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Abstract

We present a combined theoretical, experimental and numerical investigation of a
sphere settling in a linearly stratified fluid at low Reynolds number (0.01 < Re < 2.1).
We developed the microscale Synthetic Schlieren technique to study the wake of a
microscale sphere settling through a density stratification. A video-microscope was
used to magnify and image apparent displacements of a micron-sized random-dot pat-
tern. Due to the nature of the wake, density gradient perturbations in the horizontal
direction greatly exceed those in the vertical, requiring modification of a previously
developed axisymmetric technique. We demonstrated that Schlieren could be ex-
tended to microscale (100 pm) and obtained the first quantitative measurement of
the density field in the wake of a sphere settling in a stratified fluid. As stratification
breaks directional symmetry, the direction of motion strongly influences the dynamics,
unlike in the homogeneous case. Previous work primarily focused on particles moving
parallel to isopycnals. Here we investigate motion perpendicular to isopycnals. As
the sphere settles, the particle draws lighter fluid downwards, generating buoyancy
forces: this results in a long density wake, extending many particle diameters down-
stream. Using time-lapse photography, the drag on the sphere was measured and we
have obtained the first experimental quantification of the added drag on a sphere due
to stratification. We found that stratification increases the hydrodynamic drag, and
that the added drag coefficient scales with the Richardson number Ri = a®N?/(vU)
as Ri'/?, where a is the particle radius, U its speed, » the kinematic fluid viscos-
ity and N the buoyancy frequency. These observations are confirmed by numerical
simulations, and are in contrast with earlier results for higher Re. By analyzing the
numerical velocity, pressure, density and vorticity fields around the sphere, we found
that the pressure and viscous drags both increased with stratification. Combining
these analyses with the investigations on isopycnal perturbations around the sphere
and the buoyancy force in the wake, we conclude that the bulk of the wake does not
contribute to the drag. Based on the experimental and numerical results, we derived
a scaling argument which suggests that the added drag results from the buoyancy of
the fluid in a small region of width (v/N)!/2 around the sphere. Here the physical
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mechanism responsible for the added drag in a stratified fluid at low Re is drasti-
cally different from mechanisms proposed at higher Re. The observed increase in
drag could enhance retention time of particles at density interfaces as the parameter
regime studied here applies to small particles in the ocean and affects the ecology of
marine microorganisms by influencing particle-organism interactions.

Thesis Supervisor: Roman Stocker
Title: Assistant Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

The interaction between a solid body and a fluid is one of the oldest and most funda-
mental problems of fluid dynamics and one that occurs in a wide range of applications,
from the design of airfoils and ships to sports balls. A basic physical quantity asso-
ciated with the solid-fluid interaction is the drag D, which is the resisting force the
body experiences when moving relative to the fluid. It is conventional to describe the

resistance to motion by a drag law via a drag coefficient Cp, which is defined as

D

Cp = 1,
b 2oU%S

(1.1)

where p is the density of the fluid, U the velocity of the body, and S is the cross-
sectional area of the body. S = ma? in the case of a sphere where a is the sphere
radius. From dimensional analysis of a sphere moving in a homogeneous fluid, where
the fluid density is everywhere the same, one finds that Cp is a function of Reynolds
number, which represents the ratio of inertial to viscous forces in the fluid, and is
defined as

Re = —qg, (1.2)

v
where v is the kinematic viscosity of the fluid. The governing equations of the fluid
flow are the Navier-Stokes equations, along with appropriate boundary conditions
on the solid surface. An analytical solution for a sphere traveling in a homogeneous

fluid can be obtained when the transient and nonlinear terms in the Navier-Stokes
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equations are negligible, corresponding to the case of inertial forces being dominated
by viscous forces (Re << 1). This is called Stokes flow. In this regime, Cp ~ 1/Re.
A large body of experimental, theoretical, and numerical studies have contributed to
determining the dependence of Cp on Re over a wide range of Re [50]. In a homoge-
neous fluid, the drag coefficient is directionally symmetric, i.e. the drag experienced
by the sphere does not vary with the direction of motion of the sphere (e.g. horizon-
tal vs. vertical). While the drag law is well established for a sphere moving in an
homogeneous fluid, no analogous law exists for a particle settling in a stratified fluid

and we lack even a basic understanding of the fluid mechanics of this scenario.

In this thesis we study the fluid dynamics of a sphere settling in a stratified fluid
with a density increasing linearly with depth. The presence of stratification signifi-
cantly alters the problem of particle motion in a fluid. For a given stratification agent
(e.g. salt or temperature), stratification introduces an additional dimensionless pa-
rameter in the problem, the Froude number Fr = U/Na, where N = [(g/po)dp/dz]'/?
is the buoyancy frequency, p the fluid density, g the acceleration of gravity, py a ref-
erence fluid density, and dp/dz the background fluid density gradient. For a stratifi-
cation without shear, the dynamics then depend on both Re and F'r. Furthermore,
there is a distinct asymmetry between motion parallel and perpendicular to isopy-
cnals (i.e. surfaces of constant density); since fluids are often vertically stratified,
this corresponds to horizontal and vertical motion, respectively. The contributions of
this thesis are threefold: first, we discover that drag increases due to stratification,
even at low Re; second, we formulate a drag coefficient law for a sphere settling in a
linearly stratified fluid; and third, we develop a microscale Synthetic Schlieren tech-
nique, which is broadly applicable to problems in fluid mechanics and was used here

to visualize the flow induced by small particles settling in stratified ambients.
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1.1 Geophysical background and applications

The process of an object settling in a stratified fluid occurs ubiquitously in nature,
yet has received little attention and remains poorly understood. While conceptually
simple, the problem is somewhat paradoxical, hence intriguing: while stratification
tends to suppress vertical fluid motion [52], the settling process demands it. One of
the most important applications of settling in stratified ambients are environmental,
chiefly the settling of marine snow aggregates through thermoclines and haloclines
in oceans and lakes [26]. Marine snow particles are responsible for a net export of
limiting elements from the upper ocean to greater depths and ultimately the ocean
floor. Their settling time is an important parameter in models of biogeochemical
fluxes. These particles can further accumulate and form thin layers of enhanced par-
ticle concentration in correspondence to strong density gradients. These layers can
form their own ecosystems, triggering accumulation of organisms, and affect propaga-
tion of optical and acoustic signals. Any changes in the particle settling speed due to
stratification could influence retention time of particles in the layers and hence layer
formation and intensity. Marine snow and other particles of biological origin in the
ocean are typically small (~ 10 gm - 10 mm) and have a small density contrast with
the ambient fluid, hence settle slowly: most have a Reynolds number < O(1) [22].
Other examples include particles in the atmosphere [20], crystals settling in stratified
magma chambers [32] and settling of particulate matter after nuclear explosions, hy-
pothesized to potentially lead to nuclear winter [45]. Furthermore, there is indication
that settling aggregates are themselves of major importance in channeling dissolved
organic matter to the microbial loop via bacterial uptake, ultimately affecting the

global carbon cycle [2].

The problem of particles moving in a viscous fluid at low Reynolds number is
one of the oldest problems in fluid mechanics, reviewed by Leal [24], who includes
effects of weak inertia, non-Newtonian behavior and particle deformation. The review

by Davis and Acrivos [12] focuses on suspensions of particles sedimenting under the
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action of gravity, where the primary question resides in the determination of the aver-
age settling speed. In this context, Blanchette and Bush [4] found that stratification
reduces settling speed, locally increasing the particle concentration and thus enhanc-
ing the effects of hindered settling. Bush et al. [6] further explored the dynamics of
a particle cloud in a stratified fluid, observing and rationalizing different modes of

particle deposition.

Individual particles in a stratified fluid have been studied extensively in the case
of motion parallel to isopycnals, such as particles moving horizontally through a ver-
tical stratification, motivated by the design and operation of underwater vehicles
and atmospheric flow past topography [36, 37, 17, 47]. The tendency of stratifica-
tion to suppress vertical motion [52] drives flow primarily around, rather than over,
a horizontally-moving three-dimensional body, while a two-dimensional body blocks
a horizontal layer of fluid, the length of which scales linearly with the Richardson
number Ri = Re/Fr? [44]. To avoid confusion, we note that another dimensionless
quantity in oceanography, Ri = (N/(dU/dz))?, is also referred to as the Richardson
number. While both definitions ultimately refer to the relative importance of buoy-
ancy and shear forces, hence justifying the common name ”Richardson number”, the
physical configuration is quite different in the two cases, as Ri = (N/(dU/dz))? refers
to a stratified water column subject to large-scale vertical shear dU/dz and is used to
predict the stability of this scenario. Here, instead, the shear forces entering the def-
inition of Ri = a®N2/(vU) arise from viscous shear generated by the sphere-induced
flow. At moderate to high Re, a body moving in a stratified fluid generates internal
waves, which contribute to enhance the drag on the body. Scase and Dalziel [35] used
asymptotic approximations to calculate the drag on a sphere being towed through a
uniformly stratified fluid, and found the internal wave drag to be significant relative
to viscous drag for Re > O(10%) and 1 < Fr < 3. Lofquist and Purtell [25] also
measured an internal-wave induced increase in drag for 150 < Re < 5000, but further
observed a decrease in drag due to suppression of turbulence in the wake. Greenslade

[18] derived a drag law (Cp as a function of F'r) for a horizontally moving sphere,
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which says that at small F'r the added drag increases with increasing F'r, and attains a
maximum at a value of Fr in the approximate range of (0.2, 0.5), then decreases with
increasing F'r, at least up to F'r = 3, and remains approximately constant for larger

Fr. The theory agrees reasonably well with experimental data [25] except for Fr = 1.

