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ABSTRACT

Cancer immunotherapy attempts to stimulate the immune system to reject and destroy
tumor cells. Despite the amount of ongoing intensive research to prevent cancer, tumor
cells continue to evade immune responses. Currently, dendritic cell vaccines are in
development, in which autologous antigen-loaded dendritic cells are injected back into
the patient in order to generate an appropriate immune response. Improving upon this
idea, members of the Irvine laboratory are in development of an injectable dendritic cell
based formulation that gels in situ around the tumor site. In this way, immune cells (most
notably T cells) can be recruited and become activated against specific tumor antigens,
and (hopefully) kill tumor cells. Recent studies have shown the potential benefit of
incorporation of cytokine interleukin-15 complexed with its soluble receptor interleukin-
15Ra, which is discussed.

Economic considerations are also discussed, including topics such as intellectual property,
barriers to entry, initial markets and market drivers, and entry into the current supply
chain considerations. A business strategy is outlined and evaluated.
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1 Introduction
In 2007, there were an estimated 1.4 million new cases of cancer in the United States

alone [1]. Despite the application of increasingly intense chemotherapeutic and

radiotherapeutic regimens, overall cancer cure rates have remained essentially unchanged

for the past 30 years [2], as shown in the figure below:
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Figure 1: Annual age-adjusted cancer incidence and death rates for all sites, by sex, U.S. 1975 to 2002.
Rates are age-adjusted to the 2000 U.S. standard population [2].

1.1 Focusing on Melanoma

Trying to conquer the issue of cancer all at once is quite overwhelming, since different

cancers work through different mechanisms. Instead, in order to solve the problem, it is

more feasible to try to understand the mechanisms of a particular cancer, and work to

solve those problems first. This review will focus on one particular type of cancer:

melanoma. Melanoma is a type of skin cancer that develops when melanocytes - the

cells responsible for pigment in the skin - become malignant.
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Figure 2: Sample schematic of melanoma in the skin [3]

While melanoma is not as common as other types of skin cancer (such as basal cell

carcinoma and squamous cell carcinoma), it is by far the deadliest once it is contracted.

To put some numbers to this, melanoma accounts for only 4 percent of skin cancer cases,

but causes 79 percent of all skin-cancer related deaths [4]. Each year, an estimated $740

million is spent in the U.S. for treating melanoma [5]. There are five stages of melanoma

(0-4), classified by severity.

Stage ofStage of CharacteristicsMelanoma
Involves the epidermis but has not spread deeper into the

0 underlying dermis. Tumor has not invaded the surrounding
normal tissue, lymph nodes, or distant sites
Tumor thickness is less than 2.0mm. The primary tumor is

1 localized (has not spread to nearby lymph nodes or distant sites),
but may affect nearby tissue
Tumor is localized, but shows signs of affecting nearby tissue.

2 There are three sub-stages, depending on the thickness and
ulceration. Usually up to 4.0mm thick, but may be more
Characterized by lymph node metastasis, but no evidence of

3 distant metastasis. May be anywhere from 1.0 to more than
4.0mm thick
Associated with metastasis beyond the regional lymph nodes to

4 distant sites in the body, usually to vital organs (lungs, abdominal
organs, brains, and bone) or soft tissues. May be any size
Table 1: Characteristics of melanoma by stage [6]

.yte



If detected early enough, early stage melanoma is removed surgically with very high

success [6]. However, later stage melanoma is where current treatments are not

successful. According to the National Cancer Institute, there will be an estimated 62,480

new cases of melanoma in 2008, and 8,420 deaths [7].

1.2 Conventional Treatment of Melanoma

Conventional treatment for melanoma includes surgery, chemotherapy, and radiation

therapy. Surgery is the standard treatment for stage 0, 1, and 2 melanoma. As mentioned

before, when detected early enough and before metastasis (spreading to other parts of the

body), surgery is usually enough to rid the patient of the tumor and essentially "cure" the

patient. Surgery is still used in later stages, however because the tumor has begun to

spread, it is difficult to remove the entire tumor [7]. As a result, surgery is necessary, but

not sufficient. Chemotherapy is used in stages 2, 3, and 4 melanoma, as an adjuvant to

surgery. In localized melanoma, chemotherapy is used to further eradicate any parts of

the tumor that were not removed from surgery. However, like surgery, chemotherapy has

low efficacy in later stage melanoma where the tumor has metastasized, and there is

currently no effective systemic chemotherapy treatment [4]. In addition, chemotherapy

generally targets fast growing cells, which may not be specific to tumor cells. Harmful

side effects may occur as a result of this. Radiation therapy is known to be ineffective in

curing melanoma, however it is still used as palliative therapy for stage 4 patients [4].

While incidence rates may vary with time because of changes in detection technology as

well as definitions, a fixed measure would be the mortality rate normalized to the

population. As shown below, melanoma follows the general trend of cancers that the

overall mortality rate has remained relatively unchanged over the past 30 years, and in

fact has slowly increased.
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Figure 3: Age-adjusted (2000 U.S. standard population) melanoma mortality rates (per 100 000),
total U.S.A., 1969-2000 (data from the SEER Program of the National Cancer Institute) [8].

a cl- --· --~- --

IV"% M iAS,-apll Crmmt,

I (r-~~-~ LL~L~~L~~L~LL~LL~L~~L~~LI



Figure 4: Model of how a T cell receptor recognizes a complex of a peptide antigen displayed by a
major histocompatibility complex (MHC) molecule [10]

There are a number of subsets of T lymphocytes, and non-differentiated T lymphocytes

are called naive. However, the type that is thought to be of most importance in tumor

regression are called cytolytic T lymphocytes (CTLs or CD8+ T cells) [10]. This is

because they kill cells harboring intracellular microbes, and are the chief cells responsible

for tumor eradication.

The majority of T lymphocytes do not recognize antigens (i.e. tumor antigens)

themselves, and as mentioned before, must have them presented by what is known as an

antigen presenting cell. APCs are specialized cells that capture microbial antigens and

display them for recognition by T lymphocytes. Examples of APCs are dendritic cells,

macrophages, and follicular dendritic cells. Furthermore, naive T lymphocytes need to

see antigens presented by "professional" APCs to initiate an appropriate response against

protein antigens. The term "professional" in this sense refers to the ability of these cells

to both display antigens for T cells and provide the costimulatory signals needed to

activate naive T cells. The hypothesized method of tumor eradication is that tumor cells

are ingested by the professional APCs (usually by phagocytosis or pinocytosis), and the

antigens of the tumor cells are processed and displayed by the host APC molecules. At

the same time, professional APCs express costimulators that provide "second signals" for

the activation of the T cells. This process is known as cross-presentation or cross-

priming, because one cell type (the professional APC) presents antigens of another cell



(the tumor cell) and activates (or primes) T lymphocytes specific for the second cell type

[10]. A diagram of this is shown in the figure below:

Phagocytoeed
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Figure 5: Diagram of tumor cell destruction by CTL [10]

2.2 Tumor Evasive Mechanisms

Unfortunately, tumors evade immune responses through a number of mechanisms. If the

immune system is to be effective against malignant tumors, it should in principle kill all

tumor cells, which can grow very rapidly. In many cases, the prolific growth simply

outstrips immune defenses. Many tumor antigens are weakly immunogenic, perhaps

because they only differ slightly from self antigens. Furthermore, emergent tumors also

develop mechanisms for evading immune responses. A few of these mechanisms are

diagramed below:
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Figure 6: Tumor evasive mechanisms [10]

As shown above, some tumors stop expressing the antigens that are the targets of immune

attack (these tumors are called "antigen loss variants"). Other tumors show mutations in

the MHC genes or genes necessary for antigen processing, and thus the T cell cannot

recognize the tumor cell. Another mechanism of tumor evasion is tumor production of

immunosuppressive cytokines (signals), such as transforming growth factor-13, that

suppress immune responses [10]. It is therefore unlikely that tumors themselves function

as effective professional antigen presenting cells as the necessary step in the process of

initiating a de novo a T cell response, priming of naive T cells [4]. A complete

understanding of all tumor evasive mechanisms is currently not available, and this critical



issue must be further pursued in order to maximize the efficiency in the design of tumor

eradicating methods.

2.3 Interleukin-2 Immunological Treatment of Cancer

In spite of these tumor evasive mechanisms, there were still indications that

immunological manipulations could cause the regression of established, invasive tumors

in humans. The first clear indication came from the studies in which humans with

metastatic kidney cancer or melanoma were administered a cytokine called interleukin-2

(IL-2) [11]. IL-2 is a cytokine produced by human T-helper lymphocytes, and plays a

role in a large number of immune regulatory effects, including the expansion of

lymphocytes following activation by a specific antigen. Cancer cells can grow

unimpeded in vitro even in high concentrations of IL-2, showing that IL-2 has no direct

impact on cancer cells themselves. Thus, the impact that IL-2 brings in destroying cancer

cells in vivo is derived from its ability to expand lymphocytes with anti-tumor activity

[ 11]. Combined with other initial studies, high-dose recombinant IL-2 showed regression

of even bulky, invasive tumors in selected cancer patients with metastatic melanoma,

kidney cancer, and non-Hodgkin's lymphoma in a significant manner [9,11]. Different

studies showed similar results, with about 15-20% of patients with metastatic melanoma

or kidney cancer achieving a full or partial regression [11-13]. Of those that completely

responded, one study showed that with a median follow-up of 7.1 years, 82% of these

patients remained in continuous, ongoing, complete regression from three to over twelve

years from the onset of treatment [12]. In addition to showing the effectiveness and

promise of IL-2, these studies showed that a relatively simple immunological

manipulation could have a large impact on tumor regression from a variety of cancers.

Furthermore, this spurred intensive efforts to understand, at a molecular level, these

complex immunological anti-tumor events [9].



