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Abstract

Given a p-adic representation of the Galois group of a local field, we show that its Galois
cohomology can be computed using the associated 6tale (o, F)-module over the Robba ring;
this is a variant of a result of Herr. We then establish analogues, for not necessarily etale
(ý, F)-modules over the Robba ring, of the Euler-Poincard characteristic formula and Tate
local duality for p-adic representations. These results are expected to intervene in the
duality theory for Selmer groups associated to de Rham representations.

We introduce the notion of families of q-modules which arises naturally from both rigid
cohomology and p-adic Hodge theory. We then prove the local constancy of generic HN-
polygons of families of overconvergent 0-modules and the semicontinuity of HN-polygons
of families of q-modules over reduced affinoid algebras. These results are prospective for a
slope theory of families of (overconvergent) 0-modules.
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Chapter 1

Cohomology and Duality for

(cp, 1)-modules over the Robba Ring

Introduction

Two of the basic results in the theory of Galois cohomology over a local field are the

Euler-Poincar6 characteristic formula and Tate's local duality theorem. In this paper, we

generalize these results to a larger category than the category of p-adic representations,

namely the category of (p, F)-modules over the Robba ring. We expect that these results

will be relevant to the deformation theory of Galois representations, via a study of duality

properties of Selmer groups associated to de Rham representations. This would extend the

work of Bloch-Kato for ordinary representations [8]. See [301 for more details.

In the remainder of this introduction, we formulate more precise statements of our results

(but we skip some definitions found in the body of the text). Let p be a prime number, and

fix a finite extension K of Qp. Write GK = Gal(K/K) and F = gK = Gal(K(ppoo)/K).

By a "p-adic representation" let us mean a finite dimensional Qp-vector space V equipped

with a continuous linear action of GK = Gal(K/K). Fontaine [18] constructed a functor

D associating to each p-adic representation V an etale (cý, F)-module D(V) over a certain

two-dimensional local field EK, and established an equivalence of categories between p-adic

representations and 6tale (ý, F)-modules. For the moment, all we will say about D(V) is

that EK is constructed to carry a Frobenius operator 'p and an action of F commuting with

each other, and D(V) is a finite dimensional EK-vector space carrying semilinear actions of



p and P. (The condition of etaleness is a certain extra restriction on the p-action.)

Fontaine's equivalence suggests that one can compute Galois cohomology of a p-adic

representation from the ostensibly simpler object D(V); this was worked out by Herr [20],

who constructed an explicit complex from D(V) computing the Galois cohomology of V

and the cup product. In case r is procyclic and topologically generated by -, the complex

is particularly easy to describe: it is the complex

0 -* D(V) 1 D(V) ED(V) +D(V) -- 0

with di(x) = ((y - 1)x, (p - 1)x) and d2 ((x, y)) = (p- 1)x- (7 - 1)y. Herr also showed [21]

that one can easily recover the Euler-Poincar6 characteristic formula and Tate local duality

from this description.

More recently, Berger [2] (building on work of Cherbonnier and Colmez [10]) constructed

a functor Dtig giving an equivalence between the category of p-adic representations and

the category of 6tale (o, F)-modules over a different ring, the Robba ring RK. Berger's

original justification for introducing Dtig was to show that for V a de Rham representation,

Dtig(V) can be used to construct a p-adic differential equation of the sort addressed by

Crew's conjecture; this led Berger to prove that the p-adic monodromy conjecture of p-

adic differential equations implies Fontaine's conjecture that de Rham representations are

potentially semistable.

Subsequently, Colmez [13] observed that non-6tale (o, F)-modules over RK play a role

in the study of Galois representations, even though they do not themselves correspond to

representations. Colmez specifically considered the class of two-dimensional representa-

tions which are trianguline (this idea goes back to Mazur), that is, their associated 6tale

(o, r)-modules over RK admit filtrations by not necessarily 6tale (p, r)-submodules with

successive quotients free of rank 1. (The supply of such representations is plentiful: for

instance, a result of Kisin [27] implies that many of the Galois representations associated

to overconvergent p-adic modular forms are trianguline.) Colmez classified these represen-

tations in the dimension 2 case and showed that they fit naturally into the p-adic local

Langlands correspondence of GL2 (Qp) initiated by Breuil.

In so doing, Colmez introduced an analogue of Herr's complex for an arbitrary (o, F)-

module over RK. Although he does not explicitly assert that this complex computes Galois



cohomology, we infer that he had the following theorem in mind; we include its proof, an

easy reduction to Herr's theorem, to fill a gap in the literature.

Theorem 1.0.1. Let V be a p-adic representation of GK. Then there are isomorphisms

Hi(D• i(V)) - Hi(GK, V) (i = 0, 1,2)

which are functorial in V and compatible with cup products.

At this point, one may reasonably expect that the Euler-Poincar6 characteristic formula

and Tate local duality should extend to (Q, F)-modules over the Robba ring, using R(w) =

Dtig(Qp(1)) as the dualizing object. The main goal of this article is to prove these results.

Theorem 1.0.2. Let D be a (v, rF)-module over the Robba ring RK K.

(a) We have Hi(D) are all finite dimensional Qp-vector spaces and

2

x(D) = (-1)i dimQ Hi(D) = -[K: Qp] rank D.
i=O

(b) For i = 0, 1, 2, the composition

Hi(D) x H2-i(DV(w)) H 2 ((D 0 DV)(w))--- H2(W),

in which the first map is the cup product, is a perfect pairing into H 2(w) - QP.

Our method of proof is to reduce to the known case of an 6tale (cý, F)-module, where by

Theorem 1.0.1 we can invoke the standard form of the theorem. In doing so, we construct a

bigger category, the category of generalized (v, F)-modules, which allows us to consider the

cohomology of the quotient of two (ýo, F)-modules. Moreover, in case K = Qp and p > 2, we

provide an explicit calculation of H2 of rank 1 (v, F)-modules as a complement to Colmez's

calculation on Ho and H1 in [13].

The author should mention that in a different direction, Seunghwan Chang has obtained

some interesting results concerning extensions of (w, F)-modules in his thesis [9].



1.1 Preliminaries

1.1.1 p-adic Hodge theory and (cp, r)-modules

This section is a brief summary of some basic constructions of p-adic Hodge theory and

(p, r)-modules. The results recalled here can be found in [19], [16], [32], [18], [10], and [2].

Let p be a prime number, and fix a finite extension K of Qp. Write GK = Gal(K/K).

A p-adic representation V is a finite dimensional Qp-vector space with a continuous linear

action of GK. The dimension of this representation is defined as the dimension of V as a

Qp-vector space and is usually denoted by d.

Let k be the residue field of K, W(k) be the ring of Witt vectors with coefficients in k,

and Ko = W(k)[1/p] be the maximal unramified subfield of K. Let Apn denote the group of

pn-th roots of unity. For every n, we choose a generator e(n) of Ipn, with the requirement

that (6 (n+l))p = E(n) . That makes e = Jim E(n) a generator of im pp! _ Zp(1). We set

Kn = K(/Lpn) and Koo = U'=l Kn. The cyclotomic character X : GK ~ Z is defined by

g(e(n)) = (e(n))x(g) for all n E N and g E GK. The kernel of X is HK = Gal(Qp/Ko,), and

X identifies F = =K = GK/HK with an open subgroup of ZP.

Let Cp denote the p-adic complex numbers, i.e. the completion of Qp for the p-adic

topology, and set

E- = i C, = {(x(0 ), x(1),...) I (x(i+l))p =(i)}.

A ring structure on E is given by the following formulas: If x = (x(i )) and y = (y(i)), then

their sum x + y and product xy are given by

(x + y)(i) = lim (x (i+ j ) + y(i+j))PI and (xy)(i) = x(i)y(i)
j--00

If x = (x(')), we define vt(x) = vp(x(o)). This is a valuation on E and the corresponding

topology coincides with the projective limit topology; as a consequence, E is a complete

valuation ring with respect to vk. Furthermore, the induced GQp-action on E preserves this

valuation. Let E be the ring of integers of this valuation; i.e. E is the set of x E E such

that x(0) E OCp. From the construction of e, we can naturally view it as an element of E+.

Set EKo = k((e - 1)), E the separable closure of EKo in E and EK = EHK. If K6 denotes

the maximal unramified extension of Ko in Ko and k' is its residue field, then the discrete

valuation ring EK is just k'[[-FK]] where TK is a uniformizer ([19], [32]).



Let A (resp. A) be the ring W(E ) (resp. W(E)) of Witt vectors with coefficients in

E (resp. E), and B = A [1/p] (resp. B = A[1/p]). Set r = [e] - 1, and q = ýp()r)/7r.

Since E+ is perfect, we have

A ={x= oop k[XkI I X/ Eh}

where [Zk] is the Teichmiiller lift of xk in A . This gives a bijection A ~ (E )N which

sends x to (xo, x,...). Let A be endowed with the topology induced from the product

topology of the right hand side. Another way to get this topology is to define ([-T]k,pn) as

a basis of neighborhoods of 0. The topology of A is defined in the same way. The absolute

Frobenius po of ET lifts by functoriality of Witt vectors to the Frobenius operator cp of A

which commutes with the Galois action. It is easy to see that

(P(EokooC [Xk]) = koo Pk[X ]

and therefore Vp is an isomorphism. Now let AKo be the completion of OKo [r, ?r - 1] in A for

the topology given above. It is also the completion of OKo [[1r]] [r- 1] for the p-adic topology.

This is a Cohen ring with residue field EKo. Let B be the completion for the p-adic topology

of the maximal unramified extension of BKo = AKo [1/p]. We then define A = A n B and

A + = A n B. Note that these rings are endowed with the induced GQP and Frobenius

actions from B. For S any one of these rings, define SK = SHK. Therefore BK = AK [l1/p]

and B + = A+ [1/p]. When K = K 0, this definition of AKo coincides with the one given

above.

We define D(V) = (B 0 V)HK. It is a d-dimensional BK-vector space with Frobenius

'p and F-action. Similarly, if T is a lattice of V, we define D(T) = (A ® T)HK, which is

a free AK-module of rank d. We say a (p, F)-module D over BK is etale if there is a free

AK-submodule T of D, which is stable under 'p and F actions, such that T OAK BK = D.

Then D(V) is an 6tale (po, F)-module since D(T) is such an AK-lattice. The following result

is due to Fontaine [18].

Theorem 1.1.1. The functor V F D(V) is an equivalence from the category of p-adic

representations of GK to the category of etale ('p, F)-modules over BK; the inverse functor

is D F (B 0 D) o=e.

We define the ring of overconvergent elements as follows:



+oo00

Btr = P = pk[k E B, ro vE(xk) + kpr/(p - 1) = +oo}
k>-oo

and ft = Ur >0t,r Bt,r = (htr) n B, Bt = Ur>oBt 'r. Note that p : t,r tpr is an

isomorphism. Let At,r be the set of elements of Btr n such that vE(xk) + kpr/(p- 1) 2 0

for every k and similarly At = Ur>ot,r, At,r At, n A, At = Ur>oAt,r

Define Dtr(V) = (Bt,r ® V)HK and Dt(V) = Ur>oDt'r(V) = (Bt 0 V)HK. Similarly, if

T is a lattice of V, we define Dt(T) = (At 9 T)HK. We say a (v, F)-module D over BK is

6tale if there is a free AtK-submodule T of D, which is stable under p and F actions, such

that T oAt Bk = D. In [10], Cherbonnier and Colmez proved the following result.

Theorem 1.1.2. There exists an r(V) such that D(V) = BK ®Btr Dtr(V) if r > r(V).

Equivalently, Dt(V) is a d-dimensional 6tale (c,F)-module over BK. Therefore, Vt

Dt(V) is an equivalence from the category of p-adic representations of GK to the category

of dtale (w, F) -modules over BtK.

We can take irK to be an element of AK whose image modulo p is WK. Let eK denote

the ramification index of Koo/(Ko)oo. Then for r > 0, one can show that Btr is given by

+oo00

Bkr = {f(irK) = 7 ak , where ak E Ko and f(T) is convergent and bounded on
k=-oo

p-1/eKr • ITI < 1}.

We see that the sup norms on closed annuli give a family of norms on B t r . Its Fr6chet

completion with respect to these norms is

+oo00
Bi,K = {f(rK)= k akri, where ak E Ko and f(T) is convergent on

k=-oo

p-1/eKr < ITI < 1}.

Then the union B ig,K = UrOB rig,K can be identified with the Robba ring RK from the

theory of p-adic differential equations, which is the set of holomorphic functions on the

boundary of the open unit disk, by mapping 7rK to T. And Bk = 4t is the subring of RK

consisting of bounded functions. The p-adic completion of St is £K = BK. When K = K 0 ,

we can choose grK = fr = e - 1 and rK =7r = [e] - 1.

For any K, there exists an r(K) such that for any r > r(K) and n > n(r) = (log(r/(p -

1))/logp) + 1, we have an injective morphism Ln from B ,K to Kn [[t] which satisfies



Ln = Ln+l o P (see [2, Chapter 2] for the construction). For example, when K = Ko, Ln is

defined by tn(ir) = E(n)et/lP - 1.

Define the operator V = log()/l log(x(y)) which gives an action of Lie(FK) on RK. Let

t = log([e]) and set the differential operator 0 = V/t which satisfies:

S0 oo = pp o 8 and 0 o = X(y)7 O o.

In case K = Qp, we choose 'rK = 'F = e - 1 and 7rK = 7r = [e] - 1. Then we have

V(f(7r)) = log(1 + 7r)(1 + ir)df /dr and 0 = (1 + ir)df/dr.

Define Dr(V) = Dtr(V) tK rig,K and ig(V) = Ur>0oDri(V) = Dt(V) ®B~ rig,K

which is an 6tale (c, F)-module over Btig,K. Here we say a (v, F)-module D over Brig,K

is dtale if D has a BK-submodule D', which is an stale (o, F)-module over Bt under the

restricted so and F actions, such that D = D' ®BK Brig,K. The following theorem is due to

Kedlaya ([25]).

Theorem 1.1.3. The correspondence D F Btig,K B D is an equivalence between the

category of 6tale (p,r)-modules over BK and the category of 6tale (p,r)-modules over

Btig,K. As a consequence, V g Dti(V) is an equivalence of categories from the category

of p-adic representations of GK to the category of etale (vp, r)-modules over B.ig,K'

Suppose D is an arbitrary (s, F)-module over Brig,K of rank d. By a result of Berger [3,

Theorem 1.3.3], for r large enough, there is a unique Btr,K submodule Dr of D such that:

(1) Dr is a free Btr

(1) Dr is a free rig,K-module of rank d, stable under F action, and Dr @t,r Brig,K = D;
rig,K

(2) We can find a BtrK-basis of Dr ®Bt,r BK" from elements of p(Dr)
rigK rig,K

If Dr is defined, then for any r' > r we have Dr, = Dr OBt, rig,K. We set
rig,K

dif (D) = Dr ®BtIr Kn[[t]]
rig,KLn

and call it the localization at e(n ) - 1 of D. It is easy to see that Ddi'fn(D) is well defined,

i.e. it does not depend on the choice of r. Let in denote the natural inclusion map from

Kn[[t]] to Kn+l[[t]], and define the connecting map sn as

9 0 in : DD'(D) -• D n+1(D).
i:Ddif D)---+dif k-]



It is clear that

ýon 1 : D dn (D) ®Kn[[t]] Kn+l[[t]] - D d f n+(D)

is an isomorphism.