Considerably less work exists vertically-moving bodies in stratified fluids. The
simplest configuration, a two-layer fluid, was first investigated by Srdié¢-Mitrovié et
al. [38], who measured the drag on a sphere settling through a thin density interface
for 1.5 < Re < 15. Their study revealed up to an order of magnitude increase in
drag over the homogeneous case for 3 < Fr < 10. The added drag resulted from
the buoyancy of a tail of light fluid dragged down by the sphere. For the same con-
figuration, Abaid et al. [1] found a regime in which the sphere ‘levitates’, briefly
reversing direction after crossing the interface. For a body smaller than the vertical
extent of the stratification, consideration of a continuous stratification is more appro-
priate than a sharp interface; the simplest case being a linear stratification. Torres
et al. [43] numerically investigated the case of a sphere in the parameter regime
25 < Re <100 and 0.2 < Fr < 200, finding Cp to strongly increase with Fr~—! for
Fr < 20. The added drag was due to a rear buoyant jet, predicted by Eames et al.
[13] for an inviscid and non-diffusive fluid, associated with the return of isopycnals
to their neutral density position. The existence of this jet, and the associated sup-
pression of rear vortices, was supported by shadowgraph experiments at Re ~ 800
[28]. An increase of Cp with Fr~! was also observed by Higginson et al. [19] for
the related problem of a freely-rising horizontal grid of bars at 1000 < Re < 3000
and 0.03 < Fr < 0.22, and rationalized in terms of the buoyancy of displaced fluid
in the wake of the grid. Although internal waves can exist for moderate to high Re
[48], in the aforementioned studies they were found not to contribute to drag. While
a theoretical analysis Zvirin and Chadwick [53] suggests that stratification enhances
drag even at Re << 1, predicting a dependence of Cp on_Rz'l/ 3, there is a dearth
of quantitative experimental data at small Reynolds numbers. Thus it still remains

unclear whether settling particles experience added drag at Re = O( 1) and, if so, how
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this drag scales with stratification.

A full understanding of these processes requires the ability to visualize and un-
derstand the fluid mechanics of a stratified system at these small scales. Optical
techniques based on the relation that typically exists between density and refractive
index have long been used to visualize perturbations in a stratified fluid. Examples
include the classic Schlieren [42] and Moiré fringe techniques [7]. Synthetic-Schlieren
is a digital implementation of this idea that was recently developed for quantitative
investigations of two-dimensional, linear internal-wave fields [10, 40], and qualitative
visualization of nonlinear internal waves [32]. A similar digital technique, Background
Oriented Schlieren, as reviewed by Venkatakrishnan and Meier [46], has been applied
to study the dynamics of compressible vortices [34]. Most recently an axisymmetric
formulation of Synthetic Schlieren has been developed [29] and used to study internal
waves excited by a vertically oscillating sphere [15]. This approach exploits radial
symmetry and inverse tomographic techniques to study axisymmetric perturbations

in a stratified fluid.

To date, investigations using Synthetic Schlieren have been concerned with phe-
nomena occurring on lengthscales in the range of 10 mm to 1 m. However, many
processes in stratified fluids occur at scales of microns to millimeters, in particular
ecologically and environmentally relevant phenomena in the ocean, such as marine
snow. To study microscale particles settling in a homogenous fluid, it is convenient
to scale up the size of an experiment, using a more viscous fluid to maintain dynamic
similarity. This is not feasible in the presence of stratification, however, because one
cannot appropriately scale diffusion of the stratifying agent. Therefore, the settling of
microscale particles in a stratified ambient must indeed be studied on the microscale,
demanding challenging experiments, of which there are few. One example is the study
of Srdié-Mitrovié et al. [38] who tracked submillimeter spheres traversing sharp den-

sity interfaces.
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To address our limited knowledge of processes involving small-scale disturbances
in stratified fluids, we herein extend Synthetic Schlieren to submillimeter scales. In so
doing, we operate on a scale two orders of magnitude smaller than any prior studies
using this method. This presents practical challenges: smaller size particles require
increasing magnification and generate ever weaker signals, which are eventually over-
whelmed by noise. We used our experimental arrangement to study the flow structure
in the wake of settling spheres, down to a diameter of 157 ym. Furthermore, for this
process we found that perturbations of the horizontal density gradient far exceed

those of the vertical gradient, requiring modification of the axisymmetric method.

1.2 Summary of work

In this thesis we present a combined experimental, numerical and theoretical anal-
ysis of the drag experienced by a sphere settling in a linearly stratified fluid at low
Re. This work complements previous experimental and numerical work at higher Re
(19, 43], and step-like stratification [38, 1]. For the experimental component of the
study, we developed a new flow visualization technique called microscale Synthetic
Schlieren, which allowed us to visualize the density field around a microscale sphere
settling in a stratified fluid. We further employed time-lapse photography to measure
the settling speed of a sphere and hence compute its drag. Finally, conclusions were
supported by numerical simulations. The main finding of this work is that stratifi-
cation increases the hydrodynamic drag, even at low Reynolds numbers. We found
that, while the problem in general depends on both Reynolds number Re and Froude
number Fr, the increase in drag scales with a unique combination of Re and Fr
through the Richardson number Ri = Re/Fr?. From the analysis of isopycnal (sur-
faces of constant density) deformation around the sphere, we elucidated the physical
mechanism responsible for the drag increase, and found it to be drastically different
from previously proposed mechanisms in different flow regimes. Based on the exper-

imental and numerical results, we derived a scaling argument to rationalize the drag
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coefficient law.

This thesis is structured as follows. In Chapter 2 we provide the formulation of
microscale Synthetic Schlieren, and investigate the applicability and limitations of the
method. The materials in this chapter were published in Ezperiments in Fluids in
2006 [51]. In Chapter 3 we provide an outline of all the methods of investigation, in-
cluding time-lapse photography and numerical simulations. In Chapter 4 we present
the results and discussion, while Chapter 5 contains conclusions and suggestions for
future work. The materials in Chapter 3, 4, and 5 are presented in a paper titled
Enhanced Drag of a Sphere Settling in a Stratified Fluid at Small Reynolds number,
which has been submitted to the Journal of Fluid Mechanics.

1.3 Summary of original contributions

The key original contributions of this thesis, representing work that was performed

by myself and that goes beyond existing literature, are as follows:

e Developed microscale Synthetic Schlieren technique. Demonstrated that Syn-
thetic Schlieren could be extended to microscale fluid mechanics problems (~100 um).
Developed a novel formulation to analyze radial density perturbations and corrected

mistakes in the mathematical formulations of previous studies.

e Visualized the wake structure behind a settling sphere by microscale Synthetic

Schlieren.

e Performed the first experimental study to quantify the drag coefficient for a
sphere settling in a stratified fluid at low Reynolds numbers, and established the
dependence of the drag coefficient Cp on Richardson number Ri. Elucidated the

manner in which stratification enhances drag, hence reduces settling speed, at low
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Reynolds numbers.

e Proposed a empirical law for the drag coefficient in a stratified fluid.

e Proposed a novel physical mechanism responsible for the observed added drag

and corroborated it with a scaling argument.
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Chapter 2

Microscale Synthetic Schlieren

In this chapter, we will first introduce the experimental set-up used for microscale
Synthetic Schlieren, then we present the data analysis and processing routines, and
lastly we discuss some results of microscale Synthetic Schlieren, along with its appli-
cability and limitations. The materials in this chapter were previously published in

a paper in Ezperiments in Fluids [51].

2.1 Experimental set-up

The experiments were performed in a 0.48 m high, 63 mm long and 25 mm wide
perspex tank, with 5.4 mm thick walls, standing on a vibration-damped table, as
shown in Figure 2-2. The tank was filled with linearly stratified salt water using a
double-bucket system [30], and left to stand for several hours to allow dissipation of
any residual flows. Several spherical density floats (American Density Floats) with
densities covering the range 1010.0 to 1060.0 kg m~3 in intervals of 10.0 kg m~3 were
then released into the tank to measure the vertical density gradient dp/dz. The small
size of the floats (7 mm diameter) ensured that the density gradient was not distorted
by their presence. Regular spacing of the vertical positions of the floats (i.e. their
neutral buoyancy heights) confirmed the linearity of the density profile. The corre-

sponding density gradient was determined from a linear fit to this data. There was
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no discernible motion of the floats, demonstrating the absence of any convection in

the tank that could have affected the experimental results.

Experiments were performed using polystyrene spheres of diameter 3.16 mm and
750, 383 and 157 um, having density 1050 kg m™3. A 3-stage micro-manipulator
mounted on top of the experimental tank facilitated the accurate deposition of the
spheres, ensuring their release in the center of the tank and subsequent passing
through the desired observation window as they settled. The micro-manipulator held
a partially submerged conical injector (a 1 ml pipette) with an entrance diameter of
9.5 mm and an exit diameter of 3.3 mm, through which the spheres were released into
the tank. The 3.16 mm and 750 um spheres were deposited into the conical injector
using a pair of tweezers. This was not feasible for the 383 and 157 pm spheres, which
were instead mixed in very dilute quantities into a water sample, and then released

into the conical injector using a 1 ml pipettor.

To image the wake of the settling spheres using Synthetic Schlieren, a 20 mm-
square mask consisting of a random pattern of 35 um dots was printed on trans-
parency film using a high-resolution image-setter (Figure 2-1). The same mask was
used for all experiments. The pattern was mounted a distance B=83 mm behind the
back wall of the tank, and imaged at 20 frames per second using a PCO 1600 CCD
camera, operating at a resolution of 800 x 600 pixels. The camera was mounted on a
Nikon SMZ 1000 stereo-microscope fitted with a P-Achro 0.5X objective, positioned
a distance L=189 mm in front of the mask, corresponding to the maximum working
distance. Magnification factors of 7.5X, 10X and 15X were used, corresponding to

observation windows of 15.2 x 11.4, 11.5 x 8.6, and 7.6 x 5.7 mm?, respectively.

