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Abstract

The nature of cold three-flavor quark matter at the large (but not asymptotic) densi-
ties relevant to neutron star phenomenology is not resolved. The gapless CFL phase,
which was previously believed to have the lowest free energy, was recently shown
to be unstable in the sense that some phase must have lower free energy. The na-
ture of the instability motivates the hypothesis that the stable phase is a crystalline
color superconductor. In this thesis, we present the calculation of the free ener-
gies of three-flavor crystalline color superconductors for realistic crystal structures in
the Ginzburg-Landau approximation. All previous work on this subject neglected
the strange quarks; we include them, with qualitative consequences. We calculate
free energies for many crystal structures, and find two (based upon cubic symmetry)
that have lower free energy than the gapless CFL phase over the lower density half
of the relevant parameter space. They are therefore good candidates for the phase
quark matter exists in, if it is present in the cores of neutron stars. We investigate
the implications of the existence of a crystalline color superconducting core on the
phenomenology of glitches in neutron stars. The key ingredient in the standard expla-
nation of the origin of glitches is the presence of a rigid lattice in a superfluid medium
which provides sites where vortices in the superfluid can be pinned, a situation that
exists in the inner crust of the neutron stars. By deriving the effective action of
the phonons in the crystalline phases, we determine that these are very rigid, with a
shear modulus 20 to 1000 times larger than that of neutron star crusts. They are at
the same time superfluid and a rough estimate of the pinning force on vortices gives
answers comparable to that for pinning in the inner crust. This raises the possibility
that (some) glitches could originate in quark matter cores of neutron stars.
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Chapter 1

Introduction

1.1 Overview

In this thesis we will discuss the nature of cold three flavor quark matter at large,

but not asymptotically large densities.

Driven by the strong and attractive color interaction, cold dense quark matter

exists as a color superconductor. While it is well established that quark matter at

asymptotically large densities exists in the Color Flavor Locked phase, the answer for

the nature of the phase at intermediate densities is not yet settled. The strange quark

mass and conditions of neutrality and weak equilibrium tend to separate the Fermi

surfaces of the quarks, which in turn puts stress on the Color Flavor Locked phase.

Crystalline superconductivity allows pairing between quarks living on separated Fermi

surfaces and is therefore an attractive possibility in this regime. We explore this

possibility in detail in this thesis.

One of the two central results presented here is the identification of two crystalline

color superconducting structures whose free energies - calculated in the Ginzburg-

Landau approximation - are smaller than those of known homogeneous phases in

the regime of interest for neutron star phenomenology. Secondly, we show that these

phases are very rigid, as evinced by their large shear modulus. This is interesting

because they are at the same time superfluid. This result may have bearing on the

phenomenon of glitches observed in rotating neutron stars.



Our aim in Chapter 1 is to expain, without going into technical details, the two

results stated above and to present the broader body of knowledge in which this

piece of work fits in. To this end, we begin with a discussion of the phase diagram of

Quantum Chromodynamics.

1.2 The phase diagram of QCD

Over the last couple of decades, Quantum Chromodynamics (QCD) [1] has been firmly

established as the fundamental theory of strong interactions. It has also become

clear that the theory has a very rich phase diagram (see [2] for reviews). From

experiments and theoretical calculations we know the properties of phases of QCD

in certain regimes. These various phases differ markedly in their symmetry, the

dominant degrees of freedom, etc.

In vacuum, QCD exhibits color confinement. The low energy excitation spectrum

features only color singlet particles and resonances. Chiral symmetry (which is an

approximate symmetry of nature) is spontaneously broken. The calculation of the

properties of the QCD vacuum starting from its fundamental action is a challenge

because it is a strongly interacting field theory, and therefore usual perturbative

techniques fail. Lattice QCD has risen to the challenge and we can now calculate

the masses and other properties of several low mass baryons and mesons to a fair

accuracy [3, 4].

Since QCD is asymptotically free [1], we expect that quarks and gluons become

deconfined [5] and weak coupling methods become applicable in regimes where the

typical momentum exchange between particles is much larger than AQCD. For exam-

ple, at temperatures much larger than AQCD, we expect that quarks and gluons will

be deconfined and QCD matter will exist as a weakly coupled plasma [5, 6]. Another

example is quark matter at asymptotically large densities [9]. The small separation

between the quarks implies a large magnitude of the typical momentum exchange and

hence a small gauge coupling. We know from calculations that at low temperature,

asymptotically dense quark matter exists in the Color Flavor Locked (CFL), color
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Figure 1-1: A schematic phase diagram of QCD.

superconducting phase, and understand the properties of this phase well from first

principles.

A relevant question to ask is how these different phases connect to each other as

we vary the thermodynamic variables y, the quark number chemical potential', and

temperature T. Results from experiments, lattice QCD simulations and theoretical

models have helped paint a schematic picture for the phase diagram of QCD, shown

in Figure 1-1.

Moving along the "y" axis, or the temperature axis, corresponds to increasing the

temperature at zero quark number chemical potential. Lattice QCD simulations [7]

provide us with first principle, theoretical results along this line. It seems likely that

the transition from the confined phase to the deconfined Quark Gluon Plasma (QGP)

is a crossover, and occurs at about 170MeV. Heavy ion collisions at the Relativistic

Heavy Ion Collider (RHIC) [10] (and in future, at the LHC) probe experimentally

the interesting region above the estimated crossover temperature.

I•p can be thought of as the average of the three chemical potentials associated with the number
of u, d and s quarks, respectively. This is related to the baryon number chemical potential AIB by
the relation 3p = PB



As we move to the right of the temperature axis close to the crossover, the tran-

sition to deconfined matter is believed to become stronger and eventually turn into

a first order phase transition, beginning from the critical point P,. (In recent work,

authors of [11] suggest evidence for an alternative scenario where the transition from

confined matter to the QGP phase remains a crossover at high baryon densities, and

there is no critical point.) The location of Pc is uncertain. The reason is that lattice

QCD calculations at non-zero chemical potential suffer from the sign problem, and

while progress has been made in understanding the diagram close to the temperature

axis, the uncertainties increase as M/T becomes large. Model calculations suggest

that the first order transition curve meets the "x" axis at some high density [13, 14].

This is the region where (for now) we do not have the benefit of lattice calculations.

Now let us start from the origin and move along the "x" axis. At zero temperature

on the left of the point marked Q is vacuum. At a small but non-zero temperature

we have a gas of hadrons. As we move towards the right on the fL axis from the

origin, the curve starting at Q marks the first order transition from a gas of hadrons

to a hadron liquid. Nuclei are droplets of the hadron liquid phase. This first order

transition has been explored by low energy hadron collisions [12] and by theoretical

models. Off the p axis, at non-zero temperatures, the transition occurs at smaller

chemical potentials and eventually the first order line ends at a critical point that sits

at a temperature of about 10MeV.

As we continue to move towards the right, our handle on the parameters of the

theory becomes weaker. At densities several times nuclear density, the overlap be-

tween nucleons becomes very large and quarks should become deconfined [13, 14, 15,

16, 17, 18, 19]. The transition from hadronic matter to deconfined quark matter is

expected to be first order. But the precise location of this transition point is uncer-

tain not only because of uncertainties in the parameters of hadronic matter, but also

because of uncertainties in the phase of deconfined quark matter on the immediate

right of this transition. On the other hand, such densities may be present in the cores

of neutron stars.

The philosophy we will follow in the thesis is to assume that cores of neutron stars



contain deconfined quark matter, and try to calculate observable consequences of this

assumption for their phenomenology.

The fundamental insight about the properties of deconfined quark matter at low

temperature is derived from the work of Bardeen, Cooper and Schrieffer (BCS), who

showed that if the interaction between fermions living at the Fermi surface is attrac-

tive, then the Fermi surface is unstable to the formation of Cooper pairs [20]. The

interaction between quarks is attractive for states of two quarks that are antisym-

metric in color indices, and hence quarks form Cooper pairs. The ground state is

characterized by a non-zero expectation value of the diquark operator. This sponta-

neously breaks the SU(3) color symmetry, and (at least some of) the gluons attain

a mass by the Meissner effect. Cold dense quark matter is necessarily a color super-

conductor [9].

This general conclusion however does not tell us the pattern of pairing. That

requires finding the pairing ansatz which has the lowest free energy. At asymptotically

high densities, i.e. skipping to the extreme right of the /Z axis, the problem simplifies

because the strange quark mass can be neglected and the u, d and s quarks can be

treated as massless. It is well accepted that in this regime cold quark matter exists

in the CFL phase [21, 22, 23, 24]. This phase features a highly symmetric pattern of

pairing where quarks of all the species which differ in their color and flavor are paired

with each other with the same strength. Gauge symmetry is broken such that eight

gauge fields get a Meissner mass, and all the fermionic quasiparticle excitations are

gapped. We will discuss the CFL phase further in Section 1.3.

But as we decrease the chemical potential, the effect of the strange quark mass

becomes more and more important [25, 26]. In neutral unpaired quark matter the

strange quark mass has the effect of splitting the u, d and s Fermi surfaces and tends to

disrupt the cross-species BCS pairing that characterizes the CFL phase. If we imagine

beginning at asymptotically high densities and reducing the density, and suppose

that CFL pairing is disrupted by the heaviness of the strange quark before color

superconducting quark matter is superseded by baryonic matter, the CFL phase must

be replaced by some phase of quark matter in which there is less, and less symmetric,



pairing [17, 25, 30, 31, 32, 33]. Several candidate phases have been proposed which

have lower free energies than the CFL phase and unpaired quark matter in some

range of intermediate densities which interpolate between nuclear matter and CFL

matter. We will discuss some of these possibilities in Sections 1.4.3,1.4.4.

We will argue in this thesis that - at least in a window of densities that might

be found at the cores of neutron stars - the ground state of three flavor quark

matter is the crystalline color superconducting phase [33, 34, 38, 42, 43, 44]. It is

color superconducting because the diquark condensate is non-zero in this phase. The

crystalline in the name signifies that the diquark condensate varies periodically in

space.

If we begin with a color superconductor at T = 0 and raise the temperature,

eventually it becomes entropically favorable to break the Cooper pairs thermally.

The critical temperature, Tc, depends on the strength of the pairing and therefore on

pf [13, 47, 48]. For temperatures larger than Tc, all symmetries are restored, and we

transit into a phase where the quarks and gluons remain deconfined, the QGP.

The typical pairing energy between quarks is of the order of 10s of MeV, much

larger than the few 10s of KeV temperatures found in neutron stars [49, 53]. Therefore

we will restrict our attention to T = 0 throughout the thesis.

1.3 The color flavor locked phase

At asymptotically large densities, meaning Ml/g -- 0, the u, d and s quarks can

all be treated as massless. (Keeping the regime of physical interest in mind, we will

ignore the heavier quarks. For Nf > 3, see [54].) Also, the requirement that bulk

matter should be electrically and color neutral and in weak equilibrium is satisfied for

Ms/p --+ 0 by taking the quark number chemical potentials of all the 9 quark species

(three flavor and three colors) to be equal to fu.

Ignoring the small weak interaction, the classical action is symmetric under handed

flavor rotations of the quarks, SU(3)L x SU(3)R. It also posesses the SU(3) color

gauge symmetry, and a U(1) vector symmetry. A linear combination of the flavor



and U(1) vector symmetry is of course gauged to give electromagnetism, but we will

ignore this for the moment. Finally, the U(1)A symmetry is anomalous and will be

ignored in the discussion.

In the absence of color interactions, the ground state will consist of 9 species

of fermions, filling momentum eigenstates up to a common Fermi energy PF = P.

Since the low momentum quark states are Fermi blocked, the typical momentum

exchange between quarks is of the order of the Fermi momentum which is large,

meaning that the gauge coupling g is weak, and only quarks close to the Fermi surface

will be affected by the interactions. There is one subtlety in the argument above

because the cross-section for forward scattering in fact has a logarithmic divergence -

f d0/0 [56, 47, 55]. As we will see in a moment, in the ground state, quarks of opposite

momentum form a BCS condensate with a gap parameter A0. For theories where

fermions attract via a point interaction, the gap parameter goes as exp(-#/g2). The

qualitative effect of this extra logarithm in QCD where the interaction is mediated by

gluons, is that the gap goes as exp(-#/g): it is enhanced. The pattern of symmetry

breaking however remains the same, and we discuss this next.

Driven by the color interaction that is attractive in the color antisymmetric chan-

nel, the quarks form Cooper pairs [20]. The diquark operator in the ground state has

a non-zero expectation value of the form [9],

'(x)'9iaV(x)tj3) c AO(CY5)s8.t QE, , (1.1)
I

or equivalently in the two component Weyl notation,

(1)L(X)aia',L(X)bjI3) = ('R(X)aiOR(X)bjf) OC AOEab ElaPElij , (1.2)
I

where i, j are the flavor indices that run over 1, 2 and 3, corresponding to u, d and

s respectively. a, 3 are color indices that also run over 1, 2 and 3, corresponding

to r (red), g (green) and b (blue) respectively. s, t are four component Dirac spinor

indices and C is the charge conjugation matrix, while a and b are indices in the two



component Weyl space. A0 is the order parameter that defines the strength of the

pairing when M, is taken to be zero. It can be thought of as the typical binding

energy of the Cooper pairs.

As mentioned, at truly asymptotic densities, A0 can be computed from first prin-

ciple QCD calculations, treating the coupling between gluons and quarks as weak.

At the leading order, the dominant quark quark interaction can be taken to be that

given by a single gluon exchange [47, 55, 56]. The calculation is still necessarily a non-

perturbative calculation because the spontaneous breaking of gauge symmetry can not

appear at any order in weak coupling. (Recall from above that Ao goes as exponential

of a quantity proportional to -1/g, which can never be obtained from an expansion in

g.) But the weak coupling approximation is only reliable for P > 108MeV [57] (which

turns out to correspond to g " 0.8), much larger than the p - 500MeV chemical po-

tentials we are interested in. An extrapolation of the asymptotic results down to

p - 500MeV gives values of A0 ranging from 10 to 100MeV. This is an extrapolation

of a calculation to a regime where it is not valid, but it can give us some understanding

about the scale of A0 . An alternative approach is to model the QCD interaction with

a phenomenological interaction term. The free parameters of the model are chosen to

give reasonable vacuum physics [19, 14, 21, 22, 13, 58, 59, 60]. For example, one can

add to the free theory of quarks, a NJL four Fermi interaction term which has the

quantum numbers of single gluon exchange. This has two parameters, a momentum

cutoff A and the NJL coupling G. If they are chosen to give a reasonable value for

the vacuum chiral condensate and then use these to calculate the gap parameter, we

get similar values of A0 . In the thesis, we will use the NJL model to calculate the

properties like the free energy of the color superconducting phases. While this will

not give us sufficient control to compare the favorability of these phases with nuclear

matter, it will allow us to compare different candidate superconducting phases with

each other. In the absence of more rigorous calculations of A0 , we will treat it as

an unknown parameter which sets the energy scale of the pairing between quarks,

expecting it have a value between 10 to 100MeV. When we need to get a feel for the

energy scales, we will often use A0 = 25MeV as a rough guideline.



We can understand the features of the ansatz (1.1) that make it a favorable choice,

as follows.

The condensate (1.1) is antisymmetric in color indices. This is reasonable because

the color interaction is attractive in the color antisymmetric channel and this is what

drives the condensation in the first place. The presence of C on the right hand side

ensures that the condensate is antisymmetric in spinor indices, which implies that

it is invariant under rotations. This can be thought of as the generalization of spin

singlet pairing to this relativistic situation. This rotational symmetry allows us to

cover the Fermi surface uniformly by pairing, giving the maximum benefit. (Other

possibilities have been investigated [9, 61, 14, 21, 33] and found to be less favorable.)

Since b is a fermionic field, the condensate then has to be antisymmetric in flavor

indices, as can be seen to be true. This means in particular, quarks of different

flavors pair with each other. Finally, consistent with the paradigm of BCS pairing,

the condensate is independent of the position space coordinate, which means quarks

of opposite momentum pair with each other. This is the most efficient way to pair

the entire area of the Fermi surface for s-wave interactions.

The symmetry breaking pattern of the condensate is quite beautiful. It breaks

the SU(3) gauge symmetry completely, meaning that all the 8 gauge bosons attain

non-zero Meissner masses, but has the remarkable property that it leaves a global

SU(3)L+R+color unbroken. Because the I index is summed from 1 to 3 (Eq. 1.1), the

CFL condensate can be seen to be invariant under a rotation in color space and a

simultaneous vector flavor rotation in opposite direction. In other words, color and

flavor rotations are "locked" and hence the name color flavor locked phase. The

gluons are connected to each other by this locked symmetry, implying that they all

have the same mass.

So far we have ignored U(1) electromagnetism. The gauge boson for this symme-

try, the photon A,, couples to the generator of electromagnetic gauge transformations,

Q, which is independent of color and is a diagonal matrix in flavor space,

211
Q = diag(3' 3' ) . (1.3)

23



Consider now the generator of color gauge transformations Ts, corresponding to the

gauge field A', which is independent of flavor and is diagonal in color space,

1 1 1
Ts = diag(- )  (1.4)

One can very easily check that the combination 1, 0 Q + (2/v )T8 ® 1i, called the

Q charge, gives zero when acting on the condensate (1.1) and thus the condensate is

neutral under Q. Therefore a linear combination of gauge fields A, and AS, which

corresponds to U(1) gauge transformations generated by the Q charge, is unbroken.

This gauge field is therefore massless, and the orthogonal component turns out to

be massive. This situation is familiar from the symmetry breaking pattern in the

Weinberg-Salam model of electroweak symmetry breaking where a linear combination

of U(1) hypercharge and isospin gauge fields gives the massless photon while another

gives the massive Z, boson. Here though, the electromagnetic coupling constant e is

about a factor of 10 smaller than the strong coupling constant g and the gauge field

corresponding to U(1)Q consists mostly of the photon, with a small admixture of A.8

The 9 quarks give rise to 9 quasiparticles which lie in two irreducible represen-

tations of the SU(3)L+R+color, namely the octet, which features a gap A0o and the

singlet with gap 2A 0 .

The only "laboratories" where dense quark may exist in nature, are the cores of

neutron stars, where the chemical potential p can not be much larger than 500MeV.

The strange quark mass M8 in this medium, can be expected to lie somewhere between

its current mass of about 100MeV and the vacuum constituent mass of order 500MeV.

Clearly then, it is not a good approximation to take the strange quark as massless.

Taking into account M, has the effect of disrupting the highly symmetric CFL pattern

of condensation, as we now discuss.



1.4 Effect of the strange quark mass

1.4.1 Neutral unpaired quark matter

Let us simplify the situation, for a moment, by turning off the interaction between

quarks. Then as discussed before, quarks will fill momentum eigenstates up to max-

imum momenta which have energy equal to the chemical potential. But when we

include M,, in a crucial departure from the situation at asymptotic densities, the

Fermi momentum of the strange quark will be smaller than the massless u and d

quarks.

When we take into account electromagnetic interactions, the smaller strange quark

Fermi momentum means that there are not enough -e/3 charged d and s quarks

to neutralize the 2e/3 charged u quarks [25, 26, 27, 28, 29]. To restore electrical

neutrality we introduce to the Lagrangian a Lagrange multiplier Pe that is a gauge

chemical potential which couples to the electric charge. This modifies the chemical

potentials "seen" by the three flavors of quarks, as follows,

2

1
SP= + P (1.5)

1
P = /1 + -Pe.

By looking at detailed balance for the equations,

d u + e + Te
(1.6)

s - + e + /e ,

and noting that neutrinos can freely escape from the system, we conclude that the

chemical potentials given by Eq. (1.5) satisfy conditions of weak equilibrium with p~

as the chemical potentials for the electrons.



The free energy of this system of unpaired fermions is given by,

QN = 3 x 2[ Pl-(2 )3  )9(Ipl•) + - ( - ) + (P - d)(IPI -Ad)

(f dp2r

+2J (r (pl - e,)O(IPI - pe)

=_-9 (Pu) + (\A)4 - ( M -1) 1 - M' CO3M127r2 [2u)+ Ad) ) ( 2i / 224 M
1 )

12 r 2

(1.7)

with Au, Id and A, given by Eq. (1.5). The term in the square brackets is the con-

tribution of the quarks and the contribution oc A4 comes from the electrons. There is

a prefactor of 3 for the quark contribution because of the three colors (the chemical

potentials for the species depend on flavor but not color) and the factor of 2 comes

from the spin degeneracy. The N in the subscript represents that this is the contri-

bution from "normal", or unpaired quark matter. Electrical neutrality is enforced by

requiring 0//OQIe = 0.

We will consider the situation where M8 is small compared to A and work only

till the lowest order in M//p 2 . The motivation for this comes from understanding

the scales of the quantities involved. The largest scale in the problem is the chemical

potential p which sets the overall size of the Fermi surface. We are working in the

weak coupling approximation, where the dynamics are dictated by quarks living close

to the Fermi surface. Thus, when we consider pairing in the next Section, we will

quote results which are correct to the lowest order in A0/1 p, which is justified by

estimates which show that Ao - 10s of MeV and A - 350 - 500MeV in the region

of interest. Similarly, Ms affects the sizes of the Fermi momenta by quantities of

the order of M,2/l and we will be interested in situations where A0 is comparable to

Mi/2p, meaning that M2/p 2 is comparable to Ao/p. Hence we work to the lowest

order in M2/A 2. (Corrections to this approximation has been studied for the gapless-



CFL phase, that we will discuss below, in Ref. [133] and for two flavor crystalline

color superconductor in Ref. [38].)

For neutral unpaired quark matter, to lowest order in M w2/p2 we find for pe,

Pe = (1.8)

with corrections of order M /Il3 . As a check we note that Ie > 0, which will indeed

tend to increase the number of d and s quarks, and reduce the number of u quarks.

Since p[ is proportional to M,2/p the contribution of the electrons to the free energy

(and to neutrality!), is very small, and we will ignore it from now on.

To the lowest order in (M'/p)2, the effect of the M, on the strange Fermi surface

can be taken into account by treating the strange quark as massless, but with a

chemical potential that is reduced by M,2/(2p).

M2
pS, = e( + Ce)2 - M2  II O(M4/ ) . (1.9)

2p

Finally, let us note that the system is color neutral because there are equal number

of quarks of each color. In general, as we shall see below will be the case when we

consider pairing between quarks, we need to introduce gauge chemical potentials

also for color charges, in order to ensure color neutrality. This entails introducing

Lagrange multipliers /3 and /8 respectively for the two commuting generators T3 and

Ts x 2/v'3, which generate the Cartan subalgebra of SU(3) color. (T3 and T8 are

taken to be the standard Gell-Mann matrices with norm 1/2 and the factor of 2/V/i

gives the conventional choice for the normalization of P8.) For non-zero 23 and /~s,

chemical potentials for different colors of quarks of the same flavor will be different.

One can calculate the free energy in the presence of these potentials, and impose color

neutrality by demanding Q/0/IP 3 = a•/09s = 0 and thereby easily verify that P3

and I8 are zero for color neutral unpaired quark matter.

We can summarize the discussion as follows. To lowest order in M2/p 2, the three



quarks can all be treated as massless, with Fermi momenta given by,

2

d 1
p, = + 3,e = p F+ 26 IP

1 M2
PF = A + e - - = p' - 2642 (1.10)

with pF = A

and consequently, /P•3 = 2 = 82
8p

Pictorially, (see Figure 1-2) one can imagine three concentric Fermi surfaces. The

smallest being the s Fermi surface, encompassed by the u Fermi surface whose radius

is larger by an amount M,2/4p, which in turn is encompassed by the d Fermi surface

which is larger than the u by the same amount. We are interested in how the phases

are affected as we vary the chemical potential of the system, and the parameter M2/p

- which dictates the splitting between the Fermi surfaces - is the main driver of

these changes. At asymptotic densities M,/p -- 0 and the Fermi surfaces overlap.

As we go to lower densities, the splitting between the Fermi surfaces increases.

So far we have ignored pairing between quarks. Let us now see what effect this

has on the pairing.

1.4.2 Stress on pairing and color flavor unlocking

The splitting of the Fermi surfaces of quarks of different flavor in neutral, unpaired

quark matter causes stress on the cross species, BCS pairing, that symbolizes the

CFL phase. Pairing is strongest between quarks living at the Fermi surface, but if we

try to pair, say, a d quark with momentum p on the d Fermi surface, with a u quark

with momentum -p, then the u quark will not lie on the u Fermi surface if the Fermi

surfaces of quarks of different flavors are split [30, 31, 33] (Figure 1-2).

The situation where the Fermi surfaces of the species of fermions that want to pair

together are split in the absence of pairing, arises in other contexts. For example,

such conditions have been created experimentally in systems of ultracold gases of



Figure 1-2: (Color Online): The u (red online), d (green online) and s (blue online)
Fermi surfaces in neutral unpaired quark matter. To lowest order in M2/P 2, the
separation between the s - u and the u - d Fermi surfaces is the same and is equal
to M,2/(4p). Separation of Fermi surfaces causes stress on cross-species BCS pairing.
For example, a d(p) quark on the d Fermi surface, can not find a partner u(-p) quark
on the u Fermi surface.

fermions [74]. These gases are trapped in a suitable magnetic trap, and the interaction

between the fermions can be tuned. In traps of 6Li ions, magnetic fields can be

tuned to be close to a Feshbach resonance such that the 6Li atoms in two different

hyperfine states feel an attractive s-wave interaction. The strength of the attraction

can be adjusted to be strong but not strong enough to force the formation of bound

"molecules" of 6Li atoms. When the number density (in the trap) of these two species

is the same, atoms of the two species form Cooper pairs. By controlling the number

density of the different species to be unequal [75], a stress in pairing can be created

as discussed in the previous paragraph.

One way to form BCS-like pairing between Fermi surfaces that are split in the

absence of pairing, is to allow the Fermi momenta of the species of fermions that

pair to deviate from their values given by the chemical potentials and equalize. This

exacts a free energy cost proportional to p2 b/1
2 because we need to create particles

or holes that fill up a shell of thickness of order 61L. But there is a competing gain

proportional to p/2A2 from BCS pairing, which can be understood as follows. Forming

M2

2

-M- 8• 4p



a Cooper pair lowers the Free energy of the system by A, and there are of order p2A

pairs formed because electrons in a shell of thickess A and radius p pair together.

For massless particles, the most favorable value to equalize the Fermi momenta turns

out to be the average of the chemical potentials of the species that pair together.

The values of the gauge chemical potentials that ensured neutrality for unpaired

quark matter may no longer ensure neutrality after pairing. This is because of two

reasons. Firstly, the location of the Fermi momenta specify the number of particles of

a particular species that are present in the system. On choosing the Fermi momenta

to be different from the chemical potential for that particular species, the relation

between particle number and chemical potentials is modified and therefore the values

of chemical potentials that ensure neutrality may change. Furthermore, BCS pairing

changes the relation beween Fermi momentum and particle number for any species

that participates in pairing. This is because the quasiparticles in a paired system are

not just the fermions but linear combinations of fermions and holes. One needs to

reevaluate the net number of particles after pairing. This gives a further modification

of the chemical potentials.

Taking an ansatz of the form Eq. (1.1), we see that the free energy is given by [33]

3 3 2(M 2  (
QCFL - N 22 A  72 A2 42

where the first term (1.11) comes from pairing and the second comes from the rear-

rangement of Fermi surfaces.

We see that the CFL phase is less favorable than unpaired quark matter when

M,2/L > 4A0 . This can be intuitively understood because as we move to lower

denstities, meaning increase the splitting between the Fermi surfaces, the gain in free

energy due to pairing ceases to be more favorable than the free energy cost associated

with allowing the Fermi momenta to be different from the chemical potential.

Finally we note that the gauge chemical potentials are given by [33]

Le = 3 = 0, - 3 (1.12)2p



1.4.3 Gapless color flavor locked phase

It turns out that the CFL pairing has to break down at densities even larger than

those given by M2/(4p) > A. Let us consider the largest difference between the

effective chemical potentials of quarks that pair, with pe = Y3 = 0, iP = -M82/(2p).

This occurs between the db - sg quarks (for more details see [62, 63]), and is given

by
M2 M2

eff eff - (IL -- s / A8 I (1.13)

Instead of keeping the pairing between all the quark species equal (to A0) as in the

CFL phase, it is favorable to break (actually weaken) the db-sg pairing as soon as the

difference between the two chemical potentials becomes equal to the energy required

to break the db - sg pair. Namely, when 1db - i/'g > 2A 0 , giving, M,2/1 > 2A0 .

This motivates us to consider a pairing ansatz of form,

(*sia(x)#tj(x)) oc (C-y5)st AIIEcarEij . (1.14)
I

While Eq. (1.14) retains the color, flavor and spin antisymmetry of CFL pairing, the

ansatz allows the strength of the pairing to be different for pairing between different

species. From the discussion above, we would expect A1 - which measures the

strength of the pairing between db - sg quarks - to be the smallest, an expectation

that is borne out by the calculation. Note that if the A, in Eq. (1.14) are not equal,

the condensate no longer has a remaining SU(3)L+R+color symmetry that was present

in the CFL phase.

For M2/(2ji) > A, the phase defined by the ansatz (1.14), has a lower free energy

than the CFL phase. It features regions of momentum space where the quarks are not

involved in pairing, and quarks living at the boundaries of these "blocking regions"

form quasiparticles that can be excited without giving extra energy to the system.

That is, they have gapless excitations [62, 63]. This phase is called the gapless Color

Flavor Locked (gCFL) phase.

The variation on BCS pairing - in which the same species of fermions that



pair feature gapless quasiparticles - has also been proposed in an atomic physics

context [69]. In all these contexts, however, the gapless paired state turns out in

general to suffer from a "magnetic instability": it can lower its energy by the formation

of counter-propagating currents [70, 71, 72].

In the atomic physics context, the resolution of the instability is phase separation,

into macroscopic regions of two phases in one of which standard BCS pairing occurs

and in the other of which no pairing occurs [73, 75, 76]. In three-flavor quark matter,

where the instability of the gCFL phase has been established in Refs. [71, 72], phase

coexistence would require coexisting components with opposite color charges, in ad-

dition to opposite electric charges, making it very unlikely that a phase separated

solution can have lower energy than the gCFL phase [63, 83].

It seems likely, therefore, that a ground state with counter-propagating currents

is required. This could take the form of a crystalline color superconductor [34, 35,

36, 37, 38, 39, 40, 41, 42, 43, 44, 99, 45, 46], as we will discuss at length below.

The gCFL phase is an important benchmark to compare the free energy of phases

in the intermediate density regime because the true ground state should have a free

energy less than that of the gCFL phase. We shall aim to find (and find) crystalline

phases which have a free energy less than the gCFL phase for a wide range of densities.

We first briefly survey other possibilities that have been proposed as the ground

states of quark matter in the intermediate density regime.

1.4.4 Other possibilities

A much studied candidate phase studied in the literature is the 2SC (two flavor

superconducting) phase. It is less symmetric than the CFL phase but still only

involves conventional BCS pairing. The initial motivation to look at two flavor pairing

was to let the massless u and d [64, 14, 19] quarks pair with each other, leaving the

massive s quarks unpaired. The pairing ansatz considered is,

(Vlsia(x)VItjp(x)) oc (CY5 )st1A 3E3ijE3 . (1.15)



However, we know from our our discussion of neutrality that the strange quark

mass tends to separate the u and d quarks Fermi surfaces as well. (See [33, 65, 66]

for the effect of neutrality on the 2SC phase.) In fact, a systematic search of all

possible patterns of pairing shows that such stress on pairing is unavoidable if we

demand condensates that are antisymmetric in color and spin [67]. When neutrality

is taken into account, the 2SC phase, like the gCFL phase, is known to feature gapless

modes, giving rise to the gapless 2SC phase [68]. This phase, like the gCFL phase,

suffers from the "chromomagnetic instability", where some of the gauge fields get an

imaginary Meissner mass.

It is also known that the CFL phase is likely to be augmented by kaon conden-

sation [84, 85]. Condensation of kons reduces the free energy of the CFL phase. For

M./' close to 2A, this kaon condensed phase is unstable to formation of a phase

in which a CFL kaon condensate carries a current in one direction balanced by a

counter-propagating current in the opposite direction carried by gapless quark quasi-

particles [86, 87]. This meson supercurrent phase has been shown to have a lower

free energy than the gCFL phase near M,/p = 2A, and could be the resolution of

the instability in the gCFL phase, in particular near Mi./p = 2A.

During our discussion so far, we have restricted our attention to condensates that

are antisymmetric in color and Dirac indices. As we discussed, antisymmetry in

color was motivated by the fact that the interaction between quarks is attractive in

that channel, and antisymmetry in Dirac indices by the desire to have a rotationally

invariant condensate. But in light of the fact that the Fermi surfaces of different

flavors are split in neutral unpaired quark matter, we could imagine relaxing these

conditions, considering symmetry in either Dirac or color indices [89], thereby allowing

symmetry in flavor indices which permits pairing quarks of the same flavor. However,

studies show that these spin-1 or color symmetric phases are less favorable than gCFL

matter.

In this thesis we will concentrate on the possibility that the ground state of quark

matter in at least part of the intermediate density regime is crystalline color super-

conducting matter, which we discuss next.



1.5 Crystalline color superconductivity

As we discussed in Section 1.4.3, the gCFL phase has an instability towards the

formation of counter propagating currents. Crystalline superconducting phases have

counter propagating currents and seem to be free from magnetic instability [99], which

is consistent with the result we will see in Chapter 2, that many of them have free

energies that are lower than that of the (unstable) gCFL phase for wide ranges of

parameter values.

The central idea of crystalline pairing that makes it an attractive candidate phase

when the Fermi surfaces of Fermions that pair are split, is that it allows fermions living

on split Fermi surfaces to pair with each other. It does so by allowing Cooper pairs

with nonzero total momenta 2qa, with qa taken from some set of momentum vectors

{q}. We will take the magnitude of these momenta to be equal and of the order of

the splitting between Fermi surfaces. We shall see the motivation for this choice in

a moment. Their directions must be determined to give a favorable structure. In

position space, this corresponds to condensates that vary in space

A(x) c A E exp(2iqa' -x). (1.16)
qae{q}

The qas are therefore reciprocal vectors which define the crystal structure of the

condensate which is modulated periodically in space and therefore spontaneously

breaks space translation invariance.

The intuitive argument why these are expected to be favorable when the Fermi

surfaces are split is that since they allow us to pair quarks without shifting the values

of the Fermi momenta, they avoid the Free energy cost associated with moving the

Fermi surfaces from their preferred positions given by the chemical potentials.

Furthermore, this also implies that the number of particles of any species deviates

from the values given by the chemical potentials only because of pairing. Thus the

values obtained for the gauge chemical potentials by imposing neutrality in a crys-

talline superconducting state differ from the values in unpaired quark matter only



because of pairing, which further implies that the difference is small for small pairing.

We will work in the approximation that the pairing is weak, and approximate the

values of the gauge chemical potentials to be the same as in unpaired quark matter,

namely Pe = M2/(4p), A3 = 1s = 0 so that the position of the u, d and s Fermi

surfaces are given by Eq. (1.10).

Crystalline superconductivity features a non BCS kind of pairing, first proposed

in the the context of electronic superconductivity by Larkin, Ovchinnikov, Fulde and

Ferrel (LOFF) [90], where Zeeman splitting could give rise to a separation between the

Fermi surfaces of the fermions that pair: namely the spin up and spin down electrons.

Observing them in these systems has been a challenge because the simplest way to

create a Zeeman split, by applying a uniform magnetic field to the sample, also induces

surface currents in the superconducing sample, which try to keep out the magnetic

field. (The is the Meissner effect at work.)

Applying a magnetic flux to a superconducting sample greater than some critical

flux H, destroys superconductivity (or induces magnetic vortices) in the sample, but

that is not because of the splitting of the u and d Fermi surfaces. Rather it is because

of the much larger coupling between the orbital component of the electron angular

momentum to the magnetic field which induces large surface currents. In their study,

LOFF were attempting to theoretically model a situation where a Zeeman splitting

could be created by the presence of magnetic impurities in a superconducting sample.

A possible example where the Fermi surfaces of the up and down spin electrons

can be split by applying an external magnetic field without inducing large currents is

a class of superconductors called "heavy fermion superconductors" where the effective

mass of the electrons is very large. There have been reports of discovery of the LOFF

phase in UPd2Al3 which is such a material [91, 92]. (For a recent review see [93])

More recently, studies done on CeCoIn 5 [94] suggest a transition to a LOFF phase.

