

Ironically, it is exactly in the case of finite Dynkin quivers, originally considered

by Gelfand and Ponomarev, that preprojective algebras fail to have certain good

properties enjoyed by the preprojective algebras of other connected quivers. In the

non-Dynkin case, IIQ is Koszul and has cohomological dimension 2. The situation is

completely different in the case of Dynkin quivers. The preprojective algebras of these

quivers are only almost Koszul and cohomology groups HHi(IIQ) - 0 for infinitely

many i.

As a result of the Schofield resolution [22], the Hochschild cohomology of II is

17



periodic with period 6. The Hochschild cohomology ring was computed in [12] for

quivers of type A. In this thesis, we do the computations for the quivers of type D

and E over a field of characteristic zero which yields the complete description of the

Hochschild cohomology ring of any quiver (over a field of characteristic zero).

We compute the Hochschild cohomology and homology structure in Chapter 2.

For the computation of the additive structure, together with the natural grading

(all arrows have degree 1), we use the periodic Schofield resolution (with period 6)

and consider the corresponding complex computing Hochschild homology. Using this

complex, we find the possible range of degrees in which each particular Hochschild

homology space can sit. Then we use this information, as well as the Connes complex

for cyclic homology and the formula for the Euler characteristic of cyclic homology to

find the exact dimensions of the homogeneous components of the homology groups.

Then we show that the same computation actually yields the Hochschild cohomology

spaces as well. This work generalizes the results from [12].

The method to compute the cup product is the same one as in [121: via the isomor-

phism HHi(IIQ) - Hom(QffIQ, IIQ) (where for an IIQ-bimodule M we write QM for

the kernel of its projective cover) we identify elements in HH(IIQ) with equivalence

classes of maps li(IIQ) --+ IQ. For [f] E HHi(IIQ) and [g] E HHj(HIQ), the product

is [f][g] := [f oQig] in HHi+j (IQ). All products HHi(IIQ) x HH (IIQ) -- HHi+ (HQ)

for 0 < i < j < 5 are computed. The remaining ones follow from the perodicity of

the Schofield resolution and the graded commutativity of the multiplication.

The Hochschild cohomology ring of any associative algebra, together with the

Hochschild homology, forms a structure of calculus. This was proved in [6]. In

Chapter 3, we compute the calculus structure for the preprojective algebras of Dynkin

quivers over a field of characteristic zero, using the Batalin-Vilkovisky structure of

the Hochschild cohomology. Together with the results of [2], where the Batalin-

Vilkovisky structure is computed for non-ADE quivers (and the calculus can be easily

computed from that), this work gives us a complete description of the calculus for

any quiver. First, we compute the Connes differential on Hochschild homology by

using the Cartan identity. Since it turns out this differential makes the Hochschild



cohomology ring a Batalin-Vilkovisky-algebra, this gives us an easy way to compute

the Gerstenhaber bracket and the contraction map. Then we use the Cartan identity

to compute the Lie derivative.

Another bad property of preprojective algebras in the case of finite of Dynkin

quivers is that their deformed versions are not flat. Motivated by this, the paper [10]

introduces central extensions of preprojective algebras of finite Dynkin quivers, and

shows that they have better properties, in particular their deformed versions are flat.

The following paper [9] computes the center Z and the trace space A/[A, A] for the

deformed preprojective algebra A; the answer turns out to be related to the structure

of the maximal nilpotent subalgebra of the simple Lie algebra attached to the quiver.

In Chapter 4, we generalize the results of [9] by calculating the additive structure of

the Hochschild homology and cohomology of IIq and the cyclic homology of IQ, and

to describe the universal deformation of II. Namely, we show that the (co)homology

is periodic with period 4, and compute the first four (co)homology groups in each

case.

Quivers of type T are introduced in the paper [20]. It turns out that preprojectve

algebras of T-quivers enjoy similar properties as in the ADE case, for example their

Hilbert series have the form h(t) = (1 + Pth)(1 - Ct + t 2)- 1, where h is the Coxeter

number and P the permutation matrix corresponding to some involution of the vertex

set I. In Chapter 5, we compute the calculus structure of the preprojective algebra,

together with the Hochschild cohomology and homology structure. It turns out that

in the T-case we have a projective resolution of the preprojective algebra which is

very similar to the Schofield resolution in the ADE-case which is also periodic with

period 6. And the Hochschild cohomology structure, together with its cup product,
for quivers of type To is very similar to the one for type A2n. But unlike the ADE-case,
where HHi(HQ) = HH6 m+2-i(IQ), we have HHi(IIQ) HH6m+ 5-i(HQ).



1.1 The preprojective algebra

Given a quiver Q, we define the preprojective algebra IQ to be the quotient of the

path algebra PQ by the relation E [a, a*] = 0.
aEQ

Given a monomial x = ala2 -. an PQ, we write x* to be the monomial a* .. a*a*,

and we extend this definition linearly to all elements in PQ.

We introduce a grading, such that each trivial path has degree 0 and each arrow

in Q has degree 1.

From now on, we assume that Q is of ADE type, and we write A = IIQ.

1.1.1 Graded spaces and Hilbert series

Let M = & M(d) be a Z+-graded vector space, with finite dimensional homogeneous
d>O

subspaces. We denote by M[n] the same space with grading shifted by n. The graded

dual space M* is defined by the formula M*(n) = M(-n)*.

Definition 1.1.1.1. (The Hilbert series of vector spaces)

a Z+-graded vector space, with finite dimensional homogeneous

the Hilbert series hM(t) to be the series

hM(t) = Z dim M(d)td.
d=O

Definition 1.1.1.2. (The Hilbert series of bimodules)

Let M = ( M(d) be a Z+-graded bimodule over the ring R,
d>O

$ MI,j. We define the Hilbert series HM(t) to be a matrix
i,j CI
entries

so we can write M =

valued series with the

HM (t) ,, = dim M(d) ,ytd.
d=O

1.1.2 Frobenius algebras and Nakayama automorphism

Definition 1.1.2.1. Let A be a finite dimensional unital C-algebra, let A* = Homc(A, C).

We call it Frobenius if there is a linear function f : A.--4 C, such that the form

Let M = E M(d) be
d>O

subspaces. We define



(x, y) := f(xy) is nondegenerate, or, equivalently, if there exists an isomorphism

q": AS A* of left A-modules: given f, we can define 0(a)(b) = f(ba), and given 0,

we define f = 0(1).

Remark 1.1.2.2. If f is another linear function satisfying the same properties as f

from above, then f(x) = f(xa) for some invertible a E A. Indeed, we define the form

{a,b} = f(ab). Then {-, 1} E A*, so there is an a E A, such that b(a) = {-,1}.

Then f(x) = {x, 1} = b(a)(x) = f(xa).

Definition 1.1.2.3. Given a Frobenius algebra A (with a function f inducing a bi-

linear form (-, -) from above), the automorphism q : A -+ A defined by the equation

(x, y) = (y, r(x)) is called the Nakayama automorphism (corresponding to f).

Remark 1.1.2.4. We note that the freedom in choosing f implies that 77 is uniquely

,determined up to an inner automorphism. Indeed, let f(x) = f(xa) and define the

bilinear form {a, b} = f(ab). Then

{x,y} = f(xy) = f(xya) = (x, ya) = (ya, 7(x)) = f(yaq(x)a-'a)

= (y, a (x)a- 1).

1.1.3 Root system parameters

Let wo be the longest element of the Weyl group W of Q. Then we define v to be the

involution of I, such that wo(x) = -a,(i) (where a& is the simple root corresponding

to i E I). It turns out that q(e,) = e,(() ([22]; see [12]).

Let mn, i = 1, ..., r, be the exponents of the root system attached to Q, enumerated

in increasing order. Let h = m,. + 1 be the Coxeter number in Q, i.e. the order of a

Coxeter element in W.

Let P be the permutation matrix corresponding to the involution v. Let r+ =

dim ker(P - 1) and r_ = dim ker(P + 1). Thus, r_ is half the number of vertices

which are not fixed by v, and r+ = r - r_.

A is finite dimensional, and the following Hilbert series is known from [20, Theorem

2.3.]:



HA(t) = (1 + th)(l - Ct + t2 (-1

It turns out that the top degree of A is h - 2 (i.e. A(d) vanishes for d > h - 2),

and for the top degree AP part we get the following decomposition in 1-dimensional

submodules:

At' = A(h - 2) = eA(h - 2)e,(i) (1.1.3.2)
iel

It is known that A is a Frobenius algebra (see e.g. [12],[20]).

1.1.4 The symmetric bilinear form, roots and weights

We write a C Q to say that a is an arrow in Q. Let h(a) denote its head and t(a) its

tail, i.e. for a : i -* j, h(a) = j and t(a) = i. The Ringel form of Q is the bilinear

form on Z' defined by

(a, ý3) = aj aiPj - E3 at(a)/3 h(a)
iEI aEQ

for a, 3 E ZI . We define the quadratic form q(a) = (a, a) and the symmetric bilinear

form (a, 3) = (a, 0) + (0, a). It can be shown that q is positive definite for a finite

Dynkin quiver Q.

We define the set of roots A = {a E ZI'q(a) = 1}.

We call the elements of C' weights. A weight p = (pi) is called regular if the

inner product (p, a) -f 0 for all a E A. We call the coordinate vectors Ei E C' the

fundamental weights and define p to be the sum of all fundamental weights.

(1.1.3.1)



Chapter

Hochschild cohomology and

homology of ADE quivers

2.1 The main results

2.1.1 Additive structure

Let U be a positively graded vector space with Hilbert series hu(t) = E t2mi.
i,mr < h

Let Y be a vector space with dimY = r+ - r_- #{i : mi = L}, and let K =

ker(P + 1), L = (e~ v(i) = i), so that dimK = r_, dim L = r+ - r_ (we agree that

the spaces K, L, Y sit in degree zero).

The main results are the following theorems.



Theorem 2.1.1.1. The Hochschild cohomology spaces of A, as graded spaces, are as

follows:

HHo(A) = U[-2] e L[h - 2],

HH'(A) = U[-2],

HH2(A) = K[-2],

HH3 (A) = K*[-2],

HH4 (A) = U*[-2],

HH5 (A) = U*[-2] e Y*[-h - 2],

HH6 (A) = U[-2h - 2] E Y[-h - 2],

and HH6"n+(A) = HH(A)[-2nh] Vi > 1.

Corollary 2.1.1.2. The center Z = HHo(A) of A has Hilbert series

hz(t) = S t n2m-2 + (r+ -r_)th-ý 2

Theorem 2.1.1.3. The Hochschild homology spaces of A, as graded spaces, are as

follows:

HHo(A) = R,

HH (A) = U,

HH2(A) = U e Y[h],

HH3 (A) = U* [2h] Y*[h],

HH4 (A) = U*[2h].

HH5 (A) = K*[2h],

HH6(A) = K[2h],

and HH,+i (A)= HH (A)[2nh] Vi > 1.



(Note that the equality HHo(A) = R was established in [20]).

Theorem 2.1.1.4. The cyclic homology spaces of A, as graded spaces, are as follows:

HCo(A) = R,

HCI (A) = U,

HC2(A) = Y*[h]

HC3(A) = U*[2h],

HC4(A) = 0,

HC5 (A) = K[2h],

HC6(A) =0,

and HH6,+i(A) = HHj(A) [2nh] Vi > 1.

The rest of this chapter is devoted to the proof of Theorems 2.1.1.1,2.1.1.3,2.1.1.4

.2.1.2 Product structure

From Theorem 2.1.1.1, we already know the additive structure of HH*(A). As the

main result of this paper, we present the product structure in HH*(A). The rest of

the paper is devoted to this computation. Since the product HHt (A) x HHj(A) -•

HHi+j(A) is graded-commutative, we can assume i < j here.

Let (U[-2])+ be the positive degree part of U[-2] (which lies in non-negative

degrees).

We have a decomposition HHo(A) = C e (U[-2])+ e L[-h - 2] where we have

the natural identification (U[-2])(0) = C.

Let zo = 1 E C C U[-2] C HHo(A) (in lowest degree 0),

0o the corresponding element in HH'(A) (in lowest degree 0),

40 the dual element of zo in U*[-2] C HH5 (A) (in highest degree -4), i.e. 0o(zo) = 1,

(o the corresponding element in U*[-2] C HH4 (A) (in highest degree -4), that is



the dual element of 0o, (o(Oo) = 1,.

o : HHo(A) -+ HH6(A) the natural quotient map (which induces the natural iso-

morphism U[-2] --* U[-2h - 2]) and

0 the quotient map L -- Y induced by po in Theorem 4.0.8.

Theorem 2.1.2.1. (The product structure in HH*(A) for quivers of type A, D and

E)

I. The multiplication by po(zo) induces the natural isomorphisms

pi : HHi(A) -4 HHi+6(A) Vi > 1 and the natural quotient map p0. Therefore,

it is enough to compute products HH'(A) x HHJ(A) -* HHi+J(A) with 0 <

i < j < 5.

2. The HHo(A)-action on HHi(A):

(a) ((U[-2])+-action)

The action of (U[-2])+ on U[-21 C HH1 (A) corresponds to the multipli-

cation

-- U[-2],
-4 -

in HHo(A), projected on U[-2] C HHo(A).

(U[-2])+ acts on U*[-2] = HH4 (A) and U*[-2] C HH5 (A) the following

way:

-- U*[-2],

-4 uof,

where (u o f)(v) = f (uv).

(U[-2])+ acts by zero on L[h - 21 C HHo(A), HH 2 (A), HH3 (A) and

Y*[-h - 2] c HH5 (A).

(U[-2]), x U[-2]

(u, v)

(U[-2]), x U*[-2]

(u, f)



(b) (L[h - 2]-action)
L[h - 2] acts by zero on HH'(A), 1 < i < 4, and on U*[-2] C HH5 (A).

The L[h - 2]-action on HH'(A) restricts to

L[h - 2] x Y*[-h - 21

(a,y)

3. (Zero products)

For quivers of type A2n+ 1, D, E, all products HHi(A) x HHj(A) -H HHi+ (A),

1 < i < j • 5, where i + j Ž 6 or i, j are both odd are zero except the pairings

HH'(A) x HH5 (A) -- HH'(A)

and

HHs(A) x HH5(A)-+ HHIo(A).

For quivers of type A2n, all products HHi(A) x HHJ(A) -+ HHi+J(A), 1 < i <

j < 5, where i,j are both odd are zero.

4. (HH'(A) -products)

(a) The multiplication

HH'(A) x HH4(A)= U[-2] x U*[-2] -- HH5 (A)

is the same one as the restriction of

HHo(A) x HH5(A) --+ HH5 (A)

on U[-2] x U*[-2].

(b) The multiplication of the subspace U[-2]+ C HHI(A) with HH'(A) where

i = 2, 5 is zero.

-- U*[-2],
4 y(¢(a)) 0o.



(c) The multiplication by 0o induces a symmetric isomorphism

a: HH'(A) = K[-2] -+ K*[-2] = HH'(A).

On HH5 (A), it induces a skew-symmetric isomorphism

3 : Y* [-h - 2] -- Y[-h - 2] C HH'(A),

and acts by zero on U*[-2] C. HH5 (A). a and / will be given by explicit

matrices MQ amd Me later.

5. (HH2 (A)-products)

HH2(A) x HH2(A)

(a,b)

-+ HH 4 (A),

- (a, b)(o

is given by (-, -) = a where a is regarded as a symmetric bilinear form.

HH 2(A) x HH3(A) -- HH5 (A) is the multiplication

K[-21 x K*[-2]

(a,y)

-4 HHS(A),

- y(a)>o.

6. (HH5 (A) x HHS(A) - HHi'(A))

The restriction of this product to

Y*[-h - 2] x Y*[-h - 2]

(a,b)

HH1 o(A),

Q (a, b)p4((0o)

is given by Q(-,-) = -/3 where / is regarded as a skew-symmetric bilinear



form.

The multiplication of the subspace U*[-2] C HH5 (A) with HH5 (A) is zero.

7. (Quivers of type A2n: Products involving U*[-2]).

(a) (((U_)*[-2]-action).

(U_)*[-2] C HHi(A), i = 4, 5 acts by zero on HHj(A), j = 2,3,4,5.

(b) Let us choose a nonzero (' E (UtO)*[-2] E HH4 (A), and z' E UVO[-2] C

HHo(A), let 9' = Ooz' E UtP[-2] C HHi(A) and/' = oO' (UtOP)*-2] C

HH5 (A).

i. HH2 (A) x HH4 (A) -~ HH6(A). The multiplication with v E HH 2 (A)

gives us a map

- U o [-2h - 2],

(' -Y(v)<Po(z'),

where : HH2(A) -* C is a linear function, given in Subsection 5.7.7.

ii. HH2(A) x HH5 (A) --HH 7 (A). This pairing

K[-21 x U*[-21 -+ U[-2h - 2]

is the same as the corresponding pairing

HH2 (A) x HH4 (A) -+ HH6 (A).

iii. HH3 (A) xHH4(A) -- HH7 (A). The multiplication with w E HH3 (A)

gives us a map

-4 Utop[-2h- 2],

(' 1 -4 -((aI))WO(01)-

(UtOP)* [-2]

(Utop)*[-2]



iv. HH4 (A) x HH4 (A) -+ HH8 (A) and HH4 (A) x HHS(A) -- H H(A).

(/2 gives us a nonzero v E HH8 (A). Then ('~'alpha(v) E HH9 (A).

HH4 (A) annihilates (U_)*[-2] C HH5 (A).

2.2 Hochschild (co)homology and cyclic homology

of A

2.2.1 The Schofield resolution of A

We want to compute the Hochschild (co)homology of A, by using the Schofield reso-

lution, described in [22].

Define the A-bimodule A obtained from A by twisting the right action by ', i.e.,

A = A as a vector space, and Va, b E A, x E A : a - x - b = axqz(b). Introduce the

notation Ca = 1 if a E Q, Fa = -1 if a E Q*. Let xi be a homogeneous basis of A and

x! the dual basis under the form attached to the Frobenius algebra A. Let V be the

bimodule spanned by the edges of Q. We start with the following exact sequence:

0 --, [h] A AO A[2] - A R V R A A®RA + A -- 0,

where

do(x 0 y) = zy,

di(x Ov y) = xv y - x vy,

d2(z t) = E aza@ a*@t+ E±aZ a 0 a*t,
aEQ a-EQ

i(a) = a Exi 09 x*.

Since q2 = 1, we can make a canonical identification A = /0AJK (via x -* x 1),

so by tensoring the above exact sequence with A/, we obtain the exact sequence



0 - A[2h] A R /[h + 2] 5 A OR V OR J[h] - A R A[h] / N[h] --+ 0,

and by connecting both sequences with d3 = ij and repeating this process, we obtain

the Schofield resolution which is periodic with period 6:

... - A 0 A[2h] A R NA[h + 2] A VR oV R A[h] -4 A OR N[h]

A OR A[2] +AoRVoRA- A ®R A A -- 0.

This implies that the Hochschild homology and cohomology of A is periodic with

period 6, in the sense that the. shift of the (co)homological degree by 6 results in the

shift of degree by 2h (respectively -2h).

2.2.2 The Hochschild homology complex

Let A"P be the algebra A with opposite multiplication. We define Ae = A OR A PP.

Then any A-bimodule naturally becomes a left Ae- module (and vice versa).

We make the following identifications (for all integers m > 0):

(A OR A) OAe A[2mh] = AR[2mh] : (a 0 b) 0 c = bca,

(A OR V OR A) Ae A[2mh] = (V 0R A)R[2mh]: (a 0 x 0 b) c = -x 0 bca,

(A R A) 0Ae A[2mh + 2] = AR[2mh + 2] : (a 0 b) 0 c = -bca,

(A R A) OAe A[(2m + 1)h] = AnR[(2m + 1)h] : (a 0 b) 0 c = -br(ca),

(A R V OR o) OAe A[(2m + 1)h] = ( OR A)R[(2m + 1)h]:
(a 0 z x b) 0 c = X ® b&(ca),

(A OR A) OAe A[(2m + 1)h + 2] = NR[(2m + 1)h + 2] : (a 0 b) c = b7(ca).

Now, we apply to the Schofield resolution the functor - ®Ae A to calculate the

Hochschild homology:



.- A[2h] N [h + 2] - (V OR N)I)[hl]

=C6 =C5 =C4

=, [h]

=C3

AR[2]
=C2

(V oRA)R

=C1

A R 40.

=Co

We compute the differentials:

d'(a0b)= dl(-10a 1)Aeb= (-a + 1 + 1 a)Ae b = [a,b],

d'(x) = d2(-1 0 1) OA X (E Caa 0 a*
aeQ

01 + Cal1
aGQ

0 a 0 a*) @Ae X

-E Caa* 0 [a, x],
aEQ

d'(x) = d3(-1 0 1) OAe () = - (Xi0 x) OA 7(x) = xh ~(x)xz
= Sxixxi = 5xix(x),

the second to last equality is true, since we can assume that each xx lies in a subspace

ekAek, and then we see that

Xi ??(X)i = X*Xi = x* Xw if x = ek, k = v(k),

and xzi(x)xi = 0 = xxxzi if k # v(k) or x = e~, j k or deg x > 0,
and the last equality is true because if (x*) is a dual basis of (xi), then (xi) is a dual

basis of q(x*).

d/(a 0 b) = d4(1 a 0 1) &Ae, 7(b) = (a 0 1 - 1 0 a) ®Ae r(b) = ab - br(a),



d5(x)= ds(1 1) 0 Ae x = (E Z aa a* 0 1•+ ,1 0 a 0 a*) 0Ae x
aEQ aEQ

= Zaa* 0 (xi7(a) - ax),
aEQ

d(x) = d6 (1 0 1) Ae X = (Xi 0 X*) ®Ae X =J Zxit7(X)?7(xi)

= Zxi?7(x)xi* = Izxixx*,

the second to last equality is true because if (xe) is a dual basis of (xi), then (xi) is

a dual basis of r7(x), and

the last equality is true because for each j E I, E xejxf = - dim(ekAej)wj, where

we call wj the dual of ej, and dim(ekAe j ) = dim(ekAe,( j)) (given a basis in ekAej,

the involution which reverses all arrows gives us a basis in ejAek, its dual basis lies

in ekAe, (j)).

Since A = [A, A] + R (see [20]), HHo(A) = R, and HH6(A) sits in degree 2h.

Let us define HHi(A) = HHj(A) for i > 0 and HHi(A) = HHi(A)/R for i = 0.

Then HHo(A) = 0.

The top degree of A is h - 2 (since hA(t) = 1+pth by [20, 2.3.], and A is finite

dimensional). Thus we see immediately from the homology complex that HH,(A)

lives in degrees between 1 and h - 1, HH2 (A) between 2 and h, HH3 (A) between h

and 2h - 2, HH4 (A) between h + 1 and 2h - 1, HH5 (A) between h + 2 and 2h and

HH6 (A) in degree 2h.

2.2.3 Self-duality of the homology complex

The nondegenerate form allows us to make identifications A = f* [h - 2] and K =

A*[h - 2] via x H (-, x).

We can define a nondegenerate form on V 0 A and V 0 A by

(a 0 xa, b 0 b) = Ja,b* C(Xa, Xb) (2.2.3.1)

where a, b E Q, and Jx,, is 1 if x = y and 0 else. This allows us to make identifications



V OR A = (V ORr )*[h] and V R JA = (V R A)*[h].

Let us take the first period of the Hochschild homology complex, i.e.

involving the first 6 bimodules:

VR[h + 2] -+ (V ORA ) [hj 4

=C5 =C4

[h] - A [2] - (V oR A)R

=C3 =C2 =C1

By dualizing and using the above identifications, we get the dual complex:

(AR[2])*

=C3[-2h]

((V OR A)R)*

=C4[-2h]

(d (AR) *  0.

=C5[-2h1

(NR[h + 21)*
=Co[-2h]

((V OR N) [h]) *

=c1 [-2h]
( C [-2h])*
=02 [-2h1

We see that Ci = Cs-i. We will now prove that, moreover, dj = ±(d'~i)}* i.e. the

homology complex has a self-duality property.

Proposition 2.2.3.2. One has di = +(d'_i)*.

Proof. (d4)* = d':

We have

(Z(a 0 Xa), d5(y))
aEQC

= (E(a Xa), E Zaa*
aEQ a-Q

= L(Xa,yq7(a) - ay) = (Z[a, xa],y)

= (d', ( a 0 Xa), y)

aGC?

the part

AR 4 0.
=Co

0 (yq (a) - ay))

(d')* = -4:



We have

(Xd (Z a(& Xa))
aEQ

(x, E aXa - xa?7(a))
a -Q

S( Eaa* 0
a•Q

EZ-[a,x1,iXa)
aEQ?

[a,x],Z a 0 Xa)
a.EQ

(-d'(x), a 0 xa)
aEQ

(d')* = d~a:

We have

(x,d'(y))= (xExCyq(x)) = (xxxiy) = (d(),y).

2.2.4 Cyclic homology

Now we want to introduce the cyclic homology which will help us in computing the

Hochschild cohomology of A. We have the Connes exact sequence

0-- HHo(A) * HH(A) HH0 (A) - HHH(A), HH4(A) -+ ...

where the Bi are the Connes differentials (see [19, 2.1.7.]) and the Bi are all degree-

preserving. We define the reduced cyclic homology (see [19, 2.2.13.])

HCL(A) = ker(Bj+l : HHi+I(A) -+ HHi+2(A))

= Im(B" : HH+(A) -4 HHi 1(A)).

The usual cyclic homology HCQ(A) is related to the reduced one by the equality

HC-(A) = HCQ(A) for i > 0, and 7HCo(A) = HCo(A)/R.

Let U = HH1 (A). Then by the degree argument and the injectivity of B1 (which

follows from the fact that HHo(A) = 0), we have HH2(A) = U E Y[h] where Y =

HH2 (A)(h) (the degree-h-component). Using the duality of the Hochschild homology



complex, we find HH4 (A) = U*[2h] and HH3 (A) = U*[2h] G Y*[h]. Let us set

K = HH5 (A)[-2h].

So we can rewrite the Connes exact sequence as follows:

degree

1 < deg h- 1 HH1(A)

BI

1 < deg < h HH2 (A)

B2

h + 1 < deg < 2h- 1 HH3 (A)

B3

h + 1 < deg < 2h- 1 HH4 (A)

B42h HH(A)

2h HH5 (A)

B5 1

2h HH6(A)

B6

2h + 1 < deg < 3h - 1 HH7 (A)

B7

U-I
U Y[h]

U*[2h]EY*[h]

U* [2h]

K[2hJ

K[2h]

Uh

U[2h]

HCI(A) = U

HC2 (A) = Y*[h]

HC3 (A) = U*[2h]

HC4 (A) = 0

HC5 (A) = K[2h]

From the exactness of the sequence it is clear that B 2 and B3 restrict to an

isomorphism on Y[h] and U*[2h] respectively and that B 4 = 0. B6 = 0 because it

preserves degrees, so B 5 is an isomorphism.

-An analogous argument applies to the portion of the Connes sequence from ho-

mological degree 6n + 1 to 6n + 6 for n > 0.

Thus we see that the cyclic homology groups HCj(A) live in different degrees:

HC6n+1 (A) between 2hn+1 and 2hn+h-1, HC6,+2(A) in degree 2hn+h, HC6n+3(A)

between 2hn + h + 1 and 2hn + 2h - 1, and HC6n+5(A) in degree 2hn + 2h. So to



prove the main results, it is sufficient to determine the Hilbert series of the cyclic

homology spaces.

This is done with the help of the following lemma.

Lemma 2.2.4.1. The Euler characteristic of the reduced cyclic homology X-H'C(A)(t) =

E (-1)ihC(A)(t) is

00

Z aktk
k=O

1
1 t2h(

E t2"mi - rt 2h + (r+ - r_)th).

Proof. To compute the Euler characteristic, we use the theorem from [8] that

(1 - tk)-ak =
k= 1

J det HA(ts).
s= 1

From [20, Theorem 2.3.] we know that

HA(t) = (1 + Pth)(l - Ct + t2)- 1

Since r = r + r_,

det(1 + Pth) = (1 + th)r+ (l - th)r-

From 4.1.4.2 we know that

oo 00

H det(1 - Cts + t2s) = (
s=1 k=

_ t2k)-#{i:mi=-k mod h}



I(1 - tk)-ak = 11 det HA(tl)
k=1 s=1

= (1 + th)r+ (1 - th )r- det(1 - Cts + t2s) - 1

8=1

1- (1 - ths)r -
s even

S(1 -d th) r••-r
s odd

(1 t2k)#{i:mikl

k=1

mod h}

It follows that

00oo

XWTC(A)(t) = E akt
k=O

This implies the lemma.

(1 + th + t2h +.. )(- Z t2T% - r-t2h + (r+ - r-)th).

Since all HCi(A) live in different degrees, we can immediately derive their Hilbert

series from the Euler characteristic:

hHC1 (A) (t) = E t2mk

hHC2(A)(t) = (r+ - r -# : i =
h})th
2

hHC3(A) (t) =

hHCs(A)(t) = rt 2h.

It follows that hu(t) = E t2& , dimY = r+ - r_ - #{i: m = }, dimK = r_,i, mii 

r

and Y, K sit in degree zero.

This completes the proof of Theorems 2.1.1.3,2.1.1.4.

2.2.5 The Hochschild cohomology complex

Now we would like to prove Theorem 2.1.1.1.

E t2,rN



We make the following identifications: HomAe(AORA, A) = AR and HomAe(AOR

.n, A) = AfR, by identifying € with the image 0(1 0 1) = a (we write = a o-),

and HomAe(A OR V OR A, A) = (V OR A)R[- 2] and HomAe(A OR V OR KA, A) =

(V ORA)R[-2], by identifying € which maps 10 a 01 zXa (a E Q) with the element

E eaa* 0 Xa (we write a = E ea.a* 0 xa o -).
aEQ aGQ

Now, apply the functor HomAe(-, A) to the Schofield resolution to obtain the

Hochschild cohomology complex

A R[-h ]  A [-2] (V A)R[-2] - A 0

... - AR[-2h] 4- f[-h - 2] 6 (V ® N)R[-h - 2] _

Proposition 2.2.5.1. Using the differentials dý from the Hochschild homology com-

plex, we can rewrite the Hochschild cohomology complex in the following way:

d[-2_h-2] KR[_h] d[-2h-2] AR[2] dI2] (V -2h-2A)R[2] d2] AR h]

... 4 AR[-2h ] d[-2h-2] A/R[_h - 2] d4[-_h-2 (VO /N)R[_h - 2] d;[-2h-2]

Proof.

d*(x)(1 0a 1) x o di(10 a O1)= xo (a 01-1 0a) = [a,x],

SO

d*(x) = Ca*a 0 [a, x] = d'(Z).
aEQ

d*( a9xa)(1 01) =o axa) 0 (C EbbOb* 0 1 + Ebl b b*)
aEQ aEQ bCQ beQ

= Z(axa- xaa) = [a, Xa],
aEQ arEQ



d•(Z a xa) = Z[a,xa] = d'(I a a Xa).

aEQ aEQ

d;(x)(10 1) = x o d3 (1 o 1) = x o (~xi i x*) Zzxix,

dd(x) = ix ( -= d(6x).

d*(x)(10a01)= xodi(10a01)= xo(a®91-10a)= ax- z(a),

d (x) = e~aa* 0 (ax - xz7(a)) = d' (x).

aEQ

d( ae(xa)(101)=
aEQ

(Z a 9 xa) o (E Ebb 9 b* D I + 0
aEQ beQ bEQ

Eblo b o b*)

- (aXa - (a)),
aEQ

d*(a0Xa)
aEQý

d*(x)(10 1) = x o d6(1 0 1) = x o ( i x) = Ex xi'q(x4),

d*(x) = xix1?(x*) = d(x).

