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Abstract

Spin liquid, or featureless Mott-Insulator, is a theoretical state of matter firstly mo-
tivated from study on High-Tc superconductor. The most striking property of spin
liquids is that they do not break any physical symmetry, yet there are many types of
them, meaning a phase transition is necessary from one spin liquid to another. It was
a long debate about whether these exotic states can serve as the ground states in real
materials or even models. In this thesis I firstly discuss a large-N model, where we
show the spin liquid states can be the ground states. Because the spin liquid phases
cannot be characterized by symmetry breaking, the phase transitions associated with
them are naturally beyond the traditional Laudau's paradigm. I discuss a few scenar-
ios of these exotic phase transitions to show a general picture about what can happen
for such exotic transitions. Those exotic phase transitions can actually serve as a way
to detect these exotic phases. Then I move to a much more realistic model: spin-1/2
Kagome lattice, where we propose a U(1)-Dirac spin liquid as the ground state. The
implications on the recent material ZnCu 3(OH)6C12 are discussed. Finally, I come
back to the high-Tc problem. A doped spin liquid can naturally be superconducting
whose many properties have already been confirmed by experiments. Here I partic-
ularly study one experimental puzzle: the nodal-antinodal dichotomy in underdoped
High-Tc material. This used to be one difficulty of the doped spin liquid theory. We
show that a doped spin liquid can naturally has nodal-antinodal dichotomy due to
further neighbor hoppings (t' and t").

Thesis Supervisor: Xiao-Gang Wen
Title: Cecil and Ida Green Professor of physics
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Chapter 1

Introduction

1.1 Motivation

In condensed matter physics, we are interested in phases and phase transitions. In

particular, the zero-temperature phases and phase transitions, i.e., quantum phases

and quantum phase transitions, due to the new physics associated with them, come

into the center stage in modern theoretical condensed matter physics.

Quantum theory of condensed matter was dominated by two main themes. The

first one is Fermi liquid theory [1] and the second one is Landau symmetry-breaking

theory. [2, 3] Fermi liquid theory is a perturbation theory around a particular type of

ground states - the states obtained by filling single-particle energy levels. Fermi liq-

uid theory describes metals, semiconductors, magnets, superconductors, etc. Landau

symmetry-breaking theory provide a deep insight into phase and phase transition.

It points out that the reason that different phases are different is because they have

different symmetries. A phase transition is simply a transition that changes the sym-

metry. Not so long ago Landau symmetry-breaking theory is believed to describe all

possible phases, such as crystal phases, ferromagnetic and anti-ferromagnetic phases,
superfluid phases, etc., and all of the phase transitions between them.

However, after the discovery of fractional quantum Hall (FQH) effect, people

realized that different FQH states all have the same symmetry. So they contain a

new kind of orders - quantum order - that is beyond Landau's symmetry breaking

paradigm, therefore we call FQH phases exotic[4, 5]. Quantum order is new since

it has nothing to do with symmetry breaking, long range correlation, or local order

parameters. Part of this thesis is the discussion of the mathematical description of

quantum order and its impact on phase transtions.

A natural question one can raise is: "are FQH liquids the only exotic phases?" or



"are there new quantum phases which do not break any physical symmetry other than

fermi liquid?" Note that fermi liquid (FL) is the only conventional disordered state

of matter at zero temperature. But it is conventional only because experimentally

FL can describe many metals, not because theoretically it is easy to understand.

In one-dimension, people already know that there are many exotic phases, such

as Luttinger liquid or spin-1/2 Heisenberg chain. However in higher dimensions, the

understanding is very limited, and so far there is no conclusive experiment signature

that there are any other exotic quantum phases in two or higher dimension systems

than FQH liquids. Nevertheless, the theoretical studies do not have to follow exper-

iment. Spin liquids are such theoretical exotic states of matter, which are defined

to be the disordered (i.e., no spin order and no translation symmetry breaking) zero

temperature state of a spin model (in particular, a spin-1/2 model by default).

Anderson firstly proposed the concept of spin liquids by his proposal of RVB

states[6]. Later Baskaron[7] used slave-particle approach to give RVB liquids a math-

ematically description. In this thesis, we mainly follow their approach to study the

physics of spin liquids. The new physics contained in spin liquids is striking. If Lan-

dau's symmetry breaking language is no longer applicable to spin liquids, what is

the appropriate systematic mathematical language to describe different spin liquids?

If Landau-Ginzburg-Wilson phase transition theory fails, what is the new theory re-

placing it? By studying spin liquids, we try to gether the information to answer these

big questions.

1.2 Band insulator and Mott insulator

There is another way to apprecitate the striking features of spin liquids, which is

the featureless Mott-insulator. Band insulator is a well-know concept of solid state

physics, which is based on fermi liquid theory. Let us consider a lattice electron

system, which has even number of electrons per unit cell. Fermi liquid theory tells

us that one way to contruct the ground state of the system is to fill the electrons in

the band structure one level after another. Even number of electrons per unit cell

makes sure that the resulting state of the filling process is fully gapped, and thus an

insulator. On the contrary, if there is odd number of electrons per unit cell, fermi

liquid theory tells us that the resulting state is a metal with gapless excitations.

Can the ground state of a system with odd number of electrons per unit cell be an

insulator? Mott[8] introduced the concept of Mott-insulator to describe the situation

where a material should be a metal according to band theory but is insulating due



to strong replusive interactions between electrons. It is quite easy to understand it

pictorically. For simplicity let us consider the square lattice with one electron per
site. If the repulsive interaction is so strong that each electron is localized on one site

and any charge fluctuation has a finite energy gap U, then for the energy scale much

lower than U only the spin dynamics will be left and the system is insulating. Now

we can ask what the ground state of the system is. The localized spin will interact

with their neighbors via exchange interaction. Again for simplicity we assume only
nearest neighbor interaction is present. The coupling should be anti-ferromagnetic

by simple second order perturbation theory. The low energy physics is completely

determined by nearest neighbor anti-ferromagnetic (AF) Heisenberg model. For the

square lattice, the ground state turns out to have long range AF order which breaks
the translation symmetry.