Another possibility is to apply a large magnetic field in the plane of a quasi two

dimensional [96] or one dimensional [97] sample, so that there is "no room" for induced

currents to exist. Studies in layered organic superconductors have shown indications

for a possible crystalline state.



The complications that are present in electronic systems, where an external mag-

netic field is used to create a split in the Fermi surfaces, are not there in the quark

matter scenario that we are interested in, where this situation is created naturally

because of the effect of the strange quark mass along with requirements of neutrality

and weak equilibrium.

We begin by discussing crystalline color superconducting phases in the simple

situation where we ignore the s quarks from consideration and consider pairing only

between the u and d quarks. This will lay the ground and provide valuable intuition

for the physical situation we are interested in, namely crystalline superconductivity

in three flavor quark matter.

1.5.1 Two flavor crystalline pairing

Consider two Fermi surfaces, representing u and d quarks, split by an amount 26y,

as shown in Figure 1-3. As we discussed above, we will consider condensates of form

(us(x)dto(x)) oc A(C/y5 )st6 3,a Z exp(2iqa - x) . (1.17)
qaE{q}

The set of momentum vectors {q} defines the modulation of the crystalline condensate

in position space. The color and flavor structure of the condensate is reminiscent of

the 2SC phase, and follows from considerations of color and spin antisymmetry.

To motivate the ansatz, Eq. (1.17), we look in detail at a special case when there

is only one fixed momentum vector q in the set {q}. The direction of q is chosen

spontaneously and we take it to be parallel to the z axis here, while its magnitude is

chosen to minimize the free energy. The condensate, then, varies in position space as

a single plane wave

(u(x)d(x)) cx A exp(2iq -x) , (1.18)

where we have stripped the right-hand-side of the flavor and spin indices which only
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Figure 1-3: (Color Online): The diagram shows the pairing rings on the u (red online)
and d (green online) Fermi surfaces. By allowing cooper pairs with momentum 2q,
we can pair quarks along the rings. The pairing rings have opening angles Ou and kd

as shown. In weak coupling, with Iql, 6P <V •, < u , ~' 2 "rccos(6i//Iq|).

give four copies of the same problem. Rewriting Eq. (1.18) in Fourier space, we get

(u(-p + q)d(p + q)) oc A. (1.19)

This means that Cooper pairs have a net momentum 2q.

Concentrating on the quarks living right at the Fermi surface, if the magnitude of

q is taken to be exactly equal to 6ip, then Eq. (1.19) would allow pairing between a

d quark on the north pole of the d Fermi surface with a u quark on the south pole of

the u Fermi surface. With Ijq larger than 5p we can pair quarks along rings on the

Fermi surfaces, as shown in Figure 1-3.

Considering now also quarks off the Fermi surface, we can understand which

quarks are involved in pairing, as follows. First let A --* 0. Then u quarks with

momentum -p + q pair with d quarks with momentum p + q when both the states

are either both "Fermi occupied" or both "Fermi empty". In momentum space, the

occupied states of u(-p + q) form a sphere which is shifted towards the +z axis by



Figure 1-4: (Color online) Left panel: The larger circle (green online) represents the
d quark Fermi surface, shifted down by q, and the small circle (red online) represents
the u quark Fermi surface, reflected about the centre and shifted up by q. The shaded
regions represent the "blocking regions", consisting of quarks that do not participate
in pairing. Rest of the quarks may pair. This figure represents the situation in A -+ 0.
Right panel: Represents the same diagram for non-zero A. The "pairing region" spills
over into the "blocking region" and the pairing rings on the Fermi surface expand
into bands. The diagram is from [34]. The volume of the upper blocking region is
different from that of the lower blocking region, and hence the gapless modes carry a
net current which cancels the current carried by the condensate Eq. (1.18). The total
current in the crystalline phase with the condensate in Eq. (1.18), is zero.

Iql. Similarly the occupied states of d(p + q) form a sphere shifted towards the -z

axis by Iql as shown in Figure 1-4. The intersection of the two spheres represent the

two pairing rings on the u and d Fermi surfaces (though note that the u ring lies on

the opposite side to that shown in Figure 1-3 because the u sphere is flipped before

shifting). The shaded regions are where the Fermi occupancy of the u and d quarks

is opposite and are the "blocking regions". The rest of momentum space represents

the regions where quarks may pair, the "pairing regions". Now, for nonzero A, the

pairing regions "spill over" into the blocking regions (Figure 1-4), the penetration

depends upon the magnitude of A. For Figure 1-3 this implies that the pairing rings

thicken into pairing bands of width A. The boundaries of the blocking regions feature

gapless excitations as was also the case in the gCFL phase.

/""\



We are working in the weak coupling limit with Iql, Jy, A <« p. In this limit

the opening angle of the ring is determined by the ratio of 6p and Iqi. As we shall

describe below, the most favorable value of Iql, in a Ginzburg-Landau approximation,

is

jqj = r,6q . (1.20)

with q = 1.1997... In weak coupling, the opening angles of both the u and d rings are

approximately equal and are given by ¢ = 2 arccos(6p/jql) a 67.10.

As we discussed before, a superconductor can respond to the splitting of Fermi

surfaces by changing the Fermi momentum and forming a phase featuring BCS-like

pairing. In the case of two flavor pairing the free energy of this BCS-like phase, called

the 2SC phase, is given by

22SC- N 2- -p 20A2SC (1.21)

where A2sc is the value of the gap parameter with 6/z = 0. This is related to A0 , the

gap parameter at zero splitting in the CFL phase, by the relation A2sc = 21/ 3A0 [8].

A0 = 25MeV gives A2sc = 31.5MeV.

For
A2scJp > (1.22)

the normal phase is more favorable than the paired phase, and as we increase J6

from 0, there is a first order transition from the 2SC phase to unpaired matter at

6Jc = A2sc/V/2. This point is called the Clogston point. (All this is very reminiscent

of our discussion of CFL matter at non-zero Ms.)

We compare the free energies of the 2SC phase and the single plane wave "crys-

talline" phase (1.18) as a function of Jbp in Figure 1-5.

From the free energy diagram we conclude that a single plane wave condensate is

not favored over the 2SC phase for a large range of parameter space. But intuition

suggests that since a single plane wave condensate allows pairing along rings on the

Fermi surfaces, we can cover a larger area on the Fermi surfaces by considering pairing
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Figure 1-5: Comparison of the free energy of the single plane wave condensate with
the BCS-like (2SC) phase. The plot has been made with A2sc = 31.5MeV and p =
500MeV. The zero of the free energy corresponds to the unpaired phase. We see that
the 2SC phase becomes unfavorable compared to the unpaired phase at the Clogston
point 6~Jc = A 2Sc/\i2 = 22.3MeV. But the single plane wave "crystalline" phase -
labelled by "pw" in the figure - has lower free energy already at a slightly smaller
6,I and is the preferred phase from that point to 6t, e 0.754A2sc = 23.75MeV. The
transition from this simple "crystalline" phase to unpaired quark matter is a second
order transition, as can be judged by the fact that the "pw" curve merges with the
"unpaired" curve smoothly.

along multiple plane waves as in Eq. (1.17). Our aim, then, is to try to find a set of

momentum vectors {q} so that the free energy of the superconductor is as small as

possible.

The calculation of the free energy for crystalline phases with more than one plane

wave has been studied in detail only in the Ginzburg-Landau approximation which is

an expansion of the free energy of a phase in a power series of the order parameter.

The expression for the Free energy should be consistent with all the symmetries of

the Lagrangian, whether broken or unbroken. The coefficients in the expansion can

be determined from the microscopic theory that describes the system, and depend

upon the parameters of the theory. The value taken by the order parameter is one

that minimizes the free energy.

We will now see the rather abstract description of the previous paragraph in



practice below, which will make it clearer. For a crystalline phase with condensate

Eq. (1.17), the Ginzburg-Landau expansion of the free energy in A has the form,

22+ ] +o(A (
2crystauine(A) = E2 [PaA2 + 6 ++ 8 ) (1.23)

Here, P is the number of planewaves in the set {q}, and we have subtracted the

free energy associated with neutral unpaired quark matter. Only terms proportional

to 1A12 can appear in the free energy because the Lagrangian is invariant under

independent global phase rotation of the u and d quark fields, which means that

the the free energy should be invariant under phase rotations of A. The values of

the Ginzburg-Landau coefficients, Pa, 3 and y depend on the crystal structure, and

the search for the most favorable crystal structure(s) entails the calculation of these

coefficients for many crystal structures and finding one(s) which have the lowest free

energy. As mentioned, a, 0 and y can be calculated from the microscopic theory,

which we take to be quarks interacting via the NJL model, which mocks up the QCD

color interaction.

To see how this is done, we will need to introduce some notation. We write the

condensate as

(u(x)d(x)) c A (qa)e 2 i ' x . (1.24)
qaE{q}

In Eq. (1.24), we have introduced a dependence of A on q . At the last step, we

will let A to be the same of all q as in Eq. (1.17), but in the intermediate steps, this

dependence will allow us to keep track of which qa go with which A(qa).

Formally, the free energy is the potential obtained by integrating all the quarks

out of the system. The Ginzburg-Landau expansion of the free energy, correct to

some order in A(qa) can be written down by treating A(qa) as an interaction vertex

and summing all Feynman diagrams that arise, up to that order. Since the quarks are

completely integrated out they will only appear in the propagators of loop integrals.

This leaves us with a power series in A(qa) and A*(qa), as desired. The dependence

on momenta {q} comes in because A(qa) injects a momentum -2qa into the loop



and each A*(qa) injects 2qa. The free energy has the form

Qcrystalline( A(qa)}) (x Z(q a, qb)A(qa)A*(qb)6qa qb

+ J(qs" qb qC, qd)A(qa)A (qb)A(qc)A* (qd)6qaqb+qcqd

+ ICA(a qb, d qe ,qf) (q)A* (qb) (qc)A* (qd)A(q)A (qf) qaqb+qc_qd +..
+qe _qf

(1.25)

In Eq. (1.25), Z(qa, qb) = 7r2/(2p2G) + II(qa, qb), where G is the strength of the

NJL coupling constant and II(qa, qb) is a loop integral with two momentum inser-

tions -2qa and 2qb. J(qa, qb, qC, qd) is a loop integral with 4 momentum insertions

-2qa, 2qb, -2qc and 2qd and similarly KC(qa, qb, qC, qd, qe, qf) is loop integral with

6 momentum insertions. The Kronecker 6 functions of qas constrain the net momen-

tum added to the loop to be zero. This is true because of momentum conservation:

although translational symmetry is spontaneously broken by the ansatz Eq. (1.17), it

is a symmetry of the Lagrangian and hence also the free energy.

The quadratic coefficient I(qa, qb) is the simplest. Because of the Kronecker delta

imposing qa = qb, it is only a function of qa and is not affected by the relative ori-

entation of the qas. (1, J, AC.. are also functions of the parameters of the theory, Sp,

A2sc, but we are not writing the explicit dependence on these for clarity.) Further-

more because of rotational symmetry it depends only on the magnitude of the qa.

On the face of it I(qa, qa) depends on G, but that dependence combines with the

dependence on the momentum cutoff A that is needed to regulate the loop integral II,

to give a final answer that is a function of A2sc only and not of G and A individually.

We give this function below.

Z(q a) = a(l,)= + log(q L ) -log ( 2S . (1.26)
21qal J l - _t 4(|qJ2 - 6p2)

Our aim is to choose the magnitudes and the directions of qa to obtain as small

a free energy as possible. We simplify the problem by choosing the magnitudes of qa

to ensure that the quadratic term is as small as possible. This is an approximation



because in principle we should find the qal to minimize the full Qcrystalline, but may be

a reasonable approximation when A is small so that the quadratic term is dominant.

Minimizing a(|qa|, I6 p) with respect to Iqal fixes the magnitude of all the momentum

vectors to be equal Iqal = r16pL for all a, where r satisfies the equation,

1 rl +1-1 + 1 log( ) . (1.27)2,q q - 1
Numerically r = 1.1997... With this value of q, a simplifies to,

1 A2
a(6p) = -- log(4 6  2Sc ) (1.28)

Now taking A(qa) = A for all a in Eq. (1.25), we get back the Ginzburg-Landau

expansion Eq. (1.23) with a defined as in Eq. (1.28) and P and y given by,

/3 = J(qa4,qb,c qd)6qaqb+qcqd (1.29)
qa,qb,qc,qd

= IC(qa, qb, qc, qd, qeqf)6qa-qb+q-eqd (1.30)
qa,qb,qc,qd -qe-qf

,qe,qf

/3 and - do depend on the directions of the momentum vectors and to have as

small a free energy as possible, we would like to choose these directions of {1 a"} so

that / and y are as small as possible.

It is useful to understand how the coefficients behave as a function of 6Y. As can

be seen from Eq. (1.28), a is negative for 61 < Jp, with 6f,. given by,

A2SC
s 2, -- 0.754A 2sc (1.31)

and changes sign at Jp.. 3 and y do not change sign as a function of 6p, only their

magnitude becomes smaller as 61 increases [39]. The fact that a becomes positive at

bC, is of course not a coincidence. If / and y are positive, this implies that the value

of A at which Qcrystalline given in Eq. (1.23) is minimum is non-zero for 6p < 6p., and

zero for 6p 2 6,. There is a second order phase transition at 6
1 1, from the paired



phase to the unpaired phase as we increase J6 from below 6Jp. to above 6p,. Indeed,

for a single plane wave P and y are positive as we would expect from Figure 1-5. For

a structure which shows a second order transition, the value of A at the minimum of

Q is close to zero near the phase transition point, and a Ginzburg-Landau calculation

is quantitatively accurate near b/,..

For structures that have 3 negative and -y positive, the transition from the pairing

phase to the unpaired phase as we increase 6~, occurs at a 6p > 6pu,, and is a first

order transition. The Ginzburg-Landau expansion can not be quantitatively accurate

for such structures, but it can still tell us about qualitative features that make crystal

structures favorable.

From an analysis of several crystal structures in [39], the authors distilled two

principles that help restricting the myriad possibilities of crystalline condensates.

* If two momentum vectors qa and qb from the set {q} are at an angle less

than 67.10, then 3 and y are large and positive and the crystalline structure is

unfavorable. It is possible to understand this intuitively as follows. For each

qa, there is a corresponding pairing ring on the u (also d) Fermi surface, which

has an opening angle 67.10. If two momentum vectors make an angle close to,

or smaller than, 67.10, the pairing rings intersect each other and the structure

is unfavorable. When the two pairing rings intersect, the two pairing rings are

"competing" to pair the quarks that lie on their intersection.

* From Eqs. (1.29) and (1.30), we see that P and 7 are sums of integrals, where

the sums are taken to be over momentum vectors taken such that the net mo-

mentum added to the loop is zero. Highly symmetric crystal structures, which

have many sets of momentum vectors q such that the momentum conservation

condition can be satisfied, are favorable.

The most favorable set of momentum vectors features 8 momentum vectors in

{q} [39]. These point towards the vertices of a regular cube, forming a BCC reciprocal



lattice. In position space, the condensate varies like a FCC crystal structure,

a()2=2xa + + 2irA(x) =2A cos( (x + y + z)) + cos( (x - y + z))
a a

(1.32)
2ir 2ir 1+ cos(-(x + y - z)) + cos (

Here, a is the size of the cubic lattice and is given by

Jvq 4.536
6= M (1.33)

For 3P = A2sc/!V and taking a typical estimate for A2sc = 30MeV, we get a about

42fm.

For this structure both 8 and y are negative and the free energy is unbounded

from below if we stop the expansion to the sextic order. For the complete three

flavor case that we discuss now, when we include the strange quark, we find that

for the most favorable structures we find, the A4 coefficients are negative but the

A6 coefficients are positive. This implies that the free energy as a function of A is

bounded from below and we can minimize it and find the value of A (this is solving

the gap equation) and Q at the minimum. The transition to unpaired state from the

paired state is first order, and hence the calculation is not quantitatively reliable, but

this allows us to get an understanding of the magnitude of the free energy and A.

1.5.2 Three flavor crystalline pairing

The natural generalization of the two flavor ansatz to the case where the s quark is

included, is

(0,i(x),dtj (x)) oc A(Cy5 ),t 5 ~ •io l exp(2iq x) . (1.34)
I qaE{q,}

This features three condensates A,, A 2 and A3 corresponding to s - d, u - s and

u - d pairing respectively. (We have suppressed the color indices which can be found



from the color epsilon symbols in Eq. (1.34).) To each condensate I corresponds a set

of momentum vectors {q,} which dictates how it is modulated in space, specifying a

set of three crystal structures.

A simpler condensate of this form was first proposed by [44] who considered the

case where the three sets of momentum vectors contain one momentum vector each,

i.e. each condensate varies in space as a planewave. We generalized this in [46],

allowing for more complicated crystal structures. Chapter 2 is based on Ref. [46].

Here we review the main ideas and the central results from the chapter.

As was done in the two-flavor context by [39], we want to calculate and compare

the free energy expressions for several crystal structures, and find the ones that are

most favorable. Here the situation is more complicated because there are three crystal

structures. We can simplify the situation somewhat by making an approximation,

A1 = 0 [44, 45]. It is reasonable to expect that because the d and s Fermi surfaces

are twice as far apart from each other as each is from the intervening u Fermi surface,

the pairing between d and s quarks is smaller compared to the u - d and u - s pairing.

This means that we consider crystal structures in which there are two condensates

(ud) - A3 E exp (2iq3 r)
qE {q 3}

(us) A, exp (2iq -r) . (1.35)
q"E{q 2}

The search for favorable structures can be thought of as involving two steps. Choosing

candidate condensates for u-d pairing and for s- u pairing, and then trying to orient

them so as to get as favorable a structure as possible.

In Chapter 2 we calculate the free energies of the crystal structures in a Ginzburg-

Landau approximation. The expression for the free energy with the ansatz of (1.35)



has the form

Qcrystalline(A 2, A3) = P2a2 A2 +3 2 s4 + 31A34 32 12 2  3 12

+ (721A216 3+ - 3 A3 16 + Y322 IA3 12 i2 4 + 72331 A314 1A212

(1.36)

This form again follows from the desired symmetry under individual phase rotations

of the A2 and A3 condensates.

We can see from the expression Eq. (1.36) that if we set A2 to zero, treating only

(ud) pairing, we get back to the two-flavor Ginzburg-Landau analysis of Ref. [39].

This means that a3, P3 and -3 in Eq. (1.36) are exactly the same coefficients that

appear in the two flavor calculation and can be taken from [39]. The same conclusion

can be reached for a2, /2 and y2 by taking A3 = 0. Not only does this reduce our

work, but is important because it gives us a direction in our search for favorable

crystal structures. First of all since a2 and a3 have no "mixed" terms, determining

the magnitude of vectors in {q 2} and {q3 } by minimizing the quadratic coefficient

fixes the magnitudes of all the momentum vectors, Iql = 774~2 for all qj E {q2} and

Iq•l- = r•/3 for all qa e {q3}, with q = 1.1997.. as in the two-flavor case. Secondly,

if these two-flavor coeffecients are large and positive, meaning that the structures

formed by {q 2} and {q3} seen individually are unfavorable two-flavor structures,

then Ocrystalline receives large positive contributions from 32, 33, 72 and -y3, and the

combined structure is unlikely to be favorable unless there are some special cancella-

tions from the interactions of these condensates (no such cancellations are seen, see

Chapter 2).

The "mixed" coefficients, 323 and Y233 are new terms that encode the interac-

tion between the two condensates. From calculations of /23, Y233 a crucial general

conclusion emerges that the free energy of a candidate three-flavor crystal structure

becomes less favorable the closer any qa comes to the antipodes of any q'. This can

be understood using an argument similar to the one used when we discussed two-



Figure 1-6: This figure shows pairing rings for momentum vectors q' and q'. On the
left qa is parallel to qb and the pairing rings on the u Fermi surface, common to the
u - d and u - s pairing, are as far apart as they can be. On the right, qa and qb are
at the antipodes of each other and the pairing rings overlap on the u Fermi surface.

flavor crystalline pairing, namely structures are unfavorable when different pairing

rings compete for the same quarks by intersecting. Pairing rings corresponding to

two momentum vectors in the same set, say {q 3}, intersect when the two vectors

say qa and qb are closer to each other than 67.10. In the three flavor case, pairing

rings associated with momentum vector qa corresponding to u - d pairing, and qb

corresponding to u - s pairing can intersect on the common u Fermi surface if the

angle between the two vectors is larger than 180 - 67.10, i.e., when qa and qb are

close to the antipodes of each other (see Figure 1-6). As we will discuss in Chapter 2,
structures become more unfavorable the closer any qa comes to the antipodes of any

q3 and in Chapter 3 we will see this to be valid for simple "crystalline" condensates

containing two plane waves, even beyond the Ginzburg-Landau approximation.

The first observation begs us to consider the most favorable two-flavor crystal

structure we saw in the last Section, eight qas pointing towards the vertices of the

cube, for {q2} and {q3 }. But we need to be careful to orient the two crystals so as to

keep all the vectors qc as "far" from the antipodes of all the vectors q , as possible.

The best orientation we found was one where the cube corresponding to the {q2} is
obtained by the rotation of the cube corresponding to {q3 } by 45 degrees about an

axis passing through its center, and the center of a face (see Figure 4-1 in Chapter 4).



We call this structure 2Cube45z and it turns out to be one of the two most favorable

structures we find.

The other structure that turns out to be very robust has four vectors each in

{q 3} and {q 2). With a fewer number of vectors than in the cube, we are no longer

choosing the most favorable two-flavor structures for {q 2} and {q 3} (see Figure 4-1

in Chapter 4). But with fewer vectors, we can do a better job of keeping the vectors

in one set away from the antipodes of the vectors in the other set. The structure,

"CubeX", has four q9's and four qj's which together point at the eight corners of

a cube in momentum space and can be argued to be likely to be favorable (see

Chapter 2).

As we mentioned at the end of the previous Section is the case for CubeX and

2Cube45z, qcrystalline(A, A) is positive for large A for all the crystal structures that

we investigate because the A6 term is always positive. Hence we can use our sextic

Ginzburg-Landau expansion to evaluate A and Q at the minimum of Q(A, A) for all

the three-flavor structures that we analyze. We show in Figure 1-7 the free energies for

2Cube45z and CubeX, and how they compare with the homogeneous pairing phases.

We find that the 2Cube45z and the CubeX structures have large condensation

energies, easily 1/3 to 1/2 of that in the CFL phase with Ms = 0, which is 3A02/Lr 2.

This is remarkable, given the only quarks that pair are those lying on (admittedly

many) rings on the Fermi surfaces, whereas in the CFL phase with Ms = 0 pairing

occurs over the entire u, d and s Fermi surfaces.

The gCFL phase has a lower free energy than the CFL phase and unpaired quark

matter for M2/ 1 between 2A 0o and 5.7Ao, but as mentioned in Section 1.4.3, it is

unstable. We find that three-flavor crystalline color superconducting quark matter

has a lower free energy than both gCFL quark matter and unpaired quark matter

within a wide regime of density. For

M2
2.9Ao < M < 10.4A 0  (1.37)

the crystalline phase with one or other of the two crystal structures that we argue are
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Figure 1-7: Plot of the free energies of the crystalline phases 2Cube45z and CubeX,
and comparison with the homogeneous phases CFL and the gCFL. The zero is taken
to be the free energy of neutral unpaired quark matter. The "x" axis is M,/p which is
proportional to the splitting of the Fermi surfaces. At the very left, M/p -I 0, which
corresponds to asymptotically high densities. The CFL phase is the favored phase
in this regime. As we move towards the right, there is a stress on the CFL pairing.
The gCFL phase has a lower free energy than the CFL phase for M,/p > 2Ao, but
is unstable. In making the diagram, we have taken Ao, the gap parameter in the
CFL phase with Ms = 0, to be 25MeV, and p to be 500MeV. We see that the two
crystalline phases are favored over homogeneous pairing phases over a large range of
parameters.

most favorable has lower free energy (greater condensation energy) than CFL quark

matter, gCFL quark matter, and unpaired quark matter. This window in parameter

space is in no sense narrow.

If we take representative values of Ms and A0 , Ms = 250MeV and A0 = 25MeV,

then Eq. (1.37) translates into a window of p,

847MeV > p > 240MeV. (1.38)

In reality both Ms and Ao are functions of p, and taking this into account modifies

the window in t given by Eq. (1.38). See Ref. [131] for an analysis in which both



M,(p) and A,(y) are calculated self-consistently in an NJL model, confirming that

the window in p corresponding to (1.37) is broad indeed. Even though it may not

be quantitatively reliable, the breadth of the regime (1.38), corresponding to the

remarkable robustness of the two most favorable crystalline phases which can be

understood on qualitative grounds, makes it plausible that quark matter at densities

accessible in neutron stars, say with p - 350-500 MeV, will be in a crystalline phase.

(Unless A0 is closer to 100 than it is to 10, in which case quark matter at accessible

densities will be in the CFL phase.)

We can also see from Figure 1-7 that unless the Ginzburg-Landau approximation

is underestimating the condensation energy of the crystalline phase by about a factor

of two, there is a fraction of the "gCFL window" (with 2A 0 < M2/p < 2.9Ao, in

the Ginzburg-Landau approximation) in which no crystalline phase has lower free

energy than the gCFL phase. This is thus the most likely regime in which to find the

current-carrying meson condensates of Refs. [86, 87].

However there is a caveat. The Ginzburg-Landau approximation is an expansion

in small A and is valid if A < 6pi, where 6~ - M,2/(81p) and A is the gap parameter

of the crystalline color superconducting phase which minimizes the free energy. We

can see from Figure 1-8 that the most favored crystal structures can have A/6• as

large as - 1/2, meaning that we are pushing the approximation hard and so should

not trust it quantitatively.

In Chapter 3 [45], we analyze a particularly simple one parameter family of "crys-

tal" structures in three-flavor quark matter. We consider the case when {q 2} contains

a single vector q 2 and similarly {q3} contains a single vector q3-. From rotational in-

variance, the free energy of the "crystal" structure can depend only on the magnitudes

of q 2 and q3 , and the angle between them, which we call q. We can calculate the

free energies of this family of condensates in the Ginzburg-Landau approximation by

calculating /2,3,23 and 72,3,233,322. But it turns out that we can do the calculation

without making an expansion in A for this family of condensates, which allows us to

check the "goodness" of the approximation in this simple setting.

The transition from these two-planewave structures to unpaired quark matter is
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Figure 1-8: Plot of the gap parameter of the crystalline phases 2Cube45z and CubeX,
and comparison with the homogeneous phases CFL.and the gCFL. We can see that
A0 is equal to 25MeV, and we take u to be 500MeV as for the free energy plot. The
value of the gap parameters we obtain for these crystalline condensates is very large,
up to A0/2.

second order. We find that the approximation works best close to the second order

point where A tends to zero, which is no surprise. We also find that, at least for the

simple crystal structures, when it breaks down it always underestimates the gap A

and the condensation energy, and is in this sense conservative. Furthermore, we find

that the Ginzburg-Landau approximation correctly determines which crystal struc-

ture among the one parameter family has the largest gap and lowest free energy. We

shall see, however, that the range of validity of the Ginzburg-Landau approximation

does depend on the crystal structure.

In general, a Ginzburg-Landau expansion is likely to be dubious precisely in the

cases of interest: if a crystalline phase exists with a free energy lower than that of the

gCFL phase, such a phase will be characterized by robust pairing meaning that A will

not be much smaller than A0. This means that to rigorously show the favorability of

crystalline superconductivity over gCFL matter, we need to do a beyond Ginzburg-



Landau calculation. Recently progress has been made towards the calculation of

the free energy of crystalline superconductors without using the Ginzburg-Landau

approximation [77, 78, 79, 80] in condensed matter systems. We are investigating the

application of their techniques to the quark matter context.

But the robustness of these phases (Figure 1-7) and the wide window where they

are favorable in (1.37), as well as the evidence from Chapter 3 that at least in some

cases the Ginzburg-Landau approximation is conservative, motivates us to look at the

implication of their existence in the cores of neutron stars, for their phenomenology.

1.6 What neutron stars can tell us about color su-

perconductivity

The only place in nature where we expect to find cold dense quark matter is at the

cores of neutron stars [49, 51, 52]. These are extremely dense objects, carrying a mass

of around 1 - 2Me, bound by gravitational interaction in an approximately spherical

region of radius about 10km. Most of this mass is baryonic and hence these compact

objects are valuable testing grounds for theories about dense baryonic matter.

For example, measurements of the mass and radii of neutron stars can tell us about

the Equation of State (EoS), i.e. the relation between the pressure and the energy

density of dense matter [53]. The interior of a neutron star is under hydrostatic

equilibrium under the attractive force of gravity and a balancing pressure in the

matter. (We ignore, for the sake of discussion, effects due to rotation, magnetic

forces etc.) The relation that mathematically expresses this equilibrium is known

as the Tolman-Oppenheimer-Volkoff (TOV) equation and can be solved for a given

EoS to give the structure of the neutron star. The relation between the mass and

the radius of neutron stars can then be compared with experimental observations.

Masses have been measured for about 40 neutron stars [51], but the observation of

their radii is much more difficult.

At zero temperature the pressure of the system is just the negative of the free



energy density. In a color superconducting phase this is determined largely by the

free energy of unpaired quark matter, which goes as 1A4 . Pairing is a Fermi surface

phenomenon and its contribution is much less, proportional to p2A2. Hence the first

guess would be that color superconductivity will not have a major effect on the EoS of

quark matter. But the situation is more subtle than that because the contribution to

the free energy from the "bag" constant may cancel the contribution from unpaired

quark matter and the pairing contribution can be important [53]. By studying the

structure of hybrid stars, model neutron stars with a quark matter core, authors of

Ref. [50] found that for certain choice of parameters these hybrid stars could have

the same mass-radius relation as a star without any deconfined quark matter. Their

results suggest that this would be a difficult way to learn whether cores of neutron

stars have quark matter cores or not.

Another possible example of how observing the structure of neutron stars can elu-

cidate features in the phase diagram of dense QCD, is the observation of gravitational

radiation from the inspiral of a neutron star in a binary system. Baryon density (and

correspondingly the baryon number chemical potential) increases as we descend into

a neutron star. The presence of a sharp phase transition in the phase diagram -

possibly between hadronic and quark matter - lying at a chemical potential some-

where between its value close to the surface and the value at the core, should show

up as a sudden change in the density profile of the star. This may be picked up in the

pattern of gravitational waves emitted during the inspiral which may show features

at two different times, corresponding to the merger of the outer layer and the inner

core respectively.

Such observations may help us indirectly to conclude if deconfined quark matter is

present in neutron stars. But color superconductivity has a more direct consequence

on the cooling and transport properties of neutron stars, than its structure. This

is because superconductivity dramatically changes the low energy spectrum of the

quasiparticles in the system, which determines these properties. One aspect that has

been explored in literature is the cooling of neutron stars. Neutron stars lose a large

percent of the gravitational energy they gain after the supernova explosion in the form



of neutrinos, and within seconds their temperature drops to a few 100s of KeV. This

is followed by a period of more gradual cooling [108] via indirect neutrino emission,

which lasts for about a million years. The two microscopic properties that determine

rate of cooling are neutrino emisivity and the specific heat. If they are kinematically

allowed, the fastest way to create neutrinos that can carry away energy are the direct

URCA processes, which give a fast neutrino emissivity E, - T6 [105]. Direct URCA

processes are kinematically suppressed in ordinary nuclear matter consisting only of

protons and neutrons, and neutrino emission occurs via indirect URCA processes giv-

ing a smaller emissivity, E, - T 8. But other effects in dense nuclear matter, like the

presence of hyperons, can allow direct URCA processes. Direct URCA processes are

also allowed for unpaired quark matter. CFL pairing introduces a gap in the quasi-

particle excitation spectrum and thus the direct URCA processes are suppressed. But

phases that feature some gapless excitations of quarks, allow direct URCA processes

and therefore cool at a fast rate.

The first steps toward calculating the cooling rate for neutron stars carrying three

flavor crystalline quark matter were taken in Ref. [104]. Because the crystalline phases

leave some quarks at their respective Fermi surfaces unpaired, it seems likely that

their neutrino emissivity and heat capacity will be only quantitatively smaller than

those of unpaired quark matter [105], not parametrically suppressed. This suggests

that neutron stars with crystalline quark matter cores will cool by the direct URCA

reactions, i.e. more rapidly than in standard cooling scenarios [106]. However, as

we mentioned above, many other possible core compositions can open phase space

for direct URCA reactions, making it unlikely that this will lead to a distinctive

phenomenology [107].

There is one property that all homogeneous phases of matter proposed as can-

didates for the composition of neutron star cores have in common. They are fluid

which means that they can not respond elastically to a shearing force. One of the

main results that we will show in Chapter 4 is that crystalline phases are rigid solids,

making them unique phases of dense QCD. This may lead to distinct phenomenology.

In Chapter 4, we study the elastic properties of the CubeX and the 2Cube45z



crystalline phases of three-flavor quark matter. We will evaluate the shear moduli

of these two structures by computing, in the Ginzburg-Landau approximation, the

effective Lagrangian for the phonon modes which emerge due to the spontaneous

breaking of translation invariance by the crystalline condensates. (See Ref. [101, 102]

for analyses of phonons in 2-flavor crystalline color superconducting phases.) The

shear modulus is related to the coefficients of the spatial derivative terms that appear

in the phonon effective Lagrangian. When these two crystalline phases are subject to

shear stresses, they behave like rigid solids with shear moduli between 20 and 1000

times larger than those characteristic of conventional neutron star crusts.

At the same time the crystalline color superconducting phases are superfluids:

their condensates all spontaneously break the U(1)B symmetry corresponding to

quark number. (We shall always write the condensates as real. The choice of over-

all phase breaks U(1)B, and long wavelength gradients in this phase correspond to

supercurrents.)

The possibility that quark matter could occur in a solid phase has been raised

previously by Xu [134]. He and his collaborators have explored some astrophysical

consequences of a speculation that the quarks themselves could somehow be arranged

in a crystalline lattice. The crystalline color superconducting phase is very different

in character: being a superfluid, the quarks are certainly not frozen in place. Instead,

what forms a crystalline pattern is the magnitude of the pairing condensate. Although

it was clear prior to the present work that in this phase translational invariance is

broken just as in a crystal, given that this phase is at the same time a superfluid it

was not clear (at least to us) whether it was rigid. Here, we demonstrate by explicit

calculation that this phase, which as we have discussed is plausibly the only form of

quark matter that arises at densities reached within neutron star cores, is rigid indeed.

Its shear modulus is parametrically of order A2 yu2, which could have been guessed on

dimensional grounds. The shear modulus is in no way suppressed relative to this

natural scale, even though the crystalline color superconducting phase is superfluid.

As we shall discuss further in Chapter 4, that the crystalline phases are rigid

as well as superfluid, may have significance for a particular aspect of neutron star



phenomenology. Namely (as suggested in reference [39]), pulsar glitches may originate

in a rigid crystalline superconducting core. A spinning neutron star observed as a

pulsar gradually spins down as it loses rotational energy to electromagnetic radiation.

But, every once in a while the angular velocity at the crust of the star is observed to

increase suddenly in a dramatic event called a glitch. The standard explanation [109,

110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121] for their occurrence requires

the presence of a superfluid in some region of the star which also features a rigid

array of spatial inhomogeneities which can pin the rotational vortices in the rotating

superfluid. In the standard explanation of pulsar glitches, these conditions are met

in the inner crust of a neutron star which features a crystalline array of positively

charged nuclei bathed in a neutron superfluid (and a neutralizing fluid of electrons).

The angular momentum of the rotating superfluid is proportional to the density of

vortices, meaning that as the star as a whole slows the vortices "want" to move

apart. As they are pinned to a rigid structure, they cannot. Hence, this superfluid

component of the star is spinning faster than the rest of the star. After sufficient

time, when the "tension" in the vortices in some region reaches a critical point, there

is a sudden "avalanche" in which vortices unpin and rearrange, reducing the angular

momentum of the superfluid. The rest of the star, including in particular the surface

whose angular velocity is observed, speeds up. We see that this mechanism requires

superfluidity coexisting with a structure that is rigid enough that it does not easily

deform when vortices pinned to it seek to move, and an adequate pinning force which

pins vortices to the rigid structure in the first place.