3 Dendritic Cell-based "Vaccination Nodes"
Increasing information highlighted the significance of professional antigen-presenting

cells in generating immune responses in humans. Because of this, there was the desire of

looking further into antigen presenting cells. Dendritic cells (DCs) are known to be the

key antigen presenting cells involved in priming naive T cells during primary immune

responses [14]. Thus the idea of creating a dendritic cell vaccine to combat cancer was

proposed. A vaccine is defined as a pharmaceutical product that is a biological medicine,

made in, composed of, and/or tested through living systems to elicit an immune response

[15]. Generally in this approach, DCs are generated in vitro from a patient's peripheral

blood monocytes, activated and loaded (also known as "pulsed") with autologous tumor

antigens, and then re-injected back into the patient with the idea to trigger a potent

immune response against the target antigens. This approach has been tried in different

animal models, and in some cases into clinical studies. While promising animal data has

been found using this approach, results from clinical trials have been modest at best [16-

18]. A limitation of such dendritic cell vaccines - and many cancer vaccines in general -

is that antigen-bearing dendritic cells in lymphoid organs have a limited ability to support

the effector phase of the immune response following T cell priming [14]. This is

especially troublesome with the concept of dendritic cell vaccines because of the lifespan

of activated DCs is known to only be a few days [19]. This means that injection serves as

a temporary response, however fails to provide a sustaining solution. Furthermore, in

many human cancers and animal models of cancer, activated T cells fail to properly home

to the desired site (the tumor site) [14]. As a war analogy, even though the soldiers (T

cells) are armed and ready (activated and mobile), they do not know where to go to fight.

Thus a solution developed in the Irvine laboratory was proposed: deliver the DCs in an

injectable hydrogel matrix that gels in situ, which could partially or fully encompass the

tumor, with the aim of harboring dendritic cells for prolonged periods of time at a defined

site and trapping/concentrating factors secreted by DCs to establish an inflammatory

milieu in situ. Upon trying this 'vaccination node' approach in mice, it was found that

the injected dendritic cells recruited endogenous host DCs and T cells to the site, while



simultaneously a small number of the injected dendritic cells migrated to local lymph

nodes. T cells activated by these migrating dendritic cells in the local draining lymph

nodes were attracted back to the alginate matrix in response to the local inflammatory

milieu established in the gel. In this way, a single injection provided both antigen

presenting cells to initiate naive T cell priming in the native lymph nodes and

simultaneously established a microenvironment drawing the activated T cells to the site

of injection, supported by host dendritic cells that had infiltrated the gel [14].

Figure 7: Schematic of dendritic cell and lymphocyte trafficking in response to the vaccination node
[14]

Comparing the alginate+DC injection to saline+DC injection in mice shows at least a

125-fold increase in the number of activated T cells at the site. The analysis of this was

done by flow cytometry analysis of cells recovered from gels after 7 days in vivo and

stained with antibodies against the T cell receptor (TCRI3) or CD19 (a B cell marker) [14].

The results are shown below:
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Figure 8: Comparing T cell infiltration in DC-loaded alginate gels with T cell infiltration into
intradermal (i.d.) or subcutaneous (s.c.) tissue sites where activated DCs were injected in saline 114]

What are the mechanisms that take place in order for this to happen? Activated dendritic

cells are known to secrete cytokines and chemokines that attract both host dendritic cell

cells and host T cells. The effect of the matrix is that these signals are initially trapped in

the gel and slowly diffuse outward. This provides a gradient of chemokines that directs

the activated T cells back to the vaccination node [14]. T cell priming is initiated in the

draining lymph nodes, either by the small number of injected dendritic cells that migrate

out of the alginate and reach the draining lymph nodes, or by host dendritic cells that

infiltrate the alginate and pick up antigen from live or dying injected dendritic cells.

Importantly, the presence of activated, antigen-pulsed dendritic cells in the gels

conditions the vaccination node to become a site for directed homing/accumulation of

activated antigen-specific T cells following their initial priming in the draining lymph

nodes. The continuous recruitment of host dendritic cells helps the problem of

maintaining a perpetuating response, and the chemokine gradient directing the T cells to a

defined site helps the problem of ineffective homing of the T cells. Also, the idea of

trying to fully encompass the tumor was proposed. The alginate gel shows to be a good

material because it allows some cells (namely dendritic cells and T cells) to penetrate

while preventing stromal cells responsible for angiogenesis (new blood vessel growth)

from penetrating [20]. This should hinder the tumor growth and spreading, as the

tumor's invasive mechanisms are at least partially blocked.
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3.1 The Incorporation of Cytokine Interleukin-15 (IL-15)

The immune system is committed to achieving certain objectives, including the rapid

generation of different immune responses to invading pathogens, the elimination of

autoreactive T cells (to generate tolerance to self) and the maintenance of a specific

memory response to these pathogens to protect against future exposure. Such immune

responses are normally regulated by cytokines [21]

3.1.1 Background and Motivation

One remarkable characteristic of the immune system is that while it is capable of

identifying and reacting to a vast variety of microbes, it does not (normally) react against

the individual's own (self) antigens. This unresponsiveness to self antigens is called

immunologic tolerance, and is the reason why the immune system usually does not harm

normal tissues in its hunt for foreign invaders. Immunologic tolerance is a lack of

response to antigens that is induced by exposure of lymphocytes to these antigens [10].

In general, when lymphocytes with receptors for a particular antigen are exposed to this

antigen, any of three outcomes is possible. These are shown in the figure below:

[ I + Immunogen icantigen

Proliferation anddirffentiation

Anergy
Functional
•ponsivness)

lApoptoejo
(cell death)

+ Nonlmmunogenlc ___ps

k or+ince antigen tge n

Figure 9: The three possible outcomes when a lymphocyte encounters an antigen [10]
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The first case is activation, where the lymphocytes are activated, leading to an immune

response. Antigens that elicit such responses are said to be immunogenic. Lymphocytes

may also be functionally inactivated (anergy) or killed (apoptosis), resulting in what is

known as tolerance. Antigens that induce tolerance are called tolerogenic. Finally, in

some situations, the antigen-specific lymphocytes may not react in any way, and this is

called ignorance. Antigens of this sort are called nonimmunogenic [10].

This review will focus on tolerance, and specifically the functional unresponsiveness of

cells called anergy, because T cell anergy is often seen in cancer, and there has been

promising recent studies on combating this effect. Anergy is the functional inactivation

of T lymphocytes that occurs when these cells recognize antigens without adequate levels

of the costimulators, or second signals, that are needed for full T cell activation [10]. It is

believed that normally, antigen presenting cells in tissues and peripheral lymphoid organs

are in a resting state, in which they express little or no second signals, also called "danger

signals" (such as B7 proteins). These APCs are constantly processing and displaying the

self antigens that are present in the tissues. Without receiving the necessary second

signals, the T lymphocytes with receptors for the self antigens are still able to recognize

the antigens and receive signals from their antigen receptors (signal 1), but signal 1

without adequate signal 2 may lead to long-lived T cell anergy or deletion [10].
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Figure 10: Normal Response and T Cell Anergy [10].

Many cancer vaccine experiments employ a method called adoptive cell therapy (ACT),

in which patients are infused with autologous, tumor-specific T cells that can be derived

from tumor-infiltrating lymphocytes (TILs) or from peripheral blood lymphocytes

engineered to express a tumor-specific T cell receptor [22]. ACT has shown promise and

success in select patients with cancer, however most patients still fail to respond despite

having increased frequencies of circulating, tumor-specific lymphocytes [23]. This leads

to the possible conclusion that it is not necessarily the sheer number of tumor-specific

lymphocytes that leads to cancer regression, but instead the ability of immune effector

cells to access the tumor and exert their tumoricidal functions there.

Unlike naive T cells, tolerant CD8+ T cells do not proliferate in response to antigen.

Nonresponsiveness is not corrected by the stimulation with activated antigen presenting

cells, as shown by Teague et al., and others [24]. However, experimental models have

shown that if high levels of B7 costimulators are artificially expressed in a tissue in a
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mouse, that animal develops autoimmune reactions (attacks against the individual's own

cells and tissues) against antigens in that tissue. Therefore, artificially providing second

signals may "break" anergy and activate autoreactive T cells [10]. While generally we

want to stay protected from autoimmune effects, it is this same mechanism that may help

activate antigen specific antitumor cells and destroy tumor cells.

Since most tumor antigens are also expressed in normal, peripheral tissues, a large

fraction of potentially tumor-reactive T cells are deleted in the thymus during

development. While some autoreactive T cells evade this deletion, they generally have

low affinity T cell receptors, and are unlikely to be effectively triggered by and injure

normal tissues - or be effective in tumor therapy. The higher affinity autoreactive CD8+

T cells that evade deletion are potentially harmful and thus are subject to peripheral

tolerizing mechanisms, however it is precisely these cells that might be the most effective

in tumor therapy [24]. Knowing that anergy of tumor specific T cells takes place in

tumors, and that there is a mechanism to "wake" these inactivated T cells, the idea of

implementing this into the vaccination node was also proposed.

3.1.2 Comparison of Interleukin-15 to Interleukin-2

Building upon the understanding and relative success of Interleukin-2 treatment for

cancer - IL-2 is Food and Drug Administration (FDA) approved for the treatment of

renal cell carcinoma and metastatic melanoma [21] - other cytokines have been

researched for immunotherapy. One especially promising cytokine was found to be

Interleukin-15, which shares many traits with IL-2, but sometimes plays an opposing role

during an immune response.
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Figure 11: The structure and signaling pathways of IL-2 and IL-15 [21]

As shown in the figure above, the cytokine receptors for IL-2 and IL-15 are

heterotrimeric and both contain the receptor subunit yc and also both contain another

subunit referred to as IL-2/15RO3. In addition to these, the high affinity forms of the 1L-2

receptor (IL-2R) and IL-15 receptor (IL-15R) contain a third unique receptor: IL-2Ra or

IL-15Ra, respectively. Both IL-2 and IL-15 stimulate the proliferation of T cells, induce

the generation of CTLs (CD8+ cells), facilitate the proliferation B cells and the synthesis

of antibodies by B cells, and induce the generation and persistence of natural killer (NK)

cells [21]. Furthermore, both cytokines act as chemoattractants for T cells, and can

synergize with IL-12 to facilitate their synthesis of interferon-gamma (IFN-y) and tumor

necrosis factor-alpha (TNF-a) [25].