1.1.2 Slope theory of p-modules

This section is a short collection of some basic facts concerning the slope theory of cp-

modules over RK (resp. Etg) which we will use later. For a complete treatment of this

topic, see [25].

A ep-module M over RK (resp. St) is a finitely generated free R'K-module (resp. 4-
module) with a Frobenius action cp that satisfies po*M E M. We can view M as a left

module over the twisted polynomial ring RK {X}. For a positive integer a, define the

a-pushforward functor [a]. from ýp-modules to poa-modules to be the restriction along the

inclusion R1K{Xa} --+ RK{X}. Define the a-pullback functor [a]* from poa-modules to o-

modules to be the extension of scalars functor M -* M (®K {Xa· RK {X}. If rank M = n,

then AnM has rank 1 over RK. Let v be a generator, then cp(v) = Av for some A E V4 =

(E4) X. Define the degree of M by setting deg(M) = w(A), here w is the p-adic valuation

of /K. Note that this does not depend on the choice of v. If M is nonzero, define the slope

of M by setting p(M) = deg(M)/ rank(M). The following formal properties are easily

verified:

(1) If 0 --+ M1 -- M -- M 2 -* 0 is exact, then deg(M) = deg(M1 ) + deg(M 2 );

(2) We have p(M 09 M 2) = p(M1 ) + p(M2);

(3) We have deg(MV) = - deg(M) and p(MV) = -p(M).

We say M is dtale if M has a ýp-stable OE -submodule M' such that ýp*M' = M' and
K

M' (RiKnt RK = M. More generally, suppose AI(M) = s = c/d, where c, d are coprime

integers with d > 0. We say M is pure if for some p-module N of rank 1 and degree -c,

([d].M) ® N is 6tale. We say a (W, F)-module over RK (resp. 4tg) is pure if the underlying

p-module structure is pure. In the 6tale case, this definition is consistent with the one given

in the last section. We have the following facts:

(1) A p-module is pure of slope 0 if and only if it is 6tale;



(2) The dual of a pure so-module of slope s is itself pure of slope -s;

(3) If M1, M2 are pure of slopes sl, 82, then M1 0 M2 is pure of slope s1 + s2.

We say M is semistable if for every nontrivial 'p-submodule N, we have p(N) 2 j(M). A

difficult result is that M is semistable if and only if it is pure [25, Theorem 2.1.8]. As a

consequence of this result, we have the following slope filtrations theorem.

Theorem 1.1.4. (Kedlaya) Every cp-module M over RK admits a unique filtration 0 =

M o C M, C ... C MI = M by saturated pc-submodules whose successive quotients are pure

with pI(M1/Mo) < ... < h(MII/ML). As a consequence, if M is a (cp,F)-module, then these

Mi 's are all (po, F)-submodules.

1.2 Cohomology of ( F, I)-modules

1.2.1 Construction of cohomology

Suppose D is a (v, F)-module over tK, £K, or RK. Let AK be a torsion subgroup of

rK. Since rK is an open subgroup of ZX, AK is a finite group of order dividing p - 1 (or 2

if p = 2). Let pA be the idempotent operator defined by pa = (1/AK I) •-6eAK 6. Then pa

is the projection from D to D' = DAK. In case gK/AK is procyclic, we set the following

complex, where y denotes a topological generator of FK:

CQ,,(D ) : 0 --- D' d' D' E D' t2 D' --- 0,

with di(x) = ((y - 1)x, (W - 1)x) and d2 (x) = ((W - 1)x - ('y - 1)y). Let H*(D) denote

cohomology groups of this complex. We need to check H*(D) is well defined, i.e. it does

not depend on the choice of AK. In the following, we assume D is over 4EK . The argument

also works for (w, F)-modules over EK and RK.

First, it is obvious that Ho(D) = Dr=l, =1. For H 1, we claim H'(D) classifies all

the extensions of 4t by D in the category of (, IF)-modules over EtK . In fact, if D is

a (w, F)-module over 4E and D 1 is a such extension, we get the following commutative



diagram:

0 --- D - D1 EfK  0

o - D' - (Di)' -- (K)' -- 0.

Since IAKI divides p - 1 (or 2 if p=2), all the characters of AK take values in Qp C f.K

Then by standard representation theory, we have the eigenspace decomposition D = exDx
for any D. Here x ranges over all the characters of AK, and DX is the X-eigenspace. Any

nonzero element x of (K)x (e.g. Z6EAK X(5-)6(E)) gives an isomorphism D' - DX by

mapping a to xa. Therefore we have D' 0 t, SK E D, where the isomorphism respects cp

and rK-actions. So the extensions of Et by D as (p, FK)-modules over Et are in one-to-one

correspondence with the extensions of (t )' by (D,)' as (w, FK/AK)-modules over (Et)'.

The latter objects are clearly classified by HI(C*,Y(D)).

For H2 , suppose AL D AK is another torsion subgroup of r and m = [A' : AK].

Then ',m is a topological generator of F/AIK and PA/a, = 1/m yi is a projection

from DAK to DA'K. Obviously pA/A, reduces to a projection

D K/(7 - 1) "a/ D"'K/( - 1).

Similarly as above, we have D'K = DA'K e ( (x#iD K) where X ranges over all the non-

trivial characters of A'K/AK. Note that -y - 1 acts bijectively on any DXK with X 5 1, so

the natural map

D'K/(7m - 1) -- DKl(y - 1)

is surjective. We conclude that both i and Pa/', are isomorphisms. So there are canonical

isomorphisms between H 2 (D)'s respecting different choices of torsion subgroups.

Finally, we define cup products as follows:

HO(M) x Ho(N) -- H(M N) (x, y) ý x®y

Ho(M) x HI(N) - H (M 9 N) (x, ( -, )) (a y, Y &z)

HO (M) x H 2 (N) -- H 2(M®N) (x,ý)->-x®y

H'(M) x H1(N) -- H 2(M® N) ((Gt),(2, t) y y(z) - x 0 c(t)



1.2.2 Shapiro's lemma

If L is a finite extension of K, and D is a (p, F)-module over EL (resp. 6E, RL). Consider

IndPK D = f : rK - DIf(hg) = hf(g) for h E FL}, the induced 1K-representation of D as

a rL-representation. We can endow Indr' D with an EK (resp. 4K, RK) module structure

and a Frobenius action so by defining (af)(g) = g(a)f(g) and (p(f))(g) = sp(f(g)) for any

element f : K --+ D of IndrK D and g E FK. In this way IndrK D is now a (p, F)-module

over EK (resp. 4ýg, RK). We call it the induced (so,F)-module of D from L to K, and

denote it by IndLK D. Note that rank IndgK D = [L: K] rank D.

One can prove that the above definition of induced (wo, F)-modules is compatible with

the definition of induced representations of Galois representations.

Proposition 1.2.1. Suppose V is a p-adic representation of GL, then D(IndG V) =

IndLK D(V) (resp. Dt, Dtig).

Proof. For the functor D, we define a map P from D(Ind GK V) = ((Ind GK V) OQ, B)HK

to IndK D(V) as follows: for , fi 0 bi E ((IndL V) 0% B)HK and y E rK, we put

P(E fi 0 bi)(g) = E fi(g) 0 gbi, where g is any lift of g in GK. To see that P is well

defined, we first need to show that it doesn't depend on the choice of g. In fact, for any

h E HK we have

E f (gh) 0 ghbi = E(hfi>)(g) 0 g(hbi) = E fi(g) 0 gbi,

where the last equality is concluded from the fact that E fi 0 bi = hfi 0 hbi, since

E fi 0 bi is HK-invariant. Then for h E HL, we have

h(E f (g) 0 gb2) = E hf (g) 0 hgbi = f4 (hg) 0 hgbi= fi(g) 0 gbi,

since hg is also a lift of g. This implies that P(E f' 0 bi)(g) lies in D(V). For h cE L, we

have

P(Z fi 0 bi)(hg) = E fi(hg) 0 hgbi = h(Z fi(g) 0 gbi) = h(P(Z fi 0 bi)(g).

It follows that P(E fi 0 b2) really lies in IndK D(V). It is obvious that P is injective and

commutes with sp. Now we check that P is a morphism of (wo, F)-modules. For a E EK, we



have

P(a(Z f i 0 bi))(g) = P( fi abi)(g) = fi(g) g(a)g(bi)

= g(a)(T fi(g) 0 gbi) = (a(P(Z f, bi)))(g).

So P is a morphism of £K-modules. For h E rK, we have

P(h(Z f 0 bi))() = P( hf 0 hbi))() = E(hf1 )(g) ghb2 =

jfi(gh)® ghbj = (hP(~~fi®b))(g),

hence P is rK-equivariant. Now note that

dimgK (IndL D(V)) = [L : K] dimeL D(V) = [L : K] dim V = dimeK D(Ind G V),

so P is an isomorphism. Since IndK Dt(V) is an 6tale (W, r)-module over 4t contained

in IndK D(V) = D(IndGK V) and of maximal dimension, we conclude that Indg Dt(Y) =

D t (Ind G V). Finally, we get

Indj Dig(V) - Ind g Dt(V) rK - D (Ind1G V) D tK = Dig(IndK V) V).

Theorem 1.2.2. (Shapiro's Lemma for (ýp, F)-modules) Suppose D is a (ýp, F)-module over

-LI 9L1 or ZL. Then there are isomorphisms

Hi(D) - Hi(Indg D) (i = 0, 1, 2)

which are functorial in D and compatible with cup products.

Proof. We first prove the theorem in the case that both of rK and FL are procyclic. Suppose

[FK : FL] = m. Choose a topological generator 7K of FK, then yL = '7y is a topological

generator of FL. Define Q : D -+ IndLK D as follows: for any x E D, (Q(x))(e) = x and

(Q(x))(yy) = 0 for 1 < i < m - 1. Then Q is a well defined p, FL-equivariant injective

morphism of RK-modules. We claim that Q induces a ýp-equivariant isomorphism from

D/(L - 1) to (IndLK D)/(-K - 1). Suppose x e D, and Q(x) = (7K - 1)f for some



f E IndK D. Then we have

x = Q(x)(e) = (7K - 1)f(e) = f(tK) - f(e)

0 = Q(x)(7() = (7K - 1)f( ,k) = f(Ql) - f(y~- ) 1 i < m- 1.

Summing these equalities, we get x = j=0 (f f( ') - f (-y )) = f() - f (e) = ('TL-1)f(e)

since y- = -yL. On the other hand, for any f E IndK D, suppose f(7 ) = zx for 0 < i <
m - 1. Then f = E•" 7IQ((yL)-1xm-i) since for 0 < j < m - 1, we have

(Ei 1 7 Q((L)-'Xm-i))( K) = Z 1 Q((7L)-1m-i)(>7 ) = ((L)-)( ) =

So both of f and Q(x), where x = 7L (-=1 xm-i), have the same image in (IndK D)/(7K -

1).

For any g E FK, define the morphism Q9 by Q9(x) = g(Q(x)) for any x E D. Set

Q = -no Q7• which is also cp, FL-equivariant and injective since (Q)(x))(e) = x. We claim

that Q induces an p-equivariant isomorphism from DrL to (Ind/  D)rK. The injectivity is

obvious. Conversely, suppose f FK -+ D is an element of (Ind K D)rK with f(e) = x. Then

f(g) = (gf)(e) = f(e) = x for any g E FK since f is rK-invariant. On the other hand,

for g E FL, we have f(g) = gf(e) = gx. These imply that x is FL-invariant. Therefore

Q(x) = f.
Consider the following commutative diagram:

C,/, (D) : 0 D > DED > D ---- 0

1 0 1 o o0 1I
C ,,(IndK D) : 0 -- IndK D ---- Ind D E IndK D - IndK D --- 0.

This induces morphisms a' from Hi(D) to Hi(IndK D). We will prove that they are iso-

morphisms.

For Ho, Q induces a ýp-equivariant isomorphism from DrL to (IndK D)rK. Taking cp-

invariants, we conclude that &o is an isomorphism. For H 2 , Q induces a cp-equivariant

isomorphism from D/(yL - 1) to (Indf D)/(7,K - 1), so a 2 is also an isomorphism.



For H1 , we use the following commutative diagram:

0 > DrI/(( - 1) ( Hi(D) : (D/(-L - 1))"= 1 --- 0

S- - (IndLK D)rK/(oP - 1) H1 (Ind D) - (Ind D/('yK - - 0.

We have proved that Q and Q are isomorphisms. So a' is an isomorphism by the Five

Lemma.

For the general case, let AK and AL be the torsion subgroups of FK and FL respectively.

Then FL/AL is a subgroup of FK/AK. Let 7K be a topological generator of FK/AK.

Suppose [FK/AK : FL/AL] = m, then -YL = '-y is a topological generator of FL/AL. Set

Q' : D' -- (IndK D)' as follows: for any x c D', (Q'(x))(e) = x and (Q'(x))(y) = 0 for any

other representative of rKIrL. We define E'' = •oy' iQ'. Replacing Q by Q', and Q by

Q' in the above argument, we are done. O

1.2.3 Comparison theorems

For a Zp-representation V (of finite length or not), define H*(D(V)) using the same

complex as in the last section. The groups H*(D(V)) are also well defined by the same

argument (Note: for p = 2, there is only one choice of AK, so it is well defined automatically.

However, the description of H1 in terms of extensions does not apply to Z2 , because the

projection pa is not integral.). The following theorem was first proved by Herr ([20]) in case

FK is procyclic. Our result is a small improvement of his result since F is always procyclic

for p = 2.

Theorem 1.2.3. Let V be a Zp-representation of GK. Then there are isomorphisms

Hi(D(V)) - Hi(GK, V) (i = 0, 1, 2)

which are functorial in V and compatible with cup products. The same conclusion therefore

also holds for Qp-representations.

Proof. For V of finite length, we adapt the proof given by [12, Theorem 5.2.2] to the

case, where F is not necessarily procyclic. Let Hk denote the preimage of AK in GK.

Replacing HK by Hk and D(V) by (D(V))' in their proof then it works for general F.



