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Abstract

Synthetic polymer matrices or subtrata with tailored elastic properties provide a powerful method
to direct biological cell' differentiation and foster cell multiplication. By changing the stiffness
of the substrate, human mesenchymal stem cell (MSCs) could be directed along neuronal,
muscle, or bone lineages. Matrix elastic modulus can also control anchorage dependent cell's
motility, localization, tissue formation and organization. Besides that, synthetic materials such as
biodegradable polymers offer a versatile alternative to naturally derived biopolymers. Their
mechanical properties can be highly tailored and they are easy to synthesize and shape.
Moreover, these platforms can be readily "biologically" fine-tuned toward a particular cell linage
by incorporating well-documented parameters, which play crucial roles in cell-extra cellular
matrix (ECM) signaling pathway, such as growth factor, surface topology and stimulation signal.
Hence, these materials are suitable candidates to develop engineered matrices for stem cell
culture, cell manipulating platforms in biological research and drug development.

In this thesis, commercialization aspects of these engineered matrices for stem cell research, cell
culture and drug development markets are evaluated both in USA and in Singapore markets.
Technological barriers, intellectual property and a preliminary cost model are analyzed. A
business plan is presented and discussed for applications in both the stem cell research and the
drug screening markets. Although these two markets are ill-defined, both of them are growing
rapidly and appear to be very promising. A review of the technology itself led to the conclusion
that the matrix is capable of induce anchorage dependent cell into specific lineage but the
success rate is not yet quantified and further research need to be done to achieve good
reproducibility and to meet the required efficacy of the industry.

Thesis Advisor: Krystyn J. Van Vliet

Title: Thomas Lord Assistant Professor of Materials Science and Engineering
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I. Introduction

1. Thesis Overview

The main goal of this thesis is to evaluate the potential applications and commercialization

feasibility of the elastic modulus engineered matrices for stem cell engineering and drug

development.

In the first part of the thesis, the technology is described thoroughly; its current stage of

development, its supporting principles and evidence are also presented. In the second part of the

thesis, various potential applications are identified. The feasibility of them are subsequently

discussed and analyzed. In the third part of the thesis, technological barriers are investigated

where requirement of the industry are presented with current competing technologies and the

elastic modulus engineered matrices' performance to show both expected opportunities and

challenges that the technology is being faced with in the commercialization process. In the later

parts of the thesis, intellectual properties, market analysis and business model are investigated

and analyzed in details.

2. The Technology

The behavior of cell, including the way they grow, spread and die, depends on numerous factors

that the cell receive from the surrounding environments: soluble biochemical signals such as

growth factors, genes, hormones as well as mechanical feedbacks such as extracellular strain,

stress, external force (illustrated in Fig. 1). Although previously emphasis has been placed on the

role of soluble mediators, there is now significant evidence that mechanical factors have the

ability to influence cellular status such as inducing differentiation for stem cell, lengthening the

culturing lifetime of liver cell, guiding cell motion, localization in vitro.

Several studies indicate that cell actively probe the mechanical properties of their environment

and respond with significant changes in cell behaviors including focal adhesion strengthening

(1), change in cell morphology (2), cytoskeleton stiffening (3), and elastic modulus guided

migration (4). These studies with different mammalian cell have demonstrated that cell do indeed

respond to mechanical cues. The hypothesis that stem cell respond to their mechanical

microenvironment thus warrants attention.
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Ectoderm

(Neuron)

Mesoderm

(1cell)

Figure 1: Cues in the microenvironment that affect stem cell fate. This schematic indicates the effect of chemical and
physical cues on embryonic stem cell fate, including self-renewal processes and differentiation toward all three germ
lineages (5).

Progress in matrix design has also allowed directed differentiation of stem cell into specific
lineages (6). The approach of using mechanical property defined matrices to expand and direct
differentiation of stem cell provides a promising method to alter stem cell fate in the absence of
biological factors, which would be valuable in numerous applications in tissue engineering and
drug development. Now, solely by select and regulate the mechanical properties of substrate or
tissue microenvironment, we can effectively regulate in vitro differentiation, cell shape and/or
lineage commitment of anchorage dependent cell such as mesenchymal stem cell into e.g.,
neurogenic-, myogenic-, and osteogenic-cell type. Interestingly, inhibitors can be introduced to
further regulate differentiation (7).

Besides, cellular adhesion and proliferation are also moderated by mechanical cues. Utilizing
microfabrication to control the organization of sheets of cell, regions of high tractional stress
corresponded to regions with high concentrations of growth; thus, tissue form is not only a result
but also a modulator of tissue growth (8).

(Endothelel cells)

Endoderm
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a. Technology development

i. Guiding Anchorage Dependent cell' differentiation by matrix elastic modulus

Even though specific ligand-receptor interactions of growth factors and matrix molecules are

clearly important for regulating cell, the physical properties of the local microenvironment can

also play key roles in determining cellular function and fate (9). Discher et al. conjectured that,

the feedback of local matrix stiffness on cell state has been concluded as having important

implications for development, differentiation, disease, and regeneration (4). Also, the elastic

modulus of the matrix microenvironment has been identified as a new factor regulating stem cell

fate (10). By changing the stiffness of the substrate, human mesenchymal stem cell (MSCs)

could be directed along neuronal, muscle, or bone lineages as demonstrated in Fig. 3. Compliant

matrices favored differentiation of MSCs into neuronal-like cell, moderate stiffness promoted

myogenic differentiation, and a rigid matrix stimulated osteogenic differentiation. This behavior

is likely due to non-muscle myosin II exerting force through focal adhesions in mechanisms of

sensing matrix elastic modulus. Discher et al. suggests that this passive, initial response of MSCs

to the microenvironment would be expected from a multipotent stem cell awaiting instruction.

The mechanical forces experienced by a cell are not limited to its contact with surrounding cell,

proteins, and surfaces. Nanotechnology and microfabrication technologies enable the directed

study of cell-substrate interactions and contribute to these interactions (11). It has been shown

that the shape of stem cell regulates the differentiation of human mesenchymal stem cell.

Flattened, spread cell committed to osteocytes, whereas round cell became adiptocytes (12).
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Figure 2: In vitro stem cell differentiation

Concurrent with that, by using scaffolds of collagen, fibronectin (FN) and laminin to alter
mechanical properties of scaffolds, embryonic body (EB) formation can be drastically altered.
When the elastic modulus was increased from 16 to 34 Pa the formation of EBs was severely
inhibited suggesting that the increase in elastic modulus resulted in an inhibition of apoptosis

(13). A second possible explanation may be that the denser network of these stiffer gels may
have altered ESC growth (14).

Figure 3: Controlling Stem Cell Fate: multiple factors can influence the differentiation of stem cell, including secreted
soluble factors, the elastic modulus or compliance of the matrix substrate, and the biochemical composition and
dimensionality of the matrix (9).
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Figure 4: Substrate stiffness influences contractility, motility, and sprcading. (A) Intcrplay of physical and biochemical

signals in the fcedback of matrix stiffness on contractility and cell signaling. (B) Cell exert less tension on softer, collagen

coated gels but crawl faster, causing an accumulation of cell toward the stiff end of a soft-to-stiff gradient gel. Curves are

schematic. (C) Spread area, (x, of smooth muscle cell versus ligand density and matrix stiffness, based on measurements

fitted by a thermodynamic model. Similar nonlinear responses are also seen for adhesions, cytoskeleton organization,

tractions exerted on the substrate, and other cellular processes (4).

In conclusion, while cell have been shown to respond to externally applied forces (15), until the

present findings there was no suggestion of a relationship between pluripotent cell differentiation

and matrix elastic modulus and how various disease states can complicate the physical

remodeling required to decrease elastic modulus to proper, tissue-relevant levels prior to the use

of stem-cell based therapies. Thus a need remained in the art to provide a method for regulating

5
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the differentiation of mesenchymal stem cell ("MSCs") into anchorage-dependent cell types.

Moreover, similar sensitivity, growth and remodeling principles seem to apply to most anchored

cell and by regulating differentiation via contractile mechanisms (7).

ii. Manipulating mature cell in vitro by substrate's elastic modulus

' Control cell' motility

Directional cell locomotion is critical in many physiological processes, including morphogenesis,

the immune response, and wound healing. It is well known that in these processes cell

movements can be guided by gradients of various chemical signals. Yet, little is known about the

effects of physical cues such as substrate topography, substrate pore size, elastic modulus...

toward cell's motility and migration direction. It has been found that cell showed different

morphologies and motility rates when cultured on substrates of identical chemical properties but

different rigidities (3). And it has also been long predicted that cell are capable of responding to

substrate rigidity through a true active tactile exploration process, by exerting contractile forces

and then interpreting the substrate deformation to determine a preferred direction or destination

of their movements (3).

In a study conducted by Chun-Min Lo et al. from Boston University (USA), 3T3 fibroblasts were

cultured on flexible polyacrylamide sheets coated with type I collagen. A transition in rigidity

was introduced in the central region of the sheet by a discontinuity in the concentration of the

bis-acrylamide cross-linker. Cell approaching the transition region from the soft side could easily

migrate across the boundary, with a concurrent increase in spreading area and traction forces. In

contrast, cell migrating from the stiff side turned around or retracted as they reached the

boundary. This apparent preference for a stiff substrate is named "durotaxis." In addition to

substrate rigidity, Chun-Min Lo et al. discovered that cell movement could also be guided by

manipulating the flexible substrate to produce mechanical strains in the front or rear of a

polarized cell. It is concluded that changes in tissue rigidity and strain could play an important

controlling role in a number of normal and pathological processes involving cell locomotion (3).
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Figure 5: Model for the detection of substrate rigidity. It is assume that initial probing forces are generated by actin-

myosin interactions associated with cell-substrate adhesion sites. (a) On soft substrates, the receptorligand complex is

mobile and the tension at the anchorage site is weak. With a given energy input (black area under the force-displacement

graph), the complex can move over a long distance (x axis). (b) On stiff substrates, equivalent energy consumption (shown

as an equivalent black area under the force-displacement graph) causes a higher tension (y axis) and lower displacement

of the receptor - ligand complex (x axis). The increase in tension may induce an influx of extracellular calcium through

the stress activated channels. (c) The increase in calcium then causes the phosphorylation of myosin, which leads to an

increased energy consumption (gray areas under the force-displacement graph) and a further increase in tension.

Previous experiments indicated that there is also an increase in tyrosine phosphorylation at the contact site, which may

lead to additional forcemodulated responses such as cell growth and gene expression (3).

From these conclusion, the elastic modulus engineered matrices appears to be not only one of the

bioresearchers' interests for cell mechanics, cytosckeleton, wound healing study but also

potentially be a great tools to manipulate cell movement in vitro.

b

C



Mechanical Stiffness-Defined Matrices for Stem Cell Research and Drug Screening

$ Specified cell' localization

It has been demonstrated by Darren S. Gray et al. from Department of Biomedical Engineering,
Johns Hopkins University School of Medicine in their attempt to repositioning cell by
mechanotaxis on surfaces with micropatterned Young's modulus that when cultured on
fibronectincoated acrylamide having Young's moduli of 34 kPa and 1.8 kPa, or fibronectin-
coated PDMS having moduli of 2.5 MPa and 12 kPa for several days, NIH/3T3 cell and bovine
pulmonary arterial endothelial cell accumulated preferentially on stiffer regions of substrates.
The migration, not proliferation, of cell in response to mechanical patterning (mechanotaxis) was
responsible for the accumulation of cell on stiffer regions. Differential remodeling of
extracellular matrix protein on stiff versus compliant regions was observed by subsequent
immunofluorescence staining, and may have been responsible for the observed mechanotaxis

(16). The results obtained suggest that mechanically patterned substrates might provide a general
means to study mechanotaxis.

.2

$40

0
Co00

00
O.1 1 2

Time after plating (days)

Figure 6: Plot of the percentage of total cell density on stiff and compliant regions as a function of time after plating.

Error bars are standard error of the mean (16).

In addition to that, recent advances in microfabrication techniques have enabled substrate

fabrication of polymeric cell culture surfaces containing micrometer-scale regions of variable

stiffness. Substrates maybe made of either acrylamide or poly-(dimethylsiloxane) and were

patterned with 100 gt or 10 gm resolution, respectively. These patterned substrates are ideal

candidates for designing cell culturing substrates that are pre-defined in major clusters of cell

formation. Also, based on different relative motility of different cell types for the gradient elastic

modulus substrate, multiple cell line may be studied at the same time on the same substrates with

their positions localized. These also offer a new approach to patterning cell.
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/ Influence tissue formation and organization

The ability of cell to form tissues represents one of the most fundamental issues in biology

although the hidden mechanism that triggers cell to adhere to one another in tissues and to

migrate once a piece of tissue is planted on culture surfaces still remain elusive. By using

substrates of identical chemical composition but different flexibility, Guo et al. have shown that

this process is controlled by substrate rigidity: on stiff substrates, cell migrate away from one

another and spread on surfaces, whereas on soft substrates they merge to form tissue-like

structures (17). It is demonstrated that cell compaction on soft substrates involves a combination

of weakened adhesions to the substrate and myosin II-dependent contractile forces that drive cell

toward one another. It is also suggested that tissue formation and maintenance is regulated by

differential mechanical signals between cell-cell and cell-substrate interactions, which in turn

elicit differential contractile forces and adhesions to determine the preferred direction of cell

migration and association (17).