Despite the many overlapping functions, IL-2 and IL-15 also have distinct and often

competing roles. IL-2 is responsible for contributing to activation-induced cell death

(AICD), which is a process by which fully activated T cells undergo programmed cell

death through engagement of cell-surface-expressed death receptors (such as CD95 or

tumor necrosis factor receptor). Moreover, IL-2 participates in the maintenance of

peripheral CD4+CD25+ regulatory T cells. In these roles, IL-2 is involved in the

elimination of self-reactive T cells, which have a role in the pathogenesis of autoimmune

diseases. On the other hand, L-15 is important for the maintenance of long-lasting, high

avidity T cell responses to invading pathogens, and it achieves this by supporting the

survival of CD8+ memory T cells [21]. IL-15 acts to extend the life and survival of
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lymphocytes, both by acting as a growth factor, and by inhibiting IL-2 mediated AICD of

CD4 T cells. Thus, IL-15 both increases the proliferation of CD8+ T cells and reduces

death by apoptosis (programmed cell death) [26,27].

The antitumor effect of IL-2 is hypothesized to take place because of its ability to expand

lymphocyte populations in vivo and to increase the effector functions of these cells,

thereby inhibiting tumor growth [21]. However, IL-2 is not optimal for inhibiting tumor

growth because in the presence of IL-2, either the cytolytic T lymphocytes generated

might recognize the tumor as self and undergo AICD, or the immune response might be

subdued by IL-2 dependent regulatory T cells. In contrast, IL-15, with its ability to

activate T cells and NK cells, its inhibition of AICD, and its role in the persistence of

CD8+ memory T cells, might be a better choice for the treatment of cancer. It is

important to note that IL-15 might contribute to autoimmune diseases by this inhibition

of self-tolerance mediated by IL-2 induced AICD and by facilitating the maintenance of

CD8+ memory T cell survival, including those of self-reactive memory T cells [21].

However, this idea combines well with that of the injectable vaccination node that gels in

situ around the tumor, potentially minimizing the systemic activation of self-reacting

cells to healthy tissues throughout the body.

3.1.3 Ability of IL-15 to Proliferate Tolerant T cells and "Break"
Tolerance

As mentioned before, the importance of the ability of lymphocytes to actually infiltrate

tumors is of critical importance. Tolerant T cells are found at tumor sites, thus if these

cells lose their tolerance, they may be ideal for effectuating their tumoricidal functions

because they are already at the tumor site. Because of the role in facilitating the

maintenance of memory CD8+ T cells, it was investigated whether IL-15 could also

provide proliferative signals to tolerant T cells. It was found that naive CD8+ T cells did

not proliferate in response to IL-15, even at concentrations as high as 500 ng/ml. In

contrast, both tolerant and memory CD8+ T cells proliferated in response to IL-15 at

concentrations as low as 50 but not at 5 ng/ml [24]. Since the receptors of IL-2 and IL-15

include common signaling chains and induce similar signaling cascades [28], further



studies were conducted to see if IL-2 could similarly induce proliferation of tolerant T

cells. Teague et al. found that at physiologic or low doses of IL-2 (< 100 U/ml), neither

naive nor tolerant CD8+ T cells showed detectable levels of the high affinity IL-2

receptor, and thus had no effect on T cell population. High dose IL-2 (1000 U/ml) had a

proliferative effect on tolerant T cells similar to that seen when administering 50 ng/ml of

IL-15, but IL-15 seemed to be a more efficient proliferative signal, inducing one to two

rounds of cell division at doses as low as 10 ng/ml [24]. Furthermore, the study

evaluated whether IL-15 mediated proliferation would also restore antigen

responsiveness to tolerant CD8+ T cells, and thus "break" tolerance or "rescue" tolerant

T cells. This was indeed found to be the case, as after five day culture with 50 ng/ml of

IL-15, tolerant T cells formed robust synapses with their target antigen. While high dose

IL-2 (1000 U/ml) also restored antigen responsiveness, only a small percentage of the

cells that had proliferated responded to antigen, compared to the majority of cells that had

been induced to proliferate with IL-15 treatment, and the overall expansion of these

responding T cells was blunted [24].

In vivo, tolerant T cells remain unresponsive to antigen despite the ability of the host to

make IL-15, thus suggesting that the amount of IL-15 is either limiting in vivo or the

tolerizing environment interferes with this proliferative response to IL-15. However, IL-

15 may still be critical despite the tolerizing environment by potentially providing

survival signals which may promote the persistence of tolerized T cells in vivo [24].

The cellular mechanisms that regulate maintenance of tolerance are largely undefined,
which makes it difficult to predict how exactly IL-15 (and IL-2 to a lesser degree) rescues

tolerant T cells. There are a few hypotheses of why this takes place, such as the

activation or silencing of proteins and/or genes that regulate tolerance; dilution of

regulatory cellular proteins; and enhancement of functional avidity [24]. In addition, the

higher effectiveness of IL-15 may have to do with the unique biology of IL-15 and the

IL-15Ra chain, including potential signaling through the IL-15Ra cytoplasmic tail,
retention of membrane-bound IL-15 and IL-15Ra, endosomal recycling of IL-15 and

differential receptor oligomerization, all of which may alter the quality and kinetics of IL-



15 mediated signals as compared to IL-2 signaling despite sharing the same signaling

chains [24]. Further research is necessary in order to better understand the correct

mechanism(s) and ultimately maximize the safety and efficacy of treatment.

3.1.4 Toxicity Comparison of IL-2 to IL-15

The issue of toxicity is critically important when considering any therapeutic treatment.

In fact, the first clinical phase of getting FDA approval is testing in humans for safety and

appropriate dose for therapeutic effect through a process called dose escalation. One

significant concept is the therapeutic index, which is a comparison of the amount of an

agent that causes a therapeutic effect to the amount that causes toxic effects.

Quantitatively, it is the ratio of toxic dose divided by the minimum therapeutic dose.

Consequently, a higher therapeutic index is generally desired.

Although FDA approved, two major dose-limiting toxicities associated with IL-2 therapy

are pulmonary vascular leak syndrome (VLS) and hypotension [29]. Vascular leak

syndrome is a condition in which fluid from the bloodstream escapes into surrounding

tissues. While a body can often slowly expel the excess liquid, fluid buildup in critical

organs such as the lungs can turn deadly [30]. A study conducted by Rosenberg and

colleagues found that treatment with high-dose IL-2 led to a weight gain of more than 5%

of total body weight in most patients, stemming from increased fluid extravasation into

soft tissues [31]. Often times, patients with VLS are hospitalized in intensive care units

and require respiratory and ventilatory support [32]. It has been suggested that the

antitumor response to IL-2 might be improved if VLS could be attenuated, so that

regimens containing higher doses of IL-2 could be administered [33]. This is important

to note, as toxicity may be a limiting factor in treatment efficacy. Side effects of high-

dose IL-2 therapy include systemic symptoms such as nausea, vomiting, diarrhea, and

malaise. In addition, many of the side effects associated with high-dose IL-2 treatment

are similar to those seen in patients with sepsis, including a decrease in peripheral

vascular resistance, increase in cardiac index, tachycardia, oliguria, and in some rare

cases, even death [31 ].



Since VLS is a dose-limiting toxicity associated with IL-2 therapy [29], the potency of

IL-15 was compared with IL-2 in inducing pulmonary vascular leak in mice by a study

conducted by Munger and colleagues. The figure below shows the results of this testing.
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Figure 12: The effect of varying concentrations of IL-2 or IL-15 in inducing VLS in mice. The open
circles (o) represent IL-2; the closed circles (9) represent IL-15. For each experiment, n=10 [32]

The figure on the left measures the extravasation (leakage of fluid) of radio-labeled

albumin into the lungs (in counts per minute). It shows a dose-dependent increase in the

accumulation of radioactivity in the lungs of mice treated with IL-2. The minimal dose

of IL-2 required to induce VLS is 30 Gig. In contrast to IL-2, IL-15 induces VLS only at

the highest dose treated (180 jtg). The difference in potency of IL-2 and IL-15 is further

evidenced in the figure on the right, which used lung weights as a measure of pulmonary

edema (swelling). IL-2 at all doses induced a strong edematous response, whereas IL-15

induced a slight, but significant, edema at the 180 jtg dose. Analysis of this data

indicates that the VLS induced by 180 jig of IL-15 approached that of IL-2 at 30 jig.

Therefore, IL-15 is approximately six times less toxic than IL-2 in this model of VLS.

The therapeutic index (defined earlier) was found to be 18 for IL-15 and 6 for IL-2 for

their tumor model (MCA-205) [32].
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3.1.5 Combining IL-15 with soluble IL-15Ra-Fc

With the significant evidence in favor of implementing Interleukin-15, further evidence

indicated the potential in vivo benefits of "complexing" IL-15 by combining it with

soluble receptor IL- 15Ra-Fc (IL- 15Ra).

A study conducted by Stoklasek et al. compared treating mice with phosphate buffered

saline (PBS), IL-15 alone (2.5 jig), IL-15Ra alone (15 jig), or a mixture of IL-15 (2.5gtg)

and IL-15Ra (15g). After four days of treatment, it was found that the IL-15Ra alone

did not significantly alter CD8 T cell proliferation, IL-15 alone showed 8.4%

proliferation, and the IL-15/IL-15Ra complex induced a proliferation of 64.3% of the

CD8 T cells. Furthermore, the cells responding to the complex treatment underwent

about 5 to 7 divisions, resulting in a substantial increase in T cell numbers, whereas the

majority of CD8 T cells responding to IL-15 divided only once [34]. Also, the early

kinetics of the CD8 T cell proliferation was examined, finding that the maximum effect

of a single dose took place about four days after treatment [34].