In Chapter 4 we will see that the crystalline phases are rigid. Furthermore, it is

reasonable to expect that the superfluid vortices that will result when crystalline color

superconducting phases are rotated will have lower free energy if they are centered

along intersections of nodal planes of the crystal structure, i.e. along lines along

which the condensate already vanishes even in the absence of a rotational vortex.

By virtue of being simultaneously superfluids and rigid solids, then, the crystalline

phases of quark matter provide all the necessary conditions to be the locus in which

(some) pulsar glitches originate. In Chapter 4, we also provide a crude estimate of



the pinning force and find that it is comparable to the corresponding value for a

neutron star crust. Together, our calculation of the shear modulus and estimate of

the pinning force make the core glitch scenario worthy of quantitative investigation.

The central questions that remain to be addressed are the explicit construction of

vortices in the crystalline phase and the calculation of their pinning force, as well as

the timescale over which sudden changes in the angular momentum of the core are

communicated to the (observed) surface, presumably either via the common electron

fluid or via magnetic stresses.

Finally, the advent of gravity wave detectors opens a new possibility for unique

signatures of the presence of rigid matter within neutron stars, independent of tran-

sient phenomena like glitches [135]. LIGO has already set limits on the steady-state

gravity wave emission from 78 nearby pulsars [136], and these limits will become more

stringent. Owen's work [135] shows that if an entire neutron star were solid, with a

shear modulus as large as that we find for crystalline color superconducting quark

matter, it could in principle support a quadrupole moment large enough such that

the resulting gravity waves would already have been detected. This suggests that as

the observational upper limits improve, the size of a putative rigid crystalline color

superconducting quark matter core could be constrained. However, Owen's estimates

for a star that is rigid in its entirety cannot be applied straightforwardly to the case

where there is a rigid core surrounded by a fluid "mantle". Oblateness about the

rotational z-axis is not enough to generate gravity waves; the quadrupole moment

must be mis-aligned, such that the moment of inertia tensor satisfies I. -L Iy. It is

hard to imagine how this could come about for a rigid quark matter core, whose shape

will equilibrate to follow an equipotential surface via converting core material into

mantle material or vice versa as needed at different locations along the core/mantle

interface. Nevertheless, this line of enquiry warrants careful investigation.



Chapter 2

The crystallography of color

superconducting quark matter.

2.1 Overview

In this chapter, we analyze and compare candidate crystal structures for the crys-

talline color superconducting phase in three-flavor quark matter. We determine the

gap parameter A and free energy Q(A) for many possible crystal structures within

a Ginzburg-Landau approximation, evaluating Q(A) to order A6. In contrast to the

two-flavor case, we find a positive A6 term and hence an P(A) that is bounded from

below for all the structures that we analyze. This means that we are able to evaluate

A and Q as a function of the splitting between Fermi surfaces for all the structures

we consider. We find two structures with particularly robust values of A and the con-

densation energy, within a factor of two of those for the CFL phase which is known to

characterize QCD at asymptotically large densities. The robustness of these phases

results in their being favored over wide ranges of density. However, it also implies

that the Ginzburg-Landau approximation is not quantitatively reliable. We develop

qualitative insights into what makes a crystal structure favorable, and use these to

winnow the possibilities. The two structures that we find to be most favorable are

both built from condensates with cubic symmetry.



2.2 Outline

The chapter is organized as follows. In Section 2.3, we shall specify the model we

use and the simplifying assumptions we make, valid for A <« A0 . One simplifying

assumption that we make is that A2 and A3 are equal in magnitude, an assumption

which is related to how electric neutrality is maintained. In Appendix A , we use

our results to confirm the validity of this assumption. In Section 2.4 we introduce

the Ginzburg-Landau expansion of the free energy, deferring the derivation of the

expressions for the Ginzburg-Landau coefficients to Section 2.5 and their evaluation

to Section 2.6. We give our results in Section 2.7, which suggest that cold quark

matter at densities that may be present in the cores of neutron stars, may exist in

the crystalline color superconducting phase. We therefore look ahead at possible

implications on neutron star phenomenology in Section 2.8.

2.3 Model, simplifications and ansatz

2.3.1 Neutral unpaired three-flavor quark matter

We shall analyze quark matter containing massless u and d quarks and s quarks with

an effective mass M,. (Although the strange quark mass can be determined self-

consistently by solving for an (9s) condensate [65, 128, 129, 130, 131], we shall leave

this to future work and treat M8 as a parameter.) The Lagrangian density describing

this system in the absence of interactions is given by

L'o = O i "-1Mj++4 ) j6 o , (2.1)

where i,j = 1, 2, 3 are flavor indices and a, 3 = 1,2, 3 are color indices and we have

suppressed the Dirac indices, where Mij' = 50p diag(0, 0, M,)~j is the mass matrix,

where 6C. = O6'P6S, and where the quark chemical potential matrix is given by

8= (Oij - IeijQr)6 + 63 (P3T• + _ T•,A8 (2.2)



with Q = diag(2/3, -1/3, -1/3)ij the quark electric-charge matrix and T3 and Ts the

Gell-Mann matrices in color space. We shall quote results at quark number chemical

potential p = 500 MeV throughout.

In QCD, 1p, P3 and Ps are the zeroth components of electromagnetic and color

gauge fields, and the gauge field dynamics ensure that they take on values such that

the matter is neutral [33, 88], satisfying

S- - =0, (2.3)
c9Pe OP3 aOP8

with Q the free energy density of the system. In the NJL model that we shall employ,

in which quarks interact via four-fermion interactions and there are no gauge fields, we

introduce Pe, P3 and Ps by hand, and choose them to satisfy the neutrality constraints

(2.3). As we discussed in Chapter 1, the requirement of weak equilibrium is satisfied

with t, as the chemical potential for electrons in the system.

We found in Chapter 1, Section 1.4.1, that to the lowest order in M2f1 2, in neutral

unpaired quark matter, the u, d and s quarks can all be treated as massless with

chemical potentials,

Pd = u+ 26 P3

Pu PF

p, = p, - 2 6P2 (2.4)

with

6 p3 = 6 •2 = - . (2.5)8p

The choice of subscripts indicates that 26P2 is the splitting between the Fermi sur-

faces for quarks 1 and 3 and 25p 3 is that between the Fermi surfaces for quarks 1 and

2, identifying u, d, s with 1, 2, 3. (The prefactor 2 in the equations defining the 6p's is

chosen to agree with the notation used in the analysis of crystalline color supercon-

ductivity in a two flavor model [34], in which the two Fermi surfaces were denoted by



/ + J~ meaning that they were separated by 26p.)

The equality of 6P2 and 6P3 is only valid to leading order in M2; at the next

order, Pe = M2/(4p/) - M/(48/13) and 6I/3 = /e/2 while 6/12 = /3 + M3/(16/ 3 ).

In Section 2.6, we will utilize the fact that 6/42 and 6P3 are close to equal, but not

precisely equal. The consequences of the fact that the splitting between the u and s

Fermi surfaces is slightly larger than the splitting between the u and d Fermi surfaces

were explored in Ref. [130].

2.3.2 Crystalline color superconductivity in neutral three-

flavor quark matter

As we discussed in Chapter 1 we consider a condensate of the form

3

(Oiac(x)C75Oj(x)) o? Ale2iq, raD lij , (2.6)
I=1 q E{q1 }

where q', q2 and q' and A,, A2 and A3 are the wave vectors and gap parameters

describing pairing between the (d, s), (u, s) and (u, d) quarks respectively, whose

Fermi momenta are split by 26p1, 26/12 and 2613 respectively. From (2.4), we see

that S1/2 = 6/13 = 6p/1/2 = M2/(81/). For each I, {qI} is a set of momentum vectors

that define the periodic spatial modulation of the crystalline condensate describing

pairing between the quarks whose flavor is not I, and whose color is not I. Our goal

in this paper is to compare condensates with different choices of {q,}s, that is with

different crystal structures. To shorten expressions, we will henceforth write

Z7 E~ (2.7)
qI qE{ql}

We will calculate the free energy of phases with condensate Eq. (2.6) in the weak

coupling (namely A0, 6•/ </ p) and Ginzburg-Landau (namely A < A0 , J6/) approxi-

mations througout.

The analysis of neutrality in three-flavor quark matter in a crystalline color su-



perconducting phase is very simple in the Ginzburg-Landau limit in which A K< 6p:

because the construction of this phase does not involve rearranging any Fermi mo-

menta prior to pairing, and because the assumption A < 6P implies that the pairing

does not significantly change any number densities, neutrality is achieved with the

same chemical potentials p~ = M2/(4p) and P3 = p8 = 0 as in unpaired quark mat-

ter, and with Fermi momenta given in Eq. (2.4) as in unpaired quark matter. This

result is correct only in the Ginzburg-Landau limit.

In the derivation of the Ginzburg-Landau approximation in Section 2.5, we shall

make no further assumptions. However, in Sections 2.6 and 2.7 when we evaluate

the Ginzburg-Landau coefficients and give our results, we shall make the further

simplifying assumption that A1 = 0. Given that Sp1 is twice 6P2 or 6P3, it seems

reasonable that A1 < A2, A3. We leave a quantitative investigation of condensates

with A1 $ 0 to future work.

2.3.3 NJL Model, and Mean-Field Approximation

We shall work throughout in a Nambu-Jona-Lasinio (NJL) model in which the QCD

interaction between quarks is replaced by a point-like four-quark interaction, with

the quantum numbers of single-gluon exchange, analyzed in mean field theory. This

is not a controlled approximation. However, it suffices for our purposes: because this

model has attraction in the same channels as in QCD, its high density phase is the

CFL phase; and, the Fermi surface splitting effects whose qualitative consequences

we wish to study can all be built into the model. This makes the NJL model valuable

for making the comparisons that are our goal. Note that we shall assume throughout

that A0 < p. This weak coupling assumption means that the pairing is dominated

by modes near the Fermi surfaces. Quantitatively, this means that results for the

gaps and condensation energies of candidate crystalline phases are independent of

the cutoff in the NJL model when expressed in terms of the CFL gap A0 : if the cutoff

is changed with the NJL coupling constant adjusted so that A0 stays fixed, the gaps

and condensation energies for the candidate crystalline phases also stay fixed.



The NJL interaction term added to the Lagrangian (2.1) is

£interaction= - 8 G( F )(PAv) , (2.8)

where we have suppressed the color and flavor indices that we showed explicitly in

(2.1), and have continued to suppress the Dirac indices. The full expression for IrA is

(FAv)ai,pj = YV(TA)apij, where the TA are the color Gell-Mann matrices. The NJL

coupling constant G has dimension -2, meaning that an ultraviolet cutoff A must be

introduced as a second parameter in order to fully specify the interaction. Defining A

as the restriction that momentum integrals be restricted to a shell around the Fermi

surface, p - A < IpI < p + A, the CFL gap parameter can then be evaluated: [9, 39]

Ao = 2 A exp -2 .G (2.9)

We shall see in subsequent Sections that in the limit in which which A < Ao, 6- <« IL,

all our results can be expressed in terms of Ao; neither G nor A shall appear. This

reflects the fact that in this limit the physics of interest is dominated by quarks near

the Fermi surfaces, not near A, and so once A0 is used as the parameter describing

the strength of the attraction between quarks, A is no longer visible; the cutoff A only

appears in the relation between Ao and G, not in any comparison among different

possible paired phases. In our numerical evaluations in Section 2.7, we shall take

= = 500 MeV, A = 100 MeV, and adjust G to be such that Ao is 25 MeV.

In the mean-field approximation, the interaction Lagrangian (2.8) takes on the

form

Cinteraction = l-A(x)iT + -1 IT(x) , (2.10)
2 2

where A(x) is related to the diquark condensate by the relations

A(x) = 3GPAv ( T) (rAV)T

A(x) = G(f T  (2.11)

= yoat(x) y



The ansatz (2.6) can now be made precise: we take

A(x) = ACF(x) 0 C 5 , (2.12)

with
3

AcF(X)ai,fj = E A(q )e2iq"-rCflaOiJ . (2.13)
I=1 qI

We have introduced notation that allows for the possibility of gap parameters A(qa)

with different magnitudes for different I and for different a. In fact, we shall only

consider circumstances in which A(qa) = A1, as in (2.6). However, it will be very

convenient in subsequent Sections to keep track of which A1 in a complicated equation

"goes with" which q , making this notation useful.

The full Lagrangian, given by the sum of (2.1) and (2.10), is then quadratic and

can be written very simply upon introducing the two component Nambu-Gorkov

spinor

S= and hence 2 = 7 ~T , (2.14)

in terms of which

io + 9 A(x)L 2 X X (2.15)2 n (() (i~ - )

Here, g =- uyo and p is the matrix (2.2), which we have argued simplifies to

p = 6"' 0 diag (p, Pd, , s) (2.16)

with the flavor chemical potentials given simply by (2.4). In subsequent Sections, we

shall also often use the notation /i - io, with i = 1, 2, 3 corresponding to u, d, s

respectively.



The propagator corresponding to the Lagrangian (2.15) is given by

(x(X)V(X'))=( (p()()) (¢(x)¢T(x'))
(2.17)

SiG(x, x') iF(x, x')

iF(x, x') iG(x, x')

where G and G are the "normal" components of the propagator and F and P are the

"anomalous" components. They satisfy the coupled differential equations

( i+ A ) G(x,x') F(x,x')
A(x) (io - )T F(X, x') G(x, x')

(2.18)
1 0)(4)(X- X)

0 1

We can now rewrite (2.11) as

A(x) = 3iGFrAF(x, z)(rFA)T
4 (2.19)

A(x) = 3iG(rA)TP(x, X)rFA ,4

either one of which is the self-consistency equation, or gap equation, that we must

solve. Without further approximation, (2.19) is not tractable. It yields an infinite set

of coupled gap equations, one for each A(qa), because without further approximation

it is not consistent to choose finite sets {qi}. When several plane waves are present in

the condensate, they induce an infinite tower of higher momentum condensates [39].

The reason why the Ginzburg-Landau approximation, to which we now turn, is such

a simplification is that it eliminates these higher harmonics.



2.4 Ginzburg-Landau Approximation: Introduc-

tion

The form of the Ginzburg-Landau expansion of the free energy can be derived using

only general arguments. This, combined with results for two-flavor crystalline color

superconductivity from Ref. [39], will allow us to draw some partial conclusions in

this Section.

We shall only consider crystal structures in which all the vectors qf in the crystal

structure {qi} are "equivalent". By this we mean that a rigid rotation of the crystal

structure can be found which maps any qa to any other q' leaving the set {qi}

invariant. For such crystal structures, A(qa) = Ay, meaning that the free energy

is a function only of A,, A2 and A3. As explained in Section 2.3.2, the chemical

potentials that maintain neutrality in three-flavor crystalline color superconducting

quark matter are the same as those in neutral unpaired three-flavor quark matter.

Therefore,

Qcrystalline " Qunpaired + 1 (A, A2, A 3 ) , (2.20)

with Qunpaired given in Chapter 1 (1.7) with [Se = M,2/(4p), and with Q(0, 0, 0) = 0.

Our task is to evaluate the condensation energy f(A,, A2 3). Since our Lagrangian

is baryon number conserving and contains no weak interactions, it is invariant under

a global U(1) symmetry for each flavor. This means that Q must be invariant under

A, -- eiO'A 1 for each I, meaning that each of the three AI's can only appear in

the combination A*A1 . (Of course, the ground state can and does break these U(1)

symmetries spontaneously; what we need in the argument we are making here is only

that they are not explicitly broken in the Lagrangian.) We conclude that if we expand



Q(A, A2, A3 ) in powers of the AI's up to sextic order, it must take the form

+ C p ( I(A;AI)2 + Z fIJ AIAIAAj)j

2I I>J

+ ( ,(A*AI) 3 + E YJJ I*,A AJ* Aj + 7123 1 Al 2A *A3

(2.21)

where we have made various notational choices for later convenience. The overall

prefactor of 2jL2/7r2 is the density of states at the Fermi surface of unpaired quark

matter with M, = 0; it will prove convenient that we have defined all the coefficients

in the Ginzburg-Landau expansion of the free energy relative to this. We have defined

PI = dim(qj}, the number of plane waves in the crystal structure for the condensate

describing pairing between quarks whose flavor and color are not I. Writing the pref-

actor Pr multiplying the quadratic term and writing the factors of 1 and 1 multiplying

the quartic and sextic terms ensures that the a,, /3 and 7y coefficients are defined the

same way as in Ref. [39]. The form of the Ginzburg-Landau expansion (2.21) is model

independent, whereas the expressions for the coefficients a,, f0, 3IJ, 77, 7•yj and 7123

for a given ansatz for the crystal structure are model-dependent. In Section 2.5 we

shall derive the Ginzburg-Landau approximation to our model, yielding expressions

for these coefficients which we then evaluate in Section 2.6.

We see in Eq. (2.21) that there are some coefficients - namely a,, 0, and 7y

- which multiply polynomials involving only a single A,. Suppose that we keep a

single AI nonzero, setting the other two to zero. This reduces the problem to one

with two-flavor pairing only, and the Ginzburg-Landau coefficients for this problem

have been calculated for many different crystal structures in Ref. [39]. We can then

immediately use these coefficients, called a, / and - in Ref. [39], to determine our



al, fI and yI. Using az as an example, we conclude that

aj = a(qj, SJA) = -1+ ailog +i

1 / A2 o2_q_ q - J) (2.22)
-log 2SC2 4(q, - 6A2) '

where S~pI is the splitting between the Fermi surfaces of the quarks with the two

flavors other than I and q, = Iqal is the length of the q-vectors in the set {qI}.

(We shall see momentarily why all have the same length.) In (2.22), A2sc is the gap

parameter in the BCS state obtained with JAI = 0 and A, nonzero with the other

two gap parameters set to zero. Assuming that A0o </ , this gap parameter for 2SC

(2-flavor, 2-color) BCS pairing is given by [54, 9]

1

A2sc = 2A 0o . (2.23)

For a given 611, and A0o, a, given in (2.22) is minimized when [90, 34, 39]

q, = r• 6I with r = 1.1997 . (2.24)

In the Ginzburg-Landau approximation, in which the Az are assumed to be small, we

must first minimize the quadratic contribution to the free energy, before proceeding

to investigate the consequences of the quartic and sextic contributions. Minimizing

a, fixes the length of all the q-vectors in the set {qI}, thus eliminating the possibility

of higher harmonics. It is helpful to imagine the (three) sets {q,} as representing the

vertices of (three) polyhedra in momentum space. By minimizing ac, we have learned

that each polyhedron {q,} can be inscribed in a sphere of radius 7j61 i. From the

quadratic contribution to the free energy, we do not learn anything about what shape

polyhedra are preferable. In fact, the quadratic analysis in isolation would indicate

that if a, < 0 (which happens for J6iA < 0.754 A2sc) then modes with arbitarily many

different 4l's should condense. It is the quartic and sextic coefficients that describe

the interaction among the modes, and hence control what shape polyhedra are in fact



preferable.

The quartic and sextic coefficients /3 and 7y can also be taken directly from the

two-flavor results of Ref. [39]. They are given by //6S2 and ,7/6p' where 3 and I are

dimensionless quantities depending only on the directions of the vectors in the set

{q,}. They have been evaluated for many crystal structures in Ref. [39], resulting in

two qualitative conclusions. Recall that, as reviewed in Chapter 1 , the presence of a

condensate with some qa corresponds to pairing on a ring on each Fermi surface with

opening angle 67.10. The first qualitative conclusion is that any crystal structure in

which there are two 4,'s whose pairing rings intersect has very large, positive, values

of both /3 and y~, meaning that it is strongly disfavored. The second conclusion is

that regular structures, those in which there are many ways of adding four or six

4a's to form closed figures in momentum space, are favored. Consequently, according

to Ref. [39] the favored crystal structure in the two-flavor case has 8 4t3's pointing

towards the corners of a cube. Choosing the polyhedron in momentum space to be a

cube yields a face-centered cubic modulation of the condensate in position space.

Because the /3 and y7 coefficients in our problem can be taken over directly from

the two-flavor analysis, we can expect that it will be unfavorable for any of the three

sets {q,} to have more than eight vectors, or to have any vectors closer together than

67.10. At this point we cannot exclude the possibility that the large positive 0/ and -y

indicating an unfavorable {q,} could be offset by large negative values for the other

coefficients which we cannot read off from the two-flavor analysis. However, what we

shall instead find in Section 2.7 is that 3IJ and YIIJ are positive in all cases that we

have investigated. This means that we know of no exceptions to the rule that if a

particular {qI} is unfavorable as a two-flavor crystal structure, then any three-flavor

condensate in which this set of q-vectors describes either the Al, A2 or A3 crystal

structure is also disfavored.

In Section 2.5 we shall use our microscopic model to derive expressions for all

the coefficients in the Ginzburg-Landau expansion (2.21), including rederiving those

which we have taken above from the two-flavor analysis of Ref. [39]. The coefficients

that we cannot simply read off from a two-flavor analysis are those that multiply terms



involving more than one A, and hence describe the interaction between the three

different Ai's. Before evaluating the expressions for the coefficients in Section 2.6,

we shall make the further simpifying assumption that A, = 0, because the separation

6~
1 between the d and s Fermi surfaces is twice as large as that between either and

the intervening u Fermi surface. This simplifies (2.21) considerably, eliminating the

7123 term and all the PIJ and TyIJ terms except /32, 7223 and 7332.

2.5 The Ginzburg-Landau approximation: Deriva-

tion

We now derive the Ginzburg-Landau approximation to the NJL model specified in

Section 2.3.3 . We proceed by first making a Ginzburg-Landau approximation to the

gap equation, and then formally integrate the gap equation in order to obtain the

free energy, since the gap equation is the variation of the free energy with respect to

the gap parameters.

The gap equation (2.19) with which we closed Section 2.3 is an infinite set of

coupled equations, one for each A(qa), with each equation containing arbitrarily high

powers of the A's. In order to make a Ginzburg-Landau expansion, order by order in

powers of the A's, we first integrate (2.18), obtaining

G(x, x') = G(°)(x, x') - d4z G(0 )(x, z)A(z)F(z, x')J (2.25)
F(x, x') = - d4z 0(o)(x, z) A(z)G(z, x')

with G(O) = (io + g)-1 and 0(0) = ((io - i)T)-l. We then expand these equations

order by order in A(x) by iterating them. To fifth order, for P we find

F = O(O)AG(0) - O(O)AG(O)nA(0)AG(0)

O(O)AG(O)A-(O)AG(O)AO(O)AG(O) + 0(A 7) (2.26)

where we have suppressed space-time coordinates and integrals for simplicity. We
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Figure 2-1: The gap equation. The labels a, / represent the external color indices
and i, j represent the external flavor indices. All the other color-flavor indices are
contracted. ACF (and AtCF) are matrices of the form (2.13) and carry the same color
and flavor indices as the neighbouring propagators. The dashed lines represent the
propagator (iZ - 9i)- 1 and the solid lines represent (io + g) - 1. Evaluating the gap
equation involves substituting (2.13) for ACF, doing the contraction over the internal
color-flavor indices, and evaluating the loop integrals in momentum space.

then substitute this expansion for F into the right-hand side of the gap equation for

A(x) in (2.19). After using the C7y Dirac structure of our ansatz (2.12) and the

identity C(-")TC- 1 = -7y to simplify the expression, we obtain the gap equation

satisfied by AcF(x), the part of our ansatz (2.12,2.13) that describes the color, flavor

and spatial form of our condensate. To order A5, we find

AtF -3iG 1(ta)T 1
CF 4 CF I4 i

1 1 A 1 At 1
CF i FCF

1 1 1 1 1i
+ At 1 AF At ACF AtF t

(2.27)

where the differential operators act on everything to their right and where we have

continued to simplify the notation by not writing the space-time, color and flavor

arguments of the ACF's and by not writing the integrals. We then use the color Fierz

a I U '



identity

(ta) ,a/(ta)0,0 = (- 6c,5'a63, + 256aio,) (2.28)

to rewrite (2.27) as shown diagrammatically in Fig. 2-1.

As written in (2.27) and shown in Fig. 2-1, what occurs on the left-hand side of

the gap equation is the space-dependent condensate from (2.13),

ACF(X)ai,3j = EIaO/EIij Y A*(q )e- 2 iPr ' (2.29)

I q

whereas we now wish to turn the gap equation into a set of coupled equations for

the constants A(qa). Doing so requires simplification of the color-flavor structure

of the right-hand side. Our ansatz for the color-flavor structure of the condensate,

on the left-hand side, is antisymmetric in both color and flavor. However, direct

evaluation of the right-hand side yields terms that are symmetric in color and flavor,

in addition to the desired terms that are antisymmetric in both. This circumstance is

familiar from the analysis of the CFL phase [21, 9], whose color-flavor structure we are

after all employing. In the presence of a color and flavor antisymmetric condensate,

a symmetric condensate must also be generated because doing so does not change

any symmetries. The same argument applies here also. In the CFL phase, the

symmetric condensate is both quantitatively and parametrically suppressed relative

to the antisymmetric condensate, which is understandable based on the basic fact

that the QCD interaction is attractive in the antisymmetric channel and repulsive

in the symmetric channel. We therefore expect that here too if we were to include

color and flavor symmetric condensates in our ansatz and solve for them, they would

prove to be suppressed relative to the antisymmetric condensates, and furthermore

expect that, as in the CFL phase, their inclusion would have negligible impact on

the value of the dominant antisymmetric condensate. Hence, we drop the color and

flavor symmetric terms occurring on the right-hand side of the gap equation. Upon

so doing, the right-hand side of the gap equation, which we denote Rai,pj, has the



structure

Rai,,j(x) = RI(r)E lcpEij (2.30)
I

Because ElapEij are linearly independent tensors for each value of I, in order for the

gap equation to be satisfied for all values of a, 3, i and j we must have

SA*(q)e - 2iq r = Ri(r) (2.31)

for all three values of I. This is a set of E• P, coupled equations for the undetermined

constants A(qa). (Recall that PI is the number of vectors in the set {q1 }.) After



transforming to momentum space, these gap equations can be written as follows:

2/z2G7I~ • b b aA*(q)= - E A*(q )Iljk(q, q)qb

+ •L7 2 q 1, qd b q-+qi-qa
bcd

+ E Z A*(qg)A)A*() •jkj(q) ,kJ(q, q b, q, qd)6qb-qc+qd-qa

J qbqcd

+ A*(q )A(q )A*(q)A(q)A* (q ) qjkjkjk(q, qq, qq qqf, qde
I I.IlI.-q-lqlql,

+ A*(q )A(qc)A*(q)A(q)A*(q) KkIkJkJ(q J , q Qq, qq

A* (qj)a(j)a (q)j))a Jks(qj 1)6f)] _qC +qd-q

J qb deJ
q jqj+ S A*(qb)A(q')A*( q d)A(oq)A*(qK) kIkJIJq b ) e s qf K) 6d dJqbq dqf + q 1 -- q

1 d e f+ A*(q )A(q)A*(q K)A(q )A*(qK) ICJKIJIK(qIJ, c, qJ, qq, q, G) q b -cq-K-q
J,K qbqc Jd + d-qK

~ (q) A(qj)A* (q)A A() A*(q)ICKIKJIJ(q qcl qs, ~ qs, qh , , qb)e a baqdq
J,K b d5Qf-

1to form• craqncl qor ( KJK b q d qeid aKym6)-c_--qC

reall from (2.7) that sumsmeans a sum over K are always understood te sums in the set and K . The s are

remaining flavor subscripts in some terms which are not summed, denoted j or k,

must always be chosen not equal to each other, not equal to I, and not equal to J if



J occurs. (This appears to leave an ambiguity related to the exchange of j and k in

terms where both occur, but we shall see that the functions H, J and K: each have a

cyclic symmetry that ensures that the two apparent choices of j and k are equivalent.)

The functions II, J and K: are proportional to the various loop integrals that appear

in the evaluation of the Feynman diagrams in the gap equation of Fig. 2-1. They are

given by

Il,k\(k\,k2)[ di2r2  f d4  1Iil (kl2) - / (21")4 (-•i)( +- 2ý1 + -gj) "flz

Jij,k,l(kl,k2, k3, k4)= -i7r2 d4p
1

+ -2ý1 - 2462 - 9k)(f- + 2ý1 - 2}{2 + 2ý3 ÷/3l) + 91

Ki,j,k,l,m,n (kl,k2, k3, k4, ks, k6) 2 1 (2.33)
A "2 (27r)4 ( g- (i)( + 2ý1 + gj)

1

(f + 2ý4 - 292 + 2 -2•4 - m)1

(f + 2ý4 - 2g2 + 2ý -2ý4 + 2 +s ) n"'

where gi = -yop° and g = (0, k),y" = -k -7. The subscripts i, j etc. on the functions

H, 3 and K: are flavor indices that give the flavor of the quark lines in the propagators

going around the loops in Fig. 2-1. In each term in (2.32) the choice of flavor indices

in II, j or K: is determined by the requirement that a given A(qa) must connect two

propagators for quarks with flavors different from each other and I. For example,

A3 always connects a u and a d quark. The easiest way to see how this provides the

explanation for the (perhaps initially peculiar looking) prescriptions for the 7 and

KC functions in each term in the gap equations (2.32) is to examine Fig. 2-2 below,

which depicts examples of the contributions of II, J and IC to the free energy which

we shall discuss next.

The gap equations that we have derived must be equivalent to the set of equations

if2/OA(qa) = 0, because solutions to the gap equation are stationary points of the



free energy Q. This means that integrating the gap equations determines Q up to

an overall multiplicative constant, which we can fix by requiring that we reproduce

known results for the single-plane wave condensates, and up to an additive constant

which we fix by the requirement that Ocrystalline = Qunpaired when all A(qa) are set to

zero. We find

S({A(q )}) = a( A*(q)A(q) jkk(qj , q) 2+ -a

1 b ca

+ Z * A*(qb)A(q')A*(q d)A(q ) JkklkJ(q b, qj, qi, q a)-q +q+q-
J>I qb qC qdqa

I q q I I

q

K-• * )d )kJkJ(qJ , q , qd, q, q 7 q+qb ad -ql+q -(A* (q) ( (q)A(q')A(q I)

J#K#I I J Kq qd .

qfa

ICJKIJIK(q b c dK, a 6K b c d .

J#K#I$J K J II eJ

Iaqf

Sb d KIJKIJ(qJq q 1,qq , +

over are understood to differ from each other and from the summed indices I (or I

and J).



u'p+ 2(q -q,)

+ 2(cq - q5)
2qcg p

2(4 - q + q3d)

p+2(4 - q) , -p+2(q ~q+q d)

A3 A3
p + 2q3 rd

p

\ u

(q § - + q)

b - q5 + j)

q.

p2• du+2(q -q q)p+2 +2(q - q)

P " .u p + 2(q - q )

+2(q - qý + q2)

Figure 2-2: Examples of contributions to the free energy. The five diagrams depict a
Hud contribution to 3A*3 A3, a Judud contribution to P,3(AA 3)2 , a Judus contribution
to 0 32AA 3LAA 2, a ICududud contribution to Y3 •(AA3) 2 and a /ICudusu contribution to
7322 3 A32 2 2_

As we discussed in Section 2.4, we shall only consider crystal structures in which

each of the three sets {q1 } are regular, in the sense that all the qa in one set {qJ}

are equivalent. This means that A(qa) = A1 , which simplifies the free energy (2.34)

to the form (2.21) which we derived on general grounds in Section 2.4 and which we

reproduce here

Q(A 1, A2, A3) PI iAI + (A )2 + Z[1IjA;IIA+AJ)

I I>J

+ (,(A*AI) + YIJJA*A*lI AJA*AJ + ••123 AAl A A2 AA•3)

(2.35)

for continuity. Now, however, we have obtained explicit expressions for all of the

p\

p + 2(qb - q)-
U

2)

)

-- - v



coefficients:

7a2
a1 = Hjk(q 1, q) + 2G

7;I = k J qd 9,qX 6qb d q-q

1 J JkJk(qj, q~ d, qI,) qb-qc+q--q

= x ICk~kik(qqJqlqI ql--ql+q1 -ql

I J3 Ka IKI

H 'Yj : = t k KJKIJIKe, j, q d qk, qf, q)c•,qjb qI/ -Q" -

I#J$K$I I 1 (2.36)3 b f

I#J#K$I q bdqd qf--

Here again, the unsummed indices j and k are chosen as described previously. Since

the free energy (2.35) is invariant under phase rotations of the A1 we can henceforth

take all the A1 real and positive. In Fig. 2-2, we give examples of contributions to the

free energy. These examples should make clear the choice of flavor subscripts on the

J's and KC's in (2.36) and consequently in (2.32). They also illustrate the origin of the

Kronecker 6's in so many of the expressions in this Section: each insertion of a A(qf)

(or A*(qf) adds (or subtracts) momentum 2qf to (from) the loop, meaning that the

Kronecker 6's arise due to momentum conservation. The diagrams also illustrate that

H, J and K: are invariant under simultaneous cyclic permutation of their flavor indices

and momentum arguments, as this corresponds simply to rotating the corresponding

diagrams.

We have succeeded in deriving expressions for the Ginzburg-Landau coefficients

in our model; we shall turn to evaluating them in the next Section. Recall, however,

that upon setting Ai = 0 and keeping in mind that we can obtain results for cI, /3



and TI from the two-flavor analyses in Ref. [39], all that we need to do is evaluate 332,

7233 and 7322 for the crystal structures we wish to investigate. We shall largely focus

on crystal structures for which {/2} and {43} are "exchange symmetric", meaning

that there is a sequence of rigid rotations and reflections which when applied to all

the vectors in {q2 } and {q3 } together has the effect of exchanging {f2 } and {13 }. If

we choose an exchange symmetric crystal structure, upon making the approximation

that 6P 2 = 6113 and restricting our attention to solutions with A2 = A3 we have

the further simplification that 7322 = 7233. Once we learn how to evaluate the loop

integrals J and K: in the next Section, we will then in Section 2.7 evaluate /32 and

7322 for various crystal structures, enabling us to evaluate the magnitudes of their

gaps and condensation energies.

2.6 Calculating Ginzburg-Landau coefficients

Calculating the Ginzburg-Landau coefficients (2.36) that specify Q(A 1,A 2, A3) for a

given crystal structure involves first evaluating the loop integrals II, J and IC, defined

in (2.33), and then summing those that contribute to a given Ginzburg-Landau coef-

ficient. For example, we see from (2.36) that the Ginzburg-Landau coefficient /332 is

given by summing JUdZS(q3, q d, qd, qq) over all those vectors q• and qc in the set {q 3}

and all those vectors qd and qa in the set {q 2} which satisfy qb - qc + qd - q- = 0,

forming a closed four-sided figure in momentum space. Understanding how to eval-

uate the loop integrals HI, J and :I requires some explanation, which is our goal in

this Section. Performing the sum required to evaluate a given Ginzburg-Landau coef-

ficient is then just bookkeeping, albeit nontrivial bookkeeping for complicated crystal

structures.

We are working in a weak-coupling limit in which 6p, Jqj = q = q5p, and A2sc

are all much smaller than p. This means that we can choose our cutoff A such that

61-, q, A2sc << A << p. Because A < p, the integration measure in the expressions



(2.33) for I, J and K simplifies as follows:

i7r2 d4P f` dpo f ds I dji
(2.37)

2 (21r)4 -O 2ri _ 2 4r '

where s I- pl - p. We now see by power counting that II is log-divergent as we take

A > 6J, q, A2Sc whereas both J and K: are A-independent in the large A limit. Thus,

in evaluating J and IC, we can safely take A -+ oo whereas we must keep A in the

problem for a little longer in analyzing II. Explicit evaluation of II yields

613 ( q3 +6s L3
IId(q3, q3)= -1 + log 1lg3 ) (2.38)

-I log ( 2 A 2

We can now use

7r
2

A2SC = 2Ae-G2 (2.39)

and the relation between a3 and IIud given in (2.36) to evaluate a3, obtaining the

result (2.22). Notice that a, depends on A and G only through A2sc, and depends

only on the ratios qj/A 2sc and J6i 1/A 2SC. As discussed in Chapter 1 , a, is negative

for J6Pi/A 2sc < 0.754, and for a given value of this ratio for which a, < 0, ac is most

negative for qI/A2sc = r6J/ i/A2sc with qr = 1.1997. We therefore set q, = rl bI

henceforth and upon so doing obtain

1 /'?+1
a(oK6ip) = - 1 + 1 log

1 lA2
Slog 2c (2.40)
2 46/ 2 ( 2 -1)) (2.40)

= -log( )2 46/ 2(2 1) '

where in the last line we have used the definition of 77 derived from (2.22).