Thus we see that each 3-term portion of the cohomology complex can be identified,

up to shift in degree, with an appropriate portion of the homology complex.

S (aXa - xaqr(a)) = d4(Z a 0 xa).
aEQ aEQ



This fact, together with Theorem 2.1.1.3, implies Theorem 2.1.1.1.

2.3 The deformed preprojective algebra

In this subsection we would like to consider the universal deformation of the prepro-

jective algebra A. If v = 1, then P = 1 and hence by Theorem 2.1.1.1 HH2(A) = 0

and thus A is rigid. On the other hand, if v - 1 (i.e. for types As, n > 2, D2n+l, and

Es), then HH2 (A) is the space K of v-antiinvariant functions on I, sitting in degree

-2.

Proposition 2.3.0.2. Let A be a weight (i.e. a complex function on I) such that

vA = -A. Let A, be the quotient of PQ by the relation

>j [a, a* E= >AI
aEQ

Then grA\ = A (under the filtration by length of paths). Moreover, Ax, with A a

formal parameter inK, is a universal deformation of A.

Proof. To prove the first statement, it is sufficient to show that for generic A such that

v(A) = -A, the dimension of the algebra A, is the same as the dimension of A, i.e.

rh(h + 1)/6. But by Theorem 7.3 of [3], A, is Morita equivalent to the preprojective

algebra of a subquiver Q' of Q, and the dimension vectors of simple modules over

AA are known (also from [3]). This allows one to compute the dimension of A, for

any A, and after a somewhat tedious case-by-case computation one finds that indeed

dim A, = dim A for a generic A E K.

The second statement boils down to the fact that the induced map € : K -+

HH2(A) defined by the above deformation is an isomorphism (in fact, the identity).

This is proved similarly to the case of centrally extended preprojective algebras, which

is considered in chapter 4. 0

Remark. For type A, (but not D and E) the algebra A, for generic A E K is

actually semisimple, with simple modules of dimensions n, n - 2, n - 4,....



2.4 Some basic facts about preprojective algebras

2.4.1 Labeling of quivers

From now on, we use the following labelings for the different types of quivers:

Q = Dn+l

Figure 2-1: Dn+ 1-quiver

A is the path algebra modulo the relations

alai = 0,

= aia, 1Li<n-3

= 0aa* =Ia*aan _ 1a_ + ana

anan_ -1+ a'a San-2an-2

Q = E6

Figure 2-2: E6-quiver



A is the path algebra modulo the relations

a l a 1= a4 a= asa 5 =

a*a = a2

a4a 4 = a3a,

a2a 2 + a3a3 + a5a 5 = 0.

Q=E7

Figure 2-3: E7 -quiver

A is the path algebra modulo the relations

ala1 = a5a* = a6a6

aal

2a2

asa5

a*a3 + a*a4 + a*a6

=0,

= a2 ac,

= a3 a3,

= a4a 4

- 0.



Figure 2-4: E8-quiver

Q= Es

A is the path algebra modulo the relations

aoa* = a5sa = a6a*

a~ao

alai

a4a2

asa5

aaa3 + a*a4 + a~a6

=0,

Salai,

- a2a 2

Sa 3a3,

= a4a4,

=0.

2.4.2 The Nakayama automorphism

Recall that A is a Frobenius algebra. The linear function f : A - C is zero in the

non-top degree part of A. It maps a top degree element w~ E eiAQPev() to 1. It is

uniquely determined by the choice of one of these wi and a Nakayama automorphism.

For each quiver, we define a Nakayama automorphism q and make a choice of one

wi E eAt'Pep):



(2.4.2.1)

(2.4.2.2)(a*) = ai*

* = a ... * a*-2 .. a.
o.)1 -- a1 • anI 2n-lan-lan-2 n al (2.4.2.3)

Let

(-1)'a_1 " alal anlan_-1 -aj+1 V1 < i i<n-2,

an-2 •' * •a•n*a-1*
-an-2 • " ala* • -•a*

a*,z • * •-,an-I * * .--a*- V1 < i < n - 2,
S~l ""an la -1 " a al s- -*-

aU =

an-1 =

an

as -=

an-1 I an-1 " " -alal " " n-2,

a* = -anan-2 . "aia1 • • an- 2,

and w = a= a V1 < i < n- 1 (where wl coincides with the expression in (2.4.2.3)),

n = an-lan-1, ,n+ = ana,. Then w+l = aj~i V1 <i < n - 2, and wi = a- (-ai)

V1 < i < n - 1, wn = an (-an) = a+l - (-an+l), w•i 1 = aif VI < < n.

These ws define the function f (and the bilinear form) associated to the Frobenius

algebra A. Since {Ta,..., ad, at,..., an) in A(h-3) is a dual basis of {al,..., an, ,a,... a*}
in A(1) and {-a,,...,-an, at,... a~) in A(1) is a dual basis to {a-, ... aZ, at,..., , }

in A(h - 3), it follows that the Nakayama automorphism associated to our bilinear

form is given by the equations (2.4.2.1) and (2.4.2.2).

Q = Dn+,, n odd

We define q by

and



Q = Dn+l, n even

We define q by

Vi <n -2:

Vi < n-2:

=-a

=
- --an,

*
= an

= -an-1,

= an-,*n-=

S= ai a n-n-lan-2* . (2.4.2.4)

Let

V1 <_i<n-2,

an-l = an- 2 .. aa 1 a . a -2a,
* .** • a*

an = -an-2 • • ala an-1,

a = ai+ -a,_an-1, ala ai_-1 V1 < i < n-2,

n-1 an-1 alai n-2

a* = -anan-2 • • • ala*1  n-2

and wi = afa' V1 < i < n- 1 (where wl coincides with the expression in (2.4.2.4)),

W, = an-la-1, wn+ = anan. Then w+l = ajia V1 < i < n - 2, u)n- = ar and

.i+ 1 = afai V1 < i < n-2, wn = a-,an, wn+ = a -a *, wi = T(-ai) V1 _ i K n-2,

S = as 5- (-a 6), wn+1 • -n-l).

Again, these wi define the function f (and the bilinear form) associated to the

Frobenius algebra A. Since {•a1,... , a, act,.., a,-} in A(h - 3) is a dual basis of

{ax, .. , a, a, ... a} in A(1) and {-a, ... -a,,-a , ... a, a } in A(1) is

a dual basis to {(a,...,an-lan, a ,..., )_,,an} in A(h - 3), it follows that the



Nakayama automorphism associated to our bilinear form is given by qr above.

Q= E6

We define q7 by

77(al)

17(a[)
77(a2)

17(a*)
n(a5)
77(a2)

= -a 4,

-a 3,

a3*

S-a 5 ,

a5

Wa = a3a3(a 2a2a3a3) .

a3 -

a4 -

a5

a3 =

5-

(2.4.2.5)

-a2a3~aa4a3asa5a3a*

a3a 4a 4a 3a 3a 5a 4a a4

a5a5a a4a4a3a2a1al,

-a 3a5 a5a3a~a4a 3a2 a ,

a al aI a2a3a4a 4 a3 a5,

-ala2a 3a4 a4a 3a5 a5a3 ,

-a l a l a2a3aa 4a3aa 5a,

-a 4a4a3asa5a3a a4a 3,

-a4 a3 a a5 aa2a 4a 3a2,

a5aw alal a2 3aaa4 a3

and w, = alY, w2 = a2a2, W3 = aa*- (which coincides with the expression in
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(2.4.2.5)), w4 = a3 3, W3 = a4 -•4. w6 = a5 -5. Then w2 = aat1, w3 = agaa = aa5, w4

aga* and wl = ata*, w2 = aa * = -E. (-a 4), W3 = 2 . (-a 3) = *" (-a 2) 5 . (-a 5 ),

W4 = aGa* = a4- (-al), w5 = a8ax, 6 = aja.

Again, these wi define the function f (and the bilinear form) associated to the

Frobenius algebra A. Since {(a,... ,a, a,... ,a} in A(h- 3) is a dual basis of

{al, ... ,as,al,... a} in A(1) and {-a 4 , -a 3 ,.-a 2, -al,-a 5 , a ,a,a, al,a} in A(1)

is a dual basis to {•1,... ,a- , a-,... aj} in A(h - 3), it follows that the Nakayama

automorphism associated to our bilinear form is given by q above.

Q= E7

We define ,7 by

77(as)

,q (a*)
-ai ,

=t

and

w4 = (a~a 4aa3 ) 4. (2.4.2.6)

Given the basis {al,. .,a6,aa,... a*} in A(1), we claim that a dual basis

{•a,..., a-, aT ... , a} in A(h - 3) is given by Let

al = --a2a3a~a6a~a4a~a3a3asa5a4a~a~a3
6= 4 3 4 54 32 1

a2 = a3a6a 6a 4a 4a 3a 3a4a5a5a4a3a2aal ,

as = -a 6a 6a 4a 4aa 3a 3a4a5a54a3a2a ala2,
a4 :--a~a~aalaa2a3a~a6a~a4ai a33.a4 5 5

= aaaaa 6 4 3 5

= a4a 3a2aaa 2 a3 a*a6a*a4a~a3 a4 a5 ,

a6= a4a4a3a3a4 a5asa4 a3 a2ajala2a3a6,



= -ala2a3a 6a 6a 4a 4 a 3a4a5a5a 4a3a2,

a*= -afala 2a 3a a6 a6a4a a 3a54 aa 5a4a3,

a= - 2alaia 2a 3a6a6aaa4aaa 3a4aba5a4 ,

a= -aba 5a4aa3 a aaa 2a 3a 6a6a 4a4a 3a3 ,

a* = -a5a4a~a2aiala2a3aga6 a 4 a 4a a 3aa,
,5 32 21 6 4 34

a* = a6a~a4a~a3aaa*agaba 3a2alala2 a3

and w = aj V1 < i < 3, w+1 = aj V4 < i < 6, w4 = awa= . Thenw2 = aa,

W = aa, w4 = aa = a (which coincides with the expression (2.4.2.6)), w5  asa*

and w = ai*a V1 < i < 3, wi+1 = aia! V4 < i < 6, wi+ =T (-ai) V1 < i < 3,

ci = a- . (-i)a V4 < i < 5, w4 = as - (-a 6).

Again, these wi define the function f (and the bilinear form) associated to the

Frobenius algebra A. Since {Ia,..., as, aT*,... a*} in A(h - 3) is a dual basis of

{al,..., a6, a,...aj} in A(1) and {-al,... ,-a 6 , a,...,aj} in A(1) is a dual basis

to {a-,..., aý, al,... a-} in A(h - 3), it follows that the Nakayama automorphism

associated to our bilinear form is given by q above.

Q= E8

We define q by

q (a*) = ai*,

and

Wa = (a a4a3a 3 )7  (2.4.2.7)

Then



ao = al a2a3a6a6 a4a4aa 6a3a3a3a3a4a4a3a3a3a3a4a5a 5a 4a3 a2aa,
aIT = -a2aaa*a6a*a a*a a*a a*a* * a~a~~ *a~a*a**a5a4a * * a*ao

6 4 a6a64a66aa 3 3 4 4a 3 3 4 5 342 1 203

S= -a3aa6a 4a 4a 6a 6a 3a 3a 3a3a4a 4a 3a 3a 3a 3a 4a 5a5 a4 a3 a2aaoaoala,
T3= -a*a6a*a4a a6a* "a3a *a3, *a4a*a3a*a3a **

6 =4 8 80 18283 64406 3 3 4 44 83 3 4 5a~a~a 4a

a4 = -a 64aa 6a 3 a 3a3a 3a 4a 4a 3a 3a 3a 3a 4aa 5a 4aa 2  a Oa al a2a3 a6a6a,

a* = aoalaza3a1a6aaa4aaa6a~a3aa a3aaaaa a3aaaa3 aa4a5

a a a aa*aaa*a a* *a~a*a3a a3a aa5a4a~a*
a1 - 46 3 3 0 6 3 4634 4 3 3 4 5a 3 2a2ala6

a* = alaoaoala2a3asa6a4a4asa6a~a3a~a3a4a4a~a3a~a3aasa5a4aaa

al = a~a~aoaoala2a3a66aa6a4a~ a3a3a3a3a4a4a3a3a3a34a5a5aaaa

a4 = -a4aoa6a3a3a3a3a4a4a3a3a3a3a4a4a5a4a3a3 azasasal a3,

a* = asa4a*aa* 1 aaaoal a2a3a*a6a*4a*6a6a3a3a;a 3a*4a*a3aaa3a*,

a* = a6a*a3ata3aaa4a*a3a*a3a*a*aSa4a~a~a* a aoala2a3a*a6a *a4

and wi = ai< VO < i < 3, ws = a `V4 < i < 6, w4 = aa 3. Thenw = ala2 ,

3= aa*, 4 = a*a* = a* a (which coincides with the expression (2.4.2.7)), wF, = aSa5*

and w = a a VO < i < 3, w i+= a* V4 <i < 6, wi+1 = - (-ai) VO < i < 3,

wU = -i- -(-ai) V4< i < 5, U4 = a-d-(-a).

Again, these wi define the function f (and the bilinear form) associated to the

Frobenius algebra A. Since {ýo,..., as, a,..., a-} in A(h - 3) is a dual basis of

{ao,... , a, ,a,...a} in A(1) and {-ao,...,-a 6,a*,...,a"} in A(1) is a dual basis

to {(o,..-.,a-,a,...a-} in A(h - 3), it follows that the Nakayama automorphism

associated to our bilinear form is given by r above.
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2.4.3 Preprojective algebras by numbers

We summarize useful numbers associated to preprojective algebras, by quiver:

Q exponents mn h degAIOP degrees HHo(A)

n odd 0 4,..., 2n - 6, 2n - 2
Dn+ 1,3,...,2n-1,n 2n 2n-2

n even 0, 4,... 2n - 4, 2n - 2

E6 1,4, 5, 7, 8, 11 12 10 0, 6, 8, 10

E7 1,5,7,9,11,13,17 18 16 0,8,12,16

Es 1, 7, 11, 13, 17, 19,23,29 30 28 0, 12,20,24,28

We see that for quivers of type D and E, the degrees of the space U (which are

2mn, mi < A) are even and range from 0 to h - 2.

We get the following degree ranges for the Hochschild cohomology:

HHo(A) = U[-2] E L[h- 2]

HH1(A) =U[-2]

HH2(A) = K[-2]

HH3(A) = K*[-2]

HH4(A) = U*[-2]
HH5 (A) = U*[-2] e Y*[-h - 2]

HH 6(A) = U[-2h - 2] Y[-h - 2]

0 < deg HHo(A) < h- 2

0 < deg HH'(A) < h- 4

deg HH2 (A) = -2

deg HH3 (A) = -2

-h < deg HH4(A) 5 -4

-h - 2 < deg HH5 (A) -4

-2h < deg HH6(A) < -h - 2

2.4.4 Basis of the preprojective algebra for Q = D,,

We need to work with the Hilbert series and with an explicit basis of A. We do this

for each type of quiver separately.

We write B for a set of all homogeneous basis elements of A, B,_ for a homoge-

neous basis of eiA, B_,j for a homogeneous basis of Aej, Bij for a basis of eiAej and

Bij,(d) for a basis of eiAej(d).

A basis of A is given by the following elements:



For k,j < n- 1:

Bk,n

Bk,n+1

S{(ak-1 k* • • n-2 1 Ol k- 1},

= {(ak-a- 1 a ... an- 2aO < 1 k- 1},

= {(an-la*anal) 1O < 1 <_

(= {(ananlan _la*)0 < 1 <

n-1
2

n-2
2

n-1
2

n-2
2

= {ana*-_(anlaanan*-1 )t O < 1 <

= {ana_l(ana*_lanla) 10 1 <

n odd,

n even

n odd,

n even

n-3.
2

n-2
2

n-3
2

n-2
2

n odd,

n even

n odd,

n even

= {an-an-2." aj(aj-la_ 1)10 < < j- 1),

= {an-2 ... aj(aj-lap- 1)10 <_ 1 < j - 1}.

For k < j < n- 1,

Bk,j S{(ak-iak-_)la1* aik aj-1 < min{k-l,n-j-1}}U

{(aka* _ ck n an-1an-2_l_ .. ajtO < < k - 1} U

{ (ak- lak )la*k ana n-2"' aj0 < I < k- 1 +j- n}.

For j < k n - 1,

Bk,j = {ak-1 .aj(a aj)O < l < m in{n - k - 1,j-1}} U

{C... a*_2an-la 2 " aj(aa j)ll0 < I < j - 1}U

{ak... a*_2ananan_2... aj(ajaj)'1o < 1 < j -1+ k- n}.



2.4.5 Hilbert series of the preprojective algebra for Q = E6

We give the columns of the Hilbert series HA (t) which can be calculated from (1.1.3.1):

(HA(t)i,1)1i<G6 =

(HA(t)i,2)1<i<6

(HA (t)i,3) 1<i<G6

I

St2+

t +

1+

t+

t 2 4

St+

(HA(t)i,4)1<i<6 =

/

L -,

/
1 +to

t + t5 + t 7

t2 + t4 + t 6 + t8

t3 + t 5 + t9

t 4  t 10

t3 + t 7

t + t5 + t7

1 + t 2 + t 4 +2t6 + t 8

t + 2t 3 + 2t5 + 2t 7 + t9

t2 + 2t 4 + t 6 + t + t 10

t3 + t 5 + t 9

t2 + t 4 + t 6 + t 8

St + t6 + t8

2t3 + 2t 5 + 2t 7 + t9

2t 2  3t4 + 3t6 + 2t8 + t10

2t 3 + 2t5 + 2t 7 + t9

_ t4 + t6 + t
8

t3 + 2t5 + t 7 + t 9

t + t5 ± t 9

t2 + 2t4 + t6 + t8 + t10

t + 2t3 + 2t 5 + 2t7 + t 9

1 + t2 + t4 + 2t 6 + t8

t + t5 + t 7

t2 + t
4 + t6 + t 8
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(HA(t)i,6)1<i<6 =

t t4 + t 10

t3 + t5 0 t9

t2 + t4 + t6 ± t8

t + t5 ± +t 7

1 + t 6

t2 + t4 + t6 + t 8

t + t3 + 2t5 + t 7 + t 9

t2 + t4 + t 6 + t 8

t3 + t 7

1 + t4 + t 6 + t10



2.5 HHo(A)=Z

From the Hilbert series (Corollary 2.1.1.2) we see that we have one (unique up to a

constant factor) central element of degree 2ni - 2 for each exponent mi < 2. We will

denote a deg i(< h - 2) central element by zi.

From (1.1.3.2) and from the Hilbert series we can also see that the top degree

(= deg h - 2) center is spanned by one element wi in each e Aej, such that v(i) = i.

The wi E L[h-2] are already given in section 1.1.2, and we will find the zi E U[-21

for each Dynkin quiver separately.

2.5.1 Q = D+l

We define the nonzero elements

bi,o = e=,

bj = a'... . j_la.+j_l.. ai (where 1 < j < min{i - 1, n - 1 - i}),

ci,j = ai ... a-2 (an-2• --2) n-... ai ( where 1 < i < n - 2, 1 < j < i - 1

Cn-l,j = (an-2an-_2)3, 1 < j < n - 2

c, = a . . . a - lan- l(a 2a-2-2)i -'a1-2 ... a., 1 <i n-1

do = e•,

dj (a-laanal -1 )j for 1lj < -
2

d• = en+l,

d' = (ana _lanol*) j for 1 < < -

and extend this notation for any other j, where bij, c,,j, dj and dj' are zero.

The exponents mn are 1, 3,..., 2n - 1, n and h = 2n. From Corollary 2.1.1.2 we

get the Hilbert series of Z, depending on the parity of n, since r+ = n + 1 for n odd

and r+ = n - 1 for n even:



n odd: hz(t) = 1 + t4 + t8 + .... + t2n- 6 + (n + 1)t2n-2,

n even: hz(t) = 1 + t 4 + t8 ... + t2n- 4 + (n- 1)t2n- 2.

The central elements of degree 4j < 2n - 2 are

n-1-2j

Z4j = E
i=2j+l

2j-1

bi,2j + Cnli,2j-i+ d + d.
i=O

The top degree central elements are wi = ci (1 < i < n - 1), and additionally

Wo = d--1, -wa+l = d'_1 if n is odd.
2 2

For j + k < ' we get the following product:

Z4jz4k = Z4(j+k)-

If n is odd and j + k = _, the multiplication becomes

2

z4j z4k = dn-1 + d'-1 w, - Wn+1-
2 2

2.5.2 Q = E6

The Coxeter number is h = 12, and the exponents mi < =6 are 1, 4, 5, r = 2.

For the center, we get the following Hilbert series (from Corollary 2.1.1.2):

hz(t) = 1 + t 6 + t 8 + 2t 1 .

From the degrees, we see that the product of any two positive degree central

elements is always 0. The central elements are z0o = 1, z6 , z8 , w3 and w6.

We give the central elements z6 and z8 explicitly (it can be easily checked that

they are central):

56



1. The central element of deg6 is

Z6= ala2a a3a a* - a2 (a3a3) 2  - a ~a5a~a3a~a5 ± a3(a 2a 2) a - a4a3a*a2aa *,*3 2 1 3 2 5 3 3a5 2 3 3 2 3a2 4)

2. the central element of deg 8 is

Z = -a 2 aa5a a3a a5aa2 - asa5 (a3a3) asa5 - a3a 5 a5a2 a2a5 a5a3.

2.5.3 Q = E 7

The Coxeter number is h = 18, the exponents mi < h = 9 are 1, 5, 7, r+ = 7, and the

Hilbert series of the center is (see Corollary 2.1.1.2):

hz(t) = 1 + t8 + t 12 + 7t1 6

The center is spanned by zo = 1, z8 , z 12, w1,.., · 7. The only interesting product

to compute is zX2 which lies in the top degree.

We give z 8 and z 12 explicitly:

Proposition 2.5.3.1. 1. The central element of degree 8 is

z8 = -a1 a2 a3 a6a6 a3 aa - a2a3(a4 a4) a3a2 - a3aa 6aa 4aa 6a. * ** 3 2 4 2 6 4 6

- aa4(aa3)2a a4 - a4a8a 4 a8a 6a a 4aa + a6a4a4a*a6a a 4aa.

2. The central element of degree 12 is

Z12 -a 3 (a4a4a 6a6) a4a4a3 - a4a4aa6(a4a4 )aa 6a4 a4

Sa4(a6a6a4a4 ) a6a6a4 + a6(a2a4a5a 6)2a a 4ae.

Proposition 2.5.3.2. We get

Z2 = - 1 + W3 - W7.

Proposition 2.5.2.1.



2.5.4 Q = E8

The Coxeter number h = 30, and the exponents mr < q = 15 are 1,7, 11, 13, r+ = 8.

For the center, we get the following Hilbert series (from Corollary 2.1.1.2):

hz(t) = 1 + t12 + t20 + t 24 + 8t 28 .

The center is spanned by zo = 1, z12, z20, Z24, 1,... ,W8 . The only interesting

product is z2.

Proposition 2.5.4.1. 1. The central element of degree 12 is

Z2 = ala2a3a6 a6a;a4ad 6aa~aa1 + a2a3aaa 4(aa3)2 aa4a~aa*6 4 6 3 2* 4 2 43 2

+ a3(a a4aga6 )2 aa 4a* + (aa3aa aa 3)2 - a4(a*a6a a4 )2aa 6a

Sa 5a4aa 6(a a4) 2 aaa6aa - a6(a a4aa6 )2a a4a .

2. The central element of degree 20 is

z=2 -ala2a 3(aaa4)2 (aaa3 (aaa4) 2 c a at - a2a3(a(a 6a~a4)(aa 4aaa6a) a~a
30* 4 3 4 2 6 454 6 2

+ a3(a~a6a*a4)4aa a - (a4a4 aaa6)5 + (a~a6(aa 4)2 )3 aa6a+ a3(aajaa4)4 6aa3  a4a6 *6 42 3 6

-(asa6asa4) 5 - a4 (a~a4 a~a6 a4a4)3 a - a6 (aa4aaa6)4 a~a4 a*.

3. The central element of degree 24 is

Z24 Z122

2.6 HH1 (A)

Recall Theorem 2.1.1.1 where we know that HH'(A) is isomorphic to the non-

topdegree part of HHo(A). In fact, HH'(A) is generated by the central elements

in the following way:



Proposition 2.6.0.2. HH'(A) is spanned by maps

Ok: (AO V O A) - A,

Ok(1 ai 0 1) = 0,

Ok(1 0 af 0 1) = af zk.

Proof. These maps clearly lie in ker d2: Recall

AoA 2- A®V®A

x0y ea)r xa a*y+ C ax®a a*y,
aEQ aEQ

then

d; o k(1 0 1) = Ok( caa a*0 1 + ' al 0 a 0 a*)
aEQ aEQ

= aiaf zk - ai*aizk = i[a, al!zk = 0.
ijI iEI iEIl

We will later see in section 2.9 that HH 4 (A) is generated by Ck where k(OOk) = 1

under the duality HH4 (A) = (HHI(A))* (which follows from the self-duality of the

Hochschild homology complex and the duality between Hochschild cohomology and

homology), so 0k is nonzero in HH'(A). EO

2.7 HH2(A)

We know from Theorem 2.1.1.1 that HH2 (A) = K[-2] lies in degree -2, i.e. in the

lowest degree of AR[-2] (using the identifications in 2.2.5), that is in R[-2]. Since

the image of d2 lies in degree > -2, HH2 (A) = ker d*.

Proposition 2.7.0.3. HH2(A) is given by the kernel of the matrix HA(I), where we

identify C' = R = ( Re2 .
iEI

Proof. Recall



d*(y)= ZExiyx*=Z > j Xjyx

x EB j,kEI xiEBj,k

For each xi E ekAej, we see that xiexzs = 6 jtwk-

It follows that for y = e A~e the map is given by
iEI

d*(y)= Z~iw,
iel

where the vectors A = (Ai)iE~ E C' and p = (Pi)iGE E C' satisfy the equation

HA(1)A = p. (2.7.0.4)

So the kernel of d* is given by the kernel of HA(1). O

Now, we find the elements in HH2(A) for the quivers separately.

2.7.1 Q = D,+, n even

HA (1) =

222

2444

2466

24682 4 6 8

2468

1234

12341 2 3 4

2

... ... 2(n- 1)
...... n--1

... ... n - 1

1 1

2 2

3 3

4 4

n-1 n-1

n n
2 2

n n
2 2

(2.7.1.1)

with kernel (e, - e+l). So a basis of HH2 (A) is given by

{ fn = [en - en+l]}
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2.7.2 Q = E6

HA(1) =

23 4 3221

36 8 634

4 8 12 8 4 6

36 8 634

23 4 322

) -A A A ) A

(2.7.2.1)

with kernel (el - es, e2 - e4). So a basis of HH2 (A) is given by

{ f = [el - e5], f2 = [e2 - e4}-

2.8 HH3 (A)

We know that HH3 (A) lives in degree -2. The kernel of d* has to be the top degree

part of NR[-h] (since Im d lives in degree -2), so

HH3 (A) = fR[-h](-2)/Im d.

Proposition 2.8.0.2. HH3 (A) is given by the cokernel of the matrix HA(1), where

we identify C' = A = A eiAtPev(i)
iEI

Proof. This follows immediately from the discussion in the previous section because

d* is given by HA(1). O

Note that HH3 (A) = (HH2(A))* (from the self-duality of the Hochschild homol-

ogy complex and the duality between Hochschild homology and cohomology). We

choose a basis hi of HH3 (A), so that hi(fj) = ikj.

Y 1 V



2.8.1 Q = D,,+, n even

From HA(1) in (2.7.1.1) we see that:

d*(2el - e2) = 2w1,

d*(-ei-_l + 2ej - ei+I)

d*((-n - 1)eC-2 + 2(n - 1)en-1 - 2(n - 1)en)
d*(2e, - e_ )

= 2w V2 i n -2,

= (n - 1)n,

= n + Uon+1l

HH 3 (A) = (AfR)toP[-h]/(wl = 2 = - = Wn-1 = 0, Wn w+ n+l = 0)

with basis

{hn = [w~]}.

2.8.2 Q = E6

From HA(1) in (2.7.2.1) we see that:

d*(2el - e2)

d*(-el + 2e2 - ea)

d*(-2e 2 + 2e3 - e6)

d (-e 3 + 2e6)

-1 + W5,

W2 + U)4

S2w 3,

= 2w6,

HH3 (A) = (ANR)"P[-h]/(wa = we = W1 + w5 02- WW3 = 0)

with basis

{hi = [w1], h2 = [w2]}.
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2.9 HH4(A)
We have HH4 (A) = U*[-2], so its top degree is -4, and its generators sit in degrees

-4 - deg zk for each central element, one in each degree.

Proposition 2.9.0.1. Let (o E ker d* be a top degree element in

(V 0 .A)R[-h - 2], such that m((o) is nonzero, where m is the multiplication map.

Then HH4 (A) is generated by elements Ck E ker d. which satisfy (kzk = Co.

Proof. If x E n'R[-h] lies in degree -4, then m(d*(x)) = 0, so (C is nonzero in

HH4 (A).

For every non-topdegree central element zk we can find a (k satisfying the prop-

erties above, which is done for each quiver separately below.

For any central element z E A, we have that d*(zy) = d4(y)z. If (k = d*(y), then

by construction Co = (kZk = d*(zky) which is a contradiction.

So these Ck are all nonzero in HH4 (A), and also generate this cohomology space.

A basis of HH4 (A) is given by these (k, and we choose them so that (k(0k) = 1

under the duality HH4(A) = (HH'(A))*.

2.9.1 Q = D,,+, n odd

We define

Co =[a*_ 1 0 an_0la~an(a*_,an-_a*an) 2

n-3
+an-1 a ana0 l(an-l1an*ana*_l)2,

C4k = [a*_ 0 anla,•an(a•_lanlanan)•_, , •

+ a-i 0 ana*_(an _ laana*n2_l)

- a0 anan-_an1(alaana-ja0_n2a
- k

- a an*0 _lan1a(an*jn 2n-3 ~k]



2.9.2 Q = D,+, n even

We define

(o =[a*n-1 an-lana* -1 -

+n-2 n
+ an-1 a(ana*-_,an-I ) a ~2k

(4k = a 1  an-1 aanalan-1) - 2 -k
2 n n n- -- k

+ an- a*(ana*an-la ) `2-k-.- 1 n-1 n- n
n-2-k- a* 0 an(a •_i lan~an• 2 k

- n an1 n1 n -12 0n

2.9.3 Q = E 6

We define

(o = [a* a3 (a~a2a*3a 3)2 + a3 0 a2(a 2a~a3a2)2 ],

1
(6 = -[-a*a asaaa2 - a 3 0 aja 2a* + a* 0 a 2a a2 + a2 0 a2a2a*

-a 2 0 a2a3a3 - a2 0 a~a3a* + a* 0 a3a~a3 + a3 0 a~a3a2],

(8 = [a 0 a3 + a3 0 a - a 2 -a a20 a].