Figure 7: Response of cell-cell associations of cultured fibroblasts to substrate flexibility. 3T3 fibroblast cell aggregates

are plated on either stiff (A) or soft (B) substrates. On stiff substrates, cell show the typical scattering behavior as seen on

conventional culture dishes (A). In contrast, cell form tissue-like aggregates when plated on soft substrates (B). Time in

hours and minutes is indicated. Bar, 100 ptm (17).

3:10
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V' Lengthening culturing lifetime of Hepatocytes in Vitro by matrix elastic modulus

A major challenge exists in designing materials suitable for supporting liver-derived cell

cultures. To attain organ-equivalent levels of tissue function from cultures, the growth substrates

must not only be biochemically hepatospecific but also biophysically sensitive to its mechanical

nature to achieve a highly differentiated cell phenotype. Physical resistivity of the cellular

environment is thought to determine cell shape and, as a result, remodel the internal architecture

of intracellular signaling processes. One of the biophysical parameters which are intimately

coupled with the outcome of hepatocellular morphogenesis is the substrate mechanical

compliance because of the high sensitivity of a hepatocyte to the mechanics of the environment.

Hepatocyte morphology is known to be closely linked to cellular functions. As a result,

morphogenesis is extremely important to attain organ-equivalent levels of tissue function from in

vitro cultures. Thus, a puzzle lies in designing materials suitable for supporting liver derived cell

that are not only biochemically hepatospecific but also biophysically sensitive to the mechanical

nature of hepatocytes to achieve highly differentiated cell phenotype found in a natural liver.

In one study, a unique substrate material system of polyelectrolyte multilayers (PEM) that can be

tuned to achieve mechanical compliances of several orders of magnitudes (Es = 105 to Es = 108

Pa) was employed (18). Further PEM modification effectively changes the surface mechanical

compliance, and, thus, hepatocyte morphology and attachment, by controlling pH deposition

conditions (pH 2.0, 4.0, and 6.5) and collagen concentrations on different materials (tissue-

culture polystyrene, polycarbonate, and Permanox). For all materials, PAH/PAA 4.0/4.0

provided the balance of cellular attachment that appeared neither confluent nor sparse while also

promoting a natural hepatocyte phenotype. Interestingly, PEM films were confirmed to be able

to effectively mask any inherent substrate material properties. Therefore, the use of PEM

modification can be applied to a variety of surfaces and geometries for hepatocyte cultures. PEM

and their controlled elastic modulus is therefore demonstrated to be an invaluable tool in

optimizing cellular attachment and function and will prove to be essential to future in vitro

hepatocyte studies.
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Figure 8: (A) Young's Modulus E, as a function of assembly pH of PAH/PAA solutions, pH = 6.5, 4.0, 2.0. The terminal

layer is indicated as PAA or PAH (red arrow on top). (B)Total number of fibroblast cell harvested from 60 mm-diameter

Petri dish at seven days post-seeding, as a function of PEM assembly pH (18).

b. Supporting Principles

With the ability to directly control the substrate mechanical compliance of the PEM and other

bio polymer matrix complexes, as well as the capability to control degree of cell attachment to

the matrix as well as the force interaction between cell and matrix, the technology of using

elastic modulus controlled matrix can manipulate and control cell morphology, differentiations

and expressions. This section will present some supporting principles available up-to-date to

affirm the technology. These discussions, proposed by Discher et al. group, are mainly focus on

the differentiation inducing effect of elastic modulus controlled matrices on stem cell. Other

effects of defined elastic modulus matrices on handling and manipulating cell are still in

preliminary research stage. Their models and supporting principles are still under investigation.

Hence, they are not presented in this thesis.

/ Force and deformation of living cell

There have been quite a number of models developed that explain the reasons that extracellular

mechanical signals affect cell states. One model is that cell such as those in bone and

endothelium are subjected to specific forces as part of their 'native' physiological environment.

Any alteration of such forces is likely to cause a disruption in their normal functioning, thereby

producing a diseased state. Another model is that specialized cell, such as the cochlear outer hair

cell, realize their functions by converting an electrical or chemical stimulus into a mechanical
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force that has a more direct role in cell function (21). Yet another model is that for certain cell,
such as muscle cell, a mechanical signal in the form of force or deformation transmitted during

an activity, such as exercise, facilitates a function that is not necessarily a mechanical one (22).

Mechanical loading of cell induces deformation and remodelling, which influence many aspects

of human health and disease. Also one explanation for the fact that during cell locomotion, the

crawling of cells can be altered markedly by the stiffness of the substrate is because cells have

the ability to recognize the mechanical environment (for example stiffness) and adjust their

behavior (for example direction of motion) accordingly (22).

-/ Matrix stiffness, matrix strain and cell differentiation

In macroscopic view, stiffness demonstrates the ability of a solid tissue to recover its shape in a

short time range (in seconds) after mild poking and pinching, or even after sustained

compression. At the cellular scale, normal tissue cell probe elastic modulus as they adhere and

pull on their surroundings. Biologically, such processes are dependent in part on myosin-based

contractility and transcellular adhesions-centered on integrins, cadherins, and perhaps other

adhesion molecules-to transmit forces to substrata(7). On the other hand, microenvironments are

crucial in stem cell lineage specification and differentiation as cells can 'feel' tissue softness via

contractile forces, generated by cross-bridging interactions of actin and myosin filaments. These

forces (referred to as traction forces) are transmitted to the substrate, causing wrinkles or strains

in thin films or soft gels (19). The cell, in turn, responds to the resistance of the substrate by

adjusting its adhesions, cytoskeleton, and overall state, e.g differentiation.

It is suggested that by selecting, designing, or engineering a substrate or tissue microenvironment

having an elastic modulus defined by elastic constant E; and introducing the anchorage-

dependent cell onto a substrate or into a microenvironment, balance of chemo-mechanical

energetics localized to cell adhesions against contractile energetic can be achieved, thereby cell

shape and lineage commitment are controlled. Since the cell adhesions area increases linearly

with E, larger intracellular deformation occurs on stiffer matrices and larger deformation in the

substrate occurs on softer matrices (7). Also, it is proposed that cell differentiation can be further

regulated by controlling cell strain, such that there is an inverse relationship between intracellular

and extracellular strains so that on stiff matrices, cell strains are large, while matrix strains are
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small, and on soft matrices, cell strains are small, while matrix strains are large. The strain thus

transfers from outside to in with increasing matrix stiffness, presumably activating different

pathways at different strains (10).

Presently, there is no theory or model successfully quantifies effect of matrix mechanical

properties such as elastic modulus or strain toward cell differentiation. Discher et al. proposed a

model that the free energy depends additionally on the global pre-stress, a, assumed to act

throughout the cell volume V as a global regulator of differentiation. Consequently, when

coupled to this, an increase in free concentration of the cells' transducing activator links

cooperatively to collagen. Discher et al. concludes that the net result is a lineage commitment

probability given by:

Plineage(E) = ao + a, exp(-oV / kTeff + Kco

where kBTeff is effective thermal energy which suggested to be relate more to cytoskeletal

stochastics than temperature. K is apparent affinity of lineage-specific component related to

collagen (coll) with a Hill coefficient m.

b

t M"

t\

ERK

I
MEK

R
Raf

IRas

Lu

WsA-rf

Figure 9: Schematic diagram of how forces applied through the ECM (A) or directly to the cell surface (B) travel to

integrin-anchored focal adhesions through matrix attachments or cytoskeletal filaments, respectively. Internally-

generated tension and forces transmitted through cell-cell contact similarly reach focal adhesions through the

cytoskeleton (20).
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II. Potential Applications

There are three main targeted applications for this technology: as means to control stem cell
differentiation, as platform for cell handling (assist cell manipulations; maintain cell in
appropriate states) and high-throughput whole cell based bioassay for pharmaceutical
development. Fig. 10 lists out all the possible application aspects of the elastic modulus defined
matrix. It is noted that our matrixes are only targeting at non vitro applications of tissue
engineering; it's used as media for cell to growth or to handle and manipulate cell before they are
introduced into the body.

Figure 10: List of potential applications of elastic modulus engineered matrices in bio research and drug development

1. Matrices for stem cell differentiation

Elastic modulus engineered scaffolds can play a number of specific roles in tissue engineering

applications using stem cell: as defined systems for stem-cell derivation and expansion, as

substrates for clonal expansion of genetically engineered stem cell, or also as factors to facilitate

differentiation of stem cell.
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Figure 11: Multiple roles for engineered matrixes/scaffolds in stem cell TE. Biomaterials play different roles at various

stages in the application of stem cell to TE. ESCs may be derived from blastocysts obtained by either fertilization or

somatic cell nuclear transfer under xeno-free conditions on biomaterial substrates. Derived stem cell can be expanded in

culture on biomaterial-based bioreactors. Tissue scaffolds can be tailored according to the specific goals of the intended

therapy. (a) Expanded ESCs can be differentiated terminally into mature cell types before seeding into scaffolds to

construct tissues or whole organs. Alternatively, expanded stem cell may be partially differentiated into committed tissue

progenitors (proto-tissues) that undergo terminal differentiation in seeded scaffolds (b) before or (c) after implantation

into the body. In the latter case, the progenitor cell may continue to proliferate and migrate outward from the implanted

graft to repair lesioned areas (6).

a. Molecular biology research

The last 15 years have witnessed major advances in the isolation, culture, and the induction of

differentiation of stem cell from various sources. Stem cells have now been identified in every

major organ and tissue of the human body. Align with these discoveries are intense efforts to

understand the molecular mechanisms underlying the decision of stem cell to enter mitotic

dormancy, undergo self-renewal, or differentiate terminally. An understanding of these

molecular mechanisms would realize tremendous therapeutic potential of stem cell (6).

Stem cell of embryonic origin can be used to analyze in vitro the development from

undifferentiated pluripotent cell to terminally differentiated cell types recapitulating processes of

early embryonic development. Therefore, these systems represent in vitro alternatives to animal

tests for mutagenicity, cytotoxicity and embryotoxicity studies (23).
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S Mutagenicity

Developmental defects may occur when mutagenic or embryotoxic substances interfere with the

regulatory processes of proliferation and differentiation at the level of gene and protein

expression. Disturbances of these processes may result in abnormal embryogenesis and

malformations. Embryonic abnormalities may be caused by mutations acquired at an

undifferentiated state or during germ cell maturation. To study mutagenic effects on germ cell in

vitro, it would be necessary to comparatively analyze these effects with data on embryonic stem

cell or germ cell-derived cell lines (24).

ii. Cytotoxicity

Cytotoxicity assays measure drug-induced alterations in metabolic pathways or structural

integrity of the cell which may or may not be related directly to cell death, whereas

embryotoxicity tests include the analysis of toxic effects of drugs or environmental factors on

embryonal cell or on early embryonic developmental stages (23).

iii. Embryotoxicity

In vitro screening systems for embryotoxicity or reproductive toxicity, the effects of test

compounds on both, regeneration and differentiation of a given cell population have to be taken

into consideration. Pluripotent EC, ES and EG cell fulfill these requirements, and therefore have

been included into cytotoxicity and embryotoxicity test procedures and validation studies (23).
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Figure 12: Origin and differentiation potential of embryonic carcinoma (EC), embryonic stem (ES) and embryonic germ
(EG) cell, and the use of the ES cell technology for mutagenicity, cytotoxicity and embryotoxicity analyses in vitro (23)

Clearly, innovative methods and developments in engineered matrixes for better control over
stem cell culturing will help to establish high-throughput screening analyses on a large scale, to
reduce the amount of cellular samples and to save time. Moreover, these methods will result in
the identification and characterization of target genes, cell and tissues for teratogenic substances.

4

m



Mechanical Stiffness-Defined Matrices for Stem Cell Research and Drug Screening

b. Regenerative medicine - In vitro synthesis (e.g. epidermis)

Beside in vivo repair of damaged organs and tissue, the promise of cellular therapy lies in

generating tissue constructs in vitro for subsequent transplantation. Creating reserves of

undifferentiated stem cell and subsequently driving their differentiation to a lineage of choice in

an efficient and scalable manner is critical for the ultimate clinical success of cellular

therapeutics (14).

Numerous engineered matrixes and scaffolds have proven to enhance osteogenic (25),

hematopoietic (26), neural (27), and chondrogenic (28)(29) differentiation. They serve as

biointeractive stages promoting cell attachment, proliferation, and organization. Analogous to

these matrixes, the elastic modulus engineered substrates with proven ability to induce stem cell

differentiation into favorable lineages can serve as regenerative medicine fabrication platform.

These elastic modulus defined matrices can also be used in conjunction with other stem cell

induced methods (using biochemical soluble factors such as genes, growth factors, hormones or

other mechanical signals such as shear stress, intercellular interactions...) to have more drastic

net effect toward the stem cell differentiation. Hopefully, with this, more cell products will be

supplied to meet the need of current regenerative medicine industry.