Is the above Mott insulator really different from band insulator? The answer is

no. Because the translation symmetry is broken, the unit cell is actually doubled,
and there are two electrons per doubled unit cell. One can actually show that the
above AF Mott insulator can be connected to the band insulator of the doubled unit
cell adiabatically without any phase transition. Thus the above Mott insulator is not
really exotic.

What is really exotic is featureless Mott insulator, i.e., a Mott insulator which
does not break translation symmetry. This is nothing but spin liquid because the low
energy degrees of freedoms are spins.

1.3 Doped Mott insulator and High-Tc supercon-

ductor

The typical phase diagram of a hole-doped high-Tc superconductor is shown in Fig.1-
1. At zero doping, or half-filling, the system has antiferromagnetic(AF) order and
is a Mott insulator. Let us focus on zero-temperature. As we increase the doping,
three things happen. First the AF order is suppressed to zero, then comes the onset
of superconductivity. Finally the superconductivity(SC) disappears and the state
is the usual FL. Obviously there are two ways to understand the apperance of SC,
either from AF side or from FL side. However, the striking new physics, i.e., physics
fundamentally differenct from BCS theory, happens from AF side. Let us focus on
the low doping region. The most natural question to ask is: "how to understand the
onset of superconductivity by doping the AF ordered state?"
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Figure 1-1: Schematic phase diagram of High-Tc superconductors. The solid curves
are phase transition boundaries. There are also crossovers from pseudogap regime to
strange metal and finally to fermi liquid. Note that experimentally strange metal is
quite different properties from fermi liquid.

Now we have the question. The next thing to do is to mathematically write

it down. The high-Tc materials can be thought as weakly coupled layers, and the

minimal model that may contain the physics of the superconductivity is the one band

Hubbard model on 2-dimension square lattice:

ij i

Suppose the system is slightly away from half-filling by hole-doping. In the limit of

U >> t, the U term means that any double occupancy of electrons costs a large

energy U. In the low energy sector the Hilbert space is composed of those states with

no double occupancy. A second-order perturbation theory tells us that the Hubbard

model can be reduced to the t - J model in the low energy sector:

Ht-_ = -P tij tic "cjP + J Si(  -S- ninj ) (1.2)
ii (ij)

where J = 4t2/U and t is the nearest neighbor hopping. P is the projection operator

removing all double occupancies. Note J is positive, i.e., antiferromagetic.

At half filling, t - J model is just Heisenberg model. Weak layer-layer coupling will

give a finite temperature antiferromagetic(AF) order. Now let us dope it. Numerical

calculation[9, 10, 11] shows that the hole band minimum for the doped AF order state

is at (+7r/2, 7r/2), assuming only nearest neighbor hopping t : 0. The doped AF



state would have small fermi pockets at (=±r/2, ±t•r/2).

If those holes in the fermi pockets experience certain attractive interaction, then

one natural thing to happen is that they will pair up and condense. And the resulting
state is superconductor. It seems we have a solution for High-Tc superconductor.

But wait a moment, the problem is that the onset of SC order is after the dis-

apperance of AF order. It is not clear that starting from AF metal is a good way

to access SC phase. If the SC is a result of pairing of holes in AF metal, then the

coexistence of AF and SC should be observed, which is not seen in experiments.

A even bigger puzzle is the finite temperature phase diagram. A very important

player of the game is the pseudogap regime, which is the "normal" state for the

underdoped SC. According to BCS theory the normal state should have the gap fully

closed around the fermi surface. But from all kinds of experiments including ARPES,
conductivity, Kight shift, specific heat, we know that in the pseudogap regime the

gap is not fully closed at all. Around the anti-nodal region ((7r, 0) and (0, ir)) of the

would-be fermi surface, an incoherent energy gap is observed for temperature below

T*. As one decreases the doping, T* actually increases, as shown in Fig.1-1.

How to understand the pseudogap regime? One way to attack the problem is still

to start from doped AF insulator, then consider the possible senarios which destroy

the AF order by flucutations. There are recent progress along this line[senthil]. How-

ever, Anderson pointed out that the pseudogap regime can be naturally understood

not by doping AF insulator, but by doping a featureless Mott-insulator, i.e., spin liq-
uid. Strikingly, he pointed this out even before the experimental identification of the

pseudogap. This is the origin of motivation for studying spin liquids from High-Tc
point of view.

There have been intensive studies on understanding High-Tc superconductivity by
doping a spin liquid. Instead of giving a review of previous study, here I just raise the
issue that I will address in chapter 4. The important physics of doping a spin liquid is
so-called spin-charge separation. After one hole is put into the spin liquid, there will
be an extra charge e and spin-1/2 in the system. The charge e will be at the position
of the empty site. However, because the spin degrees of freedom are not frozen but
strongly fluctuating, the extra spin-1/2 will be distributed in the whole system in a
certain fashion, meaning the spin-1/2 may not be bound to the charge e locally. In
this picture the spin and charge degrees of freedom are not bound together and the
low energy description of the system includes a charge sector and a spin sector and
their interations. Let us call the charge degree of freedom holon, and the spin degree
of freedom spinon.