In addition to looking at the proliferation of CD8 T cells, the study investigated if IL-15

and the IL-15/IL-15Ra complex induced proliferation of B cells, CD4 T cells (helper T

cells), NK cells, and NK T cells. Using the same amounts as before, the results indicated

that while B cells did not respond to either, the other three types were affected. As seen

in the figure below, the administration of 2.5jg of IL-15 alone proliferated the NK and

NK T cells very little, and CD4 T cells insignificantly. On the contrary, the IL-15/IL-

15Ra complex generated widespread proliferation of NK and NK T cells, and an

intermediate level of CD 4 T cells [34].
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Figure 13: NK T cell, NK cell, and CD4 T cell responsiveness to 2.5 pg IL-15 or 2.5 pg IL-15
complexed with 15pg IL-15Ra [34]

In order to attain an estimate of the level of activity enhancement that complexing IL-15

brings over IL-15 alone, Stoklasek et al. performed titrations of IL-15 and IL-15/IL-15Ra

using an adoptive transfer system of CD8 T cells. They found that a dose of 0.1 gg of IL-

15 combined with 0.6 jig of IL-15Ra induced a level of proliferation similar to that of 5

gg of IL-15 alone. Therefore, in this experiment, a simple coadministration of IL-15Ra

improved IL-15 activity by about 50-fold. They found that the administration of 37.5 jig

of IL-15 alone could not achieve the level of proliferation obtained with 0.5 gLg of IL-15

complexed with 3 gg IL- 5Ra. Similar results were found when examining NK and NK

T cell proliferation [34].

CD8 T cell proliferation induced by IL-15 alone plateaued at about 12 jLg upon in vivo

administration and the addition of more cytokine after this no longer increased cell

proliferation. This suggested that IL-15 half-life and/or IL-15Ra availability were

limiting in vivo. A short half-life could pose a problem in the development of an

effective treatment. It was found that using human IL-15 (hIL-15), the half-life of it

alone was about one hour. However, complexing it with IL-15Ra increased the half-life

to about 20 hours [34], as shown in the figure below.
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Figure 14: Comparison of lifetimes of IL-15 and complexed IL-15 after injection into mice
intraperitoneally [34]

The understanding of exactly how this increases half-life is not complete, but there are

several possible mechanisms including: protection of IL-15 from degradation by

proteases; inhibition of clearance via receptor binding or other mechanisms; and FcR-

mediated binding/recycling of complex [34]. Further research should investigate these

hypotheses to ascertain the correct mechanism(s).

In addition to the increase in half-life brought by complexing IL-15, the Irvine laboratory

hopes to further increase half-life by immobilizing the IL-15/IL-15Ra complex to the

alginate gel vaccination node. Possible immobilization methods involve covalent linking

of the IL-15/IL-15Ra complex and/or charge-charge interactions between the alginate

and the cytokine/receptor complex. One possible method of accomplishing this is

through EDC/NHS chemistry, using the -COOH groups on alginate chains and the -NH 2

groups on the proteins.
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Figure 15: Sample EDC/NHS chemistry [35]

In the figure above, 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride

(EDC) reacts with a carboxyl group on molecule 1, forming an amine-reactive 0-

acylisourea intermediate. The amine may react with an amine on molecule 2, making a

conjugate of the two molecules coupled by a stable amide bond. However, since the

intermediate is susceptible to hydrolysis, it is unstable and short-lived in aqueous solution.

The addition of N-hydroxysulfosuccinimide (Sulfo-NHS) stabilizes the intermediate by

converting it to an amine-reactive Sulfo-NHS ester, thereby increasing the efficiency of

EDC-mediated coupling reactions. The amine-reactive Sulfo-NHS ester intermediate has

sufficient stability to permit two-step crosslinking procedures, which allows the carboxyl

groups on one protein to remain unaltered [35].

Finally, since the IL-15/IL-15Ra complex was found to significantly proliferate CD8 T

cells and NK cells - two populations known to play an important role in tumor

surveillance by directly killing malignant cells [36] - experiments were conducted to

compare the ability of IL-15 verses IL-15/IL-15Ra complex in tumor immunity.

Stoklasek et al. approached this by injecting 1 x 105 melanoma cells (B16 Fl)

intravenously (a protocol that leads to the establishment of tumors in the lung and liver)

on day 0 and treated mice with either PBS, IL-15 (2.5 gg), or IL-15/IL-15Ra (2.5 pg/l15ýg)

intraperitonally on day 1 and day 10. From two separate experiments, the study found
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that 9 out of 10 mice treated with PBS or IL-15 were tumor positive and exhibited a

similar tumor burden between groups: multiple tumors that were greater than 5 mm in

diameter. In striking contrast, only 1 out of 10 of the IL-15/IL-15Ra complex treated

mice was tumor positive, and moreover that one case displayed only a single 2 mm lung

tumor [34].

The conclusions that can be drawn from Stoklasek et al. show the potential of IL-15/IL-

15Ra to be a potent prophylactic (preventative) vaccine, as injection essentially

prevented tumor growth from occurring in the melanoma model used. However, what

implications that this has to established, highly vascularized tumors is unspecified. In

another study conducted by Epardaud et al., the effect of IL-15/IL-15Ra complex on

solid tumors was studied in two different tumor models: transplanted melanoma cells

(similar to the work of Stoklasek), and another where tumors arose spontaneously in the

endocrine pancreas of transgenic mice [37]. For the first case, mice were injected

subcutaneously with 5 x 105 B16 melanoma cells and given 10-14 days for it to mature.

Thereafter, they were given one intravenous injection of IL-15/IL-15Ra complex per day

for two days, and evaluated three days later. The schematic and results are shown below:

Figure 16: Schematic of IL-15/IL-15Ra treatment (2pg/12pg in 300uL PBS) for B16 melanoma mice
and resulting tumor growth [37]
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The average tumor growth in the control group (n=9) was 140%, while the IL-15/IL-

15Ra treated mice (n=8) averaged a tumor growth of 30% over the same course of time.

These positive results were promising, however melanoma is known to be a very
immunogenic cancer, and a more daunting accomplishment would be to see if this
treatment proved effective in spontaneous, solid tumors in vital organs. Epardaud and
colleagues chose the RIP1-Tag2 transgenic mouse model in which the SV40 T antigen
(Tag) is expressed under the control of the rat insulin promoter (RIP), causing oncogenic
transformation of the majority of pancreatic P3 cells [38]. Tumor growth in this model
follows a trend, where the first 3-7 weeks is characterized by hyperplasia, the abnormal
increase in the number of cells and consequent enlargement. At about 7 to 8 weeks, there
is a distinct transformation as new blood vessels form along with alterations in the
microvasculature (angiogenic switch). Finally, by 10 weeks, solid tumors will have
developed in 100% of mice [37]. After 10 or 11 weeks, mice were injected with IL-15
alone or IL-15/IL-15Ra once per day for two days, and results were analyzed three days
later.
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Figure 17: Schematic and results of control (300uL PBS) and IL-15 (2ptg in 300uL PBS) compared toIL-15/IL-15Ra (2pg/12tpg in 300 mL PBS) in the RIP1-Tag2 transgenic mice model [37]
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As clearly seen in the bottom left of Figure 17, complexed IL-15 led to a swift and

considerable reduction in the size of tumors. To quantify this, the tumor burden was

measured by excising the solid tumors and measuring their diameters (d), separating them

into four categories: A, d < Imm; B, 1< d < 2 mm; C, d = 2mm; and D, d > 2mm.

Pancreatic tumor burden was calculated as (A x 1) + (B x 2) + (C x 3) + (D x 4) [37].

Using this quantification, the mice who received complexed IL-15 injections saw a

reduction in tumor burden of over 50% compared to the mice that were injected with only

PBS. In addition, no observable toxicity or autoimmune effects on normal tissues was

found in mice treated with IL-15 alone or IL-15/IL-15Ra complex [37]. This indicates

that the systemic administration of IL-15/IL-15Ra complex not only significantly hinders

growth in both B16 and spontaneous solid tumors, but does so without detectable

autoimmune or toxic consequences.

Reduction in tumor size, however, does not necessarily translate to longer survival time,

and so a test of long-term survival was performed on RIP1-Tag2 mice. Five of these

mice were administered 13 injections of IL-15/IL-15Ra complex, and survival rates were

compared to 10 untreated mice. The results are shown below:
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Figure 18: Comparison of long-term survival rates of RIP1-Tag2 mice treated with IL-15/IL-15Ra
verses control [37]
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The prolongation of survival was greatly increased with treatment of complexed IL-15,

showing that treatment appears to be well tolerated and effective. Although, it is

noteworthy to point out that while median survival increased, the rate dropped relatively

quickly after a certain time period.

While tumor cell destruction has been found in vivo with the addition of IL-15/IL-15Ra,

as alluded to before, it is not necessarily due to the presence of circulating lymphocytes -

even if tumor-specific. It was reasoned that there are two mechanisms, not necessarily

mutually exclusive, that could account for the tumor regression. The first mechanism is

that CD8+ T cells within secondary lymphoid tissues or blood would undergo expansion

and activation upon exposure to IL-15/IL-1 5Ra complex, traffic via to blood to tumors,

infiltrate the tumor parenchyma, and finally kill malignant cells. The second mechanism

is that T cells that are already resident in the tumor would expand in the tumor itself upon

signaling by IL-15/IL-15Ra complexes and then destroy neighboring tumor cells [37]. It

has been found that solid tumors may become impenetrable by circulating leukocytes

after the angiogenic switch because of alterations in the local vasculature that mitigate

leukocyte adhesion [39], thus Epardaud and colleagues tested and found that tumor-

resident CD8+ T cells rapidly proliferated in response to systemically delivered IL-15/IL-

15Ra complexes [37]. Furthermore, they established that advanced solid tumors in RIP1-

Tag2 mice are not readily accessible to any circulating leukocytes, and also that systemic

treatment of IL-15/IL-15Ra complex did not markedly increase leukocyte infiltration of

solid tumors [37]. Therefore, the above results indicate that the tumor-resident CD8+ T

cells have a major role in the destruction of advanced solid tumors in vivo with the

injection of IL-15/IL-15Ra. Deeper investigation revealed that within 48 hours of

treatment, the apoptotic tumor cells were often in close proximity to, or even in direct

contact with, tumor-resident CD8+ T cells, suggesting that the lymphocytes themselves

were lysing the malignant tumor cells [37]. Thus, despite efforts of the tumor to suppress

an immune response, systemic injection of IL-15/IL-15Ra complex rapidly proliferated

resident T cells and "broke" the tolerance, activating the killing potential of these T cells

against their tumor cell neighbors. Moreover, these results come at a relatively low



dosage, and importantly, without the addition of chemotherapeutic agents, vaccination,

adoptive cell transfer, or other cytokines.