2.9.4 Q = E7

We define

(C = [a* 0 a4aaa 3(a~a4 a~a 3)3 + a4 0 a~a3a*(a 4aia 3aa)3 ],

8 = •[a a4 a a3 aea 4 a a 3 + a4 0 a 8a3 a*a4aa 3a*

-a* 0 a3aaa4a~a 3aa 4 - a3 0 a4a4a3a3aa 4aa 3]

ý12 = - D[a 0 a4asas + a4 0 asa 3a* - a* 0 a3asa4 - a3 ® a~a4a*1.



2.9.5 Q = E8

We define

(0 = [a* a4aga3(aaa4 aaa 3)' + a4 0 asaaaa(a4 a a3a4)6],

(12 = [a4 0 a4aa 3a(a a4a a3) + a4 0 a~a3a a4aa3 a4)3

-a 3 0 a3a a4 (a a3a 4a4) - a3 0 a4a4a (a3a*a4a*)3 ],

(20 = -[a* 0 a4aa 3aaaa 4aaa3 + a4 0 aa 3aaa4 aa3 aa

-a* 0 a3a a4aaa3a4 a4- a3s aGa4a a 3aa 4a],
3 4 4 3 , l •

(24 = [a 0 a4a 3 a3 + a4 0 a a3 aa - a* 0 a3aaa4 - as 0 aaa4aaJ.

2.10 HH5 (A)

We have HH5 (A) = U*[-2] $ Y*[-h - 2]. We discuss these two subspaces separately.

2.10.1 U*[-2]

In U*[-2], like in HH4 (A), we have generators coming from the center in some dual

sense.

We have d6(U*[-2]) =0.

Proposition 2.10.1.1. Let 1o be a top degree element [wi] in some

eiNfRei[-h - 2]. Then HH5 (A) is generated by ?k E 6R which satisfy )kzk = 0.

Proof. If E a0xa E (V Of)R lies in degree -4, then the image of d*(x) = Z axa -
aEQ a

xarl(a), under the linear map f (which is associated to A as a Frobenius algebra) is

zero where f(wi) = 1. So 4o is nonzero in HH5 (A).

For every non-topdegree central element zk we can find a Ck satisfying the prop-

erties above, which is done for each quiver separately in subsection 2.10.3.

For any central element z E A, we have that d*(zy) = d*(y)z. If Ok = d*(y), then

by construction o0 = kkzk = d*(zky) which is a contradiction.

So these ?k are nonzero in HH5 (A) and generate this cohomology space. 0



The relation axa = xas?(a) then gives us that all wi's are equivalent in HH5 (A).

2.10.2 Y*[-h - 2]

We have to introduce some new notations.

Definition 2.10.2.1. We define F to be the set of vertices in I which are fixed by v,

i.e.

F = {i E Iv(i) = i}.

Definition 2.10.2.2. Let 7i be the restriction of r on ejAej (i,j E F). Let n+ =

dim ker(riij - 1) and n,- = dim ker(,j + 1).

We define the signed truncated dimension matrix (H)Di,jEF in the following way:

( = - n,.

Now we can make the following statement:

Proposition 2.10.2.3. Y*[-h - 2] is given by the kernel of the matrix HA", where

we identify CF = ( Rei.
iEF

Proof. Y*[-h-2] is the kernel of the restriction d*IVRI[-h-2](-h-2)=RF[-h-2 --. AR[-2h],

where RF is the linear span of er's, such that i is fixed by v,

d*(y) = xjyr (x)
xjEB xjEB

then

d*: RF[-h - 2] -* (Atwp)R[-2h]

can also be written as a matrix multiplication

H " : CF -* CF

under the identifications RF = (CF = ( eiAtOPei.
iEF



We compute the matrices HA and their kernels for each quiver separately.

Recall that dimY = r+ - r_ - #{mnlm.i = } = dim Rf - # {mimi - h}. We

will find Y* explicitly for each quiver.

Q = E6, E

h is not an exponent, so Y* = RF.

Q = D n+, n odd

All basis elements of ekAej given in section 2.4.4 are eigenvectors of Tkj..

For any of these basis elements x, q(x) = (-1)n"x where n, is the number of

no-star letters in the monomial expression of x. So HEI can be computed directly, and

we get

1

0

1

0
n+l

2

_n+
2

1

0

1

0
n-1

2

2

and the kernel is given by

n-1
(e2k-1 - e1, e2k, (en + en+l) - elIk < .

2

Q = Dn+I, n even

Since F = {1,... ,n- 1}, we work only with ekAej for j,k <_ n- 1, and we have to

work with a modified basis, so that they are all eigenvectors of q7:

• " 2

--0

--- 2
--0

• • O
°°·

° ·"



Fork <j n- 1,

Bk,j - {(ak-1 •_-)1'... a_•10 <l <min{k-1,n-j- 1}}U

{(ak-a_ 1)a -(an-1 - a*ann)an-2ajlO <_ 1 < k - 1} U

{ (k-1 k- (anlan-1 + aa,)an-2aj 0 < 1 k - 1 + j - n}.

Forj <k <n-1

Bk,j {ak-1. aj(aj*ajaJ) <l

{a ... a*2 (an1_,an -

{a n- 2 a* (a* 1 a_ i ±
{a*... a•-2• (ano- nI +

< min{n- k- 1,j - 1}} U

aa n)an-2 . aj(aj*aj)l10 < 1 < j - 1} U

aan)an-2 .. aj(a ~aj)l1O < 1 < j - 1 + k- n}.

From that, we can calculate the matrix:

2

0

2

0

2
I

and we get immediately its kernel

(e2k+1 - el, e2k 1 < k < n).
2

We don't use an explicit basis of A here. All we have to know is the number of no-

star letters in the monomial basis elements which can be directly obtained from the

Hilbert series HA(t) in the following way: given a monomial x of length 1 in ekAej,

nkj the number of arrows in Q on the shortest path from j to k of length d(k, j), x

contains nk,j + d arrows in Q.

\
... 2

... O

... 2

... O

·.. 2



So we obtain the formula

= HA(t)k,J
td(kj) t=

where we can get HA(V--) from (1.1.3.1) and compute

3 0 3 0 0 0 -3

0000000

3 0 3 0 0 0 -3

0000000

0000000

0 0 0 000 0

-3 0 -2 n n n q

and its kernel is

(el + e7, e2, e3 + e7, e4, e5, e6).

2.10.3 Result

Now we give explicit bases for each quiver where ji E U*[-2] satisfy the properties

given in section 2.10.1 and ei E Y*[-h - 2] are taken from section 2.10.2.

Note the duality HH6(A) - (HH5 (A))*, qo(Zo) E U[-2h-2], pOo(Wi) E Y[-h-2].

We choose Oo such that 0 o(ýo(zo)) = 1 (from that follows kk(Po (Zk)) = Zk(?pOo(Zo)) =

?Po(ýoo(zo)) = 1 and E~ such that Ei (0(Wj))= .ij

Q = Dn+l, n odd

We define

V4k = [(a.-n-_lat n)• -k],

n-i
E2k-l = [e2k-1 - eli, E2k = [e2k], En = [(en + e.+l) - el], k < n

2

v v v v v /



Q = Dn+l, n even

We define

4k = [a (an) 2-k

E2k+l = [e2k+l - el], E2k = [e2k], 1 < k<--1.
2

0o = [aga 3(aja 2aa 3 ) 2],

s 6  = [-a;a3 aca2 ],

V)8 = [a a3 - aca2a,

E3 3= , E6 = [66

Q=E7

We define

bo = [(a*a4a*a3)4],

s8 = [(a a4a a3)2 2

[aa4 a4a33],

E = [61 e+7 ,E 2 = [e21,E 3 = [e3 + e67], 4 = [e 4], E5 = [65], E6 = [e 6 -

Q = E6

We define

)12



Q = E8

We define

[o = [(aa4a*a3)],

12 = [(aa4aa3 4 ],

02o = [(a a4a a3)2],
24 = [aa 4aa3 ],

e = [e],e 2 = [e2], 3 = [e3 , E4 = [e4], E5 = [e5], E6 = [e6], E7 = [e7], = [es].

2.11 HH6(A)

HH6(A) = U[-2h - 2] E Y[-h - 2] = HHo(A)/Im(d*), and Im(d6) is spanned by

the columns of the matrices HA- which were computed in the previous section.

This gives us the following result:

Proposition 2.11.0.1. HH6(A) is a quotient of HHo(A). In particular,

HHo(A) Q = E6, E8
n-2

HHo(A)/(' wE = O, wn = wn+l) Q = D,+l, n odd

HH6(A) = oda

HHo(A)/(E w, = 0), Q = Dn+l, n even
i= 1
odd

HHo(A)/(wl + w3 - w7 = 0) Q= E 7

2.12 Products involving HHo(A)= Z

Recall the decomposition HHo(A) = C D (U[-2])+ D L[h - 2]. It is clear that the C-

part acts on HH'(A) as the usual multiplication with C, with zo as identity. From the

periodicity of the Schofield resolution with period 6, it follows that the multiplication

with ýp(zo) E HH6(A) gives the natural isomorphism HHi(A) --+ HHi+6(A) for i > 1.

We summarize all products not involving the k-part.



2.12.1 HHo(A) x HHo(A) -* HHO(A)

This is already done in the HHO(A)-section of this paper. We state the results:

Q = Dn+l, n odd

The products are

z4(j+k)

Z4jZ4k = Wn -

O

wn+ j +k k= 1 -

Q = Dn+1, n even

The products are

z4jZ4k = {Z4(j+k)

0
j+k><n-1j + 2 > ,--k 2~:

All products are zero.

E7

The only nonzero product is z8 = w• + w3 - w7.

E8

The only nonzero product is z 2 = z24.

2.12.2 HHo(A) x HH I (A) -- HH I (A)

From the definition of the maps Ok (which are generated by the central elements zk),

it follows that the Z-action is natural, i.e. the multiplication rule is the same as with

the zk counterpart: zkOO = Ok.

We state the other nonzero products:



Q = Dn+l

We have z4jOJ = 0 4(+k) if j + k < 21

E8

We have z 12012 = 024-

2.12.3 HHo(A) x HHi(A) -* HHi(A), i= 2 or 3

HH2 (A) = K[-2] and HH3 (A) = K*[-2] live in only one degree, so (U[-2])+ C

HHo(A) acts by zero.

2.12.4 HHo(A) x HH 4(A) -* HH 4 (A)

We defined (k, such that Zk k = (0 holds. By degree arguments, only these other

products are nonzero:

Q = Dn+i

For 1 < k, Z4C(4k = C4(k-1) (since Z4(k_-1)(z4l(4k) = (Z4(k-)z41)0(4 k = Co), and (4(k-1) is

(up to a multiple) the only one element of degree -4 - 4(k - 1) in HH4 (A)).

Q=E 8

We have z12 24 = (12 (since z12(z12( 24) = (z12z12)C24 = 0, and (12 is (up to a multiple)

the only element of degree -16 in HH4 (A)).

2.12.5 HHo(A) x HH5 (A) -* HH 5 (A)

By definition, zk k = 0o holds. Since Oi E U* [-2] corresponds to (i E U*[-2] in

HH4 (A) with the rule Zk'Ok = o0 corresponding to zk(k = (0 above, the multiplication

rules of 1k with elements in HHo(A) can be derived from above.

Products involving w G EL[h - 2] C HHo(A) and

E = Z.Akek E Y*[-h - 2] are easy to calculate: 'iEj = Ai[w] = Ai40.
keF



Proposition 2.12.5.1. The multiplication ((U[-2])+) x Y*[-h - 2] -- HH5 (A) is

zero.

We will show this for any quiver separately.

Q = D m+,, n odd

For 1 < k, z41 4k = 4(k-1).

The nonzero products involving wi E L[h - 2] C HHo(A) and Ej SY* [-h - 2] are

W2k-1E2k-1 = W2kE2k = WnEn =n+1En = WIE2k-1 = WIEn = )0)

W12k-1 =•1)n -= 0 -

We show (U[-2])+ x Y*[-h- 2] - HH (A): by degree argument, z4kEi = Ai2n-2-4k.

Then z2n-2-4k(4ki) = Az2n-2-4k 2n-2-4k = 00o, and by associativity this equals

(z2n-2-4kZ4k)Ei = ( - n+l)Ei = 0, so A = 0.

Q = Dn+l, n even

For 1 < k, z41 /4k = V4(k-1).

The nonzero products involving wi E L[h -2] C HHo(A) and Ej E Y*[-h -2] are

W2k+1E2k+1 = W2kE2k -= 0o

WIE2k+1 -•0o

We show (U[-2])+ x Y*[-h- 2] -0 HH5 (A): by degree argument, z4kEi = M-2n-2-4k-

Then z2n-2-4k(z4Ei) = Az2n-2-4k 2n-2-4k = X? 0 , and this equals (z2n-2-4kz4k)Ei = 0,

so A = 0.
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Q=E6

The nonzero products involving wi E L[h - 2] C HHo(A) and Ej E Y*[-h - 2] are

W3e3 = W6 06 = 0.

By degree argument, (U[-2])+ x Y*[-h - 2] 4 HH5 (A).

Q = E7

The nonzero products involving wi E L[h - 2] C. HHo(A) and ej E Y*[-h- 2] are

w•E = W2E2 =3E3 =4E4 = W55 = 6E66 7E1 = 783

We show (U[-2])+ x Y*[-h - 2] -0o HH5 (A): by degree argument, only products

involving zs may eventually be nontrivial,

zs8e = As8 , A E C.

Then

zs(z 8,e) = Azgss = Ao0,

and by associativity this equals

2iZ8Ci= (w 1 + w3 - 07)=i = 0,

so A = 0.

2.13 Products involving HHI(A)

2.13.1 HH'(A) x HH'(A) + HH 2 (A)

This follows by degree argument since deg HHi(A) > 0, deg HH2 (A) = -2.



2.13.2 HH 1 (A) x HH 2 (A) -* HH 3 (A)

HH 2(A) and HH3 (A) are trivial for Q = D,+l where n is odd and for Q = E7 , E8.

We know that HH'(A) is generated by maps 0 k and HH2(A) by fi (i - v(i), and

we lift

fi: A A[2]

1 0 1 1 e - eC(i)

fi: A 0 A[2]

101

-- A A,

ej 0 ej - ev(j) 0 ev(i).

Then

fd 3(1 0 1)= fM( xj 0 xj) = x eB 0 eix; - Xjev(i) 0 eCw)xp.
xjEB XjEB

To compute the lift Q ff, we need to find out the preimage of E xj ej 0 eixS - xj e,(j)

e,(i)X under dl.

Definition 2.13.2.1. Let bl,..., bk be arrows, p the monomial ±bl  " bk and define

v,:= ±(10 bl D b2 ---bk+ b b2 0 ba3 --bk +... + bl - bk-l bk 0 1),

and for i < j,

v 4ij) bi - - bl- l bt ( bl+l, -- bk.
l=i

We will use the following lemma in our computations.

Lemma 2.13.2.2. In the above setting,

dl(v,) = ±(bi. b 1 - 1 -b•.bi---bk).



From that, we see immediately that when assuming all xj are monomials (which.

we can do), then

xjEB

Sd(Z (1,deg(xj))

xjeB
z Bdeg(j))
xjEB

so we have

Qfj : Q23(A)

101

Then

_ (1,deg(xj))
VzjeV()z

•
=k( S(Zx)xjx -

sj EB-,j

where s(xj) is the number of arrows in Q* in the monomial expression of xj.

So we get

s(x)xx - jEB-,v(
xj EB_,,(i)

s(X,) Xj j*)

Under our identification in 2.2.5,

okfi = [Zk(5 s(x) -
IEI zjEBl,i

lE
IEI XjEBj,,,ci)

All products are zero if zk lies in a positive degree, so we only have to calculate

the products where k = 0.

We make the following

Proposition 2.13.2.3. The multiplication with 80 induces a symmetric isomorphism

a~: HH2 (A) = K[-2] - K*[-2] = HH'(A).

SC(A),

Zj= S(1,deg(xj))
Xje,(;)z •

(  (1,deg(zj))

xsEB zxj EB,,()

E
rj EB-,i

(Ok o sfi)(1 0 1) = zk (

s(xj)w1)] E HH'(A).



Now we have to work with explicit basis elements xj E Aej, i / v(i), so we treat

the Dynkin quivers separately and find the matrix M, which represents this map.

Q = Dn+l, n even

We can work with the basis given in section 2.4.4 and compute

n
Oofn = 2([wn+l] - [wn]) = -nhn (2.13.2.4)

because of the relation [w,] + [wn+ 1] = 0 in HH3 (A). a is given by the matrix

Me = (-n).

E6

We will write out the basis elements of Ael, Ae5 :

B1, 1 = (el, ala2agasaa*l),
B2,1 =(a, 2 ***5 2 315
B 2 ,1 = (a, a2a5a5a2al, a2a3a3a3a5a3aa) ,

B 3 ,1 (aa*, ala 3a, a, a,3a3a;a 3aa*, a*a5 a 3aa 3aia 3aa*),

B4,1 = (a3a~at, a3aja5aia2, a3a~a5aaa3asa 5aaaT),

B 5,1 = (a4a3aal, a4a 3a3a 5a5a 3aa 5a2a*) ,

B 6,1 =(a 5a a , a5asa3a asa8a 1),

and

ejAe5 = (ýq(x)Ix C e,(i)Ael),

where 71(a) = -Qa and for any arrow a: i - a j, d is the arrow j :-+ i, so r preserves

the number of star letters of a monomial x. From this, we obtain

Oof, = -4[wl] - 2[w2] + 2[w4] + 4[ws] = -8hl - 4h2-

because of the relations [wl] + [W4] = [W2] + [W-3 = 0 in HH3 (A).



We do the same -thing for Ae2 and Ae4:

B1,2 =(a, a1a2 aa 5aa, ala2a 5asa 3a 2),

B2,2 = (e2, a2aa , a2a*a5 a, a2aa 3aasa 5a, a2aa 5asa3a, a2aa saa3asa5a),

B3,2 = (a, aa5 a2, a aas, aa 5aa 3aaa, a a3 saa5a2 ,

a a 3asa5 aaa, aaaa3aaa aaaaaa 5aa2a 3a2)

B4,2 = (a3aa, a3a~a5a*, a3acasa2, a3aCa3 a3a5 a2,

a3a*a5a a a3a*a5a *a 3a 3a5 a5 aa a2) ,

B5,2 43 5 2 5 3 5B5,2 = (a4 aa, a4 a3aa 5a, a4a3aa 5aa 3aaa 5a),

B6,2 = (asa*, a5aa3 aa, a5a*a3a2a5a, a5aa 3asa5 aa 3a2),

and we get the basis elements for e Ae3 from i7(xj) where x Ec e,(i)Ae4. Since rl

preserves the number of star-letters of a monomial, we can immediately calculate

0of2 = -2[w)] - 4[w2] + 4[w4] + 2[w5] = -4h 1 - 8h 2

because of the relations [wC] + [W4] = [W2] + [W3] = O.in HH3 (A).

So a is given by the symmetric, nondegenerate matrix

M Z = -8 -4

-4 -8
(2.13.2.5)

2.13.3 HH'(A) x HH3 (A) o9÷ HH4(A)

This follows by degree argument: deg HH'(A) > 0, deg HH3 (A) = -2, but deg HH4 (A) _

-4.



2.13.4 HH' (A) x HH 4 (A) - HH 5 (A)

Proposition 2.13.4.1. Given Ok E HH'(A) and (1 E HH4 (A), we get the following

cup product:

Okl1 = ýlZk. (2.13.4.2)

Proof. It is enough to show 80oo = 4o: zz(Oo4t) = O8oloo implies that (006() = 41, and

the equation above follows from Ok = zkO8.

Let in general x = Ea 0 Xa E HH4 (A). Then x represents the map
acQ

x:= A 0 V 0 AN[h]

1 ai 01

1 a* 1

A,

- Xa*

and it lifts to

S: A 0 V O N[h]

10a* 01

-+ AoA,

-1 0 Xa*

lOXa.

taOa* 0 1 + CEal 0 aO a*)
a6Q

- EaOXa-ZE
aEQ aeQ

Z= a0xa -
aeQ aEQ

1 Xal?(a) + E a* 0 Xa - E 1 ( Xa.*(a*)
aEQ aEQ

1 0 aa S a* 0 Xa*
aeQ

1 0 a 0 Xa + 10 a* 0 Xa*),=di(
aEQ

Then

acEQ

- 1 0 a*xa*
aeQ

( o ds>)(1 0 1)



so we have

Qx.: " (A)

101

-- (A),
E 10a®x a+1®a*®xa*,
aEQ

and this gives us

(00o o)(1 1) = a*xa*,
aEQ

so the cup product is

O0 X = a*xa*.
aEQ

It can be easily checked by using explicit elements that the RHS is ko for x = (o,

but we the reason here why this is true: for x = E a 0 xa
aEQ

= Co, the RHS becomes

E a*xa = (a*,xa*)[wt(a)],
aEQ aEQ

where (-, -) : A x A -+ C is the bilinear form attached to A as a Frobenius algebra

(see 1.1.2).

But under the bilinear form on V 0 A, given in Subsection 2.2.3 which induces

the duality HH4(A) = (HH1(A))*,

(a xa,b O Xb) = 6a,b*Ca (a, b),

Z(a*,xa*) = (00, 'o) = 1.
aEQ

So for x = (o, equation (2.13.4.3) becomes

OoCo = (0o, Co)o = ¢o, (2.13.4.4)

because [wi] = -0o in HH5 (A) for all i E I.

(2.13.4.3)



2.13.5 HH 1(A) x HH 5 (A) -+ HH 6 (A)

We know that

0 < deg(HH' (A)) h- 4,

-h-2 < deg(HH'(A)) < -2,

-2h < deg(HH6 (A)) < -h - 2,

so the product is trivial unless we pair the lowest degree parts of HH'(A) (generated

by 00) and HH5 (A) (which is Y*[-h-2]). The product will then live in degree -h-2

which is the top degree part of HH6(A), the space Y[-h - 2).

Given an element G E HH5 (A)(-h - 2)) which has the form

: A 0 A[h +2] --- A,

1011 -4 E A"ieiER,
iEF

this lifts to
: A 0 K[h + 2] -- AoA,

iEF

Then

?(d 6(1 0 1))
xjEB ZxjEB) 0(x))

rc3EB

E E 5Aiq(x3)ei Ceixj
xjEB iEF

dl(~ ~-~" (1,deg(x)))dvE (5 >j)ix
iEF XjEB xjEB iEF

so V lifts to

Q4- : 26(A)

101

-- ~F (A),

iEF zjEB

Aiv 'deg(xj))i (xj)exz7 ,



We get

(00o ofI)(1 0 1)- AE s(xj),7q(xj)x*,
iEF zjEB-,i

where s(zx) is the number of arrows in Q* in the monomial expression of x3 (or in

general if xj is a homogeneous polynomial where each monomial term has the same

number of arrows in Q*, then s(xj) is the number of Q*-arrows in each monomial

term).

Under our identifications in Subsection 2.2.5

O00b =j A s(xj)77 (xj)x; = >1 > ý As(xj)7 7(xj)xj*
iEF xj EB-, i,kEF zjEBki

To simplify this computation, we will choose a basis, such that all x, E ekAel for

some k, 1 E I and that additionally xj is an eigenvector of 17 for k, 1 E F (since 7 is

an involution on ekAel for k, l E F). Let B+k1 be a basis of (ekAel)+ = ker(lekAe- -1)

and Bkj a basis of (ekAel)_ = ker(i7lkAe, + 1).

Let us define

k,I = s(xj) - E (xj). (2.13.5.1)
5JEB+1 zjEBjf

Then the above equation becomes

o00 = AI E Kk,l PO(Wk). (2.13.5.2)
IEF kEF

Proposition 2.13.5.3. The multiplication by Oo induces a skew-symmetric isbmor-

phism

0 : Y*[-h - 2] - Y[-h - 2].

We will treat the Dynkin quivers separately and find the matrix Mo which repre-

sents 8 for each of these quivers.



Q = Dn+l, n odd

We use the same basis as given in section 2.4.4. Recall that these basis elements have

the property q(x) = (-1)n-x where nx is the number of Q-arrows in the monomial

expression of x.

We can compute that for k, 1 <n - 1,

iKk,l

n-k+l-1

l-n

-k

0

k odd,

k odd,

k even,

k even,

1 odd

1 even

1 odd

1 even

k,n - 1 k,n+l

=n,l n+1,l

=n,n = Kn+l,n+l

Kn+l,n = Kn,n+l

n - k+1 kodd
2I k even{ n- 1 lodd

2

2I k even
n2 - 1

4 '
( n-1 2

2 )

Y*[-h - 2] has basis E2k+l = [e2k+l - e1] (0 < k < -3), E2k = [2k] (k < "),



n = [e, + en+l - el], and we can calculate the products

0OE2k+1

0Oz2k

- (i,2k+1 - i,)WO(Wi)

iEF

n-2 2k

= 2k (po( ) - n Oo(wi)
i=1 i=2
odd even

-Z(i,2k+)1)o(0 i)
iEF

2k-1 n-2

= (2k - n) • o(w) + 2k
i= 1 i=2k+1
odd odd

=- E(i,n ±• n+l,1 - Ki,1)O(Wi)

iEF

n-2

= (n- 1) E o(Pi)
i= 1,odd

even

+ kýoo(wn + wn+l),

Po(wj) + ksýo(w• + w•+ 1),

n-i
n-2

2 Po(Wn

We use the defining relations in Y[-h - 2],

n-2

ýpo(wi) = -0o(E po(wW) -- o(wn)),

PO(Wn +l) = o(P•

to write the RHS of the above cup product calculations in terms of the basis (wi)2<i<n:

Oo-2k+1

OoE2k

6 08n

2k

n --n o0 ( i) ,
i=2

even

0Po(Wi) + po(Wn),

n-2

i=2k+l1
odd

n-1

= - 00 o(). -
i=2

ev en

+ wn+l).

OEn



p is given by the skew-symmetric, nondegenerate matrix

-n

0

0

0

0

0

0

0

0

0

with respect to the chosen basis E2, E3, SE, of Y*[- h - 2] and the dual basis

Po(W2 ), o(W3) ... ýO(Wn) of Y[-h - 2]).

Q =Dn+l, n even

We use the same basis as in section 2.10.2 for our computations.

For k, l < n- 1,

ik,l -

Y*[-h - 2] has basis E2k

calculate the products

n -k + - 1

1-n

-k

0

=[2k], E2k+1

k odd,

k odd,

k even,.

k even,

I odd

1 even

1 odd

I even

[e2k+1 - el] (1 < k < -2), and we

-n

0

-n

0

0

0

0

0

0

0
0

. .......- n

.. .. -n... ... O-

.. . ° O

-n

0

-n1

0

-n

0

-n

0

0

0

0

-n

0-n

0

-7n

0-n

0



OOE2k-+l

OOE2k

- (i,2k+1 -ZKi1) PO i
iEF

n-1 2k

= 2k o(wi) - n o(wi),
i= 1, i=2
odd even

- (Ii,2k)0P (wi)
iEF

2k-1 n-2

= (2k- n) [w]+2k E
i=1 i=2k+l
odd

and we use the defining relation of Y[-h - 2],

n-2

Po(wl) = - E (w()i)
i=3
odd

to write the results of the cup product calculations in terms of the basis

'P0(2), ý( 3),.. - , (PO(n-1). We get

80C2k+1

OoE2k

2k

- - Wo(wi)
i=2

even

n-i

n E C o0(wi).
i=2k+ 1

odd

3 is given by the matrix



I-
r 0 -n 0 -n ... ...

n 0 0 0 ... 0 0 0 0

0 0 0 -n ... ... -n 0 -n 0 -n

n 0 n 0 ...... 0 0 0 0 0

0 0 0 0 ..... -n 0 -n 0 -n

n 0 n 0 ...... 0 0 0 0 0

0 0 0 0 ... 0... 0 -n 0 -n

n 0 n 0 ...... O n 0 0 0

0 0 0 0 ...... 0 0 0 0 -n

n 0n n 0 n 0 n. 0

with respect to the basis E2, E3, ... , En-1 and its dual basis

ýo (W2), POP3 ---O(Wn-1)-

-n 0 -n 0 -n



Q=E 6

We work with the bases

B+3, = {e3, a*a3 - aa2, (aga 3 - a2a2)2, aa 5aa 3aa5,

asa5asa3aa 5aga 3a a3a3a5a5a3a3a5a5aa 3},

B -3  = {aa 5 , a3a 3a5a5 , a5a 5aga3 , a3a3 aa5 aa3a,

asa5 a3 aa(aaa3 - a2 ) , aga 3a a5 a 3aa(a*a3 - aa 2)2 },

B,3 = {asa5aaas asaasaas)

a5a *aaasa3a(aa - a

B 3  = {a5, a5 aa3 , a5aa 3 (aa3  - aa2)},

B• = {a*, agasaa, (aa3 a - aa2)aasa*},
B {= caa5aasa, a(a 3a 5a 5a a3a2,aaaaa 5 (a}a3)2 a,
3,6 5 3 5 3 3 53

B+  = {e6 , a5aa 3a* 5 (a3) 2 a

B, 6 = {a5 aa3 aa, a5 (agaa) " a }.

We immediately get the matrix

= I3,3 K3,6  0( -6

K6,3 n6,6 6 0

which represents the f with respect to the basis E3, E6 and dual basis

0o (W-3), 0o(W 6)*

E7

For E7 and E8 we don't have to work with an explicit basis to calculate Xk,l since

for any basis element x, r(x) = ±x. It is enough to know the following: given any

monomial x E ekAej of length 1, nk,j the number of arrows x E Q and d(k, j) the

distance between the vertices k, j, we know that x contains nk,j + - arrows in Q

and d(k, j) - nk,j+ d( arrows in Q.



We can derive the following formula:

HA (t)
- k,j) td(k,j)

1 d HA (t)
2 dt t() (2.13.5.4)

The resulting matrix is

12 6 9 3 0 3 -9

-6 0 3 0 0 0 -3

15 -3 12 3 0 3 -12

-3 0 -3 0 0 0 -6

0 0 0 0 0 -9 0

-3 0 -3 0 9 0 -6

-12 6 0 6 12

A basis of Y*[-h - 2] is given by

El = [e1  e7], E2 = e2] , E3 = 3 + e7], 4 [e4 ], E = [e45 , 56 = [e6],

(Ooei)1<1<6 is given by

36 b U 6 U 61

-9 0 0 0 0 0

3 -3 0 ,3 0 3

-9 0 -9 0 0 0

0 0 0 0 0 -9

-9 0 -9 0 9 0

3 0 6 0 6

soo(wl)

PO(W 3)

PO(W 4)

PO (W5)

PO (W6)

ýPO(W7)

Now use the defining relation of Y[-h - 2],

0o(W 7)= P0 (W1) + po(W3)

( d(kj)Kk,j = (_1)nkgj

(Kk,j)k,j =-

-S\ •v

r\ r\ r\

-R



to obtain the matrix

0

-9

0

-9

0

-9

0

0

0

-9

0

-9

9

0

9

0

-9

0 1
-

which represents f with respect to the basis E1 .. E6 and its dual basis Vo(wl), .. , • o(w 6).

E8

We can use (2.13.5.4) and get the matrix

M= (ikj)k,j =

0

-15

0

-15

0

0

0

15

0

0

0

-15

0

0

0

15

0

0

0

0

0

-15

0

15

-15

0

-15

0

-15

0

-15

0
'I,

which represents 3 with respect to the basis e1,... CE and its dual basis.o (wi),..- , 0o(w ).