But when we do experiments like ARPES on the system, really the electronic

degrees of freedom are probed. One can imagine the electron as a bound state of

the spinon and holon. An interesting and puzzling experimental fact is that, in

the pseudogap regime, the APRES peak is quite coherent around the nodal region

((f7r/2, ±ir/2)), but not around the antinodal region ((7r, 0) and (0, 7r)). In the spin-

charge separation picture, it means the binding of spinon and holon are very strong

at the nodal region, but not at the anti-nodal region. It is not obvious at all how the

momentum space anisotropy of binding happens. In this thesis, we will show there

is a simple mean-field theory and wavefunction where the origin of this anisotropy is

manifest.

1.4 Low energy excitations

We stated that one fundamental difference between the exotic phases and the con-

ventional phases is that exotic phases are not characterized by symmetry breaking.

Another fundamental difference will be discussed in this section, which is the low

energy excitations.

What are the low energy excitations of the conventional phases? By conventional

phase we mean it is either a fermi liquid, or a symmetry breaking phase with an order

parameter. For fermi liquids, the low energy excitations turn out to be free fermions.

For symmetry breaking phase, the low energy excitations are the flucutations of the

order parameter, which are usually free boson modes. In particular, for all gapless

conventional phases, one can ask what the gapless modes can be. As a property of

stable phases, the gapless modes should be stable against all kinds of perturbations

that are consistent with the symmetry. The only such stable gapless modes are free

fermion modes, which are protected by fermi liquid theory, or free Goldstone bosons,

which are protected by Goldstone theorem.

Because the exotic phases have no symmetry breaking and order parameter, there

are no Goldstone modes and fluctuating order parameters. What can the low energy

excitations be? With the past studies of spin liquids, we know that the low energy

excitations are often neither free bosons nor free fermions, and gauge interactions

are usually involved in the low energy effective theory. These are fundamentally

different from conventional matter. Moreover, we know that spin liquid can have

gapless excitations. Those gapless modes are not protected by fermi liquid theory

or Goldstone theorem. We will see in chapter 2 that they are actually protected by

quantum order.



In addition, fractionalization often appears in conventional phases. Suppose we

start with a microscopic model in which the fundamental degrees of freedom carry a

certain set of quantum numbers. For example in the Hubbard model the fundamental

degrees of freedom are electrons, which carry charge e and spin-1/2. Fractionalization

does not really mean that one can literally tear apart the fundamental degrees of
freedom, e.g., all the measurable quantities in Hubbard model are written in terms

of electron operator. Instead fractionalization means that in the most natural way
to write down the low energy effective theory, collective modes carry fraction of the

fundamental quantum numbers, e.g., the spinon and holon modes in the Hubbard

model. Here by "most natural way", I mean the effective theory is in a weakly

interacting regime, i.e., the properties of the interacting theory are not fundamentally
different from the free theory.

A stable phase can also be viewed as a stable fixed point in the renormalization
group (RG) sense. The conventional stable phases corresponds to the free (gaussian)
fixed points of the modes carrying the microscopic quantum numbers. On the con-
trary, some exotic phases, for instance the 7r-flux phase and U(1)-Dirac phase which

will be discussed in chapter 2 and 3, corresponds to interacting fixed points, and the

modes are carrying fractionalized quantum number. There are also cases, for example
the Z2-linear spin liquid discussed in chapter 2, in which the effective theory is a free
fixed point of the fractionalized modes.

1.5 Conventional phase transitions and exotic phase

transitions

Let us briefly review the conventional phase transitions of Landau-Ginzburg-Wilson
paradigm. In Fig.1-2 we show a schematic phase diagram with one tuning parameter
K. G1 G3 and G2 are the symmetry group of the two phases and the transition point
respectively. According to Landau's phase transition, the phase transition at Kc
can be characterized by a symmetry breaking from a disordered phase to an ordered
phase. If G1 labels the disordered phase, that means G3 must be a subgroup of G1.
Usually G2, the symmetry group at the transition point, equals G1. The low energy
effective theory of this phase transition is the flucutation of order parameter which
carries G1 charge but not G3 charge. The condensation of the order parameter signals
the phase transition.

For an exotic phase, one cannot characterize it simply by a symmetry group. The
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Figure 1-2: Symmetry groups and phase transition.

phase transitions between two spin liquids, if viewed in terms of symmetry group,
would have G, = G2 = G3. Then how to understand their phase transition? We

introduced the concept of quantum order to characterize different exotic phases. In

chapter 2 we study in detail the mathematical language of quantum order, and the

possible senarios of phase transitions between spin liquids. In addition, we also study

another phase transition between spin liquids where Ga is indeed a subgroup of G 1,
i.e., a physical symmetry is broken. But due to the fact that the phase G1 is exotic, i.e.,
the low energy excitations are not fluctuating order parameters, even the symmetry

breaking phase transition is beyond Landau's theory.

An application of the exotic phase transitions is to detect an exotic phase exper-

imentally. If a phase breaks a physical symmetry, then in general it will provide a

finite temperature phase transition to the disordered phase. There are very sharp

experimental signatures of that phase transition and one can thus detect a conven-

tional phase. On the other hand, because exotic phases can be fully symmetric, it

may not support any finite temperature phase transition. Therefore detecting them is

an experimental challenge. If we understand the zero temperature phase transitions

from an exotic phase to another exotic phase, or to a conventional phase, we can use

the experimental signatures of those transitions to actually detect an exotic phase.

I also want to mention another type of exotic phase transitions not studied in this

thesis. Senthil et.al.[12] found that if a gapless spin liquid turns out to be a unstable

fixed point, it can actually connect two phases with uncompatible symmetries, i.e., G3

is not a subgroup of G1 and vice versa, through a single continuous phase transition.