As seen by the results, the full therapeutic effect of IL-15 may not be optimal without

complexing it with IL-15Ra. The simple addition of the receptor shows improvement in

the efficacy of IL-15 potency in many different aspects. With the addition of IL-15/IL-

15Ra, IL-15 effectiveness in increased by: increasing half-life by about a factor of 20;

increasing IL-15 affinity for IL-15RI3/yC [40]; and providing a platform for

transpresentation [34]. Additionally, complexed IL-15 has shown effectiveness in

prophylactically preventing tumor growth, as well as reducing established tumor growth

in different cancers in mice. While these results show great promise and excitement,

further studies should be conducted to understand the underlying mechanisms, perhaps

look into reversing the vascular barriers provided by the angiogenic tumors, and

minimize toxicity and autoimmunity.

3.2 Application to Melanoma Treatment

Because dendritic-cell based vaccines are still for the most part considered experimental,

widespread use is currently not employed. This is one reason that makes melanoma a

good candidate for DC vaccine technology, because conventional treatment so far has not

proven to be effective, and there is a clear need for better treatment. This review will

concentrate on later stage melanoma for a few reasons. First, early stage melanoma is

considered very treatable [6] and the population will be hesitant to try something new to

replace something that already works well. Second, the death rate of later stage

melanoma is so devastating - even with current treatments - that patients would more

likely be more willing to try an alternative solution. Surgery is unlikely to cure

metastatic melanoma, but long-term survival may be improved through resection of

metastatic tumors. As mentioned before, metastatic melanoma is relatively unresponsive

to systemic chemotherapy, and is considered to be very unresponsive to radiation therapy

[4]. Finally, melanoma is a highly immunogenic cancer, with the body's own immune

system launching strong immune responses against the disease [4]. All of these factors



make melanoma an ideal starting platform, where the probability of success would be the

greatest.

In the grand scheme of things, what the technology really does is it allows injectable

drugs or biological materials to be delivered as a formation that gels in situ. This serves

to dramatically improve an existing drug/biological material delivery method rather than

try to re-invent the wheel.



4 Technological Barriers

4.1 Barriers That Have Been Overcome

Before thinking about what barriers there are to overcome, it is important to note what

barriers have already been overcome. As mentioned earlier, the introduction of a

vaccination node addresses two major shortcomings of cancer vaccines: the limited

ability to support the effector phase of the immune system following T cell priming; and

the failure of activated T cells to properly home to tumors to carry out their effector

functions [14]. The need to identify a material that works with cell delivery extremely

effectively has been tackled. The alginate gel allows DC and T cells to migrate through,

while blocking other stromal cells from permeating the gel. In this way, further

angiogenesis of the tumor is difficult to take place, as part or all of it is surrounded by the

alginate gel. The gel needs no vascularization and remains in situ, shows promise of

great T cell recruitment, and is non-inflammatory and non-toxic [20].

The idea of implementing IL-15/IL-15Ra complex shows the potential proliferating T

cells in vivo, as well as side-stepping some of the tumor evasive mechanisms to "break"

tolerance in inactivated T cells that are located at or near the tumor site [37]. By

complexing the IL-15, the short half-life of IL-15 was found to increase by a factor of 20

[34], and ideas to immobilize the cytokine complex serve to further increase half-life.

Not only has complexed IL-15 shown to be a potentially potent prophylactic treatment

against tumor growth, it has also shown significant inhibition of tumor growth in already

established tumors in mice models. Finally, it has also shown to prolong survival

compared to untreated mice [37].

4.2 Barriers Left to Overcome

The technical challenges that remain mostly stem from the remaining immuno-evasive

mechanisms that tumors currently utilize. These mechanisms are the limiting factors in

the development of successful cancer vaccines, and research of understanding and

combating these mechanisms is currently being extensively performed. For the



vaccination node technology, a technical barrier to overcome is the destruction of tumors

with products of perpendicular diameters in the order of 50mm 2 in mice. In 2003,

Overwijk et al. showed curing of tumors of this magnitude using a combination of

adoptive transfer of tumor-specific T cells, T cell stimulation through an antigen-specific

vaccination with an altered peptide ligand, and the coadministration of a T cell growth

factor and activation factor [41]. This is considered the "gold standard" of the field, and

progress at least equal to this should be generated to show the value of the new

technology.



5 Business Strategy
If the technological barriers can be overcome, then a business strategy should be

proposed which describes where value is generated, how to extract value, and at what

costs this comes. There were two options that were considered: starting a manufacturing

facility to produce the entire vaccination node; or starting a manufacturing facility that

only produces the alginate microspheres/alginate gel, and trying to partner with an

existing dendritic cell vaccine manufacturer. There were numerous factors to consider,
and the idea of each had its own set of pros and cons.

For the idea of manufacturing the entire vaccine, the most prominent benefit would be the

idea of total control. Each aspect would be designed to the liking of the founder(s),

including price, and profit - if obtained - would not have to be split between so many

different forces. However, manufacturing of the entire vaccine would entail starting at

the beginning of the learning curve for the technical know-how of the field. Significant

start-up costs would have to be raised. Even if these hurdles could be overcome, existing

DC vaccine manufacturing companies would already have established production lines,

economies of scale, perhaps established relationships in the supply chain, as well as

overall experience. Furthermore, in order to be independently sufficient, a DC

manufacturer would have to have an intellectual property portfolio containing patents on

any antigens, adjuvants, methods of obtaining these, and delivery mechanisms.

Obtaining each piece without collaboration with other companies would take an

extremely significant investment of money and time. Also, testing for the safety and

efficacy of the vaccine would have to be proven through the Food and Drug

Administration (FDA), and the necessary clinical trials are usually on the order of

hundreds of millions of dollars [42]. Even if sufficient capital could be raised for this

entirety, the time spent researching and patenting supplementary technologies would also

be a great investment to be considered.

The other option was manufacturing only the alginate microspheres/alginate gel and

working to partner with other established companies. This option shows much less costs



in manufacturing, since it is only the production of one aspect of the vaccine. Under this

schematic, the company can focus on the core competency, working to maximize the

efficiency of this one aspect and specializing in it. The time and capital which would be

required to establish a full patent portfolio is saved. Moreover, the FDA costs can be

shifted to the partner who has the funds to push the technology through the expensive

clinical trials.



6 Intellectual Property
In order for a technology to become viably commercialized, it cannot infringe on any

existing patents (without a prior agreement), and thus, a patent search was conducted to

assess the intellectual property landscape surrounding the vaccination node technology,

broken down into different sections. Some of the listed potential intellectual property

conflicts are still patent applications, which may or may not be approved, but should still

be considered and watched.

6. 1 Patents Related to Dendritic Cells

Looking at the intellectual property landscape, there are many patents that seem to be

relevant regarding dendritic cells. This includes the methods of obtaining and growing

the dendritic cells, as well as methods for activating them and their uses. A short list of

possible conflicting patents about dendritic cells is given below:

Patent Title U.S. Patent Number Date of Filing
Methods and compositions for
obtaining mature dendritic cells

Rapid one-step generation of
antigen loaded dendritic cell

App No: 10/537,682 12/3/2003vaccine from precursors

Activated DCs and methods for
their activation 6,017,527 12/12/1996their activation

Preloaded dendritic cell vaccines
for treating cancer App No: 11/202,319 8/10/2005

Therapeutic method and
composition utilizing antigen-

antibody complexation and 6,689,355 5/11/2001
presentation by DCs

Intratumoral delivery of
dendritic cells App No: 10/251,148 9/20/2002

Table 2: A list of patents regarding methods for obtaining and loading dendritic cells



The first four patents (or patent applications) on the list refer to different methods of

obtaining mature dendritic cells. U.S. 6,274,378 describes a two step method of

generation of mature dendritic cells, first by culturing T cell depleted mononuclear cells

in medium supplemented with cytokines granulocyte macrophage colony-stimulating

factor (GM-CSF) and IL-4 to produce immature dendritic cells, then differentiating by

exposure to DC maturation factor such as monocyte conditioned medium. U.S.

Application Number 10/537,682 describes a one-step method of producing antigen

loaded APCs from monocytes ex vivo using an activator (such as TNF-a) in combination

with a growth factor such as GM-CSF. U.S. 6,017,527 describes a method of

transfecting DCs and activating them using a CD40 binding protein. Finally, U.S.

Application Number 11/202,319 specifies methods for obtaining a large volume of

dendritic cells differentiated from human stem cells, and furthermore goes on to describe

pulsing these with tumor antigen for potential use in treating cancer. These four are only

a few of many which seem similar. Thus while it may be possible to obtain a highly

specific patent on the topic, the overall situation is crowded and may be a source of future

problems for a start-up.

The fifth patent on the list, U.S. 6,689,355 illustrates a method for exploiting dendritic

cells to present antigen to a patient by combining ex vivo an antigen and APC binding

agent specific for the antigen, followed by administering into the patient suffering from a

disease associated with the antigen. The patent seems a little vague, however it does

specifically indicate that the antigen claimed is prostate specific antigen. Thus while for

initial purposes this patent will not be a hindrance, it should be noted in case of future

expansion into prostate cancer.

The last application on this list, 10/251,148 is noteworthy because it describes

administration of dendritic cells either directly into the tumor and/or into its surrounding

tissue. It also describes that autologous DCs are harvested and grown using cytokines

GM-CSF and IL-4 before being replenished into the patient. However, the patent only

claims certain types of tumors - namely brain, breast, gastrointestinal, and respiratory



tumors or tissues surrounding them. Furthermore, the patent specifically states the

dendritic cells are unprimed, which is not the proposed strategy for the vaccination nodes.