2. Cell-based assay for drug screening

Stem cell has significant potential not only in regenerative therapies but also in pharmaceutical

development. Yet, in order to translate stem cell research into the clinic, a number of challenges

must be addressed. And it's still the development of methods to provide control of stem cell

behaviors, including growth and differentiation that remains to be an important challenge. The

high throughput development of new bioactive materials and microenvironments will provide

important tools to address this problem (11).
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Figure 13: High - throughput screening can affect biomaterials science, and biomaterials science can potentially affect

high-throughput screening of drug candidates. (a) Members of a relatively small library of co-monomers are co-

polymerized to produce much larger library of polymers. These biomaterials candidates can then be screened for

biological activity. (b) The biomaterials is used to provide an extracellular milieu of bimolecular and biophysical signals,

which provide a context in which biological responses to members of a large drug candidate library can be monitored.

The drug candidates can be soluble within the biomaterial extracellular milieu (upper), or bound to it as is the case with

many natural signals in vivo (lower) (34)

a. Target validation

It is clear that cell derived from HESCs should be better models for the development of useful

screens than commonly used immortalized cell lifies. What remains to be seen is whether assays

derived from HESC can be delivered in a cost-effective manner. It is important that

pharmaceutical scientists play a role in developing protocols for cell culture models. At present

stem cell biologists are focused on understanding the signaling systems and transcription factors

that drive differentiation. Pharmaceutical scientists need to help with the characterization,

isolation and banking of precursor cell, defining the phenotype and pharmacology of

differentiated cell, and on establishing methods to improve the homogeneity of differentiated cell

derived from ESCs. It will be particularly important to set appropriate and realistic targets for

homogeneity, based on the specific needs and desired outcomes of screening systems.

Although genetic modification is undesirable in cells which are destined for applications in cell

therapy, cell developed for uses in screening can be modified to express a reporter gene such as

luciferase, to produce very sensitive functional assays.

19
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b. Screening platform

i. Drug transport and metabolism evaluation

Inappropriate absorption, distribution, metabolism and excretion (ADME) together with
unexpected toxicity account for a large proportion of drug candidate failures in the clinic. Cell
culture models are commonly used to assess various aspects of ADME. It is likely that cell
derived from ESCs will replace many existing cell culture models in due course. An immediate
application would be to use HESCs as a source of human hepatocytes (35) for in vitro
experiments on drug metabolism. ESCs could produce a more reproducible source of
hepatocytes, and will have the added advantage that cell banks of particular human genotypes
can be established (36).

ii. Pre - clinical drug efficacy testing

Others than biomechanical assay for cancer detection, the elastic modulus defined matrices can
also be used to develop pre-clinical drug efficacy testing assay. By measuring the elastic
modulus of cell treated with doses of the drug compound of interest, the efficacy of that
compound to bring cell back into its normal stiffness state can be evaluate. And this is one of the
indications of how efficient or how competent the drug is in treating cancer cell.

Structure - Propwty - Function - Dlsase Connections for Biological Ces

Figure 14: Schematic of chemobiomechanical pathways influencing connections among subcellular structure, cell

biomechanics, motility and disease state (32).
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iii. Toxicity assessment (toxicogenomics)

The potential to isolate any cell type from stem cell means that in principle it will be possible to

study the cellular toxicity of new drug candidates using models for any (or all) tissues and

organs. This will lead to an understanding of the influence of the cell phenotype on its

susceptibility to toxicity.

Treating specific cell types with chemical or physical agents and measuring their response offers

a shortcut to test the toxicity in various organ systems in the adult organism. For example, to

evaluate the genotoxicity of a chemical (e.g., drug or pesticide) or a physical agent (e.g., ionizing

radiation or non-ionizing electromagnetic radiation) during embryonic development, a large

number of animals are being used. As an alternative, use of stem cell lines would be a feasible

proposition. Using stem cell lines, efforts are being made to standardize the protocols, which will

not only be useful in testing the toxicity of a chemical or a physical agent, but also in the field of

drug development, environmental mutagenesis, biomonitoring and other studies (24).

The measurement of gene expression levels upon exposure to a chemical/physical agent can, not

only provide information about the mechanism of action of toxicants, but also a sort of "genetic

signature" from the pattern of gene expression changes it elicits both in vitro and in vivo. The

development of such gene expression signatures would allow the screening of unknown or

suspected toxicants on the basis of their similarity to known toxicants. Hence, stem cells are an

important new tool for developing unique, in vitro model, with a potential to predict genotoxicity

in humans (24).

Human ES cell lines may, prove clinically relevant to the development of safer and more

effective drugs for human diseases. For example, ES cell-derived dopaminergic neurons

characterized by high survival capacity in vitro could represent a reliable screening system to test

physical agents, neurotoxic compounds, or drugs for the treatment of patients suffering from

Parkinson disease, a neurodegenerative disorder, caused by a dramatic loss of dopaminergic

neurons.
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3. Cell handling platform

a. Platform for cell mechanics study

Elastic modulus controlled matrices can be used to construct platforms for cell mechanics
researches. The main advantages of these matrices for cell mechanics study platform are lying
not only in their simple geometry and surface properties, and their ability to provide mechanical
measurements such as stiffness, traction force, adhesion, deformation; but also in their ability to
control cell spread, cell localization, movement and orientation in a predicted ways due to their
controlled stiffness.

Therefore, elastic modulus defined substrates offer a better platform for cell mechanics study
than conventional petri dishes because the defined elastic modulus of the substrate can be
utilized to get better control over certain cell states that facilitate mechanical measurement and
studies of the cell.

Constant
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Cell! Sensor
a-stag

O-ing.

.. Laser-beam
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b Cells

Figure 15: (a) A simplified schematic of the principle of measurement of a cell detachment with the use of shear force; (b)
a schematic experimental set-up of a manipulation force microscope, which employs an inclined microcantilever and a
laser beam deflection to measure the force (30).

b. Biomechanical assay for cancer cell
Oncologists often diagnose cancer based on a change of tissue stiffness sensed by palpation, yet
cancer researchers generally focus on biochemical signaling mechanisms. Tumors are more rigid
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because they have a stiffer extracellular matrix (31). Several studies have shown that relative

spring constant of pancreatic epithelial cancer cell are decreased significantly with time as the

cancer get into metastasis state (32). Some analogous observations have also been reported for

other types of cancerous cell such as bladder epithelial cell and breast cell. Hence, this suggests a

development of biomechanical assay which can be used in addition to the current conventional

biochemical assay for cancer cell detection. There are different ways to probe mechanical

stiffness of cell in vitro. Yet, in order to achieve accurate measurements, it is desirable and

critical to make sure that the substrates used for cell handlings closely resembles the extracellular

matrix environment of the cell in vivo. Also, among all the testing methods, one method uses the

sheer force used for peeling the cell out of its adhesion to a reference substrate to calculate the

relative stiffness of the cell. The mechanism by which one can measure forces with elastic

modulus defined substrate is the correlation of the substrates' deflection versus acting force,

which is translated via the substrate's stiffness. The most reliable method of doing that is to

attach a cell to a substrate and then to aspirate it with a micropipette. When the cell slips out, the

force imposed by the pipette is equal to the force on the substrate.

Hence, the elastic modulus controlled matrix can be potentially served as a biomechanical assay

for preliminary cancer detections.
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Figure 16: A mechanical autocrine loop that may contribute to cancer development Increases of rigidity in the matrix that
better resist cell tensional forces activate integrins, promote focal adhesion assembly, and stimulate the Rho/ROCK
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pathway which enhances cell contractilit,, thereby further increasing matrix stiffness. Because of the crosstalk between

the integrin/Rho pathway and the canonical growth factor receptor/ Erk mitogenic signaling cascade, this self-sustaining

positive feedback loop may stabilize the undifferentiated proliferati-ve phenot.ype of mammary epithelial cancer cell and

lead to neoplastic disorganization of tissue architecture (31).
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Figure 17: Detecting cancer by probing the elastic properties of cell outside the body. The elastic modulus of benign cell

and malignant cancer cell from patients with suspected metastatic cancer were mechanically probed with an atomic force

microscope (top path). The elastic stiffness of the cell was used to distinguish cancerous cell from normal ones. Ancillars

methods (bottom path), including various labelling and ultrastructural techniques, confirmed the outcormes of the

mechanical analysis. Samples were obtained from ca\vities in the lung, chest and abdomen (33).

4. Conclusion

The main promising applications of this technology are summarized in the table below: Since

matrix elastic modulus shows its most dramatic effects in controlling stem cell fates, only the

proposed applications that utilize this direction will be evaluated in details in subsequent

chapters. For other application directions such as supporting cancer detection platform or cell

mechanics study platform, more researches are needed to confirm and quantify the technical

success of the matrix elastic modulus's influence before any commercialize evaluation is

implemented.
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Figure 18: Elastic modulus controlled matrix's proposed applications

Application Description

Cell Growth and Differentiation The elastic modulus controlled matrix is
Substrate (37)

especially suited for the culture of anchorage
K~~drr

dependent cell, such as stem cell and liver cell.

It promotes the differentiation of many cell types,

including hepatocytes, mammary epithelial,

endothelial, smooth muscle cell and neurons

Metabolism/Toxicology Studies (37)

The elastic modulus controlled matrix can be

utilized toconstruct in vitro models of liver cell

for drug toxicity studies

Invasion Assays (37)

The matrix can provides a biologically active

basement membrane model for in vitro invasion

assay

The matrix can serve as a substrate for in vitro

liver cell invasion and tube formation assays.

m S WW

In Vitro Angiogenesis Assays (37)
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Cell mechanics study platform (31)

Shear flowShear flow The matrix plays an important role in probing the

mechanical properties of cell.

Biomechanical assay for cancer cell (38)

Atomic
forcelaer microscopy

photodiode

The matrix can be used as platform to construct

positiontrol biomechanical assay for cancer cell.piezoelectrI

It's expected that this technology can achieve some competing characteristics over conventional

matrix and other novel matrices. For stem cell growth matrix, with the elastic modulus and cell

attachment controlled, we can achieve homogeneity in cell's genome as well as morphology.

Hence, cell can grow in phase and we can induce the batch of cell into a specific desired cell

line. The technique is cheap since no special reagents or growth factors are needed to go with the

matrix. Only basic and conventionally used ECM will do. Furthermore, no animal derived

substances presented in the matrix, there is no threat xenogenic effects as in other competitor's

products whose matrixes are derived from animals such as MatrigelTM .

substrate

Cell manipulation platforms (30)

A. Compesia L Tradioe C. Aepnrati D. ALWmsio rmptun

The matrix is an efficient tool for mechanical

perturbation for individual cell.
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For high throughput bioassay for drug screening, the competing characteristics that the

controlled elastic modulus matrix can obtain are: relevant, quick and accurate response (This will

lead to high throughput) and high efficacy (can screen a standard IC50). With this technology,

it's expected that we can get a robust whole cell-based bio assay with all relevant cell types,

which will potentially gives us faster and more accurate response. Again, the assay is cheap and

reproducibility can be obtained if the manufacturing becomes automatic.

The competing advantages of this technology over other conventional methods to direct stem cell

differentiation is discussed in details in the next section.
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III. Technological Barriers Analysis

In this section, current competing technologies are investigated. Also, industrials requirements

are discussed to draw analysis on the technology's entrance barriers in performance's

perspectives.

1. Current competing technologies

a. Current stem cell differentiation techniques

Since the isolation of human stem cell (hSC), a large number of groups have shown the ability to

differentiate hSC to a variety of lineages with varying levels of competency both in vivo and in

vitro. These include both neural cells which appear to be the default pathway for hSC

differentiation, and cardiomyocytes, endothelial cell, blood cell, hepatocyte-like cell, insulin-

producing clusters.

Basic strategies to induce in vitro differentiation of human embryonic stem cell are:

- Embryonic body (EB) formation: two dimensional monolayer or three-dimensional structure

culturing systems. ES cell dissociated from colonies are transferred into suspension cultures,

in which ES cell are allowed to aggregate and form spherical three-dimensional structures

EBs (summarized in Fig. 19).

- Modification of medium composition: nutrient restriction, reduction of serum concentration,

and addition of a growth factor having an impact on gene expression and cell proliferation.

Forced proliferation generally results in cell losing their differentiated phenotype, whereas

suppressed proliferation results in the initiation of cell differentiation. The control of cell

proliferation is related to direct ES cell differentiation towards specific lineages. Growth

factors that affect proliferation and survival of specific cell types are often added to a

medium to promote differentiation (39) (40) . The following are the typical growth factors

often applied:

o Basic fibroblast growth factor (bFGF),

o Transforming growth factor P (TGFP), activin-A

o Bone morphogenic protein 4 (BMP-4),

o Hepatocyte growth factor (HGF),

o Epidermal growth factor (EGF),
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o Nerve growth factor (NGF),

o And retinoic acid (RA).

- Genetic manipulation of ES cell: forced expression of some transcription factors can direct

differentiation of ES cell toward specific lineages. For example, HOXB4 over - expression

significantly enhances the hematopoietic potential of mouse ES cell differentiated in vitro

(41). GATA-6 and GATA-4 expression in mouse ES cell induces their differentiation into the

extra-embryonic endoderm (42). GATA-4 overexpression enhances cardiogenesis and

markedly increases the number of terminally differentiated beating cardiomyocytes (43).