1.6 Outline of the thesis

In this thesis, we discuss a large-N model in chapter 2 where the spin liquid states

can be stable zero-temperature phases and study the phase transitions between spin

liquid phases. In chapter 3 we study a more realistic model: spin-1/2 Kagome lattice

and propose the U(1)-Dirac state as the ground state. Because the close relation

between spin liquids and High-Tc superconductor, we study the doped spin liquids



in Chaper 4 and focus on one experimenal phenomenon: nodal-antinodal dichotomy.

Finally concluding remarks are given in Chapter 5. Most of the material in this thesis

has been adapted from published papers. Chapter 2 is adapted from Ref.[13], chapter

3 is adapted from Ref.[14] and chapter 4 is adapted from Ref.[15].





Chapter 2

A large-N model

2.1 Introduction

The SU(2) projective construction (or, more generally, slave-boson theory [16, 17])

for 2D spin liquids in spin-1/2 systems has been studied over ten years [18, 19].

Upon doping, the SU(2) projective construction provides a quite complete theory for

underdoped high Tc superconductors [20, 21]. The theory explains the strange Fermi

surfaces [20, 21], the strong (r, ir) spin fluctuations [22, 23], and the temperature

dependence of superfluid density [24, 25] for underdoped samples.

At half filling, the SU(2) projective construction can also be used to describe

various spin liquids. In fact, the SU(2) projective construction (or more generally,
the slave boson theory) have predict many different spin liquids, such as the algebraic

spin liquid [26, 27, 23], chiral spin liquid [28, 29], Z 2 spin liquids [30, 31, 32, 33]. It was

also shown that the SU(2) projective construction is capable of describing hundreds

of different spin liquids that have the same symmetry but different quantum orders

[27].

The above predictions of spin liquids and the classification of spin liquids were

based on mean-field calculations. At the mean-field level, it is not very hard to

design a spin Hamiltonian that realizes a spin liquid that has one of a few hundreds

quantum orders. It is also not hard to find the mean-field ground state for a given

spin Hamiltonian. The real issue is whether we should trust the mean-field results.

It was argued [31, 27] that, if the obtained mean-field ground state is unstable (i.e.

if the mean-field fluctuations cause diverging interactions at low energies), then the

mean-field result cannot be trusted and the mean-field state does not correspond to

any real physical spin state. It was also argued that, if the mean-field ground state

is stable (if the mean-field fluctuations cause vanishing interactions at low energies),



then the mean-field result can be trusted and the mean-field state does correspond

to a real physical spin liquid state.

However, the above statement about stable mean-field states is too optimistic.

A 'stable mean-field state' does not have diverging fluctuations at low energies. So

it does not have to be unstable. On the other hand, it does not have to be stable

either. This is because short-distance fluctuations, if strong enough, can also cause

phase transitions and instabilities. Therefore, in order for a mean-field result to be

reliable, the mean-field state must be stable (i.e. no infrared divergence) and the

short-distance fluctuations must be weak. As we do not have any small parameters

in the SU(2) slave-boson theory for spin-1/2 systems, the short-distance fluctuations

are not weak, even for stable mean-field states. Because of this, it is not clear if the

mean-field results, even for the stable states, can be applied to the spin-1/2 model or

not.

In this chapter, we will generalize the spin-1/2 model to a large-N model. The

large-N model can be solved approximately using the SU(2) projective construction.

We will show that the SU(2) projective construction for the large-N model have weak

short-distance fluctuations. Thus, the stable SU(2) mean-field states for the large-

N model do correspond to real physical spin liquid states. The SU(2) mean-field

results for the stable states, such as fractionalization, emergent gauge structures and

emergent Fermi statistics, can be applied to the large-N model.

We concentrate on a model with nearest-neighbor J1 coupling and next-nearest-

neighbor J2 coupling. We find several mean-field phases that include SU(2) r-flux

state, SU(2) chiral spin state and Z 2 spin liquid state.

The SU(2) 7r-flux state is described by a low energy effective theory that includes

gapless Dirac fermions coupled to SU(2) gauge fields. Due to the non-vanishing

interaction between the fermions and the gauge bosons down to zero energy, there

is no free fermioninc or bosonic low energy quasiparticles in the SU(2) r-flux state.

Despite this, we show that the SU(2) ir-flux state is a stable spin liquid state. It is a

realization of algebraic spin liquids. [27, 23]

The SU(2) chiral spin state and Z 2 spin liquid state are both gapped and, thus,

naturally stable. Both state carry non-trivial topological orders.

Within our J1-J 2 model, the quantum transition (i.e. the zero-temperature tran-

sition) between the SU(2) r-flux state and the SU(2) chiral spin state turns out to

be a continuous transition. The transition breaks the time-reversal symmetry and

has a well defined Z 2 order parameter. However, we show that the critical properties

of the transition are not described by the 3D Ising universality class of the Ginzburg-



Landau theory. This is because the transition not only break the Z2 symmetry, it also

changes the quantum/topological order. The continuous quantum transition between

the SU(2) r-flux state and the SU(2) chiral spin state is a new class of quantum

transition.

It has been shown that continuous quantum transitions are possible between two

states with the same symmetry (but different topological orders). [34, 35, 36, 37, 38]

The continuous quantum transitions are also possible between two states with the

incompatible' symmetries. In this chapter, we show that even symmetry-breaking

transitions with well defined order parameters, sometimes are not described by Lan-

dau's symmetry breaking theory. So it appear that most quantum continuous transi-

tions are not described by Ginzburg-Landau theory, regardless if they have symmetry

breaking and order parameter or not.

We also study the transitions from the SU(2) r-flux state to a Z2-linear spin

liquid state, and from the SU(2) r-flux state to a U(1)-linear spin liquid state. The

transtion between the SU(2) ir-flux state to the Z2-linear state is found to be a
continuous quantum transition that does not break any symmetry. The transtion
between the SU(2) 7r-flux state to the U(1)-linear state, on the other hand, is a

continuous quantum transition that breaks lattice rotaion and translation symmetry.
What is surprising is that the two seemingly very different transitions are described
by the same critical point with the same set of critical exponents.