The evaluation of 3t and -yj is described in Ref. [39]. From the integration measure

(2.37) and the definitions of J and K: (2.33) we see that /3 and -yj have dimension -2



and -4, respectively. Since they are independent of A as long as A > 6A, q, A2Sc, and

since G nowhere appears in their definition, there is no need to introduce A2sc. This

means that the only dimensionful quantity on which they can depend is 6yi, (since

q, = r7Ipj and since the propagators are independent of p in the weak-coupling limit)

and so we can write

S= p and , (2.41)

where fI and ;y are dimensionless quantities that depend only on the shape of the

polyhedron described by the set of vectors (q,}. The evaluation of the J and IC loop

integrals occurring in 3 and I is described in Ref. [39], and results for many two-flavor

crystal structures {q 3} are tabulated there. The evaluation is similar to but simpler

than the evaluation of 032 and Y322, to which we now turn.

/32 is the sum of Judu,(q , qC, qd, q'), where the momentum vectors satisfy

q3 -q + qq -q = (2.42)

We now utilize the fact that Iq b = jq~j = pa63 and Iqdj = Iqal = r6/p2 where 6p3 and

6P2 are similar in magnitude, but not precisely equal. (Recall from Section 2.3.1that

both are given by M,/(8p) to this order, but that they differ at order M1~ 3.)

Because 6/p2 # 6•3, the condition (2.42) can only be satisfied if q' = qC, and qd = q a

We must therefore evaluate

b • qi r2  d4p 1
udu2 [ (27r)4 (0 - gu)( + 2413 + d)(Q - t-g)(O + 24~ + g)J) 7

(2.43)

We now expand the propagators in the weak-coupling limit, in which p0, s, Jql,

(P/d - Pu) and (pC - p/) are all small compared to pu, as follows:

1 (pO + pi)Yo - (p + 2q) -7
fi + 20 +/gi (po +/p, - IP + 2ql)(po + pi + Ip + 2qj)

Pu'Y0 - p *y (2.44)(po + Pu - (Pu - pi) - Ip - 2q )(2p) (2.44)

2p s + (p - ) - 2q.•
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Similarly,

1 ( °+1 - .p) (2.45)
+2- + s - (pi - pu) + 2q

Eq. (2.43) then simplifies to

Judu(q b, qo, b, Iq ) = ds47d q - 2ri - (po + s) 2(pO _ s - . 2q b + 2613)

(p _- s - 1 2qa - 261P2)

(2.46)

where we have used 6 p3 (pd - pu) and 5P2 (Au -

To integrate (2.46), we Wick rotate po to ip4 and then do the s integral by contour

integration. This gives two contibutions with different sign factors, sign(p4 ) and

sign(-p 4), which are complex conjugates of each other. Combining the two, the

integration over p4 is of form 2Re fS" dp4 (...) where we have started the p4 integration

from the infinitesimal positive number E instead of zero, thus definining the principal

value of the integral. The integration over p4 can now be carried out safely to obtain

s(qb ba I q a) = d1 dRe 1
udus(q 3,q3 ,3q2 , 2) 4= (ie -- J5 q[ + i- q 6p3 -)(i q - a 2)

1 dp 1R
46P2 3 4 (e _ p _ q + 1)(i -E . - 1) '

(2.47)

where 1 = = q From rotational symmetry it follows that the value of (2.47)

depends only on the angle between the momentum vectors 4b and 4q, which we denote

by 0. We therefore define the dimensionless quantities

J32() 2= 6A23 Judus (q 3, q 3, q 2, q2 ) (2.48)

and, correspondingly,

/32 = 6P2613/,32 . (2.49)



J32 can be evaluated analytically by using Feynman parameters to simplify the inte-

grand in (2.47). The result is

-1 [ 1 ( 2;Sin2(/2)-1
3 (0) = arctan . (2.50)

32(4) = 4r cos(0/2) /2sin 2(/2) 1 arctan cos(/2)

This completes the evaluation of the loop integral J needed to calculate 032 for any

crystal structure. We summarize the calculation by noting that for a given crystal

structure, 032 depends only on the shape of the polyhedra defined by {q 2 } and {q3}

and on their relative orientation, depends on the Fermi surface splittings 6P3 and 6P 2 ,

and is obtained using (2.49) with

332 = 32(Z4q32) , (2.51)
q3 ,q2

where J32(0) is given by (2.50).

We turn now to the evaluation of 7322. From (2.36),

fbadeqfa
7322 = 3 /udusus(q 3, q3, q 2, q2, q, q2), (2.52)

and we again use the fact that the q3's and q2's do not have precisely the same length

to conclude that the momentum vectors must satisfy both

q3 =q (2.53)

and
q - q + qf - q = O. (2.54)

In the following expressions, it is always understood that (2.54) is satisfied although

we will not complicate equations by eliminating one of the q 2 's in favor of the other

three. We can see without calculation that, unlike J, /C will not reduce to depending

only on a single angle between two momentum vectors. It will depend on the shape



made by the four q2 vectors satisfying (2.54), which can in fact be specified by two

angles, as well as on the angles that specify the direction of qb relative to the shape

made by the four q2's.

The expression for AC is given in (2.33) and can also be read off from the bottom

right Feynman diagram in Fig. 2-2. It is given by

bbdeiVr2 d• d4  1
udsus(q , q , q , q q2, q') = 2 X (2)4 _ )( + 2 + d)( -

(fi + 2qd + g9 )( ( + 2(4 - e) -g))(f + 2(qd• - e + q2f ) + g.5)
(2.55)

After simplifying the propagators using (2.44), we can rewrite equation (2.55) as

ACudusus(q , qb, qd, q , q2, q) =- C 2 ds + s)2

1

(p0 + s + 1p- 2(q - ))( -)) - -p b2q + 2 3)

1

(p - . 2qd - 26V2)(P - - -2(q d -q + q) - 262)

(2.56)

Unlike in the evaluation of 7udus, we are not able to do the s and po integrals ana-

lytically without introducing Feynman parameters to simplify the integrand at this

stage, before doing any of the integrals. We introduce one set of Feynman parameters,

Xl, x2 , to collect denominators of the form po + s + .. and another set, yi, Y2, Y3, to



collect the denominators of form po - s + ... This reduces the integral to

/3udusus (q 3, q , q , q, q, qa) = fdX 1 - E dy 6 1 - ym
Sn=l n=l m=l m=l

dp f 0 dpo f +0  4(1- x2)
S2i(pO + s+ s2x21• [q - qd])3

p0 _ s - 2p - [ylq Y + y2q 9 - qd + q2)] Y12+63 - y2213 t2 - y3 26/ 2

(2.57)

We now perform the p0 and s integrations in (2.57), following steps analogous to the

integration arising in the expression for Judus. i.e. Wick rotate po to ip4 , do the s

integral by contour integration, add the two complex conjugate contributions thus

obtained to write the integration over p4 as 2Re f+O dp4 (...) and then perform the

integration over p4. This gives us

1 2 22 1 33
bbd f 3 fl f(

]•udusus(q a, qa, qd, q, q, qR) = - e o - x, dy, 6 1 - ym
n=l n=l m=l m=l

x do 1 - 42
4" 4 iM + p . [x2(qd - q _) - (ylqb + y2q~+ Y3(qd - q2 + q2f))] + Y1613 - Y26P2 - Y35P2l

(2.58)

Finally, we do the dp integral and obtain

bd e12 ( 2

Cudusus (q3, q3, q q2, q2 ,q2 ) = - e dx 6 1 - EXn
n=l n=l

f Ijdym 6 1 - m) (1 -X 2)
m=l m=l1

[Ix2(q - qe) - (ylqb + y2qd + Y3 (q' -qe + qf))12 - 3[Y1613 -Y26P2 - y35P2 ]2

Z 2 13 2 2 2 2 2

(2.59)

Noting that we can replace q 2 by rl2 and q 3 by rlq3, we conclude that, as expected,

KCudusus depends only upon the shape of the polyhedra defined by {q2} and {q3 }



and on the Fermi surface splittings J/13 and 6/2. We cannot simplify (2.59) further

for general 6/2, 6/3. However, if we now set 6/12 = 6/3 = 6/1, which is corrected

only at order M4 // 3 , we can then factor out the dependence on the Fermi surface

splitting, since the only dimensionful quantity in the integrand is then 6/1. Defining,

for 6/12 = 6/13 = 6/1,

Kudusus (q 7 q , q,2, q , q  q) = 322 (q , q , q2,q, q2, (2.60)

and using IqI = ,6uz1 , for all the momentum vectors, we find that K 322 is given by

-b d e f 7qa) 1 11 12) d y dy
R 322(q, q, q, q , q, q~) j=x 2 ) dy 28 o )2 o(2.61)

Re 2 1a(x 2, Y, Y2)1 2 + 3(1 - 2y1)2

[72 a(x2, Y1, Y2)1 2 - (1 - 2y,) 2  iE]3 '

where

a = 2 2 (1- - y2)( - q2 +q) . (2.62)

For general arguments we were not able to do the integrals that remain in (2.61)

analytically and therefore evaluated it numerically. Since R322 (q 3, qb, q, e, q2f, ý)

is the limit of the function K322(q3, qb d,, q, q, , q, E) as E -+ 0, we numerically

evaluated the integral appearing in (2.61) at four values of E and extrapolated (using

a cubic polynomial to fit the values) to e = 0. Finally

'"322 = Y322 6 4 (2.63)

is found by summing K322 evaluated with all possible choices of momentum vectors

(qb3, q, q , q, qj , qq) satisfying (2.54) and multiplying this sum by 3/2.



2.7 Results

2.7.1 Generalities

We shall assume that A1 = 0 throughout this Section. As described previously, this

simplification is motivated by the fact that A1 describes the pairing of d and s quarks,

whose Fermi surfaces are twice as far apart from each other as either is from that of

the u quarks. We shall focus most of our attention on exchange symmetric crystal

structures, as defined at the end of Section 2.5, in which the polyhedra defined by {42)

and {}3) are related by a rigid rotation. In Section 2.7.4 we will discuss one example

in which {(2} and {43} are not exchange symmetric, and we have evaluated others.

However, as none that we have investigated prove to be favorable, we shall make the

notational simplifications that come with assuming that {42} and {q3} are exchange

symmetric, as this implies &2 = a3 = a, P2 = dim{q 2} = P3 = dim{q 3} - P,

12 = 03 - 3 and 7322 7233. The final simplification we employ is to make the

approximation that 61t 2 = 63 2- = M2/(8p). As described in Section 2.3.1,

this approximation is corrected by terms of order Mf// 3. Upon making all these

simplifying assumptions and approximations, the free energy (2.35) reduces to

Q(A 2 ,A3) = 1• 2 [Pa(•L) (A2 + A 2)

1 1S (NA2 A2 A) ±3 2 A2A) (2.64)

1 1 (A6 + A6) A2A 4 + AA))]
+ 3 2 + + '322 3 2 3

where 3, I, Y32 and 7322 are the dimensionless constants that we must calculate for

each crystal structure as described in Section 2.7, and where the 6p-dependence of a

is given by Eq. (2.40).

In order to find the extrema of Q(A 2, A3) in (A2, A3)-space, it is convenient to

write (A 2 , A3 ) as V(A, cos , A sin 0) in terms of which the free energy (2.64) is



given by

Q(Ar, ) =
22 ,A 4  8 n6

42 r2P()A 364r ± (2.65)722Ar6 " 2 3 si,4

(2 (o32 - 2/)+ +2A4 (7,322 - 3) sin2 20.

Because sin 2(20) has extrema only at 0 = 7r/4 and 0 = 0, 7/2, we see that extrema

of Q(A 2, A3) either have A2 = A3 = A, or have one of A2 and A 3 vanishing. The

latter class of extrema are two-flavor crystalline phases. We are interested in the

solutions with A2 = A 3 = A. The stability of these solutions relative to those

with only one of the A's nonzero appears to be controlled by the sign of the factor

that multiplies sin 2 20 in (2.65). However, we shall show in Appendix A that the

three-flavor crystalline phases that we construct, with A2 = A 3 = A, are electrically

neutral whereas the two-flavor solutions in which only one of the A's is nonzero are

not. Setting A2 = A 3 = A, the free energy becomes

Q(A)= 722 [2Pa(61 i)A2 + 3 64 Yef , (2.66)

where we have defined

/eff = 20 + /32
(2.67)

Yeff = 2ý + 2ý322 .

We have arrived at a familiar-looking sextic order Ginzburg-Landau free energy func-

tion, whose coefficients we will evaluate for specific crystal structures in Section 2.7.2

and 2.7.4. First, however, we review the physics described by this free energy de-

pending on whether eff and jeff are positive or negative.

If oeff and eaff are both positive, the free energy (2.66) describes a second order

phase transition between the crystalline color superconducting phase and the normal

phase at the 651 at which a(6p) changes sign. From (2.40), this critical point occurs



where by6 = 0.754 A2Sc. In plotting our results, we will take the CFL gap to be

Ao = 25 MeV, making A2sc = 21/3Ao = 31.5 MeV. Recalling that by = M,2/(8),

this puts the second order phase transition at

= 6.03 A2sc = 7.60 Ao = 190.0 MeV . (2.68)
Pa=O

(The authors of Refs. [44, 45] neglected to notice that it is A2sc, rather than the CFL

gap A0 , that occurs in Eqs. (2.22) and (2.40) and therefore controls the by at which

a = 0. In analyzing the crystalline phase in isolation, this is immaterial since either

A0 or A2sc could be taken as the parameter defining the strength of the interaction

between quarks. However, in Section 2.7.5 we shall compare the free energies of the

CFL, gCFL and crystalline phases, and in making this comparison it is important to

take into account that A2Sc = 21/ 3A0 .) For values of M.2/1 that are smaller than

(2.68) (that is, lower densities), a < 0 and the free energy is minimized by a nonzero

A = Amin given by

Amin = 6/2 (-eff + - 8Pa(6II)Feff) , (2.69)

and thus describes a crystalline color superconducting phase.

If /eff < 0 and effe > 0, then the free energy (2.66) describes a first order phase

transition between unpaired and crystalline quark matter occurring at

a = = 3 (2.70)
32 Preff

At this positive value of a, the function Q(A) has a minimum at A = 0 with Q = 0,

initially rises quadratically with increasing A, and is then turned back downward by

the negative quartic term before being turned back upwards again by the positive

sextic term, yielding a second minimum at

A = Y , (2.71)



also with Q = 0, which describes a crystalline color superconducting phase. For

a < a,, the crystalline phase is favored over unpaired quark matter. Eq. (2.40) must

be used to determine the value of 65, and hence M,/', at which a = a, and the first

order phase transition occurs. If a, < 1, the transition occurs at a value of M21/t

that is greater than (2.68) by a factor (1 + a,). See Fig. 2-5 for an explicit example

of plots of Q2 versus A for various values of a for one of the crystal structures that we

analyze in Section 2.7.4 which turns out to have a first order phase transition.

A necessary condition for the Ginzburg-Landau approximation to be quantita-

tively reliable is that the sextic term in the free energy is small in magnitude com-

pared to the quartic, meaning that A2 < « 6I 2 f /eff I. If the transition between the

unpaired and crystalline phases is second order, then this condition is satisfied close

enough to the transition where A - 0. However, if 3ef < 0 and eff > 0, making

the transition first order, we see from (2.71) that at the first order transition itself

A is large enough to make the quantitative application of the Ginzburg-Landau ap-

proximation marginal. This is a familiar result, coming about whenever a Ginzburg-

Landau approximation predicts a first order phase transition because at the first order

phase transition the quartic and sextic terms are balanced against each other. Even

though it is quite a different problem, it is worth recalling the Ginzburg-Landau anal-

ysis of the crystallization of a solid from a liquid [28]. There too, a Ginzburg-Landau

analysis predicts a first-order phase transition and thus predicts its own quantitative

downfall. However, it remains important as a qualitative guide: it predicts a body-

centered cubic crystal structure, and most elementary solids are body-centered cubic

near their melting point. We shall find that our Ginzburg-Landau analysis predicts a

first order phase transition; knowing that it is therefore at the edge of its quantitative

reliability, we shall focus in Sections 2.7.5 and 2.8 on qualitative conclusions.

If jef < 0, then the Ginzburg-Landau expansion of the free energy to sextic order

in (2.66) is not bounded from below. The transition must be first order, with higher-

than-sextic order terms making the free energy bounded. In this circumstance, all we

learn from (2.66) is that the transition is first order; we cannot obtain an estimate of

the transition point or of A at the first order transition. Even though I is negative for



Figure 2-3: &32(q) = J32(() for the two plane wave "crystal" structure with con-
densate (2.72). ¢ is the angle between q2 and q 3. For more complicated crystal
structures, P32 is given by the sum in (2.51), meaning that it is a sum of J32(0) eval-
uated at various values of ¢ corresponding to the various angles between a vector in
{q 2} and a vector in {q3}.

many crystal structures [39], in all the three-flavor crystalline phases that we present

in Section 2.7.4 we find that Y322 is positive and sufficiently large that 'eff = 2+ 21322

is positive. We therefore need not discuss the jeff < 0 case any further.

2.7.2 Two plane wave structure

We begin with the simplest three-flavor "crystal" structure in which {q 2} and {q3}

each contain only a single vector, yielding a condensate

ai,,pj = e2iqr A2E2a,32ij + e2iqr ±363apE3ij , (2.72)

in which the (us) and (ud) condensates are each plane waves. As explained in the

previous subsection, we shall seek solutions with A2 = A3 = A. We begin with such

a simple ansatz because it will yield a qualitative lesson which will prove extremely

helpful in winnowing the space of multiple plane wave crystal structures.

Let us now walk through the evaluation of all the coefficients in the free energy

(2.66) for this two-plane wave structure. First, P = 1 (one vector in each of {q 2} and

{q3}) and as always a(6/) is given by (2.40). Next, we obtain the results for /2 = /3



and '2 = '3 from the analysis of the single plane wave condensate in the two flavor

model of Ref. [39]:

- 1
/32 = = 0.569

4 r2 - I 2 (2.73)
1 p2±3

72 == 1.637.
32 (7I2 - 1) 3

We now turn to &32 and ý322 which describe the interaction between the (us) and

(ud) condensates and which we have calculated in Section 2.6. In general, &32 is given

by (2.51) but in this instance since {q 2 } and {q 3} each contain only a single vector

the sum in this equation reduces simply to

/32 = J32(0) (2.74)

where q is the angle between q2 and q 3 and where J32(0) is given in Eq. (2.50). /332

is plotted as a function of q in Fig. 2-3 [44, 45].

Turning to '322, this is given by

3-
'7322 =- 2K 322 (q 3 , q3 , q 2 , q 2, q 2, q 2 ) (2.75)

where K 322 is given by Eq. (2.61). As occurred in the evaluation of 332, the sum

over q-vectors in the general expression (2.36) has reduced to evaluating K 322 just

once, because {q 2} and {q3} each contain only a single vector. For the special case

where the last four arguments of K 322 are the same, as in (2.75), K 322 depends only

on 0, the angle between q2 and q3, and the integrals in (2.61) can all be evaluated

analytically, yielding

64 ( cos ) 3 (q2 Sin 2  1)3/2

2 2 1)2xLatn in (2 2 sin 2 & - 1) b(¢) b(¢) (b(¢)2 - 1)x R2 arctan(b(o)) sinm2+ 1 2  +
2 1 + b(0)2 (b(0)2 + 1 >2

(2.76)



Figure 2-4: 7Y322(0) for the two plane wave "crystal" structure with condensate (2.72).
q is the angle between q 2 and q 3. 5322(0) = 0.243 and 7322(0) increases monotonically
with q.

where

/2 sin 2 0 - 1
b(0) = (2.77)

9 cOS 2

7322 is plotted as a function of ¢ in Fig. 2-4.

We note that for any angle 0, both &32 and 25322 are positive quantities which when

added to the positive 23 and 2; give positive eff and Yeff , respectively. Hence, we see

that upon making this two plane wave "crystal" structure ansatz we find a second

order phase transition between the crystalline and unpaired phases, for all choices of

the angle 0. We also note that both 032(o) and 7322(0) increase monotonically with

¢, and diverge as -+ r. This tells us that within this two plane wave ansatz, the

most favorable orientation is ¢ = 0, namely q 2 11 q 3. Making this choice yields the

smallest possible /eff and 'eff within this ansatz, and hence the largest possible A

and condensation energy, again within this ansatz. The divergence at ¢ -+ 7r tells us

that choosing q 2 and q3 precisely antiparallel exacts an infinite free energy price in

the combined Ginzburg-Landau and weak-coupling limit in which A «< Sp, A0 < I,

meaning that in this limit if we chose ¢ = ir we find A = 0. Away from the Ginzburg-

Landau limit, when the pairing rings on the Fermi surfaces widen into bands, choosing



€= -r exacts a finite price meaning that A is nonzero but smaller than that for any

other choice of 0.

The high cost of choosing q 2 and q3 precisely antiparallel can be understood

qualitatively as arising from the fact that in this case the ring of states on the u-

quark Fermi surface that "want to" pair with d-quarks coincides precisely with the

ring that "wants to" pair with s-quarks (For example, if q 2 and q 3 point in the -z

and +z directions, A2 (A 3) describes pairing between s-quarks (d-quarks) within a

ring in the northern hemisphere of the s- (d-)Fermi surface and u-quarks within a ring

in the southern hemisphere of the u-Fermi surface. The rings on the u-Fermi surface

coincide, as illustrated in Figure. 1-6 in Chapter 1.) In the most favorable case within

the two-plane wave ansatz, where q 2 II q 3, the two pairing rings on the u-quark Fermi

surface are centered on antipodal points. (For example, if q2 and q 3 both point in

the +z direction, A2 (A 3) describes pairing of s-quarks (d-quarks) within a ring in

the southern (northern) hemisphere of the s- (d-)Fermi surface and u-quarks within

rings in the (northern) southern hemisphere of the u-Fermi surface.)

We will analyze the simple two plane wave ansatz (2.72) in the same NJL model

that we employ upon making the weak-coupling approximation but without making

a Ginzburg-Landau approximation in Chapter 3. We will find that all the qualitative

lessons that we have learned from the Ginzburg-Landau approximation remain valid,

including the favorability of the choice € = 0, but we learn further that in the two

plane wave case the Ginzburg-Landau approximation always underestimates A. We

will also see that the A at which the Ginzburg-Landau approximation breaks down

shrinks as ¢ -- 7r. We can understand this result as follows. The sextic term in the

free energy (2.66) is small compared to the quartic term only if A2 < / 6 2/ffeff,

making this a necessary condition for the quantitative validity of the Ginzburg-Landau

approximation. As - i7r, ,ef diverges more strongly than 3eff: from (2.50) and (2.61)



we find that as -- 7r,

~ -81 cos( )

(1 )(2.78)
2 256q( )3 cos()

Therefore the Ginzburg-Landau calculation predicts that its own breakdown will oc-

cur at a A that decreases with increasing 0, as will find in Chapter 3 by explicit

comparsion with a calculation that does not employ the Ginzburg-Landau approxi-

mation.

2.7.3 Implications for more plane waves: qualitative princi-

ples for favorable crystal structures

In this subsection we ask what lessons we can learn from the evaluation of the

Ginzburg-Landau coefficients for the two plane wave "crystal" structure in Sec-

tion 2.7.2 for crystal structures with more than one vector in {q2} and {q 3}.

First, we can conclude that /32 is positive for any choice of {q 2 } and {q 3}. The

argument is simple: &32 is given in general by (2.51), a sum over 432 evaluated at a

host of angles corresponding to all angles between a vector in {q 2} and {qz}. But,

we see from Fig. 2-3 that J32 is positive at any angle.

Second, we cannot draw such a conclusion about Y322. This coefficient is a sum

over contributions of the form R 3 22(q3, q, , q2 , q , q2) where the last four momen-

tum vector arguments, selected from {q 2}, must satisfy (2.54). The calculation in

Section 2.7.2 whose result is plotted in Fig. 2-4 only demonstrates that those con-

tributions in which the four q 3 arguments are selected to all be the same vector are

positive. For any crystal structure in which {q2} contains two or more vectors, there

are other contributions to ý322 that we have not evaluated in this Section which de-

pend on one q 2 vector and several q3 vectors, and thus on more than one angle. We

know of instances where individual contributions R322(q , q , q2, q , q, ) in crystal



structures that we describe below are negative. However, we have found no crystal

structure for which ;322 is negative.

The final lesson we learn is that crystal structures in which any of the vectors in

{q 2} are close to antiparallel to any of the vectors in {q 3 } are strongly disfavored.

(The closer to antiparallel, the worse, with the free energy penalty for A f 0 diverging

for the precisely antiparallel case, driving A to zero.) If a vector in {q 2} is antiparallel

(or close to antiparallel) to one in {q 3}, this yields infinite (or merely large) positive

contributions to 132 and to 7322 and hence to /eff and eff. In the case of R32, these

large positive contributions cannot be cancelled since all contributions are positive.

In the case of 1322, negative contributions are possible but we know of no instances

of divergent negative contributions to 1322 or indeed to any other coefficient in the

Ginzburg-Landau expansion. The divergent positive contributions are associated with

the tangential intersection (in the case of 3 and ? [39]) or coincidence (in the case

of of &32 and '7322) of pairing rings on Fermi surfaces. We know of no configuration

of rings that leads to an infinitely favorable (as opposed to unfavorable) free energy

in the combined Ginzburg-Landau and weak-coupling limits. So, although we do

not have a proof that the divergent positive contributions to 7322 arising as vectors

in {q2} and {q 3} approach one another's antipodes are uncancelled, we also see

no physical argument for how this could conceivably arise. Certainly in all example

crystal structures that we have considered, /32 and 7322 and hence eff and y~ff diverge

as vectors in {q 2} and {q 3 } approach one another's antipodes.

We can now summarize the qualitative principles that we have arrived at for

constructing favorable crystal structures for three-flavor crystalline color supercon-

ductivity. First, as described in Section 2.4 the sets {q 2} and {q 3} should each

separately be chosen to yield crystal structures which, seen as separate two-flavor

crystalline phases, are as favorable as possible. In Chapter 1 we have reviewed the

results of Ref. [39] for how this should be done, and the conclusion that the most

favored {q 2} or {q3 } in isolation consists of eight vectors pointing at the corners of

a cube. Second, the new addition in the three-flavor case is the qualitative principle

that {q 2} and {q3} should be rotated with respect to each other in such a way as to



best keep vectors in one set away from the antipodes of vectors in the other set.

2.7.4 Multiple plane waves

In Table I we describe 11 different crystal structures that we have analyzed, and

in Table II we give the coefficients that specify each Ginzburg-Landau free energy

(2.64). The 8's and y's were calculated as described in Ref. [39]; /32's and 'Y322'S were

calculated as described in Section 2.6. We also give the combinations eff and jeff

defined in (2.66) that specify the free energy as in (2.67). In those cases in which

eff < 0, the phase transition between the crystalline phase and the unpaired phase

is first order, occurring where a = a, with a, given by (2.70). At the first order

phase transition, unpaired quark matter with A = 0 and crystalline quark matter

with A(a.) given in (2.71) have the same free energy. We give both a,. and A(a.) in

Table II.

The first row of the Tables describes the simple "crystal structure" analyzed in

detail in Section 2.7.2, in which both {q2 } and {q 3} contain just a single vector, with

q2 11 q3 as we have seen that this is the most favorable choice for the angle between

q2 and q 3. This condensate carries a baryon number current which means that the

unpaired gapless fermions (in "blocking regions" in momentum space [34, 35]) must

carry a current that is equal in magnitude but opposite in direction [34]. The analysis

of this "crystal structure" in Sections 2.7.2 and 2.7.3 has proved instructive, giving

us qualitative insight that we shall use to understand all the other crystal structures.

However, in all rows in the Tables other than the first we have chosen crystal struc-

tures with condensates that carry no net current, meaning that the gapless fermions

need carry no current. There is nothing in our mean-field analysis that precludes con-

densates carrying a net current, but we do not analyze them here primarily because

it simplifies our task but also because we expect that, beyond mean-field theory, a

phase containing gapless fermions carrying a net current is unlikely to be the favored

ground state.

Let us next examine the last two rows of the Tables. Here, we consider two

crystal structures in which {q 2 } and {q3 } each contain eight vectors forming cubes.



Structure Description Largest
Angle

2PW jq2} and {q3} coincide; each contains one vector. 00
(So, 2 plane waves with q2 1 3 q3-)

SqX {q2} and {q3 } each contain two antiparallel vectors. 900
The four vectors together form a square; those from {q2}
and those from ({q} each form one stroke of an "X".

Tetrahedron {q 2} and (q 3 } each contain two vectors. 109.50
The four together form a tetrahedron.

2Triangles {q 2} and {q3 } coincide; each contains three 1200
vectors forming a triangle.

Cube X {q 2} and {q3} each contain 4 vectors forming a rectangle. 109.50
See Eq. The 8 vectors together form a cube. The 2 rectangles
(2.83) intersect to look like an "X" if viewed end-on.
2Tet {q2} and {q 3 } coincide; each contains four vectors 109.50

forming a tetrahedron.
Twisted {q 2} and {q 3} each contain four vectors forming a square 143.60

Cube which could be one face of a cube. Instead, the eight
vectors together form the polyhedron obtained by twisting
the top face of a cube by 450 relative to its bottom face.

20cta90xy {q 2 } and {q3)} each contain 6 vectors forming an octahedron. 1350
The {q2) vectors point along the positive and negative axes.
The {q3}-octahedron is rotated relative to the
{q 2}-octahedron by 900 about the (1, 1, 0)-axis.

20cta45xyz {q2} and {q 3} each contain 6 vectors forming 143.60
an octahedron. The {q 2} vectors point along the positive and
negative axes. The {q3}-octahedron is rotated relative to the
{q2}-octahedron by 450 about the (1, 1, 1)-axis.

2Cube45z {q2 } and {q 3} each contain 8 vectors forming a cube. 143.60
See Eq. The {q2} vectors point along (±1, ±1, +1). The
(2.80) {q3}-cube is rotated relative to that by 450 about the z-axis.

2Cube45xy {q2} and {q3} each contain 8 vectors forming a cube. 154.50
The {q2} vectors point along (±1, 1l, +l). The {q3}-cube
is rotated relative to that by 450 about the (1, 1, 0)-axis.

Table 2.1: Descriptions of the crystal structures whose Ginzburg-Landau coefficients
are given in Table II. The third column is the largest angle between any vector in
{q2} and any vector in {q3 }. Other things being equal, we expect that the larger the
largest angle, meaning the closer vector(s) in {q2 } get to vector(s) in {q3 }, the bigger
the &32 and Y322 and hence the bigger the Ieff and eff, and hence the less favorable
the structure.



Structure 132 Peff Y 322  eff" a a(a,)

2PW 0.569 0.250 1.388 1.637 0.243 3.760 0 0
SqX 0.138 1.629 1.906 1.952 2.66 9.22 0 0

Tetrahedron -0.196 2.146 1.755 1.450 7.21 17.29 0 0
2Triangles -1.976 4.647 0.696 1.687 13.21 29.80 0 0

CubeX -10.981 6.961 -15.001 -1.018 19.90 37.76 0.140 0.548
2Tet -5.727 7.439 -4.015 4.350 30.35 69.40 0.0054 0.208

Twisted Cube -16.271 12.445 -20.096 -37.085 315.5 556.8 0.0170 0.165
20cta90xy -31.466 18.665 -44.269 19.711 276.9 593.2 0.0516 0.237

20cta45xyz -31.466 19.651 -43.282 19.711 297.7 634.9 0.0461 0.226
2Cube45z -110.757 36.413 -185.101 -459.24 1106. 1294. 0.310 0.328

2Cube45xy -110.757 35.904 -185.609 -459.24 11358. 21798. 0.0185 0.0799

Table 2.2: Ginzburg-Landau coefficients for three-flavor crystalline color supercon-
ducting phases with various crystal structures, described in Table I. a,. is the a at
which the transition from unpaired quark matter to a given crystalline phase occurs:
a, = 0 if /eff > 0 and the transition is second order; a. is given by (2.70) if /eff < 0
and the transition is first order. For a first order transition, A(a,), given in (2.71),
is the magnitude of the gap at the transition.
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Since the cube is the most favorable two-flavor crystal structure according to the

analysis of Ref. [39], evident in the large negative 3 and I for both these crystal

structures in Table II, this should be a good starting point. We cannot have the two

cubes coincident, as in that case there are vectors from {q 2 } and vectors from {q3}

separated by a 1800 angle, yielding infinite positive contributions to both 032 and

'322- So, we rotate the {q 3}-cube relative to the {q2} cube, in two different ways in

the 2Cube45z and 2Cube45xy crystal structures described in Table I.

We explain explicitly in Appendix B why translating one cube relative to the other

in position space by a fraction of a lattice spacing does not alleviate the problem: a

relative rotation of the (us) and (ud) condensates is required. Qualitatively, this

reflects the nature of the difficulty that occurs when a {q2} vector is opposite to a

{q 3 } vector. It can be thought of as arising because the (us) and (ud) condensates

both want to "use" those up quarks lying on the same ring on the up Fermi surface.

It therefore makes sense that a relative rotation is required. Quantitatively, what we

show in Appendix B is that Q does not change if we translate the (us) condensate

relative to the (ud) condensate.

We see in Table I that in the 2Cube45z structure, the largest angle between vectors

in {q 2 } and {q3} is 143.60 whereas in the 2Cube45xy structure, that largest angle is

154.50 meaning that the rotation we have chosen does a less good job of keeping {q2}-

vectors away from the antipodes of {q 3} vectors. Correspondingly, we see in Table II

that 2Cube45xy has a much larger 7322 and hence jef, and hence has a first order phase

transition occurring at a smaller a,, and with a smaller A(a.). This is an example

confirming our general principle that, other things being equal, crystal structures

in which {q3} vectors come closer to {q 2 } vectors will be disfavored. According to

this principle, the 2Cube45z crystal structure should be particularly favorable as it

employs the relative rotation between the two cubes that does the best possible job

of keeping them apart.

We now turn to crystal structures with fewer than 16 plane waves. By having

fewer than 8 plane waves in {q2} and {q3 }, we are no longer optimizing the two-

flavor 3 and y. However, with fewer vectors it is possible to keep the {q 2}- and
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{q 3}-vectors farther away from each other's antipodes. We list two crystal structures

in which {q 2 } and {q 3} have 6 waves forming octahedra. These are not particularly

favorable two-flavor structures - ' is positive rather than being large and negative

for the cube. 20cta45xyz has the same largest angle between {q2}- and {q3 }-vectors

as 2Cube45z, but its significantly more positive 3 and i' make it significantly less fa-

vorable. Choosing the 20cta90xy structure instead reduces the largest angle between

{q2}- and {q3}-vectors from 143.60 to 1350, which improves 3ef and yee, but only

slightly.

We investigate three crystal structures in which {q2} and {q3 } each contain 4 vec-

tors. Among these, the Twisted Cube is strongly disfavored by its significantly larger

largest angle between {q2}- and {q 3}-vectors. CubeX and 2Tet are both constructed

by choosing {q 2} and {q3} as subsets containing half the vectors from a cube. In

the 2Tet structure, we choose the tetrahedra coincident since this does the best job

of keeping vectors in {q 2 } and {q 3 } away from each other's antipodes. (Choosing

the two tetrahedra so that their union forms a cube is the worst possible choice, as

vectors in {q 2} and {q3 } are then antipodal.) In the CubeX structure, we choose

the two rectangles such that their union forms a cube, as this does the best job of

reducing the largest angle between vectors in {q 2} and {q3}; making the rectangles

coincident would have been the worst possible choice. CubeX and 2Tet have the same

largest angle, but they differ considerably in that the {q 2} and {q3 } rectangles that

make up CubeX are more favorable two-flavor structures (lower 3 and ý) than the

tetrahedra that make up 2Tet. We see from Table II that the CubeX structure, with

only 8 vectors in total, is particularly favorable: it is not possible to tell from Table

II whether it is more or less favorable than 2Cube45z, since one has the larger a,

while the other has the larger A(a*). We shall evaluate their free energies below,

and confirm that they are indeed comparable, and that these two structures have the

lowest free energy of any in the Tables.

In the remaining rows of the Tables, we investigate one crystal structure in which

{q 2} and {q3 } each contain 3 vectors, and two in which each contain 2 vectors. These

structures all have positive 3 ,ff and hence second order phase transitions, and so are
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certainly not favored.