- Use of extracellular matrix (ECM) and signaling molecules: interaction between cell and

ECM via integrins determines the expression of signaling molecules that affect ES cell

differentiation (44)(45). The ECM and integrins collaborate to regulate gene expression

associated with cell growth, differentiation, and survival. The developmental fate of

differentiating stem cell depends on the complex of growth factors, signaling molecules, and

the ECM protein constituting the developmental niche in which the stem cell exist (46). For

example, cardiomyocytes are surrounded by a basement membrane consisting of type IV

collagen, laminin, fibronectin, and several proteoglycans (47). The ECM applied to a culture

system creates a microenvironment in vitro similar to that in vivo.

- Coculture with stromal cell: stromal cell lines support ES cell differentiation. The stromal

cell line OP9, which is derived from newborn mouse calvaria, supports hematogenesis, and

the bone-marrow-derived stromal cell line ST2 producing macrophage colony-stimulating

factor (MCSF) supports osteoclastogenesis from ES cell. The preadipose cell line PA6

promotes neural differentiation of mouse ES cell, and also supports dopaminergic

differentiation of human ES cell.

All these approaches have specific advantages and disadvantages, and have been used to

generate a broad spectrum of cell types differentiated from ES cell (48). However, there is little

or no data on the efficiencies of those methods or a comparison of them, albeit anecdotal

accounts suggest that the efficiencies are very low (in the order of single digit percentages).

Taking the example of neural differentiation for potential application in Parkinson's Disease, one

report has shown that PA6 stromal cell (Zeng et al. 2004) can generate dopaminergic neural cell,
while another group has achieved this same lineage via the formation of neurospheres in serum-
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free culture (Schulz et al. 2004). In both cases, the time of differentiation was in the order of

several weeks (49).

Among the above approaches, inducing EB formation is the most common method used for in

vitro differentiation of both mouse and human ES cell. EBs are a powerful tool for studying the

differentiation of ES cell into specific and desired cell types.

-EB formation from a donal origin
-generally used for hematopoictic

MethylCelulose culture ' differentiation
-handling of semisolid solution not easy

I

ansion culture in
rial-grade dish

-.------ 1 /1__ _____

ES cell suspension

- mouse: single cells

- human: small clumps of cell

-most basic method
-EB formation from small dumps of
human ES cells
-EBs with low-homogeneity in
morphology and differentiation

-scalable production of EBs
-amenable to process control strategies
-two-step method: transfening
preformed EBs to prevent agglomeration
-possible to do direct ED formation

-EBs with ontrolled size
-similar culture conditions to those in

Round-bottomed 96-well plate - HD culture

-enables microscopic observation
-enables medium exchange

Figure 19: Outlines of methods for inducing EB formation (50).

The technology of using matrix elastic modulus to direct stem cell differentiation is not in direct

competition with all of those technologies that are described above. In fact, this technology can

be used in conjunction with some of those technologies, for example, to create a differentiation

system with controlled matrix stiffness, defined culture reagents and some relevant co-culturing

stromal cell to achieve combined effects of all these influencing factors to stem cell

differentiation process. In a closer look, using matrix of defined elastic modulus is only in

competition with those techniques that use other methods or other materials as substrates for

-EBs with ontrdled size
-most frequently used for mouse ES cells
-liquid volume of a drop is limited to
less than 50 pd
-two-stp method& 2 d of HD culture, 3 d
of suspension culture in bacterial-grade
dish
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stem cell culturing such as using bacterial grade dish, petri dish, hydrogel, etc. Most of these

current competing materials/ techniques are discussed thoroughly in the next section of this

report.

b. Current competing biomaterials as instructive extracellular microenvironments

for controlled cell manipulations

Current competing biomaterials that serve as substrate for stem cell differentiation and cell

culturing/manipulation can be divided into three main groups: natural materials, synthetic

materials and nano-patterned materials.

i. Natural Materials

Table 3 compares currently used natural materials in stem cell culture. A number of other natural

materials have been used to support the differentiation for hESCs that include agarose, alginate,

hyaluronic acid, gelatin, fibrin glue, and acellular tissue matrices.

- Collagen is the main component of native ECM and cell interact with collagen through

integrin binding-mediated interactions. Collagen has long been utilized as a natural

biomaterial due to its low immunogenicity. It has been shown that high concentrations of

collagen gel inhibited EB apoptosis and enhanced differentiation (46). Addition of

fibronectin to the collagen gel preferentially stimulated ES cell differentiation into

endothelial cell, leading to vascularization, while addition of laminin favored ES cell

differentiation into beating cardiomyocytes (46).

- Gelatin is a porous denatured collagen scaffold, and it has been used for tissue engineering

applications due to its biocompatibility.

- Hyaluronan is a high molecular weight polymer having disaccharide unit glucuronic acid and

acetyl-glucosamine. HA binds specifically to proteins in the ECM, on the cell surface, and

within the cellular cytosol, and thus has roles in a number of different physiological roles

such cartilage matrix stabilization, angiogenesis, cell mobility, inflammation regulation, and

growth factor action. Currently, HA-based biomaterials have been utilized to support

differentiation of stem cell in combination with growth factors or other ECM components.
- MatrigelTM, a product currently available commercially, is comprised of a variety of ECM

components including laminin, collagen IV, and heparan sulfate proteoglycans and has been

used extensively in cell culture. It has also been used to support endothelial differentiation of

31
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ESCs and for promoting the development of glandular- and tubular-like structures from

differentiating ES cell (51). Matrigel is less adhesive than collagen and has been shown to

support efficient aggregation of ES cell and further differentiation into mesoderm and

endoderm lineages (52). However, Matrigel contains a series of unknown proteins, and

therefore may not be an appropriate microenvironment for lineage-specific differentiation of

ES cell. Hence, in technical view, elastic modulus defined substrates for stem cell

differentiation appears to be more competitive over MatrigelTM.

Another biomaterial that has been explored for stem cell differentiation is alginate. Alginate

is derived from seaweed, and in presence of a divalent cation such as Ca 2+, forms an ionically

crosslinked hydrogel. Alginate-based hydrogels in combination with oligochitosan have been

shown to support ES cell growth. Additionally, alginate hydrogels demonstrated to be

conducive for ES cell differentiation into hepatic lineage (52).

Generally speaking, natural biomaterials may provide efficient adhesion sites for attachment and
a wide range of biological signals. Even though these natural scaffolds have been utilized for
differentiation and attachment of hESCs, use of naturally-derived biomaterials has been limited
to in vitro differentiation application of ES cell due to their weak mechanical properties and
regulatory manufacturing difficulties. Major disadvantages of using natural materials over
synthetic materials are limited control over physico-chemical properties, difficult to modify
degradation rates, difficulty in sterilization and purification as well as pathogen/viral issues when
isolating from different sources. Fig. 20 makes a quick comparison of natural and synthetic
materials in using as cell culturing scaffolds.

Natural Synthetic

* Biological Signal * Easy to Control
* Proteolytic Degradation - Mechanical

Strength
- Degradation Profile
- Porosity

* Weak Mechanical Strength * Inert
* Immunogenetic Response - Cell Adhesion
* Hard to Modify - 4 Biological Signal

Bio-Synthetic Hybrid

Figure 20: Bio-synthetic scaffolds combine suitable mechanical properties and biological signals that mimic the natural
ECM for stem cell-based tissue engineering (52).
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Table 1: Application of natural biomaterials in stem cell culture (14)

Biomaterial Chemical modifications Application in stem cell culture Cell source

Matrigel TM

Fibrin Addition of growth factors

Hyaf' (hyaluron)
Hyaluron

Addition of soluble growth factors
Modified with photoreactive groups
Application of hyaluronidase

Silk fibroin
Chitosan with coralline
Hydroxyapatite (HA)
Alginate
Pullulan, Dextran, and

Fucoidan
Collagen Type II
Collagen microbeads

Collagen

Silk

Chitosan

Addition of poly-L-lysine cross-linked with sodium
trimetaphosphate

Addition of HA
Addition of crosslinked chitin and PLA
Addition of recombinant human BMP-2 (rhBMP-2)

Conjugation of hydroxybutyl groups

Cell culture applications
Vascularization
Neural differentiation
Cell culture
Chondrogenesis
Ligament formation
Maintenance of pluripotency
Lineage specific differentiation
Cell proliferation
Cell removal
Medical suture material
Osteogenesis
Osteogenesis
Cell encapsulation and differentiation
Hepatic possible applications to vascular repair

Chondrogenesis
Cell expansion and viability,
Hematopoiesis
MSC seeding and proliferation
Cell attachment
Osteogenesis
Osteogenesis
Chondrogenesis
Potential degenerative disk therapies

mADSC
mESC
mESC
hMSC
Sheep MSC
hESC

hESC

N/A
Murine MSC
mESC
ESC
mESC
hESC
hMSC
hUCBC

Rat MSC
hMSC
Porcine MSC
hMSC
hMSC
hMSC
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ii. Synthetic Materials

Table 2 summarizes popular synthetic materials used in stem cell culturing. PEG-based
hydrogels are ideal as tissue engineering scaffolds due to their high water content, elastic
modulus, biocompatibility, and their ability to permit diffusion of nutrients and bioactive
molecules. PEG-based hydrogels, however, are bio-inert and do not interact with the cell and
therefore various cell-interacting components need to be incorporated to improve their
bioactivity. These components include extracellular matrix molecules, small peptides, and
glycoproteins.

It

PEOD PBG-C PEG-

Figure 21: The extracellular microenvironment plays a significant role in controlling cellular behavior. PEG-based
hydrogels can mimic natural ECMs both biochemically and biophysically by polymerizing the hydrogels with exogenous
ECM components. Distinct cellular morphologies were induced by the various extracellular microenvironments. Actin:
Phalloidin (Red), Nucleus: DAPI (Blue). Bar=10 pm (52). Yet, there remains a major drawback is that PEG is bio - inert.

Beside hydrogels, a number of polymers have been microfabricated to develop bioactive,
biodegradable, porous, mechanically supportive scaffolds for stem cell differentiation and tissue
formation both in vitro and in vivo. One of the advantages of utilizing completely synthetic
biomaterial is that their properties-mechanical strength, porosity, degradation profile, and
biologically active sites-can be molecularly tailored. Most commonly used synthetic biomaterials
are poly (ethylene glycol) (PEG), poly (vinyl alcohol) (PVA), poly (lactic acid) (PLA), poly
(lactic-co-glycolic acid) (PLGA), poly (hydroxyl ethyl methacrylate) (PHEMA), and poly
(anhydride) (53). Novel synthetic biomaterials have been demonstrated to allow hESC adhesion
and guided differentiation toward a desired lineage (53). Yet, the main issue is their poor
inherent bioactivity (e.g. PEG), acidic by-products (e.g. PLA or PLGA), etc.

I I I
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Table 2: Application of synthetic biomaterials in stem cell culture (14)

Biomaterial Chemical modifications Application in stem cell Cell
culture source

poly(e-caprolactone) (PCL)
Addition of adipogenic promoting factors

Poly(L-lactic acid) (PLLA)
Polyglycolic acid (PGA), polylactic acid,

(PLA), polylactide-co-glycolide (PLGA)
Poly(ethylene glycol) diacrylates

(PEGDA) hydrogels

poly(N-isopropylacrylamide-co-acrylic acid)
[p(NIPAAm-co-AAc)1

PEGDA scaffolds

poly(6-aminohexyl phosphate acryloyl)
(PPE-HA-acryl)

Polyethylene terephthalate (PET)

Poly(ethylene glycol) (PEG) hydrogel

Addition of glucosamine
Incorporation of RGD-PEG-acrylates
Modified with RGD
Release of dexamethasone
Incorporated into a photocrosslinked
hydrogel with a metalloproteinase sensitive peptide
Incorporation of methacrylic acid

Cell propagation
Adipogenesis
Adipogenesis
Chondrogenesis and
Osteogenesis
Hematopoiesis
Cell proliferation and 3-D
organization
Cell and bio-chemical

molecule encapsulation
Chondrogenesis
Cell viability, Osteogenesis
Chondrogenesis
Osteogenesis
Cell self-renewal and maintenance

Osteogenesis

Cell and bio-chemical
molecule encapsulation
Cell sceding, proliferation, and aggregation

Conjugated with FN
Exposed to TGF-+
Addition of a phosphoester

CD34+ proliferation
Chondrogenesis
Osteogenesis

mESC
mESC
hMSC
Rat
MSC
mESC
hESC

Goat
MSC
hMSC
mESC
hMSC
hESC
hMSC
hESC

Murine
MSC
Goat
MSC
Rat
MSC
hMSC
hHSC
hHSC
mESC
Goat
MSC
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Biomaterial Chemical modifications Application in stem cell Cell
culture source

Biphasic calcium phosphate(Triosite TM )
Titanium

Differentiation media

Coated with RGD

Surface modification with TiO 2

Surface modification with TiO 2
Tantalum (Cytonmatrix)
PPE-HA-acrl

slPN

Oligo(PEG-fiumarate) hydrogels

Gelatin
Magnetic microbeads
Poly(a-hydroxyl ester) scaffolds
Po I y(L-lactide-co-tv-caprolactone) filhms
PEG-PLGA polymer blends

PDMS molds

Increase acrylated-PEGi

p(NIPAAm-col-AAc) crosslinked with
Gln-Pro-GIn-CGLY-Leu-Ala-Lys-N H2 and
functionalized with p(AAc) and RGD complexes
Modified with osteopontin-derived peptide

Modified with RGD

Coupled with azidophcnyl groups

Treated with potassium hydroxide
Coated with FN
Encapsulation of recombinant human TGF-t1 I

Seeded with M EFs

Microwell array system

HA microwell system

Osteogenesis
Cell attachment and
proliferation
Osteogenesis

MSC attachment

Cell adherence

Cell adherence
Hematopoicsis
Osteogenesis

Cell propagation

Osteoblast migration

Cell attachment

Cell growth
T cell formation
Cell growth
ESC adherence
MSC proliferation and
osteogenesis
Cell viability and
proliferation
Create spatially uniform
aggregates of undifferentiated cells
Cell viability, controlled cell patteming
and shanins

hMSC
Rat
MSC
Rat
MSC
Rat
MSC
Murine
MSC
hMSC
mESC
Goat
MSC
hESC

Rat
MSC
Rat
MSC
mESC
mHSC
mESC
hADSC
Rat
MSC
hESC

hESC

mESC
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iii. Nano patterned Biomaterials

Natural ECM is constructed through self-assembly of many nanofibrillar proteins secreted by

cell, e.g., collagen fibrils. The normal cell environment is comprised of a complex network of

extracellular matrix molecules with nano-micro scale dimensions. Though the aforementioned

biomimetic hydrogels and porous scaffolds have been fairly successful in providing 3D structural

support to cell, they fail to mimic the spatial dimensions of the ECM. In addition, cellular

phenotype and differentiation can be profoundly influenced by the diameter of fibrous scaffolds.