Images were captured using IPLab (Scanalytics) and the apparent displacements
of the mask, caused by perturbations of the density stratification, were determined
using DigiFlow [11]. To minimize the effect of thermal fluctuations, a thermal isola-

tion tunnel was placed between the microscope and the tank, and the reference image
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Figure 2-1: A 20 mm-square mask consisting of a random pattern of 35 pm dots.

required by Synthetic Schlieren was an average of the first ten frames captured prior

to the settling sphere entering the observation window.

2.2 Data Analysis and Processing

We begin by reviewing the axisymmetric Synthetic Schlieren technique detailed in
Onu et al. [29], before presenting the inverse tomographic method, with modifica-

tions relevant to studying the wake of a settling sphere.

2.2.1 Mathematical derivation

The path followed by a light ray in a stratified fluid satisfies Fermat’s variational

principle

5/n(x,y,z)ds =i (2.1}

Here s is the along-the-light-ray coordinate and n(z,y, z) is the refractive index field

that is a function of across-tank (x), along-tank (y) and vertical coordinates (z) (see

29



thermal tunnel

camera

conical

injector \

sphere

Figure 2-2: Schematic of the experimental setup.
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Figure 2-2). Assuming the tangent to the light ray path always has a component in
the y direction, the path can be described by z(y) and z(y): the former satisfies

& dz\?> [(dz\’| 16n
22 =1+ (—) + (—) -, (2.2)
dy dy dy n ox
[49], and the latter the same equation with z and z interchanged. Provided that a
light ray remains sufficiently parallel to the y direction, the nonlinear terms in (2.2)
become negligible (for our set-up these are O(1072) or less), and the equations for
z(y) and z(y) decouple. Since we anticipate horizontal density gradient perturbations,
and thus horizontal refractive index gradient perturbations, to greatly exceed vertical
ones (except perhaps in a small region in front of the sphere where isopycnals are
compressed), our focus will be on the horizontal deflection of a light ray. By direct
integration the z-component of a light-ray path is then
1 (Y [Yon .
= x; + ycotg; + — —dydi), 2.3
z(y) =zi+y ¢z+n0/0/03xyy (2.3)
where z; and ¢; are the location and angle of incidence in the horizontal plane at the

point a light ray enters the tank, respectively.

Consider the path followed by a light ray from the camera to the tank, which then
arcs through the stratified fluid and eventually incidents on the random pattern of
dots. Note that the light ray itself travels from the random pattern of dots to the
camera, but back-tracking the light ray path is geometrically more convenient. We
decompose the quiescent refractive index field n into n = n, + ny, where n, is the
reference index of the medium, n; is the background index gradient associated with
the background density gradient. With the settling of a sphere, the disturbed refracive
index field ng becomes n = n, + ny + n’, where n’ is the index field perturbations
caused by the settling of the sphere. We assume that n, and n’ are small compared
with n,.

Without the settling sphere, the light ray path is given by equation (2.3) for 0 < y <
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W and given by equation (2.4) for for W < y.

W ri19n .
z(y) = z; + Wtan¢; + / / E—B%dg}d@ + Ptan ¢p + Btan ¢p, (2.4)
o Jo

Here z; and xg are the horizontal positions of the light ray as it enters the interior of
the tank and and that of the light ray leaving the tank respectively. ¢;, ¢w, ¢p, and
¢p are the angles made between the light ray and the horizontal when the light ray
enters the interior of the tank, incidents on the tank wall as it leaves the interior of the
tank, travels inside the tank wall, and after it leaves the tank respectively. tan ¢w

can be obtained by differntiating equation (2.3) with respect to y and evaluate at

y=W. "
dx 1 on
tan oy = @ly=w = tan ¢i +/0 - 8 dy, (25)

By assuming that the light ray remains approximately parallel to the horizontal,
tan ¢ = ¢ and sin ¢ = ¢, where ¢ is the angle between the light ray and horizontal.
By applying the Snell’s law as the light ray leaves the interior of the tank and entering
the tank wall, and as the light ray leaves the tank wall respectively:

n
op = dw— (2.6)
Np
Tp Mo
= ¢pp—L = pw =2 2.7
¢B = ¢p . dw - (2.7)
Since tan ¢p = ¢p and tan ¢p = @p, equation (2.4) can be written as

z(y) = = + Wtan¢; + / /yl?ﬁdd +(P—+B )¢W, (2.8)

by using equation (2.5) and that tan ¢w ~ dw
910
z(y) = z;+Wtandg; + / / ——TEd dy

W 10n
(PE'*"B a) (tancbi—l-/(; T_La_.’lid ) (29)

Similarly, the light ray path z4(y) under the disturbance of a settling sphere is given
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Wori19 X
zqly) = xi—i—Wtanqﬁi—%-/ /w—@d dy
0

ng 0%
W
10
+ (Pﬁi + B’l"-> (tan & + / — gy ) (2.10)
np Ng o Mg Ox
The apparent horizontal displacement Az is given by

Ar = —(zq—z)

Y10n  10ng ..
= S =2 hdy
/ / ndxr ng Or

%
+(p2e 4 B / Lon 100, (2.11)
np ne/) Jo nOx mng Ox
Since
/
1on 10ng LW (2.12)
nodr ng O0x n, Ox
hence

Y1 9n No Wo1on .
/ / ———dydy—( ——+Bna)/0 ;ngd (2.13)

If we assume the index perturbation n’ is two dimensional, P = 0 and n,/n, = 1,

then , equation (2.13) becomes

Az = —%W(W Lo LW (2.14)

n, 0T

Making use of the relation -~ ‘gz ;325 , the apparent horizontal displacement Az of
a feature in the mask due to a perturbation p'(z, z) of the density field in a tank of

width W is

y 3p
Az = —-K; —dy Kg dydy (2.15)
0

Here K; = 7p (B + ﬂ), K, = -}il, P is the thickness of the container walls, n, and

Ta np

np are the refractive indices of air and the tank walls, respectively, py and ng are the
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characteristic density and refractive index of salt-water, g is the acceleration of grav-
ity, and y=1.878 m~!s? for salt-water !. For an axisymmetric disturbance extending
over a characteristic length-scale V, the first term in equation (2.15) scales as BV (for
B > P), whereas the second term scales as V2. For microscale applications, V <« B

and the signal is dominated by the first integral.

In general, equation (2.15) is fully three-dimensional, but in the special case of an
axisymmetric disturbance it can be solved using two-dimensional techniques. This
was demonstrated for the axisymmetric wavefield generated by an oscillating sphere,
where %%' was determined from apparent vertical displacements [29]. Here we use a
modified version of the same technique to measure %%', which itself is not axisym-

metric, but can be derived from the axisymmetric quantity %Bri = %%’;—'. The integral

equation we consider is therefore

w / W ry 7
Az = - K, / Wy K, / / 0P T iy (2.16)
0 0 0

orr orr

This provides a means for determining %f’ri from measured apparent displacements Az

of a mask, as described in the following section.

2.2.2 Axisymmetric inverse tomography

First, we consider a 2V x 2V horizontal cross-section of the wake behind a settling
sphere, centered on the line of axisymmetry, and outside of which density perturba-
tions are negligible. This domain is discretized into a series of rings in the manner

shown in Figure 2-3.

In deriving (2.15) we have corrected a sign in the presentation of the formulation in (10], [15],
[29], and [40]; the results in those papers remain unaffected (S. Dalziel, pers. comm, 05/06; B.
Sutherland, pers. comm., 05/06). We have also included a multiplicative factor 1/ng on the right-
hand side of (2.15) that is missing in [15] and [29)]
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Consider the N-component vector of apparent horizontal displacements
D = [Az(z,), Az(z), ..., Az(zy)], (2.17)

in which z; are the evenly spaced horizontal locations at which apparent displacements

are measured. Since the wake structure is axisymmetric, %% can be discretized as the

N component vector

op’ op’ ap’
S (Ro), 3 (R), oy 5

o (RN )], (2.18)

Q:

where R; represents the mean of the inner and outer radii of the i-th ring and we
have assumed %%' = 0 in the outermost (shaded) region in Figure 2-3. Therefore, the

two integrals in equation (2.16) can be approximated at z; by

14 3p':1: N-1
V—a—;;dy ~ 2 ; (R) Ayu G.Q, (2.19)
and
6p x
/ y or rdyd
2N k .
Ag; Gij——(Rj) = = , .

; yk;ay,ar (R,)Rj G.Q (2.20)

where Ay;; is the length of the horizontal transect in ring j (the central ring is la-
beled 0) corresponding to position z;, as shown in Figure 2-3; Agi; = Ayij—n-1) and
Rj= Rj_n1ifj > N+i, Afi; = Ayqw—j) and B; = Ry_; if § < N —i + 1, and
Agi; = 0 otherwise; and G, and G, are NX N mesh-dependent matrices.

The integral equation (2.16) is thus converted into the discrete problem

D = —-(K,G; + K2G2)Q, (2.21)
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which can readily be solved by inverting the matrix K1G1 +K5Go. Before analyzing
the experimental data, we successfully tested the numerical implementation of this
algorithm for the axisymmetric density perturbation p' = e""2, for which equation

(2.16) can be solved analytically.

A le—lIA ym—xt

X)X Xn-1 XN

Figure 2-3: Discretization of the horizontal plane in the wake above a settling sphere
used for tomographic inversion. The sphere is at the center. The radial density
gradient perturbation is constant within each ring and zero in the outer shaded region.

2.3 Applications

Our first application of the microscale Synthetic Schlieren technique was for a 780

pm diameter sphere settling in a stratification with N = 1.31 s7!, and Re = 4.1.
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Figure 2-4: Qualitative Synthetic Schlieren visualization of the wake of an a = 390 ym
sphere for N = 1.31 s71. The intensity is correlated with the magnitude of the density
perturbation gradient. The figure is a composite of two frames (top and bottom) and
the position of the sphere, added in postprocessing, is accurate to within one sphere

radius.