For general V, note that the inverse system {H'(D(V/pnV)) - Hi(GK, V/pnV)} satisfies

the Mittag-Leffler condition, so we can conclude the result by taking the inverse limit of

{Hi(D(V/pnV)) - H'(GK, V/pnV)}. O

In the remainder of this section, V is a Qp-representation.

Lemma 1.2.4. The morphism y - 1: ((Dt(V))')V=o --+ ((Dt(V))') 0=o has a continuous

inverse.

Proof. Note that X(FK1) C 1 + pZp is procyclic. We can choose a topological generator -y'

of FK 1 such that y' = ym in r/AK for some m E N. Consider the commutative diagram:

((Dt(V))')P=o y'-l ((Df(V))')=0

Since Dt(V) =o 0= l Dt(V) -=O has a continuous inverse by [10, Proposition 2.6.1], and PAK

is an idempotent operator, we get that ((Dt(V))') =o -ym._- ((Dt(V)),')_=o has a continuous

inverse. Then (7 - 1)-' = (-ym - 1)-1(1 + -y + ... + -ym - ) is also continuous. O

Lemma 1.2.5. Let C ,(Dt(V)) be the complex

0 --- (Dt(V))' -~i- (Dt(V))' e (Dt(V))' -24 (Dt(V))' - 0

with di(x) = ((y - 1)x, (0 - 1)x) and d2 ((x, y)) = ((¢ - 1)x - (y - 1)y). Then we have a

commutative diagram of complexes

C;, (Dt(V)) : 0 - (Dt(V))' - (Dt (V))' e) (Dt(V))' ~ (D(V))' -- 0

lid l- id -

C;,y(Df (V)) : 0 --- (Dt(V))' --- (Dt(V)) ' E (Dt(V))' -- (Dt(V))' --

which induces an isomorphism on cohomology.

Proof. Since 0 is surjective, the cokernel complex is 0. The kernel complex is

0 -- 0 -- ((Dt(V))') ¢ =o0 ((Dt(V))') =o -- 0.



which has trivial cohomology by Lemma 1.2.2.

Lemma 1.2.6. Let T be a GK-stable Zp-lattice of V. Then the natural morphism Dt(T)/(O-

1) -+ D(T)/(1 - 1) is an isomorphism.

Proof. We can view D(T)/(,O - 1) (resp. Dt(T)) as an 6tale p-module over AQ, (resp.

At). For x E AQ, and n E N, define wn(x) E N to be the smallest integer k such that

x E r-kAQP + pn+lAQ,. Short computations show that wn(x + y) 5 sup{wn(x), wn(y)},

wn(XY) < wn(x) + wn(y) and wn(p(x)) 5 pwn,(x). By [11, Proposition III 2.1], for any

interger m > 1, x E At" if and only if wn(x) - n(p - 1)(pm- 1 - 1) < 0 for every n, and

moreover approaches -oo as n -, oo. For a vector or matrix X with entries in Aq,, define

wn(X) as the maximal wn among the entries. Pick a basis {(e, e2,..., ed} of D t (T) over

At. For any x E D(T), define w,(x) = wn(X) if x = X(el, e2 ,..., ed)t. Let A E GL(At)

defined by ýp(el, e2, ... , ed)t = A(el, e2, ..., ed).

Suppose x = 0(y) - y, for x = X(el,e 2 ,..., ed)t E Dt(T) and y = Y(e,e2,..., ed)t E

D(T). Then from [11, Lemma 1.6.4] we have

Wn(y) 5 max{wn(x), (wn(A - 1) + 1)}.
p-1

Now suppose all the entries of X and A-' lie in At' for some m. It follows that all the

entries of Y are in Atm+1, hence y E Dt(T). This proves the injectivity of Dt(T)/( - 1) --

D(T)/(o - 1).

Since D(T)/(' - 1) is a finite Zp-module ([20, Proposition 3.6]), so too is Dt(T)/( - 1).

Note that

Dt(T)/(p) = Dt(T/(p)) = D(T/(p)) = D(T)/(p)

since Dt and D are identical at torsion level. Therefore

(Dt(T)/(o - 1))/(p) = (Dt(T)/(p))/(O - 1) = (D(T)/(p))/(V - 1) = (D(T)/( - 1))/(p).

This implies Dt(T)/(O - 1) -+ D(T)/(& - 1) is surjective by Nakayama's Lemma. Hence

Dt(T)/(p - 1) -+ D(T)/(o - 1) is an isomorphism. O



Proposition 1.2.7. Let V be a p-adic representation of GK. Then the natural morphisms

Hi(Dt(V)) Hi(Dig(V)), Hi(Dt (V)) -i(D(V)) i = 0, 1, 2

are all isomorphisms which are functorial in V and compatible with cup products.

Proof. It is clear that these morphisms are functorial in V and compatible with cup prod-

ucts. To prove they are isomorphisms, first note that HI(Dt(V)) (resp. H'(Dig(V),

H 1(D(V))) classifies all the extensions of EK (resp. RK, &K) by Dt(V) (resp. D ig(V), D(V))

in the category of 6tale (W, F)-modules over EK (resp. RK, EK). Since these categories are

all equivalent to the category of p-adic representations by Theorems 1.1.1, 1.1.2 and 1.1.3,

we conclude that both al, ,1 are isomorphisms.

From [25, Proposition 1.5.4], the natural maps DI (V) = l -- D (V) and D t (V)/(-

1) -- D~i(V)/(W - 1) are bijective. Taking AK-invariants of the first map, we have that

((Dt(V))') " -= l  ((DTig(V))') =l is an isomorphism. As in Lemma 1.2.4, by the following

commutative diagram

Dt(V)/(ýo- 1) Dtig(V)/(A - 1)

jPAK JPAK

(Dt(V))'/((o - 1)- (Dtig(V))'/(o - 1)

and the fact that paK is an idempotent operator, we get (Dt(V))'/(p-1) -+ (Drig(V))'/(p-

1) is also an isomorphism. Therefore ao and a2 are isomorphisms.

Since HO(Dt(V)) = Vr K = Ho(D(V)), we conclude that 30 is an isomorphism. By

Lemmas 1.2.5 and 1.2.6 we have

H 2 (Dt(V)) = (Dt(V))'/(V) - 1,,y - 1) (D(V))'/( - 1,y - 1) = H 2 (D(V)).

Hence /2 is an isomorphism. O

As a consequence of this proposition, there are canonical isomorphisms

Hi(D~ig(V)) _ Hi(D(V)) i = 0, 1, 2.

Composing them with isomorphisms in Theorem 1.2.3, we get the following theorem.



Theorem 1.2.8. Let V be a p-adic representation of GK. Then there are isomorphisms

Hi(Dt(V)) - Hi(GK, V) (i = 0, 1, 2)

Hi(Dig(V)) - Hi(GK, V) (i = 0, 1,2)

which are functorial in V and compatible with cup products.

Corollary 1.2.9. The Euler-Poincard characteristic formula and Tate local duality hold

for all 6tale (cp, ) -modules over the Robba ring.

Proof. From the above theorem, we have that H2(Dtig(Qp(1))) is canonically isomorphic to

H 2 (Qp(1)), and then the Euler-Poincar6 characteristic formula and Tate local duality for

6tale (ýo, F)-modules follow from the usual Euler-Poincar6 characteristic formula and Tate

local duality for Galois cohomology. O

1.2.4 Cohomology of rank 1 (ýp, F)-modules

In this section, we provide an explicit computation of H 2 of rank 1 (Wo, r)-modules over

the Robba ring in case K = Qp and p > 2 as a complement to Colmez's results on Ho and

H1. Although we don't need this for the main theorems, it is useful for some purposes (see

[6, Lemma 2.3.11]). In this section, all (w, r)-modules are over the Robba ring and K = Qp.

Moreover, to be consistent with Colmez's set up, we fix L a finite extension of Qp as the

coefficient field. This means we consider (p, r)-modules over TZQ, P ®Q L, where ýp and r

act on L trivially, y(T) = (1 + T)x(Y) - 1 and p(T) = (1 + T)P - 1. Following Colmez's

notation, we use tZL to denote .Qo, ®Q, L in this section only. Note that this is different

from our usual definition of RL.

If 6 is a continuous character from Qp to Lx, we can associate a rank 1 (p, r)-module

RI(6) to 6. Namely, there is a basis v of R(6) such that

cp(xv) = J(p)cv(x)v and y(xv) = 6(X(y))y(x)v

for any x E 72L. Here X is the cyclotomic character. It is obvious that such v is unique

up to a nonzero scalar of L. In the sequel, for a E RL, we use a to denote the element

av of ZR(J). Conversely, Colmez ([13, Proposition 4.2, Remark 4.3]) proved that if D is a

(o, r)-module of rank 1, then there is a unique character 6 such that D is isomorphic to

I(6).



For simplicity, let HI(6) denote H'(R(6)). In the following, the character x is the identity

character induced by the inclusion of Qp into L and jxj is the character mapping x to p-Vp(x).

We use w to denote xixj; then R(w) = Dtig(L(1)), as described in the introduction.

In [13], Colmez computed Ho and H 1 for all the (o, r)-modules of rank 1 when p > 2.

More precisely, he proved the following result ([13, Proposition 3.1, Theorem 3.9]).

Proposition 1.2.10. If p > 2, then the following are true.

(1) For i E N, Ho(x - i) = L - ti. If 6 # x-i for i E N, then Ho(6) = 0.

(2) For i E N, Hl(x- i ) is a 2-dimensional L-vector space generated by (0,-t) and (ti, 0),

and Hl(wxi ) is also 2-dimensional. If 6 5 x - i or wx i for i E N, then H1(5) is

1-dimensional.

In fact, we can follow Colmez's method to compute H2 easily. For f = EkEZ akTk E RL,

we define the residue of the differential form w = fdT by the formula res(w) = a-1 . Then

w is closed if and only if res(w) = 0. Recall that 0 = (1 + T)--T, then ker(O) = L and

df = f $T. We define Res(f) = res(f dT ), then f is in the image of 0 if and only if

Res(f) = 0.

Recall that we have the following formulas:

60 o = pp( o 1 and 0 o 7 = X(-)- o 0.

If Res(f) = 0, then there exists a g E lL such that O(g) = f. Therefore we have

a(P(g)) = p(f) and 0(-•Y(g)) = -y(f). Hence Res(p(f)) = Res(y(f)) = 0. In gen-

eral, if Res(f) = a E L, then Res(f - a(lT)) = 0. So Res(y(f)) = aRes(y((+T)) and

Res(c(f)) = aRes(cp(+TW)). Note that log 7(T) and log 4 are defined in RL. Hence

0 = res(dlog ) = res( - )= res(x()(1+T ) dT) - 1 = Res(y)y( )) - 1,
T = Resyx(7)T( • T y(T)

0 = res(dlog 4(T) = res(dd'T - pT) = res(p(+T)- ldT - p = Res(p( )) -p,

therefore Res(-y(lT)) = 1/X(y) and Res(p(lT-)) = 1. So we get

Res(y(f)) = 1/X(-)Res(f) and Res(ýp(f)) = Res(f).

For any x E RL, by the formulas 0 o W = pcp o and 0 o y = X(yQ) o 0, we have

0((x-1)(P)(X())> = (p)p(O(x))
a(-s(r>rz = (Y)Ya2.



So 0 induces an L-linear morphism, which commutes with p and r, from R(x-16) to R(6)

by mapping x to Ox. Then 0 induces an L-linear morphism from Hi(x-16) to Hi(6).

Proposition 1.2.11. In case p > 2, if vp(6(p)) < O0, then H 2 (6) = 0.

Proof. For any J E H 2(3), from [13, Corollary 1.3], there is a b E RL such that c =

f - (6(p)p - 1)b lies in (SEL)O =o. Since E = f in H 2 (6), we can just assume f is in (64L) =o.
Then there exists an a E E such that f = (X(y))- - 1)a by Lemma 1.2.2. Therefore

f= 0 in H2(6). 5

Proposition 1.2.12. If p > 2, then the following are true.

(1) If 3 : x, then 0 : H2(X - 1) -+ H2(6) is injective. If 6 0 w, then 0 : H2(6X - 1)

H2(6) is surjective. Therefore 0 : H2(6x- 1 ) -+ H2(6) is an isomorphism if 3 # w, x.

(2) H2(w) is a 1-dimensional L-vector space, generated by 1/T.

(3) H2(xk) = 0 for any k E Z. Combining with (1), we conclude that 0 is always injective.

Proof. For (1), first suppose 6 0 x. If 0(f) = 0 for some f E H 2 (X-16), this means

that there exist a, b E RL such that 0(f) = (6(X(7))y - 1)a - (6(p)p - 1)b. Now since

Res(0(f)) = 0, we have Res((6(X(y))y - 1)a) = Res((3(p)op - 1)b). Therefore

(6(x(-y))x(y) - 1 - 1)Res(a) = (6(p) - 1)Res(b).

If 6(p) - 1 = 0, then vp(6x-l(p)) < 0. Therefore H 2(6x - 1 ) = 0 by Proposition 1.2.11.

If 6(p) - 1 is not zero, let c = (6(p) - 1)-'Res(a) -T , a' = a - (6(p)W - 1)c and b' =

b - (6(X(Y))y - 1)c. Then we have Res(a') = Res(b') = 0 and 0(f) = (6(X(-))y - 1)a' -

(6(p)op - 1)b'.

So we can assume that Res(a) = Res(b) = 0. Now suppose 0(a) = a and 0(b) = b. Let

f = f -((6(x(7))x()- - 1)i-(6(p)p-l'V-1)b), then 0(]) = 0. This implies f E L. Since

6 # x, we have either 6(X(-))X(7) - 1 - 1 $ 0 or 3(p)p- 1 - 1 5 0. If 6(X(7))X(-) - 1 - 1 # 0,

let d' = i + (6(x(7))x(y) - 1 - 1)-1f, then f = (6(X(7))X(7)-'7 - 1)&' - (6(p)p-9W - 1)b.

So J = 0 in H 2 (x-1). If (p)p- 1 - 1 is not zero, let b' = b - (6(p)p-1 - 1)-'f, then

f = ((x(-y))x()-1-y - 1)d - (6(p)p-'p - 1)6'. So f is also zero.

If 6 $ w, then either 6(X(-y))X() - 1 - 1 or 6(p) - 1 is not zero. Hence for any f E H2(6),

we can choose a, b such that Res(f - (6((-y))y - 1)a - (6(p)W - 1)b) = 0. Then there exists



an f' such that 8(f') = f - (6(X(7))7 - 1)a - (6(p)p - 1)b. So 8(f') = f. This proves the

surjectivity.