To this end, the latest efforts in scaffold research have focused on developing biomaterials with

nanostructures (54).

Several groups have demonstrated that nanotopography has the ability to enhance differentiation

of progenitor cell into their programmed pathway by studying on differentiation and proliferation

of hMSCs on nanogratings. Nevertheless, they also pointed out that novelty of this work lies in

the application of nanotopography to direct adult stem cell to differentiate into a non-default

pathway (Fig. 22). Because of the availability MSCs, their differentiation to functional neurons

would be of interest to many for cell therapy. Also of significance is the finding that the

topographical cue has to be at the nanoscale in order to exert a significant influence on the

directed differentiation. The results demonstrated in a systematic manner that nanopattern, in

comparison to micropattern, exerted a significantly stronger effect on stem cell behavior in terms

of morphology, proliferation and differentiation (55).

General speaking, the technology of using nano-patterned substrate to control stem cell'

differentiation is still in development stage and it is unlikely that it can transform into novel

products into the stem cell research market or the drug screening market. Moreover, compared to

this technology, the technology using elastic modulus defined substrates to direct stem cell'

differentiation appears to be more specific. Since using nano grating substrate to induce cell

differentiation complicate identification of possible contributions of substrate stiffness. In

contrast, tissue level matrix stiffness is distinct and shown in sparse cultures to exert very strong

effects on the lineage specification and commitment of naive MSCs, as evident in cell

morphology, transcript profiles, marker proteins, and the stability of responses (10). Therefore,
both technologically and in business sense, using matrix elastic modulus to direct stem cell turns

out to be more competitive technology.
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F

Figure 22: Changes in morphology and proliferation of human mesenchymal stem cell (hMSCs) cultured on

nanogratings. Scanning electron micrographs of (A) PDMS nanopatterned by replica molding; hMSCs cultured on (B)

nanopatterned PDMS and (C) unpatterned PDMS. Confocal micrographs of F-actin-stained hMSCs on (D)

nanopatterned PDMS and (E) unpatterned PDPS in hMSC proliferation medium; (F) nanopatterned PDMS and (G)

unpatterned PDMS cultured in presence of I pM of retinoic acid (RA). Scale bar=500 nm for A, 5 pm for B, 50 pm for C--

G (55).

2. Industrial Requirements and the technology's proposal materials choices

a. Industrial requirements

Industrial requirements for stem cell differentiation systems' efficiency varies with the usage of

the final cell products.

Differentiation of stem cell prior to transplantation is very critical, because undifferentiated ES

cell may cause teratoma formation in vivo. Therefore, the potential use of ES cell to replace

functional loss of particular tissues depends largely on efficient differentiation protocols to

derive tissue-specific progenitor cell without any detrimental in vivo side effects. The technology

of using matrix elastic modulus is still in innovative stage; it is not mature enough both in

technological efficiency and technology capacity. For technological efficacy, reports show that



Mechanical Stiffness-Defined Matrices for Stem Cell Research and Drug Screening

the technology is capable of driving more than 75% of the cell population into neural lineage,

specificity for bone lineage over other lineages in bone-like matrix stiffness may achieve up to 8

times (10) with the same culturing conditions. Yet, it is still far behind the critical requirements

of products for vivo usage, where 100% of the cells need to be of the desired lineage. Therefore,

we expect that the technology is more suitable to be applied in producing cell for vitro usages

which have less stringent requirements over performance. That notion reaffirms the choices of

two targeting market which are for stem cell research and drug development.

o For stem cell research market, the market is highly segmented. There are a variety of cell

type needed and but the quantity of demand is not large. Currently, the number of products

for cell culturing substrates is quite large and the technologies applied are quite versatile

(using nanofibers, nanograting materials, 3D hydrogels, etc) but their performance is not

well-documented. They also lack systematic evidence and theories to support their clear

influence over stem cell growth and differentiation if any.

o For drug development, it is highly desirable to get a fast and accurate response for the

whole cell based assay. Hence, the quality of demand is large, so as the quantity. But the

cell types needed are limited; few of the cell types normally used are liver cell, neural or

kidney cell. There has been no technology emerging as big player as substrate for whole

cell based bioassay in the drug screening market.

Due to the vast possibilities of human stem cell, it is envisaged that the types of manufacturing

processes to produce a particular lineage will be as varied and complex as the property of the

target tissue. Exploiting the expansion capabilities of human stem cell, it is envisaged that a

common theme will be the need to expand a large starting population of human stem cell as

source material. After which the initiation of differentiation would occur through the formation

of human embryoid bodies (hEBs). An initial purification step to harvest the early progenitor

population and to remove residual human stem cell will be required. At the next stage, some

progenitor cell, for example the neuronal progenitors would be grown on substrates. A second

stage of purification of progenitors will be required to remove contaminating cell types ensuring

a relatively pure population of cell devoid of other lineages. This would be followed by further

expansion of the final phenotype such as cardiomyocytes and dopaminergic neurons on substrate

with a separate cocktail of growth factors or feeder cell. A final purification step may be required
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where ideally one would want to have only the functional cell type. A schematic of possible

processes for three different cell types is shown in Fig. 23.
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Figure 23: A schematic of possible future manufacturing systems in the expansion and differentiation of various lineages

from hESC. The process would begin with generating large quantities of hESC which have an indefinite capability to

expand. These resulting cells could be initiated to differentiate in suspension cultures as human embryoid bodies (hEBs)

for a period of time. The hEBs would be separated to remove residual hESC and the target progenitor population selected

for expansion. Then depending on whether the cell type required grows in suspension (e.g. islets) these would be grown in

bioreactors (a), or if they require a combination of suspension culture and anchorage to a surface (e.g. cardiomyocytes),

they would be grown accordingly (b). If the neural lineage is required, neurospheres could be cultured, undergo a

separation step of enrichment for neural progenitors and eventually specific dopaminergic neurons grown on plastic

culture surfaces (c). At the end of the expansion processes, ideally only the final phenotype is purified (49).

Matrices with suitable stiffness are expected to have the clearest influence toward stem cell

differentiation during the 1 st stage of the manufacturing flow; since the technology of using

matrix elastic modulus to direct stem cell differentiation is based on the passive, initial response

of stem cell to the microenvironment which is normally expected from a multipotent stem cell

awaiting instruction. In addition to that, the matrices with "corrected" stiffness also appear to be
able to assist and facilitate the corresponding cell lineages growth and further commitment.
Hence, the technology can be applied throughout the whole manufacturing process.

l
l
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b. Choosing right materials for the elastic modulus defined substrate

It is important to choose suitable materials that result matrices with the "right" stiffness range.

Estimates of cellular stiffness derived from different types of microrheological methods cover a

wide range depending on the methods used, the type and extent of deformation, and the time that

the deformation is applied, as shown in Table 3. The stiffness measured for isolated cultured cell

ranges from 0.1 kPa to an approximate upper limit of near 40 kPa (56) for myocytes, similar to

the range of stiffness measured for many soft tissues (57). The magnitudes of these moduli can

help determine which materials are suitable to construct cell culturing substrate to generate that

cellular stiffness.

Table 3: Comparison of elastic moduli measured for single cell in culture (58)

Cell type Elastc modulus (k&a) Mediod
Rat aortic smooth muscle 1.5-11 Elongation between plates
Endothelial 1.5-5.6 AFM
Aortic endothelial 0.32/0.54 Microaspiration
Normal/ cholesterol depleted
Endothelial 0.5 cytoplasm Uniaxial compression

5 nucleus
Inner hair cell 0.3 AFM
Outer hair cell 2-3.7 AFM
Cardiac myocytes 35-42 AFM
Fibroblast 0.6-1.6 AFM
Fibroblast 1-10 (differential stretch modulus) Uniaxial stretching/compression
Bovine articular chondrocytes 1.1-8 Creep cytoindentation apparatus
Chondrocytes, Endothelial 0.5 Microaspiration
Neutrophils passive/activated 0.38/0.8 AFM
C2C12 myoblasts 2 Cell loading device

(global compression)
Alveolar epithelial 0.1-02 Magnetic twisting cytometry
Epithelial normal/cancerous 10-13/0.4 -1.4 AFM
Osteoblast 1-2 AFM
Fibroblasts 0.22/0.19; 0.42-0.48/1.0 Optical stretcher
Normal/transformed

Melanoma 0.3-2.0 frequency dependent Magnetic twisting rheometry
Kidney epithelial 0.16 Magnetic twisting rheometry
Cell cortex 0.04 Tracer diffusion
Cell interior
3T3 fibroblast before/after 0.015/ 0.06 Tracer diffusion
shear flow

C2-7 myogenic 0.66 Uniaxial stretching rheometer
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Figure 24: Cell structure and elastic properties, approximate range of values for the elastic modulus of biological cell and

comparisons with those of engineering metals,ceramics and polymers (22).

Substrates such as natural or synthetic hydrogels, closely resemble the consistency of soft, native

tissues, making them attractive scaffold materials for soft tissue engineering. On the other hand,

stem cell' differentiation into connective tissue lineages (i.e. bone, cartilage, ligaments, and

tendons) requires materials with higher mechanical strength to closely mimic the tissue

mechanical properties. However, hydrogel-like materials can be modified to have increased

modulus of elastic modulus, making them more suitable for applications in connective tissue

engineering. For example, collagen gels can be adjusted to have a higher modulus by adding HA

(Hydroxyapatite), thereby mimicking the composition of bone which is mostly composed of

collagen fibers and phosphate minerals. Adding HA to collagen at a 1:1 ratio increases the

modulus from 0.392 MPa to 0.422 MPa, which is comparable to trabecular bone (E = 0.443

MPa). Collagen composites can also be designed to contain PLA and chitin fibers to provide

increased mechanical integrity and higher human MSC attachment (14).

A silk-based material is also a promising candidate for the matrix with defined stiffness for stem

cell culturing. Silk exhibits higher modulus of elastic modulus over other natural materials, such
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as collagen. However decontamination and purification methods of silk, prior to their use in

vivo, are extremely critical in order to avoid inflammatory and immunogenic reactions. In fact,

silk - based scaffolds seeded with hMSCs were shown to induce bone formation in critical-sized,

cranial defects (larger than 4 mm) of nude mice, indicated by the presence of bone sialoprotein,

osteopontin, and osteocalcin (59). Furthermore, efficient cartilage formation was also seen when

differentiating MSCs into the chondrogenic pathway within silk scaffolds (60).

In addition to natural materials, synthetic materials can also be chemically modified to enhance

mechanical properties. For example, simply increasing themacromer concentration in

photocrosslinked hydrogel scaffolds has been shown to increase the modulus of elastic modulus,

such as within (PPE-HA)-acryl Hydrogels (61). A four times increase in the amount of acrylated-

PEG reacted with PPE-HA showed an almost 10-fold increase in shear modulus (3 to 26 kPa)

(61). Additionally this biodegradable, phosphate-based synthetic material is highly conducive to

bone tissue engineering due to the phosphate degradation product, which could aid in overall

scaffold mineralization during osteogenesis.