Inspecting the results in Table II shows that in all cases where we have inves-

tigated different three-flavor crystal structures built from the same {q2} and {q3},

the one with the relative rotation between the two polyhedra that yields the smaller

largest angle between vectors in {q2} and {q 3} is favored. And, in all cases where

we have investigated two crystal structures with same largest angle between vectors

in {q 2 } and {q 3}, the one built from the more favorable two-flavor crystal structure

is favored. We thus find no exceptions to the qualitative principles we described in

Section 2.7.3. However, these qualitative principles certainly do not explain all the

features of the results in Table II. For example, we have no qualitative understanding

of why 2Cube45z and 2Cube45xy have such similar 032, whereas 2Cube45xy has a

much larger '322 as expected. For example, we have no qualitative understanding of

why '322 increases much more in going from 2Cube45xy to 2Cube45z than it does in

going from 20cta90xy to 20cta45xyz. The calculations must be done; the qualitative

principles are a good guide, but not a substitute.

The final crystal structure that we describe is one in which {q2} is a cube while

{q 3} is an octahedron, with the six {q3}-vectors pointing at the centers of the faces

of the {q2}-cube. So, if the {q2 -vectors are taken to point along the (±+1, ±1,1)

directions then the {q3} vectors point along the positive and negative axes. We chose

to investigate this structure because it seems particularly symmetric and because it

has an unusually small largest angle between vectors in {q 2} and {q3} given the large

number of vectors in total: 125.30. Because {q2} and {q 3} are not congruent, 02 : P3

and ý2 $ I 3. All these coefficients can be found in Table II. We find /32 = 24.510,

'Y322 = 419.9 and Y233 = 4943. Because {f2} and {14} are not exchange symmetric,

the general argument that we gave in Section 2.7.1 for why extrema of 1Q(A 2, A3) -

i.e. solutions to the gap equations - occur at A2 = A3 does not apply. However, we

find that at the solution A2 and A3 differ by less than 20%. The large values of t233

and '322 make this crystal structure quite unfavorable - even though it has a (weak)

first order phase transition, its free energy turns out to be comparable only to that

of the 2PW structure, far above the free energy of the favored CubeX and 2Cube45z
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Figure 2-5: Free energy Q vs. A for the CubeX crystal structure, described in Table II,
at four values of M/,21. From top curve to bottom curve, as judged from the left half
of the figure, the curves are M,2/l = 240, 218.61, 190, and 120 MeV, corresponding
to a = 0.233, 0.140, 0, -0.460. The first order phase transition occurs at M,/P =
218.61 MeV. The values of A and Q at the minima of curves like these are what we
plot in Figs. 2-6 and 2-7.

structures. Furthermore, the arguments of Appendix A do not apply to a crystal

structure like this, meaning that we do not expect this solution with A2 3 A3 to be

neutral. For this reason, and because it appears to be free-energetically unfavorable

anyway, we will not investigate it further. We cannot say whether choosing {q2 } and

{q3} to not be exchange symmetric generically yields an unfavorable crystal structure,

as we have not investigated many possibilities.

We have certainly not done an exhaustive search of three-flavor crystal structures.

For example, we have only scratched the surface in investigating structures in which

{q2} and {q3 } are not exchange symmetric. We have investigated the structures that

are the best that we can think of according to the qualitative principles described

in Section 2.7.3. Readers should feel free to try others. (We are confident that

in 2Cube45z we have found the most favorable structure obtained by rotating one
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Figure 2-6: Gap parameter A versus M/,2/ for three-flavor crystalline color supercon-
ducting phases with various crystal structures. The crystal structures are described
in Table II. For comparison, we also show the CFL gap parameter and the gCFL
gap parameters A1, A2 and A3 [62, 63]. Recall that the splitting between Fermi
surfaces is proportional to M2/1 , and that small (large) M2/1L corresponds to high
(low) density.

cube relative to another. We are not as confident that CubeX is the best possible

structure with fewer than 8+8 vectors.) As we shall see in Section 2.7.5, however,

the two most favorable structures that we have found, 2Cube45z and CubeX, are

impressively robust and do a very good job of making the case that three-flavor

crystalline color superconducting phases are the ground state of cold quark matter

over a wide range of densities. If even better crystal structures can be found, this will

only further strengthen this case.

2.7.5 Free energy comparisons

We can now evaluate and plot the gap parameter A and free energy Q(A) for all the

crystal structures described in Table I, whose Ginzburg-Landau coefficients are given

105



-10

0-20

5-3

@ -40

-50
MgL [MeV]

Figure 2-7: Free energy Q versus M2/1p for the three-flavor crystalline color super-
conducting phases with various crystal structures whose gap parameters are plotted
in Fig. 2-6. The crystal structures are described in Table II. Recall that the gCFL
phase is known to be unstable, meaning that in the regime where the gCFL phase
free energy is plotted, the true ground state of three-flavor quark matter must be
some phase whose free energy lies below the dashed line. We see that the three-flavor
crystalline color superconducting quark matter phases with the most favorable crys-
tal structures that we have found, namely 2Cube45z and CubeX described in (2.80)
and (2.83), have sufficiently robust condensation energy (sufficiently negative Q2) that
they are candidates to be the ground state of three-flavor quark matter over a wide
swath of M,2/1, meaning over a wide range of densities.

in Table II. For a given crystal structure, Q(A) is given by Eq. (2.66), with 3eff and

yeff taken from Table II. The quadratic coefficient a is related to 6y by Eq. (2.40).

Recall that we have made the approximation that 6522 = 613 = 61A = M,/(8p), valid

up to corrections of order M'//14. At any value of M2//1, we can evaluate a(6/p)

and hence Q(A), determine A by minimizing Q, and finally evaluate the free energy

Q at the minimum. In Fig. 2-5, we give an example of Q(A) for various M,//p for

one crystal structure with a first order phase transition (CubeX), illustrating how

the first order phase transition is found, and how the A solving the gap equations -
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i.e. minimizing Q - is found . We plot A and Q at the minimum versus M2//1 in

Figs. 2-6 and 2-7 for some of the crystal structures in Tables I and II.

In Figs. 2-6 and 2-7, we show two examples of crystal structures for which the

phase transition to the unpaired state is second order: 2PW and SqX. (See Table

I for descriptions of these structures.) The second order phase transition occurs at

M,2~/ = 7.60A0 = 190.0 MeV, where a = 0. (See Eq. (2.68).) We show four examples

of crystal structures with first order phase transitions, occurring where a = a,, > 0

meaning at some M,2/y > 190.0 MeV. We show the two most favorable structures

that we have found: CubeX and 2Cube45z. And, we show two examples (2Tet and

20cta90xy) of structures with first order phase transitions that are more favorable

than the structures with a second order transition, but less favorable than CubeX

and 2Cube45z.

In Figs. 2-6 and 2-7, we have chosen the interaction strength between quarks

such that the CFL gap parameter at M8 = 0 is A0o = 25 MeV. However, our results

for both the gap parameters and the condensation energy for any of the crystalline

phases can easily be scaled to any value of A0. We saw in Section 2.6 that the

quartic and sextic coefficients in the Ginzburg-Landau free energy do not depend

on A0. And, recall from Eq. (2.40) that A0 enters a only through the combination

A2sc//6p, where A2sc = 2A 0o and 5/t = M/(8y). This means that if we pick a

Ao - 25 MeV, the curves describing the gap parameters for the crystalline phases in

Fig. 2-6 are precisely unchanged if we rescale both the vertical and horizontal axes

proportional to Ao/25 MeV. In the case of Fig. 2-7, the vertical axis must be rescaled

by (Ao/25 MeV) 2. Of course, the weak-coupling approximation Ao < IL, which we

have used for example in simplifying the propagators in (2.44), will break down if

we scale Ao to be too large. We cannot evaluate up to what A0 we can scale our

results reliably without doing a calculation that goes beyond the weak-coupling limit.

However, such calculations have been done for the gCFL phase in Ref. [133], where

it turns out that the gaps and condensation energies plotted Figs. 2-6 and 2-7 scale

with Ao and A2 to good accuracy for Ao < 40 MeV with p = 500 MeV, but the

scaling is significantly less accurate for Ao = 100 MeV. Of course, for A0o as large as
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100 MeV, any quark matter in a compact star is likely to be in the CFL phase. Less

symmetrically paired quark matter, which our results suggest is in a crystalline color

superconducting phase, will occur in compact stars only if A0 is smaller, in the range

where our results can be expected to scale well.

The qualitative behavior of A at smaller M,/1p, well to the left of the unpaired/crystalline

phase transitions in Fig. 2-6, can easily be understood. The quadratic, quartic and

sextic coefficients in the free energy (2.66) are a(6~), 3eff = ff/61/2 and yeff

yeff/6/14. If a tended to a constant at small S3p, then the solution Amin that minimizes

Q would be proportional to 6p. (See Eq. (2.69).) In fact, from (2.40) we see that

a oc log bc5 at small 6~, meaning that, according to (2.69), Amin should vanish slightly

more slowly than linear as M/12/p oc 6J -- 0, as in Fig. 2-6. And, since the A's vanish

for 6/ --+ 0, so do the condensation energies of Fig. 2-7.

Fig. 2-6 can be used to evaluate the validity of the Ginzburg-Landau approxi-

mation. The simplest criterion is to compare the A's for the crystalline phases to

the CFL gap parameter A0. This is the correct criterion in the vicinity of the 2nd

order phase transition point, where 6~ = M3/(8p) - Ao. Well to the left, it is

more appropriate to compare the A's for the crystalline phase to 6p = M2/(8/p). By

either criterion, we see that all the crystal structures with first order phase transi-

tions (including the two that are most favored) have A's that are large enough that

the Ginzburg-Landau approximation is at the edge of its domain of validity, a result

which we expected based on the general arguments in Section 2.7.1. Note that the

Ginzburg-Landau approximation is controlled for those structures with second order

phase transitions only near the second order phase transition, again a result that can

be argued for on general grounds.

Fig. 2-7 makes manifest one of the central conclusions of our work. The three-flavor

crystalline color superconducting phases with the two most favored crystal structures

that we have found are robust by any measure. Their condensation energies reach

about half that of the CFL phase at Ms = 0, remarkable given that in the CFL phase

pairing occurs over the whole of all three Fermi surfaces. Correspondingly, these two

crystal structures are favored over the wide range of M,2/p seen in Fig. 2-7 and given
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in Eq. (2.79).

Taken literally, Fig. 2-7 indicates that within the regime (2.79) of the phase dia-

gram occupied by crystalline color superconducting quark matter, the 2Cube45z phase

is favored at lower densities and the CubeX phase is favored at higher densities. Al-

though, as detailed in Sections 2.7.3 and 2.7.4, we do have qualitative arguments why

2Cube45z and CubeX are favored over other phases, we have no qualitative argument

why one should be favored over the other. And, we do not trust that the Ginzburg-

Landau approximation is sufficiently quantitatively reliable to trust the conclusion

that one phase is favored at higher densities while the other is favored at lower ones.

We would rather leave the reader with the conclusion that these are the two most

favorable phases we have found, that both are robust, that the crystalline color super-

conducting phase of three-flavor quark matter with one crystal structure or the other

occupies a wide swath of the QCD phase diagram, and that their free energies are

similar enough to each other that it will take a beyond-Ginzburg-Landau calculation

to compare them reliably.

2.8 Conclusions, Implications, and Future Work

We have evaluated the gap parameter and free energy for three-flavor quark matter

in crystalline color superconducting phases with varied crystal structures, within a

Ginzburg-Landau approximation. Our central results are shown in Figs. 2-6 and 2-7.

Descriptions of the crystal structures that we have investigated, together with the

coefficients for the Ginzburg-Landau free energy (2.66) for each structure, are given

in Tables I and II.

We have found two qualitative rules that guide our understanding of what crystal

structures are favored in three-flavor crystalline quark matter. First, the (ud) and (us)

condensates separately should be chosen to have favorable free energies, as evaluated

in the two-flavor model of Ref. [39]. Second, the (ud) and (us) condensates should be

rotated relative to each other in such a way as to maximize the angles between the

wave vectors describing the crystal structure of the (ud) condensate and the antipodes
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of the wave vectors describing the (us) condensate. This second qualitative rule can

be understood as minimizing the "competition" between the two condensates for up

quarks on the up Fermi surface as we discussed in Chapter 1.

Fig. 2-7 shows that over most of the range of M,/p where it was once considered

a possibility, the gCFL phase can be replaced by a much more favorable three-flavor

crystalline color superconducting phase. However, Fig. 2-7 also indicates that it is

hard to find a crystal structure which yields a crystalline phase that has lower free

energy than the gCFL phase at the lowest values of M,/,u (highest densities) in the

"gCFL window", closest to the CFL--gCFL transition. This narrow window where

the gCFL curve remains the lowest curve in Fig. 2-7 is therefore the most likely place

in the QCD phase diagram in which to find the gCFL phase augmented by current-

carrying meson condensates described in Refs. [86, 87]. Except within this window,

the crystalline color superconducting phases with either the CubeX or the 2Cube45z

crystal structure provide an attractive resolution to the instability of the gCFL phase.

The three-flavor crystalline color superconducting phases with the CubeX and

2Cube45z crystal structures have condensation energies that can be as large as half

that of the CFL phase. This robustness makes them the lowest free energy phase that

we know of, and hence a candidate for the ground state of QCD, over a wide range

of densities. To give a sense of the implications of the range of M,2/, over which

crystalline color superconductivity is favored, given by

2.9A 0 < M < 10.4A0 , (2.79)

and shown in Fig. 2-7, if we suppose that A0 = 25 MeV and Ms = 250 MeV,

the window (2.79) translates to 240MeV < pu < 847MeV. With these choices of

parameters, then, the lower part of this range of p (higher part of the range of M,2/t)

is certainly superseded by nuclear matter. And, the high end of this range extends far

beyond the p ' 500 MeV characteristic of the quark matter at the densities expected

at the very center of compact stars. Our result therefore suggests that if compact

stars have quark matter cores, it is entirely reasonable to suppose that the entire
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quark matter core could be in a crystalline color superconducting phase. Of course,

if A0 is larger, say - 100 MeV, the entire quark matter core could be in the CFL

phase. And, there are reasonable values of A0o and M, for which the outer layer of a

possible quark matter core would be in a crystalline phase while the inner core would

not. We do not know A0 and M, well enough to answer the question of what phases

of quark matter occur in compact stars. However, our results add the possibility that

as much as all of the quark matter in a compact star could be in a crystalline color

superconducting phase to the menu of options that must ultimately be winnowed by

confrontation with astrophysical observations.

We have identified two particularly favorable crystal structures, using the quali-

tative rules described above and by direct calculation. We do not believe that our

Ginzburg-Landau approximation is sufficiently accurate to trust its determination of

which of these two structures is more favorable. For this reason, we wish to leave the

reader with a picture of both the 2Cube45z and CubeX crystal structures in position

space. In the 2Cube45z phase, the color-flavor and position space dependence of the

condensate, defined in (2.12) and (2.13), is given by

2r 2r
ACF(X)ai,JjJ =62aE2ij 2A cos -- (x + y + z) + cos -- (-X + y + z)

a a

2x 2]+ cos - (X - y + z) + cos -- (- - + z)
a a

+ •O3E• 2A cos - (vf2x + z+ cos -- (vy + z

+ cos -2 (-\2y+ + cos-- v2x+z ,a a

(2.80)

where a and / (i and j) are color (flavor) indices and where

_ 3 / 4.536 /[
a = -- - (2.81)

q 6S 1.764M,2

is the lattice spacing of the face-centered cubic crystal structure. For example, with
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M2/p = 100, 150, 200 MeV the lattice spacing is a = 72, 48, 36 fm. Eq. (2.80) can

equivalently be written as

AcF(X)ai,•j = E20 E2•ijA 2(r) + 3f3E3jA3(r) , (2.82)

with (2.80) providing the expressions for A2(r) and A3(r). A three-dimensional con-

tour plot that can be seen as depicting either A2 (r) or A3(r) separately can be found

in Ref. [39]. We have not found an informative way of depicting the entire conden-

sate in a single contour plot. Note also that in (2.80) and below in our description

of the CubeX phase, we make an arbitrary choice for the relative position of A3(r)

and A2(r). We show in Appendix B that one can be translated relative to the other

at no cost in free energy. Of course, as we have investigated in detail in Section 2.7,

rotating one relative to the other changes the Ginzburg-Landau coefficients /32 and

Y322 and hence the free energy.

In the CubeX phase, the color-flavor and position space dependence of the con-

densate is given by

ACF(x)ai,j =62aO62ij 2A cos -- (z + y + z) + cos -- (- - y + z)

+ E3a,63ij 2A cos - (-x + y + z) + cos ( - + z) .
a a

We provide a depiction of this condensate in Fig. 2-8.

The gap parameter A is large enough in both the 2Cube45z and CubeX phases

that the Ginzburg-Landau approximation that we have used to obtain our results is

being pushed to the limits of its validity. Therefore, although we expect that the

qualitative lessons that we have learned about the favorability of crystalline phases

in three-flavor quark matter are valid, and expect that the relative favorability of

the 2Cube45z and CubeX structures and the qualitative size of their A and con-

densation energy are trustworthy, we do not expect quantitative reliability of our

results. There is therefore strong motivation to analyze crystalline color supercon-
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Figure 2-8: The CubeX crystal structure of Eq. (2.83). The figure extends from 0 to

a/2 in the x, y and z directions. Both A2(r) and A3(r) vanish at the horizontal plane.

A2 (r) vanishes on the darker vertical planes, and A3(r) vanishes on the lighter vertical

planes. On the upper (lower) dark cylinders and the lower (upper) two small corners

of dark cylinders, A2(r) = +3.3A (A 2 (r) = -3.3A). On the upper (lower) lighter

cylinders and the lower (upper) two small corners of lighter cylinders, A3(r) = -3.3A

(A 3(r) = +3.3A). Note that the largest value of IAi(r)l is 4A, occurring along lines

at the centers of the cylinders. The lattice spacing is a when one takes into account

the signs of the condensates; if one looks only at IAI(r)j, the lattice spacing is a/2. a

is given in (2.81). In (2.83) and hence in this figure, we have made a particular choice

for the relative position of A3(r) versus A2(r). We show in Appendix B that one can

be translated relative to the other with no cost in free energy.

ducting quark matter with these two crystal structures without making a Ginzburg-

Landau approximation. This calculation can be performed for a family of simple

"crystalline" condensates, and we discuss this in the next chapter (Chapter 3).

The specific heat of crystalline color superconducting quark matter is linear with

T because of the presence of gapless quark excitations at the boundaries of the re-

gions in momentum space where there are unpaired quarks [41]. Calculating the heat

capacity of the CubeX and 2Cube45z structures should therefore yield only quanti-

tative changes relative to that for unpaired quark matter, unlike in the gCFL case

where the heat capacity is parametrically enhanced [108]. As a first guess the neu-
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trino emissivity can be expected to go as - TV, like it does in unpaired quark matter,

because the surfaces of the "blocking regions" of crystalline superconductivity (see

Figure. figure:shiftedspheres in Chapter 1) feature gapless modes. The detailed eval-

uation of the phase space for direct URCA neutrino emission from the CubeX and

2Cube45z phases will be a nontrivial calculation, given that thermally excited gapless

quarks occurs on boundaries of nontrivial blocking regions [104]. (The direct URCA

processes u + e --+ s + v and s -- u + e + F require s, u and e to all be within T

of a place in momentum space where they are gapless and at the same time to have

Pu + Pe = Ps to within T. Here, T - keV is very small compared to all the scales

relevant to the description of the crystalline phase itself.)

Beginning with Ref. [34], one of the motivations for the study of crystalline color

superconducting quark matter has been the possibility that, if present within the

core of a compact star, it could provide a region within which rotational vortices are

pinned and hence a locus for the origin of (some) pulsar glitches. Or, the presence of

crystalline quark matter within neutron stars could be ruled out if it predicts glitch

phenomenology in qualitative disagreement with that observed.

There are two key microphysical properties of crystalline quark matter that must

be estimated before glitch phenomenology can be addressed. The first is the pinning

force. Estimating this will require analyzing how the CubeX and 2Cube45z respond

when rotated. We expect vortices to form, and expect the vortices to be pinned at the

intersections of the nodal planes at which condensates vanish. Analyzing the vortices

in three-flavor crystalline phases will be nontrivial. One complication is that because

baryon number current can be carried by gradients in the phase of either the (us)

crystalline condensate or the (ud) condensate or both, and the most favorable vortex

or vortices that form upon rotating the CubeX and 2Cube45z phases will have to be

determined. Another complication arises because the vortex core size, 1/A, is only a

factor of three to four smaller than the lattice spacing a. This means that the vortices

cannot be thought of as pinned by an unchanged crystal; the vortices themselves will

qualitatively deform the crystalline condensate in their vicinity.

The second microphysical quantity that is required is the shear modulus of the
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crystal. After all, if vortices are well-pinned but the crystalline condensate can easily

deform under shear stress, the vortices will be able to move regardless of the pinning

force. Glitches occur if vortices are pinned and immobile while the spinning pulsar's

angular velocity slows over years, with the glitch being triggered by the catastrophic

unpinning and motion of long-immobile vortices. In order to immobilize vortices, and

hence make glitches a possibility, both the pinning force and the shear modulus must

be sufficient. The shear modulus can be related to the coefficients in the low energy

effective theory that describes the phonon modes of the crystal [36, 101, 102]. This

effective theory was analyzed, with its coefficients calculated, for the two-flavor crys-

talline color superconductor with face-centered cubic symmetry [102]. Extending this

analysis to three-flavor crystalline color superconducting phases with the 2Cube45z

and CubeX crystal structures is the subject matter of Chapter 4.
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Chapter 3

Testing the Ginzburg Landau

approximation in three flavor

superconductivity

3.1 Overview

It is an open challenge to analyze the crystalline color superconducting phases that

may arise in cold dense, but not asymptotically dense, three-flavor quark matter. At

present the only approximation within which it seems possible to compare the free

energies of the myriad possible crystal structures is the Ginzburg-Landau approxima-

tion, a calculation we discussed in detail in Chapter 2. In this chapter, we test this

approximation on a particularly simple "crystal" structure in which there are only

two condensates (us) - A exp(iq 2 -r) and (ud) - A exp(iq3 -r) whose position-space

dependence is that of two plane waves with wave vectors q2 and q3 at arbitrary an-

gles. For this case, we are able to solve the mean-field gap equation without making a

Ginzburg-Landau approximation. We find that the Ginzburg-Landau approximation

works in the A --+ 0 limit as expected, find that it correctly predicts that A decreases

with increasing angle between q2 and q3 meaning that the phase with q2 11 q3 has the

lowest free energy, and find that the Ginzburg-Landau approximation is conservative
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in the sense that it underestimates A at all values of the angle between q2 and q3 .

3.2 Outline

This chapter is organized as follows. In Section 3.3 we shall describe the one parameter

family of three-flavor crystalline color superconductors that we analyze. In Section

3.4 we review the main results of our Ginzburg-Landau analysis that we carried out

in Chapter 2 for these simple, three flavor "crystalline" condensates. In Section 3.5,

we recast the High Density Effective Theory slightly, as needed for our purposes, and

redo our analysis without the Ginzburg-Landau approximation. In Section 3.6 we

show the numerical results of our analyses, make comparisons, and draw conclusions.

3.3 Model and Ansatz

The Lagrangian density describing the system of free quarks is given by

Co = bia (gi + /P o py .p (3.1)

We argued that for neutral crystalline color superconducting quark matter in the

Ginzburg-Landau limit, the matrix p takes the form,

p = 13P 0 diag (AU, pa, ps) , (3.2)

with, Au, y'd and p, given by Eq. (2.4), with 6 P2 = 6#3 = M2/(8p'), and 6by =

(Id - ps)/2 = M,2/(4p) = 26p.

We will consider a condensate of the form,

3

(Vi(x)ca ,j (x)) c< A,• e-2iqrfl 3o61 j , (3.3)
I=1

where qj, q 2 and q3 are the wave vectors and A1 , A2 and A3 are the gap parame-

ters, describing pairing between the (d, s), (u, s) and (u, d) quarks respectively. The
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condensate (3.3), first analyzed in Ref. [44], is the natural generalization of the con-

densate we discussed in Eq. (1.18) in Chapter 1, to the three-flavor setting, and the

natural generalization of the CFL condensate (obtained by setting ql = q= q = 0)

to the crystalline color superconductor setting.

As we argued in Chapter 1, we shall make the simplifying assumption that A, = 0.

Given that 5p1 is twice 6J 2 or 6P3, it seems reasonable that A1 < A2, A 3. We leave

a quantitative investigation of the size of A1 to future work, however. With A1 set

to zero, the symmetry of the problem is such that we expect and find solutions with

A2 = A3  -A.

It should be noted, however, that these simplifications are rigorous only in the

Ginzburg-Landau limit in which A < Jp. A full investigation of cases in which A -

Jp requires investigating the Ginzburg-Landau results p3 = ps = 0, -e = M,2/(41p),

A1 = 0, and A2 = A3 = A anew, as beyond the Ginzburg-Landau approximation

these are all assumptions, not results. We will not pursue such a complete investi-

gation here. However, we will be able to calculate the free energy of phases with

condensate (3.3) without making an expansion in A that we used when we looked at

the problem in Chapter 2 in Section 2.7.2. This will allow us to check how controlled

the Ginzburg-Landau expansion is for condensates of form (3.3).

We will work in an NJL model in which the quarks interact via a point-like four

fermion interaction, analyzed at the mean field level. Taking the condensate to have

the form given in Eq. (3.3) with A1 = 0 the NJL interaction term can be written in

mean field theory simply as

3

'C = A ei2q ElaA Eijic Cy 5 Ooj + h.c. . (3.4)
1=2

Note that since the direction of one of the two wave vectors is arbitrary, the quantities

that have to be determined by minimizing the free-energy are A, the magnitude of

the two wave vectors, and the angle 0 between 12 and q3. As we discussed in

Chapters 1 and 2 the magnitude of the wave vectors is given in the Ginzburg-Landau

approximation by [q2 j = (q3j = qrp with qr = 1.1997 as in the two-flavor model.
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However, the angle 4 between the wave vectors is a degree of freedom present here

that has no analogue in the two-flavor model with condensate Eq. (1.18) in Chapter 1.

Within the Ginzburg-Landau approximation we found the most favorable value of €

to be zero in Section 2.7.2. We check this result in Section 3.5.

We also saw in Section 2.7.2 that, A -+ 0 at 6/- -- 0.754A 2sc, corresponding

to M2/p = 6.032A 2sc. In the vicinity of this second order phase transition, the

Ginzburg-Landau approximation is controlled, as in the two-flavor single planewave

condensate we discussed in Section 1.5.1. Therefore, in Section 3.4 we will calculate

the Ginzburg-Landau free energy only upto A4.

3.4 Ginzburg-Landau analysis:a summary

The free energy of the crystalline color superconducting phase can be written as

Q 2[a(2  + A2)+4+(4 ]2 + O(A), (3.5)

where we have dropped the absolute value signs as henceforth we will assume that

the U(1) symmetries are broken such as to give real A's. The coefficients in the

Ginzburg-Landau expansion (3.5) are given by the expressions

J6AIn 6p + q I1 4(t 2 - ) q
-1 + In + In,

2q -l - q 2 A sc
1 Re dp -1 1 1
8= 4r(ie-p-q+6)2 2 4(7 2 -1)

23 1 Re_ d_ -1
8 47r (ic - q2 -q2 )(i - 1-"q 3 + ) '

1 -
= 6J32() (3.6)

where q - qj and J32 is given in Eq. 2.50 and plotted as a function of q in Figure 2-3.

We saw in Section 2.7.2, 3 is positive (and independent of 0) and 323 is positive

for all €. Hence there is a second order phase transition from unpaired quark matter

to a phase with nonzero A2 and A3 at the largest value of 6p for which a = 0 for
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some value of q, irrespective of the value of q. For larger J6, a > 0 for all q and the

unpaired phase is stable. The transition occurs at 6~ = 0.754A 2sc, where modes with

q = qIL for q = 1.1997 become unstable to condensation, and A2 and A3 become

nonzero. At lower values of 61, modes in a band of q have a < 0 making them

unstable, but the mode with q = rl6p1 is the one with the most negative a and we

therefore assume that the condensate involves only the modes with q2 = q3 rl7J.

We now look for minima of the free energy with A2 = A3 = A, where the free

energy can then be written as

S= [2aA2 + (2 + ) (3.7)

For values of JI where a is negative, the solution is found at

A2 - 21a1 (3.8)
20 + 023

with

t = 2 2 (3.9)
7r2 (20 + 023)

The best choice of € is the one that minimizes Q, meaning the choice with the smallest

023. From Fig. 2-3 we see that this corresponds to 0 = 0, with q2 II q3 . We shall

provide plots of A and 92 versus M2/1p for various values of ¢ in Section 3.6, where we

shall compare these results to results obtained without making the Ginzburg-Landau

approximation.

The free energy (3.5) can also be used to analyze the free energy of a two-flavor

crystalline phase with a single-plane wave "crystal structure" in three flavor quark

matter. Setting A2 = 0 and A3 = A (or equivalently setting A3 = 0 and A2 = A)

we find a solution with A2 = Ija/,L and = _4
2a2/(r 2 O ). Like the solution with

A2 = A3, this solution is neutral in the Ginzburg-Landau limit. But as shown in

the appendix, the solution with A2 = A3 is electrically neutral even if we relax

the Ginzburg-Landau limit. When we make a comparison with the calculation done
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without the Ginzburg-Landau expansion, we will restrict our attention to the the

solution with A2 = A3. But ignoring this result for now, we explore for what values

of k the A2 = A3 solution has a lower free energy than that with A2 = 0. From (3.9)

we see this happens of (20 + /23) < 4/, meaning /23 < 20. One can generalize to

other solutions, and rule them out, by writing (A2, A3) as Wv(Ar sin 0, A, cos 0) and

then rewriting Eq. (3.5) as

= 2  2 - ) in2  (3.10)
7r 26112

As long as a < 0, there is a minimum with 0 = 7r/4 (namely A2 = A3) if /23 < 2/3

and minima at 0 = 0 and 0 = 7r/2 if 023 > 2/3. From Eqs. (2.50) and (3.6) we see

that /23 < 20 if J(0) < 1.138, and from Fig. 2-3 we see that this occurs for 4 < 2.485

radians, or ¢ < 142.40.

The divergence of /23 at q = ir can be understood qualitatively. We see in Fig. 1-

6 that there are two pairing rings on the up quark Fermi surface, because some up

quarks pair with down quarks forming Cooper pairs with wave vector 2q 3 and other up

quarks pair with strange quarks forming Cooper pairs with wave vector 2q 2 . However,

as shown in the right panel of Fig. 1-6, if ¢ = 7r the two pairing rings on the up quark

Fermi surface are close to coincident. In the weak-coupling limit in which 6S/1I -- 0

(and A2 C --* 0 with 6//A 2Sc fixed) these two rings become precisely coincident. We

attribute the divergence in /23, which indicates that antiparallel wave vectors pay

an infinite free energy price and hence are forbidden, to the coincidence of these two

pairing rings. Loosely speaking, it is as if these up quarks do not know whether to

pair with their putative strange or down partners and so do neither. In contrast, if

0 = 0 as in the left panel of the Figure, the two pairing rings on the up Fermi surface

are as far apart as they can be, and /323 and the free energy of the state are minimized.

This qualitative understanding also highlights that it is only in the strict Ginzburg-

Landau and weak coupling limits that the cost of choosing antiparallel wave vectors

diverges. If A/61 i is small but nonzero, the pairing regions are ribbons on the Fermi

surfaces instead of lines. And, if 6y//u is small but not taken to zero (as of course is
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the case in Fig. 1-6) then the two ribbons on the up Fermi surface will have slightly

different diameter, as the Figure indicates. This means that we expect that if we do

a calculation at small but nonzero A2sc ~ J/, and do not make a Ginzburg-Landau

expansion, we should find some free energetic penalty for choosing = =r, but not a

divergent one. We shall set up this calculation in Section 3.5 and see this expectation

confirmed in Section 3.6.

3.5 NJL analysis without Ginzburg-Landau approx-

imation

The two-flavor crystalline color superconducting phase with a single plane-wave "crys-

tal" structure (1.18) has been analyzed in a variety of ways without making a Ginzburg-

Landau approximation, going back to the work of Fulde and Ferrell [90]. In the QCD

context, it was analyzed using a variational method in Ref. [34], using a diagrammatic

method employing a modification of the Nambu-Gorkov formalism in Refs. [35, 38],

and using the Nambu-Gorkov formalism simplified via the High Density Effective

Theory in Ref. [36].

In the conventional Nambu-Gorkov formalism as applied to ordinary BCS pairing,

one defines an eight-component Nambu-Gorkov spinor

(p) = () T(_p) (3.11)

such that in this basis the pairing between fermions with momentum p and -p is

described by an off-diagonal term in the fermion propagator. The condensate (1.18),

however, describes pairing between u quarks with momentum p+q and d quarks with

momentum -p+q. This could be described via a propagator with terms in it that are

off-diagonal in momentum space, rather than merely off-diagonal in "Nambu-Gorkov

space". However, it is much easier to change to a basis in which the Nambu-Gorkov
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spinor is written as [35]

S0.(p + q)

(p) = d(P - q) (3.12)
Uý(-p - q)

ýd(-p + q)

The pair condensate is then described by terms in the fermion propagator that are

off-diagonal in Nambu-Gorkov space, occurring in the _T- T and d_- T entries. In

this basis the fermions that pair have p and -p, making the propagator diagonal in

p-space and the calculation tractable. One must always keep in mind that it is p + q

and -p + q that are the momenta of the fermions that pair, not p and -p. The

variable p is an integration variable: in the gap equation or in the expression for the

free energy, integrating over p sums the contributions of all the fermions although of

course it turns out that only those lying near ribbons on the Fermi surfaces contribute

significantly. Since p is an integration variable, we are free to change variables, for

example rewriting the Nambu-Gorkov spinor as

(P - 2q)

(p) o id(p- 2q) (3.13)

''T(-p + 2q)

The form of the Nambu-Gorkov spinor (3.13) immediately suggests that we ana-

lyze our three-flavor crystalline phase with condensate (3.3) with A1 set to zero by

introducing the Nambu-Gorkov spinor

T (p) =

rpp

"Pd(P - 2q3)

V.(P - 2q 2)

9T(-p)

dýT(-p + 2q3)

3-T +_ 2_j_

(3.14)
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Furthermore, it also indicates that it will not be possible to use this method of

calculation if A1 were kept nonzero, except for the special case in which ql = q2 - q 3.

(That is, except in this special case which is far from sufficiently generic, it will not

be possible to choose a Nambu-Gorkov basis such that one obtains a propagator that

is diagonal in some momentum variable p.) It is thus fortunate that, as explained

in Section 3.3, it is reasonable on physical grounds to begin with A 1 = 0, as we do

throughout this paper. Finally, it seems unlikely that this method can be employed

to analyze more complicated crystal structures analogous to the face-centered cubic

structure that is favored in the two-flavor case [39]. Investigating such possibilities

is feasible in the Ginzburg-Landau approximation, but the condensate that we are

analyzing, with A1 = 0 and A2 and A3 each multiplying a single plane wave, is the

most complex example that we currently know how to analyze without making the

Ginzburg-Landau approximation.

We now implement the calculation in the basis (3.14) using the High Density

Effective Theory formalism of Refs. [36, 100], valid in the weak-coupling limit in which

A2sc < •. We Fourier decompose the fermionic fields in the following nonstandard

fashion:

4Oi,(x) = e- iki.x dn x iann(x)) , (3.15)

where n is a unit three-vector whose direction is integrated over, where ki are three

fixed vectors, one for each flavor, that we shall specify momentarily and where #?i,n(x)

(resp. •~i,n(x)) are positive (resp. negative) energy projections of the fermionic fields

with flavor i and color a, as defined in Refs. [36, 100]. In the usual HDET approxi-

mation [100], the vectors ki are zero and the field 'ia,n(x) is used to describe quarks

in a patch in momentum space in the vicinity of momentum p = -n. The introduc-

tion of the shift vectors means that now Oia,n(x) describes quarks with momenta in

a patch in the vicinity of momentum pn + kl, with ki different for different flavors.
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To reproduce (3.14), then, it appears that we should choose

k, = 0

kd = 2q3

k, = 2q 2 . (3.16)

We shall see this choice emerge in a different way below.