6.2 Patents Related to Alginate Gels and Microspheres

The intellectual property surrounding the idea of self-gelling alginate microspheres is

much less crowded, with a fewer number of titles that seem to be relevant. These are

listed below:

Patent Title U.S. Patent Number Date of Filing
Self-gelling alginate systems and 10/12/2005

App No: 11/248,984 10/12/2005uses thereof

Hydrogels and water soluble
polymeric carriers for drug 7,86,413 5/27/2003

delivery

Polymers containing
polysaccharides such as 6,642,363 5/3/1999

alginates or modified alginates

Immunostimulatory Microsphere 5,008,116 11/14/1988

Medical uses of in situ formed
gels 5,958,443 12/13/1996

Table 3: A list of patents regarding the idea of self-gelling alginate microspheres for immunotherapy

The first item on the list, U.S. Application Number 11/248,984 might be the most

difficult issue to circumvent. The patent specifies the method of formulation of self-

gelling alginate by combining a dispersion of insoluble alginate/gelling ion particles with

solution containing soluble alginate. It also mentions that this dispersion may be into the

body of an individual. While the methods of gel formation may be conflicting, there is

no mention of dendritic cells in the patent. Approval of this patent should be closely

monitored.

The next item, U.S. 7,186,413 also shows potential conflict. The patent describes a

water-soluble polymer/drug compound which is bonded by an in vivo degradable



covalent bond. The patent only mentions different drugs, which may or may not apply to

the biological compounds that the vaccination node technology looks to employ. The

technicalities should be closely scrutinized if full commercialization is to be pursued.

The third listed, U.S. 6,642,363 claims a modified alginate, which is composed of at least

one alginate chain section to which is covalently bonded to at least one cell attachment

peptide or RGD peptide which promotes cell adhesion and growth. The range of

molecular weights for the alginate chain section specified is wide, as is the list of

potential biologically active molecule(s) bonded to the alginate side chain. While there is

no specific mention of dendritic cells or cytokines, this patent should be appropriately

examined in deciding whether to partner/license or pursue an alternative path.

The immunostimulatory microsphere patent, U.S. 5,008,116 describes a macroporous

microsphere comprising a particle and antigenic component, with the purpose to be an

improved carrier or adjuvant to induce a therapeutic response to a weak antigen. This

patent is from 1988, so even if it is found to be conflicting, the patent expires in late 2008.

However, this patent is very broad, and nowhere in the patent is there specific talk about

alginate, employing any type of dendritic cell, or incorporating any cytokines.

Finally, U.S. 5,958,443 claims a long list of potential drugs to attach to a composition

that is capable of gelling in situ. However, the composition is claimed to compromise at

least one ionic polysaccharide and at least one film forming agent, the latter which does

not really apply. Furthermore, the patent only claims the in situ gels for topical,

protective layer purposes, and should not be a future conflict.

6.3 Intellectual Property Summary

Upon examination of the intellectual property landscape, a few insights can be made.

The dendritic cell aspect - methods for obtaining and activating - of the technology

seems to have a lot of contenders with a number of different but similar mechanisms and

methods. Thus the potential to obtain a highly specific, similar method of expansion and

activation seems plausible, however on the other hand, there are many opportunities to



partner in order to save research investment and time. On the alginate gel side, the option

to partner or license with a company that owns one or more of these patents should be

considered, as there seem to be many similarities. However, mention of dendritic cells,

IL-15/cytokines, melanoma alone or in combination is not found in any of these

seemingly conflicting patents, and the incorporation of any or all of these factors may or

may not prove to be conflicting. Furthermore, the ingenuity of the vaccination node is in

combining the dendritic cell vaccine with the gelling microspheres for a synergistic effect.

It is the combining of these two factors that makes the effects better, and is what

intellectual property should be protected.



7 The Supply Chain
From the above analysis, the route of greatest probability of success points toward being

a microsphere manufacturer, as there seems to be fewer barriers to entry, and because the

true value stems from the fusion of existing technologies rather than the individual

technologies themselves. The aim is to leverage the industry know-how of existing

dendritic cell vaccine manufacturers, and combine it with the self-gelling alginate

microspheres in order to create a final vaccination product. This product will then be

distributed to hospitals and doctors, and makes its way to the patient. An illustration of

the supply chain is shown below:
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Figure 19: Illustration of supply chain and where implementation of microspheres would be into this
supply chain

Potential companies to partner with include companies like Dendreon, Argos

Therapeutics, Genzyme Corporation, Northwest Biotherapeutics, and IDM Biotech. A
few companies, like Dendreon, specialize primarily in dendritic cell technology, and

would be the ideal candidates.
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7.1 Typical DC Vaccine Manufacturing Chain
Since the technology of DC vaccines in general is still relatively in its infancy, the supply
chain is somewhat vertical, unlike the disaggregated horizontal supply chains of other
mature industries. An example of a typical manufacturing chain is shown below, as
demonstrated by Argos Therapeutics.

Figure 20: Sample dendritic cell vaccine manufacturing procedure, as shown from the Argos
Therapeutics website [43].

As shown, the tumor cell or pathogen is individually derived from the patient, but a
known tumor antigen could also be manufactured and purchased from a big
pharmaceutical company. Leukapheresis is also performed on the patient; this process
extracts blood monocytes which are then derived into dendritic cells through known
cytokines. Next the immature dendritic cells are exposed, or "pulsed," with the tumor
antigen. Here they phagocytose the pathogens and are ready to display the signal to
lymphocytes in the body. They are now called mature dendritic cells.

7.2 Microsphere Production Description
It is at this step where the implementation of alginate microspheres would take place.
Developed in parallel to the DC maturation process, alginate microspheres are
synthesized via a water-in-oil emulsion of alginate in organic solvent. Span 80 and



Tween 80 are added to isooctane under magnetic stirring, and homogenized for 2 minutes.

Then SLG20 (1% alginate, 99% PBS by weight) is added dropwise and homogenized for

an additional 3 minutes. Next 5% wt/vol CaC12 is added dropwise (to crosslink the

alginate), and homogenized for 4 more minutes. The resulting solution is transferred to

another tube, and the mixture is centrifuged at low temperature. The isooctane

supernatant is discarded, and the particle pellet is washed with more isooctane. After

another centrifugation, the particles were re-suspended in deionized, distilled water and

washed three times. The particles are re-suspended in deionized, distilled water for the

final volume and stored at 4 degrees C until used. This completes the alginate

microsphere synthesis. In another container, the alginate microspheres are suspended in

deionized water [14]. These are stored at around 4 degrees Celsius and delivered to the

clinical site. The mature, pulsed dendritic cells are loaded in an alginate solution

(SLM20 - 0.Olg/mL alginate in PBS) just before injection. Shown below is a picture of

the formed microspheres and diagram of the final mixing procedure

Figure 21: Schematic of the final mixing procedure and actual picture of the calcium crosslinked
alginate microspheres [14]



8 Entry into Supply Chain Considerations
Entry into the supply chain of one of these dendritic cell vaccine manufacturers would

seemingly come with ease. As stated before, the manufacturing of the actual dendritic

cell vaccine is a largely vertical process, and the implementation of the microspheres

would come at the very end of that process. For the dendritic cell vaccine manufacturer,

the only change would be that they would be mixing their final, mature dendritic cells

into a different solution before storage or shipping it off. Higher up the chain, the

clinician administering the vaccine would simply mix the dendritic cell-loaded solution

with the microspheres by pipetting them together, draw in the mixture into the syringe,

and then inject it. The technical know-how necessary to perform this is minimal, and

there is little added hassle. The patient would see no difference in getting the injection,

except for (hopefully) more effective results. The fact that only a few, minor procedural

changes take place is a large benefit of employing the technology. In many fields,

including the immunotherapy field, minor changes are much easier to implement than

large, paradigm shifts.

8.1 Economic Considerations - Cost Model

In order to access the feasibility of the technology, economic considerations had to be

thought out. Even if a technology can show superiority, it will not realistically be

implemented if the economics of it come up unprofitable. Because the technology

proposed to implement is still in the research phase, many estimates and assumptions had

to be made. However, the calculations conducted were to simply show the ballpark

estimates, and as will be shown later, ended up being a minor additional cost. The cost

model below does not take into account the added costs of including cytokine IL-15 or

the IL-15/IL-15Ra complex.

For the amount of microspheres to produce during the first year, this review estimated

that out of the prevalence of 700,000 cases of melanoma in the U.S [1], there would be an
initial adoption rate of 0.25%. This was thought to be a justifiable and reasonable

estimate since the majority of the population would probably be hesitant to try this new



approach (or any new approach for that matter). While the details are not quite clear,

many current vaccines employ multiple injections, and an assumption was made that

because of the gel technology, the vaccination node vaccines would need less injections

than current therapeutic vaccines. Thus an average of 6 injections per patient was chosen,

which gave a total that rounded to 10,000 units. One unit is defined as the quantity of

microspheres necessary for one injection. The estimated costs stemming from machines,

variable materials, and other costs are shown in the chart below.