Remark 2.13.5.5. With respect to our chosen bases (ej)~;I' and 0o(wi)iIr,, such that

the vertex set I' C I, together with the arrows in I form a connected subquiver Q',
M, can be written in this general form:

h
S= .

91

(2.13.5.6)

\



where we call (C')' the signed adjacency matrix of the subquiver Q', that is

(C') =
0 if i, j are not adjacent,

+1 if arrow i -- j lies in Q*,
-1 if arrow i -- j lies in Q,

In the D,,+-case,. we have

0 1 0 --.

-1 0 1 0

0 -1 0 1 0 ... °. . ". . O0

... ... ... ... 0 - 1 0

M6 = 6 (
~1

0 1
-1 0

in the E7-case, we have

0 -1 0 0 0 0

1 0 -1 0 0 0

0 1 0 -1 0 0

0 0 1 0 1 0

0 0 -1 0 1

0 0 0 -1 0
/

(2.13.5.7)

M -= n.

in the E6-case, we have

. I

1



and in the Es-case, we have

/\ -1

0 -1 0 0 0 0 0 0

1 0 -1 0 0 0 0 0

0 1 0 -1 0 0 0 0

0 0 1 0 -1 0 0 0
M, = 15 -

0 0 0 1 0 1 0 1

0 0 0 0 -1 0 1 0

0 0 0 0 0 -1 0 0
Fl A C A 1 A A A3

u v v -1 u U u



2.14 Products involving HH2 (A)

We start with HH2(A) x HH3 (A) -- HH5 (A) first and then deduce HH2 (A) x

HH 2(A) -+ HH4 (A) from associativity.

2.14.1 HH 2 (A) x HH 3 (A) -+ HH5 (A)

We will prove the following general proposition:

Proposition 2.14.1.1. For the basis elements fi E HH 2(A), hj E HH3 (A), the cup

product is

fihj = 6~j0o. (2.14.1.2)

Proof. Recall the maps

hj :A ®fN

101

and lift it to

hi : A®A

101

-* A A,

v 1 Wj.

Then

hj(d4 (1 ® a 0 1)) = h(a & 1 - 1 a) = a 0 wj = di(1l 0 a 0 wj),

-+ Q(A),

-4 1 0a@wj.

Qhj : Q4 (A)

l1ael



Then we have

Qh (d5 (10 1)) = h( Zeaa0a* 01+ Eal 0a0a*)
aEQQ aEQ

a Q a*

101

0 wj = d2(1 9 Wj),

-p2 0(A),
10 lwj.

This gives us

f (Q2h3 )(1 0 1) = f(1 0 j) = jwj,

i.e. the cup product

f hj = 6J [wj] = Jij

2.14.2 HH 2(A) x HH 2 (A) --+ HH 4 (A)

Since deg HH2(A) = -2, their product has degree -4 (i.e. lies in span((o), so it can

be written as

HH2(A) x HH2 (A)

(a, b)

--3 HH4 (A),

- (a, b)(o,

where (-,-) : HH2 (A) x HH2 (A) -+ C is a bilinear form. We prove the following

proposition:

Proposition 2.14.2.1. The cup product HH2 (A) x HH2 (A) -- HH4 (A) is given by

(-, -) = a, where a (from Proposition 2.13.2.3) is regarded as a symmetric bilinear

form.



Proof. We use (2.13.4.2) to get

o0(fifj) = oW((fi, fj)0o) = (fi, fj)o.

On the other hand, by Proposition 2.13.2.3 and Proposition 2.14.1.1,

(Kofi)fj = a(f)fj = Z(Ma)Iihlfj = (Ma)j,io = (Ma)j¢0.

By associativity of the cup product, we can equate (2.14.2.2) and (2.14.2.3) to get

(fi, fi) = (Ma)ij .

(2.14.2.2)

(2.14.2.3)

(2.14.2.4)



2.14.3 HH2 (A) x HH4 (A) 0 HH6(A)

This computation uses the Batalin-Vilkovisky structure on Hochschild cohomology,

introduced later in section 3.3: we have deg HH2 (A) = -2, deg HH4 (A) > -h and

deg HH6(A) < -h - 2. So we know by degree argument that

0 l>h-4
fkClI =

ZA8B(w8O)
8

1 = h-4
(2.14.3.1)

We use (3.3.0.14) and the isomorphism HHi(A) = HH6m+2-i(A) to get for the Ger-

stenhaber bracket on HH*(A):

[fk, (11 =a(fkCl1) - A(fk) Ct - fke a(C)

8

The Gerstenhaber bracket has to be independent of the choice of m > 0. This implies

that the RHS has to be zero, so all AX = 0. This shows that

fkCh-4 = 0, (2.14.3.2).

so we have that the cup product of HH2(A) with HH4 (A) is zero.

2.14.4 HH 2(A) x HHS(A) - HH7 (A)

Let a E HH2(A) and b E HH5 (A) be homogeneous elements, then ab = AOk E

HH7 (A) = U[-2h - 2], A E C. Then

A =o = AbkZk = Aok = Ab(a(k) = 0,

the last equality coming from the product a(k E HH2 (A) U HH4 (A) = 0.



2.15 Products involving HH3 (A)

2.15.1 HH3 (A) x HH3(A) 0 HH6(A)

This follows by degree argument: deg HH3 (A) = -2, deg HH6(A) < -h - 2 < -4.

2.15.2 HH 3(A) x HH4(A) 0 HH 7(A)

This follows by degree argument: deg HH3 (A) = -2, deg HH4 (A) > -h, deg HH7 (A) <

-h- 4 < -h - 2.

2.15.3 HH3(A) x HH5(A) A HH8 (A)

This follows by degree argument: degHH3 (A) = -2, degHH5 (A) Ž

deg HHS(A) = -2h - 2 < -h - 4.

2.16 Products involving HH4(A)

2.16.1 HH4(A) x HH4(A) A HH8 (A)

This follows by degree argument: deg HH4 (A) > -h, deg HH8 (A) = -2h- 2 < -2h.

2.16.2 HH4(A) x HH5 (A) A HH9 (A)

This is clear for Q = D,+1, n odd, Q = E7 , E8 where HH9(A) = K[-2h - 2] = 0.

Let Q = Dn,+, n even or Q = E6. Let a E HH4 (A), b E HH5 (A).The product

HH2(A) x HH3 (A) -+ HH5 (A), (x,y) ý (x, y)(o induces a nondegenerate bilinear

form (-, -). If ab E HH9 (A) = HH3(A)[-2h] is nonzero, then we can find a c E

HH2 (A), such that c(ab) = Co. But this equals (ca)b = 0 since HH2 (A) x HH4 (A) -4

HH6 (A) which gives us a contradiction.

-h - 2,



2.17 HH 5 (A) x HH 5(A) - HH1I(A)

Proposition 2.17.0.1. The multiplication of the subspace U[-2]* with HHs(A) is

zero.

The pairing on Y*[-h - 2] is

Y*[-h- 2] x Y*[-h- 2] - HH'o(A),
(2.17.0.2)

(a, b) Q (a, b)o4(Co),

where the skew-symmetric bilinear form Q(-, -) is given by the matrix -M from

subsection 2.13.5.

Proof. We have deg HHS(A) > -h - 2 and deg HHio(A) < -2h - 4, so we can get

a nonzero multiplication only by pairing bottom degree parts of HH5 (A) which is

Y*[-h - 2]. The product lies in the top degree part of HH'O(A) = HH4 (A)[-2h]

which is spanned by (p4((o). This gives us the pairing of the form (2.17.0.2).

We want to find the matrix (Q(Ei, Ej))i,j where ej are a basis of

Y*[-h - 2], given in the section about HH5(A). Recall that the multiplication

HH'(A) x HH5 (A) -- HH6(A) was given by a skew-symmetric matrix ((MO)i,j)i,jEF,

so that 00E = 6 (Mf)k,i•PO(k).
kEF

We multiply eiEj = (Ei, ej)>p4((0) with 0o (see 2.13.4.2):

00 (EEj) = Q(Ei, ej) ý 5(o0). (2.17.0.3)

Using associativity, this equals

(OoEi)ECj= Z(M )k,i00O(Wk)Ej = (MS)j,io = -(MB)i,jPo5 (/o). (2.17.0.4)
kEF

We see from equations (2.17.0.3) and (2.17.0.4) that

Q(eC,ej) = - oj



This completes the cup product computation of HH*

(A).

2.18 Presentation of HH*(A)

For each quiver, we give a presentation of HH*(A) as an algebra over C by generators

and relations. We write X for the element qo(zo) E HH6 (A).

2.18.1 Q = D,+1 , n odd

HH*(A) is generated by

1, z4, WI),...

with relations (Vi,j = 2,... ,n, Vk, = 1, .. ,n)

(z4) = 0 = _ 2n- = z4Ei = 0,

z4Wk = OOWk = 2n-6Wk
n-2

wlk = X
m= 1

m odd

n-i

m = X z4 2 = 0,

n-3

.)iEj = JijZ4 2 00(2n-6,

100

EiEj = - Q (Ei Ej
n-3

)Xz4
2 (2n-6,

Wn, 00,(2n-6,•)E2, .. En, X



where 1Q(-, -) is a skew-symmetric bilinear form given by the matrix

-n 0 -n

n 0 0 0

0 0 0 -n7

n 0 n 0

0 0 0 0

n 0 n 0

0 0 0 0

n 0 n 0

0 0 0 0

n 0 n O

. -n 0 -n 0 -n

. 0 0 0 0

.- n 0 -n 0 -n

. 0 0 0 0

...... -n 0 -n 0 -n

... 0 0 0 0 0

0 0 -n 0 -n

0 n 0 0 0

... ... 0 -n

n n A

2.18.2 Q = Dn+l, n even

HH*(A) is generated by

1, z4, Wl, ... Wn-1, 00f, fn (2n-4, 2 2, En-1, X

with relations (Vi,j = 2,...,n - 1, Vk, 1 = 1,..,n- 1)

(Z) 00 = fn = z 2n-f = =2n-4fn = 0,

z4i = fnEi 0,

n-1

z4• = OoWk = fnwk = (2n-4wk = WWk = X S Wm = 0,
m=1
m odd

n-2

f= -nz 4 2 2n-4

101

V 1~ V IL V /



n-2

03iE j = 6ijZ4 2 00 2n-4,

n-2

EiEj = - i(ie, f g)Xz4 2 (2n-4,

where Q(-, -) is a skew-symmetric bilinear form given by the matrix

-n 0 -n

n 0 0 0

0 0 0 -n

n 0 n 0

0 0 0 0

n 0 n 0

0 0 0 0

n 0 n 0
n OnO

0 n 0

-n 0 -n 0 -

0 0 0 0 0

-n 0 -n 0 -

0 0 0 0 0

S ... -n 0 -n 0

71

-n

0 0 0 0 0

0 0 -n 0 -n

0O n 0 0 0

0 0 0 0 -n

0 n 0 n 0

2.18.3 Q = E6

HH*(A) is generated by

1, Z 6 ) Z8, W3, )W( o6, fl, f2, (6, •8, ( 3, ý 6, X

with relations (for u,v E {6, 8}, k,1 E {3,6}, i,j C {1,2})

zz, = o = z, f = ~(, = (uf= = ZuE fk = fiok 0,

,uWk OOWk = fiWk = SuWk = Wl•k = 0,

Zs8s = Z6(6, WkEl = 6klOoz808,

102

\ U,

I

\ I&



Aifj = (fi, fj) z8s,

where (-, -) is the symmetric bilinear form, given by the matrix

-8

-4

-4
-8

ekEl = -fS(Ek, Ei)Xz(s,

where Q(-, -) is a skew-symmetric bilinear form, given by the matrix

0-6
0

2.18.4 Q = E7

HH*(A) is generated by

1, zS, Z12, Wjl

with relations (for u, v E {8, 12},

*..., 06, o, 8, C12, E1,.., E6, X

zuZ12 = e0 = z u = z•k = 0,

ZuWk = = Wk k = X z2 = 0,

Z8(8 = Z12(12, WkEl = 6klOo0 12(12,

ekElr C = i- e foEt)X12 12,

where Q(-, -) is a skew-symmetric bilinear form, given by the matrix
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9 0 90 9

-9 0 0 0 0 0

0 0 0 90 9

-9 0 -9 00

0 0 0 0 0 -9

-9

2.18.5 Q = Es

HH*(A) is generated by

1, z12, z20, W1, - .,, w , W o, 20, (24, E1,.

with relations (for u,v E {12,20}, k, 1E {1,...,8))

z,Z2o = 0 = z k = z 2 = 0,

ZuWk = Ok I WlWk = 0,

z2 224-= 20 20,0 WkEl = 6klOo 2o20o,

EkEl = -Q(Ek, El)Xz20(20,

where Q(-, -) is a skew-symmetric bilinear form, given by the matrix
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0 15 0 15 0 0 0 -15

-15 .0 0 0 0 0 0 0

0 0 0 15 0 0 0 -15

-15 0 -15 0 0 0 0 0

0 0 0 0 0 0 0 -15

0 0 0 0 0 0 -15 0

0 0 0 0 0 15 0 -15

rn i n ( c; 1 n A
.1t IU U LU U -It) U
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Chapter 3

The calculus structure of the

preprojective algebra

We recall the definition of the calculus.

3.1 Definition of calculus

Definition 3.1.0.1. (Gerstenhaber algebra) A graded vector space V* is a Gersten-

haber algebra if it is equipped with a graded commutative and associative product A

of degree 0 and a graded Lie bracket [,] of degree -1. These operations have to be

compatible in the sense of the following Leibniz rule

[y, Y1 A y 2] = [', -l] A - 2 + (-l)kl(k+ 1),1 A [y, 72], (3.1.0.2)

where y7 E Vk and 1i E Vkl .

We recall from [4] that

Definition 3.1.0.3. (Precalculus) A precalculus is a pair of a Gerstenhaber algebra

(V', A, [, ]) and a graded vector space W* together with

* a module structure . : V* W-W* W - * of the graded commutative algebra V°

on W - .
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* an action L. : V*+1 0 W-* -+ W-* of the graded Lie algebra V. + 1 on W-`

which are compatible in the sense of the following equations

tLa•b - (_)lal(jbj+1) CbL = L[a,bj],

,CaAb = Latb + (- 1)aal La•.b

(3.1.0.4)

(3.1.0.5)

Definition 3.1.0.6. (Calculus) A calculus is a precalculus (V", W', [, ], A, t., L.) with

a degree 1 differential d on W* such that the Cartan identity,

£La = dt, - (-1)IalAd, (3.1.0.7)

holds.

Let A be an associative algebra. The contraction of the Hochschild cochain P G

Ck(A, A) with the Hochschild chain (ao, a, ... , a,) is defined by

(o a, .. an) = (aoP(al,..., ak), ak+l, ... , an) n > k,

0 else.
(3.1.0.8)

We have

Proposition 3.1.0.9. (Yu. Daletski, I. Gelfand and B. Tsygan [6]) The con-

traction Ip together with the Connes differential, the Gerstenhaber bracket, the cup

product and the action of cochains on chains ([5, (3.5), page 46]) induce on the pair

(H H*(A, A), H H.(A, A)) a structure of calculus.
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3.2 Results about the calculus structure of the

Hochschild cohomology/homology of prepro-

jective algebras of Dynkin quivers

Notation 3.2.0.10. For ck E HHi(A), 0 < i < 5, we write c(k) for the corresponding

cocycle in HHi+65. We write ck,t for the corresponding cycle in HHj+6t, 0 < j _ 5

(under the isomorphism ID.

We state the results in terms of the bases of HH'(A) and HH.(A) which were

introduced in Chapter 2:

Theorem 3.2.0.11. The calculus structure is given by tables 3.1, 3.2, 3.3 and the

Connes differential B, given as follows

The Connes differential B is given as follows:

BI±6 s(Ok,s)

B2 +6 s (Wk, s )

B 2 +6s (Zk, s )

B 3 +68 (Vk,s)

B3 +6, (Ek,s)

k
+ (1 - + sh)zk,,,

2
1

( + s)hO-'(wk,s
2

= 0,
k

S((s + 1)h - 1
2

S0,

= 0,

B5+6 (hk,s)

B 6+6s

(s + 1)ha-'(hk,s),

- 0.
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b
a 01,t ,jt z,t ,t It ,t h ,t fj ,t

zk )  (ZkOl)t-s 6koW1,t-s (ZkZl)t-s, (Zkl)t-s JkOE1,t-s (Zk(ll)t-s 5kOhl,t-s 5k0of,t-s
ws) 0 0 610Wk,t-s 0 6klO ,t-s 0 0 0

O(s) 0 0 (zlOk)t-s (zk'l)t-s 6kO• 3(El,t-s) 0 0 6 koa(fl,t)
s) (fk,t-s-1) 0 lofk,t-s-1 ,h-3(k + 1). 0 ,h-3(k +1) kl,t-s (Mo±)kl0o,t-s

Oh-3,t-s-1 Zl,t-s

h(s )  0 0 Slohk,t-s-1 0 0 2k 
" 61,h-3" 0 klO,t-s

ok hh-3,t-s

(S) (k,h-3J,h-3" -k,h-31,h-3' k,h-3 h-3 k,h-3(1 + 1).
1 0 a(fh-3,t-s-l) 0 f h-,t--s-1 Ok,t-s Zk,t-s

E s )  - 6 10(Ek,t-s) 6kl0, t -s-l 61,OEk,t-s-1 0 ,t-s- 0 0

(s0 0 (Zk)t-- 1  0 0 6 k,h-3 6 1,h-3' 0 k,h-3(l + 1).
_k L C(fh-3,t-s-1) Oh-3,t-s

Table 3.1: contraction map ta(b)



Table 3.2: Gerstenhaber bracket [a, b]



b 0
1,t

Oit wit _,t l,t Elt _1,t _hit fi,t

(1 + + ÷ th). (1+ th. (1 + + (t - s)h).((t + 1)h - 1 - ( + (t - s))h. ((t - s + )h (t h (t -s + 1)
k (Zk0l)t-s Jko 1,t-s (ZkZl) t-s (zk l)t-s JkoEl,t-s 2 6skO hl,t-s JkOf1,t-s

f s) -(1 + sh). 0 -(1 + sh). 0 -(1 + sh).
k l fk,t-s-1 6

l,h-3Zh-3,t-s _klO,t-s

(th + ••). ((t - s)h + - (t + 1)h-
(1 + th). 10o(t - s)h. 2 1 ((t - s + l)h -&s 0 J h-36<,h - 0 k-3 [,A 3' J1,-k3'0k loh k,t-s-1 1 (hk,t-s-1) kl 2 IJ, h2 3 lk 6 k1(0,t-s

Oh-3,t-s h-3,t-s O,t-s

-(sh + ) -(sh+ + )-(2h + s h)- 2(s) 2 +0 6k,h-361,h-3- 0 0 6k,h-3, h-3 0
(Zlkk)t-s-1 fh •,ts Zh-2,t-s

() ((s + ½)h + 1)-((s + 1)h + I).
s 2 0 0 0 0 0 0k lOE k,t-s-1 Sk (0,t-s- 1

(1+1).
() (1±±th) 0 ((t - s)h (th + h+_). (t - s)h. (t + 1)h. ((t - s)h

-1- - v> 6k,h-31l,h-3" 0 6 k,h-3 6 1,h-3 6k,h-3 61,h-3 +1 + -- )

(Z1 k)t-s-1 a( f h,t_-s- fh,t--1 h-3,t-s Sk,h-3
Ah-3,t-s

(S) (k - sh) -6kosh0 (L - sh) (k - sh).
zk Zkel)t-s ( -1 (Wl,t-s) (Zk l) t-s 0a- (ht,t-_s)

(S) (1 + th). 0lo(½ + t- s)h. 5k (-1 + h

wk 0oLOk,(t-_ - '(W,t_ 0 +(t - s)h). 0 0 0
50,t-s

Table 3.3: Lie derivative L-a(b)



3.3 Batalin-Vilkovisky structure on Hochschild co-

homology

In 2.2.5.1, an isomorphism HH.(A) = HH8-*(A)[2h + 2] was introduced. However,

because of the periodicity of the Schofield resolution (with period 6), we get for every.

m > 0 an isomorphism

D : HH.(A) - HH"+2-*(A)[2mh + 2] (3.3.0.12)

It translates the Connes differential B :

homology into a differential A : HH*(A) -+

i.e. we have the commutative diagram

B y---HH. (A)

HH +-(A)[2mh

HH6m+2-*(A) [2mh +.2] A

HH.(A) -+ HH.+ (A) on Hochschild

HH'*-(A) on Hochschild cohomology,

HH.+1 (A)

HH + (A)[2h +2]

HH m+1-*(A) [2mh + 2]

Theorem 3.3.0.13. (BV structure on Hochschild cohomology) A makes HH*(A)

a Batalin-Vilkovisky algebra, i.e. for the Gerstenhaber bracket we get the following

equation:

[a, b] = A(a U b) - A(a) U b - (-1)Iala U A(b), Va, b E HH*(A). (3.3.0.14)

The isomorphism D intertwines contraction and cup-product maps, i.e. we have

D(tc) = ti U D(c), Vc E HH,(A), r7 E HH*(A).

Remark 3.3.0.16. Note that A in equation (3.3.0.14) depends on which m E N we

choose to identify D : HH.(A) - HH6m+2- (A) [2mh + 2], where the Gerstenhaber

bracket does not.

113

(3.3.0.15)



Proof. We apply the functor

HomAe(-, A Oc A) : Ae - mod - A' - mod,

M i-4 Mv

on the Schofield resolution:

(A A)v - (A0V0A)v (A 0 A[2])v - (A 0 K [h])v

(A 0 V 0 [h])v (A N[h + 2]) v  (A A[2h]) v 4-...

(3.3.0.17)

An element in (A 0 A)V or (A 0 V) V is determined by the image of 1 0 1,

An element in (A V0 A)v or (A0 V0A)v by the images of 1 a0 1 for all arrows

aEQ.

Q1=QA,
Let us define a = 1 Q = A,

-1 Q = D,E

We make the following identifications:

(A 0 A)[-2mh] = (A. A[2mh])V:

we identify x 0 y with the map that sends 1 0 1 to amy 0 x,

(A o V ® A)[-2mh - 2] = (A & V o A[2mh])V:

we identify E eaXa 0 a* 0 Ya with the map that sends 1 0 a 0 1 to -am ya 0 xa,
aEQ

(A o A)[-2mh - 2] = (A ® A[2mh + 2])V:

we identify x 0 y with the map that sends 1 0 1 to -om y 0 x,

(A 0 A) [-(2m + 1)h] = (A 0 A[(2m + 1)h])":

we identify x 0 y with the map that sends 1 0 1 to -gmrn(y) 0 x,

(A 0 V 0 j)[-(2m + 1)h - 2] = (A 0 V 0 f[(2m + 1)h])V:

we identify ECaXa 0 (a*) 0 ya with the map that sends 10 a 01 to am+117(ya) 0 Xa,
aEQ

(A Af)[-2(m + 1)h- 2] = (AO A[2(m + 1)h + 2])V:

we identify x 0 y with the map that sends 1 0 1 to rjm+l,(y) 0 x,

so (3.3.0.17) becomes
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S(A V 9 A) 4(A D A[-2]) - (A N[-h])-4

d (A O V Ah[-h- 2]) (A 0 NA[-h - 2]) (A SA[-2h]) ...
(3.3.0.18)

We show under the identification from above, the differentials div corresponds to the

differentials from the Schofield resolution, i.e. (3.3.0.18) can be rewritten in this form:

d2[-2] d,[-2] d6 f-2h-2](A o A) d- (A V A) d (A A[-2]) -•

d6[-2h-2] d5 [-2h-2 d[-2h-2]-+ (A A[-h]) + (A V O Af[-h- 2]) --+

d4[-2h-21
-4

d3[-2h-2] ) d2 [-2h-2]
(A 0 AN[-h - 2]) d3 (A A[-2h]) -

(3.3.0.19)
It is enough to show this for the first period.

dv(x@y)(10a@ 1)= (x0y) o (a@ 1- 1 a)=ay®x-y®xa,

SO

d?(xay) = e ca(xaa*®y-xza* Gay) = Ca(xaa* ®y+zxaea* y) = d2 (xy),
aeQ aeQ

d(Z Xa ® a* O ya)(1 01)
aEQ

= (E EasXa* ya) o(Ebb0
aEQ beQ

= 1:(a*ya 0 Xa - CaYa 0 Xaa*),

dv(Z aa (0 a* 0 ya) a= E(aa*(Za Y- xa 0 a*ya) = dl(aX a 0 a* 0 ya),
aEQ aEQ

d(x 0 y)(1 0 1) = (x y) o ( m X x*) = - iy @ xZ = - q(xf))y xx ,
xiEB xiEB xi6B
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d'(x 0 y) = xxi
xiEB

0 xfq(y) = xzyzi &0x = d6(x 0 y)

= ECa(-x 0?(a*) 0 o(a)y + xq(a) 0 1(a*) & y)
aGQ

= E(Caxa0a* 0y+CaX0a0a*y)= d5(x0y),
aEQ

0 7(a*) O ya)(10 a & 1)

= (E CaXa r(a*) ya) o (E(Ebbo b* 1 + bl b & b*))
aEQ beQ

= "E (-- a7(Ya) 0 Xa
aC(Q

SCaX a q ?7(a*) 0 ya

+ Ca'(Ya) 0 Xan (a*)),

S(--CaXa 0 7(a*)ya + EaXa?7(a*) 0 ya)
aGQ

- d4 (E Ca.a0 (a*) 0 Ya),
aEQ

= (x o y) o (1 x®x)
xiEB

= - i )q(y) 0 x (x*)
xiEB

i *xB(y) ® xx = u E > Dxyxi,
xiEB xiEB

dv (x 0 y) = xyxi
xiEB

0 4x = d3 (x 0 y)
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aGQ

d4 (x 0 y)(1 0 ay 1) = (x ) y) o (a 1- 10 a) = -al(y) @ x + q(y) @ zxr(a),

I

Z
d5 (I

aEQ

dv(x 0 y)(1 0 1)



Fix m > 0. The map which shifts the degree by -2mh - 2 produces the following

diagram which commutes by the computations above:

A 0 A[2mh + 2] d6 A V A VVA [2h]

1 1
(A®A) - ( (A V A)[-2]

A o V ®g Adi A A A

dd'+l (dmV,+2 mutt
... (A® V 0 A) [-2mh - 2] (A 0 A)[-mh-2] - u A

Similarly to the proof of [18, Theorem 3.4.3.], this self-dual morphism of the

Schofield resolution C' into the dual complex (C*)V can be used to prove (3.3.0.15).

(3.3.0.14) follows, as in the proof of [18, Theorem 3.4.3.], from (3.3.0.15) and the

calculus structure.

O

3.3.1. Computation of the calculus structure of the prepro-

jective algebra

Since the calculus structure is defined on Hochschild chains and cochains, we have to

work with the on the resolution for computations. It turns out that we only have to

compute Leo directly, the rest can be deduced from formulas given by the calculus

and the BV structure.

A A A®A[2] , A VA V A®A A - 0

SA®- A A®3
b A® 2 b A - 0
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These maps /i gives us a chain map between the Schofield and the bar resolution:

P02(10 1)
= 1 y a® a* 1, ,

a1Q

= ZI al(9Xi
aEQ xjGB

and

a3+i = i i xi 9 a 9 a* x
aEQ XjEB

Now, we apply the functor - 0Ae A on the commutative diagram:

d- AR[2] d (V A)R d, , AR

... (A3)R (A92)R b1  (Ai) R  - 0A I AO1

= x~y,XOY7
= Za 9 a* 9x,

aEQ

aEQc xzEB

0 a 0 a* 0 xi*r(x),

and

I+i = A' i Ea x i a 9 a* B x *.
aEQ 2xEB

Now, we compute Lo,:

Lemma 3.3.1.1. For each x E HHi(A),

-0a(1 01) a 0 a* 0 ®x,

where

-·0

14(x (9 Y)

p'4(x)

deg(x)
2
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Proof. Via u', we already identified x E HHi(A) with cycles in the Hochschild chain,

but we still have to identify 00 with an element in HomAe(A®3, A):

given any monomial b = bi... b1, bi E V, the map

r(1 0b 01)= bi...bi-10biobi...bi
i=l

makes the diagram

A VA d AA d A A -- 0

A®3 bl A®2 bo A 0

commute.

Applying HomAe ( 0 A), we get a map

7* : Homk(V) -+ Homk(A),

such that

l

(Go o r*)(bi . .. b1 ) = Zbi ... bi-1 9o(bs)b~ 1 . .. b1 = s(b) . b,
i=1

where for b = bl... bl, s(b) is the number of bi E Q*.

Recall from [5, (3.5), page 46] that the Lie derivative of 00 o T* on Hochschild

chains is defined by

£LooT* (al 0 .-. * ak)

k

i= al (1
i=1

0 (8o 7o*)(ai) ®... ak

k

= •s(al) + - -s(ak))al ... ® ak,
i=1

and it can easily be checked that for each x E HHi(A), :oo*, acts on /(x), x E

HH'(A), by multiplication with 1 deg(x).
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The contraction map

From (3.3.0.15) we know that the contraction map on Hochschild homology is given by

the cup product on Hochschild cohomology which was computed in [12] for quivers of

type A and in Chapter 2 for type D and E. Table 3.1 contains these results, rewritten

in terms of the contraction maps.

The Connes differential

We start with the computation of the Connes differential and recall the diagram from

Subsection 2.2.4:

degree

2 < deg 5 h- 1

2 < deg < h

h < deg • 2h - 2

h + 1 < deg < 2h - 2

2h

2h

2h+2 < deg < 3h- 1

I
HHI(A)

HH2(A)

B2

HH3(A)

HB3

HH4 (A)

HH5(A)

B5H
HH6 (A)

B6

HH7 (A)

B7

U

u e Y[h]

"4
U*[2hlEY*[h]

U*[2h]

K*[2h]

K[2h]
0h]

U[2h]
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Proposition 3.3.1.3. The Connes differential B is given as follows:

BI+6 (0k8 ))

B2+6s (8)

B2+6, ( sk )

B3+6s N) ()

B3+68 (Ek )
B4+6s

B5+6s (hs))

B6+6s

= (1+ +sh)z8
11(+ s)h- -l(w )),

S0,

((s + 1)h - 1 - ()k

- 0,

- 0,

S + )h-(h0.)),

0.

Proof. We use the Cartan identity (3.1.0.7) with a E 0o,

£oo = B 0oo + t 0oB, (3.3.1.4)

where Loo acts on x E HH1 by multiplication by I deg(x) (see Lemma (3.3.1.1)).

The above identities for the Connes differential follow since L0o acts on 0), w~ ,

and h(t) by zero, and z(t) , /-'(wt)), ) and a-'(h(')) are their unique preimages the

contraction with too. O
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The Gerstenhaber bracket

We compute the brackets using the identification

HHý(A) = HH6m+ 2-i(A)[-2mh - 2] for m >> 1 and the BV-identity (3.3.0.14).

Brackets involving HH6S(A):

By degree argument these brackets are zero:

w•s) with HHi+6t(A), HH2+6t(A), HH3 +6t(A), HH4+6t(A), and Ce c HH5 +6t(A).

From the BV-identity (3.3.0.14), we see that brackets of k() with z,() E HH6t(A),

HH2+6 t(A), HH4+6t(A) and ,t) E HH5 +6t(A) are zero because A acts by zero on

U[-2th - 21 C HH 6t(A), HH2+6t(A) and HH4+6t(A).