2.2 Formulation of SU(2) projective construction

First we would like to briefly review the SU(2) projective construction. We will
mainly follow the notation of Ref. [27, 39]. Let us start with spin-1/2 Heisenberg
Model, and introduce the fermion representation of spins:

H = Jij S. Sj (2.1)
(ij)

Si = 1•f co•f (2.2)

If we regard H as an operator acting on the fermion Hilbert space, then we have
enlarged the Hilbert space. Therefore we have to add extra constraints to reduce the

'If the symmetry group of one phase is not a subgroup of the other phase and vice versa, then
the two phases are said to have incompatible symmetries[12]. According to Landau's symmetry
breaking theory, two phases with incompatible symmetries cannot have continuous phase transition
between them.



enlarged Hilbert space to the original one for the spin system. The constraints are

the one-particle per site constraints:

!fia = 1 (2.3)
Sfioipeap = 0, f, ,ffp"jc = 0 (2.4)

The two extra constraints in Eq. (2.4) are results of the first one in Eq. (2.3). However

in path integral formalism, if we enforce all constraints simultaneously by introducing

some Lagrangian multipliers, a lattice gauge theory with SU(2) gauge group can be

derived. Let us introduce some notations:

S= f •., (2.5)
.iu = fit,/fj. (2.6)

These are the only singlet bilinear forms of the pairing between site i and j. After

some rearrangements, one has:

1 1 1Si• s3 = 471 ij7ij - 4XXj +t .

Ignoring the irrelevant constant, the path integral Lagrangian of the Heisenberg model

Eq. (2.1) turn out to be:

-1 ( t + 3 ! ,a(t+ 3.

(ij)

The constraint of one particle per site has been encoded by the Lagrangian multipliers

in the second line: C (al'i - iadi)
a+  (a + ia2,i)

a3  a 3

aO,i Oi

If we do a particle-hole transformation of the spin-down fermions fil together with a

Hubbard-Stratonovich transformation, the Lagrangian can be written in a form with



the explicit SU(2) gauge invariance:

L (io, - air)i] - ai TrUij + (U, j P + h.c. (2.7)
S (ij)

where

fi = (2.8)

Uj= (Xij rN (2.9)

The path integral that describes the spin-1/2 system is given by

Z = D(V)D(aoi)D(Uij)eifdtL

The SU(2) gauge transformation is given by

ati a' = Walo,irt Wf + (iatwi)Wfi

U.i-,'W W•U0,Wu,• • w'j = wujw;

where all Wi E SU(2).

There are some other useful relations. For each site, the conjugate of fundamental

representation of SU(2) is equivalent to the fundamental representation itself. One

therefore can introduce another SU(2) doublet (neglecting the site label):

^= iU 2* = (2.10)

Thus there are only three SU(2) gauge invariant bilinear forms for 4 fields on the
same site

S+ = 12 ,oa = ftf1 (2.11)

S- = 21 , = ftf (2.12)

S3 = 1) -= ) = (f2 ftf) (2.13)2= c' 2 :)=



They turned out to be the generators of the spin rotation symmetry.

In the zeroth order approximation, or at the mean-field level, one assumes that

the boson fields azoi and Uij get condensed, or more specifically, can be replaced by

some time-independent c-numbers. In this approximation, the system is described by

the following mean-field Hamiltonian

Hmean= o, i + J Ji [Tr Uij U, + UiP + h.c.) (2.14)
i (ij)

2.3 A large-N limit of SU(2) projective construc-

tion

The above mean-field approximation is a good one only when there are some reasons

to suppress the fluctuations of the boson fields aoi and Uij. One way to suppress

these fluctuations is to go to a large-N limit. Actually the mean-field result is exact

when N = oo. In this section, we try to answer the following questions:

* What is the lattice spin model that the large-N limit corresponds to?

* What is ground state of this lattice spin model?

Here we present our answers of these problems first. Later we will see the detailed

derivation of these answers:

* The lattice spin model is a Sp(2N) spin model described by Eq. 2.18. The

Sp(2N) spin model is a generalization of the usual SU(2) spin model (which

corresponds to N = 1 case).

* The ground states of the model are Sp(2N) singlets. For small J2 (the next-

nearest-neighbor coupling), The system is in an algebraic spin liquid state.[27,

23] The excitations are the fractionalized particles (spinons) coupled to SU(2)

gauge fields. The gauge field is deconfined. For larger J2/J1, there is a contin-

uous quantum phase transition and the system goes into the chiral spin state

which breaks the time reversal symmetry.[29]

It was debated for long time the existence of featureless Mott insulator if the unit

cell does not have even number of electrons. In that case, it seems that in order to

have a Mott insulator state, the ground state must break translation symmetry to

enlarge the unit cell such that the number of electrons per unit cell becomes even.



Here we present a counter-example. The ground state of Sp(2N) when N is large can

be featureless Mott insulator with odd numbers of electrons per unit cell.

We want to introduce a large-N limit and maintain the SU(2) gauge structure.

The simplest way to do this is to introduce N flavors of fermions (later in this chapter

we also denote N as Nf to emphasize it represents the number of flavors of fermions):

f= t i a= 1,2,...N.

Then the Lagrangian of the N-flavor model is:

L = ( - ao,~ V))¢ + Z cTUU U + (¢,Up + .)
i (ij)

where the repeated index a is summed. The large-N model is clearly invariant under

the SU(2) gauge transformation. Comparing with the original model Eq. (2.7), after

integrating out the fermions, the effect of the N-flavor is to put a factor of N in

front of the boson fields Lagrangian, which controls the fluctuation of them when N

is large.