Machine Price ($) of 1 # Needed Cost ($)

UltraTurrax T25 Homogenizer 1500 18 27000

Mechanical Stirrer 150 6 900

Centrifuge machine 1 1500 6 9000

Centrifuge machine 2 8000 6 48000

VWR Analog Vortex mixer 250 4 1000

Refrigerator 5000 2 10000

Zeiss Axiovert 200 microscope 200000 1 200000

Machine Cost Subtotal: 295900

Variable Materials Price per L or g L or g needed Cost ($)

Isooctane 20 6000 120000

Acetone 10 5000 50000

Span 80 71.3 150 10695

Tween 80 56 50 2800

Pronova SLG20 408 400 163200

CaC12 0.01 0.0125 0.000125

Deionized, distilled water 1.25 400 500

PBS 40 53 2120

Pronova SLM20 408 130 53040

Variable Materials Cost Subtotal: 402355

Other Costs Price per unit # Needed Cost ($)

Lab Space $30/sqft/year 1000 sqft 30000

Beakers,containers,etc $5/batch 10000 50000

Labor $40000/pp/year 4 160000

Other Costs Subtotal: 240000

TOTAL COST FOR 1 YEAR ($ 938255

ADDED COST FOR 1 VACCINE ($) 93.83



Table 4: Preliminary cost model in determining the added cost of microspheres for one vaccine. The
cost model was based on one year's worth of production that translated to 10,000 units

The additional cost for implementing microspheres was found to be $93.83 per vaccine

injection, which translates to $562.98 per patient treated. The average cost to treat a

patient with metastatic melanoma is $59,440 [44]. Thus, with these calculations, the

additional cost to implement these microspheres is adding less than 1% of the current cost

of treatment. This shows much promise in the economic perspective, since the additional

cost is relatively low compared to the current treatment cost. Furthermore, the average

cost of microsphere making may go down with economies of scale, learning curves, and

other changes that may be executed during the subsequent years of production. Setting of

an actual price would be a future step, however even if the final vaccine product only

added an additional $563 per patient (the exact cost to make it), the addition of the

microsphere manufacturing step would break-even after the first year, and in subsequent

years profit close to the amount spent on fixed costs the first year. Obviously, there will

be a mark-up in price since the vaccination node adds value, and the exact mark-up and

price setting would be a task decided with negotiations with the partnering company.

8.2 The Candidate Customers

The initial candidate customers would be the sufferers of later stage melanoma,

specifically stage III and stage IV patients. As published in the Journal of the American

Medical Association, each year roughly $740 million dollars is spent on melanoma

treatment [5]. As stated before, one reason that melanoma is an ideal candidate for

cancer vaccines because of its high immunogenicity. By improving the immune system's

mechanism of recognizing cancer cells, cancer vaccines aim to eradicate tumors and

prevent cancer recurrence [4]. Another reason is the urgency of improved treatment for

late stage melanoma. The 5-year survival rate for patients with stage III melanoma is

50%, and only 13% for patients with stage IV melanoma, with a median survival time of

6-9 months [4]. This statistic is shown below in this graph showing survival of

melanoma patients by stage with time
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Figure 22: Proportion surviving of melanoma patients by year. The different lines show different
stages of melanoma [1]



9 Market Drivers Discussion

9.1 Urgency of Need but Strict FDA Guidelines

Despite other barriers, there are many factors that drive the market. First and foremost,

the incidence and low survival rates of melanoma point to the pressing need of an

effective treatment. The relatively unchanged low survival rates imply that, as of today,

there is no effective treatment for cancer [45]. Because melanoma is known to be both

immunogenic and fatal, many vaccines as well as other types of immunotherapeutics are

being developed. Melanoma vaccines have been researched for multiple decades,

however to date, there is not a single FDA approved melanoma vaccine. This may be

looked at as discouraging, since the FDA standards appear to be nearly insurmountable in

this field. It may also be looked upon as an opportunity, in that the first vaccine to get

approval will not face any competition in its field. Recently, research in novel treatments

has accelerated, and in the melanoma vaccine industry alone there are a number of

ongoing phase III clinical trials from companies like Genta (Genasense), Progenics

Pharmaceuticals (GMK), and Vical (Allovectin-7). Recently, Antigenics' vaccine

Oncophage was denied FDA approval in the US, but obtained Russia's equivalent

approval [46]. Similarly, Avax's Mvax vaccine is approved for use in Australia and New

Zealand, and is currently undergoing phase III clinical trials in the US [45]. Since the use

of vaccines would mostly be used as an adjunct therapy, in theory it can be given to each

and every patient, provided they work well. Even an incremental benefit provided by a

cancer vaccine encourages the adjunct therapy, expanding the cancer therapeutic market.

The current basis of cancer vaccines is therapeutic and they act by stimulating the body's

own defense system. Vaccines are able to elicit immune responses without having any

major side-effects [45]. The vaccination node, like other vaccines, is designed to

stimulate the immune system to launch an immune response against a specific target (the

tumor cells).



9.2 Specific Targeting and Safety Profile of Novel
Immunotherapeutics

As seen in the case of treatment with interleukin-2, side effects from cytokine therapy are

numerous and often serious. In some cases, patients have to terminate treatment early

because of problems with side effects [31]. Safety is always an important consideration.

As more research is conducted, novel immunotherapies are being discovered that allow

higher, more effective doses, with greater specificity and lower toxicity. An example of

this is seen in a study conducted by Munger and colleagues, who found that IL-15 has a

therapeutic index three times greater than that of IL-2. Furthermore, the proposed

vaccination node is delivered with the intent of surrounding the tumor, which adds to the

safety and efficacy. In this way, the T cells that have broken tolerance near the tumor site

and correspondingly attack self (tumor) cells are mostly trapped near the cancer cell

neighbors and away from the majority of healthy tissue. Because of this high safety

profile, it will be easier for companies to convince physicians to try these therapies in a

greater number of patients. In addition, because of the high toxicities displayed by

chemotherapy and other therapies like high-dose IL-2, patients need to be hospitalized

during and after treatment [4]. The trend of immunotherapeutic melanoma treatments is

towards administration on an outpatient basis. This eliminates the need for extra

hospitalization time, cutting down both the costs and inconveniences that such actions

bring.

9.3 Growing Melanoma Patient Population

Another market driver is the fact that ageing baby boomers increase the potential patient

population, as the majority of new cases are still diagnosed in people older than 50 years

of age [4]. The baby boomer generation - generally thought of those born between 1946

and the early 1960's - had different information regarding the potential harm of

ultraviolet rays and are now increasingly becoming victims of melanoma. Furthermore,

despite educational efforts and awareness programs, melanoma is the most common form

of cancer for young adults aged 25-29 and the second most common form of cancer in

women aged 30-34 years (second to breast cancer) [4]. Therefore, simply having a more

sophisticated knowledge of melanoma does not necessarily translate to fewer cases.



10 Competition

10.1 Conventional Treatment

Currently, the traditional methods of cancer treatment (chemotherapy, radiation therapy,

and surgery) are not considered true competitors, for a few different reasons.

Chemotherapy has been shown to be relatively ineffective in treating later stage

melanoma. Radiation therapy is known to be even less effective, though may still be

used to treat pain in the patient. Surgery will still take place, as it has shown to have

some correlation to higher long-term survival, however it does nothing to treat the

underlying cause. Furthermore, surgery leaves the patient susceptible to recurrence [4].

The implementation of the technology might be best after surgery as an adjuvant, to

patients who are at high risk of recurrence. In this way, some of the tumor is removed,

and the vaccination node can focus more on killing the remaining problem. Most of the

products in the clinical pipeline for melanoma are intended as adjuvant therapies, many

times in conjunction with other drugs. The largest potential for adjuvant therapy

implementation may lie in patients with stage 3 melanoma, where the elevated risk of

recurrence is a major driver in exploring the clinical benefits of adjuvant therapy [4].

Thus initially, these other techniques of cancer treatment may still be necessary, although

ideally the vaccination node treatment will be able to stand alone as a sufficient therapy,

as potentially demonstrated using complexed IL-15 by Epardaud et al. [37].

10.2 Other Types of Cancer Vaccines

While there is no FDA approved melanoma vaccine currently on the market, there are

many other technologies competing to solve the same problem, and progress and success

of these should be monitored. With increasing information concerning the importance of

professional antigen-presenting cells in generating immune responses, many attempts

have and are being made to use these cells in cancer vaccines [9]. Vaccines based on

cancer cells and genetic identification of cancer antigens are currently being pursued. A

short description of a few of these attempts - namely tumor cell based vaccines, peptide-

based vaccines, DNA vaccines, and viral vector vaccines - are discussed below.



Tumor Cell Based Vaccines

Tumor cell based vaccines, whether autologous or allogenic, are designed with the

benefit in mind that many different specific tumor antigens are able to be presented

through a number of different mechanisms. The two major proposed pathways of host

immune cell activation are either by direct migration of the tumor cells to the draining

lymph nodes, or by the uptake of apoptotic or necrotic tumor cells by host DC's [47].

While presumably they are providing the appropriate antigenic stimulus to the host

immune system, they actually may not necessarily stimulate a potent enough signal,

moreover they may induce tolerance in the immune system [47]. A notable polyvalent,

antigen-rich whole cell vaccine called Canvaxin (by CancerVax Corp) has been derived

from three melanoma cell lines to contain over 20 immunogenic melanoma tumor

antigens, yet showed only mediocre results in clinical trials and minimal benefit in most

patients [48]. However, methods to improve this idea have been tried in some

experiments with and achieved selective success (such as adding dinitrophenol to

improve immunogenicity), therefore progress should be monitored [49].

10.2.2 Peptide Based Vaccines

Peptide-based vaccines have stemmed from the identification of genes encoding cancer

antigens. Because of their relative simplicity, peptide-based vaccines are potentially

advantageous because of their ease of production under good manufacturing practices,

which translates to lower production costs. However, peptide vaccines that target one

specific tumor antigen may not be effective due to the fact that most, if not all, melanoma

tumors are heterogeneous in their antigenic profile [47]. One possible solution to this

that has been tested is administering multiple injections with multi-peptide vaccines, but

while a high level of specific T cell responses were noted, there was very little evidence

of actual tumor reduction [50]. Thus while immunologic responses have been achieved

using peptide-based vaccines, no study of the kind has shown these responses to be

directly correlated to regression of an established tumor [47]. At least until this

relationship is manifest, competition from this class of vaccine should not be major.