We compute the remaining brackets:

= A(Z)U wit)) -

= koA(w'" ) - ( + (m - t)h)z(k )

uW(t) - AS) (I zk U A Pit)

U 0- 1(Wt )

S ko(- + (m - s - t)h)-(+)) - ( + ( -
= 2 2

- k0sh-' l (ws),

= (z ) (t))
= zk U, ,

= A((zkO,)(s+t) -

k+l
= (-(m

- A(zs)) uOt)

1
2 - t)h)Zs) 1(t)

- s - t)h)(zkzl)(s +t)

-(1 + I + (m - t)h)(zkzl)(s+t)
2

= ( - sh)(zkzl)(s+t)
2
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[zk(S) J0

[z (S 0Ws]
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- z(I) U A(S (zs) U h(t)) - A(z (s) Uh(t)

= koA(hl(s+) - (h + (m - t - 1)h)z U a- (hl(t))

- Jko(h + (m - s - t - 1)h)a - l(h($+t))

-Jko(h + (m - t - )h)a -l(h(s+t))

S-kosh -'(ht)),

kA(z~ u 4 (t))

A((zkOl)(s+t)) - (h - 1 - Zst)

= ((m-s-t)h

n(z (s) U () () U Az ((t))

1-k-1 - )(zk 1)(s+t)2
1 ) (z ) (s+t)2

k
= (- - sh)(zk ~l)(+t)2

-A(u.) u 5 t)() - A(ws)) U -E-l k U A) (t)

= A(6klOos+t) h-( + (m - s)h)-1(w1ks)) U (t )

= Skl(h- 1+ (m- s)- t - 1)••(-s +t) -

h
= 6k(- 1 - th)o

2

6k( h +2 (m - s)h)o0
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Brackets involving HH'I+S(A):

A A(OS) u )- a (8s)u

=0

- (1 + (m - s) h)z) (t)
2 'k 1

(
+ 0 + 1+ (2 - t)h))Os)z• t )

-n )k 1z
= (k + (s - t)h)(zkOl)(s+t)

2
A (0U5 ) ) UkA (0)) U fW +O(S) u U (Mg(8)

= so(A(a(fS+t')) - (1 + (m - s)h) fs+t))
= k(h + (m - s - t - 1)h) f(s+t) - (1 + (m - s)h)f t)

= - 6ko( 1  th)f(s+t)

A= ,(O• U ht)) -A(Os)) ) uht (s) u A(ht))

= -(1 + (m - s)h + k) Z U

+6ko(m - t)hh ~s+t)

= k(- + (s - t)h)hl(s+t

hit) + (h + (m - t - )h)••kS) UI c 1t)

A() u - A(O) u ((s)+ Os)k 1 k k t)S(s u A((=0
=0

= A ((z)(s+'t) - ( + + (m - s)hs u (t)
2

= ( - + (m- s - t - 1)h)(zk 1)(s +t)
2

-(1+ + (m - s)h)(zk l)(s +t)
2

1
-(2 + 1 + th) (zk )(1+t)2
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[o, (S) ] = A(Os) )u )) -A (0) u ,4(t) + uA(i U )

=0

2 k 2
k +l

-(2 + 2 + (t- s)h)(zk 0)(s+t)

[OS), Et)] = A(es) u (t)) - A((t) + ) u A(t))
=0

= kOA((E(s+t)) - 6ko 1 + (m- s)h + )z E )

= 6ko( + (m - s - t - 1)h)e(s+t) - (1 + (m - s)h)E( s+t)
2 +

= 
6 k0(1 + (t + ± h)E(sft)2 1
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involving HH2+6S(A):

By degree argument, the bracket of HH2 +6 s(A) with HH2+6t(A) is zero.

-(f(s) U (t))- A(f()) Uh(t) - fs) U A(h(t )

SA(6k4s+t)) - (h + (m - t - )h)f U -(h

6k=(h - 1 + (m - s- t - 1)h)(o - kt(m - t)hlo

-6kl(l+ hh)(Os+t)

(S) u - a(fM) uMft) - f(s) u

= l,h-3(k + 1)A(zhs  ) = 0,

--A(f ( s) U  A(t)) (fs) u (t ) - f(s) U A (l (t) )

=0

A(f U (u ))- (h - 1 - + (m - t - 1)h)f ()U (( t)

= 61,h-3(k + 1)A((0(S+t+l)

-61,h-3((m - t)h - 1 - )(k + l) (s+t+l)2 h-3
h-3

6,h-3(k + 1)(1 + 2 (m-s-
h-

-6l,h-3((m - t)h - 1 h- 2 )(k + 1)z(s+t+1)

-61,h-3(k + 1)(1 + sh)Zhj3 t±1 ,

t- )h)z(st+l)
t -1 h) -3

)(f() U (t). - a(f s) uSt) Af 1 uA(Et ))U= 0
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Brackets involving HH3 +6S(A):

We have

[h(s),h(t)] (h ) Uh( ())- A(hks) ) U ( s) A(h) (t))
=0

= -(h + (m - s - )h)a-'(hs)) U h(t)

+(h + (m- t - 1)h)h(s) U a - (h(t)

= (s - t)ha-l(h(s)) U hq() = (s - t)h(M, 1)kl~s+t),

[hk () (t) (h(s) u (- A(h) U +( ) U A(()k, = -)u (1,k+ ,
=0

6k,61,h-3 +)-3) - (m - s)hac-'(h )) u (t)
Sh-3 (+t+1)

k, h- 61,h-3 + (m - s - t - l)h)z5t+
-(m - s)hz t+1)

= h2 23 Ih- 3(  3

We have

[h1s), (t)] h(s) ~ (t - a(h ) u )U 4(t) U ((

=0

-(m - s)ha-'(h(k)) U (0() + ((m - t)h - 1 - )h(s•) u (•)
- -(m - s)hk h-3 1,h-3 t+l)

, h-3
+((m - t)h - - )6 (+t+l)

= 6,_36k,h((s - t)h )- 1 (S+t+1)
22 Vh-3

[hts) , (t) ns A(h (t)) U -• •(s) U E••) t) u •t () U) U (E
=0 =0

= -(m - s)ha (h)) E(t) = 0.
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Brackets involving HH4 +6S(A):

The bracket [C(S), (S(t)] = A(s) u () A( )) U (t) - k(s) A(t)) = 0 because

A is zero on HH2 +6 s and HH4 +6S.

- (s) u (t)) - a( 8) (t)u's - (u

The bracket

h- 3f(+t+l)
2 2

of HH5 +6S(A) with HH5+6s(A):

[S) (t U (t)) A ((s))=0

=0

- u (t)
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= k,h-361,h-3 f+'+3))) - ((m - t)h - 1 - )SK() U(t)
2 2

= 6k,h-36,h-3(m - s - t - 1)hf& (st) - ((T - t)h - 1
2

h+1
= 5k,h-36g,h-3(-sh - )fh-3.2 2

= -((m - s)h - -k )((s) U ) + ((m - t)h- 1
2

-k,h-361,h-3(s - t)h -(fh-3+t+l)•.2

[((S) "0 M]

uOJt) + O(S) u A(,O't)



The Lie derivative L

We use the Cartan identity (3.1.0.7) to compute the Lie derivative.

HHI+6s(A)-Lie derivatives:

From the Cartan identity, we see that

£0(,) = BLto(8)+ Lto()B.

On Or,t, wi,t, 4',t and hl,t, the Connes differential acts by multiplication with 1 degree

and taking the preimage under too, and to(8 ) acts on them by zero. B acts by zero

on z(t ) , E ,t and ft,t. Since B is degree preserving, this means that L0(8) acts onk
01,t, uW,t, 01,t and h1,t by multiplication with their degree times z), and on zt, Ek,t,

(,t and fi,t by multiplication with zkS) and then multiplication with 1 degree of their

product. So we get the following formulas:

1
LoW (0t,4) = (1 + - + th)(zk81)ts,

k 2
k 2

1
LOW A)1(t,) = k0o( + t)hwj,t_,

k 2
1

LOW (El,t) = ko( - + (t - s))hEl,t-,,k 2
2

Lo• ( (,t) = ((t + 1)h - 1 - )(zk)t-s,
k 2

L£O ((t,t) = ((t - s + l)h - 1 ) (zk 1)t-s

£OW( (hi,t) = JkO(t + 1)hh,t-s,
k

Lo) Y(fl,t) = Jk0(t 8 + 1)hfi,t-s
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HH2 +6s(A)-Lie derivatives:

We compute Cf(•):

cf(S8) (1,t) = B(tf() (01,t))- Lf,( (B(01,))

= B(6oo-(f,t-s-1)) -
I

(1+2 + th))tf)Z1,t

= Jjo(t - s)hfk,t-s-1 - 6o(1 + th)fk,t-s-1 = -61o(l + sh)fk,t-,

SB( ()(i,t ) = 0,
cHH4 +6(t-,)

S loB(fk,t-s) = 0,

- B(Lkwl,t) + tfk()B(Wl,t)

SB(s ) (Elt))

= B(Lfh- (k 1,t)) - t -) B(,-t)

= B(6,h- 3 (k + 1)Oh-3,t-s) -

- 61,h-3(k + 1)(1
h-3
+ 2

1=(+ t)htfk()#- 1 (Wl,t) = 0,

1
((t + 1)h - 1 /)fs (Ot)

(t - s)h)zh-3,t-s

-6b,h-3(k + 1)((t + 1)h - 1 - -)zh-3,t-,

-- 6t,h-3(k + 1)(1 + sh)zh-3,t-s,

- B(9f (tt)) = B(kj,h-3Zh-3,t-,) = 0,

= B(Lf,)(h),t))- Lf() B(ht,t)
= B(6k,-o,t-s) - (t + 1)htfL),,- '(hl,t)

- 6kl((t - s + 1)h - 1)0o,t-s - 6kl(t + 1)ho,t-s

= --6k(sh + 1)(o,t-s

130

L ,) (f ,t)

L g)(zz,t)

L > (" Plt)

.Lf () (El,t)

'CkS >(olt)

£fs) (h,,t)

C f(,) (hi,t)



HH3+16 (A)-Lie derivatives:

We compute L h(8):
k

B (th(8)( J1 )) + th(8)B(01( ,t) = (1 + th)th(s)Zl,t
1 +c 2 kk

=0

-= 6o(1 + th)hk,t-s-1,

= B(Jzohk,t-s- 1) = •o(t - s)ha-l(hk,t-,-1),

SBLhh() (Wl,t) +

=0

= B Lh(q)El,t = 0,
=0

t h() B(wl,t)

cup product in HH3 (A) x HH5 (A)

B B(Lh(8) ( 1,t))+ hk B(l ,t)

I
S((t + 1)h - 1 - )hks)1,t =2

6k,_3 ,h-3(th +
h+l S)Oh-3,t-s,

2

= B() ((8,t))= 6k, -3B(6 l,h-38h-3,t-s)

h-1 I
= 6 ,h-3((t - s)h + 2 )Zh-3,t-s,

= B(h() (h1,t)) + Lh(8>B(hl,t) = (t + 1)hLh()a (ht,t)
=0

= (t + 1)h(M.-')lk0o,t-s

= B(th(•) (flt)) = B(kl '0o,t-s) = 6k((t - s + )h - 1)Co,t-,
k
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HH4 +6s (A)-Lie derivatives:

We compute L£ ():

L£¢)(0(,t) = BLCs) (O1,t) - LB(l) B((Zlk)t- - )(1 + + th)zz,t

k- 1= ((t - s)h - 1 )(Z(k)t-•s- - (1 + + th)(zlck)t-,- •2 2
k

= (-sh - 2 - )(Zl k)t-s-1,
2

CC() (Wl,t) = 0,

L() (zl,t) = Bt(s) (zz,t) - LC(s) B(zl,t)
5k kek

=0

= B((zSk)t-s-1) = 0,

LCs) (j,t) = Btk(,S)(V,t) - LC.()B(j 1,t)
1

= k,h-3•l,h-3B(A(f h-_,_l))- L~) ((t + 1)h - 1 - - )t,,
6k,h-361,h-3((t - s)hf2 ' ,t-s- 1

h-3
-(( + 1)h- 1 2)fh2,t-1)

h+1
6k,h- 361,h-3(-sh - 2 )yt-S-1

£dL (sE,t) = B ts) (El,t) -t •(s) B(El,t) = 0,
=0=0=

Cps) (,) = Bt)((l,t) -~ C() B((l,t)
=0

= kh-31,h-3B(fh-3 ,ts_) = 0,

£Cs) (h,t) = Bt() (hi,t) --tk)B(hi,t)

= •,h3 6k,h-3B(Oh-3,t-s) - (t +)hL~C)a-l1(h,t),

h-3
= 6 1, 23 k,h_3Zh-3,t-s((1 + h2 + (t - s)h) - (t + 1)h)

h+l6= 61-3 6k,h-3Zh- 3,t- s(  2 sh),
L( (fi,t) = BLC(s) (fi,t) - LC(,) B(fi,t)

=0

= (1 + 1)k,h-3B(h-3,t-s) = 0
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HHS+6"(A)-Lie derivatives:

We compute £ (s8)

L j (61,t) = B(t 8 ) (0i,t)) + ,L) B(01,t)

1
= B(-6IO(Ek,t--)) (1 - th)t ,() (zz,t)

2
1

= ((s + -)h + 1)6lO0k,t-s-1,2

C,() (zl,t) = B(LE()(Zi,t)) = B(Ek,t-s-l) = 0,

L() (WI,t) = B(t(e (L,t)) + I()B(Wi,t)

= B(klo,t-s-1) + ( + t)ht •()3-( 1,t)
2

1
= Skz((t - s)h- 1)(o,t-a-1 - k 2 + t)hlo,t- 8-i

= -kl(1 + + s)h) 0,-- 1,,

L66)(9b, 1) = B(t• ('b,1)) + yo)B(4Bt)
=0

1
= ((t+ ( )h - 1 - L) 1, 0,

2 k

C (S) (El,t) = B(L ()(El,t)) = B(-(M8 )klo,t-s-1) = 0,

L s(Cl,t) = B(tea)(1,t) = 0,

=0

£LE (hi,t) = B(tes (h1,t)) + (t + 1)h )a -' (h,,t) = 0,

c£ (!,(fi,t) = B(L,(8)(f,t)) = 0

=0
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We compute L£ (a):

= B Lq (01,t) +,p() B(O,dt)
k . k

1 1
= ()Zl,t(1 + I + th) - (Zlkk)t-s-l(l + I + th),?Pk 2 2

= BLo~) (zi,t) + Lble B(z 1 ,t)
k k

= B((zlOk)t-s-1) = ((t - s)h - 1

= B t) (Wl,t) +yi) B (wlt)
=0

= (-+ t)ht 03- (w,t) = 0,

= B L) (4 ,k ) +%a) B(4t,t)

= ((t + 1)h - 1 - )i) ,

h-3
65k,h-3 61,h-3((t 1 2)(f t--

=th+ h

= B t(s) (El,t) +t ) B(El,t) = 0

k-1
)(z21k)t-s-1

2

= B s, ((),t + %(y) B((,, )
=0

= k,h-31,h-3B(a (fý,t-s-1))

= k,h-3 6 l,h-3(t - s)hf ,t-s-1,

= B t(g) (hi,t) +t )()B (hi,t) = L~(c) a-(hi,t) (t + 1)h

=0

= 6k,h-361h(t + 1)hOh-3,t-s,

= B() (fl,t)+ ±L) B(ft)

= (1 + 1)6k,h-3B(Oh-3,t-s)
h-3

= (1 + 1)(1 + (t- s)h± 2 3)Jk,h-3Zh-3,t-s
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HH6+6s(A)-Lie derivatives:

B acts on 01,t, w ,t, 01,t and hi,s by multiplication with I degree and taking the

preimage under to.. On zz,t, E£,t, 0,t and fi,t, B acts by zero. Since the spaces U,

U*, K, K*, Y and Y* are zk-invariant and z') has degree k - 2sh, L(a) acts on

01,t, wl,t, 0 1,. and hl,t by multiplication with - sh and taking the preimage under too

and multiplication with z(k), and on zj,t, E•j,, (,t and fi,t it acts by zero. We have the

following formulas:

k
z (.)(01,t) = (- - sh)(zkOl)t - ,
Zk) 2

12 (8)(zI,t) = 0,

£ ( l,t) = -6kohS -1(Wl,t-s),
kk

L (a,,t) = - sh) t-

kS())((l,t) = - ) ,t
£z (s)(fl,t) = 0k 2

Now we compute C (G,):

We observe that L(,)(El,t) = 6kl0C,t-s, (a)(Zl,t) = 6loWk,t-s, and
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Then we have

Lc,) (Elt) = BLt () (El,t)= 6klB(o,t-s)
k k

= 6kl((t- s + 1) (o,t-s

L ) (zl,t) = B(s,) (z,t) = 6 Bowk,t-s)

= 610(1 + t - s)hW- 1 (Wk,t-s),
2

L (s) (Ott) = L () B(01,t) = (1 + - + th) >w() zz,t
k 2

= 6lo(1 + th)wk,t-s,

and

LC8 ) (-Wl,)= (Lb),t)= £i)()('Lt)) £ W=)(h1,t) = £C(8* (fi,t)= O.
Wk k k k k
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Chapter 4

The centrally extended

preprojective algebra

4.0.2 Definition

Let p = (pui) be a regular weight. We define the centrally extended preprojective

algebra A = A" to be the quotient of P[z] (z is a central variable) by the relation

E [a, a*] = z(E piei). By taking the quotient A/(z), we obtain the usual preprojec-
aEQ iEI

tive algebra IIQ = P/(E [a, a*]).
aEQ

The grading on A is given by deg(R) = 0, deg(a) = deg(a*) = 1 and deg(z) = 2.

From now on, we assume p to be a generic weight or p = p.

4.1 Hochschild homology/cohomology and cyclic

homology of A

4.1.1 Periodic projective resolution of A

Let V be the

1-part of A).

M, shifted by

R-bimodule which is generated by the arrows in Q (i.e. the degree

For a Z-graded R-bimodule M, we denote M[i] to be the bimodule

degree i (i.e. M(d) = M[i](d + i)).
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We want to compute Hochschild homology and cohomology of A, so we want to

find a projective resolution of A.

Let

CI =AA

Co = A OR A,

C1 = (A R V OR A) G (A OR A)[2],

C2 = (A oR V OR A)[2] E (A On A)[2],

C3 = A OR A[4],

C4 = Co[2h].

We define the following A-bimodule-homomorphisms d : C -+ Ci-l:

do(bl 0 b2) = b b2,

dl(bl 0 a 0 b2, b3 0 b4) = bra 0 b2 - bl ab2 + b3z 0 b4 - b3 0 zb4 ,

d2(bl 0 a 0 b2, b3 0 b4) = (-blz 0 a b2 + b1 0 a 0 zb2 + A eb3a 0 a* 0 b4
aEQ

+ Eab3 0 a 0 a*b4, -b 3  b4 + bla 0 b2

abQ
- bl o ab2),

where we introduce the notation Ea =

d3(bl 0 b2) =

aEQ

-1 aGQ*

( Cabla 0 a* 0 b2 + ECabl 0 a 0 a*b2, blz 0 b2 -bi zb2),
aGQ aEQ

d4 (bl 0 b2) = bi blxi xib 2,

where {x } is a basis of A and {x*} the dual basis under the (symmetric and non-

degenerate) trace form (x, y) = Tr(xy) introduced in [9, Section 2.2.]. It is easy to
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see that d4 is independent of the choice of the basis {x~ }. It is clear that all di are

degree-preserving.

Using the trace form, it is easy to show that C azx 0 x = x xi 0 x a for any

aE A:

Zaxi 4 = ZZ (axi, x)j xi = 0xi (x*a,)xi) = x*i ®9 4a.

This implies

d4(bi 0 b2)= bo(bi 0 b2 ) Xii*

Theorem 4.1.1.1. From the maps di we obtain the following projective resolution

C. of A with period 4:

d3 [2h] d2 [2h] di [2h] d4  d3  d2 C 1 did2h C2[2h] -• C1 [2h] Co[2h] C+ C2  C1 C 0 _ A ~ 0.

Proof. Let us first show that these Ci, di define a complex. We show that didi+l = 0

for i < 3 and d4d,[2h] = 0:

dodl(bl a ® b2, b3 9 b4) = do(bia 0 b2 - bl 0 ab2 + b3 z 0 b4 - b3 0 zb4) = 0,

dld2(b 0 a0 b2 , b3  b4)

= dl(-blz a + bl 2+b a zb2 + ab3a a*0 b4

aEQ

+ E Zabs 3 a ® a*b4 , -b3p 0 b4 + bla 0 b2 - bl 0o b2)
aEQ

= -b za3b2 +b 1z&ab2 +bicayzb2 -b, 0azb2 + cabsaa*0b4

aEQ

- ,ab3a 0 a*b4 + > Cab3a 0 a*b4 - E cab3 0 aa*b4 - b3zu 0 b4
a+bQ a-zb aQ

+b3,u0 Zb 4+ blaz 0 b2 - bla(b2A- blz 0 ab2 + b, O zab2 = 0
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(since E caaa* = zp),
aGQ

d2d3(bl 0 b2)

= d2(Z Cabla 0 a* ® b2 + E Cabl 0 a 0 a*b2, biz 0 b2 - bl zb2) =
aEQ aEQ

- (- ~ abiaz 0 a* 0 b2 + ý abla 0 a* 0 zb2 - Cabl 0 a 0 a*b2
aEQ aEQ aEQ

+ : ab, 0 a 0 za*b2 + Cabiza 0 a* 0 b2 + ecabiz 0 a 0 a*b2
aEQ aEQ aEQ

- abla 0 a* 0 zb2 - ECEabi 0 a 0 a*zb2,
aEQ aGQ

-bl zp 0 b2 + b 0 zpb2 + Cabilaa* 0 b2 - E Cabla 0 a*b2
aEQ aEQ

+ •E• Eabia 0 a*b2 - EC>ab 0 aa*b2) = 0,
aEQ aEQ

d3d4(bl 0 b2) = d3(E b1xi 0 x'b 2) =
= ( ablxa 0 a* 0 xb2  ab 0 a0a*x b2

(1: 1: 1 E Eabix a ay x'b2,
aQ aEcQ

>bx z 0 x b2 ->E bix 0 zxfb 2).

Using the trace form, it is easy to show that J xia 0 xy = & x ax* for any

aE A:

xE a xi= E E(Xia, xj*)xj 0 x* = E E xi 0 (ax*, xj)x = E xi ® ax*.

It follows that Z blxiz 0 x'b2 - E bixz 0 zxzb 2 = 0.

Similarly, E xia 0 b 0 x* = xi 0 b 0 ax* for any a E A. Therefore

CEabliia 0 a* 0 xfb 2 = > ablii 0 a* 0 axb 2 = • bie b 0 a 0 a*x b2,
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so d3d4 = 0.

d4dl[2h](bl 0 a 0 b2, b3  b4 ) =

= do(bia 0 b2 - bl O ab2 + b3z + b4 - b3 0 zb4 ) i 0 x = 0.

Now we show exactness. Since the complex is periodic, it is enough to show

exactness for Co, C1 , C2 and C3.

We recall the definition of Anick's resolution [1]. Denote TRW to be the tensor

algebra of a graded R-bimodule W, TR+W its augmentation ideal. Let L C T+W be

an R-graded bimodule and B = TRW/(L). Then we the following resolution:

B RL0RB O B0R W ORB -W BBRB m4 B - 0,

where m is the multiplication map, f is given by

f (bl o w 0 b2) = b1w 0 b2 - bl o wb2

(4.1.1.2)

and 8 is given by

0(bl 0 1 b2 ) = bl -D(1) -b2 ,

D: T+W --+ BRW RB,

p=1

where bar stands for the image in B of the projection map.

In our setting, W = V E Rz, L the R-bimodule generated by E eaaa* - pz and
aEQ

az - za VaE Q. Then B = A.

In Anick's resolution, m = do, A0RW0RA can be identified with C1 (via A0RA[2] =

A OR Rz OR A), so that f becomes dl.

exactness in Co and C1.

Then Im(a)=Im(d2) C 1 . This implies
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For exactness in 2nd and 3 rd term, we show that the complex

C4 = Co[2h] Q C C2 - C1 Co A = C_, - 0

is selfdual:

By replacing C4= Co[2h] by 04 = Im(d4), we get the complex

0 •04 03 -02 - 1 - C o A - 0.

Now, the map E•blxi 0 xb 2 -4 bib2 allows us to identify Im(d4) = A[2h] as

A-bimodules so d4 becomes multiplication with Z•x zf .

We introduce the following nondegenerate, bilinear forms:

On A 0R A, let

(x 0 y, a 0 b) = Tr(xb)Tr(ya),

and on A OR V OR A, we define

(x 0 a 0 y, a 0 8 0 b) = Tr(xb)Tr(ya)(a, /),

where we define the form on V by

(a, 3) = =BCA

(af E Q and 3ab =
11 a=b

0 a=b

Via the trace form (x, y) = Tr(xy), we can identify A != A*, x ý (x,-), and

similarly we can use the forms from above to identify A OR A = (A OR A)* and

A OR V OR A = (A OR V OR A)*, which induces an identification Ci = C0_.

We claim the following: d = d4, d~ = -d3 and & = d2,
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where L(x, y) = (-x, y):

(d4(x), (b, b2)) = ( xi 0 x*, bi 0 b2) = T( ib 2)Tr(xfbi)

= E(b 2 , xi)(x*,bl)= (b2x, bl)= (x, blb 2)

S(x, do(b1 0 b2)).

For a, p E Q,

(-d 3(x 0 y), (bl 0 a 0 b2, b b4)) =

= ((- : ,za a* ~ - E O a 0 a® a*y, -xz 0 y + O zy),
aEQ aGQ

(b 0 a 0 b2, b 0 b4))

= -Tr(xab 2)Tr(ybi) + Tr(xb2)Tr(aybi) - Tr(xzb4)Tr(yb3)

+Tr(xb4)Tr(zyb3)

= Tr(xb2)Tr(ybla) - Tr(xab2)Tr(ybl) + Tr(xb4 )Tr(yb3z)

- Tr (xzb4 ) Tr (yb3 )

= (x 0 y, bra 0 b2 - bl 0 ab2 + b3z o b4 - b3 0 zb4 )

= (x 0 y, di(b5 0 a 0 b2, b3 ® b4))

(d2(bl 0 a 0D b2, b3s b4), (C1 0 ® c2, C3 0 C4))=

= ((-blz 0 a o b2 + bl 0 a ® zb2 + S Cab 3a 0 a* 0 b4

aCQ

+ ab3 0a0 a*b4 ,-b 3 p 0 b4 + bla o b2 - bl o ab2),
aCQ

(c 1 0 1 • c 2 , C3 0 C4))

= -Tr(bzc 2)Tr(b2cl)(a, f) + Tr(bic 2)Tr(zb2cl)(a, 3)

+Tr(bs/3c2)Tr(b4cl) - Tr(b3 c 2)Tr(p3b4C1)

-Tr(b3pc4)Tr(b4c 3) + Tr(blac4)Tr(b2c 3) - Tr(blc4)Tr(ab2C3)
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= Tr(bl c2)Tr(b2cIz) (a, 0) - Tr (bzc2) Tr (b 2 C) (a,/)

-Tr(bic 4)Tr(b2C3a) + Tr(blac4)Tr(b2c 3)

-Tr(b3Ac 4)Tr(b4c 3) - Tr(b3c2)Tr(b4C1/) + Tr(b3Pc 2)Tr(b4c1 )

= ((b 0 a o b2, b3 ® b4), (clz 0 0 0 C2 - C1 0 0 ® zC 2

+ eac3a ® a* C4 + aC3 0 a 0 a c4,
aEQ aEQ

-c 3 & pC4 - C1 30 C2 + C1 0 /C2))

= ((bi, ® a b2, b, 0 b4), d2(-Cl 0 ® c2, C3 0 C4))

Now, the selfduality of our complex C. and exactness in Co and C, implies exact-

ness in C2 and C0.

4.1.2 Computation of Hochschild cohomology/homology

Now we use the projective resolution C. to compute the Hochschild cohomology and

homology groups of A. Let us write A e = A OR AP.

Theorem 4.1.2.1. The Hochschild cohomology groups of A are:

HHo(A) = Z (the center of A),

HH 4n+1 (A)

HH4n+2(A)

HH4n+3(A)

HH 4n+4(A)

= (Z n p-'[A, A])[-2nh - 2],

= A/([A, A] + pZ)[-2nh - 2],

= A+/[A,A][-2nh- 4],

= Z/Atop[-2(n + 1)h]

where n > 0, and Atp is the top-degree part of A.

Proof. Apply the functor HomAe (-, A) on C., identify

HomAe(A 0R A, A) _- AR

(G E HomAe(A • R A, A) is determined by 0(1 0 1) = a E A and observe ra =
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0(r0 1) = 0(1 O r) = ar, Vr E R. We write ao - for €) and

HomAe(A OR V OR A, A) = (A OR V)R[-2]

( 0 xa a* is identified with the homomorphism ¢ which maps each element 1 0 a 1
aCQ

to Xa (a E Q), we write E xa 0 a* for ?(-))
aeQ

to obtain the Hochschild cohomology complex

(A OR V)R[- 4]

AR[-2]

(A (R V)R[-2]

AR[-2]
dl AR 0O.

d*(x) (bl 9 a 0 b2, b0 , b4) = x o dl (bl ® a 0 b2, b3 0 ba) =

= bcaxb2 - bixab2 + b3zxb4 - b3xzb4 = bi[a, x]b 2,

d*(x) = (E[a, x] 9 a*, 0).
aEQ

Let a = E raa, ra E R.
aEQ

dZ(xa 0 a*, O)(bla 0 b2,bs 0 b4) = ( •o a*)
aEQ

o d2(bia 0 b2, b3 b4) =
aEQ

- Xa (x a  a*) o (-biz 0 a 0 b2 + b, 0 a 0 zb2 - E b3 3 OX* 0 b4

+ E Zb3 0 / 0 3*b4) =
8CEQ

S (-blzraXab2 + biraXazb2) - Eab3a*Xab4
aEQ -aEQ

= AEb [zXa, a*]b4,
aEQ

+ ZE eab3xaa*b4
aE.
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d*( za 0 a*, 0) = (O, Z a[xa, a*]).
aEQ

d2(O, y)(bl D a 0 b2 , b3  b4 ) = y o d2(bl a 0 b2 , b3  b4 ) =

= y o (-b 3Ap 0 b4 + bla 0 b2 - bl 0 acb 2) = -b3 pjyb4 + blayb2 - blyab2,

d(O0, y) = (- [y, a] 9 a*, -ay).
aEQ

Putting this together, we obtain:

xa 0 a*, y) = (-da(C
a6

[y, a] 0 a*, -,y + E 3a [Xa, a*]).
aEQ a•Q

d(3  za 0 a*,

aE(Q
= a 0

0)(bl b2) = (E X a 0@

aaeQ

*) o d3(bl 0 b2)

b2 + E cabl (E a 0 a*b2 ,
aGQ

blz 0 b2 - bl 0 zb2) =

= (-cabia*xab2 + eablaa*b2) = E abi [,a, a*]b 2,
acQ

d*(0, y)(bl 0 b2) =

= yo (E cobi0a*& b2 + + O
- EQ c0Q

= bizyb 2 - biyzb2 = 0,

aEQ

so we get

d (Z Xa 0 a*, y)= ea [Xa, a*].
aGCQ aGQ

d*(x)(bl 0 b2) = x o (E bixi 0 xfb2) = bixxxx *b2,
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d(x) = W xxxi*.