For (2), we have that both w(X(y))X(y) - 1 - 1 and w(p) - 1 are zero. So we can define

a map Res : H 2 (w) -4 L by Res(f) = Res(f). We claim that it is an isomorphism. If

Res(f) = 0, then f is in the image of 8: H 2(IxI) -+ H 2 (w). But H 2(IxI) = 0 by Proposition

1.2.11, so f = 0. Therefore Res is injective. Note that Res(1/T) = 1, so Res is also

surjective.

For (3), if k < 0, then H 2(xk) = 0 by proposition 1.2.11. If k E N, then 8 : H 2 (k-1 )

H2(xk),...,8 : H 2 (1) -- H2 (x) and 8 : H 2(x - 1) -+ H 2 (1) are all surjective by (1). So

H 2(xk) = 0 since H 2 (x - 1 ) = 0. O

Corollary 1.2.13. Suppose p is not equal to 2. If 6 = wxk for k E N, then H 2 (6) is a

1-dimensional L-vector space generated by 8k(l/T). Otherwise, H2 (6) = 0.

Proof. This is an easy consequence of Propositions 1.2.11 and 1.2.12. In fact, for any 6, we

can find a k0o E N such that vp(Jx-ko(p)) < 0. Then H 2(6x-ko) = 0. If w does not appear

in the sequence 6x-ko,..., 6X- 1 , 6, then H 2 (6) = 0 by Proposition 1.2.12(1). If w appears,

then 6 = wxk for some k E Z. If k < 0, then H2(6) = 0 since vp(wxk(p)) < 0. For k E N, by

Proposition 1.2.12(2), H 2 (w) is generated by 1/T. Repeatedly applying (1) of Proposition

1.2.12, we get that H2(wxk) is generated by 8k(l1T). 5

Corollary 1.2.14. If p > 2, then the Euler-Poincard characteristic formula holds for all

rank 1 (w, F)-modules .

1.3 Generalized (<p, F)-modules

In the rest of this paper, all (w, F)-modules are over the Robba ring. For simplicity, we

only consider the usual Robba ring without an additional coefficient field. However, it is

easy to see that the same argument works to prove the results in the general case.

1.3.1 Generalized (w, I)-modules

In this section we will investigate generalized (w, F)-modules. Define a generalized (W, F)-

module over RK as a finitely presented RK-module D with commuting po, F-actions such

that p*D -+ D is an isomorphism. Since IRK is a Bezout domain ([15, Proposition 4.6]), it



is a coherent ring (i.e. the kernel of any map between finitely presented modules is again

finitely presented), so the generalized (o, F)-modules form an abelian category. Define a

torsion (o, F)-module as a generalized (W, F)-module which is RK-torsion. We say a torsion

(c,F )-module S is a pure tk-torsion (, IF)-module if it is a free RK/tk-module. For a

generalized (w, F)-module D, its torsion part S is a torsion (W, F)-module and D/S is a

(W, F)-module. We define the rank of D as the rank of D/S.

Proposition 1.3.1. If K = Qp, then a torsion (w, IF)-module S is a successive extensions

of pure t-torsion (po, IF)-modules.

Proof. From [2, Proposition 4.12(5)], we can find a set of elements {el,...,ed} of S and

principal ideals (rl), (r2), ..., (rd) of RK such that S = ~d' Re i , Ann(ei) = (ri), and (ri) C

(r2) C ... C (rd). Furthermore, these ideals (ri), (r2), ..., (rd) are unique. Therefore they are

1-invariant. Since RK is a free IRK-module via c, we have Ann(1 ® ei) =Ann(ei) = (ri)

in p*S for every i. Hence Ann(p(ei)) = (ri) because p*S -+ S is an isomorphism. This

implies (p(ri)) CAnn(c(ei)) = (ri).

We claim that if a principal ideal I of •Q, is stable under W and F, then it is (tk) for

some k. In fact, from the proof of [4, Lemma 1.3.2], since I is stable under W and F it is

generated by 1 l(pn-yl(q)/p)j" for a decreasing sequence {jn}n. Therefore these jn's are

eventually constant, let k E N denote this constant. This implies I = (tk). So we conclude

that (ri) = (tki) for every i, and {ki}i is decreasing. Then we can construct a filtration

0 = tkl S C tki-1S C ... C S of S such that each quotient is a pure t-torsion (sO, F)-module,
hence the result.

In case K = Qp, for any pure tk-torsion (w, F)-module S, let d = rankR/tk S, and choose

a basis {el,...,ed} of S. Let A be the matrix of ýo in this basis. Since p*S ! S, there is

another matrix B such that AB = BA = Id. Furthermore, since F is topologically finite

generated, we can choose an ro large enough such that A, B and the elements of F have all

entries lie in B$ /(tk) For r > ro, set S, be the B QP /(tk)-submodule of S spanned by

{el,...,ed}. Then F acts on S, and W : Sr --+ Spr, induces an isomorphism

1 s: BrigQp /(t) Bg /(tk) Sr L- Spr.rigQPBt~



Here we view BrigQ/(tk) as a BrI Q /(tk) algebra via Wp.

Lemma 1.3.2. For r > p - 1, we have the following.

(1) The natural maps Br ,Qk/(tk) - , BI 'r , l(Wn(qk)) for n > n(r) induce an isomor-

phism

Bt,r k__,• n>_(r)C Bt,r  I(,npnqk))Big,Q/ (t rig) ,Qp r

(2) If n > n(r), the localization ir ý- e(n)et/p - 1 induces a F-equivariant isomorphism

from B ~i;Q/(p (qk)) to Qp(e(n))[t]/(tk).

(3) For r' > r, BB, /((pn(qk)) -+ B•I,' /(1n(qk)) is the identity map via the isomor-

phism of (2).

(4) The morphism : B igQp/(th) -+ BpQP (tk) can be described via the isomorphism of

(1) as follows: p((Xn)n>n(r)) = ((Yn)n>n(r)+l) where yn+l = xn for n > n(r).

Proof. See [13, Lemma 3.15]. O

Using (2) of Lemma 1.3.2, for n > n(r), we set Sn = Sr ®Bt!g/(tk) Qp(5(n))[t]/(tk). Then

Sn is a free Qp(E(n))/(tk)-module of rank d with F-action. The injective map p : S n -- Sn+l

induces an isomorphism

1 0 (p : Qp((n+l))[t]/(tk) Qp(e(ltk) S n [ S n + 1

It allows us to regard S n as a submodule of Sn+1 .

Theorem 1.3.3. With notations as above, the following are true.

(1) The natural maps Sr -- Sn for n > n(r) induce Sr n>n(r) S n as (p(E(n(r)) tk[r]

modules.

(2) For r' > r, under the isomorphism of (1), the natural map Sr -- Sr, is ((Xn)n>n(r)) I

((Xn)n2n(r,)).

(3) Under the isomorphism of (1), o : Sr -+ Spr is (Xn)n>n(r) ((Yn)n>n(r)+l), where

Yn+1 = xn for n > n(r).



Proof. For (1), we have

r - Sr ®Bt,, Bjrig,Q /(tk)
rig,Qp

00

- Sr BBtr i BI, BtQ n/((ýp(q))k)
rigQp nn(r)

00

nln(r) rigQp

= Sr ®Q,(e(l))[t] Qp(e(n))[t]/(tk)
n>n(r)

00

SSn.
n>n(r)

(by (1) of Lemma 3.2)

(by (2) of Lemma 3.2)

Then (2) and (3) follow from (3) and (4) of Lemma 1.3.2 respectively.

The natural examples of torsion (w, r)-modules are quotient (W, F)-modules which are

of the forms D/E, here E C D are two (Qp, F)-modules of the same rank. For sufficiently

large r, we have Er C Dr. For n > n(r), localizing at e(n) - 1, we get Ddn (E) C Ddifn(D).

It is natural to view the quotient Ddif (D)/Dd (E) as the localization at -(n) _ 1 of the

quotient (w, F)-module D/E. The connecting map Wn of D and E induces a connecting

map

(Pn : Di (D)/Ddif (E) Ddin (D)/Ddif (E)

of D/E such that

Pn 1 : Dd (D)/Dd (E) ®Qp(e("))[t] Qp(E(n+l))[t]/(tk) - Ddif (D)/Ddf n(E)

is an isomorphism. Note that if we apply the proof of Theorem 1.3.2 to DIE by replacing

Sr by Dr/Er and Sn by Dif (D)/Ddin (E), then we get the following formulas which might

be useful for other purposes.

Proposition 1.3.4. Suppose K = Qp. With notation as above, the following are true.

(1) The localization maps Dr/Er -+ D+'(D)/Djjn(E) induce an isomorphism

Dr/Er on(r) + n (D) +,(E)= In>_n(r)Ddif dif



as (Qp(e(n(r)))[t]/(tk))[1] modules.

(2) For r' > r, under the isomorphism of (1), the natural map Dr/Er -+ Dr,,/Er, is

((Xn)n>n(r)) -4 ((Xn)nln(rI)).

(3) Via the isomorphism of (1), o : Dr/Er - Dpr/Epr is ((Xn)n>n(r)) I ((Yn)n>n(r)+l),

where Yn+l = xn for n > n(r).

1.3.2 Cohomology of Generalized (<p, F)-modules

We also use Herr's complex to define the cohomology of generalized (W, F)-modules. If

L is a finite extension of K, and D is a generalized (wo, r)-module over RL, then we define

the induced (wo, r)-module of D from L to K in the same way as for (o, F)-modules as in

the beginning of section 1.2.2 and also denote it by Ind K D.

Theorem 1.3.5. (Shapiro's Lemma for generalized (ýo, rF)-modules) Suppose D is a (Wo, F)-

module over lRL. Then there are isomorphisms

Hi(D) - Hi(Indg D) (i = 0, 1, 2)

which are functorial in D and compatible with cup products.

Proof. The proof is the same as the proof of Theorem 1.2.2. O

Suppose 77 : Z - Or, is a character of finite order with conductor pN(,) (N(r]) = 0 if

77 = 1; otherwise it is the smallest integer n such that r is trivial on 1 + pnZp). We define

the Gauss sum G(y) associated to qr by G(?r) = 1. if r = 1, otherwise

G(71)= 77(x)lixN(,) L'
xE(Z/pN(,7)Z)*

Lemma 1.3.6. Let k be a positive integer.

(1) If r7 : Z* - OL is of finite order and 0 < i < k - 1, then g(G(q)ti) - (rl-Xli)(g) .

(G(r7)ti ) for every g E r.

(2) For every n E N, we have Qp(e(n))[t]/tk - (7,N()<5n (0<i<k-1 Qp -G(r)t i .

Proof. See [13, Prop 3.13]. E



Theorem 1.3.7. Suppose S is a torsion (p, r)-module. Then we have the following.

(1) dimQ, Ho(S) = dimQ, H1 (S) < oo;

(2) o - 1 is surjective on S, and therefore H2 (S) = 0.

Proof. By Theorem 1.3.5, we first reduce the theorem to the case K = Qp. Suppose we

are given a short exact sequence 0 - S' -*• S -- S" -+ 0 of torsion (w, F)-modules and the

theorem holds for S' and S". Then (2) also holds for S by Five Lemma. From the long

exact sequence of cohomology we get

0 - Ho(S') -- HO(S) -- Ho(S") --+ H'(S') -_ H'(S) -> H'(S") -+ 0.

Then we see that dimq, Ho(S) = dimQ, H'(S) < oo since dimQP Ho(Si) = dimQP H 1(Si) <

oo for i = 1, 2.

So conditions (1) and (2) are preserved by extensions. By Proposition 1.3.1 we only

need to treat the case in which S is a pure tk-torsion (o, F)-module. We claim that the

map c - 1 : Sr -+ Spr is surjective for any r > p - 1. This will prove (2), since S is the

union of Sr's. In fact, for any ((Yn)n>n(r)+1) E Spr, if we let Xn = - Z"i=n(r) Yi for n 2 n(r),

where we put Yn(r) = 0, then we have (pO - 1)((Xn)n>ln(r)) = ((Yn)n>n(r)+l) by (2) and (3)

of Theorem 1.3.3.

For (1), we set Sr = SaK and (Sn) ' = (Sn)aK. Then we have that S 0 -n(r)(Sn)'.

By Theorem 1.3.3(2), if a = ((an)n>n(r)) E Sr, then a = 0 if and only if an = 0 for almost

all n. For any a E Ho(S), suppose a is represented by ((an)n>n(,)) E S'; then (p-1)(a) = 0

implies an becomes constant for n large enough. Therefore we have

Ho(S) = lim ((Sn)')r/AK = l (Sn) r .
n-•oo0 n--*OO

Suppose (a, b) E Z'(S). By (2) which we have proved, there exists a c E S such that

(c - 1)c = b. Then (a, b) is homogeneous to (a - (7K - 1)c, 0), so we can assume that b = 0.

Suppose a is represented by ((an)n>n(r)) E S'r for some r. Then (ýo - 1)a = 0 implies an

becomes constant for n is large enough, say for n > no. Also (a, 0) is a coboundary if and

only if an C (7K - 1)(Sn)' for some n > no. Then we have

H'(S) = lim (Sn)'/(7K - 1).
n--00



Since (Sn)' is a finite dimensional Qp-vector space, we have that dimL(Sn)r = dimL(Sn)'/(7K-

1). Since (Sn) r 
-4 (Sn+l)r is injective by Lemma 1.3.3(2), in order to prove (1), we need

only to verify two things: (a) (Sn)'/(y-1) -i (Sn+l)'/(y-1) is injective, and (b) dimL(Sn) r

has an upper bound independent of n.

From Lemma 1.3.6(2), Qp(E(n))[t]/(tk) is a direct summand of Qp(E(n+l))[t]/(tk) as F-

modules. Hence S" is a direct summand of S"n + as F-modules, then (Sn)' is also a direct

summand of (Sn+l)' as F-modules and this proves (a).

For s E N, using Lemma 1.3.6(2) for S n +" = Qp(e(n+s))[t]/(tk) ®Qp(e())[t]/(tk) Sn, we see

dimQP(Sn+s) r < dimQ,(Sn(rF-1Xi))r).
N(?)•n+s 0<i<k-1

But the right hand side is no more than dimr, Sn because these characters r7-1X i are

distinct. Hence dimQp(Sn+8)r < dimp, Sn for any s, and this proves (b). O

Corollary 1.3.8. For any torsion (o, F)-module S, we have x(S) = 0.

1.4 Main Theorems

1.4.1 Euler-Poincard characteristic formula

The main goal of this section is to prove the Euler-Poincar6 characteristic formula.

Lemma 1.4.1. For any (p, F)-module D and 0 < i < 2, dimQp Hi(D) is finite if and only

if dimQP Hi(D(x)) is finite. Furthermore, if all of dimQP Hi(D) are finite, then x(D) =

X(D(x)).