10.2.1



10.2.3 DNA Vaccines

DNA vaccines are composed of a gene encoding a specific cancer antigen that is

manipulated from a foreign agent to form a strong eukaryotic or viral promoter. The

promoter is next integrated into a plasmid vector (carrier). The vaccine can be delivered

as is (called "naked"), or attached to an adjuvant, liposome, or bacterial vector. Injection

into patient cells lets the antigen be transcribed, translated, and expressed so that antigen-

presenting cells can display the antigen on their surface and generate the preferred

immune response [51]. A great advantage is that if successful, DNA vaccines would be

easy to produce at a relatively low cost, and show high versatility in engineering

possibilities if targeting or co-stimulatory genes are integrated in the vaccine [52]. While

DNA vaccines have been shown to induce long-lasting immunity against infectious

agents and protection from tumor growth in several animal models, results from many

human clinical trials have proven to be disappointing and ineffective [47]. Prolonged

survival was found as a surrogate result from one clinical trial [53], showing that while

there is potential to vaccinate with DNA, much research still needs to be performed

before this treatment becomes actual.

10.2.4 Viral Vector Vaccines

Viral vector vaccines utilize attenuated viruses (i.e. adenovirus, vaccinia, and poxvirus)

as carriers of foreign DNA encoding an antigen (the tumor antigen) in order to express

the antigen intracellularly. Generally, viruses are attenuated by deleting genes encoding

one or more metabolic factors from wild type pathogens. Once the patient is infected

with the virus, the patient's immune system should respond to the detection of a foreign

pathogen, the antigen carried by the vector is expressed, and the patient is protected from

infection [54]. Viral vector vaccines have the potential because they can be made highly

immunogenic and highly specific to different host cell components [51]. A drawback of

viral vectors is that several different viral vectors are known to induce a large antiviral

neutralizing antibody response to the first and subsequent vaccinations. This reduces the

ability of the virus to immunize, and severely limits the effectiveness of the approach [4].

Furthermore, clinical studies have so far shown to be unsuccessful, testing several

different vectors encoding different melanoma-associated antigens and genes [55].



11 Additional Considerations

11.1 Assessment of Success

There are a number of factors that may benefit or add risk to the feasibility of

implementing this technology. First, the current standard of measuring success in a

treatment is measured in terms of reductions in morbidity or mortality [56]. Early

vaccines set a high standard because they were cost-saving, but health interventions do

not have to save money to be cost-effective [57]. Groups are pushing toward using other

measures such as quality-adjusted life years (QALYs) saved. This is because the metric

of dollars per life year saved does not give credit for averting pain, suffering, or disability

attributable to disease [56]. As stated before, treatments like high intensity chemotherapy

in some cases may show to extend life, but this comes with other side effects, and that

extended life may be lived in extreme pain. While the assessment of the "quality of life"

is very subjective, it may better reflect how the effects of treatment are progressing. If

the addition of microspheres can show to improve the quality of life, even a minor way,

the cost-effectiveness of adding the microspheres could be shown to be better than in the

traditional, strictly economic sense.

11.2 Improving Chances for FDA Approval

Besides the technical barriers, there are other industry challenges that also need to be

accounted for. As demonstrated currently with the lack of melanoma vaccines on the

market, high standards in the regulatory approval process extend the time to market,

which restrains revenue potential. Because there is no melanoma vaccine currently on

the market, the FDA will most likely set the standard high for the first vaccine to make it

to the market, so that subsequent vaccines will have to surmount equally high regulations.

The lack of conclusive evidence that supports the efficacy of vaccines will justifiably

hinder the approval of the first melanoma vaccine. Unfortunately, part of this is most

likely because the patients who try the melanoma vaccines in clinical trials usually have

undergone - and failed - conventional treatments (chemotherapy, radiation therapy, and

surgery). Many of these other treatments severely weaken the immune system, and

subsequently, efficiencies of melanoma vaccines have been disappointingly low. While



ideally trials would be conducted with patients who have yet to try other, more invasive

treatments, patients understandably expect a certain standard of treatment first. To risk

conventional treatment - although known to be somewhat inefficient - for an unproven

vaccine trial, is a risk that many patients do not want to take. Along the lines of the

heavy regulations, the failure of a clinical trial still involves millions of dollars (and up to

tens or hundreds of millions depending on the phase of the trial), which can easily

bankrupt a smaller research company. The investment spent on a failed clinical trial is

completely lost. Thus there is a large risk involved, especially for a market that has yet to

see the first approved product. To better increase the chance of approval, a company

should set out to find a clear understanding of exactly what is required for FDA approval,

including what endpoints to test for, what to look for and measure. For the case of

melanoma therapy, the FDA requires survival and response rate data as clinical endpoints

for immunotherapeutics [4]. The first phase of clinical trials has a primary focus on

safety, during which usually a small study population consisting of healthy volunteers is

involved in dose escalation (starting with a very low dose), in order to identify the

maximally tolerated dose (MTD) [58]. The phase one program should ask a limited

number of focused questions, because its purpose is to justify exposure to larger study

populations for effectiveness in stage two. In early stage development of cancer vaccines

however, the identification of a pharmacologically effective dose or optimal biologic

dose might be more logical, since biologically actives doses may occur well before the

MTD and furthermore it may not be feasible to achieve the MTD [59]. Phase two trials

continues to evaluate safety, but the primary objective is to determine whether the

regimen has biologic activity that is likely to translate into patient benefit, through an

exploration of things like appropriate dose, schedule, and route of administration. In

tumor vaccine studies, clinical endpoints include tumor shrinkage (an indicator of benefit,
not necessarily a direct measure of patient benefit), reduction in tumor marker levels or

delay in time to tumor progression [58]. Understandably, the FDA sets strict guidelines

in order to standardize what constitutes effective treatment, and until (if ever) these

guidelines change, companies should make sure to show the results for what the FDA

considers meaningful. Appending to this, the importance of a well-designed clinical trial

should be noted. In addition to a longer clinical trial being more costly, there is generally



a shortage of volunteering clinical trial candidates. Thus the clinical design should focus

on obtaining the maximum amount of useful data possible, from the least number of

patients, in the shortest amount of time. Because larger companies have more resources

and likely industry know-how, smaller companies may opt to form strategic alliances and

partner with these large companies.

11.3 Treatment Combinations

A challenge that must be overcome is finding the optimal treatment combination(s) and

doses for prolonging median survival in metastatic patients. This criterion is obviously of

critical importance to patients, and is also the main criterion of what the FDA looks at as

success in clinical trials. As immunotherapies become more common as adjuvant

therapies to chemotherapy, surgery, etc., certain combinations may prove to be more

effective and safe than others. Different combinations should be tested and optimized.

The statistics of late stage melanoma are extremely devastating, and so perhaps research

should also be conducted in earlier stage melanoma in order to assess the preventative

capabilities. Along these lines, better detection methods, education, and technology may

also help reveal more treatable melanoma cases. Since late-stage metastatic melanoma

makes up only a small portion of all melanoma cases, working to prolong survival in

earlier stage melanoma would open more of a market, and potentially help more people.

11.4 Recent Tumor Reduction Basis of Approval

In research in mice models, the vaccination node showed a 125-fold increase in activated,
antigen-specific T cells brought to the tumor. Also, the gel surrounding the tumor

prevents further angiogenesis of the tumor. These factors hint at the possibility of great

tumor shrinking/killing abilities. Very recently, Genentech's cancer drug, Avastin, was

approved by the FDA. The drug is a recombinant humanized antibody to vascular

endothelial growth factor (VEGF), and is basically designed to inhibit VEGF, which is a

protein that plays a critical role in tumor angiogenesis [60]. While the FDA traditionally

approved drugs for late-stage cancer if the drug prolonged or improved the patient's

quality of life, Avastin did neither [61]. The basis of approval was Avastin's tumor-



shrinking capabilities [61], which may make it easier for the vaccination node to be

implemented if it can show similar tumor shrinking capabilities.

11.5 Prophylactic Vaccines

Another consideration is that while our technology is aimed at implementation for

therapeutic vaccines, there is much research being performed on prophylactic vaccines

[45]. These vaccines have the objective of preventing a disease to begin with, rather than

treating an existing problem. While success in prophylactic cancer vaccines is likely far

adrift, a factor to note is that the successful invention of a prophylactic melanoma vaccine

would eliminate the future market for the therapeutic treatment.



12 Conclusion
Vaccination nodes have shown promise in the research stage, overcoming a number of

limitations found in other vaccination strategies for cancer. The addition of IL-15/IL-

15Ra shows great promise in appending to the tumor fighting abilities of the immune

system. If the vaccination node technology can show decent safety and effectiveness in

humans, then its implementation into the market should not be difficult. The technology

is not necessarily aiming to replace conventional treatments, but rather make significant

improvements to ones that are in development. Also, if the tumor antigens are being

derived from the individual patient, then some form of surgery would most likely still be

necessary.

While late stage melanoma patients are the initial intended target for these vaccines, the

vaccination nodes would ideally be used for treatment for earlier stage melanoma and in

other types of cancers as well. The short-term goal is to conquer the problem for

melanoma patients, while always keeping the bigger picture in mind. If melanoma can be

treated, then this would open the door to more extensive research in other areas, and

possibly extending the effective treatment to more people who suffer from other cancers.

Despite the large number of market barriers to entry, the urgency of effective cancer

treatments is a pressing need, and there are many factors pushing for the pursuit of this.

Upon an estimated cost model, the added cost of implementation would be slight, relative

to current treatments. The manufacturing of alginate microspheres and alginate solution is

relatively inexpensive, especially when considering today's high mark-ups on drugs, thus

the added cost should not be significant. Supplying the microspheres and solution to the

vaccine manufacturer is an easy step to implement in the supply chain, so the success of

the vaccination node technology would be contingent on FDA approval of the vaccine.

To ensure a higher probability of FDA approval, there should be a clear understanding of

what the FDA requires, and clinical tests should be set up accordingly. There is a need to

explore options with respect to which dendritic cell vaccine manufacturer(s) to

potentially partner with. Commercialization of the technology and all these other factors



are contingent on success in the research stage, which is currently being pursued. Current

studies are aimed at optimizing immunization and achieving a better understanding of the

mechanisms that tumors employ to evade tumor destruction. Once a better understanding

is achieved, efforts will be focused on dealing with these evasive mechanisms or

circumventing them. The addition of complexed IL-15/IL-15Ra has shown many

benefits, however further research is needed in order to maximize efficiency. Thus this

research is the critical step, and efforts now should be primarily focused on this.
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