Now, we want to compute the Hochschild cohomology (since the complex is pe-

riodic, HHi(A) = HH+4 (A)[2h] Vi > 1, so it is enough to do the calculations until

HH4):

HHo(A) = Z (the center of A), since a cocycle x E ker d* lies in AR and has to

satisfy : [a, x] 0 a* = 0, i.e. commute with all a E Q.
aEQ

HH'(A) = (Z n p-1[A, A])[-2] : (• a 0 a*, y) is a cocycle if >, [y,a] 0 a* = 0
aEQ aEQ

(i.e. y E Z) and y = i-1 E as[xa,:a*] (since p is invertible) which implies y E
aEQ

-I[A, A]. Since a [aa*, Xa] = 0 implies that xa = [a, x] (we refer to [9, Corollary
aEQ

3.5.] where this statement follows from the exactness of the complex in the 18t term)

for some x E A, and E [a, x] 0 a* lies in Imdt, HH'(A) is controlled only by y E
aEQ

(Z n y-1[A, A])[-2]. Since [A(1), A] = [A,A], any y E (Z n A-1 [A, A])[-2] also gives

rise to a cocycle.

HH2(A) = A/([A, A] + pZ)[-2] : An element (E xa®a*, y) is a cocycle if j Ca [Xa, a*] =
aEQ aEQ

0, so Xa = [x, a] for some x c AR, (where x is unique up to a central element),

so cocycles are of the form ( E [x, a] 0 a*, y). The coboundaries are spanned by
aEQ

( ( [z, a] 0 a*, Mx) (where the first component determines x uniquely modulo Z) and
aEQ

(0, E Ca[xa, a*]) (where the image is [A, A]R). It follows that
aEQ

HH2 (A) = AR/([A,A] R  
1 Z)[-2] = A/([A,A] + pZ)[-2].

HH3 (A) = A+/[A,A][-4]: We denote A+ to be the positive degree part of A.

d*(x) = " xi~xx* is zero if x has positive degree (since xxizx exceeds the top degree

2h - 4).

Observe also that d* injects R into At:

Since A = @ekAej, we can choose a basis {xi}, such that these elements all belong to

a certain subspace ekAej for some k,j. We denote {Ik} the subbasis of {xz} which
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spans ekAej.

Assume that 0 = d4(E A•ej). Then Vk,
j=1

r r r

0 = AjTr( ekXiejcXz) = (k*) = ZA d'ekAe, ' E A-- )J dim ekAej
j=1 i j=1 i',j,k j=1

= ZAj dimekA[d]ej = HA(l)k,j =ZA (2 2 k C
j d kj

The last equality follows from [10, Theorem 3.2.]. Since the matrix 2  is nondegen-

erate, all Aj = 0.

So we see that the images d*(ej) are nonzero and linearly independent. So the

cocycles are the elements in A', and the coboundaries are C E aXa, a*] which generate

[A, A]R. Therefore HH3 (A) = A /[A, A]R[-4] = A+/[A, A] [-4].

HH4 (A) = Z/Atop[-2h]: Since d* = d*, the cocycles are the central elements.

From the above discussion about the image of d4 and the fact that At, is r-dimensional,

it follows that the coboundaries are the top degree elements of A. O

Similarly, we compute the Hochschild homology groups of A.

Theorem 4.1.2.2. The Hochschild homology groups of A are:

HHo(A) = A/[A,A],

HH4n+ 1(A) = A/([A,A] +pZ)[2nh+2],

HH4n+2 (A) = (Z n p-1[A,A])[2nh + 2],

HH4n+3(A) = Z/Atp[2nh + 4],

HH4n+4 (A) = A+/[A,A][2(n+l)h].

Proof. Apply the functor (A ®Ae -) to C., identify

A OAe (A 0R A) - AR

(a 0 (b 0 c) = cab 0 1 0 1 '-4 cab and observe
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Va E A,r E R : ar = a 0 (r 0 1) = a 0 (1 r) = ra) and

A OAe (A R V OR A) f- (A R V) R

(via a (b a c) = cab (1 a 0 1) -cab a).

We get the following periodic complex for computing the Hochschild homology:

(A ®R V)R[2]

AR[2]

(A OR V)R

e d AR 0.
E) . --, .

AR [2]

The differentials become:

d'( Exa0 a,y) = 10d1 (EXxaa0 1,y0 1)
acQ

= 10 (Exaa 1 - Xaa+yz0 1 - yz)= [a, a],
aEQ aCQ aEQ

d2(2EXaO a,y) = 1 0d 2(.EXaO a 01,y o1)
aQ2 aGQ

= 10(- Xaz a0 1 + 1 ± xa 0a0Z+> cey a0a* 01
aCQ aEQ aEQ

± •> y oa a*, ,-yu 01 ÷+ xoaa 1 - xoa 0 a)
oaQ aEQ aEQ

=(- XaZ a
aeQ

-yp + E Xaa
a•Q

+ > ZXa 0 a + caya 0 a* + CE ca*y 0 a,
a a ] a*, E [Xa, a]- y

- > ax) = (> 3c[y, a] 0 a*, 3[, a] - yp),
aEQ a0EQ aEQ

d (x)= 1 0 d3 (x 0 1)

= (10 (EC ax * •aa* 1 + a a*), 10 (xz1 -x 0z))
aEQ aEQ

- (E axa 0 a* + EC a*x 0 a, xz - zx) = (>
aGQ a-Q aEQ

Ca[x, a] 0 a*, 0),
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d'(x) = 1 @d 4(x 01) = 1 E xxi x * xxx

Now, we compute the homology (and since the complex is periodic,

HHi(A) = HHi+4 (A) for i > 0, so it is enough to calculate the homology up to HH4 ):

HHo(A) = A/[A, A]: the boundaries are of the form E [xa, a], and they generate
aEQ

[A, A]R. So HHo(A) = AR/[A, A]R = A/[A, A] follows.

HH, (A) = A/([A, A] + ,Z)[2]: The cycle condition E [Xa, a] = 0 implies Xa =

a [x, a*] for some x E A (again, we refer to the result H 1 = 0 in

[9, Corollary 3.5.]), so the cycles are (c- Ea[X, a*] 0 a, y).
aEQ

The boundaries are of the form ( C Ec [x, a*] 0 a, E [x,, a] + px) (where the first

component determines x uniquely modulo Z. So

HHi(A) = AR/([A, A]R + pZ)[2] = A/([A, A] + pZ) [2].

HH2 (A) = Z n p-1 [A, A][2]: The cycle conditions are E Ec[y, a] 0 a* = 0 (this

tells us y G Z) and E [Xa, a]-yp = 0, so y E p-I[A, A] and Xa unique up to an element
aECQ

of the form CE[x, a*] for some x E A. So the cycles are of the form ( • Xa 0 a, y),
aEQ

y e Z n p-1 [A, A], xa uniquely controlled by y (mod Ca[x, a*]) , and the boundaries

have the form ( E 6a[[x, a*] 0 a, 0), i.e. homology is controlled only by y now. So
aEQ

HH2(A) = Zn p-i[A,A][2].

HH3 (A) = Z/Atp[4]: The cycle condition E ea[x, a] 0 a* = 0 implies that the
aeQ

cycles are the central elements Z. The boundaries E x*xxi consist of the top degree

part of A, so HH3 (A) = Z/At[4].

HH 4(A) = A+/ [A, A] [2h]: ker d4 = , Im d5 = Imd, = [A, A]R, therefore HH4 (A) =

A /[A, A]R = A+/[A, A]. El

4.1.3 The intersection Z n p- 1 [A, A].

We found Znp-I [A, A] as the (4i+2)-th homology and (4i+l)-th cohomology group,

so to understand the (co)homology of A better, we are interested in its structure.
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Now, we define the following Hilbert series:

q(t) = hzn,-1[A,A](t),

q,(t) = hA/([A,A]+pZ)(t).

To relate both to each other, we prove the following

Proposition 4.1.3.1. The trace form defines a nondegenerate pairing

(Z n y-1[A, A]) x A/([A, A] + pZ) - k.

Proof. Since the trace form is nondegenerate on A, it is enough to show that (Z n

'-1[A, A])' C [A, A] + pZ, or equivalently

([A, A] + ILZ)' C Z n •-1 [A, A]. The latter follows from [A, A]- C Z, since

(x, [y1, 2]) = Tr(x[yl, y2]) = Tr([x, yl]Y,) = (, y2) 0 Vyl, y2 E A

implies [x, yi] = 0, i.e. x E Z. 0

Corollary 4.1.3.2. q(t) and q.(t) are palindromes of each other, i.e.

q(t) = t2h-4q.(1/t).

Let us define the Hilbert series p(t) = hA/,A-i[A,A](t). We recall from [9, end of
r

section 2.2.] that p(t) = E(1 + t2 +... + t2(' "- 1)) where the rnm are the exponents
i=1

of the root system. Since the trace form also defines a nondegenerate pairing Z x

A/[A, A] -- k (see [9, Corollary 2.2.]), it follows for the Hilbert series p.(t) = hz(t)

that p(t) = t2h-4p(1l/t). Since zZ C p--I[A, A] is spanned by even degree elements,

we see that Z is generated as a k[z]-module by elements of degree 2(m, - 1).

Proposition 4.1.3.3. We have

r r

q.(t) 2 p(t) - t2(-1) = (1 + t2 + + t2(-2))
i=1 i=1

Proof. From the exact sequence

0 --+ Z/(Z n -' [A, A]) -~ A/p-'[A, A] -+ A/(p-1r[A, A] + Z) - 0
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we obtain the equation

q, (t) = p(t) - hz/(zn,-1[A,A])(t)-

Since zZ C p- 1[A, A] (z= -1 [a, a*] E p--[A, A]), we have
aGQ

r

hz/(Zn,- [A,A])(t) < hz/zz(t) = Zt 2 (m -l)

i=1

the inequality

and our inequality

q,(t) > p(t) - E t 2(mi-1)

follows.

Theorem 4.1.3.4. The inequality from above is an equality:

q,(t) = p(t) -- 2(mi-1)

il1

We will prove this in the next section where we compute the cyclic homology

groups of A. From this, we get a result for our intersection space:

Corollary 4.1.3.5. Z n p-1 [A, A] = zZ.

4.1.4 Cyclic homology of A

The Connes differentials Bi (see [19, 2.1.7.]) give us an exact sequence

R B' HHo(A) -o HHI(A) - HH2 (A) ý HH3 (A) + HH4 (A) ...

In our case, we have the following exact sequence:

R -•+ A/[A, A] Bo A/([A, A] + pZ)[2] - Z n p-'[A,A][2] - Z/Atop[4]
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and the Bi are all degree-preserving.

We define the reduced cyclic homology (see [19, 2.2.13.])

HCi(A) = ker(Bi+l : HHi+I(A) -+ HHi+2(A))

= Im(Bi : HHi(A) -- HHi++(A)).

We get the following cyclic homology groups:

HC4n(A) = A+/[A,A][2nh],

HC 4n+I(A) = 0,

HC4n+2 (A)

HC4n+3 (A)

= Z/Ato[2nh + 4],

= 0.

Proof. First we observe that B4n+3 = 0, since the elements of Z/At, [4] have degree

< (2h - 6) + 4 = 2h - 2 and the elements in A+/ [A, A] [2h] have degree > 2h + 1. So

we have for each n the exact sequences

A,
[A, A] [2nh]

B4n A
[A A] + [2nh + 2]
[A, A] + pZ

B4n+2 Z
A [2nh + 4] - 0.

The only thing to show is that W := HC4n+1(A) = ImB4,+l = 0. We will use the

following theorem from [8]:

Theorem 4.1.4.2. Let X-C (A)(t) = > aktk, the Euler characteristic of HC(A). Then

(1 - =)=* 1 det HA(t ) = 1 - t 2hs r

k=1 s=1 s=1 1 t 2 /

where C is the adjacency matrix of the quiver Q.

Since

1
det(1 - Cts + t2S)'

1
Xf7C(A)(t) 1 t2h (hA+/[A,A](t) - hw(t) + hz/A., (t)t4),
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to show W = 0, it is enough to show that if we set

1

1 - t2 h (hA/[A,AJ(t)± hz/Ao, (t)t 4) = Zbktk,

then

H(1 - tk)bk
k=1

00

=1H
3=1

S1t 2s r
h -t ) det(1 - Ct" + t2s).

r t 2 _ t2m
Sp(t)-r= I 2 and

i=1
r 2(m - t2h-4-z2

i=1

t4 r t2mi+2 _ t2h

i=1

From these, we get that

0o

E bktk
k=1

= (1 + t2h + t4h

bk = 0 if k is odd

b2k { r- 0
r - {i: m = p}

if k is divisible by h

if k=p

I(1 - tk)b
kc=1 n$O

S(1 t2n)r/ 1
n>0mod h iE-

mod h

(1 - t2(mn+nh))

Now, it comes down to showing that

Jdet(1 - Ct8 + t2s)

s=1 k=1
- qk)nk,

where q = t2 andk 0 if n is divisible by h

-- #{i":mi=p} if n-p modh

(recall that the rnm are the exponents of our root system), for the different Dynkin

154

We have

hA+A/[A,A] (t)

hZIAtp (t)t4

r

.) (t2 + t4  + t2 - 2 + 0 + t2i +2 +
i=1

+ t2h-2),

ak 0



quivers of type An- 1, Dn+1, E6 , E7 and Es. Here we will use the identities for

det(1 - Ct + t2) = (t2 -. e27iml/h) from [21, Corollary 4.5.].
j=1

Case 1: Q = A,_'

The exponents are 1,..., n - 1 and the Coxeter number is h = n.

1 - t2n
det(1 - Ct + t2 ) = - t1 -t

so if we set

(1 - qk)- k =

k=1 s=1

e2(l 1 qns) = 11 -q
8=1

then

=k ={
0

-1

if nik

ifn Xlk

Case 2:. Q = Dn+1

The exponents are 1,3, ... ,2n- 1, n and the Coxeter number is h= 2n.

det(1 - Ct + t2) (1 - t4 )(1 - t4n)
(1 - t2) _ -2n) '

i=l
k=1

- qk). = 1det(1 - Ct8 + t2 s) = ( - q)(- q)
s=1 s=1 (1- qS)(1 - q8)

implies that

nk = div(k, 2n) - div(k, n) + div(k, 2) - 1,

where we denote div(p, q)
1 if qjp

0 if q Ip
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0-0+0 -1= -1

0-0+1-1=0

0 - 1+1 - 1 = -1

0-1+0-1= -2

1-1+1-1=0

k odd, k # 0, n

k even, k O0, n

mod 2n

mod 2n

k even, k - n mod 2n

k odd, k n mod 2n

k 0 mod2n

Case 3: Q = E 6

The exponents are 1,4, 5, 7, 8, 11 and the Coxeter number is h = 12.

(1
det(1 - Ct + t2 )

-t24 (1 _ t4)(1 t6)

1(1 - qk)nk = Tdet(1 - Cts + t2s) = J
k=1 = 1 s=1

(1 - q1 28)(1 - q28)(1 _ q3 9)

(1 - q6s)(1 - q4s)(1 - qS)

implies

nk = div(k, 12) + div(k, 2) + div(k, 3) - div(k, 6) - div(k, 4) - 1.

Observe that if we have a prime factorization q = a2b (a, b distinct), then

div(k, q) + div(k, a) + div(k, b) - div(k, ab) - div(k, a2 ) - 1

is -1 if k and q are relatively prime or if k- la2

0 else.

This proves our case for 12 = 22 . 3.

mod q (1 - 0) and

Case 4: Q = E7

The exponents are 1,5, 7,9, 11, 13, 17 and the Coxeter number is
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h= 18.

(1 - t3 6)(1 - t6)(1 - t 3)
det(1 - Ct + t2) (1 - ts18)(1 t12)(1 - t2) '

](1 - qk)nk = det( -
kc=1 s=1

Cts + t2s) =
8=1

(1 - ql8 9)(1 - q38)(1- q 28)

(1 - q9s)(1 - q6s)(1 _qS)

nk = div(k, 18) + div(k, 3) + div(k, 2) - div(k, 9) - div(k, 6) - 1.

We use the same argument as above, for 18 = 2 .32

Case 5: Q = E8

The exponents are 1,7,11, 13, 17, 19,23,29 and the Coxeter number is

h = 30.

(1 - t60 )(1 - t10)(1 - t6)(1 - t 4)

det( - Ct (1 - t30)(1 - t20)(1 t12)(1 t2) '

then

oo

- qk)nf = - det(1
s=1

(1 - qso8)(1 - q5S)(1 - q38)(1 - q28)

s (1 - q158)(1 q- q0o)(1 - q68)(1 - qs)

implies

nk = div(k, 30) + div(k, 5) + div(k, 3) + div(k, 2)

- div(k, 15) - div(k, 10) - div(k, 6) - 1.

We use a similar argument here: If we have a prime factorization q = abc (a, b, c

distinct), then

div(k, q) + div(k, a) + div(k, b) + div(k, c) - div(k, ab) - div(k, bc) - div(k, ac) - 1
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is -1 if k and q are relatively prime and 0 else.

This proves our case for 30 = 2- 3 - 5.

Proof. (of Theorem 4.1.3.4):

From the isomorphism

(Z n p-l[A, A]) [2] Z/AB

we obtain the equation t2 q(t) = t4  (t 2(mi-l ) ... + t2h-6), SO
i=1

r

q(t) = Z(t 2mi + t2h-4).
i=1

Recall the duality of exponents, i.e. mr+l-i = h - mi. Then we get

= t2h-4q(1/t) = t2h-4 (t-2mi

= t2h-4 (t - 2(h-mi) +
i=1

= (1+ .. +
i=1

... .+ t- 2h+4)

S.. + t - 2h+ 4)

- t 2 (mi- 1)

i=1

4.2 Universal deformation of A

Definition 4.2.0.3. For any weight A = (Xi), we define the algebra

A(A) = P[z] a*] = zIL +
i=
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and introduce a deformation parametrized by formal variables ci, 1 < i < r, 1 < j <

h-i:

r r h-1

A(A)c = P[z][[c]]/ [a,a*] = zy + ± Aje + c zJei .
aEQ i=1 i=1 j=1

Theorem 4.2.0.4. This deformation is flat VA E R, i.e. A(A)c is free over C[[c]],
and

A(A)c/(c) = A(A).

Proof. It is sufficient to check flatness for generic A. From [10, end of section 3.2.],

we know that for generic A, A(A) = DEndV, is a semisimple algebra. So it suffices to

show that the representation V, can be deformed to a representation of A(A)c for all

A.

We recall from [3, Theorem 4.3.] that V/ E R, such that P -a = 0, it exists an

a-dimensional irreducible representation V, of P, such that

r

S[a,a] = al 3iei.
aEQ i=1

If we set z = E C in A(A)c, then the relation becomes

[a, a*] = es(Ai + -(pi + cl) + 7 2C, + .).
aEQ i=1

r

Then for a = ai•i, since the trace of [a, a*] is zero, the condition to have an
i= 1

a-dimensional representation of A(A)c (i.e. a representation of P satisfying the

above relation) is
r

ai(Ai + 7([i + c) + ~_c ...) = 0.
i=1

By Hensel's lemma, this equation in C[[c]] has a unique solution 7, such that its

constant term y0o C satisfies ai (A + yo) = 0 =- yo = - ."
i= 1

In particular, if we treat A as formal parameter, then A(A)c is a fiat deformation
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of A(O).

Let E be the linear span of zei_, 0 < j 5 h-2, 1 < i < r. From [9, Proposition 2.4.]

we know that the projection map E -+ A/[A, A] is surjective. Then the deformation

A(A)c is parametrized by E which gives us a natural map q : E -+ HH2(A). On the

other hand, the isomorphism HH2 (A) = A/([A, A] + ,aZ) in Theorem 4.1.2.1 induces

a projection map 0 : E -+ HH2(A).

Proposition 4.2.0.5. The maps 0, q : E -+ HH2 (A) are identical.

Proof. We have the following commutative diagram which connects our periodic pro-

jective resolution with the bar resolution of A,

(A ® V ® A[2]) (A V A)

Sd2 d A A do A
(A 0 A [2) (A 0 A[21)

A®4  A®3  ---- A 2  - A,
d2 d do

where we define

f!(bl o a o b2, b3  b4) = bl ® ao b2 + b3 D z o b4

and

f 2 (b 0 a! 0 b2, b3a b4) = -bl 0 z 0 a 0 b2 + bi 0 a 0 z 0 b2 + C• ab3  a 0 a* 0 b4.
aEQ

Let us check the commutativity of the diagram:

ifdi(b, 1  a ® b2, b3 0 b4 ) =

= ba 0 b2 - bl 9 ab2 + b3az b4 - b3a zb4 = di(bi 0 a 0 b2, b3 o b4 ),
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f d2(b10 a 0 b2, b3 0 b=)

= fi(-blz 0 a 0 b2 + bl 0 a 0 zb2 + E ab3a 0 a* 0 b4
ab3a*b4,bb2

+ E Zab3 ® a 0 a*b4, "b3 A (b 4 + bla 0b2 - bl D ab2)
aEQ

= -blz a b2 - bl 0 z 0 ab2 + bia 0 z 0 b2 + bl 0 a 0 zb2

+ E ab3a 0 a* 0 b4 - b3 0 zy 0 b4+ > tcb30 a 0 a*b4
aEQ

= d2f 2(bl a 0 b2, b3 0 b4).

We apply HomAe(-, A) to the above diagram:

aGQ

(A 0 V)R[2]
d-

2(

(AR[2])

HomAe(A®4, A)

(A 0 V)R[2]

E

AR

Tfm
HomAe (A 3 , A)

The map f2 induces a natural isomorphism on HH2 (A), so via this identification

we want to prove that f*~i = 0.

The element 7 := E z~ e',•J E C defines the 1-parameter deformation

r r h-2

A' = A [[h]]/ [a, a*] = z + h(+ N e +Z Z zie),
aEQ i=1 i=1 j=1

so the cocycle r(7y) is defined to be a bilinear map m on A x A (where we identify

HomAe(A®4 , A) = Homk(A 0 A, A)

here), such that for a, b c A,

a * b - ab + hm(a, b) mod h2
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where "*" is the product in A-. This gives us:

f2ri7 )(bl a 0 b2 , b3 0 b4 ) = rq(y) f 2 (bl 0 a 0 b2, ba 0 b4) =

= r(-y)(-bl 0 z 0 a @ b2 + bl 0 a @ z 0 b2 + Cb3  a 0 a* 0 b4)
aEQ

= bi(m(z, a) - m(a, z))b 2 + b3 ( m(a, a*) - m(a*, a))b4

aEQ

r r h-2

= b3( ei + E mzd ei)b4 = 0(7)(b, 0 a 0 b2, b3 o b4).
i=1 i=1 j=1

We obtain the second to last equality by:

0 + h(m(z, a) - m(a, z)) = z * a - a* z = 0 and

z/ + h(E m(a, a
aEQ

f*) - rm(a*, a)) =

B1i=1h(

r h-2

Yiei +AEE
i=1 j=1

This finishes our proof that f2q = 0. O[

We see that the map E -+ HH2 (A) induced by the deformation A(A)c is just the

projection map. From this we can derive the universal deformation of A very easily.

Let E' C E be the subspace which is complimentary to

ker(0 : E -+ A/([A, A] + pZ)) with basis wi,... , ws, and choose formal parameters

ti,..., ts. The subdeformation A' of A, parametrized by E' C E is:

A'= P[z][[t,,. .. , ts]]/ S [a,a*]
(aE

s)
=iz + E t±wi

i=1

Theorem 4.2.0.6. A' is the universal deformation of A.

Proof. q : E' -+ HH2 (A) is the map induced by the deformation A'. Since 0 induces

an isomorphism E' -+ A/([A, A] + pZ) = HH2 (A), by Proposition 4.2.0.5 rq is an

isomorphism and therefore induces a universal deformation. O
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4.3 Results about the calculus structure of the

Hochschild cohomology/homology of the cen-

trally extended preprojective algebras of Dynkin

quivers

Theorem 4.3.0.7. The calculus structure os given by tables 4.1, 4.2 and 4.3 and the

Connes differential as follows:

B4,((I*/c)s)

B 4s+ 2((c -Eu),)

B 4s+3

= (2h - 4 - deg(c) + 2nh)Eu*/c,

= 0,

= (deg(c) + 4 +2sh)c,

= 0.

(1*/d)t (Eu*/c)t (d -Eu)t (C)t
c")  (cl*/d)t-, (c -Eu*/d)t_- (cd -Eu)t-_ (cd)t-_

(c - Eu)(S) 0 (cl*/c/)t_- 0 (cc' Eu)t-_
(Eu*/c)(c ) 0 0 (dl*/c)t-s (' - Eu*/c)t-s

(1*/c)(8) 0 0 0 0

Table 4.1: contraction map ta(b)
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Table 4.2: Gerstenhaber bracket [a, b]

(c' Eu)(t ) (Eu*/c')(t) (1*/c/)(t)



(1*/C )t (Eu*/c), (. -Eu), ()
c( I) (deg(c) - 2sh)(c. Eu*/c)ts 0 (deg(c) - 2th)(cd)t-, 0

(c -Eu)( )  0 (cl*/cl)t_ 0 (cc' Eu)t
(Eu*/c)(7i 0 0 (2(1 - s)h - 8 - deg(c))(dc Eu*/c),- 0

(1*/ c) 0 0 0 0

Table 4.3: Lie derivative La (b)



4.4 Batalin-Vilkovisky structure on Hochschild co-

homology

We recall [17, Section 4] the following: we have an isomorphism D : HH.(A)

HH6m+ 5-*(A) Vm > 0. It translates the Connes differential B : HH.(A) -- HH.+I(A)

on Hochschild homology into a differential A : HH'(A) -- HH'-I(A) on Hochschild

cohomology, i.e. we have the commutative diagram

HH.(A) B HH.+I(A)

HH4m+ 3-*(A) [2mh - 4] HH4m+2-*(A)[2mh - 4]

Theorem 4.4.0.8. (BV structure on Hochschild cohomology) A makes HH'(A) a

Batalin-Vilkovisky algebra (defined in Theorem 3.3.0.13)

Proof. We refer to [17, Theorem 2.4.65]. 0

Remark 4.4.0.9. Note that A depends on which m E N we choose to identify D :

HH.(A) - HH4 m+3-'(A) [2mh - 4], where the Gerstenhaber bracket does not.

4.4.1 Computation of the calculus structure of the centrally

extended preprojective algebra

Cup product

As described in [17, Section 4], we fix an isomorphism D: HHj(A) = HH3_,(A)*[2h]

and use the elements Eu E HH'(A) (where Eu is the Euler vector field), Eu* E

HH2(A) and 1* E HH3 (A). Then we can describe all elements in HH'(A), HH2 (A)

and HH3 (A) by c - Eu, Eu*/c, 1*/c for c E HHo(A), where cU Eu*/c = Eu* and

c U 1*/c = 1*. We have Eu U Eu = 0 by graded commutativity and Eu U Eu* from

[17, Theorem 2.4.27]. Cup products HHi(A) U HHj(A) for i + j > 4, i,j < 3 are

zero.
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Notation 4.4.1.1. For ck E HHi(A), 0 < i < 3, we write c(s) for the corresponding

cocycle in HHi+4s. We write ck,t for the corresponding cycle in HHj+4t, 0 < j < 3

(under the isomorphism D.

The contraction map

From (3.3.0.15), we know that the contraction map on Hochschild homology is given

by the cup product on Hochschild cohomology. Table 4.1 contains the results, rewrit-

ten in terms of contraction maps.

The Connes differential

Proposition 4.4.1.2. The Connes differential B is given by

B48s((1(*/c)s)

B4s+2((C Eu),)

= (2h - 4 - deg(c) + 2nh)Eu*/c,

=0,

= (deg(c) + 4 + 2sh)c,

=0.

Similar to Subsection 3.3.1, we can see that for any x E HHi(A), L£E(X) =

x deg(x). We use the Cartan identity (3.1.0.7),

LEu = BLEU + LEuB. (4.4.1.3)

We compute

(2h - 4 - deg(c) + 2sh)(1*/c), = £EU((1 /C)s) = B(LEU((1*/C)s) +tLE(B(1*/c)),
=0

SO

B((1*/c),) = (2h - 4 - deg(c) + 2sh)(Eu*/c),.

Since B 2 = 0, it follows that

B((Eu*/c),) = 0.
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We compute

(deg(c) + 4 + 2sh)(c -Eu), = IE.((cEu),) = B LEu((cEu),) + LEuB((cEu),),
=0

SO

B((cEu),) = (deg(c) + 4)c,.

Since B2 = 0, it follows that

B(c,) = 0.
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The Gerstenhaber bracket

We compute the brackets using the identification HHi(A) = HH4,+3i [-2mh + 4]

for m >> 1 and the BV identity (3.3.0.14)..We rewrite the results from Proposition

4.4.1.2:

A(c"S)) = 0,

A((c -Eu)())

A((Eu*/c)(8))

= (deg(c) + 4 + 2(m - s)h),

= 0,

= (2h - 4 - deg(c) + 2(m - n)h)(Eu*/c)(n).
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Brackets involving HH4S(A):

We have

[c(s), c'(t)] = A((cc)(s+t)) - A(c(s)) U c() - (s) U A(c(t)) = 0,

[c(s), (c' -Eu)(t)] = A((cc' -Eu) (s+t)) - A(c(s)) U(c' -Eu)(t)

-c(S) -A((c' -Eu)(t))
= (deg(cc') + 4 + 2(m - s - t)h)cd(s+t)

-c( ") U (deg(c') + 4 + 2(m - t)h)c'(t)

= (deg(c) - 2sh)ccl(8+t),

= A((cEu*/c')(s+t)) - A(c()) U (Eu*/c')(t)
-c (") U A((Eu*/c')(t)) = O,

= A((cl*/c')(' +t)) - A(cW( )) U (1*/c')(t)

-c (' " ) U A((l*/c') ( ) )

= (2h - 4 + deg(c) - deg(c') + 2(m - s - t)h)(c. Eu*/c')(s+t)

-(2h - 4 - deg(c') + 2(m - t)h)(c -Eu*/c')(s+t)

= (deg(c) - 2sh)(c - Eu*/c')(s+t)
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Brackets involving HHI+4 *(A):

We have

[(c -Eu)(s), (c' -Eu)(t)] = A((c. Eu) ( ) - (c' Eu)(t))

-(deg(c) + 4 + 2(m - s)h)(cc'. Eu)('+t)

+(deg(c') + 4 + 2(m - t)h)(cc' - Eu)(s+t)

= (deg(c') - deg(c) + 2(s - t)h)(cc' Eu)(s+t),

= A((cl*/c)(+t)) - A((c - Eu)(s)) U (Eu*/c')(t)

+(c Eu) ( ) U A((Eu*/c')(t))

= (2h - 4 + deg(c) - deg(c') + 2(m - s - t)h)(c. Eu*/c')(S+t)

-(deg(c) + 4 + 2(m - s)h)(c -Eu*/c')( +t)

= (2(1 - t)h - 8 - deg(c'))(c. Eu*/c')(s+t)

= A((c. Eu)(")) U (1*/c')(t) + c -Eu ) -A((*/c')(t))

= -(deg(c) + 4 + 2(m - s)h)(cl*/c')(s+t)

+(2h - 4 - deg(c') + 2(m - t)h)(cl*/c')(s+t)

= (2(s - t + 1)h - 8 - deg(c) - deg(c'))(cl*/c')(s+t)

Brackets involving HH2 +4s(A) or HH3 +4 -(A):

We have

= A((Eu*/c)(') U (Eu*/c')(t)) - A((Eu*/c)(")) U (Eu*/c')( )

-(Eu*/c)(S) U A((Eu*/c')(t)) = 0,

= A((Eu*/c)(s) U (1*/c')(t)) - A((Eu*/c)()) U (1*/c ' )(t)

-(2h - 4 - deg(c') + 2(m - t)h)(Eu*/c)(s) U (Eu*/c')(t) = 0,

= A((1*/c)(s) U (1*/c')(t)) - A((1*/c)(s)) U (1*/c')(t)

+(1*/C)(S) u A(1*/l')(t) = 0
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The Lie derivative £

We use the Cartan identity (3.1.0.7) to compute the Lie derivative.