Substituting the expression (3.15) in Eqs. (2.1) and (3.4) and neglecting the con-

tribution of antiparticles, the full Lagrangian reads

IC (iVt -A-" + 6Iii(n)60p6j) On,13/ dn7 IV n, (iV -Oj ?PnOj (3-17)3(3.17)
+ (E AjeIi 2 qI r EIai fElij/on,ia C 75 I-nOje i(ki+kj)r + h.c.)

I=2

where 6p~(n) = Pf - p - ki -n and where the four vectors V" and V" (the latter

used only below) are defined by V" = (1, n) and V" = (1, -n). We now see that we

can get rid of the space dependence in the gap term by choosing the shift vectors ki

so that they satisfy

ku + kd = 2q 3

ku+ks = 2q 2 . (3.18)

Because the k's were introduced arbitrarily in the decomposition (3.15), the calcula-

tion could in principle be done with any choice of k's. However, eliminating the space

dependence in the gap term is an enormous simplification, equivalent to yielding a

propagator that is diagonal in momentum space, and is what makes the calculation

tractable. So, we shall always choose k's satisfying (3.18). According to (3.18), if we

choose k, = 0, we recover (3.16). However, k, can be chosen arbitrarily as long as

kd and k, are then chosen to satisfy (3.18). This means that the choices of k's that

get rid of the space dependence in the gap term are given by any combination related
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to (3.16) by adding any vector to k, and subtracting the same vector from kd and

k,. The geometric interpretation of two examples of choices of k's is described in

Fig, 3-1. As this figure illustrates, the freedom to shift k, while keeping k, + k1 and

k, + k, fixed corresponds to the freedom to shift integration variable, for example as

we did in going from (3.12) to (3.13). In obtaining the results that we shall plot in

Section V, we shall use the choice (3.16); however, we have checked numerically that

different choices of k, with kd and k, satisfying (3.18) yield the same results for the

gap parameter and free energy. As Fig. 3-2 below indicates, these different choices

yield quite different intermediate stages to the calculation so the fact that we find the

expected agreement between them is a nontrivial check of our numerics.

We can now employ the Nambu-Gorkov basis defined in detail in Ref. [71] given

by

XA = Cn (3.19)
-n )A

where A = 1... 9 is a color-flavor index running over the nine quarks (three colors;

three flavors) and where the on fields are defined via (3.15) with shift vectors chosen

as in Eq. (3.16). In this basis, the full Lagrangian can be written in the compact form

C = X xA S (n) XB, (3.20)
n

with

SI= ( (V -. + JA(nf)) AB - AB(3.21)
,B -AB (V - - b•A(-n))6AB

where ,, = (to, £lln) is a four-vector. Here, ill is the "radial" momentum component

of 4, parallel to n. In HDET, the momentum of a fermion is written as (p + ll)n,

with the integration over momentum space separated into an angular integration over

n and a radial integration over -6 < £ll < 6. Here, the cutoff 5 must be smaller than

p but must be much larger than A2sc, by and A. In the results we plot in Section

V, we shall take p = 500 MeV, 6 = 300 MeV and A2sc = 25 MeV.

From the Lagrangian (3.20), following a derivation analogous to that in Ref. [63],
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Figure 3-1: Sketches showing how different choices of the shift vectors ki can be
interpreted. The left panel shows unshifted d, u and s Fermi surfaces, in the absence
of pairing. As in Fig. 1-6, we have exaggerated the magnitude of 65/MI for illustrative
purposes. Now, suppose we have a condensate with q2 = q 3  q, with q a vector
pointing upwards. In order to describe the (4 'n,d, O-n,u) and (~In,s, 7-n,u) pairing, we
shift the u, d and s Fermi surfaces by -ku, -kd and -k, respectively (since 4Cn,i
describes quarks in the vicinity of Mn + k,) and then reflect (i.e. take n -+ -n) the
u Fermi surface. The middle panel shows the outcome if we follow this procedure
with shift vectors given by (3.16). The u Fermi surface is left unshifted (meaning
its inversion is invisible in the Figure), and the d and s Fermi surfaces are shifted
downwards by 2q. In the right panel, we instead choose k, = 2q, which according to
(3.18) then requires kd = k, = 0. The d and s Fermi surfaces are unshifted. The u
Fermi surface has been shifted downwards by 2q and then inverted, making it look as
if it was shifted upwards. The location of the rings on the Fermi surfaces where pairing
occurs are determined by the places where the circles cross. In both middle and right
panels, the pairing rings on the d and s Fermi surface occur at their intersections with
the u Fermi surfaces whereas the pairing rings on the u Fermi surface are antipodal to
where these intersections appear in the Figure, since the u Fermi surface was inverted
in constructing the Figure. Thus, both the right and middle panels of this figure
correspond to the pairing sketched in the left panel of Fig. 1-6. The same calculation
can be done by integrating over the momentum variable of either the middle or right
panel; the difference between panels is just a change of integration variable. The
origins of the momentum variables are indicated by the + in each panel. Note that if
we had instead chosen to describe the ('n,u, O-n,d) and (On,w, O-n,,) pairing, both the
middle and right panels would look inverted relative to those given but this difference
also corresponds to a change of integration variable, in this case n +-+ -n.
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the thermodynamic potential per unit volume can be evaluated to be

S P2 z 6 I dn Ea (n,Ell)I41rrra 41r
a=1,18 I

2A2 4

+ U u e (3.22)
G 121r2

where we have set A2 = A3 = A and where G is a coupling constant chosen in such

a way that A2sc = 25 MeV in the CFL phase found at p = 500 MeV with Ms = 0.

In this expression, the Ea are the energies of the quasiparticles in this phase. They

are given by the 18 roots of det S-1 = 0, seen as an equation for to, with S- 1 the

Nambu-Gorkov inverse propagator given in (3.21). The quasiparticle energies are

functions of ell and n, and also depend on the gap parameter A and the wave vectors

ki. The doubling of degrees of freedom in the Nambu-Gorkov formalism means that

the 18 roots come in pairs whose energies are related by Ea(n, 1ll) = Eb(-n, Ell). One

set of nine roots describes ('n,d, O-n,,) and (In,s, 0-n,,) pairing, while the other set

describes (On,u, P-n,d) and (Vn,,, 0-n,,) pairing. Since n is integrated over, the free

energy can be evaluated by doing the sum in (3.22) over either set of nine roots,

instead of over all 18, and multiplying the sum by two.

In order to determine the lowest free energy state, we need to minimize the free

energy Q given in Eq. (3.22) with respect to the gap parameter A and with respect to

¢, the angle between ^2 and 13. One could also simultaneously minimize with respect

to Pe, /3 and Ps. And, one could allow A2 $ A3 and minimize with respect to the

two gap parameters separately. However, in the results that we shall present in the

next section we shall fix A2 = A3 = A, Pe = M.2/(4p) and P3 = Ps = 0, as is correct

for small A and as we have done in the Ginzburg-Landau analysis of Section 3.4.

Before turning to comparing results obtained from the calculation presented in

this section to those obtained with the Ginzburg-Landau approximation developed

in Section 3.4, we close this section by calculating explicitly how the free energy Q of

Eq. (3.22) manifests the qualitative features described in Chapter 1 and sketched in

Fig. 1-6, with pairing occurring along ribbons of the Fermi surfaces. The easiest way
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to find the regions of momentum space in which pairing is important is to analyze

the gap equation, obtained by varying Q with respect to A. This takes the form

A 0c dill J dn f(n, ill )  (3.23)

with

9 Ma
f (n, 11) = .9 Sign(Ea) . (3.24)

(Either set of nine quasiparticle energies could be chosen, but to make the comparison

with Fig. 3-1 we have used those describing (~n,d, -t,,, ) and (On,b, _-n,u) pairing.)

In Fig. 3-2, we plot f, the integrand in the gap equation, as a function of 1ll and cos 0

where 0 is the polar angle specified by n. (A plot of the integrand in the expression

for Q in Eq. (3.22) evaluated with A minus that evaluated with A = 0 yields a

very similar figure.) We have plotted f(cos 0, 1ll) for two different choices of the shift

vectors kl, corresponding to the middle and right panels in Fig. 3-1. The differences

between the two panels of Fig. 3-2 come entirely from the different choices of shift

vectors; both panels correspond to the same condensate, with q2 I1 q3 as in the left

panel of Fig. 1-6. And, we find excellent agreement when we integrate f depicted in

either the left or the right panel of Fig. 3-2 to obtain the right-hand side of the gap

equation (3.23), and similar agreement when we do the integral in Eq. (3.22) needed

to evaluate the free energy Q with either choice of shift vectors.

In both panels of Fig. 3-2, the bright white pairing regions near where the shifted

and unshifted Fermi surfaces cross are clearly visible, as are the jet black blocking

regions near the north and south poles of the Fermi surfaces at cos 0 = ±1 where no

pairing occurs. The pairing regions are centered at 0 = 67.10/2 and 0 = 180'-67.1'/2,

corresponding to cos = ±0.833. The dark but not black regions between Fermi

surfaces are places where either u-d or u-s pairing is blocked, but the other is allowed.

Note that even though the formal pairing regions (regions where f -4 0) extend far

from the Fermi surfaces, the bright white regions where the maximal value of f is
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attained are localized near where Fermi surfaces cross. So far, all as expected.

Even with a rather small value of A - in Fig. 3-2 A/6• = 0.056 - the ribbons

on the Fermi surfaces where pairing occurs do not look very narrow. In fact, if

we increase A to the point at which A/6p = 0.19, keeping all other parameters as

in Fig. 3-2, the blocking regions at the north and south poles visible in Fig. 3-2

disappear entirely. The pairing "ribbons" become so wide that the ribbon centered

at 0 = 67.10 expands to encompass 0 = 0, becoming more of a hat for the Fermi

surface than a ribbon on it. Furthermore, even in Fig. 3-2 where the pairing ribbons

on the Fermi surfaces are somewhat narrow, in that there are blocking regions at the

poles, these blocking regions are surrounded by regions of momentum space where

pairing is quite significant. Just a little distance in ill away from the Fermi surfaces,

the angular extent of the regions where pairing is significant grows rapidly, becoming

much wider than right at the Fermi surfaces themselves. These are all indications

that even though the Ginzburg-Landau approximation is formally controlled by the

parameter A/61p, it may break down quantitatively at rather small values of A/6p.

After all, in the Ginzburg-Landau limit A/6~p -- 0 the pairing is dominated by

infinitesimally narrow ribbons exactly where the shifted Fermi surfaces cross. Using

this as a basis for approximation cannot yield even a qualitative description of the

physics once A/6p - 0.2, as even with this small a value of A/6p the regions where

pairing is significant are no longer confined to narrow ribbons but have spread over

considerable regions of the Fermi surfaces. Indeed, the extent of the bright white

regions where pairing is significant in Fig. 3-2, in which A/6p = 0.056, indicates that

the Ginzburg-Landau approximation may cease to be quantitatively reliable at values

of A/6p below 0.2.

3.6 Comparisons and conclusions

In Fig. 3-3 we compare our results for the gap parameter and the free energy in

the crystalline color superconducting phase calculated in the Ginzburg-Landau ap-

proximation of Section 3.4 with those obtained without making this approximation
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Figure 3-2: Gap equation integrand f, defined in Eq. (3.24), as a function of momen-

tum. In each panel, the horizontal axis is cos 9 where 0 is the polar angle specified

by n, the vertical axis is f11 in MeV, and the grey scale indicates the value of f:
black corresponds to f = 0 and white to the largest values of f. In both panels,
p/ = 500 MeV and Sp = 17.7 MeV, which is 0.707A 2SC for A 2sc = 25 MeV, the in-

teraction strength that we shall use in the next section. In both panels, q2 = q3 = q
with q = 1.20 Sp = 21.2 MeV and q pointing in the z-direction. And, in both panels
A = 1 MeV. In the left panel, k, = 0 and kd = k, = 2q as in the middle panel of

Fig. 3-1. The unshifted u Fermi surface is centered in momentum space, meaning
that it appears in the left panel as a horizontal line at ell = 0. The shifted d and s
Fermi surfaces appear as diagonal lines, with the shifted d Fermi surface inside the u
Fermi surface at the north pole (cos = 1) and the shifted s Fermi surface outside
the u Fermi surface at the south pole. In the right panel, k, = 2q and kd = k, = 0
as in the right panel of Fig. 3-1. The unshifted d and s Fermi surfaces are centered in
momentum space, meaning that they appear in the right panel as horizontal lines at
ell = ±+26L. (Note that tll is measured relative to where the unshifted u-Fermi surface
would have been, shown as a dashed circle in the right panel of Fig. 3-1 that corre-
sponds to ell = 0 in the right panel here.) The shifted u Fermi surface appears in the
right panel here as a diagonal line, outside the d Fermi surface at the north pole and
inside the s Fermi surface at the south pole. Pairing is most important in the bright
white regions, centered where the shifted Fermi surfaces cross. The sketches provided
in Fig. 1-6 and particularly in Fig. 3-1 serve to help visualize the "momentum-space
geometry" and pairing regions depicted in the present figure.
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Figure 3-3: Plot of A/A 2sc (left panel) and of the free energy relative to neutral
non interacting quark matter (right panel) as a function of M_/I for four values of
the angle ¢ between q2 and q3. The various lines correspond to the calculations
done in the Ginzburg-Landau approximation described in Section 3.4 whereas dots
correspond to the NJL calculation of Section 3.5, done without making a Ginzburg-
Landau approximation. The full lines (green online) and circles correspond to 0 = 0,
the dashed-dotted lines (magenta online) and diamonds correspond to ¢ = 27r/3, the
dashed lines (red online) and squares correspond to q = 71r/8, the dotted lines (blue
online) and triangles correspond to -= 31ir/32.
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in Section 3.5. We have done the calculations with IL = 500 MeV and a coupling

strength chosen so that A2sc, the BCS gap in the CFL phase at M, = 0, is 25 MeV.

We vary M8, but plot quantities versus M2/tI because the most important effect of

nonzero M, is the splitting between the d, u and s Fermi momenta given in Eq. (2.4),

controlled by 3p = M.2/(8p). We analyze the condensate (3.3) with A2 = A3  A

and q2 = q3 = q. At each value of M2/11 , we choose q = qJA = qM2/(8jt), where

77 = 1.1997. We fix t3 = As = 0 and le = M/2(4A), as appropriate for neutral three-

flavor crystalline quark matter with A/61 <K 1, for which the Ginzburg-Landau

approximation is valid. We leave investigating the extent to which these chemical

potentials may shift at larger A to future work. We show our results for four values

of the angle between q2 and q 3 : 0 = 0, 2rx/3, 7-r/8 and 31x/32. The lines correspond

to the Ginzburg-Landau analysis of Section 3.4, where we have plotted A and 9 of

Eqs. (3.8) and (3.9), with the Gonzburg-Landau coefficients defined as in Eqs. (3.6)

and (2-3) The points correspond to the NJL calculation of Section 3.5, where we

have minimized Q of Eq. (3.22) with respect to A.

We see in Fig. 3-3 that the NJL calculation has a second order transition at

M2/z - 151 MeV, corresponding to 6p - 0.754A2sc, for all values of the angle

q. This result is in agreement with the Ginzburg-Landau calculation, in which the

location of the phase transition depends only on a, which is independent of q. We

then see that near the phase transition, where A/A 2sc and hence A/61 are small, we

find good agreement between the NJL calculation and the Ginzburg-Landau approx-

imation, as expected. For all values of q, as A/A 2sc increases as M.2/1 is decreased

farther from the transition, we see that both A and 191 increase more rapidly with

decreasing M,2/p than predicted by the Ginzburg-Landau calculation. When the

Ginzburg-Landau approximation breaks down, it does so conservatively, underpre-

dicting both A and |JH for the entire one parameter family of "crystal structures"

parameterized by q. (This behavior also occurs in the two-flavor model with conden-

sate (1.18) [39].) Furthermore, even where the Ginzburg-Landau approximation has

broken down quantitatively, it correctly predicts the qualitative feature that at all

values of M,2/I the most favorable crystal structure is that with 0 = 0. As we saw in
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the discussion of Fig. 1-6, this can be attributed at least qualitatively to the fact that

for q2 II q 3 the two pairing ribbons on the u-Fermi surface are farthest apart. We see

that the Ginzburg-Landau approximation is useful as a qualitative guide even where

it has broken down quantitatively.

It is evident from Fig. 3-3 that the extent of the regime in which the Ginzburg-

Landau approximation is quantitatively reliable is strongly 0-dependent. In the best

case, which it turns out is 0 = 0, the results of the Ginzburg-Landau calculation are

in good agreement with those of the full NJL calculation as long as A/A 2sc < 0.25,

corresponding to A/616 < 0.35. On the one hand, this looks like a somewhat small

value of A/6p. However, it is remarkable that the Ginzburg-Landau approximation

works so well for this large a value of A/[p: after all, we saw in the discussion of

Fig. 3-2 in Section IV that for 0 = 0 even with A/64u only 0.19 the pairing "ribbons"

that characterize the Ginzburg-Landau approximation have broadened into "pairing

hats" encompassing the north and south poles of the Fermi surfaces. For larger q, the

Ginzburg-Landau approximation yields quantitatively reliable results only for much

smaller A. For example, with 0 = 31rx/32 we have zoomed in on the region near the

second order phase transition and seen that the Ginzburg-Landau calculation does

give results in quantitative agreement with the full NJL calculation, but only for

A/A 2sc < 0.04, corresponding to A/161 < 0.05. Why does the regime of quantitative

validity of the Ginzburg-Landau approximation shrink with increasing 0? An expla-

nation was suggested in Section 2.7.2, where we said that as 0 -- 7r, 723 that appears

in the sextic coefficient rises to infinity much faster than P23, that appears in the

quadratic coefficient. This suggests that the radius of convergence of the expansion

in A shrinks as 0 gets closer to ir.

Thinking about the implication of this study for the more complex three flavor

condensates we studied in Chapter 2 in the Ginzburg-Landau approximation, the

results can be seen as either a glass half empty or a glass half full. On the one hand,

we find that the approximation is quantitatively reliable only for values of A/6[1 that

are small and for some crystal structures (those with q2 and q3 close to antiparallel)

very small. This means that the more robust crystal structures with large gaps and

135



condensation energies, in particular for CubeX and 2Cube45z may not be described

reliably within the Ginzburg-Landau approximation. On the other hand, we find

that even when it breaks down quantitatively the Ginzburg-Landau approximation

remains useful as a qualitative guide, correctly predicting that the favored "crystal"

structure among our one parameter family of possibilities is that with q 2 I3 q3 . In

particular it is reassuring that, atleast for these simple condensates, one of the main

rule of thumb we followed to winnow possible three flavor crystalline structures is

true beyond the Ginzburg-Landau approximation. The sructures are more favorable

the farther apart vectors in {q2} are from the antipodes of {q 3}. Finally, in all the

cases where we have been able to test it, when the Ginzburg-Landau approximation

breaks down it does so conservatively, underpredicting the magnitude of A and the

favorability of the free energy.

To establish, using theoretical techniques, the existence of a window of densi-

ties where the crystalline color superconducting phase is the ground state of matter

requires a calculation of the free energy of these complicated structures without mak-

ing the Ginzburg-Landau approximation. An alternative possibility is to make a

connection with observations of neutron stars, which can then test the existence of

these phases in neutron star cores. One such application will form the center of our

discussion in the next chapter.
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Chapter 4

The rigidity of crystalline color

superconducting quark matter

4.1 Overview

In this chapter we calculate the shear modulus of crystalline color superconducting

quark matter, showing that this phase of dense, but not asymptotically dense, three-

flavor quark matter responds to shear stress like a very rigid solid. To evaluate

the shear modulus, we derive the low energy effective Lagrangian that describes the

phonons that originate from the spontaneous breaking of translation invariance by

the spatial modulation of the gap parameter A. These massless bosons describe

space- and time-dependent fluctuations of the crystal structure and are analogous

to the phonons in ordinary crystals. The coefficients of the spatial derivative terms

of the phonon effective Lagrangian are related to the elastic moduli of the crystal;

the coefficients that encode the linear response of the crystal to a shearing stress

define the shear modulus. We analyze the two particular crystal structures which

are energetically favored over a wide range of densities, in each case evaluating the

phonon effective action and the shear modulus up to order A2 in a Ginzburg-Landau

expansion, finding shear moduli which are 20 to 1000 times larger than those of

neutron star crusts. The crystalline color superconducting phase has long been known

to be a superfluid - by picking a phase its order parameter breaks the quark-number
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U(1)B symmetry spontaneously. Our results demonstrate that this superfluid phase

of matter is at the same time a rigid solid. We close with a rough estimate of the

pinning force on the rotational vortices which would be formed embedded within this

rigid superfluid upon rotation. Our results raise the possibility that (some) pulsar

glitches could originate within a quark matter core deep within a neutron star.

4.2 Outline

This chapter is organized as follows. For continuity we will rewrite the Lagrangian

describing the quarks, in Section 4.3. We will also look back the CubeX and 2Cube45z

condensates, which form the background crystal structures whose oscillations are the

phonons. This will give us a chance write them in a coordinate system which turns

out to be more convenient for the calculation than the one used in Chapter 2. In

Section 4.4, we shall introduce in the Lagrangian, small displacements of a general

diquark condensate which breaks translational symmetries. We will write a general

expression for the effective action describing these displacement fields, by integrating

out the fermions in the system. The final result for the phonon effective action is

given in Eq. (4.66). We relate the coefficients of the terms in the effective action

involving the spatial derivatives of the displacement fields to the shear modulus in

Subsection 4.5.1 and then evaluate these coefficients for the CubeX and 2Cube45z

crystals in Subsections 4.5.3 and 4.5.4 respectively. We end with a discussion of our

results and their consequences in Section 4.6 .

We have moved two relevant consistency checks to the Appendices to maintain

continuity. In Appendix C we show explicitly that the displacement fields are mass-

less to all orders in the gap parameter, as they must be by Goldstone's theorem.

In Appendix D we evaluate the effective action for a simple "crystalline" structure

involving just two flavors of quarks and pairing with only a single wave vector q.

In this case, the calculation can be done without making an expansion in the gap

parameter, A. We find that the results in the limit of small A are consistent with

the Ginzburg-Landau calculation.
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4.3 Setup

Here we quickly review aspects of three-flavor crystalline superconductivity that will

be useful for our calculation below.

4.3.1 Lagrangian for three-flavor quark matter

The Lagrangian density describing the system of quarks is given by

L - ( + 3yo) z 8- - A (G T6-Y j) (4.1)

where J9S = &6'86ij and the first term is the free part of the Lagrangian. The second

term, proportional to G, is the NJL interaction term.

We argued in Chapters 1 and 2 that for crystalline color superconducting phases

in the Ginzburg-Landau limit, p simplifies to

p = 6 1 0 diag (PtL, Pd, P) , (4.2)

with,

(4.3)

where /12 and P3 are given by,

M2
6A3 = 6p2 = M' = A.8/1 (4.4)

In subsequent sections, we shall also often use the notation - /zitO, with i = 1, 2, 3

corresponding to u, d, s respectively.

Finally we remind the reader that /2 and p3 are equal only upto the leading order

in M2,/1 2 and differ by terms of order M4/p3 . We will use this fact in Appendix C.
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4.3.2 The crystalline condensate

We consider condensates of form,

3

(iOj(x)C-y5c(x)) oc A e . (4.5)
I=1 qae{ql}

As we discussed in Chapter 2, we will take A, = 0 in our calculations. Making this

and the Ginzburg-Landau approximations, we found two condensates in Chapter 2,

CubeX and 2Cube45z, which have a smaller free energy than the gCFL phase, the

CFL phase and unpaired quark matter, over a wide range of parameters. We describe

these condensates in the next section.

4.3.3 The CubeX and 2Cube45z structures

The CubeX crystal structure is specified by two sets of unit vectors, {42} and {U3}

depicted in the left panel of Fig. 4-1. Taken together, the two sets of vectors point

towards the eight vertices of a cube. The four vectors in {l2} all lie in a plane and

point towards the vertices of a diagonal rectangle of the cube, while the four vectors

{43} form the complementary rectangle. We will use a coordinate system such that

{12 } is given by {(1/v')(+v2, 0, +1)} (the four combinations of ± giving the four

vectors in {42}) and {43} is given by {(1/ v3)(0, ±v, f1)}.

The 2Cube45z crystal structure is specified by two sets of unit vectors, {42}

and {4 3} depicted in the right panel of Fig. 4-1. The two sets {42} and {4 3} each

contains eight vectors that point towards the vertices of a cube. The cubes spec-

ified by {42} and {1 3} are rotated relative to each other by an angle 45' about

one of their C4 symmetry axis, passing through their common center. We will ori-

ent the coordinate axes such that {42} is given by {(1/x4)(±1, 1, ±l)} and {4 3}

by {(1/v/')(v-,0,, 1)} U {(1/NV)(0, /2, ±l)}, which corresponds to a relative

rotation by 450 about the i axis.
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Figure 4-1: (Color online) Left panel: The momentum vectors forming the CubeX

crystal structure. This structure consists of eight vectors that belong to two sets {42}
and {13} which are shown as vectors which start from the origin. The four vectors

in {42} are given by (1/vx)(+v_, 0, il) and point toward the vertices of the light

shaded rectangle (pink online) that lies in the x - z plane. The four vectors in {43}
are given by (1/0/)(0, ±V2, ±l) and point toward the vertices of the dark shaded

rectangle (purple online) that lies in the y - z plane. Taken together the two sets

of vectors point towards the eight vertices of the light gray colored cube (only the

edges are shown as light gray segments). Right panel: The end points of the vectors

forming the 2Cube45z crystal structure. This structure consists of sixteen vectors

that belong to two sets {42} and {43}. The eight elements of the set {M2} point
towards the vertices of the black cube (only the edges are shown), and are given by

(1/V)(±1, +1, il). The eight elements of the set {43} point towards the vertices of

the light gray cube, and are given by {(1/±/3)(V, 0, l)} U {(1//3)(0, i/2, Il)}.
The three dots denote the points where the axes meet the light gray cube, to clarify

the orientation of the axes.

The lattice spacing for the face-centered cubic crystal structure is [39, 46]

v/r 4.536 (.a = -. (4.6)
q •p 1.764 M(

For example, with M,2/i =100, 150, 200 MeV the lattice spacing is a =72, 48, 36 fm.

The spacing between nodal planes is a/2.

4.4 The phonon effective action

In this Section, we present our calculation of the effective action for the phonons

in crystalline color superconducting phases of quark matter. In Subection 4.4.1 we
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describe the expression for the NJL interaction term in mean field theory. In Sub-

sections 4.4.2 and 4.4.3 we introduce the phonon field and integrate the fermions

out, yielding a formal expression for the phonon effective action. In Subsections 4.4.4

and 4.4.5 we introduce the Ginzburg-Landau approximation and evaluate the phonon

effective action to order A2 .

4.4.1 NJL model in field approximation

In the mean field approximation, the interaction Lagrangian (4.1) takes on the form

1- 1 T 3
Linteraction -= 2 A(r)>T -+ 2b A(r)V/ - - G tr(Fr( )F) (/), (4.7)

2 2 8

where, F = Ta'yp, tr represents the trace over color, flavor and Dirac indices, and

where A(x) is related to the diquark condensate by the relations,

3a(x) = G r( (p'T)rT4
A(x) = 3 Gcr T( ( r (4.8)4

= yoAt(x)yo.

4.4.2 Introduction of the phonon field

We now consider the space- and time-dependent vibrations of the condensate, which

will lead us to the effective Lagrangian for the phonon fields in the presence of a

background condensate of the form (4.5). More precisely, we consider the condensate

A(r) = AcF(r) 0 Cy5  (4.9)

with
3

ACF(r)ai,pO = ••eoer10c A e2"i•~r . (4.10)
I=1 qI
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Sometimes we will write

3

AcF(r) = e JgEciijAi(r) , (4.11)
I=1

with

Ai(r) - A, e2eiq" (4.12)

Note that I = 1,2, 3 correspond to (ds), (us) and (ud) condensates, respectively.
When we evaluate the phonon effective Lagrangian for the CubeX and 2Cube45z

crystals explicitly in Section 4.5, we will set A1 = 0 and I will then run over 2 and

3 only. The condensate (4.10) breaks translation invariance spontaneously and we

therefore expect Goldstone bosons corresponding to the broken symmetries, namely

phonons. Phonons are small position and time dependent displacements of the con-

densate and, since the three condensates in (4.11) can oscillate independently, we

expect there to be three sets of displacement fields us(x). In the presence of the

phonons, then,

Ai(r) -+ Au(x) = A,(r - u,(x)) , (4.13)

and we will denote the corresponding quantities appearing on the left-hand sides of

(4.11) and (4.9) as AUF(x) and Au(x) respectively, i.e.

3

A•F(x)= ZEnIPflijA (x) , (4.14)
I=1

and

AU(x) = AF,(x) 0 Cy5 . (4.15)

(We apologize that we have denoted the displacement fields, and hence quantities like

A ", by the letter u which in other contexts, but not here, denotes up quarks.) In

the mean field approximation, the full Lagrangian is quadratic in the fermion fields

and can be written very simply upon introducing the two component Nambu Gorkov

143



spinor

X and hence 02 = p T , (4.16)

in terms of which

1 (i + Au(x) 1
C 2 (x) (i0 - X + 1  tr ((Au)T A) . (4.17)

The last term in Eq. (4.17) comes from the last term in Eq. (4.7), which simplifies to

(1/(16G))tr((Au)T Au) for condensates given by Eqs. (4.14) and (4.15).

4.4.3 Integration over the X fields

The spacing between vortices in the vortex array in a rotating superfluid neutron star

is many microns, and we will be interested in shear stresses exerted over lengths of

order or longer than this length scale. This means that we need the effective action

for phonon excitations with wavelengths of this order or longer. This length scale

is many many orders of magnitude longer than the microscopic length scales that

characterize the crystalline phase. For example, the lattice spacing is many tens of

fmin. This means that we need the effective action for phonons whose wavelength can

be treated as infinite and whose energy can be treated as zero, certainly many many

orders of magnitude smaller than A.

The low energy quasiparticles in a crystalline color superconductor include the

displacement fields ui(x), which are massless because they are the Goldstone bosons

of the broken translational symmetry. In addition, crystalline superconductors feature

gapless fermionic modes, as we now explain. In the absence of pairing, quarks living

at the Fermi surfaces can be excited without any cost in free energy; pairing in the

crystalline phases yields gaps for quarks living in various ring-shaped bands around

the Fermi surfaces, but leaves gapless fermionic modes at the boundaries of the pairing

regions (loosely speaking, the remainder of the original Fermi surfaces other than the

ring-shaped bands) [34, 35, 39, 46]. The low energy effective theory includes fermions
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in the vicinity of the surfaces in momentum space that bound the pairing regions, in

addition to the phonons that are our primary interest in this paper.

To find the low energy effective action which describes the phonons and the gapless

fermionic excitations we need to integrate out those fermion fields which have an

energy larger than some infrared cutoff AIR. For the application of interest to us, AIR

should be the energy of phonons with micron wavelengths. If we were interested in

thermal properties, AIR would be of order the temperature T. (Either of these energy

scales is << A, and by the end of this Subsection we will see that it is safe to set

AIR = 0.) In order to formally implement this procedure, we define

0 =,O))+0( and hence, = j)+ (, (4.18)

where V)( and ?( contain modes with energy in [0, AIR] and 0) and ý) those with

energy in [AIR, o]. Note that the boundary in momentum space between the V)

and V)( modes will be nontrivial surfaces that follow the boundaries of the pairing

regions, where the gapless fermions are found. The corresponding decomposition for

the Nambu Gorkov fields is,

X=X)+X( andhence X = ý) +,(, (4.19)

where X), X(, X) and g( are defined analogously to Eq. (4.16). Carrying out the

functional integral over the X) and X) fields will leave us with a low-energy effective

action in terms of the uz, X( and X( fields.

We begin with the path integral expression for the partition function,

Z[u, x(, (] = fD[X])I[]ei d4xL' (4.20)

where the action of the Lagrangian in Eq. (4.17) can be written in terms of the

decomposed fields (4.19), as follows,

/ d4xL = /d4x [Itr((&u)TAu) + )S-'X) + (S-x(] , (4.21)
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where the cross terms 2)S-'x( and X(S- 1x) do not appear because the integration

over xz imposes energy conservation, and X) and X( have support over different ranges

of energy. The full inverse propagator, S-', in Eq. (4.21) is given by

S-1 = (A +  A(X) (4.22)

Since the Lagrangian is quadratic in the X and 2 fields, the standard result for

fermionic functional integrals gives

iS[u, X(, (] = log(Z[u, x(, 2]) = idx [(S-x(+ • tr((A•)TAu)] + Trng log (S - 1)
(4.23)

where S[u, X(, 2(] is the low energy effective action that we are after, at present still

given at a rather formal level. Here, Trng symbolizes the trace over the Nambu-Gorkov

index, the trace over color, flavor, Dirac indices and the trace over a set of functions

on space-time, with energies lying in [-oo, -AIR] U [AIR, o]. The factor 2 appears

before Trng because all the components of X and g are not independent. The actual

independent fields are 4 and 4. As promised, the effective action is a function of

the low energy quark fields, which appear in 2(S-1x(, and the phonon fields, which

appear implicitly via the dependence of S- 1 and Au on ur.

We now concentrate on small displacements and hence drop all terms in the ef-

fective action of order (ur)3 or higher. This is most simply done by looking at

3

A•CF(x) - C EIaf3lijAJ a• e2iq` (r- u /(x)),

1=1 (4.24)

- S i ii i E jA 2iqr - i(X) - 1 ((x))2 + o ((x)) 3

I=1 q?

where we have defined

2q.I u(x) = ¢a(x). (4.25)

We will refer to both the u1 fields and Oa fields as phonons, as we can write one in
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terms of the other.

We now argue that as far as the calculation of the shear modulus is concerned,

we can look only at the part of the effective action that describes the phonons. The

remainder of the effective Lagrangian, where the low energy quark fields appear, can

be written as

2(S-iX( = £C + ±£f (4.26)

with

x) = A (r) (io - g)T) X( (4.27)

and

C(x aX((r) Au(x) - A ) X(* (4.28)

We shall see in Section 4.5.1 that the shear modulus is related to the coefficient of

(4.29)

in the Lagrangian, which makes it obvious that Lf does not contribute. The coef-

ficient of (4.29) at the scale AIR receives contributions from the X) and 2) fermions

which have been integrated out. The phonons and low energy quarks (at an energy

scale lower than AIR) interact via the Lfo term in the Lagrangian. Formally, then,

one has to solve consistently for the phonon propagator and the quark propagator,

which are coupled. However, the effect of the phonon-fermion interactions on the

self consistent calculation of the gap parameter using £f is small, because the quark

loops come with an additional factor of p2, which is is much larger than (AIR) 2 , and

hence the quark propagator can be considered to be unaffected by the phonons. The

phonon propagator, and hence the shear modulus, will depend on the phonon-fermion

interactions, meaning that the phonon propagator and consequently the coefficient of

(4.29) will run as AIR is reduced. However, as long as AIR is much smaller than A,

Iqj and 6p, the change in the value of the shear modulus from integrating out more

fermions below the scale AIR will be negligible compared to its value at AIR. This

147



means that we can take AIR = 0, integrating all of the fermions out from the system

and obtaining an effective action for the phonons alone. This procedure is correct for

the calculation of the shear modulus but would not be correct for, say, calculating the

specific heat of the system, which is dominated by the gapless fermions not by the

phonons. We have checked numerically that the difference between the shear modulus

calculated with AIR = 0 and that with a small but nonzero AIR is negligible.

Finally, therefore, the effective action we are interested in depends only on the

phonon fields, and is given by

iS[u] = log(Z[u]) = i d ~ tr((u)TA)] + • rng log (S- 1) , (4.30)

where now the Tr,, includes a trace over functions in space-time containing all energy

modes.

For the single plane wave "crystal" structure in which only one of the A, is

nonzero and {q.} contains only a single wave vector [90, 34], we can invert the

Nambu-Gorkov inverse propagator in the absence of phonons without expanding in

A, and can therefore obtain the effective action for the phonons up to second order

in ¢, to all orders in A. We shall do this exercise in Appendix D. For the realistic

crystal structures, CubeX and 2Cube45z, however, we cannot invert the full inverse

propagator and we therefore proceed by making a Ginzburg-Landau expansion in A.