For these experiments we used 7.5X magnification, corresponding to a resolution of
19 pm/pixel. Figure 2-4 shows an example of the wake behind the sphere, obtained
by subtraction of the reference image. This technique is commonly referred to as
qualitative Synthetic Schlieren [10], and approximates the magnitude of the density
gradient perturbations. Despite this relatively crude processing, the structure of the
wake is already evident. It is highly symmetric about the dark vertical centerline,
where distortions of the pattern are small. Furthermore, the wake is approximately

5 mm wide and more than 22 mm long, greatly exceeding the size of the sphere.

The structure of the wake, in particular its symmetry, is even more evident in
Figure 2-5, which presents a contour plot of the apparent horizontal displacements
Az of the mask. This data was obtained using the pattern-matching algorithms of

[11], with an interrogation-window of 19 pixels and a window-spacing of 16 pixels,
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Figure 2-5: Contours of the apparent horizontal pixel displacements Az in the wake
of a 780 um sphere. The particle Reynolds number is Re = 4.1. The portion of the
sphere in the field of view has been superimposed. Data along the three horizontal
transects A, B, and C are presented in Figs. 5 and 6.

corresponding to approximately 20 data points across the width of the wake. A spa-
tial zero-phase, low-pass Butterworth filter was used to remove high-frequency noise
prior to axisymmetric processing. Characteristic horizontal displacements were on
the order of 0.5 pixels (9.5 um), demonstrating good operating conditions for the

pattern matching techniques, which are accurate to better than 0.1 pixels [10].

One practical difficulty of Synthetic Schlieren at the microscale is that the small
depth of focus of the video-microscope requires the sphere to be very close to the
mask (small B) in order to have both in focus. This conflicts with the demand that
the sphere be sufficiently far from the mask to generate a strong enough signal, as
discussed earlier in regards to equation (2.15), effectively precluding focusing on both
the mask and the sphere at the same time. Thus the sphere itself cannot be clearly

resolved in the image. While one could envisage an experimental set-up that includes
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a second, synchronized video-microscope focused on the sphere and capable of simul-
taneously tracking its location, we could visually determine the position of the sphere
in each raw image to within one sphere radius. For the data in Figure 2-5, the center

of the sphere was approximately (z,z)=(0.3,-0.1) mm.

The apparent horizontal displacements Az measured along a cross-section of the
wake approximately four diameters above the sphere, indicated by the dashed line
A in Figure 2-5, are presented in Figure 2-6. The horizontal density gradient per-
turbation %‘-;1 was then obtained from Az using the axisymmetric algorithm detailed
in section 3. Figure 2-6 shows that the magnitude of %ﬁi (~ 220 kg m™*) is greater
than the background vertical stratification (~ 180 kg m™), implying strong distor-
tions of isopycnals by the settling sphere. In contrast to previous studies of internal
waves, it is interesting to recognize that Synthetic Schlieren can reliably detect such
dramatic nonlinear distortions of the background stratification. This is due to the
region of influence of the sphere being highly localized and therefore still generating
only a weak deflection of the light ray passing though the tank. In obtaining %%', we
enforced Az = 0 at either end of the profile, smoothly tapering it off over the last 10
pixels. This was done to avoid far-field apparent displacements Az, which are on the
order of the background noise level (0.02 pixels), being amplified by the axisymmetric

processing and deteriorating the density perturbation profile.

Integrating %%' along a radial transect and adding the background stratification
yields the perturbed density p at a given cross-section of the wake. This is illustrated
in Figure 2-7 for the transects A, B, and C, indicated in Figure 2-5, which are 4,
8, and 12 diameters above the sphere, respectively. The accuracy of the method is
supported by the fact that, after integration across the wake, only a minor density
mismatch exists between the far field on the left and the right of the sphere (<0.016
kg m™3). As one might expect, Figure 2-7 shows that lighter fluid is dragged down-
wards by the settling sphere. The fluid at the center of the wake has been dragged

down a distance g’/ gf, corresponding to 1.9 mm for transect A, 1.6 mm for transect

39



2001 _a p'/a r 10.8

A x (pixels)

N

3 p/9r(kgm™

x (mm)

Figure 2-6: Apparent horizontal displacements of the mask (thin line) and radial
density gradient perturbation (thick line) for a 780 um sphere measured along transect
A in Fig. 2-5.

B, and 1.2 mm for transect C. We note that this corresponds to about 1 sphere di-
ameter. The three transects show that the density perturbations diminish along the
wake, although Figure 2-5 reveals that there is a 2 mm region immediately behind

the sphere in which the opposite is true.

To test the operational limits of our setup, we performed additional experiments
with smaller spheres, of diameter 383 and 157 pm, using 10X and 15X magnification,
respectively. The apparent horizontal displacements and the corresponding radial
density gradient perturbations measured four diameters above a 383 pm sphere set-
tling in a stratification with N = 1.17 s~ are shown in Figure 2-8. The signature of
the wake can still clearly be detected by Synthetic Schlieren, although it is noticeably
weaker, with apparent displacements that are about one quarter of those for the 780
pm sphere. After processing, the resulting radial density gradient perturbations are

smaller by roughly the same ratio.
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Figure 2-7: Density perturbations in the wake of a 780 pm sphere, for transects A,
B, and C in Fig. 2-5.
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Figure 2-8: Apparent horizontal displacements of the mask (thin line) and radial
density gradient perturbation (thick line) for a 383 pm sphere.
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On an even smaller scale, cross-sectional data of the maximum detected horizontal
displacement anywhere al-ong the wake of a 157 um sphere is presented in Figure 2-9.
While there is evidence of antisymmetric apparent displacements (highlighted by the
dashed line that guides the eye) similar to those in Figures 2-6 and 2-8, the magnitude
of this signal is significantly smaller than for the larger spheres. Furthermore, the
signal is compromised by the experimental noise, indicating that a 157 pm sphere lies

at the lower detection bound for our experimental setup.
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Figure 2-9: Apparent horizontal displacements of the mask for a 157 pm sphere.

To quantify the background noise we performed experiments in the absence of a
settling sphere. A stratification was established and left to stand for six hours, after
which apparent displacements of the mask were determined using the same technique
as above. The noise, likely due to a combination of small-scale mechanical vibrations,
light intensity fluctuations and thermal disturbances both external and internal to
the microscope, was on the order of 0.02 pixels. This is at the limit of what can be

detected using pattern-matching techniques [10].

At the other end of the scale, for strong density gradient distortions the Synthetic
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Schlieren technique, which assumes small deflections of light rays, breaks down and is
only capable of providing qualitative data. For a given sphere density, this effectively
imposes an upper bound on the largest sphere whose wake can be studied quantita-
tively. Our experiments with a polystyrene sphere of 3.16 mm diameter, for example,

produced mixing, which in turn generated highly nonlinear distortions of the mask.

2.4 Conclusion

In order to facilitate quantitative studies of environmental processes in the ocean in-
volving the motion of microscale particles and organisms through stratified fluids, we
have extended the application of Synthetic Schlieren techniques to the microscale. We
tested our method on settling spheres, for which it is the structure of the wake rather
than radiated internal waves that is primarily responsible for distorting the back-
ground stratification. In the wake, density gradient perturbations in the horizontal
far exceed those in the vertical, requiring modification of the previous formulation of
axisymmetric Synthetic Schlieren [29]. For quantitative data, the method is limited
to axisymmetric disturbances, while it can still provide qualitative information on the

flow structure for non-axisymmetric disturbances or in the presence of strong mixing.

We could clearly detect and characterize the wake of 780 and 383 um spheres, find-
ing that lighter fluid is dragged downwards in a wake, the size of which greatly exceeds
that of the sphere. As the sphere size was decreased further, the signal generated by
the density gradient perturbations approached the background noise level. Even for
a 157 pm sphere, however, we were able to detect a wake signature. In Chapter 4 and
5 we will discuss the application of this technique to elucidate the fluid mechanics

of a stratified wake, in particular the suggested strong increase in drag coefficient [43].
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Chapter 3

Methods of Investigation

In this chapter, we provide the formulation of stratified drag coefficient. We present
our methods of investigations, including drag measurement by time-lapse photogra-
phy, wake visualization by microscale synthetic schlieren, and numerical methods.
The results of numerical simulations were provided by Dr. Carlos Torres, and I
performed the data analysis of the numerical simulations. Here we provide a brief
overview of the numerical simulations for convenience, which also serves the purpose

of comparing the experimental and numerical results.

3.1 Formulation of Stratified Drag Coefficient

The drag force Fp on a sphere in a homogeneous fluid can be written as

pV dU

trdu ds
_ _ — Rn2
Fp = —6mpal G 6a°pv/Tv /_oo (dt )t=s — (3.1)

where V is the volume of the sphere, p the density of the fluid and p its dynamic
viscosity. The first term on the right is the Stokes drag for steady settling at speed
U, the second is the added mass drag, arising because an accelerating sphere spends
energy in accelerating the surrounding fluid, and the third is the Basset history drag,

due to diffusion of vorticity from an accelerating sphere as the boundary layer forms.
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The latter two terms are negligible under steady conditions. To adopt a consistent
formulation of Fpp across all Re, it is customary to write Fp = Cf 3pU%ra?, where
the homogeneous drag coefficient C¥ is a function of Re. For Re << 1, CH = 12/Re.
While the latter relation is somewhat misleading, since Fp is independent of Re in
this regime, empirical extensions of this formulation prove useful to bridge the small

and moderate Re regimes. A widely used empirical relation is

_2 6
Re 1+ +/2Re

which holds for 0 < Re < 2 x 10° with less than 10% error [50].