HH'I+4 (A)-Lie derivatives:

£c.Eu(, ) ((E * /c)t)

c-.Eu(e) ((CEu*/)t)

Lc-Eum Cs) V

= BLc-Eu() ((1*/C)t) + Lc-Eu()B((1*/C)t)

= (2h - 4 - deg(c') + 2 th)Lc.Eu() (Eu*/c')t

= (2h - 4 - deg(c') + 2th)(cl*/c')t-_

- BLc-Eu()((Eu*/d•)t) + Lc.Eu()B((Eu*/c')t)

= B((cl*/c')t_-)
= (2h - 4 + deg(c) - deg(c') + 2(t - s)h)(Eu*/c')t-s,

= BLcEu()((c' - Eu)t) + Lc.Eu(8)B((c -Eu)t)

= (deg(c') + 4 + 2th)L-Eu(e) ((c')t)

= (deg(c') + 4 + 2th)(cc' -Eu)t_,

SBLc-Eu(s((c')t) + tc.Eu(a)B((C)t)

= B((cc'. Eu)t_,)

= (deg(cc') + 4 + 2(t - s)h)(cc')t-_
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HH2 +4s(A)-Lie derivatives:

L(Eu*/c)(S) ((Eu*/c')t)
£(Eu*/c)() ((c' Eu)t)

BL(Eu*/c)(8) ((1 *ld/)t) + Lt(Eu*/c)(S) B((1*/C)t)

-(2h - 4 - deg(c') - 2 th)t(E*/c)(8) ((Eu*/c')t) = 0,

BL(E~*/C)(s) ((Eu*/c')t) + t(Eu*/c)() B((Eu*/c')t) = 0

BL(Eu*/c)(8)((c'. Eu)t)- t(Eu*/c)(8)B((c'. Eu)t)

B((c'l*/c)t-.) - (deg(c') + 4 + 2 th)t(Eu-/c)(s) (C)t

(2h - 4 + deg(c') - deg(c) + 2(t - s)h)(c' -Eu*/c)ts

-(deg(c) + 4 + 2th)(c' -Eu*/c)t-,

(2h - 8 - deg(c) - 2sh)(c' - Eu*/c)t-s,

BL(Eu*/c)(8)((C')t) - L(Eu./c)()B( (c' Eu)t)

B((c'. Eu*/c)t-_) = 0
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HH 3 +4S(A)-Lie derivatives: Since t(1*/c)(8) - O, it follows that

£(I*/c)() = BL(I*/c)) + L(I/c)( B.

HH4 +4s(A)-Lie

£C(8) ((1*/c')t)

derivatives: We have

= BLS)((1*/c')t)- Lt($)B((1*/c')t)

= B((cl*/c')t-) - (2h - 4 - deg(c') + 2th)(c - Eu*/c')t-,

= (2h - 4 + deg(c) - deg(d) + 2(t- s)h)(c. Eu*/c')t-_

-(2h - 4 + deg(c') + 2th)(c. Eu*/c')t_,

= (deg(c) - 2sh)(c -Eu*/c')t-s,
= BLC(a)((Eu*/c')t) - Lc(s)B((Eu*/c')t)

= B((c -Eu*/c')_>) = 0,
= BL(s) ((c' Eu)t) - •c,)B((c' -Eu)t)

= B((cc'. Eu)t-s) - Lc(s)(deg(c') + 4 + 2th)(c')t

= (deg(c'c) + 4 + 2(t - s)h)c'c - (deg(c') + 4 + 2th)(c'c)t-s

= (deg(c) - 2th)(cc')t-,

= BL( 8)((c')t) - m() B((c')t) = 0
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Chapter

Hochschild cohomology/homology

and calculus structure of the

preprojective algebra of type T

5.1 The preprojective algebra

Let Q be a quiver of type T. We call the loop b. Let Q' = Q \ {b}.

We define (Q')* to be the quiver obtained from Q' by reversing all of its arrows.

We call Q' = Q'U(Q')* the double of Q'. Let C be the adjacency matrix corresponding

to the quiver Q = Q'U {b}.

We define the preprojective algebra IIQ to be the quotient of the path algebra PC

by the relation E [a, a*] = b2. It is known that IIQ is a Frobenius algebra (see [20]).
aEQ'

From now on, we write A = HQ.
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5.2 The main results

Definition 5.2.0.1. We define the spaces

U= e HHo(A)(d)[2]
d<h-2

and

K = HH2 (A)[2].

Theorem 5.2.0.2. The spaces U and K have the following properties:

(a) U has Hilbert series
n-1

hu(t) = t2i. (5.2.0.3)
i=0

(b) K is n-dimensional and sits in degree zero.

Theorem 5.2.0.4 (Hochschild cohomology). The Hochschild cohomology spaces

are given by

HHo(A)

HH'(A)

HH2 (A)

HH 3(A)

HH4(A)

HHS(A)

HH6 (A)

HH 6k+i(A)

= U[-2] R*[h- 2],

= U[-2],

= K[-2],

= K* [-2],

= U* [-2],

SU* [-2],

= U[-2h - 2],

= HH'(A) [-2kh] Vi > 1.

Theorem 5.2.0.5 (Hochschild homology). The Hochschild homology spaces are
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HHo(A)

HHi(A)

HH2 (A)

HH3 (A)

HH4(A)

HH5(A)

HH6 (A)

HH6k+i(A)

= U*[h] R,
U*[h],

SK*[h],

SK[h],

= U[h],
SU[h],

- U* [3h],

- HHi(A)[2kh] Vi > 1.

Theorem 5.2.0.6 (Cyclic homology). The cyclic homology spaces are given by

HCo(A)

HCi(A)

HC2 (A)

HC3 (A)

HC4(A)

HC5 (A)

HC6(A)

HC6k+G(A)

= U*[h] e R,
= 0,

- K* [h],
- 0,

= U[h],
- 0,

- U*[3h],

- HHi(A)[2kh]

Let (U[-2])+ be the positive degree part of U[-2] (which lies in non-negative

degrees).

We have a decomposition HHo(A) = C e (U[-2])+ @ L[-h - 2] where we have

the natural identification (U[-2])(0) = C. This identification also gives us a decom-

position HH*(A) = C • HH*(A)+.

We also decompose U = Ut $ U_, where Ut P" is the top degree part of U and a

one-dimesional space.
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We give a brief description of the product structure in HH*(A) which will be

computed in this paper. Since the product HHi(A) x HHJ(A) -+ HHi+J(A) is

graded-commutative, we can assume i < j here.

Let zo = 1 E C C U[-2] C HHo(A) (in lowest degree 0),

00 the corresponding element in HH'(A) (in lowest degree 0),

?ko the dual element of zo in U*[-2] C HH5 (A) (in highest degree -4), i.e. bo(zo) = 1,

Co the corresponding element in U*[-2] C HH4 (A) (in highest degree -4), that is

the dual element of 0o, (o(Oo) = 1,

oo : HHo(A) -+ HH6(A) the natural quotient map (which induces the natural iso-

morphism U[-2] --+ U[-2h - 2]).

Theorem 5.2.0.7 (Cup product). 1. The multiplication by oo(zo) induces the

natural isomorphisms

p : HHi(A) -* HHf+6(A) Vi > 1 and the natural quotient map ~co. Therefore,

it is enough to compute products HHi(A) x HHJ(A) -4 HHi+J(A) with 0 <

i <j<5.

2. The HHo(A)-action on HHi(A).

(a) ((U[-2])+-action).

The action of (U[-2])+ on U[-2] C HH1 (A) corresponds to the multipli-

cation

(U[-2])+ x U[-2] U[-2],

(u, v) U -v

in HHo(A), projected on U[-2] C HHo(A).

(U[-2])+ acts on U*[-2] = HH4 (A) and U*[-2] C HHS(A) the following

178



way:

(U[-2])+ x U*[-2]

(u,f)

-- U*[-2],
-4 U of,

where (u o f )(v) = f(uv).
(U[-2])+ acts by zero on R*[h- 2] C HHo(A), HH2 (A) and HH3 (A).

(b) (R*[h - 2]-action).

R*[h - 2] acts by zero on HH*(A)+.

3. (Zero products).

For all odd i,j, the cup product HHi(A) U HHJ(A) is zero.

4. (HH1 (A)-products).

(a) The multiplication

HH'(A) x HH4 (A) = U[-2] x U*[-2] - HH5 (A)

is the same one as the restriction of

HHo(A) x HH'(A) -* HHS(A)

on U[-2] x U*[-2].

(b) The multiplication of the subspace U[-2]+ C HHI(A) with HH2(A) is

zero.

(c) The multiplication by 0o induces a symmetric isomorphism

a : HH 2(A) = K[-2] --- K*[-2] = HH 3 (A),
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given by the matrix (2n + 1)(2 - C')-', where C' is obtained from the

adjacency matrix by changing the sign on the diagonal.

5. (HH2(A)-products).

HH2(A) x HH2(A)

(a,b)

-+ HH4 (A),

4 (a, b)(o

is given by (-, -) = a where a is regarded as a symmetric bilinear form.

HH2(A) x HH3 (A) -- HH5 (A) is the multiplication

K[-2] x K*[-2]

(a,y)

6. (Products involving U*[-2]).

(a) (((U_)*[-2]-action).

- HH5 (A),

v y(a).o-

(U_)*[-2] C HHý(A), i = 4, 5 acts by zero on HHJ(A), j = 2, 3,4, 5.

(b) Let us choose a nonzero C' e (Ust)*[-2] E HH4 (A), and z' e Ut°P[-2] C

HHo(A), let 0' = o00z' UtP[-_2] C HHi(A) ando ' = 0oc' E (Ut°P)*[-2] C

HH5(A).

i. HH2(A) x HH4 (A) --+ HH'(A). The multiplication with v E HH2 (A)

gives us a map

-- UtP [-2h- 2],

where HH(A) C is a liner function, given in Subsection 5.7.)7.,

where -y: HH2(A) -C C is a lin ear function, given in Subsection 5.7.7.
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ii. HH2 (A) x HH5 (A) -+ HH7 (A). , This pairing

K[-2] x U*[-2] -+ U[-2h - 2]

is the same as the corresponding pairing

HH 2 (A) x HH4 (A) -+ HH6 (A).

iii. HH3 (A)xHH4 (A) -- HH7 (A). Themultiplication with w E HH3 (A)

gives us a map

SU t [-2h- 2],

+-+ fy(CaI(W))pO(9').

iv. HH4 (A) x HH4 (A) -+ HH8 (A) and HH 4 (A) x HH5 (A) -+ HH9(A).

(i2 gives us a nonzero v E HH8(A). Then ('V'alpha(v) E HH 9(A).

HH4 (A) annihilates (U_)*[-2] C HH5 (A).

Comparing this theorem (with the results of the explicit compoutation of the

T-case later in this chapter) with the results about the A-case in [12], we get the

following:

Corollary 5.2.0.8 (Relation to the A-case). Let wi,... ,w be a basis of R*[h -

2] C HHo(A). Then we have

HH*(IIT,) = HH*(IIA2,) [W ,... ,-w]/(R*[h - 2] HH*(nA2.)+).

HH*(IIA2f) = HH*(IIT) /(R*[h - 2]).

(5.2.0.9)

(5.2.0.10)
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5.3 Results about the Calculus

We will introduce for every m > 0 an isomorphism

D: HHm(A) A HH6 m+ 5(A)[(2m + 1)h + 2j (5.3.0.11)

which intertwines contraction and cup-product maps.

In Section 5.6, we will introduce basis elements zk E U[-2] c HHo(A), Ok E

HH 1(A), fk E HH2 (A), hk e HH3(A), (k E HH4 (A) and ek E HH5 (A).

For ck E HHi(A), 0 < i < 5, we write c( ) for the corresponding cocycle in

HHi +G ". We write ck,t for a cycle in HHj+6t, 1 < j < 6 which equals D•-(ck).

The map a: K -+ K*, given by a matrix M,, is introduced in Subsection 5.7.3.

We state the results in terms of these bases of HH'(A) and HH.(A).

Theorem 5.3.0.12. The calculus structure is given by tables 5.1, 5.2, 5.3 and the

Connes differential B, given by

Bes(4k,s)
B1+6s

B2+6s (hk,s)

B3+6s

B4+6s (Ok,s)

B5+6s

= ((2s + 1)h - 2 - k)(k,s,

S0,

= (2s + 1)ha- '(hk ,s ),

- 0,

S((2s

0.

+ 1)h 2+ 2 + k)zk,s,
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Table 5.1: contraction map uamy)



b (W (k ) ft) h(t (t) (t)

(s) (k - 2sh). -26kosh (k - 2sh)
zk (zkz,)(s+t) 0 a-(h(s+t) 0 (zk(h)(8+t)

Wk 0 0 0 0 0 0

s) (1 - k + 2(s - t)h).-2(1 + th). 2(-1 + (s - t)h). -(4 + I + 2th). -(4 + k + 1 + 2(t - s)h)
k (zkO1)(s+t) ko f(s+t) 6koh 1(s+t) (zkC)(+t) (zk1')(s+t)

-2(1 + sh). 2(k 1).
fk') 0 (s+t) 0 (1 + sh).6 klo (s+t+1)l,h-3Zh -3

2(s - t)h. -(h + 1 + 2th). (2(s - t)h - (h - 1)).
hks)  (M- ) k 6k, h-3Jl,h-3" h-3Jl,h-3'

(s+t) h3+t+41) (s+t+1)
o Z-3 -3

-(2sh + h + 1).
(") 0 6k,h-361,h-3"f (s+t+1)

h-3

2(s - t)h.
*) ~ 6k,h-3 61,h-3"

S(f (s+ t +l1)
_ _h-3

Table 5.2: Gerstenhaber bracket [a, b]



a(1,t h,t f i,t Ot Zi,t

O") ((2t +1l)h-2-).((2(t - s) + 1)h (2t + 1)h- (2(t- s) + 1)h. ((2t + 1)h + 2 + 1)((2(t- s) + 1)h + 2 + k+ l)(( Zk(l)t-s (Z 1) t- k) kohl,t-s kOfl,t-s (ZkOl)t-s (Zk )t-s

f(s) -2k(1 + sh). 0 -2(1 + sh). -2(1 + sh).SJ,h-3Zh-3,t-s- 1 6k1(0,t-s 61ofk,t-s
(2th + 1). (2(t - s)h - 1). (2t + 1)h- (2(t- s 1)h-2) ((2t 1)h 2). Jo(2(t - s) ± 1)h.

S'k,nl 1,h-3 6k,n61,h-3 ( M )k'
Oh-3,t-s- 1 Zh-3,t-s- 1 ,t-s t-skt-s 1 kt

-((2s + 1)h + 1). -((2s + 1)h + 1).
(kks)  Jk,h-3 l,h-3- 0 Sk,h-3 6l,n0 -(2sh 0 4 k).

fn,t-s-1 Zh-3,t-s-1 ( (k) t-s

1.
(2th + 1). (2(t - s) - 1)h. (2t + 1)h- (2(t - s)h ((2t + 1)h ((2(t - s) + 1)h

) 6 k,h-3J1,h-3" 6k,h-361,h-3" 6k,h-3 61,n 1) +2 + l) -2 - k + 1).
a (fn,t-s-1) fn,t-s-1 Oh-3,t-s-1 5k,h-3 (Zl k)t-s (Zl(k)t-s

Zh-3,t-s-1

z(s) (k - 2sh). (k - 2sh). 0 (k - 2sh)
Zkbl)t-s -(hidt-s) (ZkOt)t-s_(

Table 5.3: Lie derivative L, (b)



5.4 Properties of A

5.4.1 Labeling

We choose a labeling of the quiver T,.

Figure 5-1: Tn-quiver

5.4.2 Bases and Hilbert series

From [20], we know that HA(t) = (1 + th)(1 - Ct + t2)- 1, where C is the adjacency

matrix of the underlying graph. By choosing the labeling of the quiver above, we get

(dim eiAe_)i,je = HA(1) = 2 -

* 2

3

n-
n .

1

2

3

n-1

n

(5.4.2.1)

We will work with explicit bases Bi of eiAei. The ith diagonal entry of HA(t) is
i-1

Z t 2j + t 2n- 1- 2i, and since in A all paths starting and ending in the same vertex
j=O
with the same length are equivalent, we can say that bases of Bi are given by paths

of length 2j, 0 • j 5 i - 1 and 2n - 1 - 2j, 0 < j • i - 1 (one of each length), We

call Ci,k to be a nonzero. element in A, represented by a path of length k, starting and

ending at i.
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5.4.3 The trace function

For the T-quiver, the Nakayama automorphism is trivial. The bilinear form (-, -)

which comes with our Frobenius algebra A is given by a trace function Tr : A -+ C

of degree -(2n - 1) by

(x, y) = Tr(xy). We work with an explicit trace function which maps a polynomial of

degree 2n - 1 to the sum of its coefficients. Given the basis (ei)iEi, we denote (Wi)iEI

as its dual basis, i.e. wi is the monomial of top degree in eiAei with coefficient 1.

5.4.4 The quotient A/[A, A]

The quotient A/[A, A] turns out to be different than in the ADE-case.

Proposition 5.4.4.1. The quotient is

A/[A, A] = RE (b'I iodd).

Proof. The commutator [A, A] is the linear span of

* paths pi = [pk, ej] from i to k, i & k and

* Pii - Pjj = [~ij,pi], where Pkl E ekAel, i.e. all differences pa - pjj where pi and

pjj have same degree > 0. Since all paths in elAel of degree > 0 give us a zero

element in A, this gives us that

eiAe1(d) C [A,A] Vi E I and even d > 0.

From above, we get ejAek C [A, A]. Since all paths in e1Ael of even degree > 0 give

us a zero element in A and pii - pjj E [A, A] for any pair of paths of same degree, this

implies that e Aej(d) C [A, A] Vi E I and for all even d > 0.

R n [A, A] = 0 since R is a commutative ring.

So the quotient A/[A, A] is spanned only by R and by odd degree paths pi Ec eeAej,
and the only relations involving those is pj = pjj. Let pj have odd degree d < 2n - 1,

2n-1-d
then (afai) 2 pi- = w, so pij f 0 in A. So if take one path p~i E eeAej (for some

i E I) in each odd degree < 2n - 1, we get a basis in A/([A, A] + R). Specifically we

can choose odd powers of b as a basis. O
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5.5 Hochschild and cyclic (co)homology of A

In this section, we prove Theorems 5.2.0.4 and 5.2.0.5: we construct a projective

resolution of A, prove duality theorems and compute the Hochschild and cyclic coho-

mology/homology spaces.

5.5.1 A periodic projective resolution of A

Let 0 be an automorphism of A, such that q(a) = a Va E Q' and 0(b) = -b. Note that

= -Id on At'. Define the A-bimodule 1A4 obtained from A by twisting the right

action by q, i.e. 1A0 = A as a vector space, and Vx, z E A, y E 1A : x y -z = xyq(z).

Introduce the notation ca = 1 if a E Q', Ca = -1 if a E (Q')*, and let Eb = 1. Let xi

be a homogeneous basis B of A and xz the dual basis under the form attached to the

Frobenius algebra A. Let V be the bimodule spanned by the edges of Q.

We start with the following complex:

S.: 0 -0 IA[h] A OR A[2] - A OR V RA A A OR A - A - O,

where

do(x

dl(x 0 v

d2(z

O y) = xy,

O y) = xv ® y- x O vy,
n n

0 t) -- e Caizat 0 ai 0 t ± • az 0 a, 0 a~t
i=1 i=1

- zb b t - z bbt,

xzEB
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did+jl = 0 for i = 0, 1,2 is obvious. We show d2i = 0: We have

= d2(E (xi) X)
xiEB

Se Ca(xi)aj =a; x* +Caj1(xi)
xiEB j=l xiEB j=l

- E(xi)bo box*
xjEc3

The first two terms cancel since

Va Q' : E (xi)a 0 a* 0 x4
xzieB

E 5 (j)
xi,rcjEB
E ¢(xi) D a* 0 ax*.

The last two terms cancel since

E ¢(xi)b 0 b (0 x
ziEB

Saj 0 ajx i

0 a* 0 (ax*, x)x*z

- S (xj) b (-bxxi)x*
xi,xjEB

- q (xi) 0 bbxf.
ziEB

Lemma 5.5.1.1. S. is self dual.

Proof We introduce the nondegenerate forms

* (x, y)o = Tr(·z(y)) on A,

* (x 0 x', y 0 y')¢ = Tr(xq(y')) Tr(x'y) on A R A and

* (x 0 a 0 x', y 0 0 y')¢ = Tr(x¢(y'))Tr(x'y)(a, 3) on A ®R V OR A, where we

define the form on V to be (a,/3) = 6o*,#-.
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d2 (i(1))

- • (xi)3 b bx*.
X6EB

E ((xi)a, -4(xj*))¢(xj) 0 a* 0 x*
xz,xjEB

E (0(xi)b, -b(x)))(xj) 0 b 0 x*
xi,xjEB



We apply the functor (-)* = Homc(-, C) and make the identifications

A* A, (A OR A)* - A OR A and (AOR V nR A)* ~ A R V OR A by the map

We have

(i(x), y 0 ) = (E xq(xi) 0 x ,y 0 z) Xj Tr(xq5(xi)¢(z))Tr(xfy)
xieB xiEB

= - Tr(0(x(z)xjz) Tr(xy) = - E Tr(zO(x)x)WTr(xfy)
xz8B xiEB

= - Tr(zY (x)y) =

= (x, do(y 0 z)),

Tr (WX(yz)) = (x, yz)

so i = dg.

We have

(x 0 v 0 y, d2(Z t)) = (X 0 0
n

y, ) Caizai 0 a* 0 t
n

+ CaijZ a aOt
i=-1

-zb b t - z & b&bt)o,

which gives us Va C Q'

(x 0 a 0 y, d2(z 0 t))O = -Tr(zx(t))Tr(yza) + Tr(x¢(at))Tr(yz)

and

(x 0 b 0 y, d2 (z 0 t))O = -Tr(x¢b(t))Tr(yzb) - Tr(xq(bt))Tr(yz),

i.e. for v E V,

(x 0 v 0 y, d2(z 0 t)), = -Tr(x~(t))Tr(yzV) + T~r(x(Vt))TZr(z)

= Tr(xvy(t))Tr(yz) - Tr(xqf(t))Tr(vyz)

= (xv 0 y - x 0 vy, z 0 t)4 = (di(x 0 v ® y), z 0 y)0,

so d2= d.
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Proposition 5.5.1.2. S. is an exact sequence.

Proof. We recall the definition of Anick's resolution [1]. Denote TRW to be the tensor

algebra of a graded R-bimodule W, T+W its augmentation ideal. Let L C T+W be

an R-graded bimodule and A' = TRW/(L). Then we have the following resolution:

A'/ OR L OR A' A' RW A ' . R A' m A' --+ 0,

where m is the multiplication map, f is given by

f(a 0 w 0 a') = a'w 0 a' - a' wa

(5.5.1.3)

and 9 is given by

D: TZ+W -+ A' (R W ORA',

W1 0... Wn
p=1

where bar stands for the image in B of the projection map.

In our setting,

A'= A.

n
W = V, L the R-bimodule generated by Z eaaia* - b2 .

i=l

It is also clear that Im(0)=Im(d2) C A OR V OR A, so from Anick's resolution we

know that the part

AORA[2] + AARVORA A RA 4 A --+ 0

is exact. Exactness of the whole complex S. follows from its self duality.

Since q2 = 1, we can make a canonical identification A = 1Ak OA 1AO (via x ý-

x 0 1), so by tensoring S. with 1A0, we obtain the exact sequence

Then

a(a' o ( 9 a') = a - D(1) - a'2
(9a1 ®l®a2)=a 1 a21



0 --* A[2h] - A OR 1A4[h + 2] 5 A OR V OR 1A¢[h] d A OR 1A¢[h] J4 1A0[h] -* 0.

By connecting this sequence to S. with d3 = ij and repeating this process, we obtain

the periodic Schofield resolution with period 6:

-A A[2oh] A (R 1A¢[h + 2] A A R V OR 1A0 [h] d A OR Nf[h]

AA RA[2] - AO®RV®RA AA A ~A -* 0.

This implies that the Hochschild homology and cohomology of A is periodic with

period 6, in the sense that the shift of the (co)homological degree by 6 results in the

shift of degree by 2h (respectively -2h).

From that we get the periodicities for the Hochschild homology/cohomology

Vj.>_ 1.

(5.5.1.4)

5.5.2 Calabi-Yau Frobenius algebras

Let us define the functor

HomAe(-, A Oc A) : Ae - mod -- Ae- mod,

M I-- Mv.

We recall the definition of the Calabi-Yau algebras from [17].

Definition 5.5.2.1. A Frobenius algebra A is called Calabi-Yau Probenius of

dimension m if

A -_ m+lA (5.5.2.2)

If there is more than one such m, then we pick the smallest one.
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If additionally A has a grading, such that the above isomorphism is a graded iso-

morphism when composed with some shift, then we say that A is a graded Calabi-

Yau Frobenius algebra. More precisely, if AV[m '] c Q'm+A is a graded isomor-

phism, where [1] is the shift by I with the new grading, then one says that A is graded

Calabi- Yau Frobenius with dimension m of shift m'.

Proposition 5.5.2.3. A is Calabi- Yau Frobenius with dimension 5 of shift h+ 2, i.e.

AV[h + 2] _ Q6A. (5.5.2.4)

Proof. This follows from [17] since A is symmetric and periodic with period 6. O

From [17], we can deduce the dualities

HHi(A) H HHs5 (A)*[2h], (5.5.2.5)

HH'(A) HH5_j(A)[-h- 2], (5.5.2.6)

HH'(A) HH1'-i(A)*[-2h- 4] =- HH5 -i(A)*[-4]. (5.5.2.7)

5.5.3 Hochschild homology of A

Let A0P be the algebra A with opposite multiplication. We define Ae = A OR AmP .

Then any A-bimodule naturally becomes a left A e- module (and vice versa).

Now, we apply to the Schofield resolution the functor - ®AA to get the Hochschild

homology complex

. A [2h] I AO [h + 2] - (V OR ,A¢)R[h]

A 1A -[h] - AR[2] - (V O® A)R - AR -- 0

Let HHi(A) be HHo/R for i = 0 and HHi(A) otherwise. We have the Connes
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exact sequence

0 -+ HHo(A) f• HHi(A) -4 HH2 (A) + HH3 (A) f HH4 (A) -.. (5.5.3.1)

where the Bi are the Connes differentials (see [19, 2.1.7.]) and the Bi are all degree-

preserving.

In our case, HHo(A) = A/([A, A] + R) = U*[h] (see Proposition 5.4.4.1), where

U*[h] = (biliodd). From (5.5.3.1), we know that U*[h] C HHI(A). Denote X =

HHI(A)/U*[h]. Since deg HH2 (A) 5 2h, HH3 (A) = HH2 (A)*[2h] and the Connes

differential maps HH2(A)/X isomorphically to its image in HH3 (A), HH2(A)/X

sits in degree h. We call this space K*[h], where K* sits in degree 0. HH3 (A) =

X*[2h] e K[hJ and HH4(A) = U[2h] E X*[2h] follow from the duality (5.5.2.5). The

Connes differential maps HH5 (A)/U[2h] isomrphically into its image in HH6(A).

Since deg HH5 (A) K 2h and HH6(A) = HH5 (A)*[4h] (5.5.2.5), HH5 (A)/U[2h] sits

in degree 2h. We call that space Y[2h] where Y sits in degree 0.

From our discussion, we get the homology spaces

HHo(A)

HHI(A)

HH2(A)

HH3 (A)

HH4(A)

HH5 (A)

HH6(A)

HH6k+i(A)

= U* [h] E R,

= U*[h] X,

= K*[h] e X,

= K[h] X*[2h],

= U[h] E X*[2h],

= U[h] e Y[3h],

= U*[3h] e Y*[3h],

= HH2 (A)[2kh] Vi > 1.
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5.5.4 Hochschild cohomology of A

We make the identifications

HomAe(A OR A, A) = AR = HomAe(A OR 1A¢, A) by identifying p with the image

ýp(1 0 1) = a (we write W = a o -) and

HomAe(AORVORA, A) = (VORA)R[-2] = HomAe(A0RVOR1AO, A) by identifying

Wp vhich maps 1 0 a 0 1 * Xa (a E Q) with the element

n

p = ( a; a 0 xa, + b 0 Xb) o -).
i=1

n

c a a* 0 xa,i
i=1

(we write

Now, apply the functor HomAe(-,A) to the Schofield resolution to obtain the

Hochschild cohomology complex

AR[-h] A [-2] (V 0 A)R[-2] AA A 0

S- AR[-2h] +- AR[-h - 2] + (V D A)R[-h - 2] 4it

and compute the differentials. We have

dT(x)(10y0 1)=x odi(1l0 y 1)= xo (yl- 1- 1 y)= [y,x],

d*(x) = Za;a* 0 [a, x] + b0 [b,x].

We have

n

0 Xb)(1 1) = ( a xai + b 0 xb)

n

+ E Cj1l 0 aj 0 a, -
j=1

n

o (E Cayjaj 0 a 1
j=1

bob® 1-l bob)

n

= (aixa - Xazai) - (bxb + Xbb)
i=1

= Z[a, xa,•]- (bxb xbb),
i= 1
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7n

d (E a? 0 xa, + b 0 xb) = [ai,X •,] - (bxb + xbb).
i=1

We have

d*(x)(1 0 1) = x o d3(1 1) = Z o ( i() ;)= ()xx* =0,

XiEB XiEB

d*(x) = (xi)xx,
xiECB

n n

and we evaluate this sum: let p = Z(-1)n+iei, then p2 = e = 1, and for all
i=1 i=1

monomials x E A, pq(x)p = (-1)deg(x)x. We write x = py (where y = px), then

d3(x) = C (xi)zxx = P E (pW(xi)p)yxz = p E (-1)deg(xi)•ziy
XiE8 xiEB xiEBl3

The map y -* (- 1)deg(xji)iyxz is zero in positive degree, and the restriction
xiEB

to deg y = 0 is a map $i, Cei --4 i, Cw, given by the matrix HA(-1) = (1 +

(-1)h)( 2 + C) = 0, since the Coxeter number h = 2n + 1 is odd. This implies that

d* = 0.