Now we want to find out the corresponding spin model for this large-N theory. It
should be some generalization of the spin-1/2 Heisenberg model. To do so, we need
to integrate out the boson fields. If we go back to the f picture, we have:

Lta. a rl_ + +t 1 +aa + 13 a= ari + 1 N)
i i

4N \7yij

where

"abt ftaE fbt = Vtaopb _ O- Vbt

-abtbt= o =/,ta/,b f,fa tbbt

Here one immediately see the constraints become X?2 = N and 7iaa = 0, or

fff = N ffat a fat = h.c. = 0 (2.15)fatfa -Naa i 0



for each site. The Hamiltonian under these constraints are:

H = - Jijf t bb -ati bb (2.16)

4N 73

ZJii(ff fbf fb f b ffbtf? +f ftff 3 +N) (2.17)
(ij)

We want to understand the symmetry of this model and try to rewrite it in a form

of spin coupling. Here, the symmetry that we are studying is not the local gauge

invariance, but some global physical symmetry in analogy with the spin rotation

symmetry for the N = 1 model. Motivated by Eq. (2.11-2.13), we construct all the

gauge invariant bilinear forms of V for each site (neglecting the site label). Let

V a- ia2 ta = (f•s•t

The SU(2) gauge invariant bilinears are

Sab+ = 1 (rat tf+ bt

Sab- . • b

1 1 -- ,a 1 ia
Sab3 - (oatb - 6"b) t ((fat - fbtl

2 a 5ab) 2 f

What is the group generated by these S operators? First let us count how many of

them there are. For Sab+ or Sab-, the label is symmetric for a and b, so there are

N(N+I) operators of each type. For S "ab3, the labels are not symmetric, so there are

simply N 2 of them. Totally we have N(N + 1) + N2 = 2N 2 + N of them. One can

further examine their commutation relations:

[Sab-, Scd-] = o, [Sab+, Scd+] =

[Sab3, Scd3] = 2(bcSaO - jadScb3

[ab3, Scd+] = 1 (6bcS ad+  bdgac+)

[ ab3, scd-] = (6adSbc- + 6acSbd-

[Sab+, Scd-] = 1 (6 acSbd3 + 6 adSbc3 + 6 bcgad3 + 6 bdSac3)



These are the relations for SP(2N) algebra, so all the S operators are the 2N 2 + N

generators which generate an SP(2N) group. When N = 1, SP(2) is isomorphic to

SO(3). After some rearrangements, the Hamiltonian Eq. (2.17) can be rewritten as:

H = ij [ Sab+ Sb- + 1Sb- sb+ +Sb3Spba3 (2.18)
(ij)

If we define:

s•b1 = s• = l (Siab+ + Siab-)2

S•b2 = S,2 = (s~(b+ - syb-)

then the vector

Sgb = (Sib1, Syb2 , S6b3 )

can simplify the Hamiltonian to:

HSp(2N) =Z•SRb' Sa (2.19)
(ij)

Here we have to mention that the three components of Sqb are actually not on the

same footing, since the first two are symmetric with respect to the flavor labels but

the third one is not. It is a simple task to check that all the generators commute

with the Hamiltonian. And one can even check that the SP(2N) is indeed the full

symmetry group of it.

Now we want to know what the physical Hilbert space is. It should be the subspace
of the enlarged Hilbert space in which the constraints Eq. (2.15) are satisfied. When
N = 1, the physical Hilbert space is the spin-1/2 Heisenberg's, where we have only
two states on each site:

IT), II)

When N = 2, we have 5 states on each site:

1
l~t21),



Here, for example, 11T21) represents a fermion of flavor 1 and spin up and another

fermion of flavor 2 and spin down; and lt1 2 0) represents a fermion of flavor 1 and

spin up, another fermion of flavor 1 and spin down, and no fermion of flavor 2. One

can check the dimension of the Hilbert space on each site for larger N's:

N=3 dimension = 14,

N=4 dimension = 43,

N=5 dimension = 142,

N=6 dimension = 429, ..

This Hilbert space turns out to be an irreducible representation of the SP(2N)

symmetry group. If we label an irreducible representation by its highest weight state

for a particular Cartan basis. The Cartan basis for SP(2N) can be chosen to be the

z-component spins of each flavor:

Saa3 , where a = 1, 2,--, ,N,

with N generators. Then the highest weight state in our Hilbert space is simply:

1T2-3T ... NT)

2.4 Phase diagram of the Sp(2N) model on 2D square

lattice

In this section we would like to calculate the zero temperature phase diagram for the

Sp(2N) model Eq. (2.19) on 2D square lattice. We assume that only the nearest-

neighbor couplings and the next-nearest-neighbor couplings are non-zero

Ji,i+x = Ji,i+y = J1,

Ji,i+x+v = Ji,i+X-y = J2.

We also assume Ji + J2 = 1.

There are two mean-field approaches to the Sp(2N) model. In the first mean-field



approach, we use the ground state I)(m b)) of a trial Hamiltonian

Htria- = mb • Sm a (2.20)

as the trivial wave function and obtain the mean-field ground state of the Sp(2N)

model Eq. (2.19) by minimizing

( g(mb) IHSp(2N) IJ(mb)

as we vary the variational parameters m b. The obtained ground state corresponds to

a Sp(2N) spin polarized state. One can show that the ground state energy obtained

in this mean-field approach is always of order 1 per site in the large N limit.