CH + 0.4, (3.2)

The problem of a sphere settling in a linearly stratified fluid is illustrated in figure
3-1(a). Adopting the formalism for a homogeneous fluid, under quasi-steady condi-
tions (defined below) we write the drag force in a stratified fluid as Fp = C31pU%ra?,
where the unknown stratified drag coefficient C captures the influence of stratifica-
tion. For a given stratifying agent, we expect C3 to depend on Re and F'r. In general,
C3 will also depend on the Prandtl number Pr = v/D, where D is the diffusivity
of the stratifying agent. Here we focus on salt stratifications (Pr = 700) and briefly

address temperature stratifications (Pr = 7).

Settling in a stratified fluid is an inherently unsteady process, because the density
contrast between particle and surrounding fluid, hence the particle speed, decreases
during settling: eventuaﬂy the particle comes to rest at its depth of neutral buoyancy.
We will see, however, that settling is quasi-steady for the parameter regime explored
here, as added mass and Basset terms are negligible. Then, U is set by the balance

of drag and buoyancy forces:

C’g%pUsz = %mﬁ&pg, (3.3)
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Figure 3-1: (a) Schematic of a sphere settling in a linearly stratified fluid. (b) The
numerical grid in the region close to the sphere.

where Ap = pp — p is the density contrast and pp the particle density. This yields

Cs = ?%3]% %’-, (3.4)
which enables C3, to be determined from measurements of p(z) and U(z). To highlight
the effect of stratification, one can normalize C3, by the locally homogeneous drag
coefficient C§ from equation (3.2), here representing the drag coefficient the sphere
would have if the entire water column had the density and viscosity of the fluid at
that depth. The normalized drag coefficient

S
N_CD

Cp = o (3.5)

reveals whether stratification does (C{y # 1) or does not (CY = 1) affect drag.
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3.2 Methods

To investigate the problem of a sphere settling in a linearly stratified fluid, we used
a combination of time-lapse photography experiments to measure the stratified drag
coefficient, visualization of the wake structure by microscale Synthetic Schlieren [51],

and numerical simulations. Here we describe each approach.

3.2.1 Drag Measurement by Time-Lapse Photography

Experiments were performed in a 30 cm high, 51 cm long and 26 cm wide plexiglas
tank, with 0.54 cm thick walls. The tank was covered with a lid to eliminate con-
vection in the fluid due to evaporation. An initial set of experiments was performed
in homogeneous salt-water solutions of densities 1000, 1019 and 1035 kgm™3, mea-
sured with an Anton-Parr DMA38 densitometer. For all other experiments, the tank
was filled with linearly stratified salt water using a double-bucket system [30], and
left to stand for at least five hours to dissipate any residual flows. To achieve larger
density gradients, in some experiments the tank was first partially filled with fresh
water, followed by linearly stratified salt water up to a density ps, and finally with

homogeneous salt water of density ps.

Spherical density floats (American Density Floats) with densities ranging from
1010.0 to 1130.0 kgm™2 in intervals of 10.0 kgm™2 were released into the tank to
measure dp/dz. Regular vertical spacing of the floats confirmed the linearity of the
density profile p(z). The density gradient was determined from a linear fit to p(z) and
used to compute N, taking pp = 1000 kgm=3. The small size of the floats (diameter
= 7 mm) and their location far from the settling path (> 20 cm) ensured they did not
affect the density field. There was no discernible motion of the floats, demonstrating

the absence of any convection in the tank.

Polystyrene spheres of radius ¢ = 196 and 390 um (Duke Scientific; coefficient of

variation for a: 3% ) and density pp = 1050 kg m~3 were used in the experiments. To
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ensure the accuracy of pp, we confirmed that the polystyrene spheres and the 1050
kgm™3 density float came to rest at the same depth. We measured the temperature
of the fluid at the depth of each observation by a needle thermometer located far from
the settling path. The temperature and the corresponding density were used to cal-
culate the local dynamic viscosity p [16], including the effect of salinity on viscosity.
Before release, particles were mixed with a small amount of fluid from the surface of
the tank and a minimal amount of soap as a wetting agent to prevent sticking. To
ensure settling through the observation window, a single particle was released using
a 1 ml pipettor through a partially submerged conical injector (a 1 ml pipette with

its tip cut off) inserted in a 7 mm wide hole in the lid.

To avoid wall effects, the settling path was more than 5 cm (> 125a) from the
nearest wall of the tank, which corresponds to a less than 1% change in drag coeffi-
cient for a homogeneous fluid [8]. The spheres settled in front of a black background
and were illumintated by a fiber-optic light source. A ruler placed to the side of
the settling path, and at the same distance from the camera, was used to calibrate
vertical distances, and set vertical by use of a plumb line. Images were captured
over a 3 cm tall observation window at 3 to 12 frames/s using a JAI CV-M4+CL
CCD camera controlled by DigiFlow [11] and spheres were subsequently tracked with
Matlab (The Mathworks, Natick, MA). A particle appeared as a light spot on a dark
background, and the centre of the spot was taken as the position of the particle. The
time series of vertical position was smoothed by a three-point moving average, before

computing the particle velocity U(z) using a four-point centre-difference approach [9).

For each experiment, characterized by a given combination of N, a and Ap, ten
replicate runs were performed to reduce errors associated with such factors as variabil-
ity in particle size and injection conditions. At each vertical location, the mean veloc-
ity was computed as the average over these ten runs, as shown in figure 3-2(a). The
mean velocity profile, in combination with p(z), determined Re, F'r, Ri = Re/Fr?,

and CJ, which all varied over the vertical length of the observation window since
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p(z) increased with depth. Experiments were repeated for 0.01 < Re < 1.57 and
0.09 < Fr < 6.75 (figure 3-2(b)) by varying N and a. As a validation of our av-
eraging procedure, two sets of ten runs were performed in two adjacent observation
windows along the settling path, for ¢ = 196 ym and N = 1.69 s™'. The two re-
sulting curves in (Re, Fr~!) space (curves 1 and 2 in figure 3-2(b)) are a smooth
continuation of each other. For all the settling experiments performed, calculation of
dU/dt showed that the added mass and Basset force terms (equation 3.1) contributed
less than 1% of the total drag force, justifying our earlier assumption of quasi-steady

settling.

3.2.2 Wake Visualization by Microscale Synthetic Schlieren

To visualize the effect of the settling sphere on the fluid density field, we performed
experiments using Microscale Synthetic Schlieren [51], as is presented in Chapter 2.
Our experiments were performed in a 48 cm high, 6.3 cm long and 2.5 cm wide plex-
iglas tank, with 0.54 cm thick walls. The distance between the settling path and the
closest wall (> 32a) corresponded to a less than 5% change in drag coefficient for a
homogeneous fluid [8]: as will be seen below, this is negligible compared to the effect

of stratification.

Two forms of processing were used. The first, known as qualitative Synthetic
Schlieren, consists simply in subtracting the reference image from each subsequent
image and provides a proxy for the relative magnitude of density perturbation gradi-
ents. The second, quantitative Synthetic Schlieren, uses cross-correlation algorithms
to compute the apparent displacements of the mask and inverts them to obtain the
associated gradients in density perturbation. Details of the processing are given in
[51). Radial density perturbation gradients 0p'/Or were then integrated along r at a
given vertical position z, and this was repeated for each of the 600 vertical positions
(i.e. 600 vertical pixels) in an image, yielding the density perturbation field p/. This

was added to the background density field, enabling calculation of isopycnals by con-
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107 1004 10'

Figure 3-2: (a) The settling velocity U versus depth z for ten replicate experiments
(faint lines), along with the mean (bold line), for a = 390 ym and N = 2.92 s~
(b) The parameter regime explored experimentally, shown in terms of Re and Fr—1.
Each experiment is represented by a continuous curve, because a particle samples
decreasing Re and F'r as it settles into progressively denser fluid. Curves at larger
Fr are shorter because in a weaker stratification U (and thus Re and F'r) varies less
over a given vertical window. All experiments were conducted at Pr = 700 (salt
stratification). Two sphere sizes were used: a = 196 pm (experiments 1,2,3,5,6,9,10)
and a = 390 ym (experiments 4,7,8,11).
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touring the total density field in Matlab.

3.2.3 Numerical Model

Numerical simulations were performed for comparison of the drag coefficient with
experimental data and to obtain high resolution information on the density and flow
fields over a wide range of parameters. Simulations were carried out in the parameter
regime 0.05 < Re < 2.1, 0.02 < Fr < 200, and 7 < Pr < 700. The model was
adapted from an earlier one [43, 23] and is described here only briefly. It considers
flow of a linearly stratified fluid at constant velocity U past a stationary sphere (figure

3-1(a)), and uses finite-differences to solve the nondimensional equations

du 0 1

_ . = — —_—1 2
5 +u-Vu Vp Fr23+ Rev u, (3.6)
ap’ J __ 1 2 7
—87+11 Vp—w—l—}-mv,o, (3.7
2 _ 1w (i) — : L g2p 0P
Ve = F’I‘ZV (V'5) =V [(u-V)u + ReV p 5 (3.8)

obtained by rescaling lengths by a, velocities by U, pressure perturbations by p,U?,
and density perturbations by —a (dp/dz). Here u = (u,w) is the fluid velocity in the
radial and vertical direction, respectively, p the pressure, j the vertical unit vector,
positive upwards, and P = V - u. Equation (3.8) replaces the incompressibility con-
dition: when discretizing P/0t as (P™"*! — P™)/At (n refers to the integration time
t = nAt and At is the integration step), incompressibility was enforced by setting
Pt = (. The boundary conditions on the surface of the sphere were u = 0 and zero
density flux, enforced by requiring (9p'/0z) z+ (0p'/0r) r = z. The surface boundary
condition for pressure was obtained from equation (3.6) by setting u = 0. Far from
the sphere, all physical quantities tended to their unperturbed values: u = (0,1) at

the upstream (lower) boundary, du/dz = 0 at the downstream (upper) boundary,
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and p' = 0, dp/0n = 0 at both.