Ideally, synthetic scaffolds with bioactivity may provide physical cues for cell orientation and

spreading, which are critical for hESC differentiation and tissue formation. Hence, biosynthetic

scaffold with combined natural materials and synthetic materials such as Collagen I coated inert

polyacrylamide gels is an appropriate choice since while the synthetic polymer gel provides

better substrate stiffness manipulation, the collagen coat will enhance cell attachment and

improve biocompatibility of the whole substrate.

In summary, some current technologies in control stem cell differentiation can be used together

with the elastic modulus defined substrates and they should be used in that way to enable better

control over stem cell' fate. A lot of competing materials are currently in use but each of them is

facing their own drawbacks. Combining natural and synthetic materials into a biosynthetic

scaffold seems to be a good option to realize substrate with suitable range of elastic modulus for

stem cell culture. Industrial requirements for differentiation systems producing cell for vivo

usage are extremely stringent and the technology of using elastic modulus stimulus from the

substrate alone is not sufficient to satisfy. It is more realistic to aim at the stem cell research and

drug screening markets since the cell products in these two markets are for vitro usage and

hence, of less stringent requirements.
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3. Recommended guidelines for future researches

By reviewing the current stage of the technology and comparing to the current industrial

requirements, it is concluded that in order to transform the technology ideas into a successful and

reliable commercialized products (matrix for stem cell differentiation and bio assay for drug

screening), more research needed to be done and the recommended directions are:

- Determine how sensitive cell are to changes in mechanical properties of their environment.

- Find out how small of a change in elastic modulus that cell can sense.

- Link the expected sensitivity of cell to mechanical cues to requirement for the development

of bioassays.

- Choose a suitable material (currently synthetic materials are of good choices).

- Find ways to measure mechanical properties (besides using traditional methods such as

AFM).

- Design a microfluidics system to test diffusion and create controlled stiffness gradients

differentiation strategies need to be developed for each specialized cell from stem cell.

- Develop propagation strategies for stem cell in vitro.
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IV. Patent Analysis

A review of the intellectual properties (IP) are surrounding this new technology was conducted

from 2 angles, the first was looking at existing stem cell differentiation methods and induction

that are related to matrix and the second was to look at the patent on whole-cell bioassays for

pharmaceutical development.

1. Patents related to substrate for stem cell researches

During the years 1980-2005, over 2,000 US patents claiming stem cell technologies and
applications relevant to healthcare were published; the annual publication rate accelerated

sharply in 2002.
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Figure 25: Patent in Stem cell worldwide

The majority of adult stem cell R&D is conducted in the US, while most embryonic stem cell
research is conducted outside the US due to a restrictive legislative environment. The chart in
Fig. 25 shows stem cell patents distribution among some big companies. As from the chart,
companies such as Amgen, Biotransplae are those who hold the most number of patents in stem
cell technology.
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Figure 26: Issued patents including stem cell in the title, Sept. 1, 2005 (62)

Table 4: relevant patents in Stem cell market

US Patent Number

Date Patent Issued
Patent Title

First Listed Inventor

Assignees(s)

US2007/0190646 Al

Aug. 16,2007 Regulating Stem Cell Differentiation by controlling matrix elastic

Adam J. Engler, modulus
Philadelphia, PA

S2005/0058687 Al

Mar. 17, 2005 Covalently Attached Collagen VI for cell attachment and

Richard David Guarino et al., proliferation
Becton Dickinson and Company

US007226611B2

Jun 5, 2007 Glycosaminoglycan/ Collagen Complexes and use thereof
Yaizu Suisankagaku Industry Co.,

Ltd., Shizuoka (JP)

Table 4 listed the three patents that directly related to our technologies: one patents the method

of controlling cell differentiation by elastic modulus, one patents the method of controlling cell

attachment by collagen VI coating and the last one patents the use of GAG/collagen complexes.
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To create new products in light of this current patent environment, we can covalently attach

ECM proteins other than collagen VI (e.g., collagen I). The matrix elasticity patent is the most

directly applicable, but here we could either license this patent or direct effort toward other cell

types such as progenitor cells (downstream from stem cells) or ex vivo tissue cells.

2. Patents related to cell-based assays for drug screening

There are quite a few numbers of related patents to the technology and the assays that we want to

develop now. Yet, no one is overlapping and the technology potentially is not going to infringe

to any of them.

Table 5: relevant patents in drug screening industry

US

emryonic stem cells.

US 20060275840 Asolid support forcell-based assays comprising
Dec.7,2006 particles inuding a matrix and having a scintillant

Ismail RA, O'Beirne GB, Thomas N substance that has been coated onto or integrated
GE Healthcare (ChalfontSt. Giles, UK) into the matrix of the particles, and adapted for cell

growth.
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V. Market Analysis

1. Stem Cell Research market

The market for stem cell products and services (including cytokines) is forecast to grow almost

three-fold from $24.6 billion in 2005 to $68.9 billion in 2010.

Navigant analysts report that the U.S. and Europe dominate the cell culture market, accounting

for 58% and 24% of 2005 revenues, respectively. Growth in the US market is closely linked with

increased funding for stem cell research growth, in addition to the expanding set of biologic

drugs, the number of which will grow by 20% every year, according to research on the

mammalian cell culture market published by Drug & Market Development. The estimated

growth of 10 products annually will also mean an increase in biomanufacturing, which depend

heavily on cell culture products and mammalian cell cultures.

a. Market Trench

An increasing number of companies have begun to supply reagents and consumables for the

isolation, expansion and storage of stem cell and there are immediate trade opportunities in this

area. In 2005, stem cell research accounted for $820 million in expenditures with an estimated

CAGR of 8.97%, spending on stem cell research should reach $1.26 billion in 2010 and $1.95

billion in 2015, when 20% of the budget will be spent on media and consumable supplies. The

current world market for all media and reagent cell culture has been estimated at US$950

million, rising to US$1.8 billion by 2012 as research in this field expands. Such pursuits will be a

major factor in the growth of the overall cell culture market, which includes media, serum and

reagents. In 2005, the worldwide market generated revenues of $1.02 billion, according to

Navigant Consulting. With a compound annual growth rate of 12.7%, revenues should reach

$1.86 billion by 2010. The U.S. market alone brought in revenues of $587 million in 2005. By

2010, revenues should reach $1.2 billion with a CAGR of 15.6%. Analysts at the Business

Communications Company, however, estimate that the cell culture market could generate

revenues of $1.7 billion by 2008. It is also noted that Market value of all public stem cell

companies: $1.655 billion. Currently, each stem cell product is typically assayed by its supplier.
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Breakdown expenditure of stem cell research
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Figure 27: Expenditure of stem cell research

The current global market value for stem cell culture media is ill-defined but is expected to grow

as R&D involving stem cell increases. The methodology for the efficient storage with robust

recovery and expansion of human stem cell lines, particularly ES lines, is currently also a

limiting factor in the widespread adoption of stem cell applications.

Table 6 shows the comparison of the international stem cell factors: only 2 main regions are

chosen: USA and some selected countries in Asia. As from the table, USA and Singapore are the

2 countries which have strong and increasing market for stem cell research and stem cell

products' commercialization. Both of these countries also have strong funding on stem cell
research. For Singapore, this funding comes mostly from the government or A Star Institutes;

smaller additional amount comes from universities such as NUS, NTU, and from venture capital.
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Table 6: Comparison of the International stem cell sector (63)
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b. Main Players

Currently there are about more than 200 companies dealing with stem cell product worldwide.

Specifically for cell culture product market, the market share distribution is as shown in Fig. 28.

Invitrogen led the overall cell culture market, generating 34% of revenues. Fisher Scientific, JRH

Biosciences, Serologicals, Cambrex and Sigma- Aldrich follow, generating 20%, 14%, 9%, 7%

and 6% of the general cell culture market, respectively. As with the general cell culture market in

2005, Invitrogen is also the biggest supplier of stem cell research products. Stem Cell

Technologies and Specialty Media, both of which offer specialty niche products, are chief

competitors. Other companies are also tapping into the lucrative potential of the stem cell culture

market by completing a series of recent acquisitions.
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Cell Culture Market Share

E Invitrogen

* Fisher-Scientific
1%

SJRH Biosciences

" Serologicals

" Cambrex

* Sigma- Aldrich
LZU•

a Others

Figure 28: Cell culture Market Share (Navigant Analysis (2005)).

Table 7: Main players in stem cell industry in USA (63)

Advanced ACT is the only publicly traded company focusing solely on hES cells. Market cap: $67.3m
Cell Currently at preclinical stage with work on neurodegenerative disorders,

Technologies retinal disease and vascular disorders.
(ACT)

VistaGen Using hES screening assays to discover drugs for CNS disorders and Private
diabetes NIH grants

Stem Cells Discovery and development of stem cell therapeutics to treat damage to Market cap:
Inc or degeneration of the CNS, liver and pancreas. $23.8m

Total Revenue:
2004: $0.14m

While there are quite a few of main players in USA stem cell market, these are only 2 main
players in Singapore stem cell market: ES cell international and Promatrix (summarized in Table
8). Both of them are heavily funded by the government.

ESI moved entirely to Biopolis in 2004. The majority of its financing has come from the
Singapore government, directly or indirectly. Learning from ES history, we see that according to

10%
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Colman, who is currently on the company's board: "the company would have been dead in the

water in the US or UK, because for a private stem cell company, it's very tough to raise

money,". It's hard for a stem cell company to be profitable within the time frame that investors

would like to see a return.ESI is downsizing its R&D in cell therapies for heart disease and

diabetes and upsizing "more near market opportunities" like making and selling cardiac cells

for drug toxicity studies. From this, we can tailor our matrix for handling cardiac cells to target

ESI Company.

Promatrix Biosciences Pte Ltd is the most relevant company to us. It focuses on novel

biofunctional and three-dimensional scaffold and related technologies for use in cell therapy and

tissue engineering. Promatrix's innovations are licensed from Johns Hopkins Singapore, the

international subsidiary of Johns Hopkins University, USA. These technologies enable products

that improve ex vivo cell culture outcomes or tissue regeneration in combination with

appropriate cell.

Table 8: Main players in stem cell industrN in Singapore (63)- Fmn-

Promatrix Developing cell expansion and tissue engineering technologies, Shareholders:

based on the expansion of HSC cells in scaffolds. Biomedical Science

Spun out of John Hopkins, and based at the BioVenture Centre Investment Fund

Singapore, a joint venture between Becton Dickinson & Co and BD Technologies

John Hopkins Singapore BioVenture Centre
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c. The Targeted Market - Stem Cell Research in Singapore

Table 9 provides a glance at the stem cell industry environment in Singapore. The government

has established a $600 million fund to invest in startups engaged in research on stem cell and
other cutting-edge life-sciences projects. Singapore opened Biopolis, a 2 million-square-foot

complex of laboratories and offices devoted to such research. So far, Singapore has pointed up
$22 million for ES Cell International. ES today owns six stem-cell lines (a line is a group of
identical cell that come from the same embryo) and is focusing on developing treatments for
diabetes. Clearly, "the center of excellence in stem cell research" created will greatly facilitate
the development of stiffness-defined matrices which has direct applications in stem cell handling
and culturing.

Table 9: Stem Cell Industry Environment in Singapore (63)

Rgulaty
framework

Research
dusters

The Human Cloning and Other Prohibited Practices Act was passed in 2004, allowing SCNT while
prohibiting reproductive cloning, the import or port of cldoned embryos, and commercial
trading of human embryos, eggs or sperm. The full regulatory syster is not yet in place, but

- National University of Singapore
12 groups working on stem cells, induding Ariff Bongso, a leading expert
who collaborates cosely with Monash and Hebrew Universities.
Other research centres:
- Institute of Molecular and Cell Biology (IMCB)
- Bioprocessing Technology Institute (BTI)
-Genome nstitute of Singapore (GIS)
-Singapore General Hospital and National Cancer Centre
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2. Drug screening market

The pharmaceutical industry is under constant pressure to improve efficiency across the drug

development process. One of the bottlenecks is the screening of potential drug candidates, using

biological assays to demonstrate efficacy. Currently, cell from animals or atypical tissue are

used, but there is a difficult balance between clinical relevance and screening capacity. Human

ESC derived cell lines offer a real alternative, with a homogeneous and high density array of a

disease-specific cell in a format suitable for screening. This could dramatically increase

efficiency and decrease use of animals.

a. Market Trench

The market is dealing with an important phase in drug development, which is screening and

eliminating potential drug candidates that manifest toxic properties in vivo. In Fig. 29, ADME

stands for Absorption, distribution, metabolism, excretion, and toxicity tests which are

normally used to characterize a compound's properties with respect to absorption by the

intestine, distribution to the organism, metabolism by the liver, excretion by the kidney, and

toxicity profiles. And this phase take center stage given the large fraction of lead compound and

drug failures associated with toxicity properties.

U
UADME

Figure 29: Phases of drug development (64)

New Drug Attrition Rate:
Discovery to Launch

Commercial Other 7%
7% /te 71

Figure 30: New drug Attrition rate, from discovery to launch (64)

As illustrated in this Fig. 30 Thirty percent of the total new drug attrition in the developmental

pipeline is attributed to toxicity profiles and side effects. Hence, this is an area that the
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pharmaceutical companies and other drug discovery and development entities are paying close

attention to. And this portion of the pie is the one that we are aiming at.