4.4.4 Ginzburg-Landau expansion

In order to obtain the effective action for the phonon field we first separate the full

inverse propagator, S- 1 , defined in Eq. (4.22), into the free part, So' and a part

containing the condensate, E, as follows: S- 1 = So + E, where

Sl i (i/=- T) (4.31)
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and

E = ( Au(r)) (4.32)
A=(r) 0

Then, we can expand the term log(S - 1) that appears on the right-hand side of

Eq. (4.30) as

Trng (log(So1 + E)) = Trng (log So1) + Trng (So) - Trng(SoE)2 + ... (4.33)

where Trng (log So 1) is related to the free energy of unpaired (Normal) quark matter

Qn by

Tn (g So') = -i22N J d4x = -i2VTQN , (4.34)

with VT the space-time volume. Since

(SoE) = ( 0 (io + ±)-lAU(x) , (4.35)
((i_- )T)-Itu(x) 0

only even powers of (SoE) contribute to the trace over Nambu Gorkov indices and

we can write,

Trng(lg(S-1)) = -i2QN(VT) - E Tr(iq+ ±4)-Au(x)((i-  - i)T)-1Au(x)) ,

n=l

(4.36)
where, the Tr on the right hand side is over Dirac, color, flavor and space-time,

and we have used the cyclic property of the trace to equate the two contributions

obtained from the trace over the Nambu Gorkov index. Finally, substituting (4.36)

back in (4.30) and simplifying the Dirac structure of the operators using the Cy5 Dirac

structure of the condensate and the properties of the charge conjugation matrix C,

namely C("yi)TC -1 = --y" and C' = -1, we obtain

S[u]=- fd XtrcF((AW )tAuF) - QN(VT)

1 r((i + g)- iAF(x)(i -- AUF(x)) (4.37)

n=1

149



S _ 1------ >------ = Voi

-~ 6 ElaftEhj
2q0 i

/3, J

2qj
,- zi

-1 ITaf3Eij

/3,j

14lp~i

/3, j

P 1

a,

a,i -',

EIa/,EIij I

2q?
/13j

2q•~
a,i -.

/,jicEIaf~ij ....

2qa

a, i

1 *
-2EIaE---ij --

/3,j

Figure 4-2: Propagators and interaction vertices for the Lagrangian up to order ¢2.
The dashed lines represent propagating quarks, and the solid lines represent propa-
gating quark holes. The dot-dash lines represent external phonons. The subscript
on p is the index of the flavor which is propagating, and determines the value of the
chemical potential that appears in the propagator. The A, vertex comes along with
a momentum insertion 2q' and a vertex factor e\ perij. Similarly, A* comes with a
momentum insertion -2q' and the same vertex factor.

where the trace trcF is over color and flavor indices and where AuF(x) depends on

u1 (x) via Eqs. (4.24) and (4.25). Eq. (4.37) is the low energy effective action for

the phonons, written as a Ginzburg-Landau expansion in A. We will calculate the

leading contribution to S[u], namely that proportional to A2 .

The first term on the right hand side of Eq. (4.37) does not have any derivatives

acting on u, and hence can only contribute to the mass of the phonon, which we know

must be zero by Goldstone's theorem. In Appendix C, we show explicitly that the u1
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dependence in f dx trcF ((AuCF)t A,) cancels out, and its value is given simply by

1fdx dtrcF ((Z C) t AF)

S(VT)(4.38)

I

where P1 is the number of plane waves in {q 1 }.

We now proceed to evaluate the third term on the right hand side of Eq. (4.37)

diagrammatically. We will expand the action S[u] in Eq. (4.37) in powers of 0 (or

equivalently uj) up to second order in 0 by using the Feynman rules described in

Fig. 4-2.

The lowest order term is independent of q. The sum of this term and of the

term given in Eq. (4.38) has a simple interpretation. In the absence of phonons, and

considering that the fermionic fields have been integrated out, the action in Eq. (4.37)

turns out to be proportional to the free energy of the system. More specifically,

S[u = 0] = -(VT)(Ocrystalline + QN) , (4.39)

where Ocrystaline is given as a Ginzburg-Landau series in A [46]. Since (4.39) is inde-

pendent of 0 it does not affect the equations of motion of the phonons and we will

simply drop it from our calculation.

We now consider the term that is linear in ¢. We will evaluate the leading term

in the action proportional to A2, which we will call SO, 2 and which is represented

diagrammatically in Fig. 4-3. Both terms shown in Fig. 4-3 are proportional to the

trace of rcOpEJapE•ijEJiJ, which is nonzero only if I = J and therefore only terms

proportional to A*A1 are present. We could have anticipated this result from the

symmetries of the problem. The Lagrangian conserves particle number for every

flavor of quarks, which corresponds to symmetry under independent global phase

rotations of quark fields of the three flavors, meaning independent phase rotations of

the three A,. The effective action should be invariant under these rotations and hence

A1 can only occur in the combination A*A1 . (Although the condensate spontaneously
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Figure 4-3: Diagrams that contribute to order OA2. The dashed lines represent prop-
agating quarks, and the solid lines represent propagating quark holes. The interaction
vertices have been defined in Fig. 4-2 and the color-flavor structure is also indicated.
Note that the trace over the color-flavor epsilon tensors, eIaEJapEleijerij forces I = J
and momentum conservation implies qa - qb, as well as k = 0. The two contributions
are then equal in magnitude and opposite in sign, and hence cancel.

breaks them, the requirement is that the Lagrangian has these symmetries.) Then,

the sum of the diagrams in Fig. 4-3, which corresponds to the contribution to the

action linear in the phonon field and second order in A, is given by

s7= a); d4k r) 4  (4) (2q - 2q' + k)
I j~k qaqb!0 1 (4.40)

1(0 + 201 + $ + gj)(fi - 2(0 - ))+/- k

where k is the four momentum of the phonon field and the trace is over Dirac indices.

The Dirac delta on the right-hand side ensures momentum conservation,

2qj - 2q + k = 0 , (4.41)

meaning that the net momentum added to the loop is zero. But since we are looking

at the low energy effective theory, we can take k much smaller than the momentum

vectors q, and therefore Eq. (4.41) can be satisfied only if k = 0 and qa = qP, which
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Figure 4-4:
Diagrams that contribute to order 0 2A2. In drawing the diagrams, we have used the
fact that the trace of the color-flavor tensor forces I = J. We have also used the fact

that momentum conservation requires that the net momenta added by the
condensate and the phonons are separately zero. In the first diagram, momentum

conservation at the A) vertex imposes k2 - kl = k.

means that a = b. Using this result, we find that (4.40) vanishes:

S a  =2 =0. (4.42)

That is, the term linear in q is absent to order A2. One can similarly argue that it is

absent to all orders in A.

Now we consider the terms of order 02, which give the first nontrivial contribution

to the phonon effective action. We will evaluate these terms to order A2 and we will

call the corresponding contribution to the action S02a 2. The terms contributing to

S02A 2 arise from the diagrams given in Fig. 4-4, and give

(4.43)Z 4k
I 2A qE d)kpl(k)0¢I(-k)A*AjPj'(k)'S"a (27r)4

I1
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where k = k2 - kl is the four momentum of the phonon and

Pd 4p (k) = itr

S(4.44) 1
where the trace is over Dirac indices. In the next Subsection we evaluate Eq. (4.44).

The reader not interested in the details of our calculation will find in Eq. (4.65) the

final expression for the effective action S3 2 2 .

4.4.5 Evaluation of S€2A2

We turn now to the evaluation of Pa(k) of Eq. (4.44) and hence, via (4.43), the

leading nontrivial contribution to the phonon low energy effective action, S€2A2 .

To begin, if we set kl = k2 = 0 in (4.44), implying that k = 0, we see that

Pf (0) = 0. In this way, we see explicitly that the phonons are massless to order A2 .

As mentioned before, we are interested in the low energy, long wavelength phonons.

We therefore expand Py(k) in powers of k and drop terms of order k3 and higher.

We are working in the limit in which 6[L, q = Iql = rl 6J and A are all much smaller

than IL. (A < M follows from the weak coupling approximation and JA < I follows

from requiring M 2 << 2 . The Ginzburg-Landau approximation, which is the further

requirement that A2 «< 52, is not required in the derivation of the simplifications of

Eq. (4.44) that follow.) This means that the integration measure in Eq. (4.44) can

be approximated as follows:

d4P i- 2  ds (4.45)
(2i) 4 r27r 2r _ J 47r

where 9r is the unit velocity vector in the direction of the spatial momentum vector,

v = p/lpl, and f dir represents the integral over solid angle covering the Fermi surface.

The residual momentum s is defined by the relation s _ II - p, where p is an energy

scale lying close to the quark Fermi surfaces. In evaluating Pa (k), we will take p to be
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the arithmetic mean of Ik and Mj, for convenience, but since the two integrals on the

right-hand side of Eq. (4.44) go as log(A) for large momenta, choosing any other value

for ft close to the Fermi surfaces changes the value of Pf(k) only by O(61P/A), which

we will ignore. We introduce the two null vectors, VA = (1, i) and Vu = (1, -Or),

as is done in the High Density Effective Theory (HDET) [100]. It is also useful to

define four momenta 1A (pO, svr) = pu - (0, ptir), which can be thought of as residual

momenta as measured from the Fermi surface. It is easy to verify that V -. = pO _ s

and V - 1 = pO + s. In the weak coupling limit, for a generic four vector p' that is

small compared to A, the propagators in Eq. (4.44) simplify as follows:

1 (po0 + (pT) + 1j)O0 - (p + p') . y
+ +/P+ j (pO + ()0  + () j ± p + p,1)(p,+ (p')O + Ij + Ip + p'l)

1(o (4.46)

1y( V - i/
2 V -(I + 1/) + (pyj - p)-

and, similarly,

1 (p0 + (p,)0 -_k)y° - (p + P') .'

0+1 - 9k (pO + (p,)O -_k - IP + P't)(pO + (p,)O _- k + Ip + p'[)
07 +

(D + (4.47)SpO + (p,)O+ s - (k - ) + p'

Upon using these simplifications in Eq. (4.44), we obtain,

2 +0o pO A
(k -oo 27ri _A 4, (V- - -. q + by;)( . 1 -Vr q, + by1L)

-- , dpo A s di 1
-oo 2ri _ 41r (V -(1+ kl) - V. qa + 6pi)(V (1+ k 2) - . qa + I)

(4.48)
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By making the changes of variables pO -* -po, s -- -s, Cr - -',r and 6ji --+ -61•

it is easy to show that P1 (-k 0 , k) = Pj (kO, k). In addition, it is clear from Eq. (4.43)

that only the part of P1'(k) that is even under k -+ -k contributes to S02A2 . Hence,

terms in the expansion of Py(k) proportional to odd powers of k do not contribute to

the effective action. Furthermore, at second order in k this implies that there cannot

be terms proportional to kokk 2A2 in the effective action. (Terms like kk2k 2 2A2 can

of course appear, but are higher order in k.) This is useful because we can handle the

spatial and time components of k independently, thereby simplifying the calculation

of Pja(k).

In order to simplify the calculation we rewrite Pj (k) a little differently. Multi-

plying and dividing the integrand appearing in the second term in Eq. (4.48) (the

integrand depending upon ki and k2) by

(V-(1 + kl) - ~- q + I) (4.49)

x (V -(1 + k2 ) -I '. q. + 61 1)

and collecting the term with numerator (V -k) (. -k) = (V -(k2 - k1)) (V(k2 - k-)),

after some algebra we obtain

2

(V - (1+ ki) - " q + 6j)(V (1+ k2) -•'q + 6I) (4.50)
(V k) (V + k) 1 1

=- + +D(l + kl)D(l + k2) D(l + ki) D(l + k2)

where

D(1) - (V -1 + 6i - ~ " q· )(V -1 + 6pi - G- qj) . (4.51)
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We can then write Pja(k) as Pja(k) = Io + I, with

1p 2  
Ad0  A di (V -k) (I -k)Ids + (bI; /' -jI_6) (4.52)I - 2 2  2ri _d 47r D(l + kl)D(l + k2)

Sp2 f A d 1 1 2 fp dpO A 1
I - 2J J ds I ds D )o_ 4A D(1) 2 T2 21ri _ 47r D(1 + ki)

1,2 A^ ( dir 1
2 T2  21i _A 47r D(l + k2)

The reason to separate Pa(k) as a sum of Io and I, will become clear in a moment,

when we argue that Io = 0.

We now proceed to evaluate Io and I, separately. As we discussed, we can consider

the spatial and the temporal parts of k independently, and we begin by taking k =

(0, k) with k = k2 - kl. In this case Io can be expressed as a sum of three terms,

each proportional (up to a prefactor +/p2/-r 2 or -p2/(27r 2)) to an integral of the form

dpfo A di 1
II(qC 611, p') ds2 r A 41r D(l + p')

[dpoA di 1
= P ds (4.54)

2xi LA 4r (pO - s - 9 ̂ p+ - ^ q, + JYI)
1

x
(po0  + ir . p'- ir qV + pI,) '

where p' is in this case a purely spatial vector, p' = (0, p'). This integral can be eval-

uated by following the steps outlined in Ref. [39]. We first perform a Wick rotation,

pO -_+ ip4 , and then do the p4 integration by the method of residues, followed by the

ds and d-i integrals. For p' = 0, the integral is calculated in Ref. [39] and is given by

(11
II(q, 2, 0) = -1 - log 52 + 2 log . (4.55)2 (q) - I) 2|qa| |lqj I - byL

By making the change of variables s -s - 9 - p' in Eq. (4.54), we see that the

integrand appearing in the definition of II(q, 6p,' p') in Eq. (4.54), can be written as

the integral appearing in II(qj, 6p,, 0), but with the limits of s integration changed

to [-A - 9. p', A - ir p']. Since, H goes as log(A), however, this change in limits

changes the value of the integrand only by a quantity of order k/A, which we ignore.
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Thus,

a1 1
Io = II[(q6, Im, 0) - T0-(qc, I, 0)] + (6i1 -, -JI) = 0 .

(4.56)
The integral I, can be evaluated using similar steps, namely Wick rotate po -+ ip4,

perform the p4 integration by residues and then do the ds and dir integrals. The final

result is

1 = 2 II(qa, 6,o 0) - '2 (q - _k, 6I, 0) - 2H(q + -k, 6JI0) +(61 -+ -J).

(4.57)

We note that the final result depends only upon k = k2 - kl. Expanding I, in k, we

find

2 1 1
P(k) = -ka a2 22 2(q 1 )2 + 1 log (I - 6I

~2 [ ~1 + 6/I (Aq1) -(4.58)
- kla i 4(a)2 1( + - log ( ]+ O(k4),

where kall is the component of k which is parallel to qa, klla = lI (k- q4), and kIa is

the component perpendicular to qa, kia = k - k1la. In deriving Eq. (4.58) we did not

assume any particular relations between qa and J6Ai, but now we choose the value of

Ijq given by Eq. (2.24) that minimizes the free energy. Substituting Eqs. (2.24) and

(2.40) into Eq. (4.58) simplifies Pa(k) considerably, yielding

P(k) = -k 2  24/2 1 for k = (0,k), (4.59)

where we have dropped the terms of order k4

The final expression for P7 (k) has the following features. First, the kia term

has dropped out. This means that for a single plane wave condensate, phonons that

propagate in the direction orthogonal to the plane wave that forms the condensate

cost no energy up to order (k±a)2A202 . Second, we note that the coefficient in front

of (kila) 2 is negative. This means that the crystal structure is stable with respect to

small fluctuations in the direction of qa. (Recall that action goes like kinetic energy
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minus potential energy; since here k is spatial, we have potential energy only meaning

that decreasing the action corresponds to increasing the energy, hence stability.) This

result is a direct consequence of the fact that we chose Iqal to minimize a,, meaning

that any deviation from the most favorable modulation of the condensate in the

direction of qj increases the free energy of the system by an amount of order A2.

We now evaluate Io and I, in the case where k is purely temporal, namely k =

(ko, 0) with ko = k° - k° . With these kl and kI, the value of I, turns out to be

1 lo (S-p - kl + (k0/2)) 2 - (qa)2

+ (5i - k° + (k 0 /2)) log 61 - k ° + (k0 /2) + Iq~
Jpj - k°  + (ko/2) -g jqI

(b-, - k° + -jqI 21 (b - - (ko/2)) 2 _ (q) 2

( -k) log --log (51- 2) 2

I k -q 2 - k2- Ic 2 J)
+ (6pi - k - (k0 /2)) log (.•P - ko - (k°/2)+ I+q I

2pI - k2 - (k0/2) - qjIJ

- (k- k)-10g (q + (JkI --+ -+pq) .
- 2 y,- kO - Iq IJJ I

(4.60)

Although, it appears that Eq. (4.60) does not depend solely on k -ko, upon expanding

in small k' and k2, we find,

I= (kO 2 2(( 1 + O(k) (ko) 2 2 .1 (4.61)7r2 4((q1) 2 _ 22 46-,(r2 _ 1)

Turning now to Io, this quantity is given by

o = II(q ,6Li,0) - 2I(q,6 i , ki) - -2II(qj, J6I , k2)j (4.62)

where ki = (k° , 0). When its third argument is a purely temporal four-vector, H is
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given by

I(qf ,p ,) I dpo6 dsp) = f dPO J A f d- I a + 612i _ 4r (pO + po - s -J. q ) (4.63)
1

+
(po + pno + s - , . q) + 5p;) '

where p' = (p', 0). It is apparent from Eq. (4.63) that by making the change of

variables pO -+ pO p'O we obtain II(q}, 6pi, p') = II (q, 6 p5, 0), leading us to conclude

from Eq. (4.62) that Io = 0. We advise the reader that in order to obtain the result

Io = 0 by the approach that we have employed in a straightforward manner, it

is important to shift po before Wick rotating. (Note that if we calculate Io using

dimensional regularization or by introducing a nonzero temperature and then taking

the T --, 0 limit, we find Io = 0 in agreement with what we obtained by change of

variables.) Finally, therefore, with Io = 0 we obtain

S2 1

Pj(k) =(ko) A4( 2 ~ - for k = (k, 0). (4.64)

We see that this comes with a positive sign, as is appropriate for a kinetic energy

term.

Substituting the expressions given in Eqs. (4.59) and (4.64) back into the action

(4.43), we obtain

S 2A 2  
- z (2d)4 Ik O a O a 2 )2I 24.65

= E q i(k)¢z(k) [ko - (klla) 2] - 45((•2 - 1) (465)

where klla = 4(k - 4a) and Oa(k) = u, - (2q'). Inverse Fourier transforming back to

position space, and taking out a factor of half for future convenience, we obtain the

effective action for the displacement fields:

1 f d4x  P #2 21 AI2 2a 1
S[u] = 2 I E [a uU( )

2. '7u24(26q6) Uq)2I (4.66)

e a . q aI I I U11
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This is the low energy effective action for phonons in any crystalline color super-

conducting phase, valid to second order in derivatives, to second order in the gap

parameters Az's and to second order in the phonon fields ui. This is the central

technical result of our paper.

Because we are interested in long wavelength, small amplitude, phonon excita-

tions, expanding to second order in derivatives and to second order in the u, is

satisfactory in every respect. Not so for the expansion to second order in the Az. As

we have discussed previously, the Ginzburg-Landau approximation is at the point of

breaking down in the most favorable CubeX and 2Cube45z crystal structures. Before

proceeding, we therefore ask what kind of corrections to (4.65) will arise at higher

order in A. The first thing to note is that in the weak coupling limit A appears only

as an overall factor of A2 in front of the fermion loop integrals. After simplifying the

fermionic propagators as in (4.46) and (4.47) and taking A to oo, the only two inde-

pendent dimensionful quantities that remain in the integrals are k and JiA. (Recall

that (qiI is given by rq/6. and so is not independent.) Since we found the action only

up to terms which are second order in the derivatives and second order in A, to ensure

the Lagrangian density has dimension four, only a dimensionless factor can multiply

p21A!2d2U2 , as we can see is true in Eq. (4.66). Higher powers of A2 will appear in

Eq. (4.65) in combination with higher compensating powers of bL-2. Consequently,

there will be corrections to the coefficients of k02 and (kjla) 2 in (4.65) suppressed by

factors of (A2/6j 2 ) relative to the leading order result that we have obtained. In

addition, there will be new terms. There is no reason to expect that the coefficient

of (ka)2 will remain zero at O((2 2 AIJ4 (auI)2/ 6 2). Finally, we see that there are

no terms in (4.65) that "mix" the different u1 (k). This follows from the color-flavor

structure of the condensate as discussed above. At higher order, there will be terms

proportional to A221AIAjj 2aUIOUj/6J 2 , which do "mix" the different u/'s.

With the phonon effective action now in hand, in Section 4.5.2 we shall relate the

coefficients of the terms in S(u) involving spatial derivatives acting on the displace-

ment fields to the shear modulus of crystalline color superconducting quark matter

with specified crystal structures.
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4.5 Extracting the shear modulus

We see from Eq. (4.66) that the action of the phonon fields, S(u), is a sum of two

terms: the kinetic energy, which has time derivatives acting on the fields u, and the

potential energy, which has spatial derivatives acting on u. From the basic theory of

elastic media [103], the potential energy is related to the elastic moduli that describe

the energy cost of small deformations of the crystal. In this Section, we present

this relation explicitly and calculate the shear modulus for the CubeX and 2Cube45z

crystal structures.

4.5.1 Generalities

Let there be a set of displacement fields u, propagating in a crystalline color super-

conducting material. (We will set the problem up in the general case where all the

A, are nonzero, meaning that I runs from 1 to 3.) The kinetic energy density for the

displacement fields takes the form

K = ZE1 (0oup)(0oun), (4.67)

IJ mn

where um, un are the space components of the vectors u 1 and uj respectively. (We

will use the indices m, n, u and v to represent spatial indices in the following). As

we are working only to order A2, the only nonzero components of pnj are those with

I = J. We will choose the direction of the axes, x, y and z such that for every I and

J, p7gj is diagonal in the m and n indices and we will denote the diagonal components

of pfjn by p'. We can then rewrite the kinetic energy density as

1
K =- Z p?(aouo )(ou) . (4.68)

Im

At higher orders in A2, we could need to choose a new linear combination of fields

fi' = A7umn to render the kinetic energy diagonal in the IJ and mn indices.

The potential energy density to quadratic order in the displacement fields can be
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written as

,un _ (4.69)U = 2 AM Ox" 'xIJ mn
UV

where AJ nv" is the elastic modulus tensor. The components of the tensor au7/8xa"

that are antisymmetric in the mn space indices are related to rigid rotations. The

symmetric components of the tensor, namely the "strain tensor"

1 19 M 19u,1 = 7 = + 0u :(4.70)
2 -Oxu axm ,

tell us about deformations of the medium. In the previous Section we have shown

that, to order A 2 , there is no interaction between the displacement fields u, and uj

with I different from J. Therefore AJLf" is diagonal in the I and J indices and,

denoting the diagonal entries by A~7un, we find

1 mu2I I S (4.71)
I mn

UV

Next, we define the stress tensor acting on the crystal I as [103]

au
lU7 = 9 (4.72)

which is symmetric in its spatial indices. For a potential U that is quadratic in the

displacement fields and is given by (4.71), the stress tensor is

m7= ,' sunv . (4.73)

The diagonal components of a are proportional to the compression exerted on the

system and are therefore related to the bulk modulus of the crystalline color super-

conducting quark matter. Since unpaired quark matter has a pressure - P4, it gives a

contribution to the bulk modulus that completely overwhelms the contribution from

the condensation into a crystalline phase, which is of order I'2A2 . We shall therefore

not calculate the bulk modulus. On the other hand, the response to shear stress arises
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only because of the presence of the crystalline condensate.

The shear modulus can be defined as follows. Imagine exerting a static external

stress au having only an off-diagonal component, meaning a," - 0 for a pair of

space directions m = u, and all the other components of a are zero. The system will

respond with a strain sVV satisfying (4.72). The shear modulus in the mu plane, m'u,

is defined as half the ratio of the stress to the strain:

Vu1 ,= 2 (4.74)2smu

where the indices m and u are not summed. For a quadratic potential, with arm

given by (4.73), the shear modulus is

munv Snv
V u

-=- AI I (4.75)2Smu

where n and v are summed but m and u are not. For all the crystal structures that

we shall consider below, the only nonzero entries in Am un" with m = u are the Ammu•

entries, meaning that (4.73) simplifies even further to

Vmu m1 A;"mu (4.76)2

again with m and u not summed.

Putting Eq. (4.68) and Eq. (4.71) together, the action for the displacement fields

can be written as

S[u] = d4( -)= 4 p ) ? mnvSuSA .
I m I nv

(4.77)
The equations of motion obtained by extremizing the action S[u] with respect to the

displacement fields u are
82 U m

p =u Amuunv,9,~ U (4.78)
I- -I & 1 u n I
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where I and m are not summed. The dispersion relations are found by solving

Det [pr kg2mn - Am~unk7kv] = 0 (4.79)

for all I, where m is again not summed.

4.5.2 Elastic moduli of crystalline phases

In order to set up the extraction of the elastic moduli of crystalline phases, we need to

rewrite the action (4.66) for a generic crystalline phase in a form which makes com-

parison to (4.77) straightforward. Writing the spatial indices in Eq. (4.66) explicitly,

we obtain the low energy phonon effective action in the form

S[U] =1 dx (E[q(Zamdan) (a U)(o
S L (4.80)

- (ZqIa)m(ia)ua(q)n(a)v) (OuI)(a~un)

where we have defined

K 22 A 1 (4.81)
7r2(7 2 _ 1)

For a given crystal structure, upon evaluating the sums in (4.80) and then using

the definition (4.70) to compare (4.80) to (4.77), we can extract expressions for the

A tensor and thence for the shear moduli. The quantity r is related to the elastic

modulus for a condensate whose "crystal" structure is just a single plane wave, as

discussed in Appendix D.

In the next two Subsections, we will calculate the shear modulus for the CubeX

and 2Cube45z crystals. We will not discuss the expression for the kinetic energy

density, KC, but it is easy (and necessary) to check that in each case below we have

chosen our axes such that K: only contains terms that are diagonal in the spatial

indices m and n.
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Note that henceforth we set A, = 0 and A2 = A3 = A, meaning that

2t 2 2  A62"i2 .

K2 = K3  K = 2(2 1) 0.664 ~A21 (4.82)

The shear moduli that we evaluate each take the form of a dimensionless constant

times K.

4.5.3 Shear modulus for the CubeX crystal

Orienting the axes as shown in the left panel of Fig. 1, we have {12} = {(1/v/3)(- v2, 0, 1)}

and {43} = {(1/ V/)(0,f2, +l)}. Calculating the relevant sums and substituting

in (4.80), we find that the potential energy is given by

4 (4 x)2+ ,z2 16 ) + 16 Kzz + ((x)2U = 9s K(4(Szz 2 z2 z) + 9 K(82 S 2 9 2 (4.83)4 16 16 9 (4.83)+ ( 4 (z)2 ± ) + (K(Syz)2 + s 2

Recall that the only components of the stress tensor that are relevant to the calcula-

tion of the shear modulus are given by OU/0s• u for m u. These are

32
a = 3 = K s2 (4.84)
2 U W/• 82

and
32z= _ aZY , (4.85)

from which we obtain
azx  16

4Z3 = = (4.86)

and
yz zy a Y  163 V Z 16 -(4.87)

163  3  2
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We can display the result succinctly by writing two shear matrices v2 and v3, which

have only off-diagonal entries and are symmetric in the spatial indices:

001 000
16 16

V2 = 9-K 0 0 0 ,3 = 0 0 1 . (4.88)
1 00 010

The zeroes in these matrices are easily understood. The A2 crystal is translation

invariant in the y-direction, because all the wave vectors in the set {q 2 } lie in the

xz-plane. This means that the xy- and yz-components of v2 are zero. The only

nonzero shear modulus is that for shear in the xz-plane. Note also that the A2

crystal has nonzero AxxxZ and AazaZ, meaning that it has a nonzero Young's modulus

for compression or stretching in the x- and z-directions confirming that, as the shear

modulus indicates, it is rigid against deformations in the xz-plane. Similarly, the

A3 crystal is translation invariant in the x-direction, meaning that the only nonzero

component of the shear modulus v3 is that for shear in the yz-plane.

The vortices in rotating crystalline color superconducting quark matter have cur-

rents of u, d and s quark-number flowing around them, meaning that the phase of both

the A2 and A3 condensates winds once by 2r around a rotational vortex, and meaning

that both A2 and A3 vanish at the core of the vortex. This in turn means that it will

be free energetically favorable for the vortices to be pinned at places where the A2 and

A3 condensates already vanish in the absence of a vortex. The A2 crystal has two fam-

ilies of nodal planes where A2(r) vanishes. One class of nodal planes are parallel to the

xy-plane and are located at z = ((2n+ 1)ir3)/(4q), where n is an integer. The others

are parallel to the yz-plane and are located at x = ((2n + 1)rv6)/(4q). Similarly, the

A3 crystal has nodes along z = ((2n + 1)irv3)/(4q) and y = ((2n + 1)7rxv)/(4q). So,

we expect that the most favorable location of the vortices will be within the common

nodal planes of the A2 and A3 condensates, namely, z = ((2n + 1)irv3)/(4q). If

these vortices are oriented in the x-direction, they will preferentially be located (i.e.

will be pinned at) at x = ((2n + 1)7rV6)/(4q). And, if the vortices in an array of

vortices oriented in the x-direction try to move apart (i.e. move in the yz-plane) as
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the rotation slows, in order to move they will have to shear the A2 crystal which

has a nonzero v~z. Similiarly, if the vortices are oriented in the y-direction, they will

preferentially be located (i.e. will be pinned at) at y = ((2n + 1)rv-6)/(4q). And, if

the vortices in an array of vortices oriented in the y-direction try to move apart (i.e.

move in the xz-plane), they will have to shear the A3 crystal which has a nonzero

v~z. Thus, the nonzero shear moduli that we have found in (4.88) are sufficient to

ensure that vortices pinned within the CubeX phase are pinned to a rigid structure,

with the relevant shear modulus having a magnitude 16r,/9.

We note as an aside that further evidence for the rigidity of the CubeX crystal can

be found by evaluating the phonon velocities and showing that at long wavelengths

the velocity of transverse phonons (which are found in a rigid solid but not in a fluid)

is comparable to that of the longitudinal phonons which are found in both fluids

and solids. We will evaluate the velocities of the longitudinal phonons upon ignoring

the existence of longitudinal oscillations in the gapless fermions, which have velocity

1/v3 in the limit of weak coupling. For this reason, the longitudinal phonon velocity

that we calculate should be seen only as a benchmark against which to compare the

transverse phonon velocity. The true sound modes would be linear combinations of

the longitudinal phonons and the fermionic sound waves, which must in reality be

coupled. This complication does not arise for transverse phonons: the fluid of gapless

fermions has no transverse sound waves; they can only arise as excitations of a rigid

structure, like the crystalline condensate we analyze. Consider as an example the

phonons of the A2-crystal. From the dispersion relations (4.79) it is easy to show

using p = 8K/3, p = 0 and pz = 4n/3 that longitudinal phonons propagating in the

x-direction have v = 2-/3 while transverse phonons propagating in this direction

have the same v = V/2/3. For propagation in the z-direction, both modes turn out

to have v = x1i-/3. For propagation in other directions, there are two phonon modes

with differing velocities.
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4.5.4 Shear modulus for the 2Cube45z crystal

Let us orient the coordinate axes such that {42 contains the eight wave vectors

(1/ V)(+l, 1, +l) and {413} contains (1/v3)(±v, 0, l) U (1/-VF)(0, ±, vfl).

These wave vectors are shown in the right panel of Fig. 1. The potential energy is

given by

U = K ((S x)2 + (SYY)2 + (,zz)2 + 16 r z((S + X

+ ((SXy)2 + (sX)2 + (sYz)2 + (SZY)2 + (sxz)2 + (x)2 )(.9 (4.89)
+ 8 2(Sxx)2 + 2(s~5)2 + (z)2 16 z + z

16 ((z)2 + (szx)2 + (z)2 + (Y)2

from which one can read off the nonzero entries of the AmUnv tensors for I = 2 and

I = 3. In the case of A2, where the axes are oriented perpendicular to the nodal

planes of the crystal, the form of A• n" for the cubic crystal are easily inferred from

the symmetries of the cube [103]. There are in general only three independent nonzero

entries in Au""n, corresponding to the terms read from (4.89) with the form AXmmm ,

m~ nn and Ar•u". The form of Amn" read from (4.89) is therefore valid to all orders

in A2, although of course the values of the coefficients, including in particular the

equality between the Amm" nn and AU"mU coefficients, will receive corrections at higher

order. Finally, note that••A"V read from (4.89) is obtained from A~Ufv by rotating

this tensor by 450 about the z-axis. Note that Ax'yx = AX Jx vanishes. This is a

consequence (after the 450 rotation) of the equality of Ammnn and Ammu" in the A2

crystal, and is therefore not expected to persist at higher order in A3.

As in the previous subsection, we extract the oa tensors and the matrices of shear

moduli v! from the potential U of (4.89), obtaining in this case

01 1 001
16 16

1 10 1 1 0
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As discussed above, there is no symmetry reason for v3y = 0, so we expect that this

component of the shear modulus is nonzero at order A4/5b 2 . Note that if we were to

rotate our coordinate axes by 450 about the z-axis, it would be v3 that has the zero

entry while v2 would have all off-diagonal entries nonzero. (To confirm this, rotate

the ATU" n tensors and re-extract the v1 matrices, which are not tensors.)

The A crystal has nodes along x = ((2n + 1)rVi3)/(4q), y = ((2n + 1)irv)/(4q)

and z = ((2n + 1)7rV3)/(4q). The A3 crystal has nodes along x + y = ((2n +

1)irv')/(4q) and z = ((2n + 1)7rx/3)/(4q). The nodes common to both lie along

the z = ((2n + 1)irv/)/(4q) planes. We therefore expect that the crystal will orient

itself relative to the rotation axis such that rotation vortices lie within these planes.

Depending on their orientation within the planes, they could be pinned where the

perpendicular nodal planes of either the A2 or the A3 crystals intersect the z =

((2n + 1)rrV3)/(4q) planes.

We learn from our analysis that the crystals are weaker (smaller shear modulus)

with respect to shear in certain planes. We saw this explicitly for ovy, which is zero

to order A2 and thus presumably weaker although nonzero when higher order terms

are included. The same will apply to shear in any plane obtained from this one by

a symmetry transformation of the crystal, and will apply to the analogous planes

for the A2 crystal. Note, however, that in the 2Cube45z structure the weak planes

for the A2 and A3 crystals do not coincide. This means that if it so happens that

motion of a rotational vortex in a certain direction is only impeded by the weaker

shear modulus of the A2 crystal, it will in fact be obstructed by the stronger shear

modulus of the A3 crystal, or vice versa. Thus, the relevant shear modulus in the

analysis of vortex pinning and pulsar glitches is the stronger one, which we find to be

16n/9 to order A2 .

As in Section 4.5.3, we can find further evidence for the rigidity of the 2Cube45z

crystal by evaluating the velocity of the transverse and longitudinal phonons. Con-

sidering the A2-crystal as an example, from the dispersion relations (4.79) and p2 =

pe = p' = 8r/3 we find that for propagation in the x- or y- or z-direction the lon-

gitudinal phonon mode and the two transverse phonon modes all have v = 1/3.
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For propagation in the x ± z directions, the longitudinal mode has v = s2173 while

one transverse mode has v = V/iT and the other transverse mode, corresponding to

transverse oscillations for which the restoring force would be given by the component

of the shear modulus which vanishes at order A2 , turns out indeed to have v = 0. We

see that the velocity of both the longitudinal and transverse phonons is anisotropic,

as expected in a crystal, and see that they are comparable in magnitude, confirming

that the nonzero components of the shear moduli are as large as the longitudinal

elastic moduli, as expected for a very rigid body.