Proof. We identify D(x) with tD, then apply Theorem 1.3.7 and Corollary 1.3.8 to D/D(x).

Lemma 1.4.2. We can find a (c, F)-module E of rank d such that

(1) E is pure and p(E) = 1/d;

(2) E is a successive extensions of R(xi) 's, where i is either 0 or 1.

Proof. We proceed by induction on d. For d = 1, take E = R(x). Now suppose d > 1

and the lemma is true for d - 1. Choose such an example E 0. By Lemma 1.4.1, we have



X(R(x)) = x(R). Since Eo is a successive extensions of R(xz)'s where i is either 0 or 1, we

have

dimQ, HI(Eo) Ž -X(Eo) = (rank Eo)(-x(R)) = (d - 1)[K : Qp] > 1,

where the last equality follows from Corollary 1.2.9. Therefore we can find a nontrivial

extension E of RK by Eo. Then Ip(E) = 1/d. We claim that E is pure. In fact, suppose

P is a submodule of E such that p(P) < 1/id. Since rank P < d, we get deg P < 0, and

hence u(P) < 0. Therefore, P n E0 = 0, since E0 is pure of positive slope. Therefore the

composite map P -+ E -- RK is injective, we get that p(P) > 0 with equality if and only

if it is an isomorphism [25, Corollary 1.4.10]. But this forces the extension to be trivial,

which is a contradiction. Obviously E also satisfies (2), so we finish the induction step. O

Theorem 1.4.3. (Euler-Poincard characteristic formula) For any generalized (w, F)-module

D, we have

(1) dimQ, H'(D) < oo for i = 0, 1, 2

(2) x(D) = -[K : Qp]rank D.

Proof. First by Theorem 3.6, we reduce to the case D is a (V, F)-module. Then by

Theorem 1.2.2, we can further reduce to the case where K = Qp. We first show that

dimq, Ho(D) < d = rankD for any D. For r large enough, Dr is defined and we have

Dr -• Ddf (D)[1/t] for n > n(r). We claim that dimQ,(D +,n(D)[1/t])r < d. Other-

wise we can find e, e2,..., ed+1 (D +n(D)[1/t])r that are linearly independent over Qp.

But D +,n(D)[1/t is a d-dimensional vector space over Qp(e(n))((t)). So el, e2,..., ed+1 are

linearly dependent over Qp(e(n))((t)). Then there is a minimal k such that k of these vec-

tors are linearly dependent over Qp(e(n))((t)). Assume e, e2 , ..., ek are k such vectors and

E 1 aiei = 0. Obviously al 0 since k is minimal, so el + ••=2(ai/al)ei = O. Using y,

we get el + e-=2 i(a/al)ei = 0. By minimality of k, we must have y(ai/al) = ai/a1 . But

(Qp(E,(n)((t)))r = Qp, so el, e2 , ... , ek are linearly dependent over Qp. That is a contradic-

tion. So we get dimQ,(Dr)r < d for any r; therefore dimQ, Ho(D) 5 dimQ, Dr < d.

We will prove Theorem 1.4.3 by induction on the rank of D. Assume for some d > 1 the

theorem holds for all (Q, F)-modules which have rank less than d. Now suppose rank D = d.

Note that both of (1) and (2) are preserved under taking extensions. Thus by the slope

filtration theorem we can further assume that D is pure. Suppose p(D) = c/d. Let E



be as in Lemma 1.4.2. Then (•, E)(xk) is pure of slope k + s/d. In particular, we can

find a pure (r, F)-module F which is a successive extensions of R(xi)'s and M(F) = -c/d.

Consider the 4tale (o, F)-module D 0 F. By Corollary 1.2.9 we get

x(D 0 F) = - rank(D 0 F) = - rank F rank D.

On the other hand, by the construction of F, D®F is a successive extensions of D(xi)'s.

So in particular there exists a j E Z such that D(xi) is a saturated submodule of D 0 F.

Let G be the quotient, so we have the long exact sequence of cohomology:

S.. -- Ho(G) - H'(D(xj)) -- H'(D ® F) -+ H'(G) -> H 2 (D(xj)) -- H 2(D 0 F)... .

Since D® F is 4tale, dimQ, H'(D® F) is finite by Theorem 2.6. Hence dimQ, H' (D(xi)) is

finite; then dimQ, HI(D(xi)) is finite for any i E Z. If dimQ, H2(D) = oo, by Lemma 1.4.1

we have that dimQ, H2(D(xi)) = oo for any i. This implies dimQ, H2(D F) = oo from the

above sequence. But this is a contradiction since D®F is 4tale. Therefore dimQ, H2(D(xi))

is finite for any i. By Lemma 1.4.1, we have that x(D) = x(D(xi)). By the additivity of X,

we get

x(D & F) = (rank F) (D);

hence

(rank F)x(D) = - rank F rank D,

x(D) = - rank D.

The induction step is finished. O

1.4.2 Tate local duality theorem

The main topic of this section is to prove the Tate local duality theorem: the cup product

Hi(D) x H2-i(DV(w)) -+ H2(w) p

is a perfect pairing for any (p, F)-module D and 0 < i < 2.

Lemma 1.4.4. Suppose 0 - D' -+ D -+ D" - 0 is an exact sequence of (o, rF)-modules.

If Tate local duality holds for any two of them, it also holds for the third one.



Proof. First note that the pairing Hi(D) x H2-i(DV(w)) --* H 2 (w) Q Qp is perfect if and

only if the induced map H 2-i(DV(w)) -+ Hi(D)v is an isomorphism. From the long exact

sequence of cohomology, we get the following commutative diagram.

---.. - H2-i(D 'v (w)) -- H2-i(Dv (w)) - H2-i(D' (w)) ...

1 I I
----- Hi(D")V v Hi(D)V v Hi(D')v ----- .

Then the lemma follows from the Five Lemma. O

Lemma 1.4.5. Tate local duality is true for R(Ixl).

Proof. By the Euler-Poincar6 formula, we get dimQ, Hl(xlxl-l) > -X(R(x-1|xl)) = [K :

Qp]. Hence there exists a nonsplit short exact sequence of (w, F)-modules

0 -- R(x) --+ D - R(IxI) -- 0.

Then deg(D) = deg(R(x)) + deg(R(Ixl)) = 0 and furthermore we see D is forced to be

6tale. In fact, suppose P is a submodule of D such that M(P) < 0, then P is necessary of

rank 1 and hence p(P) < -1. Then Pn R (x) = 0, hence P maps injectively to RI(IxI).

So we have p(P) > -1. Therefore we conclude that I(P) = -1; but this forces P to map

isomorphically to R(Ixl), which is a contradiction. If a E Ho(x), then cp(a) = a/p. It

implies p(at) = at, yielding at is a constant, therefore a = 0. If a E Ho(Ixl), then -y(a) = a

for any -y E F, so a is a constant. But ýp(a) = pa, hence a = 0. So HO(D) = 0 by the long

exact sequence of cohomology. Take the dual exact sequence

0 -- R(x) -- DV(w) -- R((xI) -+ 0.

By usual Tate duality, HO(D) is dual to H2(DV(W)), so H2(DV(w)) = 0. Hence H2(IxI) = 0,

so dimQ, H'(xl) = [K : QpJ by the Euler-Poincar6 formula. The cup pairing gives a

morphism of long exact sequences:

- --- 0 HI(x)1 HI(Dv(w)) - H( Hl(l) -- H2(-)- -• ...

"" -- H2()V --- H(Ixl)V --- Hi(D)v - Hi()V ---- 0 -- ..-



in which HI(DV(w)) -- Hi(D)v is an isomorphism by usual Tate duality. Then diagram

chasing shows that H'(x) -+ Hl(|Ix)v is injective, so HI(x) has Qp-dimension < [K: Qp].

Then by the Euler-Poincar6 formula, dimn~ Hi(x) = [K : Qj and H2(x) = 0. Therefore

H'(x) -- Hl(Ixl)v is an isomorphism. O

Remark 1.4.6. Note that we can use R(x - 1) instead IR(jxl) in the proof of Theorem

1.4.7 (see below). In case K = Qp and p > 2, we can verify the Tate duality for R(x - 1)

by explicit calculations. Recall that Res : H 2 (W) -+ Qp is an isomorphism. For i = 0,

HO(x - 1) = Qp t, H 2(wx) = Qp (1 + T)/T 2 , the cup product of t and (1 + T)/T 2 is

t(1 + T)/T 2, and Res(t(1 + T)/T 2 ) = 1. For i = 1, Hl(x- 1) has a basis{(t,0),(0,t-)}.

From [13, Proposition 3.8], HI(w) has a basis {(a, 1/T + 1/2), (1/T, b)}, where a E TR+

and b E (Et)P=O. Furthermore, 0 : Hi(w) -- Hl(wx) is an isomorphism, therefore

{(-a, -(1 + T)/T 2), (-(1 + T)/T 2 ,-b)} is a basis of Hl(wx). A short computation shows

that under the given basis, the matrix of cup product is (0 ",1). For i = 2, there is nothing

to say since H 2(-1) = Ho(wx) = 0.

Theorem 1.4.7. The Tate local duality is true for all (w, r)-modules.

Proof. By Lemma 1.4.4 and the slope filtration theorem, we need only to prove the theorem

for pure (o, r)-modules. Suppose D is a pure (y, F)-module of rank d. By passing to DV(w),

we can further assume t(D) = s/d > 0. We proceed by induction on s = deg(D).

If s = 0, D is 6tale, so the theorem follows from Corollary 1.2.6. Now suppose s > 0

and the theorem is true for any pure (w, F)-module D which satisfies 0 < deg(D) < s. By

the Euler-Poincar6 formula, we have dimQ, H'(D(Ixj-1)) > d > 1. Hence we can find a

nontrivial extension E of 7R(Ixl) by D. Then deg(E) = s - 1 and p(E) = (s - 1)/(d +

1) < p(D). Suppose the slope filtration of E is 0 = Eo C El C ... C El = E. Then

L(E1) _< Ip(E) < p(D). Note that deg(E1) = deg(El n D) + deg(E1/(E1 n D)). Since D is

pure of positive slope, deg(E1 n D) > 0 unless El n D = 0. Since E1/(E1 n D) is the image

of El -* R(1xI), deg(E,/(El n D)) > -1. Consequently, deg(E1) > 0 unless El n D = 0

and E1/(E1 n D) - R((ix), but these imply that the extension splits, which it does not

by construction. So we have p(Ej/Ej-1) Ž 0 for each j. Note that E'=, deg(Ej_l/Ej) =

degE = s - 1. Thus for each j, we have deg(Ejl/Ej) < s. Hence Ej-1/Ej satisfies the

theorem by induction. Therefore the theorem is true for E by Lemma 1.4.4. By Lemma

1.4.5 the theorem holds for R(IxI). Therefore the same is true for D by Lemma 4.5 again.



This finishes the induction step. O

Remark 1.4.8. Our approach to Tate local duality is similar to the way we established the

Euler-Poincar6 formula. However, in the case of Tate local duality, Euler-Poincard formula

has provided the existence of nontrivial extensions, so we don't need the reduction steps on

torsion (cp, F)-modules that were used in the proof of Theorem 1.4.3.



Chapter 2

Slope Filtrations in Family

Introduction

The slope filtration theorem gives a partial analogue of the eigenspace decomposition

of a linear transformation, for a Frobenius-semilinear endomorphism of a finite free module

over the Robba ring (the ring of holomorphic functions on the boundary of the p-adic open

unit disk). It was originally introduced in the context of rigid cohomology by Kedlaya

as the key ingredient in his proof of the Crew's conjecture, a p-adic analogue of the 1-

adic local monodromy theorem. It also has important applications in p-adic Hodge theory

via Berger's construction of the (p, r)-modules associated to Galois representations. For

instance, it allows Berger to prove Fontaine's conjecture that de Rham implies potentially

semistable and to give an alternate proof of the Colmez-Fontaine theorem that weakly

admissible implies admissible.

This chapter grew out of an attempt to generalize the slope theory to families of Frobe-

nius modules over a nontrivial base, i.e. over the Robba ring with coefficients not in a p-adic

field but in, e.g. an affinoid algebra. In fact, in both rigid cohomology and p-adic Hodge

theory, one is led to study such families of Frobenius modules. The difference between these

two cases is that in rigid cohomology, the Frobenius acts on the base as a lift of a p-power

map, but in p-adic Hodge theory the Frobenius does not move the base at all. The families

of Frobenius modules we consider in this chapter fits the set up of the latter case, which is

the main motivation of our work.

In this chapter, we mainly concern the variation of HN-polygons (generic HN-polygons)

of families of (overconvergent) Frobenius modules. We establish the local constancy of



generic HN-polygons of families of overconvergent Frobenius modules and the semicontinuity

of HN-polygons of families of Frobenius modules over reduced affinoid algebras. Besides, we

proved the existence of HN filtration of Frobenius modules over Robba rings over spherically

complete fields. To build up a slope theory in this setting, we still need to prove that the

semistability is preserved under tensor product. We expect to verify this point in the near

future.

2.1 Preliminaries

This section contains some basic definitions and facts from the slope theory of &-modules

over the Robba ring. The novel feature of our treatment is that we allow the coefficient

field of Robba ring to be non-discrete. We prove some new results in this case, particularly

the existence of HN filtrations for 0-modules over Robba rings with spherically complete

coefficient fields. Moreover, we introduce the notion of Robba rings over a Banach algebra,

which arises from both rigid cohomology [24] and p-adic Hodge theory [6]. Some of our

presentations follow [25, Chapter 1] closely.

2.1.1 The Robba ring and q$-modules

Throughout this paper, K is a field of characteristic 0 and complete for a non-archimedean

valuation vK which is not necessarily discrete. Let OK denote the valuation subring of K.

Let mK denote the maximal ideal of OK. We make the assumption that the residue field

k = OK/mK is of characteristic p. The valuation vK is normalized so that VK(p) = 1 and

the corresponding norm I I is defined as " I = p-VK(). We extend vK and I I uniquely to a

valuation and a norm of K which are still denoted by vK and I i. Let A be a commutative

Banach algebra over K, and let M(A) be the spectrum of A in the sense of Berkovich [7].

Definition 2.1.1. For any subinterval I C (0, oo], define

+oo00

RIK = f = akT k , where ak E K and f(T) is convergent on VK(T) E I).
k=-oo

Equivalently, R•Z is the ring of rigid analytic functions on the annulus vK (T) E I over K.

For any s E I, we define a valuation Ws,k on RK as w8,k(f) = vK(ak) + ks. We set the

valuation w, on RI as w,(f) = infkEz{ w,k}. The corresponding norm is If , = p-w)

Note that I Ia is multiplicative for any s E I. Geometrically, Ifl, is the maximal value of f



on the circle xI = p-8 . It is clear that RIK is Frechet complete with respect to w, for s E I.