Quantitatively, in terms of the quantitative market opportunity in the ADME and toxicity

screening space, almost $3 billion was spent on various ADME and toxicity studies in 2001.

Note that this figure includes the hugely-expensive animal studies that take place late in the

process of drug development, which are not affected by the upstream migration of ADME and

toxicity screening, and overlapping into the screening (primary and secondary) space, as a result

of growth in drug targets and hence their interrogation. Fig. 31 presents a breakout of how this

total (quantitative) market opportunity segregates into its individual components. It is noted that

$0.20 billion is spent for in vitro toxicology, which is including the expecting expenditure

portion that drug companies spend to purchase our matrixes.

SIn vive Toxicolog
In itro Tox^icl

$1.30 [ADME

$1.50

$020

Figure 31: ADME/Tox Screening Market ($, Billions) (64)

All candidate drugs must be screened to ensure safety. However animal models are expensive

and low-throughput; 16% of drugs currently fail in Phase III trials because of adverse effects in

man(65). Introducing in vitro tests could improve this but sourcing human liver cell

(hepatocytes) is difficult. Currently, primary human hepatocytes are obtained from cadavers or

from patients after operations, but the supply are limited, of variable quality, and difficult to

maintain in culture. Stem cell could provide a source of specialised hepatocytes for toxicity

testing and ADME screening.
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Table 10: Biological Assay systems for the Evaluation of Cytochrome P450 Enzyme Isoforms (66)

What is Source ofWhat is
the Availability Advantages Disadvantages

measured?
enzyme(s)

Selected cDNAs that Adaptable to high- One drug metabolizingthroughput screening. Cancytochrome express the Readily enzyme at a time is
study single cytochrome assayed.

P450 enzymes enzyme P450's at a time. assayed.
ImmortalizeSelected Immortalize One or a few drug-d cell lines Nonlimited source of One or a few drug-cytochrome expressing Readily enzymes. metabolizing enzymes can

P450 enzymes xpressg enzymes. be studied at a time.
P450enzymes the enzymes

Easy to obtain. Only Phase I drug-
Cytochrome Microsomes Good Commercially available. metabolizing enzymes can
P450Relatively inexpensive be addressed.

ome Some drug-metabolizing Limited interrogation of
cytochrome cells Readily enzymes can be Phase I and Phase II drug-

(a cell line) interrogated. Long-term metabolizing enzymes.P450 isoforms (aacellgline) function can be studied.

Some Most drug-metabolizing Some Phase I and Phase II
cytochrome Primary Poor enzymes and cytochrome

hepatocytes P450 induction studies can drug- metabolizing enzymesP450 isoforms decrease over time.
be performed.
All drug-metabolizing

All enzymes can be studied. All Phase I and Phase II
cytochrome Liver slices Poor Cell-cell contacts can be drug-metabolizing enzymes
P450 enzymes tuded decrease over time.studied.

Most drug-metabolizing Some Phase I and Phase II
Some Liver enzymes can be studied. drug-metabolizing enzymes
cytochrome spheroids Some cell-cell contacts can can be studied. Must be
P450 enzymes be studied. made fresh.

All drug-metabolizing All Phase I and Phase II
All drug-metabolizing enzymesAll Rodents and enzymes can be studied, but
cytochrome dogsReadily the biological systems are can be studied, but these
P450 enzymes not human. are of animal origin and not

n of human origin.

Table 10 provides a snapshot of the various biological assay systems for ADME and toxicity

screening. Given the central and essential role of the liver in processing out toxic compounds

from the system, the pharmaceutical industry is interested in having proxies of the liver for the

purpose of screening compounds against in their quest to "screen out" hit compounds with

problematic ADME and toxicity profiles. For this reason, hepatocytes have attracted a significant

share of the marketplace for ADME and toxicity screening, and Table 11 presents different

hepatocyte assay systems and their respective value drivers (in this manner, we explore the
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landscape of approaches and technologies that the industry is deploying to address the
fundamental ADME/Tox properties of compounds). In the above table, model systems and
approaches that are predictive of human toxicity are highlighted. This is perhaps the most crucial
element of an ADME and toxicity screen - how strongly predictive is the assay approach.
Generally, human hepatocytes are highly predictive in this setting, as they are the "closest proxy"
to the in vivo situation. However, their availability and reproducibility of the conditions of the
experiment are critical bottlenecks in the process, and hence, the industry continues to search for
technologies that are predictive, robust (reproducible), and cost-effective. And this gap in the
market naturally opens up chances for our matrices since we can provide a well-controlled way
to manipulate and culture liver cell.

Table 11: Hepatocyte Assay Systems (66)
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The cell based screening market is estimated to be worth US$700million per year by 2009;

pharmaceutical companies are increasingly interested in the use of stem cell lines as drug

discovery tools (67).

Looking into the culture of the market, it is noted that the field of high-throughput screening has

created several types of strategic alliances (65). The technology access agreement is a common

way whereby a large company gets to use a new technology and participate in its late-stage

development. For that privilege, the pre-commercial stage partner tries to obtain up-front

payments, research and development payments, milestone payments, and royalty payments for

resulting products.

The overall pattern for the industry serving pharmaceutical high-throughput screening is one of

steady growth at rates exceeding pharmaceutical sales growth rates by a considerable margin.

Growth rates for high-throughput screening exceed even rates of growth for pharmaceutical

research and development. Even these high growth rates for screening lag behind the actual

needs of the industry. Growth in high-throughput screening product and service revenues will be

constrained by caps placed on pharmaceutical research and development expenditures in order to

maintain acceptable profit margins (65). The revenue growth rates reflect a balance between

burgeoning opportunity and the realities of spending constraints. The pharmaceutical industry is

challenged to increase its output of innovative new drugs while maintaining profit levels that are

acceptable to the investment community.

Therefore, the future of high-throughput screening will be determined to a large extent by the

level of funding committed to that activity by pharmaceutical companies. The levels of funding

will be determined by a complex equation for optimization of the entire drug discovery process.

A key element in such equation is that the discovery task has shifted from simply identifying

promising leads to the added proviso that dead-end leads should be eliminated from

consideration as early in the process as possible. Some inputs to the decision equation are: value

received for miniaturization versus resource inputs required; the extent to which new technology

provides value that extends beyond the primary screening process; the information content

provided by new technology; and the technology's "homogeneity index"(65). Whether a new

technology or instrument is adopted will also depend on the extent to which it provides
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laboratory integration without destroying flexibility. Pharmaceutical companies are recognizing

that their future success is tied to viewing the entire drug discovery process as a single entity.

In summary, it appears that opportunity exists for great diversity in high-throughput screening

technologies and systems. The dominant theme, continual evolution, is driven by economic

realities and pulled along by ever-increasing requirements for increased information content.

Diversity and flexibility appear necessary, and computers will make order out of the chaos and

permit creative new ways of viewing and mining data. Information systems can go far toward

integrating the entire drug discovery and development process (65).

b. Main Players

CXR Biosciences, based in Dundee, is collaborating with Geron and the Roslin Institute to

develop and commercialise hESC-derived hepatocytes for in vitro assays. Geron will contribute

hES cell lines and IP, CXR bring expertise in hepatocyte screening models. It is expected that

Geron will produce cell lines to sell as kits to pharmaceutical companies, while CXR will offer

contract screening services to smaller companies without in-house facilities. They will be our

direct competitors.

We can consider Affimatrix as an example of expected financial status: in the first quarter of this

year, 2008, the company reported a product avenue of $62.8 million, in which $58.8 million

comes from bio array and stem cell agents. This again confirms a big available market about

whole cell based for high throughput bio assay.

c. The Targeted market - Drug Screening Market in Singapore

Singapore is emerging as a growing base for drug discovery and development activities. In

particular, the biopolis has attracted many pharmaceutical and biotechnology companies to

establish R&D operations in Singapore. These companies include AstraZeneca, Bristol-Myers

Squibb,Covance, Eli Lilly, GSK, Icon Clinical Research,Merck and Co.,Novartis,Novo Nordisk,
Pfizer, PPD, Quintiles, Sanofi-Aventis and Schering-Plough. Singapore also continued to

strengthen its position as a strategic manufacturing base for global pharmaceutical companies:

Novartis Pharma AG started construction of a new production facility to provide needed capacity

within its global manufacturing network. In addition, GSK completed an expansion to its

existing manufacturing facility in Singapore, while Pfizer opened a multi-purpose facility,
making Singapore home to its first large-scale manufacturing plant in Asia.
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With this growing trench and encouraging policy from government, Singapore is in a good

position to capitalize on the interest of whole cell-based assay for drug screening, but new

potential products must be introduced quickly into the markets to gain first mover advantage, and

to capture the value of this market. The stiffness defined extracellular matrix must be able to

provide convincing evidences that it is a robust solution for drug screening and to demonstrate

the competitive strengths of the technology compared to other impressive assays.

A note of caution is also necessary. It may not be easy to sell cell lines to large pharmaceutical

companies. It could take a long time to validate the assays, the technology is not proprietary, in

some instances the IP position is unclear, and the research costs are extremely high.

Pharmaceutical companies may therefore be wary to engage in deals with biotech companies or,

if they do see potential in the technology, may prefer to develop expertise in-house. A model of

collaborative development with academia may be more appropriate. This is likely to be slow-

growing as a commercial opportunity.
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VI. Cost Model

In this section, an estimated fabrication based cost model will be constructed. The cost model is

applicable for the startup company which fabricate matrix with controlled elastic modulus for

stem cell research and bioassay development. The targeted customers are stem cell researchers

and drug screening service providers.

1. Product Description

The matrix is a collagen I-coated polyacrylamide gel with three controlled parameters: elastic

modulus E, thickness h and cell adhesion. The matrix is in circular shape with a range of

diameters. The matrix is capable of inducing human stem cell (both embryonic stem cell and

adult stem cell) into 3 different specific lineages: neural type, muscle type, and bone type with

basic culturing media. The preferred cell differentiation can be inhibited by introducing

blebbistatin into the ECM. The matrix with blebbistatin introduced will function as normal a

collagen coated petri disk. Anchorage dependent cell introduced into the matrix can also be

reengineered to develop into different types of cell if a robust and proper culturing media is used.

96-Wel 24-Wel 12-Well 6-Wel

Figure 32: Product Illustration

/ Product specification:
- Dish diameter/plate type

o 35 or 50 mm diameter dish

o 6, 12, 24, and 96 multi-well plates

- Substrate thickness: dependent on desired cell lineage that customers want to differentiate stem

cell into

- Coating: Collagen I

- Substrate elastic modulus: dependent on desired cell lineage that customers want to differentiate

stem cell into:
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o Neural cell: Esubstrate = 0.1 - 11 kPa

o Muscle cell: Esubstrate = 8 - 17 kPa

o Bone cell: Esubstrate = 30 - 34 kPa.

2. Manufacturing Process

Fig. 33 shows a possible manufacturing process for the product. First, polyacrylamide was

formed by triggering polymerization of the polymer's precursor. After that, the gel is coated with

collagen I. Circular gel disk, each of 30mm in diameter are then cut out into pieces. They are

then passing through quality control process where their elastic modulus and thickness as well as

collagen concentration on the surface will be measured to meet the specifications. The elastic

modulus measurement will be done by nanoindentation test with the aid of an AFM (31). Also,

AFM is also used to measure the matrix thickness. The expected yield of the process is 80%.

After that, the "pass" gel disk will then be wrapped in sealed air packaged. They are now ready

to be shipped to the customers.
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Figure 33: Manufacturing Process Flow Chart
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3. Cost Model

The main results of our cost model are tabulated in the following Fig. 34. It is noted that

licensing fee for the patent on "regulating stem cell differentiation by controlling matrix elastic

modulus (US 2007/0190646)"is not taken into account in this cost model.

Production Capacity 30x,00 lbisfyear
Anuual Production Vokl e 300,000 btstyear
Lot Size (0m x Iml 943.6188 dishiLot

Cost Summary

51.52
11.32
0.26

63.10

year
410,450.00
300,178.38
210,000.00

82,090.00
155,112.50
157,830.68

$Iyear
S 15,456,562.50
$ 3,396,868.13
S T77,317.10

S 18,930,747.72

$Vyear
S 41,045.00
$ 30,017.84
$ 21,000.00
$ 8,209.00
S 15,511.25
$ 115,783.09

S 19465l .30.8.

Cost Model Output
Variable costlunt s 63.10

Fixed cost/unt S 0.39
Total Unit Cost $ 3.49

Figure 34: Variable cost breakdown

81.64792392
17.94365534
0.40842074

$Mot
S

SS
S
$

0.14
0.10
0.07
0.03
0.05
0.39

Variable Cost Elements Breakdown

0.41%17 q94

* Material Cost

* Labor Cost

a Energy Cost
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Fixed Cost Elements Breakdown

13.40%
7.0 " Main Machine Cost

" Fixed Overhead Cost

* Building Cost

Figure 35: Fixed cost breakdown

Based on the materials and equipment costs as well as other assumptions which are tabulated in

details in the Appendix, cost for fabricating a lot of approximately 1000 dish is $63.49. Hence,

the cost for each dish is about $0.068/dish.