4.6 Conclusion

4.6.1 The rigidity of crystalline color superconducting quark

matter

We have calculated the shear moduli of crystalline color superconducting quark mat-

ter with the CubeX and 2Cube45z crystal structures. Within the Ginzburg-Landau

analysis of Ref. [46], one or other of these crystal structures is favored over unpaired

quark matter and over spatially uniform paired phases like the CFL phase in the

wide regime of densities given in Eq. (1.37). As we have explained in Sections 4.5.3

and 4.5.4, in both these structures the components of the shear moduli that make the

crystals rigid with respect to vortices pinned within them take on the same value to

order A2, given by
16

VCQM = 16 (4.91)

with , defined by (4.82). Evaluating r. yields

QM = 2.47 MeV/fm3 ( eV) (400 eV 2  (4.92)

for the shear moduli of crystalline quark matter with these two crystal structures. If

quark matter is found within neutron stars, it is reasonable to estimate that its quark

171



number chemical potential will lie in the range

350 MeV < pi < 500 MeV . (4.93)

The gap parameter A is less well known. According to the Ginzburg-Landau calcu-

lations of Ref. [46], A/Ao is about 1/4 to 1/2, with A0o the CFL gap parameter for

M, = 0. Here, A/Ao for the CubeX crystal structure somewhat larger than that for

the 2Cube45z structure and A/A 0 is a slowly increasing function of M2/up, meaning

a slowly decreasing function of density [46]. It is reasonable to estimate that A0

is between 10 and 100 MeV, but if A0 is in the upper half of this range then quark

matter at accessible densities is likely in the CFL phase, rather than in the crystalline

phase. So, we suggest that in interpreting (4.92) it is reasonable to estimate that

5 MeV < A < 25 MeV, (4.94)

keeping in mind that a part of the uncertainty encompassed by this range comes from

our lack of knowledge of A0 and a part comes from the MY/pi-dependence of A/Ao

described in Ref. [46]. The estimates (4.94) and (4.93) mean that our result (4.92)

implies

0.47 MeV/fm3 < VCQM < 24 MeV/fm3 . (4.95)

We shall take this as an estimate of the magnitude of VCQM, although (4.92) is a

better representation of our result for use in future work.

One qualitative way to appreciate how rigid the crystalline phases of quark matter

are is to calculate the (anisotropic) velocities of long wavelength transverse and lon-

gitudinal phonons, as we have done for a few directions of propagation in the CubeX

and 2Cube45z crystal structures in Sections 4.5.3 and 4.5.4 respectively. We find

that the transverse modes, whose restoring forces are governed by the shear moduli,

propagate with velocities that are comparable to the velocity of longitudinal phonons.

To appreciate more quantitatively how rigid the crystalline phases of quark matter

prove to be, we compare the shear modulus that we have calculated to that for the
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standard neutron star crust, which is a conventional crystal of positively charged ions

immersed in a fluid of electrons (and, at sufficient depth, a fluid of neutrons). The

shear modulus of this solid can be expressed as [122]

VNM n(Ze)2  (4.96)
a

where ni is the number density of ions in the crust, Z is the atomic number of

the positively charged ions, a = (3/(4irni))'/3 is the average inter-ion spacing, e2 _

47r/137 and c - 0.1 - 0.2 is a dimensionless constant. Because the crust is electrically

neutral, the number density of ions is related to ne, the electron number density, by

ni = ne/Z. And, ne is given in terms of the mass and electric chemical potential le

of the electrons by
(,2 - m2)3/2

ne = 37r2 , (4.97)

where Pe is estimated to be in the range 20 - 80 MeV and Z - 40 - 50 [122]. Using

these estimates, we find

0.092 keV/fm3 < UNM < 23 keV/fm3 . (4.98)

Comparing to (4.95), we see that crystalline quark matter is more rigid than the

conventional neutron star crust by at least a factor of 20, and possibly by about three

orders of magnitude.

We conclude that crystalline color superconducting quark matter is a very good

solid indeed, which is remarkable since it is at the same time superfluid.

4.6.2 Toward pulsar glitch phenomenology

As discussed in the Introduction, the glitches that are observed to interrupt the

gradual spin-down of spinning neutron stars are thought to arise from the sudden

unpinning of an array of rotational vortices that had been pinned in place, at a fixed

area density and hence a fixed angular momentum, while the other components of

the star and in particular the observed surface had been gradually slowing down.
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When the stressed vortices unpin and separate, the superfluid component loses an-

gular momentum while the surface spins up. Can these phenomena originate within

crystalline color superconducting quark matter in the core of a neutron star? This

phase of matter is a superfluid while at the same time having a rigid spatial modula-

tion of its superfluid condensate, as we have seen. Understanding whether this makes

it a plausible locus for the origin of pulsar glitches requires addressing three questions:

Is crystalline color superconducting quark matter rigid enough? Do vortices in this

phase of matter get pinned? And, how rapidly can angular momentum be transferred

from a crystalline quark matter core that has just glitched to the outer crust whose

surface is observed?

Our calculation constitutes an affirmative answer to the first question. We have

shown that both the CubeX and 2Cube45z crystal structures have shear moduli with

magnitude (4.92) which are 20 to 1000 times greater than those of the conventional

neutron star crust within which glitches have long been assumed to originate.

Next, do vortices in fact get pinned? With what pinning force? This is a much

harder question to address quantitatively because doing so requires going beyond the

long wavelength phonon effective action. The question is what is the difference in the

energy per unit length of a vortex centered on a nodal plane (or at the intersection of

two nodal planes) of the condensate and one centered half way between neighboring

nodal planes. Understanding this quantitatively requires constructing a vortex solu-

tion in the crystalline background, which is a challenging task. In the conventional

neutron star crust, a vortex in a neutron superfluid is pinned on "impurities" em-

bedded in the superfluid, namely the lattice of positively charged nuclei. In rotating

crystalline color superconducting quark matter, the vortices are deformations of the

phase and magnitude of the same condensate whose underlying magnitude modu-

lation is the origin of the pinning. Unlike in the case of the shear modulus, which

describes the response to a stress on length scales long compared to those character-

istic of the crystal itself, the deformations introduced by a vortex will occur on length

scales comparable to the lattice spacing of the underlying crystal. This means that

constructing the vortices must be done self-consistently with analyzing the crystal
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structure itself - the pinning sites are in no sense extraneous impurities. We can

provide a crude estimate of the pinning force, but we defer a quantitative response

to this challenge to future work.

To estimate the pinning force, let us suppose (contrafactually) that the core radius

of a vortex ( - 1/A is much smaller than the spacing between nodal planes of the

crystalline condensate. If such a vortex is located where the underlying crystalline

condensate is maximal, it will have to deform that condensate maximally since at

the center of the vortex the condensate must vanish. Clearly, it will be energetically

advantageous to locate the vortex at the intersection of nodal planes where the con-

densate already vanishes in the absence of a vortex. This argument translates into a

pinning energy per unit length given at the level of dimensional analysis by

Ep= f I0crystaninel ý2 (4.99)

where IQcrystalline| is the condensation energy of the crystalline phase and where f is

some dimensionless factor. The corresponding pinning force per unit length is given

by
F, f |0crystallinelI 2 (4.100)
i b

where the length scale b is half the spacing between neighboring nodal planes and

hence one quarter of the lattice spacing. In both the CubeX and 2Cube45z crystals,

b = 7rV•/(4q) = 1.13/6p. Recalling that 6p = M,/(8p,), we can get a sense of the

scale of b by seeing that b = 18, 12 fm for M2/pU = 100, 150 MeV. Reading from

plots in Ref. [46], we see that for A0 = 25 MeV this range of M,2/, corresponds to

a robust crystalline phase with IQcrystalline [ 2 x 105 MeV4 and A - 5 - 10 MeV if

the crystal has the 2Cube45z structure or A - 10 - 15 MeV if the crystal has the

CubeX structure. We immediately see that ( = 1/A and b are comparable length

scales, which makes this analysis unreliable at a quantitative level. One way of saying

this is that the dimensionless factor f must then be very much less than one, since

the energy benefit by moving the vortex by a distance b is of order jWcrystalline ý 2 only

if making this move shifts the core from a place where the condensate was maximal
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within the core area (2 to a place where it is close to vanishing. A calculation of f in

the case where ( , b as is relevant in our context requires a quantitative analysis, but

it is clear that the energy benefit of moving the vortex by a distance b must then be

<K IJcrystalline l 2.Putting the pieces together, we can write an estimate of the pinning

force per unit length as

Fp 7 MeV f jcrystalline2 ) fm) (4.101)
£ (10fm) 2  0.01 2 x 105 MeV 4  20 fm 15fm

where our choice of f ~ 0.01 as a fiducial value is a pure guess and the dependence

of the other quantities in the estimate (4.101) on A0o and M2/p can be obtained from

the results of Ref. [46], with the fiducial values we have used being reasonable for

A0 = 25 MeV and M2/p = 100 - 150 MeV.

We can compare our estimate (4.101) to the pinning force on neutron vortices

in a conventional crust [123], in which neutron superfluid vortices are pinned on

nuclei [109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121]. The pinning

energy of a vortex per ion on which it is pinned is E," M 1 - 3 MeV [110, 111, 112],

the ions are spaced by a lattice spacing bNM - 25 - 50 fm [112], and the superfluid

vortices have core radii (NM - 4 - 20 fm [112]. Hence, the pinning force per unit

length is [111, 112]
EM" 1 - 3 MeV . -(4.102)bNMýNM (25 - 50 fm)(4 - 20 fm)

Although our estimate (4.101) is quite uncertain, given that we have not constructed

the vortex solutions for rotating crystalline color superconducting quark matter, it

seems reasonable to estimate that the pinning force per unit length on vortices within

a putative crystalline quark matter neutron star core is comparable to that on neutron

superfluid vortices within a conventional neutron star crust.

Recent calculations of the profile of vortices in BCS-paired superfluid gases of

ultracold fermionic atoms [137] may make it easier to estimate the pinning force on

vortices in the crystalline quark matter phase. In the cold atom context, it turns out

that the radius of the vortex core is much smaller than the correlation length ( - 1/A

which controls the long distance form of the vortex profile. Instead, the vortex core

176



radius is ' 1/kF, controlled by the Fermi momentum rather than by the correlation

length. If this result were to be obtained in our context, it could mean replacing 6 in

(4.101) by (1/pf) , 0.5 fm, reducing our fiducial estimate (4.101) by a factor of 1600.

However, if the vortex cores do turn out to be as narrow as this then the assumption

with which we began our estimate, namely that the core size is much less than the

lattice spacing, becomes factual rather than contrafactual. This would mean that

there is no longer any reason to expect the dimensionless factor f to be much smaller

than 1, and would considerably reduce the uncertainty in the estimate. Replacing f

by 1 would increase the estimate (4.101) by a factor of 100, resulting in a pinning

force which is only slightly smaller that on the superfluid neutron vortices within a

conventional neutron star crust. We leave the determination of the profile of vortices

in crystalline quark matter to future work, but it will clearly be very interesting to

see whether they have narrow cores as in Ref. [137], and if so whether their pinning

turns out to be controlled by their core radii or by the correlation length.

The third question which must be addressed is how, and how quickly, angular

momentum can be transferred from a crystalline quark matter core to the outer

crust. Some glitches are known to occur on timescales of minutes which means that if

a glitch occurs within the core angular momentum must be transferred to the observed

crust at least this fast. The core and crust are linked via being bathed in the same

electron fluid and via magnetic fields. In the conventional glitch scenario, when the

neutron superfluid in the crust suddenly slows down as its vortices come unpinned and

the nonsuperfluid component of the crust, which includes the ions and the electrons,

speeds up, the electron fluid couples the crust to the core well enough that the core also

speeds up within seconds [124, 113]. We therefore expect that if a glitch occurs within

a crystalline quark matter core, with this superfluid component slowing down, and

if moving vortices can impart angular momentum to the electrons then the electron

fluid will ensure that the entire rest of the star including the outer crust speeds

up. In the conventional scenario, the mechanism by which moving vortices exert

a torque on the ions, and hence the electrons, in the crust has been described in

Refs. [115, 116, 117]. In our case, we have not demonstrated how moving vortices in
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the crystalline phase can torque up the fluid of gapless charged quark quasiparticles,

and hence the electrons.

So, tallying the status of the three questions that must be addressed: The first

is settled, answered in the affirmative by our calculation of the shear modulus of the

crystalline phase. The second remains to be addressed quantitatively but seems to

be answered in the affirmative by our dimensional analysis estimate of the pinning

force on vortices in the crystalline phase. The third remains open, not yet addressed

in a satisfactory fashion but nevertheless with no reason to doubt that its answer is

also affirmative. Addressing the third question and addressing the second question

quantitatively both require constructing the rotational vortex solutions for rotating

crystalline quark matter. This is therefore the crucial remaining step in completing

the connection between the microphysics of crystalline color superconducting quark

matter and the phenomenology of pulsar glitches, and hence determining whether the

characteristics of observed glitches rule out, or are consistent with, the presence of

crystalline color superconducting quark matter within neutron stars.

Finally, it is also worth asking whether a "core-quake" scenario could be a vi-

able model of glitches [125, 126]. As a spinning neutron star slows down, it becomes

less oblate. This will require macroscopic adjustments to the shape of a putative

crystalline quark matter core. Given the enormous shear moduli of this rigid phase

of matter, enormous amounts of elastic energy would be stored as the core is de-

formed and stressed, energy which would be released in core-quakes during which

the crystalline core "breaks" and rearranges its structure so as to reduce its moment

of inertia, consequently increasing its angular velocity. The original "crust-quake"

model for pulsar glitches [127] failed because it failed to describe the magnitude and

frequency of glitches in the Vela pulsar [112, 118, 119, 121]. Now that we know that

crystalline quark matter has shear moduli which are 20 to 1000 times larger than

those of the crust, core-quakes are worth re-investigating.
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Appendix A

Neutrality of solutions with

A2 = A3

In Section 2.7.1, we gave a general analysis of the free energy Q(A 2, A3). We showed

that if we write (A2, A3) as rv'(A, cos 9, Ar sin 9) the free energy takes the form (2.65),

and therefore has extrema only at 0 = 7r/4 (namely A2 = A3 = Ar) or 0 = 0, 7r/2

(namely a two flavor crystalline phase with only one A1 nonzero). As we have ex-

plained in Section 2.3.2, in the strict Ginzburg-Landau limit in which A1 /61 -+ 0 any

solution (A2, A3) is neutral. (The argument is that choosing AP = M2/(41u) as in neu-

tral unpaired quark matter suffices since, unlike BCS superconductivity, crystalline

color superconductivity does not require any modification of the unpaired Fermi mo-

menta prior to pairing and since in the Ginzburg-Landau limit the modifications to

number densities due to the pairing itself vanishes.) In this Appendix, we take a small

step away from the strict Ginzburg-Landau limit. We assume that A, is small, but do

not work in the limit in which it vanishes. We then show that the only solutions with

Pe = M,/(41p) and, consequently, 6a 2 = 6•13 = J6 = M2/(8p) which are electrically

neutral are those with A2 = A3 = Ar. The two-flavor crystalline phases with only

one AI nonzero are not neutral in three-flavor quark matter.

The result of this Appendix allows us to neglect solutions which have only one

A1 nonzero. This is fortunate, because there are many two-flavor crystal struc-

tures for which the sextic coefficient ; is negative, meaning that to sextic order the
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Ginzburg-Landau potential Q(A 2, A3) often has runaway directions along the A2 and

A3 axes [39]. Furthermore, if the coefficient multiplying sin2 0 in (2.65) is negative,

for example if 3 and y are both negative while /32 and 7322 are both positive as is

the case for both the CubeX and the 2Cube45z crystal structures on which we focus,

then the extremum of Q(A 2 , A3) that we find with A2 = A3 appears to be a local

maximum with respect to variation of 0 away from rr/4 while keeping p, fixed. We

show in this Appendix that upon fixing p, = M,/(4pu) any solution with A2 $ A3

is not neutral. For this reason, all these complications can be neglected, and we are

correct to focus only on solutions with A2 = A3.

The more formal way to proceed would be to define an Qneutral(A2, A3), obtained

by varying p, (and Pt3 and ps too) at a given value of the A's in order to obtain

neutrality, and then finding A2 and A3 that minimize Qneutral(A 2 , A3). We have

done a partial version of this investigation in a few cases and have found that, as

expected, Qneutral does have a minimum with ~p very close to Mi,/(4fp) and A2 very

close to A3. A full exploration in this vein requires evaluating the Ginzburg-Landau

coefficients without assuming 6uP2 r 6P13 and, more challenging, requires reformulating

our analysis to include nonzero Pi3 and Ps. We have not attempted the latter, and it

is in this sense that our preliminary investigation referred to above was "partial". We

leave this to future work, and turn now to the promised derivation of the neutrality

of solutions with A2 = 3 and p, = M /(4p).

We shall only consider crystal structures for which {4 2 } and {4 3 } are exchange

symmetric, as this is the symmetry that allows the free energy to have extrema along

the line A2 = A3. (Recall that by exchange symmetric we mean that there is a

sequence of rigid rotations and reflections which when applied to all the vectors in

{q2} and {q3} together has the effect of exchanging {4 2 } and {4 2 }.) Because we

wish to evaluate 0Q/&pe at fpe = M2/(4p), we must restore p1 to our expression

for the free energy Q, rather than setting it to Mf /(4/p) from the beginning. Recall

from (2.20) that Qcrystalline is the sum of the free energy for unpaired quark matter,

which we know satisfies 092unpaired/9Pe = 0 at PIe = M2/(4p), and 2(A 2, A3 ). Upon
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restoring the 1e-dependence, the latter is given by

Q(Ce, A2, A3) =
22 [P(p2)A/ 3)A2
712 

1

1 1 1 1 4 22
I2 2 3 3 2 321. (A.1)

3 2 3

where 5A2 and 613 can no longer be taken to be equal, as they are given by

2

15/2 M4p 2 ,(A.2)

which in particular means that

3 i9_ - -•2 (A.3)

Because {I2} and {q3} are exchange symmetric, /2 = 3 = 3 and ;2 = 3 -

Because 6/12 6 6113, however, the coefficients 7322 and 7233 are not equal and, further-

more, their (5/Z2, 5/13)-dependence cannot be factored out as in (2.49) or (2.63). The

coefficient 7322 depends on 5/2 and 3/3 through its dependence on Kudusus: 7322 =

(3/2) E K udusug(qb, qb, q2 , q2 , qf, q'). K/udu,• is given in (2.59). Note that its depen-

dence on 5/12 and /113 comes via q2 = r /52 q2 and q3 = 'q •,3 q3 in addition to the ex-

plicit dependence visible in (2.59). Similarly 7233 = (3/2) E Kusdg(q2, q2 , q3, q3, q3), q)

where KC,audud has the same form as (2.59) except that 61A2 and 3/3 are interchanged.

Using the definitions (2.49) and (2.63), one can confirm that (A.1) reduces to (2.64)

if we take 5p2 = 5/13 and hence 7322 = 7233.
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We now differentiate Q given in (A.1) with respect to pd, noting (A.3), obtaining

___ 0 dA 2 + Q da 3  P2 pda(6t3) 2 2 A+ -A4 _ A 4

ape &A2 due p A 3 dpe 2  
3  dL 2  2 2 33

+ 1 1 A 2 2  4  4- (
26p 6P3 26P26p 36+ 5 32

1 dY7233 (12, 6P3) 7Y233 (6P2, 6P3) A2 4
+ 3P3 8 N61122 3

1 (7 32 2 (6 2, 6P3) 0Y322 (61-2, 2 L3)) NA2]
06/13 096P2

(A.4)

We shall only evaluate a0/&Qle at values of A2 and A3 which are solutions to the

gap equations &Q/0A2 = 0 and 0Q/aA3 = 0, meaning that the first two terms in

(A.4) vanish. Furthermore, we shall only evaluate 0QI/ap/ at pA = M,2/(4p), where

6p2 = 6P3 = 6/1, and at solutions for which A2 = A3. Under these circumstances,

the terms involving a, 32, ý32 and ' 2 vanish and (A.4) becomes

0- __P 2 1Y233 _ 9Y233 + ,]322 0'Y322 6

8pe M2 37 2  3 16962  0,6 3  6/ 2  min
Ae=- 4), A2=A3=Amin 

~
6A2=6P3= 6

SL

(A.5)
We argue that this vanishes as follows. Consider a particular term that contributes

to Y"322/d852, Cudusus(qg, bq, qd, q, q, )/16P 2. This is a complicated integral of

a function which depends on the unit momentum vectors (3, , q, 2 , 2 ) and on

6p2 and 613. From rotational invariance, we know that the value of the integral can

depend on the relative orientation of the unit momentum vectors and on 6P2 and 613

but must be independent of common rotations of all the unit vectors. Now, all the

crystal structures that we consider are exchange symmetric, meaning that for every

quintuple of unit momentum vectors, ( i, 4d, q, qf, q•) with the first chosen from

{q3 } and the last four chosen from {q2} there exists a quintuple (4,• ,4, , q 3 )

with the first chosen from {q 2} and the last four chosen from {q3 } such that the unit

vectors in each of these two quintuples have the same relative orientation among them-

selves. This means that for every term l/Cd,,,,(q , q , q , q,, q, qa))/06[2. occur-
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ring in &7322/ 0%1P2, there is a corresponding term u,,Casuadd(q2~, q q3 ~q 3, q 3 , qq3 )/I 3

occurring in 8Y233/ 5P3 such that aK 8usddd(q2, , qI2 ,, 4 )/ 3 is related to

Kudusu (q3, qb, qd, q2, , q)/a6J12 by the interchange of 6/2 and 6/13. Consequently,
for 612 = 6/13 the two contributions cancel pair by pair when we evaluate 7Y322 /06A12 -

7Y233/ 6 1ma3 or 07322/ 6/3 - 07233/06/12. In this way, the right hand side of (A.5) van-

ishes, as we set out to show. We conclude that solutions to the gap equations with

A2 = A3 and e. = M.2/(4p) meaning 612 = 613 are neutral.

It is easy to see that the cancellations required in the proof of neutrality do not

occur for solutions with A2 3 A3. For example, following a derivation analogous to

that above, we find that a solution with A2 = 0 and only A3 nonzero is neutral with

Pe = M,2/(4p1 ) only if

P'a(6 3) A2 3 A4 _ 43 A6 = 0, (A.6)
03/3 3 63 36j4 3

a condition which has no reason to be satisfied. The study of solutions with A2 : A3

therefore requires that they be constructed from the beginning with 612 / 6/13 and

with [Le fixed by the neutrality condition. We leave this to future work, focussing in

Section 2.7 on solutions with A2 = A3 which, we have proved here, are neutral.
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Appendix B

Translating (us) relative to (ud)

does not avoid repulsion

We have seen in Section 2.7 that crystal structures in which a vector from {q 2} and a

vector from {q 3 } make a 1800 angle are strongly disfavored, with infinite quartic and

sextic Ginzburg-Landau coefficients /32 and 7322. Suppose we consider a structure

like that in which {q2} and {q3 } are coincident cubes, a disastrous choice. The

way that we have improved upon this disastrous choice in Section 2.7.4 is to rotate

one cube relative to the other. Indeed, if we choose a 450 rotation about an axis

perpendicular to a face of the cube, we obtain the 2Cube45z structure which is one

of the two crystal structures that we find to be most favorable. In this Appendix,

we ask whether we can instead avoid the infinite free energy cost of antipodal pairs

by translating the (ud) condensate relative to the (us) condensate in position space,

rather than rotating it. We find that the answer is no, and furthermore show that

the Ginzburg-Landau free energy Q that we have evaluated does not change if the

(ud) condensate is translated relative to the (us) condensate.

Corresponding to each {q1 } in momentum space we get a function A/(r) in posi-

tion space which varies as Az(r) Eq- e2iq~ fr. To analyze the effects of translating

A2(r) relative to A3(r), it is helpful to restore the notation of (2.32) with A(qa) rep-

resenting the gap parameter corresponding to the momentum component q . A2(r)
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or A3(r) can then be written as

Ai(r) = A•(qa)e2i qfr. (B.1)
qa

Translating A2(r) in the fi direction by a distance s corresponds to the transformation

A2 (r) -- A2(r - sin) which multiplies each A(q') in the sum in (B.1) by a different

phase factor exp[-2isq2 - ni]. This is not just an (irrelevant) overall phase multiplying

A2(r) because it depends on the momentum component. The gap equation for the

A2 components, as in (2.32), is now given by

(-2isql- 2p 2  a2isq'.fi" 31.2aA*2 (q)e 2  -- [A*(q)e2is 131 (q', q')

+ -- * 2(qs)q * (qd)i2 is (qb- q c+ qs ) n J3131(qd, qf, qdla, ) b q _}q d q+ A*(q3)A(q3) A *(q )e 2i s11 (q3 , q,) q3 3) q -q+q-q

1 2isqd.fii b c a j d

(B.2)

where we have worked only to cubic order. Using qb - qC + qd = qa we conclude that

the phase factor in front of the J3 131 (q, q q , q, ) term is simply exp[2is(qd) fi].

In addition, we saw that for q• - qc + q2 = qa to hold we need to have qb = qj and

q2 = qa. This makes the phase factor in front of J1213(q3, , q3 , qd ) a lso exp[2is(qq)-

fi]. We conclude that (up to cubic order) the gap equation for each A(qa) simply

picks up an overall phase. The same is true for the gap equation for each A(qa). We

therefore conclude that the free energy is unchanged up to quartic order when A2 (r) is

translated relative to A3(r). This guarantees that such a translation cannot alleviate

the large 332 arising from antipodal (or near antipodal) pairs of momenta occurring

in {q 2 } and {q 3}. This argument can easily be extended to include the sextic terms

in the free energy; they too are unchanged when A2(r) is translated relative to A3(r).
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Appendix C

Phonon mass is zero to all orders

in A

In this Appendix, we show explicitly that there cannot be any term in the phonon

effective action at any order in A and at any order in ui(x) which is nonzero if uz(x)

is constant over space and time, other than a trivial constant. Equivalently, we show

that if we expand the Lagrangian density as a power series in ui(x), every term has

at least one derivative acting on each ui(x), meaning that the mass of the phonons

is zero. This is guaranteed by Goldstone's theorem, but the explicit demonstration

of this "obvious" result is nontrivial and for this reason we give it here.

Before proceeding, we recall Eqs. (4.12) and (4.13), which imply that

AU(x) = A, E exp(2iqý - (r - u,(x)) . (C.1)

Since we want to prove the result to arbitrary powers in the u fields, we do not make

an expansion in small u. In terms of Feynman diagrams, this means that in evaluating

the effective action in Eq. (4.30) we resum the vertices with increasing powers of u1 .

Therefore any vertex for A1 comes with a factor eIElij exp(-2iq . uj(x)) and a

momentum insertion 2qf. On the other hand, the vertex for A* comes with a vertex

factor Eiqcflc exp(2iq. -ui(x)) and a momentum insertion -2qa.

Integrating out the X fields in Eq. (4.30) is equivalent to calculating all pos-
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sible one-fermion-loop diagrams with arbitrarily many external phonon insertions.

(Higher loop diagrams with internal phonon propagators are suppressed by powers

of AIR/A, with AIR the typical energy of the phonon fields, and are therefore com-

pletely negligible.) A generic one-loop diagram will have nz vertices proportional to

Al exp(-2 2 iqm -. u(x)) at which momenta 2q). are inserted into the loop, and nl

vertices proportional to A* exp ((2iqj' . u (x)) at which momenta -2qa' are inserted

into the loop. Here, a = 1, 2, 3...ni and T = 1, 2, 3..nh. The number of appearances of

AI has to be the same as that of A* because the diagram can only depend on powers

of jAI1 2 . Different one-loop diagrams correspond to different choices of ni, n2 and n3

and different choices of the qaK's and the ql'"s from among the sets {q,}. The color

and flavor indices for the propagators in the diagram linking the vertices into a loop

are chosen to be consistent with the color and flavor epsilon symbols associated to

each vertex. The contribution from a generic one-loop diagram will be

CciA 1 2n A2 12n2 A3 2n3 x e2ql .(r-u1(x)) - 2q21 (r-u2(X))

1 2q 2
.(r-u2(C.2)

2ql2 (r-ul (x))

iO + 9j3e

We are interested in evaluating only the contribution from such a diagram in which

no derivatives act on any u1 fields. This contribution is given by

. c IAi 2nhi 2 12n2 3 12n3 x Tr[exp i 2ui(x) - (• q- q b)
I a=al b=b1

1 1 a 1 2
X 1- e 2 q

a
l -r e-2q2 -r e2qlr2.

i +,sjl iO - 9j2 e i + 9j3
(C.3)

Momentum conservation implies that the net momentum added to the loop is zero,

i.e.

q - bI q =0. (C.4)

I a=al b=bl

(As we argued after Eq. (4.41), the momenta contributed by q is much smaller than
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Iq, I.)
We now recall from Section 4.3 that the magnitude of the q, are different for

different I. (Iq21 = 7?612 is close in value to Iq31 = 76~3, but they are not exactly

equal because 6P2 and J63 differ by terms of order M./_ 3.) This means that the

momentum conservation condition (C.4) can only be satisfied if

an, b,,

Iq - Eq = 0 , (C.5)
a=al b=bl

separately for each I. This implies that in Eq. (C.3), the coefficients of each of the

u, cancel, and thus implies that Eq. (C.3), the contribution of a generic one-loop

diagram in which no derivatives act on any u1 's, is independent of uz, making it a

trivial constant in the phonon effective action. The phonons are therefore massless

to all orders in A and u1 .

As a special case, we can now demonstrate Eq. (4.38) explicitly. That is, we can

show explicitly that -- f d4XtrCF((ACF)tACF) is independent of u, as must be

the case since it includes no derivatives acting on u1 , and so would constitute a mass

term for the u, if it were to depend on the ui. Indeed,

4G d4xtrcF((AujF)tAuF) = - J Z e

I 1

-(VT) 1 (A/A*)P,
I

(C.6)

as given in (4.38).
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Appendix D

Single plane wave

In this Appendix, we investigate phonons in the presence of a condensate for which

only one of the three A, is nonzero, meaning that only quarks with two different

colors and flavors form Cooper pairs. We take A3 - 0 and Aj = A2 = 0. This

implies that there is pairing only between ur and dg quarks, and between ug and dr

quarks, where r, g and b refer to the colors of the quarks. Furthermore, we assume

that the set {q 3} contains only one vector, q, so that A3(x) varies in space as a

single plane wave, A3(r) = A3 exp(2iq -r). In this simple case it is possible to derive

the phonon effective action and the shear moduli without employing the Ginzburg-

Landau expansion, working to order q 2.

The oscillation of the condensate is described by a single phonon field, u3(x). In

analogy with Eq. (4.13), we define

A•(X) = A3e 2 iq.(r
-u3(x))

SA3 e 2iq-r 1- io(x) - 1((X)2) (D.1)

where O(x) = 2q- u 3(x).

This condensate breaks translational symmetry in the 4 direction, but leaves an

0(2) symmetry corresponding to rotations about the 4-axis unbroken. Taking q

along the z axis, the potential energy U of Eqs. (4.69) and (4.71) must be symmetric
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under rotations about the z-axis, taking the form

ZXZZZU = ("zz) 2
2

+ 2 ((xz)2 + (,zx)2 + (,Yz) 2 + (szy) 2)

(D.2)

where the strain tensors smu are defined in (4.70). Azzzz and AXzXz = AYzYz are the

two independent elastic moduli that we will now evaluate.

In writing the Lagrangian in terms of the Nambu-Gorkov fields, we ignore the

quarks that do not participate in pairing. We also note that the inverse propagator

can be written as a block diagonal matrix made up of four blocks that correspond to

the ur particles and dg holes, dg particles and ur holes, ug particles and dr holes and

dr particles and ug holes. Since only quarks that belong to the same block interact,

the inverse Nambu-Gorkov propagator can be written as

S-1 = S-;_,, E StIg, E S;1, , (D.3)

iO+ t
-(c-/)a * (W)

i( + 9U*
(Cy5)A3* (x)

(C7 )a3(x)

(iO - 9d)T

-(Cy")A,(x)

(iO - 9i)T

) ,)S- dg-ur

_ -U

i + #id

-(Cy 5)AU* (x)

i + 9d
(Cy) A'* (x)

( Cy()Au(x)
(i - )•)T

-(C-y)Au(x)

(D.4)

The phonon effective action is obtained by integrating out

yielding the result

the Nambu-Gorkov fields,

iS[u] = log(Z[u]) = - iG(VT)jA 312

+ 2Trng log (S,,dg) ,

(D.5)

where we have used the property that the contributions from the four blocks, Sda,

S- , S'_ and S'l are equal. Since the trace of an operator does not changeug-dr' dT-ug a dg-ur-
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upon making a unitary transformation, corresponding to a change of basis, we can

simplify S- 1 by choosing a basis which gets rid of the exp(2iq - r) and the Cy5

appearing with A3. In the new basis,

- e-iq'r 0 io u (Cy5)Au(x))
ur-dg (Cy5)eiq' r  -(Cy 5)A*(x) (i~ -q d)T

(i + 3 + A+(l - i9-uA 1 2

A* (1 + -i _ 12 i _ -- _d

)( iq.r
0

(D.6)

In this simple case, the inverse propagator in the absence of the phonons can be

inverted. (This is why we do not need to resort to the Ginzburg Landau approxima-

tion.) Hence we separate S-uLdg into S-,ldg = S' + E with

io + 4 + 9U

0S= 2
=g (+~if - 2)

and

A3

(iP - b 9d)

A3(-i - 2 .
0

Since we have rotated out the phase exp(2iq -r) from A3, the off-diagonal components

of S' 1 do not depend on position anymore. Upon inverting S 1, one gets the full

propagator for the fermions in the absence of phonons, to all orders in A. This prop-

agator is diagonal in momentum space and therefore can be written in a simple way

employing the weak-coupling approximation and the HDET formalism (implemented

as in Eqs. (4.46) and (4.47) or more formally as in Ref. [100]), yielding

= Dp) (V - .- q - 6/13)
Da(p) -A

- q

(V -p q-q q )
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0
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k

p+K
a) b)

Figure D-1: Diagrams contributing to the phonon self-energy. The dot-dashed lines
correspond to the propagator of the phonon fields. Full lines correspond to the full
propagator of quark quasi-particles. The phonon-quark-quark vertices F1 and the
phonon-phonon-quark-quark vertex r 2 are also shown. Diagram b) contributes only
to the zero momentum polarization tensor. Diagram a) is nonvanishing for any value
of the external momentum k of the phonon.

where

DA(p) = (V · p- ý .q-6 i 3)(V p- .q-e5 i 3)

-IA31' . (D.10)

We now consider the interaction with the phonon field. To second order in q,

there are two interaction vertices, i¢(x)F1 and -_1(x)2
2, where

Pi = 0( and F2 = ( (D.11)

The phonon effective action to order 02 is given by the diagrams in Fig. D-1, namely

s = Tr(SA rlSA Fl) - Tr(SA 2 rI), (D.12)

where the trace is over Nambu-Gorkov indices and space-time. Evaluating the action

along the same lines as in Section 4.4.5, we find

-o2 IL2 (2 4k ) (- k)72 (3 2 (2-)4
dp°o A ds A di" (V -k)(VP - k)
2ri _A 4r Da(p + k)Da(p)'
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where the k-independent second diagram in Fig. D-1 has cancelled the k-independent

contribution from the first diagram. We then integrate over po and vi analytically and

do the s-integral numerically. Upon returning to position space, the action takes the

form (4.77) which, in this simple case, reduces to

S 21 d 4X  (00 (x))2 _ (O (x))2 (l(X))2] (D.14)

where o0l o- t(" ) and -= - a1,. We have written the factors of 4q2 = 42~q62 in

the denominators in (D.14) in order to facilitate comparison to (D.2). The potential

energy U in (D.14) can easily be written in the form given in Eq. (D.2) by substituting

¢ = 2q- u3 and keeping only the term symmetric in a u,. Taking 4 in the z direction,

one can easily see that Azzzz = A11 and Axzxz = Ayzyz = -A.

The coefficients p, A± and All are each proportional to p2 and have nontrivial

A3- and 65P3-dependence. We have obtained them numerically for arbitrary values

of A3, and by plotting them versus A2 at small A3 we have checked that p and All

are proportional to A2 and 2A is consistent with being proportional to A'. Within

the accuracy of our numerical analysis, we find p = A = , to order A2, where n is

given by (4.82). This is in agreement with what we obtain from the phonon effective

action (4.80) evaluated to order A2 in the Ginzburg-Landau approximation, upon

specializing (4.80) to the single plane wave case. It therefore provides a useful check

on our calculations. Whether via the Ginzburg-Landau analysis of the main Sections

of this paper or via the numerical all-order-in-A 3 evaluation of this Appendix, we learn

that AzzzZ = K and A&zyz = 0 to order A3, from which we conclude that the shear

modulus of this single-plane-wave "crystal" is zero, to this order, and is presumably

proportional to p2A•/6. 2
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