For I = (0, r], we also use R1' instead of Z ',r]. Let RK be the union of R;K for all r > 0.

The ring RK is called the Robba ring over K.

Definition 2.1.2. Let R3t be the subring of RK consisting of series with coefficients in

OK. Let Rbgd be the subring of RK consisting of series with bounded coefficients. We equip

RbKd with a valuation w by setting w(f) = infkEz{VK(ak)}, and the corresponding norm is

If I = supkEZ lakl. In case VK is discrete, Rnt is a henselian ring with residue field k((T)),

and RbKd is the fraction field of R• t [22].

Remark 2.1.3. In case vK is discrete, by Lazard's work [28] we know that the units in RK

are precisely the nonzero elements of bKd. If VK is not discrete, R~ is no longer a field,

let alone the fraction field of Rf t . But we still have that the units of RK are contained in

Similarly, we can define the Robba ring over the Banach algebra A.

Definition 2.1.4. For any subinterval I C (0, oo], we set

+oo

•R = {f = Z akTk, where ak E A and f(T) is convergent on VK(T) c I}.
k=-oo

For any s E I, we define a valuation ws,k on R• as ws,k(f) = vA(ak) + ks. We set

the valuation w, on RzI as w,(f) = infkEZ{vA(ak) + ks}. The corresponding norm is

Ifis = p-wS(f). It is clear that Rfi is Frechet complete with respect to w, for s E I. For

general A, I , is no longer multiplicative; instead we have that w,(fg) 2 w,(f) + w,(g),

fg 1 <• IfIa slg for any f, g E RRI. Similarly, for I = (0, r], we use 1tý instead of R •,r]. We

let RA be the union of 1RZ for all r > 0. It is called the Robba ring over A.

Definition 2.1.5. Let R1t be the subring of RZA consisting of series with coefficients

having norm less than or equal to 1. Let R•bd be the subring of RA consisting of series with

bounded coefficients. For f E R•2, define w(f) = infkEZ{vA(ak)} and Ifl = SUPkEZ{Iakl}.

Then ~RZt = {f CE d , ,w(f) > 0}.

Let R tT denote the intersection of R't and Rt.

Definition 2.1.6. Fix an integer q > 1. A relative (q-power) Frobenius lift on the Robba

ring RK (resp. RA) is a homomorphism q : RK --+ RK (resp. €: RA - R~A) of the form



E=-oo0 akTk k=E-oo .K(ak)Sk

(resp. E=OO akTk -H CZ-o qA(a )Sk) , where OK (resp. OA) is an isometric endomor-
phism of K (resp. A) and S E r (resp. S E Rýt) is such that w(S - Tq) > 0. If k has

characteristic p > 0 and q is a power of p, we define an absolute (q-power) Frobenius lift as

a relative Frobenius lift for which OK or OA is a q-power Frobenius lift.

In the rest of the paper, we always equip K and A with isometries OK and OA re-

spectively. They then become a &-field and a O-ring respectively in the sense of following

definition.

Definition 2.1.7. Define a e-ring/field to be a ring/field R equipped with an endomor-

phism 0; we say R is inversive if q is bijective. Define a (strict) k-module over a O-ring

R to be a finite free R-module M equipped with an isomorphism ¢*M -+ M, which we

also think of as a semilinear q-action on M; the semilinearity means that for r E R and

m E M, ¢(rm) = q(r)q(m). Note that the category of O-modules admits tensor products,

symmetric and exterior powers, and duals.

From now on, if R is a q-ring/field, then we always use OR to denote the endomorphism

0 from the definition. For a O-subring of a O-ring R, we mean a subring of R stable under

€ with the restricted O-action.

Definition 2.1.8. We can view a O-module M over a O-ring R as a left module over the

twisted polynomial ring R{X}. For a positive integer a, define the a-pushforward functor

[a]. from Q-modules to Oa-modules to be the restriction along the inclusion R{X a} --

R{X}. Define the a-pullback functor [a]* from qa-modules to O-modules to be the extension

of scalars functor M - M ®R{xf} R{X}.

In the rest of the paper, a q-field is always complete with a valuation such that the q-

action is an isometric endomorphism. For a 4-subring, we mean a subring with the induced

O-action and valuation. We always equip the Robba ring RK (resp. RA) with a Frobenius

lift 0, and our main objects will be O-modules over RK (resp. RA). Note that by the

definition of Frobenius lift, we have that 0 maps Rbd or Rbd to itself. Therefore we can

also talk about O-modules over Zbbd (resp. R bd ). They are called overconvergent q-modules.



2.1.2 Slope theory of 0-modules

Definition 2.1.9. Let M be a 0-module over lZK (resp. ZbKd) of rank n. Then its top

exterior power An M has rank 1 over RK (resp. R•bd). Let v be a generator of A" M, and

suppose ¢(v) = Av for some A E rKd. Define the degree of M by setting deg(M) = w(A).

Note that this is independent of the choice of v because € is an isometry on 7ZbKd . If M is

nonzero, define the slope of M by setting p(M) = deg(M)/ rank(M).

For c E Z, we set RK(c) as the rank 1 0-module over RK with a generator v such that

¢(v) = pCv. For a 0-module M over RK, we set M(c) as M ® RK(C). The following formal

properties are easily verified; see [25] for the proof.

(1) If 0 --+ M1 -- M -M2 -- 0 is exact, then deg(M) = deg(Mi) + deg(M 2);

(2) We have p(M1 ® M2 ) = p(M1 ) + p(M 2 );

(3) We have deg(MV) = - deg(M) and IL(MV) = -p(M);

(4) We have p(M(c)) = pL(M) + c;

(5) If M is a q-module, then p([a].M) = ap(M);

(6) If M is a Oa-module, then p([a]*M) = a- p(M).

Definition 2.1.10. We say a 0-module M over RK is (module-)semistable if for any nonzero

0-submodule N, we have p(N) 1 p(M). We say M is (module-)stable if for any proper

nonzero q-submodule N, we have j(N) > p(M). Note that both properties are preserved

under twisting (tensoring with a rank 1 module).

Lemma 2.1.11. For a E RIK, if there exists a A E VZ such that w(A) 5 0 and ¢(a) = Aa,

then we have a E R,.

Proof. Recall that a is a unit in RK if and only if there exists an r > 0 such that a has no

roots in the annulus 0 < vK(T) < r. By [25, Proposition 1.2.6] (although this is under the

hypothesis that VK is discrete, the proof works for the general case), we get that a E Rbd

Note that there exists an ro > 0 such that for any r E (0, ro), 0 induces a finite 6tale

map of degree q from the annulus 0 < vK(T) < r/q to the annulus 0 < vK(T) < r and

VK(O(X)) = qvK(x) for 0 < VK(X) < r/q. Now if a is not a unit in RK, then it has

roots c1 , c2, - - - in the open unit disk such that lim vK(ci) = 0. Moreover, by the theory of



Newton polygons, we have that E vK (i) < Oc since a E TbKd. Now we choose an r < ro

such that A has no roots in the annulus 0 < ITI < r. Pick a root c of a in this annulus.

For any c' such that O(c') = qK(C), we have that it is a root of q(a), hence a root of a

by q(a) = Aa. Now we can find q different roots c' in the annulus 0 < vK(x) < r/q such

that q(c') = qK(C); each of them has valuation vK(c)/q. By iterating the above process, we

get q2 roots of a having valuations VK(c)/q 2 , and so on. But ZiEN qi(VK(c)/qi) = 00, this

yields a contradiction. O

Remark 2.1.12. In the rest of the paper, we fix such a ro as in the above proof.

Proposition 2.1.13. Any rank 1 0-module over RK is stable.

Proof. By twisting, we only need to prove this for the trivial 4-module M - RK. Suppose

that N is a nonzero 0-submodule of M; we write N = RKa for some a E RK. Then we

have that A = q(a)/a E R', and p (N) = w(A) by definition. If w(A) = p(N) < p(M) = 0,

then q(a) = Aa implies that a E R' by the above lemma. Hence N = M. In other words,

M(N) > p(M) unless N = M, as desired. O

Corollary 2.1.14. Suppose that N C M are two q-modules over RK of the same rank;

then Mi(N) _ p(M), with equality if and only if N = M.

Proof. Suppose that rank M = n. Apply the above lemma to the inclusion An N C An M.

Definition 2.1.15. Let M be a &-module over RK. A semistable filtration of M is a fil-

tration 0 = Mo C M. -- - C MI = M of M by saturated 0-submodules, such that each suc-

cessive quotient Mi/Mi-1 is a semistable 0-module of some slope si. A Harder-Narasimhan

(HN) filtration of M is a semistable filtration such that sl < -.. < sl. These si are called

the slopes of M.

Definition 2.1.16. Let M be a 0-module over RK. Define the slope multiset of a semistable

filtration of M as the multiset in which each slope of a successive quotient occurs with

multiplicity equal to the rank of that quotient. Define the slope polygon of this filtration

as the Newton-polygon of the slope multiset. For the definition of Newton polygon of a

multiset, we refer to [23, Definition 3.5.1].



Proposition 2.1.17. In case RK is a Bezout domain, every 0-module over RK has a

unique maximal 0-submodule of minimal slope, which is semistable.

Proof. Let M be a 0-module over RK. First note that by the property for B6zout domains,

the saturation of a p-submodule of M and the sum of two &-submodules of M are still

&-submodules of M. So we can talk about the saturation of a 0-submodule and the sum of

two 4-submodules.

We will prove this proposition by induction on the rank of the q-module. The rank 1

case is trivial. Now suppose the theorem is true for 0-modules over RK of rank < d - 1

for some d > 2. Let M be a rank d q-module of slope s. If M is semistable, then we are

done. Otherwise, let P be a q-submodule of slope less than s and of maximal rank. By

passing to the saturation, we suppose that P is saturated. If rank P = d, then we have

ju(M) = 1 (P) < s. That is a contradiction. So P is a &-module of rank < d - 1. By the

inductive hypothesis, P has a unique maximal 0-submodule P1 of minimal slope. We claim

that P1 is also the unique maximal 0-submodule of M of minimal slope. In fact, suppose

that Q is a 0-submodule of M such that p(Q) 5 p(P1 ) < s. If Q Z P, consider the following

exact sequence

0 - PnQ - PeQ -- P+Q Q--0.

Since Ls(P n Q) pL(Pi) Ž _/(Q), we conclude that j(P + Q) 5 max{j(P), p(Q)} < s. But

rank(Q + P) > rank P, which contradicts the definition of P. We conclude that Q C P.

Therefore we must have p(Q) = p(P1 ) and Q C P1 by the definition of P1 . The induction

step is finished. O

Theorem 2.1.18. In case RK is a Bezout domain, every (-module over RK admits a

unique HN filtration.

Proof. This is a formal consequence of the above proposition. In fact, by the definition of

HN filtration, for any i > 1, Mi can be characterized as the unique maximal (-submodule

of M/Mi- 1 of minimal slope. O

Corollary 2.1.19. For K spherically complete, every (-module over RK admits a unique

HN filtration.

Proof. By [28], RK is a B6zout domain if K is spherically complete. O



Definition 2.1.20. Let M be a 0-module over RK. If K is spherically complete, by the

above corollary, M admits a unique HN filtration. The slope polygon of the HN filtration

of M is called the HN-polygon of M. For general K, taking the spherical completion K' of

K, we define the HN-polygon of M as the HN-polygon of M ®7ZK RK'.

Proposition 2.1.21. The HN-polygon lies above the slope polygon of any semistable filtra-

tion and has the same endpoint.

Proof. This is a formal consequence of the definition of HN filtration. We refer to [23,

Proposition 3.5.4] for a proof. O

In fact, when VK is discrete, we can say more about semistable 0-modules over RK.

Definition 2.1.22. Let M be a &-module over RK (resp. RbKd). We say M is dtale if M

has a O-stable RZt-submodule M' such that O*M' - M' and M' ®Rint RK = M (resp.

M'i ®Rt Rbd = M). More generally, suppose p(M) = s = c/d, where c, d are coprime

integers with d > 0. We say M is pure if for some 0-module N of rank 1 and degree -c,

([d].M) 0 N is 6tale.

It is not difficult to prove that a pure q-module is always semistable [25, Theorem

1.6.10] (although the proof is under the hypothesis that vK is discrete, it works for the

general case). But the converse is much more difficult. We know this for discrete vK thanks

to the following theorem of Kedlaya [25].

Theorem 2.1.23. (Slope filtration theorem) In case vK is discrete, every semistable 0-

module over RK is pure. As a consequence, every q-module M over RK admits a unique

filtration 0 = Mo C M1 C ... C M1 = M by saturated 4-submodules whose successive

quotients are pure with p(Mi/Mo) < ... < . (M./MI-1).

Remark 2.1.24. It would be interesting to generalize the slope filtration theorem to spher-

ically complete K, i.e. to prove semistable implies pure in this case. See Remark 2.3.10 for

one of the motivations.

2.2 Generic and special slope filtrations

In this section, we suppose that K is of discrete valuation and IrK is a uniformizer.



Definition 2.2.1. Let EK be the completion of RbKd with respect to w; the induced valuation

on •K is still denoted by w. Then EK is just the set of Laurent series f = -EO+ 0 akTk

with ak E K, satisfying the condition that the jail's are bounded, and that lakl - 0 as

k - -oo. Then w can be written as w(f) = miniEz(v{(ai)}. The q-action on Rdbd induces

a b-action on 6K. In this way, EK is equipped with a O-ring structure.

Let K•Z, 1bZd be the extended Robba ring, and extended bounded Robba ring defined

in [25].

Definition 2.2.2. Let EK be the set of formal sums f = -iEQ aiui with bounded coef-

ficients satisfying the condition that for each c > 0, the set of i E Q such that lail Ž c

is well-ordered, and that lail -+ 0 as i -+ -oo. It is also the completion of 1bgd; the

induced valuation w on &K is w(f) = miniEQ vK(ai). We define the &-action on &K as

(•iaeQ aiui) = EiEQ q(ai)uqi

Proposition 2.2.3. There exists a O-equivariant isometric embedding O : EK Lx- EK. Thus

we can view EK as a 0-subfield of 9K via 0.

Proof. By the proof of [25, Proposition 2.2.6], we have a q-equivariant isometric embedding

from Ebd to gbd. Taking the completion of this embedding, we get the ¢ required. O

We can develop the slope theory for 0-modules over EK (resp. LK) as for 0-modules

over RK. For P a 0-module over EK (resp. LK) of rank n, let v be a generator of An P,

and suppose ¢(v) = Av for some A E EK. Define the degree of P as deg(P) = w(A). This is

independent of the choice of v because of the O-equivariance of w. If P is nonzero, define

the slope of P by setting p(P) = deg(P)/rank(P). We say M is stable (resp. semistable) if

for any nonzero proper q-submodule N of M, we have pu(N) > p(M) (resp. p(N) >2 (M)).