In the second mean-field approach (the projective construction),[16, 39] we start
with a fermion trial Hamiltonian

Htrial = ~ upI (2.21)
(iW)

where uij = U•T7 are two by two complex matrices that satisfy

uj = uji, u91 = imaginary, u• 11=1,2,3 = real

Let Im'me$n) be the ground state of the above trial Hamiltonian. ui= a 0,i are chosen

such that the constraints Vtiafr'V = 0 are satisfied on average:

(D(uii) IatTIkblmu,(liN) =_ 0
mean "ri Z 4Q., 0mean

We then project m(i)an) to the physical Hilbert space and obtain PJI("a)n). The

physical Hilbert space is formed by states Iphys) that satisfy the constraints Eq. (2.15)
or

t.,.1iP phys) = 0

The projected wave function PImen) is our trial wave function with uij as variational
parameters. Minimzing

(4(uij) IPHsp(2N)-,() P

by varying uij, we obtain the approximated ground state.

Since in the large-N limit, the fluctuations of the Lagrangian multiplier alo,i(t) are
weak, we expect that removing the projection P only causes an error of order 1/N.



Also, other mean-field fluctuations are weak in the large-N limit, so we expect that

the minimized mean-field energy

E = (bjn) Hsp(2N) mea(n)

' i7 h3 taat bb aat bb\

-4N k j+ -ýX, Xii) +0(1)
(ij)

to be the true ground state energy at the leading order in the large-N expansion.

Here
a b i (uij) b / .(j) Ij abm (uij)-

mean I I mean/I

note that the above minimized energy is of order -N per site. Thus the states

obtained in the first mean-field approximation Eq. 2.20 cannot be the ground state.

Within the SU(2) projective construction and using the translation invariant

ansatz uij with only nearest- and next-nearest-neighbor couplings, we find many

local minima of - +- (ij)(,tl + X x ) as we vary uij. We plot those minima in

Fig. 2-1 as functions of J2 (note J1 + J2 = 1).

As we change J2, the energy of the state changes smoothly along each curve. So

there is no quantum phase transition as we move from one point of a curve to another

point on the same curve. The ansatzs on the same curve belong to the same phase.

However, if two curves cross each other, the crossing point represents a quantum phase

transition. This is because the ground state energy is not analytic at the crossing

point. If the slopes of the curves at the crossing point are different, the quantum

phase transition is first order. If the slopes at the crossing point are the same, the

quantum phase transition is second order.

From Fig. 2-1, we see second-order (or continuous) phase transitions (at mean-

field level) between the following pairs of phases: (A,D), (A,G), (B,G), (C,E), and

(B,H). We used to believe that all the second-order phase transitions are caused by

symmetry breaking. So a natural question is what symmetries are broken for the

above five second-order phase transitions?

It turns out that, except phase (D) and phase (E), all other phases have the same

symmetry. In other words, the projected ground state wave functions Pjlmean) for

the ansatz uij associated with those phases have identical symmetry. Thus the three

continuous transitions (B,G), (B,H) and (A,G) do not change any symmetries. It was

pointed out that those phases, despite having the same symmetry, contain different

quantum orders [27]. The projective symmetry group (PSG), defined as the invariant

group of the ansatz uij, is introduced to describe this new class of orders [27].
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Figure 2-1: The mean-field energies for various phases in a J1 -J 2 spin system. (A)
the 7-flux state (the SU(2)-linear state SU2BnO). (B) the SU(2) x SU(2)-gapless
state. (C) the SU(2) x SU(2)-linear state. (D) the chiral spin state (an SU(2)-gapped
state). (E) the U(1)-linear state Eq. (2.26) which breaks 900 rotation symmetry. (F)
the U(1)-gapped state U1CnOOx. (G) the Z2-linear state Z2Azzl3. (H) the Z2-linear
state Z2A0013. (I) the uniform RVB state (the SU(2)-gapless state SU2AnO).

The ansatzs on the same curve have the same PSG and correspond to the same

quantum phase. On the other hand, the ansatzs on the different curves have different

PSG's. We see that a quantum phase transition is characterized by a change in PSG.

Those quantum phase transitions represent a new class of phase transitions beyond

the Landau's symmetry breaking theory. Other examples of phase transitions beyond

the Landau's theory can be found in Ref. [40, 34, 35, 36, 37, 38].

In the following we will discuss quantum orders (or PSG's) for mean-field phases

in Fig. 2-1. The PSG's for those quantum orders are labeled by labels which look

like Z2A0013 [27].

The phase (A) [41] is the 7r-flux state, or the SU2BnO state

Ui,i+x =ix, ui+,± =i(-) "X at = 0. (2.22)

The low energy excitations are described by massless Dirac fermions with a linear

dispersion and gapless SU(2) gauge fluctuations. Therefore we also call such a state

SU(2)-linear state.

The phase (B) [27] is a state with two independent uniform RVB states [16] on the

diagonal links. The gapless fermions have finite Fermi surfaces. The fermions interact

with SU(2) x SU(2) gauge fluctuations. Such a state is called SU(2) x SU(2)-gapless



state (SU(2) x SU(2) indicates the low energy gauge group and "gapless" indicates

finite Fermi surface). Its ansatz is given by

Ui,i+z+y =XT-• Ui,i+x-y =XT•3• ao =0. (2.23)

The phase (C) [27] is a state with two independent wr-flux states on the diagonal

links. It has SU(2) x SU(2) gauge fluctuations at low energies and will be called an

SU(2) x SU(2)-linear state. Its ansatz is given by

ui,i+g+,y =X(T3 + T'1) Ui,i+x-,l =X(T3 - T1)

The low energy excitations are SU(2) x SU(2) gauge fluctuations and massless Dirac

fermions.

The phase (D) is the chiral spin state[29]

a0 =0,Xi,i+x =iX1,

Xi,i+x+y = - iX2(-) i
s

, (2.25)

Both fermionic excitations and SU(2) gauge excitations are gapped. The gap of the

SU(2) gauge excitations is due to an SU(2) Chern-Simons term.