We have

d4(x)(1 x a, ® 1) = x o di(1 ( ai ® 1) = x o (a ® 1 - 1 ai) = aix - xo(ai) = [a, x],

and

d*(x)(1 b 1)= xod(l b 1)=x (b 1- 1 0b)= bx-xO(b),

n

d*(x) = Z -a* 0) [ai, x] + b 0 (xb + bx),
i=1
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We have

d;(E ai xO, + b + b)(1 ® 1) (E ai xa + b xZb) 0 (E caai 0 a,* 1
i=1 i=1 i=1

i=1

= (axa, - xa•(ai)) + (bxb + xbq(b)),
i=1

We have

d*(x)(1 0 1) = x o d6(1 01) = x o (E i(x)) 0 = x E (xj)x(x*) = - j xxx.,
x~EB XzEB xiEB

so

d*(x)= - xixx.
XiEB

From our results about Hochschild homology and the dualities (5.5.2.6), we obtain

the following spaces for the Hochschild cohomology (for HHo(A), keep in mind that

we get HH6(A) = HHo(A)[-2h]/Imd*, and the image of d* lies in top degree). The

cohomology spaces are

HHo(A)

HH'(A)

HH2(A)

HH3 (A)

HH4 (A)

HH5 (A)

HH6(A)

HH6k+i(A)

= U[-2] E L[h - 2],

= U[-2] X*[h- 2],

= K[-2] X*[h- 2],

= K*[-2] eX[-h - 2],

= U*[-2] X[-h- 2],

= U*[-2] e Y*[-h - 2],

= U[-2h - 2] e Y[-h - 2],

= HH'(A)[-2kh] Vi > 1.
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We have L[h - 2] = R*[h - 2]. Since there is no non-top degree element in A

which commutes with all a E Q' and anticommutes with b, ker d* lies in top degree

-2 which implies that the space X has to be zero.

From the discussion in Subsection 5.5.3, we know that K is a degree-zero space,

so HH2 (A) sits entirely in degree -2. Since d* = 0 and the image of d* lies in degree

> -2, K = EieI Cei, so K is n-dimensional. This proves Theorem 5.2.0.2 (b).

The map d* can be viewed as a map (iEI Cei --+ $•• Cwi, given by the matrix

-HA(1) = -2(2 - C)- '. Since it is nondegenerate, the space Y is also zero.

Theorems 5.2.0.4 and 5.2.0.5 follow.
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5.5.5 Cyclic homology of A

The Connes exact sequence and reduced homology were defined in Subsection (2.2.4).

We write down Connes exact sequence, together with the Hochschild homology

spaces:
0

HHo(A)

HHI(A)

Bt

U*[h]

U*[h] HCo(A) = U*[h]

HH2(A) K*[h]

B2 t t

HH3 (A) K[h]

HH4 (A) U[h]

HH5 (A) U[h]

HH6(A) U*[3h]

HH7 (A) U*[3h]

BThis proves Theorem 5.2.0.6.

This proves Theorem 5.2.0.6.

HCI(A) = 0

HC2(A) = K* [h]

HC3 (A) = 0

HC4 (A) = U[h]

HCs(A) = 0

HC (A) = U*[3h]
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5.6 Basis of HH*(A)

Now we construct a basis of HH*(A).

5.6.1 HHo(A) = Z

We compute the structure of the center.

Proposition 5.6.1.1. The non-topdegree central elements lie in even degrees, one in

each degree (up to scaling). They are given by

n
h-3

z2k = Ci,2k, < k < (5.6.1.2)
2

i=k+l

Proof. First we prove that a degree 2k-element z is a multiple of z2k: z commutes

with all ej, hence lies in E(iA eiAei. From the discussion, in Subsection (5.4.2), we

can write
n n

Z = Ai Ci,2k =E i(a*a )k"
i=k+l i=k+l

Now,

Vj Ž k+ 1, \j aj(aaj)k= ajz = zaj = Aj+l(aja*)ka

#o

which implies that all Ai are equal. So each even degree central is a multiple of z2k.

Since z~k = z2k and z2k commutes with all aj, Z2k also commutes with all aj.

Commutativity with b is clear, since each element in eAe, can be expressed as a

polynomial in b.
n

So z2k = Z Ci,2k is the central element in degree 2k.
i=k+l

Now, let z be of odd degree < h - 2. From Subsection (5.4.2), we can write

n

Z E /AiCi,2k+1,
i=n-k

where

Ci,2k+1 = -ai - n 2-1 n+2 k-1 ...- ai
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and the law Vi > n - k,

. a* 2i-2n+2k+2
(0 Z)aici,2k+1 ai + a-b2 - 2 +2 k + an-1... -a = ci+1,2k+lai,

so we have

An-k Cn-k,2k+lan-k-1 = Zan-k-1 = an-k-1z = 0

#o

and

jajcj,2k+l = ajz = zaj = j+lCi+l,2k+laj = Aajcj,2k+l.

This implies that all As = 0, so we have no non-top odd degree central elements.

0O

Theorem 5.2.0.2 (a) follows.

5.6.2 HH1 (A)

Since HH1 (A) = U[-2], we know from the previous subsection that the Hilbert series
h-3

of HH'(A) is E t2i . It is easy to see that
i=0

02k ai:= az2k - a aiZ2k + b bz2k,
i=1

h-3
O < k < 2

i=1

lie in ker d*. The cup product calculation HH'(A) U HH4 (A) will show that each 02k

is nonzero (since the product with (2k is nonzero).

5.6.3 HH 2(A) and HH3 (A)

HH2(A) and HH3 (A) sit in degree -2 and both are n-dimensional. So HH2(A)

is the bottom degree part of AR[-2] and HH3 (A) the top degree part of AR[-h].

Denote fi = [ei] E HH2 (A) and hi = [wi] E HH3 (A), we have

HH2(A) = @ Cf, HH3 (A) = ( Chi.
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5.6.4 HH4 (A)

h-3

The Hilbert series of HH4 (A) is t -4 E t - 2a . We claim that a basis is given by
i=O

(2i := [-b bh-3-2i].

It is clear that (2i all lie in ker d*. Since the image of d* has zero trace, (o is nonzero

in HH4 (A). And (2i # 0 follows from z 2~(2• = 0

5.6.5 HH5 (A)

From Proposition 5.4.4.1, we know that the space

HHS(A) = AR/([A, A]R + R)[-h - 21 = A/([A, A] + R)[-h - 2] is spanned by

02i := [bh-3-2i] .

5.7 The Hochschild cohomology ring HH*(A)

The degree ranges of the Hochschild cohomology spaces are

0 _<degHHo(A) < h-2,

0 < degHH(A) < h - 3,

-2 = deg HH2(A),

-2 = degHH3 (A),

-h- 1 < deg HH4 (A)

-h-1 < degHH5 (A)

-2h < deg HH6(A)

< -4,

< -4,

< -h - 3.

We compute the cup product in terms of our constructed basis in HH*(A) from

the last section.
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5.7.1 The Z-module structure of HH*(A)

HHo(A) is a local ring, with radical generated by z2. In HHo(A), we have z2iz 2j =

z2(i+j) for 2i + 2j < h - 3, and the product is 0 otherwise. HH'(A) are cyclic

Z-modules for i = 1, 4, 5, generated by 0o, Ch-3, 4h-~ respectively. The Z-modules

HH2 (A) and HH3 (A) are annihilated by the radical of Z.

5.7.2 HH'(A) U HHJ(A) for i, j odd

All cup products HHi(A) with HH (A) for i,j odd are zero by degree argument.

5.7.3 HH'(A) U HH2(A)

By degree argument, 9ifj = 0 for i $ 0.

Proposition 5.7.3.1. The multiplication with Oo gives us a map

HH2 (A) = K[-2] - K*[-2] = HH3 (A),

given by the matrix

2 -1 0 ...

-1 2

O .

•

... 0 -1 2 -1

0 -1 3

Proof. Let x E K[-2], represented by the map

f,:A A[2] -- + A.

101 x,
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which we lift to

f : A A[2]

101

A A,

SlOx.

Then we have

fxd3(1 0 1)= Ax( -S(xj) 0x)
XjEB

To compute the lift Qfj, we need to find out the

di.

= Z (xj) xx*.
zjEB

preimage of F O(xj) 0 xxj under
zjEB

Definition 5.7.3.2. Let bl,... ,bk be arrows, p the monomial bl ... bk and define

vp := (10 bl, b2 "'bk+bl0b2 0bb3 "bk + . +±blb k-lObk o 1).

We will use the following lemma in our computations.

Lemma 5.7.3.3. In the above setting,

dl(v) = (bl --- bk l - 1 b ... bk)

From that, we immediately see that

E (x) 0 xx = d1( V(x.j)xxB)
XjEB xjr=B

+ 0 S z (xj)xx,
xIEB

so we have

1• j (xj)xxe
xjeB
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Then we have

00(( v(xm)xxj*) = deg(x)j)>(x)xxz.
xjEB xjEEB

So we get

n

90of = Z deg(xy)¢(xj)xx' = j * deg(xj)¢(xj)xxj.
zjEB k,l=-1 j EBjl

O(xj) is xj if the number of b's in xj is even and -xj if it is odd. Observe that the

number of b's in xj and deg(xj) - d(k, 1) (where d(k, 1) is the distance between the

vertices k and 1) have the same parity. So q(xj) = (-1)deg(xj)-d(k,1)xj, and so the

multiplication with 00 induces a map

HH2 (A) = K[-2] 4 K*[-2] = HH3 (A), (5.7.3.4)

given by the matrix

(HO) ()deg(xj)-d(k,1) deg(x) = (1)d(ij) ( HA(t)kl (5.7.3.5)
hj EBk,l

Let us define

(dt t=) 1

Then we have

H6 =  (1 + t) - + t2) 1 ± 1+ hth-l(1- Ct + t 2)-1

= h(2 + C)-1.

For any nondegenerate matrix M, call M- the matrix obtained from M by chang-

ing all signs in the (i, j)-entry whenever d(i, j) is odd. It is easy to see that for

matrices M = N -1, M_ = (N_)- 1. In our case, we have Ho = (HA6)_. This implies

H =- h((2 + C)_)-'. (5.7.3.6)
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5.7.4 HH'(A) U HH4 (A)

Since HH'(A) = ZOo and HH4 (A) = Zh-3, it is enough to compute 600h-3a

Proposition 5.7.4.1. Given 0o E HH1 (A) and (h-3 E HH4 (A), we get the cup

product

0o0h-3 = ¢h-3.

Proof. (h-3 represents the map

(h-3: A 0 V 1A4[h]

lobol

1 0 ai 0 1

10 a* 0 1

1-4 0,

1-4 0,

and it lifts to

(h-3 : A V 0 1A [h]

1 0 a 0 1
10 a•01

-+ AoA,

S -e4 n en,

-4 0,

ý-* 0.

(Ch-3 o ds)(1 0 1) = h- a(••  a• a.
i=1

S1 + C a a
i= 1

-bobl-1 0bob)

= b®1-1l®b=d(10b01),
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so we have

QCh-3 : 51(A)

101

Sb(A),

1 ®~bl ,

and this gives us

(00 o Ch-a)(1 1) = b,

so the cup product is

0oCh-3 = [b] = PCh-3. (5.7.4.3)

5.7.5 HH2(A) U HH3 (A)

We compute the cup product in the following proposition.

Proposition 5.7.5.1. For the basis elements fi E HH2(A), hj E HH3 (A), the cup

product is

fihj = 6ij 0. (5.7.5.2)

Proof. Recall the maps

hj : A @ A¢

101

and lift them to

- A A,

101 01 10wj.
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Then Va E Q we have

hy(d 4(1 a 0 1)) = hj(a 0 1 - 1 0 a) = a 0 wj = di(10 a •wj),

Qhj : Q4(A)

10a l -4 10a0wj.

Then we have

Qhj (d5(1 0 1))
n= t,( n

Caiai 0 a* 0 1 + eZa1 0 a 0 a*
i=1

-bob® 1-1 ®b®b)

= (Ec,,ajai4-b3b

Q22 hj " Q5(A)

101

S•y = d2 (1 •wj),

10 Wj.

This gives us

f,(Q 2hj)(1 0 1) = fi(10 Wj) = 6ij j

i.e. the cup product

fihj = 6ij[wj] = 6ij?/o.

5.7.6 HH 2 (A) U HH 2 (A)

Since deg HH2(A) = -2, their product has degree -4 (i.e. lies in span(Co)), so it can

be written as
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HH2(A) x HH2 (A)

(x,y)

-4 HH4 (A),

(-, -) o,

where (-, -) : HH2 (A) x HH2 (A) -+ C is a bilinear form.

Proposition 5.7.6.1. The cup product HH2 (A) x HH2 (A) -+ HH4 (A) is given by'

(-, -) = a, where a (from Proposition 5.7.3.1) is regarded as a symmetric bilinear

form.

Proof. We use' (5.7.4.2) to get

00 (f fj) = 00 ((f, fj)o0) = (fi, lfj)0o. (5.7.6.2)

On the other hand, by Proposition 5.7.3.1 and Proposition 5.7.5.1,

(Oof)fjy = a(ft)fj =

By associativity of the cup product, we can equate (5.7.6.2) and (5.7.6.3) to get

(fi, f) = (H . (5.7.6.4)

5.7.7 HH2(A) U HH4(A)

By degree argument, f,(j = 0 for j < h - 3 and fi(h-3 = Ai6PO(zh-3) for some Ai E C.

Proposition 5.7.7.1. We have

fiLh-3 = i zh-3.

Proof. Let x E HH2(A). x is represented by a map fe,
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and we lift it to

n
We know that for hj E HH3(A) and xz-= rf

i=l
determines the lift

'3f1 : 05(A)1
1 @1

the cup product is xhj = rjfj. This

OQ3(A),

S2.

Then

Qt4fd 6 (10 1) €(x) (x;)
zjEB

= O(xj)0x9(x*)
zxEB

- -••
zxEB

0 xa = d4(- E Vxjx(x*)).
xjEB

For each term vxjx¢(xj(),

h- 3(V xj(x)) =
O if xj contains even number of b's

-axx) if xj contains odd number of b's,

where for a monomial xj, the expression "a " means removing one letter b (and it

doesn't matter which one you remove). Denote 30dd (resp. Beven a basis of ekAel
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which have odd (resp. even) number of b's in their monomial expression. Then

XjXX*

(h-3 o •4fx(1 1) S j

j EB3odd

The automorphism 7 which reverses all arrows of a path is the identity on Atop . Let

(xi) be a basis of A, (x*) its dual basis. Then (-y(xi)) is a basis and (y,(xl)) its dual

basis. This shows that

odd odd xxj ve
xjEBOdd xj EBOdd xj EBeven

=1 xjxx

XjEBodd xj E b

The (h - 3)-degree part of A lies in enAen and is spanned by Zh_3bh-3 . This means

that ' = Zh-3 and = 0 for i < n. We getb b

1
(h-afl = I (HA(1)), (PO(Zh-3) 1(PZh-3).2 (5.7.7.3)

5.7.8 HH2 (A) U HHS(A)

By degree argument, fib = 0 for j = h - 3.

Proposition 5.7.8.1. We have

fi(h-3 = i Po(Oh-3). (5.7.8.2)

Proof. Since ?bh-3 = 00(h-3, we have

fi•h-a = (fi(h-3)Oo = i. O(Zh-3)00 = i-Po(Oh-3).
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5.7.9 HH 3 (A) U HH4 (A)

hij = 0 for j < h - 3 and hi(h-3 = A6o0(Oh-a) for some A• E C.

Proposition 5.7.9.1. We have

hi(h-3 = 6in0(PO(Oh-3).

Proof. Let Ai be from above. From (5.7.7.2), we get

Oofi(h-3 = i -po(Oh-3),

and we use (5.7.3.1) to see that

2 -1 0

-1 2

0

... 0 -1 2 -1

0 -1 3

5.7.10 HH4 (A) U HH4(A)

By degree argument, (i(j = 0 if i < h- 3 or j <h - 3 andL _-3

Proposition 5.7.10.1. We have

3 = o().

Proof. Let Ak be from above. Then we have, using (5.7.5.1),

n

Z Ak'oO(fk).
k=1

(5.7.10.2)
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Using (5.7.9.2), the LHS becomes

61n 0h-3(h-3 = 614o,

Al = Jln.

5.7.11 HH 4 (A) U HH 5 (A)

By degree argument, (Cij = 0 if i < h - 3 or j < h - 3.

Proposition 5.7.11.1. We have

n

(h-3=h-3 Z= ioo(hi).
i=1

Proof. We use (5.7.3.1), (5.7.4) and (5.7.10.2) to obtain

(h-3?h-3 = (_-300 = f•no = Z ipo(hi).
i=l 1

The last equality follows from

02 -1 0 -.-

-1 2

0 -1 2 -1

0 -1 3
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5.8 Batalin-Vilkovisky structure on Hochschild co-

homology

From general theory, we have an isomorphism D : HH,(A) -- HH6m+5-*(A) Vm >

0. It translates the Connes differential B : HH.(A) -* HH.+I(A) on Hochschild

homology into a differential A : HH*(A) -_ HH*-1 (A) on Hochschild cohomology,

i.e. we have the commutative diagram

B
HH.(A) HH,+1 (A)

HH 6m+5-* (A) [(2m + 1) h + 2] HH6m+4-. (A) [(2m + 1)h + 2]

Theorem 5.8.0.3. (BV structure on Hochschild cohomology) A makes HH'(A) a

Batalin-Vilkovisky algebra, defined in Theorem 3.3.0.13

Proof.. We refer to [17, Theorem 2.4.65]. O

Remark 5.8.0.4. Note that A in equation (3.3.0.14) depends on which m E N we

choose to identify D : HH.(A) -% HH6m+5-*(A)[(2m + 1)h + 2], where the Gersten-

haber bracket does not.

5.8.1 Computation of the calculus structure of the prepro-

jective algebra

Since the calculus structure is defined on Hochschild chains and cochains, we have to

work with the on the resolution for computations. It turns out that we only have to

compute Co0, directly, the rest can be deduced from formulas given by the calculus

and the BV structure.

d3 A A[2] dA2 A V A d A , A o A D 0

A®4 b2 A®3 Ab 2 - A - 0
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These maps bi give us a chain map between the Schofield and the bar resolution:

1A2(1 0 1)

= 1 y l,

= 9a103a®a*1 -lbobolb
aGQ

= .aQ E B
aGQ Xi6B

0 q(xi) 0 a 0 a* 0 x*

- E 1 0(xi) 0b0 bbox*,
xjC 8

and

I3+i = Ai E Ca(Xzi)
(aEQ XmiB

0 a 0 a* 0 xZ - 1Bi) & b D
-5q4x8 b

xiE)3

Now, we apply the functor - OAe A on the commutative diagram:

AR[2]
A~1

d-
(V ® A)R d,

Ali--
AR

... 3 (A03)R -b

0 y) = x y,

A2(x) = caa D a* 0
aGQ

A3 ( ) = E a(xi) 0 a 0 a*
aEQ xiEB

0 x,*x - b(xi) 0 b 0 b 0 x,

/13+i = 5 (xi)
NaCeQ XiIEB

Now, we compute £o":

0 a 0 a* x* - E (xi) bb
xjiB
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Lemma 5.8.1.1. For each x E HHi(A),

Leo(x) = deg(x)x (5.8.1.2)

Proof. Via p', we already identified x E HHi(A) with cycles in the Hochschild chain,

but we still have to identify 0o with an element in HomAe(A®3, A):

given any monomial b = bl... bl, bi E V, the map

T(l1 b l) = bi

makes the diagram

AoV®A d A®A A do A - 0

A®3 A®2 bo AA

commute.

Applying HomAe(-_ A), we get a map

7* : Homk(V) --, Homk(A),

such that

... bi) = Z b ... b,_,Oo(bi)bi+ .
i=1

.. b, = deg(b) -b,

Recall from [5, (3.5), page 46] that the Lie derivative of Oo 0r* on Hochschild

chains is defined by

LeCoooT*(al, 0... ak)
k

i= 1 9-- (0o o *)(ai) ... 9ak
i=1

= (deg(a±) +
i=1

S- -+ deg(ak))al 0 ." - ak,
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and it can easily be checked that for each x E HHi(A), £0oo,* acts on pi(x), x E

HHý(A), by multiplication with deg(x).

Notation 5.8.1.3. For ck E HH'(A), 0 < i < 5, we write c(S) for the corresponding

cocycle in HHi+"6 . We write ck,t for the corresponding cycle in HHj+6t, 0 < j < 5

(under the isomorphism D.

The contraction map

From (3.3.0.15) we know that the contraction map on Hochschild homology is given

by the cup product on Hochschild cohomology. Table 5.1 contains these results,

rewritten in terms of the contraction maps.

The Connes differential

We start with the computation of the Connes differential and refer the reader to the

Subsection 5.2.0.6.

Proposition 5.8.1.4. The Connes differential B is given by

B 68 (V k,s) = ((2s + 1)h - 2 - k)(k,s,

= 0,

B2+6 ( (hk,s) = (2s + 1)ha-l(hk,s),

= 0,

B4+6s (k,s) = ((2s + 1)h + 2 + k)zk,s,

= 0.

Proof. We use the Cartan identity (3.1.0.7) with a 00o,

L0o = Btoo + t9o B, (5.8.1.5)

where Loeo acts on x E HHi by multiplication by deg(x) (see Lemma (5.8.1.1)). The
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above identities for the Connes differential follow since too acts on 8k,s, Ik,8 and hk,,

by zero, and Zk, 8, (k,s and a-l(hk,s) are their unique preimages the contraction with

too. O

The Gerstenhaber bracket

We compute the brackets using the identification

HH'(A) = HH6m+5-i(A))[-2(m+ 1)h-2] for m >> 1 and the BV-identity (3.3.0.14).

We rewrite the results from Proposition 5.8.1.4:

(0 ))- = (( + 2(m - s))h + k + 2)zy(,

A(f•~") = 0,
A(hj )) = (1+ 2(m- s))ha-'(h(k),

A((8)) = 0,

a( ) = ((1 + 2(m- s)h - k - 2)

A(zk) = 0.

The cup products relations involving our basis of HH*(II(T,) are the same ones

as the relations in the A2,-case. When comparing the differential A with the one

in the A2n-case where we identify HH (IIA2,) = HHf,+2-i (IA 2,)[-2mh - 2] for

m >> 1, we have to multiply the coefficients by 2 and add h. In the BV-identity

(3.3.0.14), we use only cup product and A to compute the Gerstenhaber bracket. In

these computations, when comparing to the A2n-case, we get the same results with

the factor 2. So using the results from Table 3.2, we get Table 5.2.
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The Lie derivative £

We use the Cartan identity (3.1.0.7) to compute the Lie derivative.

HH1+6s(A)-Lie derivatives:

From the Cartan identity, we see that

£o,, = Bto(,) + to()B.

On G0,t, VP,t and h1,t, the Connes differential acts by multiplication with its degree and

taking the preimage under too, and Io(.) acts on them by zero. B kills zl,t, ~(1, and

fl,t. Since B is degree preserving, this means that L~Cgo acts on 09 ,t, it,t and ht by

multiplication with their degree times z(s) , and on zi,t, Ci,t and fl,t by multiplication

with z(•S) and then multiplication with the degree of their product. So we get the

following formulas:

£LW(V1,t) = ((2t + 1)h- 2- 1)(zkS1)t-s,

£(a,)((¢,t) = ((2(t - s) + 1)h - 2 - 1 + k)(zkCl)t-s,

£o() (hi,t) = 6ko(2t + 1)hh1 ,t-.,

L£OW,(f,t) = 6ko(2(t - s) + 1)hft,ts,

£, (01,t) = ((2t + 1)h + 2 + l)(zk91)ts,

£L,((zt,t) = ((2(t-s)+ 1)h+2+1 + k)(zkzl)t-,.
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HH 2+6s(A)-Lie derivatives:

We compute Cf(~):

tfk(8)(j,t) = B(tf8 (~bg)) -tfSfk) B J,t)

= B(61,h-3 Ih-3,t-s-1) - ((2t + 1)h - 2 - l)f8)y ((,t)

6= ,h_3k(( 2 (t - s - 1) + 2)h - 1)Zh-3,t-s-1

-61 ,h-3k(( 2 t + 1)h - 2 - 1)Zh-3,t-s-1

=-261,h-3k((1 + sh)Zh-3,t-s-1,

Lfk()((t,t) = B(f8 )((C,t)) = B(k6l,h-3zh-3,t-s-1) = 0,

Lfk() (h,t) = B(tf() (ht,t)) -tf(S) B(hl,t)

= B(4k,lo,t-s)- (2t + 1)htfk()a-l(ht,t)

= kl((2(t - s) + 1)h - 2)(0,t-s - 6kl( 2t + 1)hlo,t-s

-25k1(sh + 1)(o,t-s,

L£f( (fi,t) = B( L9) (f,t)) = 0,

GHHI+6(t-s)

Lcf,(,) = B(tf )(O0,t))- LfGs)(B(0O,'))

= B(Sloa(fk,t-s)) - ((2t + 1)h + 2 + 1)t1f )z1,t

61o0 (2(t - s) + 1)hfk,t-s - ~10((2t + 1)h + 2)fk,t-s

-261o(1 + sh)fk,t-s,

LC ) (zz,t) = S6oB(fk,t-s) = 0,
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HH3 +6s(A)-Lie derivatives:

We compute h(8):

£kha) (b1,) = B(ha) (1l,t)) + tLh(sB(klt)

=0

= ((2t + 1)h - 2 - 1)th(8)l,t = 6k,nb1,h-3(2th + 1)Oh-3,t-s-1,

LC h> ((,,t) = B(t hh)(6,)) = 6k,n1B(6,h-30-3,t-s-1)

= 6k 6 l,h-3((2(t - s - 1) + 1)h + 2 + h - 3)Zh-3,t-s-1

= 65k 6 l,h-3((2(t - s)h - 1)zh-3,t-s-1,

h(9)> (hl,t) = B(+ah (ht,t)) + th(a)B(hi,t) = (2t + 1)hth()a-'.(ht,t)

=0

= (2t + 1)h(Ma-')lk$o,t-s

S (ft) =t)) = B(Bkl0bo,t-s) =6kl(2(t - s + 1)h -2)(o,t-s,

L ,(01,t) = B(LhB( t))+ Lh(s)B(O,t) = ((2t + 1)h + 2 +1) k

=0

= o10((2t + 1)h + 2 )hk,t-,s

£h(s)(zl,t) = B(6,ohk,t-s) = 6lo(2(t - s) + 1)ha-'(hk,t_-).k
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HH4 +6S(A)-Lie derivatives:

We compute CL(,,):
Ck

c)( 4 ',t) = BtCk(s) (4,t) - LC(s)B(/lt)

= k,h-361,h-3B(ct(f.,t-s-1)) - e(a) ((2t + 1)h - 2 -1)(1,t

= k,h-3 6 1,h-3((2 (t - s - 1) + 1)hfn,t-s-1

-((2t + 1)h - h + 1) f,t-s-1)

= k,h-3 61,h-3((-2S - 1)h - 1)fn,t-s-1,

cS) (Cl,,t) = Bts) ((,,t) - tu) B(C(,t)
=0

= 6k,h-3,h-3B(fn,t-s-1) = 0,

pd) (h1,t) = Bc(8 ) (h1,t) - tk@>B(htt)

= l,6k,h-3B(Oh-3,t-s-1) - (2t + 1)h(sk)Q•-l(ht,t),

= 1,nk,h-3Zh-3,t-s-1((2(t - s - 1) + 1)h + 2 + h - 3 - (2t + 1)h)

= 6t,JSk,h-3Zh-3,t-s-•(-( 2S + 1)h - 1),

£S>) (fl,t) = Btý•) (ft,t) - L(a) B(fi,t)
=0

= 15k,h-3B(Zh-3,t-s) = 0,

c( 8) (01,t) = BtC() )(O1,t) - L¢( 8)B(Ol,t) = B((Zlk) -s) - LC(s) ((2t + 1)h + 2 + 1)zl,t

= ((2(t - s) + 1)h - 2 - (k - 1))(ZlCk)t-s - ((2t + 1)h + 2 + 1)(Zl(k)t-s-1

= (-2sh - 4 - k)(zl(k)t-s,

,(s) (Zt,t) = BCk() (Zi,t) - C) B(z,t)
=0

= B((z(k)t-_) = 0.
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HH5 +6s (A)-Lie derivatives:

We compute .C(,L):

=0

= ((2t + 1)h - 2 - I)%()(,t

= Sk,h-3J6 ,h-3((2t + 1)h - 2 - (h - 3) a(fn,t-s-1),
=2th+1

OO) ,(8 ,t) = Btbw ((l,t) + Lt/) B(( 1 ,t)

=0

= sk,h-3s1,h-3 (a(fn,t-s-l))

S6 k,h-3Jl,h-3(2 (t - s - 1) + 1)hfn,t-.-1

-= k,h-36l,h-3(2(t - s) - 1)h f,t__-1,

£¢W( )(hi,t) = B•L+(8) (h •) t) B(h1 ,t)

=0

=- ~(Ka- (hi,t)(2t + 1)h

= 6k,h-3S,n(2t + 1)hOh-3,t-s-1,

Qb8) (ft,t) = BtL(s) (fi,t) + tL,() B(fi,t)

=0

= l6k,h-3B(Oh-3,t-s-1)

= 1((2(t - s - 1) + 1)h + 2 + (h - 3))6k,h-3Zh-3,t-s
= 1(2(t - s)h - 1)Jk,h-3Zh-3,t-s-1,

S(,) (01,t) = B t,() (l0,t) +%& B(O1,t)
=0

= L(,)Zl,t((2t + 1)h + 2 + 1) = (zz1k)t-s((2t + 1)h + 2 + 1),

L,)(,> (z,t) = BLt,() (Z(,t) + t(s) B(zl,t)

=0

= B((z1¢k)t-s) = ((2(t - s) + 1)h - 2 - (k - 1))(zj(k)t-s.
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HH 6+ "(A)-Lie derivatives:

B acts on 01,t, 01,t and hl,t by multiplication with its degree and taking the preimage

under to0. On zz,t, (1,t and fi,t, B acts by zero. Since the spaces U, U*, K and K* are

zk-invariant and z( ) has degree k - 2sh, £z(s) acts on 01,t, 01,t and h1,t by multiplication

with k - 2sh and taking the preimage under to, and multiplication with zT ) , and on

zy,t, (1,t and fi,t it acts by zero. We have the following formulas:

= (k - 2sh)(zk1l)t-s,

= 0,

= (k

= 0,

S(k - 20h)(zkzl)t•_,
- 0.

This concludes the computation of the calculus structure for quivers of type T.
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Appendix A

Correction to [12]

We want to make a correction to the HH'(A) U HH2(A)-computation in [12]: the

calculation of HH2 (A) U HH2 (A) in (5.7.7.2) shows that the bilinear form on K is

given by the matrix Ma, defined in Subsection 5.7.3. This is a general computation

which also applies to quivers of type A. But the results in [12] suggest that the bilinear

form on K is given by a matrix different from M, which is incorrect.

I verified that the matrix Ma from HH'(A) U HH2 (A) in [12] correct, therefore

the result of HH2 (A) U HH2 (A) is wrong: similarly to the computation in Subsection

5.7.3 of this paper, you can calculate the matrix M, by using the derivative of HA(t).

Then you get (by labeling the A-quiver as in [12])

Ma=h

2 -1 0 ... ... 0

-1 2
0

0

0 . 0 -1 2 -1

0 ... ... 0 -1 2

-i
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for type A2n+ 1 (and also D,, E,) and

Ma = h

2 -1 0

-1 2

0

0 -1 2 -1

0 -1 3

for type A2n.
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