We then define HN filtration and HN-polygon similarly. Since EK (resp. &K) is a field, we

have that every q-module over EK (resp. 9K) admits a unique HN filtration.

For A E EK (resp. LK), let VA,d be the 0-module over EK (resp. 9K) with basis el,..., ed

such that €(el) = e2 , ... , ¢(ed-2) = ed-1, (ed-1) = ed, ¢(ed) = Ael and any such basis

is called a standard basis. Then VA,d is a semistable &-module with slope w(A)/d. For a

q-module P over LK or •E, a Dieudonnd-Manin decomposition of P is a decomposition of

q-modules P = ePi such that each Pi is of the form VA,d for some A, d.



Proposition 2.2.4. If K is such that every b-module over K admits a Dieudonn&-Manin

decomposition, then every (-module P over EK admits a Dieudonnd-Manin decomposition.

Proof. See [26, Theorem 14.6.3] for a proof (although this is for an absolute Frobenius lift,

the proof works for the general case). 0

Lemma 2.2.5. Let L be a (-field extension of K. Put S = EL o®K EL. Set ii, i2 : 4L --+ S

by il(a) = a 0 1 and i2 (a) = 1 & a. Suppose that A1 and A2 are elements of EL such that

w(A1) > w(A 2 ). If z E S satisfies i2 (2 1)ii(i1)¢((z) = z, then z = 0.

Proof. Let 1 be the residue field of L, fix a basis B of I over k containing 1, and lift B to

a subset B of OL containing 1. Then every element x E EL can be written uniquely as a

formal sum

S xa,buab (Za,b C EK)-
aEs[o,1)nQ beB

Given x presented as above, we set fa,b(X) = Xa,b; one checks that fa,b is an EK-linear map

from EL to EK satisfying w(fa,b(X)) Ž w(x). Then it is clear that x = 0 if and only if

fa,b(X) = 0 for any a E [0, 1) n Q and b E B. We also use fa,b to denote the map from S

to EL defined by setting fa,b(X 0 y) = fa,b(x)y; then for any s E S, s = 0 if and only if

fa,b(s) = 0 for any a E [0,1) n Q and b E B. Now from z = i2 (A2 1)i1(A1)(z), we get

z = i2 ((0n-l(A 1 ) .. _- A1)il(n-1 (A 1 )... A1)on(z)

for any n > 1. Write z = C-~ 9i 0 yi and suppose that c = min 1{w(xi)}. For any

a E [0, 1) n Q, b E B, by the above equality, we get that

m

fa,b(z) = fa,,b (On- 1 (1) .. . ... /i) 'n-1(A2') .. 2 1Y.y
i=1

Then we get that w(fa,b(Z)) 2 n(w(Al)-w(A2))+2c for any n. We conclude that fa,b(Z) = 0

since w(A1) > w(A2). Hence we have z = 0.

0

Proposition 2.2.6. Let L be a (-field containing K with discrete valuation such that every

(-module over L has a Dieudonne-Manin decomposition. Suppose P is a (-module over



EK. Then the HN filtration of P, tensored up to EL, gives the HN filtration of P gK EL.

In particular, P and P ®eK EL have the same HN-polygon.

Proof. Suppose that PL = P ®eK eL has the HN filtration 0 = PL,O C ... C PL,j = PL with

p(PL,i/PL,i-1) = si. We will show that this filtration descends to a filtration 0 = Po C

S... C P1 = P of P. Since Pi ®EK &L = PL,i is semistable, we have that Pi is also semistable.

Hence the descended filtration is the HN filtration of P and we are done.

To do this, we apply faithfully flat descent for modules. We will show that PL,i i2 S C

PL,i ®il S for i = 1, 1 - 1,..., 1 inductively; the starting point i = I is trivial. Now given

that PL,1 Oi2 S C PL,i Oil S for some i > 1; we get a homomorphism PL,1 ®i, S --

(PL,i/PL,i-1) ®il S. We will show that this homomorphism is forced to vanish. Indeed, since

every &-module over CL admits a Dieudonn6-Manin decomposition, we can suppose that PL,1

is a direct sum of some Vm,,,dm and that PL,i/PL,i-1 is a direct sum of some V,,c,; since PL,1

and PL,i/PL,i-1 are semistable of slopes sl and si respectively, we have that w(Am) = dmsi

and w(6~) = cnsi. We only need to show that any 0-homomorphism h from Vm,,,dm ®i2 S to

V6,,c, ®il S vanishes. Suppose that e ,.. ., e'm and e, .. I, e" are standard bases of VAm,dm

and Va,,n respectively; write h(e') = =l a1e'. Then ocndm(e') -= (cn-1)dm( m)... Ame'j

implies that cnd"m(al)il (¢(dm-1)c"(l(n) .. . n) = i2 (¢(cn-l)dm (Am) " " m)al. Since we have

that w(¢(dm-l)cn"(/n) ... ln) = dmW(lin) = cndmsi > cndmS1 = W((c(n-1)dm(Am) ... Am),

we conclude that al is forced to be zero by the above lemma. Similarly, we get that a2,

.. , ac, are all zero; then so is h(e'). Hence h(e') = h(¢8 (e')) = 08 (h(e')) = 0 for any

1 < s < dm. Therefore PL,1 Oi2 S C PL,j-1 ®il S, the induction step is finished. Then

by symmetry, we conclude that PL,1 0i2 S = PLJ ®i, S. This shows that PL,1 satisfies the

condition for faithfully flat descent, so it descends to EK. Similarly, each PL,i descends to

-K- O[

Definition 2.2.7. Let M be a 0-module over R•b. Define the generic slope filtration of

M as the HN filtration of M lbyd £K. The slope polygon of the generic slope filtration

is called the generic HN-polygon. Similarly, define the special slope filtration of M as the

HN filtration of M abid RK. The slope polygon of the special slope filtration is called the

special HN-polygon.

Proposition 2.2.8. Let M be a q-module over IZK. Then the special HN-polygon of M

lies above the generic HN-polygon of M and has the same endpoint.



Proof. We refer to [23, Proposition 5.5.1] for a proof (although this is for an absolute

Frobenius lift, the proof works for the general case). O

Definition 2.2.9. For a &-module M over RK, we say a q-submodule N over Rb is a

model of M if N ®(& d lK = M. We say it is a good model if the generic HN-polygon of N

coincides with the special HN-polygon of N, i.e. the HN-polygon of M.

Proposition 2.2.10. Every 0-module over RK admits a good model.

Proof. A pure q-module over RK has a unique good model. So by the slope filtration

theorem, we only need to prove that if M is an extension of q-modules M1, M2 such that

the HN-polygon of M is the sum of HN-polygons of M1, M2 and the proposition holds for

M1 , M 2 , then it also holds for M. In fact, suppose that N 1, N 2 are good models of M 1,

M2 , then by [23, Lemma 7.4.1] we can find a model N of M such that N is an extension of

N2 by N1. Note that the generic HN-polygons are additive; we conclude that N is a good

model of M. O

We pick a basis e = {e, e2, ... ,e+n+n2~ of N such that {el,e2, ... ,enl } is a basis of N1

and {en+l1, eni+2 ,..., en+n,2 } is a lift of a basis of N 2 . Then the matrix F of ¢ under e is

of the form

F =( F11 F12

0 F22

where Fl 1 is the matrix of q under {ei, e2, ... , en, } and F22 is the matrix of q under the

image of {en1+1 e 2+2, en+2,.., en,+n}-

Lemma 2.2.11. With notations as above, we can make w(F 12 ) arbitrarily large by choosing

suitable e.

Proof. If we change e to {e, e2,...,en. , Aen+1, ... , Aen+n 2} for A E (ib)X, then F12

changes to q(A)F 12. O

By iterating the above procedure, we get the following

Corollary 2.2.12. Let M be a 0-module over RK. Suppose that the HN filtration of M is

O= Mo C M 1 CC ... C M = M.



Then we can choose a basis e = {ei, e 2,..., en of M such that the matrix of k under e is

of the form

F11 F12 ...' F11

= 0 F22 " F21

0 0 .. Fu
where F has entries in R1db and Fii is the matrix of q of Mi/Mi-_ under some basis. Hence

the Rbd -module N generated by {ei, e2 ,... en } is a good model of M. Furthermore, we can

make mini<j{w(Fj) } arbitrarily large.

2.3 Variation of HN-polygons

Throughout this section, K is of discrete valuation vK with uniformizer irK. Let A

be a reduced affinoid algebra over K, and suppose that OK is extended to an isometric

endomorphism OA of A such that for every prime ideal p of A, OA(P) - p, and that OA

induces an isometric endomorphism of A/p. We use M(A) to denote the associated affinoid

space of A as in rigid geometry, and let k(x) denote the residue field of x. By a family

of q-modules (resp. a family of overconvergent 0-modules) over A, we mean a 0-module

over RA (resp. bd). Let MA (resp. NA) be a family of q-modules (resp. a family of

overconvergent 0-modules) over A. For any x E M(A), we set M- = MA ®DRA lRk(x) (resp.

Nx = NA ®bd R()); it is a 0-module over Rlk(x) (resp. xbd)). In section 3.1, we will

prove that the generic HN-polygons of a family of overconvergent q-modules are locally

constant over M(A). In section 3.2, we prove some results concerning the semicontinuity of

HN-polygons of a family of 0-modules.

2.3.1 Local constancy of generic HN-polygons of families of overconver-

gent 0-modules

Definition 2.3.1. For an invertible square matrix F over ZRK (resp. R b), we define the

HN-polygon (resp. generic HN-polygon and special HN-polygon) of F as the HN-polygon

(resp. generic HN-polygon and special HN-polygon) of the 4-module over RK (resp. 1Rbd)

defined by F.

Proposition 2.3.2. Let F be an invertible n x n matrix over RTb d . Then there exists a



constant CF depending only on F satisfying the following property. For any 0-field L D K

which is complete for a discrete valuation extending VK, F' a n x n matrix over b d , if

w(F' - F) > CF, then F' has the same generic HN-polygon as F.

Proof. We choose a &-field extension K' of K with discrete valuation such that every 6tale

0-module over K' is trivial. We then have the Dieudonn6-Manin decomposition for any

0-modules over £K', and furthermore there is an invertible n by n matrix U over £K' such

that D = U-1FUk is diagonal. Then the generic slopes of F are equal to the valuations of

the diagonal entries of D. For any L, F' given in the proposition, choose a 0-field extension

L' of K' with discrete valuation such that L can be embedded into L'. We then view all

of F', F, U, D as matrices over EL,. Now if w(F' - F) > -w(D - 1) - w(U - 1) - w(UV),

then we get w(U-1F'UkD- 1 - In) = w(U-1F'UOD-1 - U-'FUOD-1) 2 w(U - 1) + w(F' -

F) + w(UV) + w(D - 1) > 0. Then by [23, Lemma 5.2.6] (although it is for an absolute

Frobenius lift, the proof works for the general case), the generic slopes of U-IF'UO, or

equivalently the the generic slopes of F', are equal to the valuations of the diagonal entries

of D, hence are the same as generic slopes of F. This shows that we can take CF to be

-w(D - 1) - w(U - 1) - w(UV). O

Lemma 2.3.3. For any x E M(A) and A > 0, there exists an affinoid neighborhood M(B)

of x such that for any f E A vanishing at x, If(y)| < Alf| for any y E M(B).

Proof. We first prove the lemma for A = K(xl, - , xn), the n-dimensional Tate algebra.

Without loss of generality we suppose that x is the origin point xl = ... = Xn = 0. Choosing

a rational number A' < A, the affinoid domain {(xl,... , Xn) lx1 :5 A',... , xnI <• A'} satisfies

the required property.

For general A, the reduction A = Ao/IrKAo is a finite type scheme over k. For n

big enough, we take a surjective k-algebra homomorphism - : k[I-,,... , ] -•* A-, where

k[., . ., ] is the polynomial algebra of variables xT, ... , x-. We then lift ' to a K-affinoid

algebra homomorphism a : K(xl,..., xz) -4 A by mapping xi to a lift of Z( ) in AO. Then

it follows from Nakayama's lemma that a maps OK (1, - , Xn) onto Ao. We still use a to

denote the induced K-affinoid homomorphism from M(A) to M(K(xl,..., x,)). By the case

of K(xl,..., xn), we can find an affinoid neighborhood M(B) of a(x) satisfying the required

property. Now for any nonzero f E A vanishing at x, choosing c E K such that Icl = If I,
we can find a f' E OK(xl,... ,, n) mapping to f/c via a. Then f'(a(x)) = (f/c)(x) = 0



implies that If'(y)j 5 A for any y E M(B). Then for any y E a-'(M(B)), we have

If(y)l/c = If'(a(y))l 5 A. Hence a-'(M(B)) is an affinoid neighborhood of x satisfying the

property we need. O

Theorem 2.3.4. For a family of overconvergent 0-modules over A, the generic HN-polygons

are locally constant over M(A).

Proof. Let NA be a family of overconvergent &-modules over A. For any x E M(A), by

passing from A to Ak(s) = A ®K k(x), we can suppose that x is rational. Choose a basis e

of NA, and let F be the matrix of q under e. For any y E M(A), e maps to ey, a basis of

Ny, and the matrix of ¢ under ey is Fy, the image of F in Zby) Let CF, be the constant

for F, as in Proposition 2.3.2. Since F is over TbKd , by the above lemma there exists an

affinoid neighborhood M(B) of x such that w(Fy - Fx) > CF. for any y E M(B). Hence

the generic HN-polygon of F,, or in other words, the generic HN-polygon of Ny, is the same

as the generic HN-polygon of Nx. O

2.3.2 Semicontinuity of HN-polygons of families of C-modules

For a family of 0-modules MA over A, we say a a family of overconvergent &-submodule

NA of MA is a model of MA if NA ®&b d IZA = MA. We say it is a good model if Nx is a

good model of Mx for any x E M(A).

The following is a family version of [23, Lemma 6.1.1].

Lemma 2.3.5. For r < ro/q, let D be an invertible n x n matrix over RjZ,r ], and put

h = -wr(D) - wr(D-1'). Let F be an n x n matrix over RIr,r] such that wr(FD- 1 - In) Ž

c+ h/(q - 1) for a positive number c. Then for any positive integer k satisfying 2(q - 1)(k -

1) < c, there exists an invertible n x n matrix U over R ' ,qrA such that U-1FUOD- 1 - I,

has entries in irk t,r A and Wr(U-1FUkD- 1 - I,) > c + h/(q - 1).