To improve accuracy near the sphere surface while simplifying the implementation
of boundary conditions, equations (3.6)—(3.8) were written in curvilinear coordinates
(¢,7) and solved on a curvilinear grid (figure 3-1(b)), as described in [43]. The external
boundary of the grid was elliptic, with axes lengths of 80 (vertical) and 40 (horizon-
tal). The grid consisted of 65x91 or 195x91 (£ X 1) mesh points, non-uniformly
distributed with a higher mesh density near the sphere and a smallest grid size of
8.2 x 1074 The grid ensured that the density boundary layer 6, = O((Re Pr)~1/?)
was accurately resolved: for Pr = 700 and Re = 1, §, = 0.038 was covered by 16
grid points. This also ensured resolution of the momentum boundary layer, which

was always thicker than the density boundary layer since Pr > 1.

For the small Reynolds number stratified regime investigated here, the GMRES
(Generalized Minimal RESidual method) was found to be superior in solving the Pois-
son equation for pressure (3.8) compared to the Successive Overrelaxation Method
[23] used in a previous version of the code [43]. The solution procedure was then as
follows: given u and p at time { = n At, p was obtained from equation (3.8) using
GMRES and substituted into equations (3.6) and (3.7). Solution of the latter two
equations yielded updated values of u and p at t = (n + 1) At. Equations (3.6)—(3.8)
constitute a time-dependent problem, but here we were interested in steady solutions.
Therefore, the cycle was repeated starting from u = (0,1), o’ = 0 until the conver-
gence criterion |f™*! — f"|,,,e < 107* was satisfied, where f represents any one of u,
w, p or p. The time step was At = 0.0025 or 0.0001 and steady state was typically
reached within ¢ = 30. Extensive convergence tests on time step and mesh size were

carried out by Larrazbal et al.[23].

The drag coefficient Cj5, was computed as the sum of the pressure (C2) and viscous

(C3}) drag coefficients:
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Cs = ——-1———/pn~jd8, (3.9)
S

soU?Ta?

s 1

cs / un- (V) + (Vu)T) - jds, (3.10)

B 1oU%ma? Jg
where n is the unit vector normal to the sphere surface S, positive outward. Drag

coefficients were normalized by their homogeneous counterparts to obtain the nor-

malized drag coefficients C5, C¥ and C¥).
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Chapter 4

Results and Discussion

In this chapter we provide the results of experiments and numerical simulations. We
discuss the origin of enhanced drag and present a scaling argument to rationalize
the stratified drag coefficient law. We elucidate a physical mechanism responsible for
the enhanced drag in a stratified fluid at low Re, which is drastically different from

mechanisms proposed at higher Re.

4.1 The drag due to stratification

We begin by reporting experimental results for particles released in homogeneous
salt-water solutions. Unless otherwise noted, all results are expressed in dimension-
less form as described in section 3.3. Using the measured terminal settling velocity
U, CH was computed from a balance of buoyancy and drag (equation 3.4, for CH
instead of C5). This was repeated for four fluid densities. Results are reported as a
function of Re in figure 4-1 and compared to the prediction from equation (3.2). The
good agreement validates our procedure for measuring settling velocity, ensuring that
drag coefficients can be reliably determined. A validation of the numerical model was
performed by computing C3 for various Re and Fr = 200. At this high value of Fr,
stratification is unimportant and as one would expect the calculated values of C3,

tend to CH (figure 4-1).
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Figure 4-1: The homogeneous drag coefficient Cf measured experimentally (circles)
and computed numerically (triangles), compared with the prediction from equation
(3.2) (continuous line), as a function of Re.

We proceeded to measure drag in a linearly stratified fluid and present results in
terms of the normalized drag coefficient Cy. This is shown as a function of Fr~! and
Ri in figures 4-2(a,b), respectively. The choice of Fr~! as the independent parame-
ter is appropriate at moderate Re [43, 19], while Ri is suggested by the theoretical
analysis of Zvirin and Chadwick [53]. Three important conclusions emerge. The first
is that CY > 1, demonstrating that a linear stratification does increase drag at small
Re; indeed, our experiments reveal that stratified drag can be more than three-fold
greater than its homogeneous counterpart. Secondly, CJ increases monotonically
with both Fr~! and Ri, showing that stronger stratifications result in larger drag.
Thirdly, the data collapses considerably better when plotted against Ri than against
Fr~! implying that Re and Fr affect C only through the combination Ri = Re/Fr?
at small Re. We found a fit of the form 1+ o Ri? appropriate to describe the depen-
dence of CY on Ri, with the best fit for the experiments given by CJ = 1+1.95 Ri%%2.

Drag coefficients were also computed numerically. We performed two sets of simu-

lations (Re = 0.05 and 0.5) at Pr = 700 to model a salt stratification (the data set for
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Pr = 7 represents a temperature stratification and will be discussed later). Numeri-
cal results (figure 4-2) confirm that C > 1 and there is good quantitative agreement
with the experiments. Furthermore, numerical results likewise reveal the clear de-
pendence of C§ on Ri by successfully collapsing data for two different Re. A best
fit to the combined numerical data for Re = 0.05 and 0.5 yields C¥ = 1+ 1.91 Ri%4!
(CN —1 ~ Ri®* for Re = 0.05; C§ — 1 ~ Ri®* for Re = 0.5). This is a slightly
weaker dependence compared to the experiments, but the difference in CY predicted

from the two fits is < 15% over the experimental parameter range.

Numerical results further reveal that both the pressure and viscous components
of drag increase with Ri (figures 4-3(a,b)). For Ri =0, CY =1/3 and CY = 2/3, as
expected for Stokes flow. The scaling of C5 —1/3 and C{Y —2/3 with Ri is similar to
CN —1, with a slightly larger exponent for CY. To understand the origin of pressure
and viscous drag increase, in figures 4-4(a,b) we plot the pressure and the vertical
component of the tangential shear stress along the surface of the sphere, respectively,
corresponding to the integrands in equations (3.9)-(3.10). An increase in Ri induces a
larger front-aft pressure difference (figure 4-4(a)), resulting in increased pressure drag,
and enhances shear stresses, particularly at the equator (figure 4-4(b)), accounting

for the larger viscous drag.

To understand the origin of the increase in pressure and viscous drag, the drag

force Fp can be written as

Fp = —/pndS +u V A wdVp, (41)
S

Vr

where S is the surface area of the sphere, Vr is the volume of the fluid domain, p is
the pressure, and w = V A u is the vorticity. The two terms represent pressure and
viscous drag, respectively. Numerical results can be used to study the changes in the
vorticity fields with Ri. The effect of stratification on viscous drag can be examined

by studying the vertical component of V A w. Figures 4-5 (a) and (b) present this
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® Re=0.05, Pr=700 L
4- | m Re=0.5, Pr=700
A Re=0.05, Pr=7

Figure 4-2: The normalized drag coefficient CJ as a function of Fr~! for experiments
(solid blue lines) and numerical simulations (symbols). The bars represent upper and
lower bounds of experimental values. (b) CJ as a function of Ri for experiments
(solid blue lines) and simulations (symbols). Dashed lines represent power law fits,
performed separately for the experiments and each set of simulations, and color-coded
accordingly. Inset: detail of C} — 1 vs. Ri in log-log scale.
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Figure 4-3: (a, b) The numerical pressure drag coefficient CY and viscous drag coef-
ficient CiY vs. Ri, along with best fit power laws (dashed lines). In all panels, dotted
lines represent the theoretical prediction for homogeneous Stokes flow (Ri = 0):
OF =1,08 =1/3 and CF = 2/3.
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Figure 4-4: (a) Pressure and (b) vertical component of the tangential shear stress,
along the surface of a settling sphere for Re = 0.05 and different Ri. Ri = 0.29, 0.43,

0.61, 0.84, 1.12, 1.45 from top to bottom in panel (a), and from bottom to top in
panel (b). 8 = —m/2 is the front of the sphere (figure 3-1).
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Figure 4-5: (a, b) (V Aw) - j for (b) Ri = 0.29 (Re = 0.05, Fr = 0.42) and (c)
Ri = 145 (Re = 0.05, Fr = 0.19). A stronger stratification results in a larger
downward component of V A w, hence a large viscous drag.

data for Ri = 0.29 and 1.45, revealing that the vertical downward component of
V A w increases with Ri, resulting in a larger viscous drag force. The signature of
stratification is also apparent in the vorticity field itself. Figures 4-6 (a) and (b) show
w for Ri =1.25 x 107® and 1.45, respectively, while panel (c) shows a radial transect
of w taken at the equator (z = 0). When Ri ~ 0, we recover the front-aft symmetric
distribution expected for homogeneous Stokes flow. For larger Ri, vorticity contours
become asymmetric, with higher concentration near the rear of the sphere, squeezed
towards the sphere’s surface, and w at the surface increases significantly (note the dif-
ferent gray scales in panels (a) and (b)). This corresponds to higher velocity gradients
near the rear of the sphere, higher viscous stresses, and hence a larger viscous drag
force. Figures 4-6 (d) shows streamlines for Ri = 1.25 x 107% and 1.45, respectively.

For larger Ri, streamlines become asymmetric.
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Figure 4-6: (a, b) Vorticity field w around the sphere for (a) Ri = 1.25 x 10~°
(Re = 0.05, Fr = 200) and (b) Ri = 1.45 (Re = 0.05, Fr = 0.19). (c) Radial
distribution of vorticity at the equator of the sphere (f = 0) for the same values
of Ri. Vorticity is compressed towards the sphere and enhanced at higher Ri. (d)
Streamlines around the sphere for Ri = 1.25 x 107° (thin lines) and Ri = 1.45 (thick
lines)
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4.2 The wake

Further detail on the nature of the wake behind a settling sphere was obtained using
Microscale Synthetic Schlieren. Figure 2-4 shows a qualitative Synthetic Schlieren
image for an a = 390 um sphere settling in a stratification with N = 1.31 s™! (corre-
sponding to Re = 2.1, Fr = 10.2, Ri = 0.02). As described by Yick et al. [51], due
to the limited depth of focus of the microscope, the position of the sphere is known
to within one sphere radius. Several features of the wake are immediately apparent.
It is symmetric about the central axis, as one would expect from radial symmetry,
and is of considerable length (> 22 mm), revealing that the stratification remains
perturbed far downstream of the sphere. The wake structure becomes more complex

near its end, in the form of a pair of faint white lobes.