Our direct competitors are petri dish suppliers with normal collagen coating for cell attachment

enhancement. By looking at the market and carrying out small investigation on the current

market pricing of culture dishes, we get the price for each petri dish of same size (30 mm in

diameter) with similar collagen coating concentration is about $4.80/dish from MatTek

Corporation (68). On the other hand, a non coating FluoroDish Sterile Culture Dish (35mm in

diameter) costs from $1.50/dish to $3.00/dish from World Precision Instruments company (69).

Hence, we can provide dish with a better price, say 50 times our cost of production

(=50*$0.068/dish = $3.40/dish) and a much better control over cell fates. If selling at that price,

we are getting a profit of $3.33/dish (499% profit).

Table 12: Profit per unit

Price - Cost = Profit
An Elastic modulus controlled Collagen I - coated

$3.40 - $.067 = $3.33
polyacrylamide dish

__

I
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VII. Business Analysis

From the inventors' perspective, there are 3 business models that could be used for a novel

technology:

- Sell the patent and ideas for the matrix as soon as possible

- Use the patented technology to reproduce the matrix in - house and

- Use the patented technology to produce the matrix but out - source the actual manufacturing.

It can be assumed that all the work completed to discover and develop this novel technology is

involved in a long - time fund, meaning that until recently, no venture capitalists or similar entry

had financed the project in anyway, meaning, currently, there is no rush to pay back investors. In

addition to that, at this point, there are numerous risks related to the elastic modulus controlled

matrix because technically, a significant amount of development still needs to be completed

before a sellable product is made. Hence, in the inventors' shoes, we will not go with the first

option.

For the last two options, a company needs to be started and the exit strategy would be to

eventually sell the company. And the company can be sold at any pints of time. As the company

moves upper and upper in the supply chain (or closer and closer to the final customers), higher

values added into the products and higher profit the company can earn.

1. Risks

The risk in starting a company based on this novel technology can be divided into two

categories: technical and market.

a. Technology risks

Since the elastic modulus controlled matrix is only for vitro - usages, less stringent requirements

will be needed compared to other in vivo matrices/scaffolds. In fact, the elastic modulus

controlled matrix does not need FDA approval. This is a huge advantage since it will save a lot

of time, effort and hence, money.

Besides that, there are still certain technical risks that associate with the matrix. The main

technical risks are:

The necessary mechanical properties of the matrix cannot be obtained.

66
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The probability that the introduced anchorage dependent stem cell can differentiate into the

specific cell type that we want (success rate).

In order to develop a sellable product, we need to keep the following issues in mind:

Need for further research: more research needed to quantify matrix's elastic modulus effect to

the probability of cell differentiation into specific lineage. Also, best combination of growth

media with the range of elastic modulus to maximize the control of cell fate need to be identified.

Efficacy: quantify the matrix's efficacy in set of equations.

Scale - up and manufacture: the most proper manufacturing plan and a detail plan to scale up

manufacturing is needed to quickly grasp the market share.

Regulations (especially in stem cell): Stem cell regulations are different from countries to

countries. Even inside USA, they are different from regions to regions. Hence, plans to penetrate

into each specific market need to account for this carefully.

b. Market risks

i. Stem cell research market

Overall, the stem cell research market is very dynamic. Researchers are always striving for better

solutions and methods for stem cell manipulation and applications. Hence, the market is

considerably easy to penetrate. Convincing stem cell researchers to use our elastic modulus

controlled matrix should be relatively simple. They are eager to try out new things; especially

they can see the matrix effect quickly and easily.

Yet, also because of this intrinsic dynamic property of the stem cell market, it is hard to survive

in this market with numerous competitions from other newly developed technologies such as

using nanograting pattern or hydrogels to induce specific cell differentiation. It is clear that the

elastic modulus controlled matrix would hold a number of advantages over current stem cell

culture methodology, but many of the newer products also hole these same advantages (efficacy,
genome homogeneity, inexpensive, etc).

However, so far no technology has been proven to be capable of control stem cell' fate by itself.

Our matrix, in fact, has the potential to achieve that goal. With only varied matrix elastic

modulus while the growth media and culture time keeps the same, different cell fates can be
induced. This helps our matrix stands out among the rest since it can be combined with any
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optimal growth media to induce efficient cell differentiation. Therefore, there is a large are of

research that develop new culturing agents, media and growth factors that completely in

compliment with our technology. If our product hits the marketplace first and establishes itself,

then any technologies requiring a matrix to handle cell can be incorporated together with our

matrix and would no longer be competition but a possible enhancement.

Another advantage of our product is that it could be designed and tailored specifically to induce

stem cell to differentiate into 3 different cell types. In stem cell research, especially stem cell

therapy, there are distinctive specialization areas where stem cell are desirable to differentiate

into only certain types of cell for example: kidney construction needs kidney cell, liver

construction needs liver cell, Parkinson's study needs neural cell, orthopedic reconstruction

needs cartilage and bone cell, etc. Most of the technology can only induce stem cell into a single

specific lineage. Therefore, their target market is inherently small, enclosed into specific research

areas. In contrast, the elastic modulus controlled matrix's target market is more general. Our

technology's approach to stem cell differentiation is from fundamental, which generally apply to

most of anchorage dependent cell types, making our market scope is wider.

ii. Drug screening market

In contrast to the stem cell market, the drug screening market is quite conservative. It's more

difficult to penetrate into the market. There are high entrance barriers for new technology since

the effect of new technology can only be evaluated in a long time range. Therefore, big

pharmaceutical companies - our targeted customers are reluctant to switch from their

conventional ways to our novel technology. There is a huge need for us to convince them on our

matrix's efficacy through both our data and our successful from the stem cell research market.

However, once we are inside this market, there are higher chances for us to be successful than in

stem cell research market. First, the drug screening market share is much bigger and less

segmented by few big companies like in stem cell market. Second, this market is also of higher

growth rate and of higher demand. Once the elastic modulus controlled matrix can gain big

pharmaceutical companies' trust, we can survive and stand inside the market for long time

without much threat from other novel competing technologies.
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In conclusion, there are risks associated with our technology's commercialization for both of our
targeted markets. While stem cell market pose less risk technically, drug screening market pose
less risk in business-wise. This indicates that the strategy of initially focusing on stem cell
research market is of higher probability for success. We are then using the proven success in
stem cell research as a positive force to penetrate into the drug screening market.

2. Business Strategies

a. Integrate into the Stem Cell Research Market Supply Chain

Fig. 36 shows the stem cell market's supply chain.

Figure 36: Stem cell industry's supply chain

For stem cell research market, we expect to start at the reagent markets, and slowly penetrate
onto the culturing package provider and finally our aim is to supply cell with well - defined
morphology and linage. As time goes on, we are move forward, penetrate deeper and deeper into
the current market. In the same time, we increase the values of our products and gets higher
market share. In the short-term the consumer will mainly be academics and cash-poor stem cell
companies, limiting the size of the market. However, in the medium term it is likely that there
will be much more value in providing research products. As with genomics, the companies
which realized most value were the ones, such as Invitrogen and ABI, selling material to
researchers and companies working on gene-based therapies.

=P
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b. Integrate into the Drug Screening Market Supply Chain

Fig. 37 shows the drug screening's supply chain, a typical drug development phases and the

corresponding company filter. Initially, in the drug development stage: it starts from a large

amount of compound, through testing, trials; at the end of the day typically there is only 1 pill of

drug that surpasses all the tests. Similar to that is distribution among companies.

DEVELOPED WORLD DISEASE DRUG OEVELOPMENT

Description

More than ,Soo biotechnology companies are focused on
therapeutics

Iooo focus on small molecule therapeutics

7ooare pursuing new small molecules

160 have the scale to support new programs

Over 12o have a track record of taking new drugs into the clinic

Figure 37: Drug screening industry's supply chain (70)

In the world, there are approximately 1500 biotechnology companies which are focused on

therapeutics, 1000 focus on small molecule therapeutics and only 120 have a track record of

taking new drugs into the clinic. This indicates that we should also start from the initial stage of

Company Filter
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the drug screening spectrum to gain better market share. So for out pharmaceutical supply chain,
we aim to position at the lead compound validation center (red in Fig.37). Our long time goal is
to position at the drug development company in this supply chain.

c. Summary

Fig. 38 summarizes our approach into both of the targeted markets. The elastic modulus
controlled matrix will provide better research tools in manipulate and culturing stem cell. After
that, it will incorporate into toxicity testing procedure, and add value to drug screening process.
Finally, our long time goal is to fabricating different cell types from stem cell, providing
materials and solutions for cell therapies.

Value

I ow"W"W"k

seese·cning

Toxicity testing

Research tools

ThDewacs 2 4 6 8m R"earch i 
Tm (years)* Enabling tecnolgiS

Figure 38: Technology development trench (63)

In a clear time scale, it is a good plan to set up a company this year, gain license for the
important patent on elastic modulus controlled matrix for stem cell differentiation. At the early
stage of our business, we will synthesize the matrix; sell them to bio researchers and the whole
cell bioassay developers. At the intermediate stage, we move on making our own package by
combining our matrix with the relevant reagents, as well as develop instrumentation and
technology to fabricate our microfluidic miniaturized assay. At the later stage, we aim at being a
reliable cell supply first in the regions (Singapore, Asian countries) and then to the USA and
worldwide market. Parallel with that, we will provide drug screening and testing methods for
contracted pharmaceutical companies in Singapore as well as worldwide.
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VIII. Conclusions

Stiffness-defined matrices have direct applications in stem cell research and drug screening

market. Although these two markets are ill-defined, both of them are growing fast and appear to

be very promising. A review of the technology itself led to the conclusion that the matrix is

capable of induce anchorage dependent cell into specific lineage but the success rate is not yet

quantified and further research need to be done to achieve good reproducibility and efficacy.

During the process of creating a cost model for this technology and through learning from pre

set-up companies such as Affymatrix, ESI, Promatrix, it became clear that the probability of

commercial success for the matrix is from medium to high. It is feasible for us to set up a

production company. On the other hand, there are still numerous challenges ahead. The two

biggest challenges now are lack of clarity in IP landscape in the field and the need for long-time

horizon funding.
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X. Appendix
MatTek Corporation

Customer Price List -Glass Bottom Culture Dishes
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Figure 40: Market's price (68).
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Elasticity controlled Collagen coated Polyacrylamide Gel
Feedstock Prices
Collagen 945 $/g
Polyacrylamide 42 $/Iot(1 lot: 1L)
Cross linking agent 15 $/g
Rejected raw material -16 $/lot
lap equiments(tube, handles,...)
Wrapping materials

Operating Characteristics
Production Capacity
Anuual Production Volume
Lot Size (im x Im)
Operating Days
Operating hours
Exogenous Cost Factors
Wage (including benefits)
Electricity Cost
Equipment Life
Fixed Overhead
Building Costs
Building Life
Equipment & Building Maintenance
Auxiliary Equipment Cost

30
0.3

300000
300000

943.618778
240

$/unit
$/m2

lots/year
lots/year
dish/Lot
days / year

24 h/day

25
0.07

10
0.35
1000

10
0.25

0.2

$/hr
$/kWh
yrs
% of annual fixed cost
$/mZ

years
% of equipment & building cost
% of equpment cost

Process Specifications
Polymerization

Cycle time
Setup Time
Unplanned Downtime
Equipment Cost (fridge)
Equipment Cost (mixer)
Equipment cost (Roller)
Water consumption
Energy
Space Requirement
# Worker

0.08333
0.75
0.1

3000
300

3000
90

1.661833333
40
0.5

hr/lots
hr/day
hr/day
$/equipment
$/equipment
$/unit
L/lot
kWh/ lot
m2
#/hr

Collagen coating

Cycle time
Setup time
Unplanned Downtime
Collagen Solution consumption
Collagen spreader
equiment to make collagen coating unifo

0.08333 hr/lot
1 hr/day
1 hr/day

0.0015 L/lot
300 $/unit
150 $/unit



Equipment cost (Roller)
Energy
Space requirement
# Worker

3000 $/unit
0.45 kWh/lot

40 m2
0.5 #/hr

Cutting

Cycle Time
Setup time
Unplanned Downtime
Equipment cost (cutting machine)
Equipment cost (Roller)
Energy
Space requirement
#Worker

0.08333
1

0.3
1000
3000

0.5833
40
0.5

hr/ lot
hr/day
hr/day
$ /cutter
$/unit
kWh/lot
m2
#/hr

Quality Control

Cycle Time
Setup time
Unplanned Downtime
Equipment cost (Roller)
AFM Microscope+ integrated computer
Energy
Space requirement
# Workers
Yield

1.66667
0.1

0.05
3000

200000
0.004999998

40
2

0.8

Packaging

Cycle Time
Setup Time
Unplanned Downtime
Equipment cost (Wrapper)
Equipment cost (Roller)
Wrapping materials
Energy
Space requirement
#Workers

0.03333
0.15
0.07

100000
100000

1.5
0.3066

50
0.75

hr/ lot
hr/day
hr/day
$/unit
$/2 units
kWh/ lot
m2
#/hr

hr/ lot
hr/day
hr/day
$/unit
S/unit
m2/lot
kWh/ lot
m2
#/hr