Proof. To prove the lemma, we first introduce some valuations on RA. For i E Z, r > 0,

f = j+,-oo akTk E A, we set vi(f) = min{k : vK(ak) 5 n} and vi,r(f) = rvi(f) + i.

They were first introduced in [23, p. 458] and named as vinave , v e respectively.

We define a sequence of invertible matrices Uo, U1,... over [r,qr] and a sequence of

matrices Fo, F1 ,... over [n'r ] as follows. Set Uo = In. Given U1, put F, = U-'FUO.

Suppose F1D
- 1 - In = 1 VmTm where the Vm's are n x n matrices over A. Let X, =

m=-oo



S VmTT m , and put U1+1 = U1(In + X1). Set
vA(Vm)<k-1

c, = min {vi,r(FID-' - In) - h/(q - 1)}.
i<k-1

We now prove by induction that c 2 c -lc, wr(FiD- 1 - 1,) 2 c + h/(q - 1) and U1 is

invertible over R qr for any 1 > 0. This is obvious for 1 = 0. Suppose that the claim is true

for 1 > 0. Then for any s E [r, qr], since cl 2 +- c > (q - 1)(k - 1), we have

ws(X1 ) Ž (s/r)wr(XI) - (s/r - 1)(k - 1) > (s/r)(cl + h/(q - 1)) - (s/r - 1)(k - 1) > 0.

Hence U1+1 is also invertible over R.rqrT ]. Furthermore, we have

wr(DXOD
- ') Ž wr(D) + wr(Xt) + wr(D - 1)

= wqr(Xi) - h

Sq(ci + h/(q - 1)) - h - (q - 1)(k - 1)

= qc + h/(q - 1) - (q - 1)(k - 1)

1 1
Scl + -c + h/(q-1)+(-c- (q - 1)(k-1))

2 2

since cl > c. Note that

Since wr(FID - ') _ 0 and Wr((In+X 1)-)

+ c + h/(q - 1). Write

(In + Xl)- FID- - In =

0, we have wr((In + Xi)-I(FiD-1)DXOD- 1) 2

(In + Xl)- (FID-1 - In - XI)

Z(-Xt)J(FD-l - In - X,).
j=o

For j > 1, we have

wr((-Xt)j(FID- 1 - In - Xi)) > c + ci + 2h/(q - 1) > 1c + h/(q - 1).

Fj+1D - 1 - In = (In + X)-'FID-'(In + DX"D- ) - In

= ((I + Xi)-'FiD- 1 - In) + (I, + Xi)-'(FiD-')DXOD- 1



By definition of X1, we also have vi(FID - 1 - In - X1) = oo for i < k - 1 and wr(FID- 1 -

In - X1) 2 c + h/(q - 1). Putting these together, we get that

1+2
vi,r(Fl+ 1D

- 1 - In) > 2 c + h/(q - 1)

for any i < k-1, i.e. cr+l > +2c, and that wr(F,+1
D - 1 -In) > c+h/(q-1). The induction

step is finished.

Now since w,(XI) Ž (s/r)(cj + h/(q - 1)) for s E [r, qr], and clq -+ oo as 1 -+ oo, the

sequence U1 converges to a limit U, which is an invertible n x n matrix over [r,qr] satisfying

wr(U-1FU'D - 1 - In) 2 c + h/(q - 1). Furthermore, we have

Vm,r(U-1FUOD- 1 - In) = limvmr(U-1FUOD- 1 - In) = lim vm,r(FI+ 1D
- 1 - In) = 00,l-+oo l--oo

for any m < k - 1. Therefore U- 1FU 4D - 1 - In has entries in k int,r. O

The following is an analogue of [23, Lemma 6.2.1].

Lemma 2.3.6. In the above lemma, suppose that F and D are both invertible over RA,

then U is invertible over RTqr

Proof. Set B = U-1FUCD - 1. Then B is invertible over R n"Ar since B - In has entries in

IrRZnt,r and wr(B - In) > 0. In the equation

BD = U-1FUO,

we have F, B and D are all invertible over RA7/q,r]. We also have that UO is invertible over

Rjr/qr] since U is invertible over 7 'rqr]. So U is also invertible over JT/qr]. Therefore U is

in fact invertible over R[r/q,qr]. Repeating this argument, we conclude that U is invertible

over [r/qi,qr] for all positive integers i, yielding the desired result. O

Proposition 2.3.7. Let MA be a family of 0-modules over A. Then for any x E M(A)

and model Nx of Mz, there is an affinoid neighborhood M(B) of x and a model NBk(Z) of

MBk(x) = MA O®RA lZBk(,) SUCh that (NBk(x))X' = NZ for any x' E M(Bk(x)) above x under

the identification of (MBk(.))z, with Mx, and the generic HN-polygons are constant over

,M(B).



Proof. By passing to Ak(x), we only need to treat the case that x is rational. We choose a

basis ex of Ns, and lift it to a basis e of MA. Let F be the matrix of q under e; then F.

is the matrix of 0 under ex; hence is over Rd. Suppose that F and Fx are over 7~ and

1Zr respectively for some r > 0. Put h = -wr(Fx) - wr((Fx)-'). Let CF. be the constant

for Fx as in Proposition 2.3.2. Pick a positive integer k > CF. - w(Fx) and a positive

number C > 2(q - 1)(k - 1). We take the affinoid neighborhood M(B) of x defined by

wr(F-Fx) > C-wr((Fx)-')+h/(q-1). So we have wr(F-Fx) > C-wr((Fx)-l)+h/(q-1)

as matrices over R1B. Hence wr(F(Fx)- 1 - In) > C + h/(q - 1). By Lemma 2.3.5, 2.3.6,

there exists an invertible matrix U over RTr such that U-'FUO(Fx)-l - In has entries

in irk Bnt,r. This implies that w((U-'FyU)y - Fx) > CF. for any y E M(B). Then we

have w(U-1FUO - Fx) Ž k + w(Fx) > CF. So the generic HN-polygon of U-'FUV, or

equivalently the generic HN-polygon of Ny, is the same as that of Nx. Furthermore, note

that by the construction of U, we have Ux = In. Therefore the Rbd-module NB generated

by eU is a model satisfying all the desired properties. O

Now for any y E M(Bk(x)), Ny is a model of My. Since the HN-polygon of My lies above

the generic HN-polygon of Ny and has the same endpoint, if we choose Nx a good model

of Mx, then we attain the following theorem.

Theorem 2.3.8. (Semicontinuity of HN-polygons) Let MA be a family of q-modules over

A. Then for any x E M(A), there is an affinoid neighborhood M(B) of x such that for

any y E M(B) the HN-polygon of My lies above the HN-polygon of Mx and has the same

endpoint.

Corollary 2.3.9. (Local existence of good models) For MA a family of e-modules over A, if

Mx is pure of slope s for some x E M(A), then there exists an affinoid neighborhood M(B)

of x such that My is pure of slope s for any y E M(B), and MB has a good model.

Proof. Using Proposition 2.3.7 with Nx the good model of Mz, we get an affinoid neighbor-

hood M(B) of x and a model NB of MB such that for any M(B) the generic HN-polygon

of Ny is the same as that Nx. Since the only convex polygon lying above the HN-polygon

of Mx is the HN-polygon of Mx itself, we conclude that My is pure of slope s for any

y E M(B), and NB is a good model of MB. O

Remark 2.3.10. By Definition 2.1.20, we can now talk about HN-polygons for 0-modules



over Robba rings with non-discrete coefficient fields. So one can think consider the variation

of HN-polygons over M(A), the Berkovich space associated to A, rather than only over

classical points M(A). Ideally, we should have the semicontinuity of HN-polygons in this

case. However, to follow the strategy we used for classical points, there are two difficulties.

Namely, we need to verify the existence of good models and that special HN-polygons

lie above generic HN-polygons for q-modules over Robba rings with non-discretely valued

coefficient fields. These amount to a generalization of Kedlaya's slope filtration theorem

and de Jong's reverse filtration theorem to spherically complete coefficient fields.

Lemma 2.3.11. Let MA be a family of q-modules over A such that M. is pure of slope

s with s independent of x E M(A). Suppose that NA is a good model of MA. Then for

any x E M(A), there exists an affinoid neighborhood M(B) of x such that for every generic

point y of M(B), My is pure of slope s as b-module over Ri(y), and Ny is the good model

of it.

Proof. As in the proof of Proposition 2.3.7, we suppose that x is rational. Suppose the

Frobenius matrix of NA is F under a basis e. Then Fx is the Frobenius matrix of N, under

the basis ex the image of e in Nx. Then we can find an affinoid neighborhood M(B) of x such

that w(Fy - Fx) < CFx for any y E M(B) by Lemma 2.3.3. Then we have w(F - Fx) < CF.

as matrices over Zb d , hence as matrices over bdfor any generic point y of M(B). Then

we get that the generic HN-polygon of Ny is the same as the generic HN-polygon of Nx.

Since Mx is pure of slope s, we conclude that My is also pure of slope s and that Ny is the

good model of it. 0O

Corollary 2.3.12. (Local uniqueness of good models) Let MA be a family of k-modules over

M(A) such that Mx is pure of the slope s with f independent of x E M(A). Suppose that

NA and N" are two good models of MA. Then for any x E M(A), there exists an affinoid

neighborhood M(B) of x such that NA and NA coincide on M(B).

Proof. Let U be a transformation matrix between N 4 and NA under some basis. By the

above lemma, we can find an affinoid neighborhood M(B) of x such that for any generic

point y of M(B), My is pure of slope s, and that both NY and NY" are good models of it.

Therefore UN(y) are over Vbd Since B can be embedded into the product of HF(y)'s for

all the generic points y, we conclude that UB is over 7Zbd . Hence we have N' = N". O



Let MA be a family of 0-modules over M(A). Suppose that the HN-polygons of M,

are constant on M(A). By a global filtration of MA, we mean a filtration 0 = MO,A C

M1,A'.. C M1,A = MA of MA by q-submodules over RA such that each Mi,A is a direct

summand of MA as an 1RA-module, and that 0 = (MO,A)x C (M1,A)x'". C (MI,A)x = Mx is

the slope filtration of Mx for any x E M(B).

Corollary 2.3.13. (Local uniqueness of global filtrations) Let MA be a family of O-modules

over M(A) such that the HN-polygons of Mx's are constant over M(A). Suppose that

0 = M,AC 1,A C M1,A = MA and 0 = MAC M,A '. C M,'A = MA are two global

filtrations of MA. Then for any x E M(A), there exists an affinoid neighborhood M(B) of

x such that these two filtrations coincide on M(B).

Proof. Let U be a transformation matrix between these two filtrations. Suppose the slopes

of Mx are sl, .. , si. From Lemma 2.2.10, we can find an affinoid neighborhood M(B) of x

such that for any generic point y of M(B), (M,A) (M'-1,A), and (M",A)Y/Ml 1,A)y are

pure of slope si for any 1 < i < 1. Therefore 0 = (MO,A)Y C (M,A) ... C (Mli,A = M

and 0 = (MA) C (MA) ... C (M,A)y = My are both the slope filtration of My. We

then have that UH(y) is upper triangular. Since B can be embedded into the product of

H(y)'s for all the generic points y, we conclude that UB itself is upper triangular. Hence

these two filtrations coincide on M(B). O

Conjecture 2.3.14. (Local existence of global filtrations) Let MA be a family of k-modules

over A such that the HN-polygons of Mx are constant over M(A). Then for any x E M(A),

there exists an af4inoid neighborhood M(B) of x such that MB admits a global filtration.

2.3.3 An example

In this section, we give an example to show that unlike the case of families of overcon-

vergent q-modules, there is no local constancy property for families of q-modules. This

example is actually a family of (o, F)-modules. From now on, let K be a finite extension

of Qp with trivial 0, F-actions. The o, F-actions on RK are given by O(T) = (1 + T)P - 1,

Sy(T) = (1 + T)x(r) - 1.

Lemma 2.3.15. For f E RK, if 0(f) = Af for some A E K, then we must have A = pi

and f = ct' for some i E N and c E K.



Proof. Write f = E+'_ akTk. If f is not in IZ+ , let ko be the maximal k < 0 such that

ak y 0. Note that q(T - 1) = 1/((1 + T)P - 1) = T-P(1 + pT - 1 + + pT'-p)- 1 . Hence

pko is the maximal k < 0 such that 0(f) has nonzero coefficient of Tk. Since 0(f) = Af,

we conclude that pko = ko; this yields a contradiction. Therefore we have f E R• and the

lemma follows from [14, Lemma 1.1] O

Lemma 2.3.16. Let M be a (0, 1F)-module over RK. Suppose that M satisfies the short

exact sequence

0 - RK(1) K M ~ RKK(-1) b 0

of (o, rF)-modules. Then M is dtale if and only if the exact sequence is non-split.

Proof. The 'only if' part is obvious. For the 'if' part, we first have deg(M) = (-1) + 1 = 0.

If M is not 6tale, then it has a rank 1 (o, F)-submodule N such that deg(N) < 0. We may

suppose N is of the form RZK(6) by the classification of rank 1 (o, r)-modules [14]. Since

lRK(1) is a saturated 0-submodule of positive slope of M, we have that N n RK(1) = 0 by

Corollary 1.14. This implies that N maps into a 0-submodule of •RK(-1). Now let v and

v' be the canonical generators of N and IRK(-1) respectively. Suppose that P(v) = fv for

some f E 1RK. Then we have

p-1 (f)v' = ¢(fv') = (fP(v)) = N(O(v)) = P(6(p)v) = 6(p)fv'.

Hence 0(f) = p6(p)f. Then by the above lemma, we have that p6(p) must be a nonnegative

power of p. Since vK( 6 (p)) < 0, we conclude that 6(p) = p-1. Therefore we have 0(f) = f.

This implies that f is a scalar. So P induces an isomorphism between N and RZK(-1).
Hence the exact sequence is split. O

Example 2.3.17. Let A be the 1-dimensional Tate algebra K(x) with trivial 0-action. By

[14, Theorem 3.9], we have dimK H1(RK(2)) = 1. Now suppose that (a, b) represents a

nonzero element of HI(RK (2)). Let MA be a family of rank 2 (po, F)-modules over A such

that the 0, 7-actions are given by the matrices ( p-1 , (p~\) respectively. Then it is clear

that at each closed point x = c E K, Mx is an extension of R.k(x)(-1) by Rlk(x)(1), which is

represented by the cocycle (pca,pcb) in HI(Rk(x)(1) 0 1k(x)(-1)v) = H 1( Rk(x)(2)). Since

(a, b) is nonzero, (pca, pcb) vanishes if and only if c = 0, i.e. M. is the trivial extension if

and only x = 0. So from the above lemma, we conclude that Mx is 6tale if and only if x



is not the origin. Hence we do not have an affinoid neighborhood of the origin over which

HN-polygons are constant.
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