Quantitative processing of this data yields the density field in the wake of the
sphere (figure 4-7(a)). Isopycnals are dragged down by as much as five sphere radii.
Vertical isopycnal displacement diminishes with distance z downstream of the sphere,
as isopycnals return to their neutral buoyancy position. As the viscous force resisting
this retreat decreases with both z and r, retreating isopycnals overshoot on the rim
of the wake at z ~ 20, creating a toroidal structure akin to that of a laminar buoyant
jet [41]. This mild overshoot, which is responsible for the white lobes in figure 2-4, is

locally damped by viscosity and does not trigger internal waves.

Several key features of the wake are confirmed by the numerical density field,
shown in figure 4-7(b). The wake length is similar for experiments and numerics, and
in both cases isopycnals overshoot without radiating internal waves. The deformation
of numerical isopycnals is somewhat sharper compared to experiments, for reasons
that we could not determine. Several possibilities were tested and discounted, in-
cluding the resolution of the camera, random dot pattern, Schlieren processing and
numerical grid. It is interesting, however, that drag coefficients are in good agree-

ment (figure 4-2). Added drag will later be rationalized in terms of the buoyancy of
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fluid in the immediate vicinity of the sphere. In this region, isopycnal distortion in

experiments and numerics is comparable.

Taking a closer look at the numerical results in the vicinity of the sphere, we see
that isopycnals are strongly compressed in front of the sphere (figure 4-8(a)), resulting
in an increased pressure gradient (figure 4-4(a)) and hence pressure drag (figure 4-
2(c)). As the sphere descends, isopycnals make way and tilt (figure 4-8(b)), causing
baroclinic generation of vorticity, which enhances shear stresses (figure 4-4(b)) and
thus viscous drag (figure 4-2(d)). This can be understood by considering the vorticity
transport equation:

%% = vV + Z’%—V—p-, (4.2)
where vortex stretching (w - Vu) has been neglected because of axisymmetry. Except
for diffusion, vorticity varies only due to tilting of isopycnals relative to isobars:
this tilting increases the vorticity of the fluid as it travels past the sphere. At the
rear, isopycnals detach from the sphere, however without generating the buoyant
jet (figure 4-8(c)) characteristic of higher Re [43]. On the larger scale, simulations
predict that wake length and isopycnal deflection decrease with increasing Ri (figure
4-9), since enhanced buoyancy more effectively opposes vertical motion and more
rapidly restores isopycnals. These features of the numerical solution are supported by
further experimental observations. As shown in figure 4-10(a), the only region where
Synthetic Schlieren detected vertical pattern displacements (corresponding to vertical
density gradients) was ahead of the sphere, in contrast to the strong horizontal pattern
displacements that were detected in the wake (figure 4-10(b)). Furthermore, the
length of the wake and the magnitude of isopycnal distortion both clearly diminished

as Ri increased (figure 4-10(b,c)).

4.3 Discussion

The primary result of this study is that stratification increases hydrodynamic drag

on a sphere settling at small Re: both experiments and numerical simulations re-
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Figure 4-7: Dimensionless density field p — p(0) in the wake of a settling sphere for
Ri = 0.02 (Re = 2.1, Fr = 10.2) obtained from (a) Microscale Synthetic Schlieren
and (b) numerical simulation.
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Figure 4-8: (a, b) Numerical isopycnal distortion at two locations around the sphere.
Colorbars show p—p(0). (c) Numerical velocity field behind the sphere. For all cases,
Ri =0.29 (Re = 0.05, F'r = 0.42).
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Figure 4-9: Numerical density field p — p(0) in the wake of a settling sphere for (a)
Ri = 0.29 (Re = 0.05, Fr = 0.42) and (b) Ri = 1.45 (Re = 0.05, Fr = 0.19). Higher
Ri corresponds to a shorter wake and smaller isopycnal deflections.
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Figure 4-10: (a) Horizontal and (b,c) vertical pattern displacements generated by an
a = 390 um settling sphere, detected using Microscale Synthetic Schlieren. Colorbar
units are in pixels. (a,b) N = 1.31 s7' (Ri = 0.02,Re = 2.1, Fr = 10.2); (c)
N =2.50s"! (Ri = 0.89, Re = 0.15, F'r = 0.4). The position of the sphere, added in
postprocessing, is accurate to within one sphere radius. Note the different colorbar
scale in (b) and (c).
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vealed that CN > 1. For a given stratifying agent (i.e. Pr), the drag increase is
best characterized by Ri = Re/Fr?. The latter arises naturally when considering
the relative importance of buoyancy and viscous forces, which can be expressed as
fVF gApdV/ | sp #(0w/0r) dS, where V and Sr are the volume and surface area of a
fluid element; assuming that lengths scale with a, speeds with U and density contrast
with a (dp/dz), this ratio scales like Ri. The experimentally and numerically deter-
mined drag coefficients are in good quantitative agreement (figure 4-2(b)), reaching
up to 3.4 times the homogeneous value for 0 < Ri < 2. To further increase Ri while
maintaining Re small, NV would have to be increased beyond our maximum value of
2.92 s7!; such large values are rare in nature. Considering both experimental and
numerical results, our study suggests that the normalized drag coefficient scales as
C}N —1 ~ Rif, where ¢ = 0.51 +£0.11, in contrast to the theoretical prediction ¢ = 1 /3
for Ri << 1 [53].

The observed added drag due to stratification at small Re complements earlier
studies at higher Re [38, 43, 19] and it is worthwhile to assess whether previously
proposed mechanisms can account for our findings. For a linear stratification at
25 < Re < 100, Torres et al. [43] found that the increase in drag of a settling sphere
was related to a rear buoyant jet; the current numerical studies, however, reveal no
sign of such a jet (figure 4-8(c)), consistent with the increased importance of viscous
forces, which prevent a rapid retreat of isopycnals. For a step-wise stratification at
1.5 < Re < 15, Srdi¢-Mitrovi¢ et al. [38] found that the increased drag on a sphere
was accounted for by the buoyancy in the entire wake of dragged-down fluid. In our
case, integration of the buoyancy over the entire wake in figure 4-7(a) results in a
force (13.0 x 107® N) far larger than the measured increase in drag (1.5 x 10~8 N).
That drag does not depend on the entire wake is further supported by the numerical
results in two manners. Firstly, two wakes can have significantly different size (figure
4-11), hence buoyancy, and yet the same drag coefficient (figure 4-2). Secondly, a
force balance on the wake that ignores the contribution of the sphere yields a scaling

argument that successfully predicts its width W. The balance between viscous and
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buoyancy forces suggests (uU/W)W?2 ~ gApW3, where Ap ~ N2pyW/g and vertical
isopycnal deflections are assumed to also scale with W. This yields W/a ~ Ri~'/3,
which is borne out by the numerical results in figure 4-13, where W was taken as the
distance from the axis of symmetry to the point where vertical isopycnal deflection

decreased to 0.1a.

4.3.1 Physical Mechanism for Added Drag

Instead, we propose that it is the buoyancy of a localized fluid region around the
sphere that determines the added drag. This is related to the work by Higginson et
al. [19] at higher Re (~ O(10%)), where added drag on a rising grid of bars was found
to derive from the buoyancy of fluid in the drift volume. In our case, the fluid volume
affecting drag can be identified by considering the vertical velocity field w (figure
4-12(b)), which reveals that the wake is composed of two distinct regions: a lower
one surrounds the sphere and descends at nearly its same speed (w ~ —1), dragged
down by viscous shear forces; the upper one ascends slowly (w > 0), due to isopy-
cnals retreating under the effect of buoyancy. It is then reasonable to hypothesize
that the buoyancy of the fluid immediately adjacent to the sphere is responsible for
the added drag, while the rest of the wake is simply a remnant of the sphere’s passage.

Here we rationalize the added drag by a scaling argument based on the buoyancy
of a fluid region dragged down by the sphere. For clarity, a dimensional formulation
is adopted. Assuming a spherical shell of width §, the volume of this region scales as
7a%8, while its density contrast is Ap = H dp/dz, where H is the maximum distance
an isopycnal is dragged down. The normalized drag coefficient can then be written

as the ratio of this buoyancy force and the homogeneous drag force,

na2dgAp 1 16H

N—1~ ~ 4.3
p CHLpU?ra?  Fr2Chaa (43)

where 6/a and H/a are still to be determined.
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We propose that § ~ (v/N)/2, the natural length scale in a viscous and buoyant
flow [3, 5], resulting in §/a ~ (Fr/Re)/2. This was indeed the scaling of the extent
of the fluid shell around the sphere in our numerical data (figure 4-14), for which ¢
was operationally defined as the thickness of the region where Ap was > 5% of its
maximum value, which occurred at the sphere surface. On the other hand, despite
considering several possibilities, we were unable to find an a priori scaling for H.
At higher Re (~ O(10%)), H/a ~ Fr as a result of a balance between kinetic and
potential energy [19], yet this is not applicable in our regime where viscous dissipa-
tion is important. Hence, we resorted to an empirical scaling, by computing H from
simulations as the maximum isopycnal deflection immediately upstream of the sphere
(z = —a). Figure 4-15 shows that H/a ~ Fr/2, in line with our earlier observation
that isopycnal deflection decreases with increasing stratification. The residual Re

dependence in figure 4-15 is very weak (~ Re'/!°) and will be neglected.

With the aforementioned scalings, and using CE ~ 1/Re (appropriate for small
Re), equation (4.3) reduces to CN — 1 ~ Ri'/2. This compares favourably with our
result CY — 1 ~ Ri%, where ¢ = 0.62 from experiments, ¢ = 0.41 from numerics, for
an average of ¢ = 0.51. These results suggest a new expression for the drag coefficient

in a salt-stratified ambient,

6

12
S = — —_—_— 1/2
Cp (Re + 1_'_\/2§+0.4) (1+ aRi?), (4.4)

where oo = 1.9 (o = 1.95 and 1.91 in experiments and numerics, respectively). This
rationalization of the added drag also applies to the moderate Re regime, where
the dragged-down region scales with the drift volume (~ a®), H/a ~ Fr [19], and
CH ~ Re®; resulting in C — 1 ~ Fr~! which is verified by analysis of the data in
Torres et al. [43] (Figure 4-16. Fr~! provides a much better dependence than Ri in
terms on collapsing the data on one single curve in this regime of higher Re.) and is

in agreement with Higginson et al. [19].
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Figure 4-11: Numerical density field p — p(0) in the wake of a settling sphere for
Ri = 0.43 obtained from (a) Re = 0.05, Fr = 0.34 and (b) Re = 0.5, F'r = 1.08. Note
the strong difference in the wake structure, except in the region closest to the sphere.

In general, the problem of a sphere settling through a stratified fluid further de-
pends on Pr. While our study focused on salt-stratifications (Pr = 700), the case of a
thermal stratification (Pr = 7) is also of relevance in aquatic environments. For this
case, simulations show a smaller increase in drag due to stratification (figure 4-2) and
a weaker dependence on Ri (¢ = 0.29). This can be rationalized by considering that
stronger diffusion more effectively counteracts the accumulation of buoyancy forces
by more rapidly smoothing out isopycnal deflections. This is shown in figure 4-17,
which compares the wake for Pr = 7, 100 and 700: isopycnal deflections decrease with

Pr (see also figure 4-15) and the wake becomes shorter and wider (see also figure 4-13).
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Figure 4-12: (a) Density contrast Ap and (b) vertical fluid velocity w in the wake
of a settling sphere for Ri = 0.29 (Re = 0.05, Fr = 0.42). The long wake (panel a)
comprises two distinct regions (panel b): the lower one travels at a speed comparable

to that of the sphere (w ~ —1).
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data in Torres et al. [43] visually.
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Figure 4-17: Numerical density field p — p(0) for (a) Pr = 7, (b) Pr = 100, (c)
Pr = 700. In all panels, Ri = 1.25 (Re = 0.05, Fr = 0.2
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Chapter 5

Conclusion

The observed added drag implies that a sphere settles more slowly in a stratified
fluid than predicted using homogeneous-fluid formulations. Figure 5-1(a) shows the
experimental trajectory of an a = 196 pm sphere in a stratification with N = 1.69 57!,
compared to its expected trajectory in a homogeneous fluid. The distance traveled
over 100 s is roughly half in the stratified case, and is predicted to within 10% by our
drag coefficient formulation (4.4). How important is this effect in natural stratified
environments? Some of the strongest aquatic stratifications are found in inlets, fjords
and river outflows, where freshwater overlying saltier water can result in N being
as large as 0.2 s™! [14](figure 2A). While freshwater lakes can be nearly as strongly
stratified due to temperature [31, 21], the corresponding Prandtl number is much
smaller and the influence of stratification therefore reduced. Heading further out into
the ocean, density gradients are generally weaker, reaching maximum values on the
order of N ~ 0.02 s™'. The role of salt-stratifications was investigated by plotting
the ratio of stratified to homogeneous travel time (figure 5-1(b)); these were found by
integrating the settling speed U, determined numerically from equation (3.3) using
the stratified (equation 4.4) and homogeneous (equation 3.2) drag coefficients. This
procedure was repeated for a range of particle sizes up to a = 2500 pum and three
values of the density contrast Ap = 1, 5 and 20 kgm™3, representative of biological
matter. The effect of stratification increases with particle size, as expected from the

Ri dependence. In the open ocean we predict the increase in settling time due to
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stratification is < 6%, rising significantly to 66% for strongly stratified fjords and
inlets. This suggests that the effect of stratification on settling time needs to be
accounted for in strongly stratified natural water bodies. We expect this effect to
be compounded by hindered settling due to particle-particle interactions in particle

clouds [6, 4].

We have presented a combined theoretical, experimental and numerical investiga-
tion of the fluid mechanics of a sphere settling in a linearly stratified fluid at small
Reynolds numbers. To enable a quantitative study of the density field in a stratified
fluid for small particles, we have extended the technique of Synthetic Schlieren to the
microscale. We have performed the first visualization of the wake structure behind
a settling sphere in a stratified fluid at low Re. This study provides the first exper-
imental evidence of stratification-induced enhanced drag in a continuously stratified
fluid at small Re, further supported by numerical simulations. This parameter regime
is particularly important in the ocean, where density interfaces are ubiquitous and
a large fraction of the particle size spectrum is composed of sub-millimeter particles
with small density contrast with the ambient fluid. The increase in drag is governed
by a single dimensionless parameter, the Richardson number, expressing the relative
importance of buoyancy and shear forces. The normalized drag coefficient CJy was
found to scale like 1 + 1.9 Ri®5!, with a small discrepancy in the exponent (+0.1)
between numerics and experiments. Microscale Synthetic Schlieren revealed that a
particle’s signature lingers long after it has passed, producing an extended wake in
which density is perturbed. Careful analysis of the flow and density fields showed
that only a minor portion of the wake is responsible for the added drag, enabling us
to rationalize observations via a scaling argument. The added drag decreases with
Pr, as diffusion increasingly counteracts buoyancy. This effect is relevant to strongly
stratified aquatic environments (e.g. inlets and fjords, and to a lesser extent the open
ocean and lakes), where it can enhance retention of biological material at density
interfaces [26] and colonization of marine snow aggregates by microorganisms [39],

ultimately affecting vertical fluxes of matter in biogeochemical cycles.
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Figure 5-1: (a) Trajectory of an a = 196 pum sphere settling in stratified fluid with
N = 1.69s7}, determined experimentally (solid line) and predicted using the stratified
drag coefficient from equation (4.4) (dashed line). Also shown is the trajectory of
the same particle assuming a locally homogeneous drag formulation, equation (3.2)
(dotted line). (b) The ratio of travel times computed using a stratified drag coefficient
versus a locally homogeneous one, as a function of particle size a, density contrast
Ap and stratification V.
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5.1 Ideas for future work

Our work also pointed to topics for future investigation. Future work could be di-
rected towards the experimental verification of the normalized drag coefficient C at
higher Re, which we postulated scales like 1/Fr. There should then be a transition
regime, where the scaling with R: shifts to a scaling with F'r: this is equivalent to a
different dependence on Re, as occurs in a homogeneous fluid. Ultimately, one would
want a scaling for C5 spanning a wide range of Re. Another extension of our work
would be to elucidate the dependence of the drag law on Prandtl number. Further-
more, an independent numerical simulation or an extension of the flow visualization
technique to visualize the density field immediately adjacent to the sphere, could po-
tentially shed light on the discrepancies in the wake structure between numerical and
experimental results. Finally, other interesting avenues of exploration include the role
of particle shape and the verification of the proposed drag law (equation 4.4) in situ

using underwater videography in regions of strong stratification.
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Appendix A

A mathematical justification of
suppression of vertical motion in a

stratified fluid

In this appendix we provide a simple scaling argument to show that vertical motion is
suppressed in a stratified fluid [52], which is adapted from [27]. Consider an inviscid

imcompressible, non-diffusive fluid. the equations governing the flow are

Uy + vy +w, =0 (A1)

upg + vpy +wp, =0 (A.2)
p(uug +vuy + wu,) = —p, (A.3)
p(uvgy + vuy + wu,) = —py (A.4)
p(uw, + vwy + ww,) = —p, — gp (A.5)

where (z,y, z) are cartessian coordinates with z being the vertical direction, (u,v,w)
are fluid velocity components in the direction of (z,y, 2) , p is pressure, p is density and

g is acceleration of gravity. The equations can be nondimensionalized by a reference
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density p,, velocity scale U, pressure scale p,U?, and length scale L, where

U=+l (A.6)

and

L= (id—pﬁ> h (A7)

po dz
where dp,/dz is the density gradient. Since velocity scale is chosen on dimensional
basis alone, it may not represent the actual magnitude and therefore the dimensionless

velocity components need not all be O(1). The nondimensionalized equations are then

written as:

Uy + vy +w, =0, (A.8)

upy + vpy +wp, =0, (A.9)
p(uuy + vuy + wu,) = —ps, (A.10)
p(uvg + vy + wv,) = —py, (A.11)
p(uw, + vw, + ww,) = —p, — p, (A.12)

Since L represents the scale of stratification, p, = O(1). Assume (u,v,w) <

O(e) << 1. Eliminate p from equation (A.10) and equation (A.12)

b 0
Pz =5~ [p(uug + vuy + wu,)] — 9z [o(uws + vwy + ww;)] (A.13)

which implies p, = O(€?). Similarly from equation (A.11) and equation (A.12),
py = O(€?). Then from equation (A.9),

w= 0(63) (A.14)

which shows that vertical fluid motion is suppressed and the flow is primarily
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horizontal. Moreover, equation (A.8) can then be approximated as

Uz + v, = O(€®) (A.15)
use this in equation A.10
p(uug +vvy,) + O(e*) = —p, (A.16)
hence
Pz = O(€’) (A.17)

similarly, from equation (A.10) we can get
py = O(%) (A.18)

Finally from equation (A.12)
—p. — p = O(e*) (A.19)

therefore the pressure is hydrostatic. The scaling argument here shows that, to the

leading order, the flow is primarily two dimensional in the horizontal plane.
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