The phase (E) [27] is described by an ansatz

Ui,i+z+,y =X1 1T + X272

ui,i+y =77•3

i,i+x-y =X17T 1 - X2T2

alo =0

which breaks the 900 rotation symmetry. It is a U(1)-linear state, i.e., the low ly-

ing excitations are massless U(1) gauge fluctuations interacting with massless Dirac

fermions.

The phase (F) [27] is described by the following UlCnOOx ansatz

Ui,i+w =77T
T 1

Ui,i+z+y =XT3

a3 =A,

Ui,i+y -71

Ui,i+zxy =XT3

a1'2 = 0

The U1CnOOx state can be a U(1)-linear state where fermions are gapless with a

linear dispersion relation (if a3 is small) or a U(1)-gapped state where the fermions

are gapped (if a 3 is large). The state for phase (F) turns out to be a U(1)-gapped

ao =0 (2.24)

(2.26)

(2.27)

Xi,i+y =iX 1(-)i",

Xi,i+x-y -iX2(-) ix .



state. The only low energy excitations are massless U(1) gauge bosons.

The phase (G) [27] is described by the Z2Azzl3 ansatz

ui,i+• =X
T 1 - 77T2 2 Uii+, =X

T 1 2 77r
2 ,

Ui,i+z+y = - yT 1, Ui,i-zy = + 77T,

2ui,i+2x =Ui,i+2y = 0, a1,'2' 3 =0. (2.28)

The SU(2) gauge structure is broken down to a Z2 gauge structure. Hence there is

no gapless gauge fluctuations. The only low energy excitations are massless Dirac

fermions. Such a state is called Z2-linear state.

The phase (H) [33] is described by the Z2A0013 ansatz

a o 0, a'2 = 0,

Ui,i+m = XT3 + •r 1, Ui,i+y = XT3 _ 7T1,

ui,i+o+y = +y77, Ui,i-,+y = +773.  (2.29)

It is also a Z2-linear state.

The phase (I) is the uniform RVB state [16], i.e., the SU(2)-gapless state SU2AnO

ui,i+, =ix, uji,i+ =ix, az = 0. (2.30)

It has gapless SU(2) gauge fluctuations and gapless fermionic excitations that form

a finite Fermi surface.

From Fig. 2-1, we see continuous phase transitions (at mean-field level) between
the following pairs of phases: (A,D), (A,G), (B,G), (C,E), and (B,H). For the three

continuous transitions (B,G), (B,H) and (A,G) that do not change any symmetries,
we observe that the SU(2) gauge structure in the phase (A) breaks down to Z2 in
the continuous transition from the phase (A) to the phase (G). The SU(2) x SU(2)
gauge structure in the phase (B) breaks down to Z2 in the two transitions (B,G) and
(B,H).

2.5 A stable algebraic spin liquid - SU(2)-linear

spin liquid

In this section, we will study the SU(2)-linear state given by Eq. (2.22) which describes
the phase A in phase diagram Fig. 2-1. In the mean-field theory, the interactions
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Figure 2-2: We choose the unit cell of SU(2)-linear state to contain four lattice sites
when we go to the k-space.

between the excitations are ignored. In this section, we include those interactions

and study how those interactions affect the low energy properties of the mean-field

SU(2)-linear state. We will show that, after including those interactions, the gapless

excitations in the mean-field SU(2)-linear state remain gapless, which leads to a stable

algebraic spin liquid.

2.5.1 The low energy effective theory of the SU(2)-linear state

To obtain the low energy effective theory of the SU(2)-linear state in the continuum

limit, we choose the unit cell as in Fig. 2-2. It contains 4 sites; each site has spin up

and down, so totally 8 fermions. Let us write down the mean field Hamiltonian:

Hmean = iX [Oioi + 1li+x,o + ' 2 i3 + Vi30i+x,2

+IOPi2 -o 2 i3 + +t ,i+y,O - •+y h.c.

Z1ix [4OVkl+t3 + 4 00+ 4 1.koe + i ike
+ iX [Ao k2 1 k3 2k 3l3ik"

k

k

=kO

4k3

i



0 i - ie- ikz i

-i + ieik O0

-i + ie i ky 0

0 i - ieikv -

- ie - i ky  0

0 - i + ie- i ky

0 i - ie- ikx

i + iei k* 0

Here we have assumed the lattice constant to be 1/2, so we have -7r < k", ky < w.

Note that here 4 k,i is actually SU(2)-doublet, corresponding to the spin up and down

components in the f-formalism; so still totally 8 fermions. After some rearrangements:

e- ike sin kx

0
0

0 eikv sin k.

- e- iky sin ky 0

0 e- iky sin ky
0 - e- ikz sin kx

- eikx sin kx 0

In the continuous limit, the energy spectrum for fermion is characterized by a single
fermi point at (0, 0). When k e 0:

M=2X

0

-kx

-ky

0

-kx

0

0

-k0
0

-kx

0

ky

-kx

0

(2.34)

We can do an extra rotation to make it the usual form of Dirac fermion:

)- = Rt V
0
-1

R = /
V2
0

J

Hmean = 70yo [ikx'i + iky- 2]

where

(2.32)

0 -

-eikx sin k.

-ei ky sin ky
(2.33)

(2.35)

Then

(2.36)

(2.37)

M=X



where the y matrices in Euclidean space are:

o = ) 3 71 = -a 2 - (2.38)

Here we can also introduce the other two -y matrices:

'Y3 = I ) 5 = 7YO 7 1'Y23 = i ( I) (2.39)

where I is the 2 by 2 identity matrix. Notice that both 73 and "y5 anticommute with

all space-time components of -y matrices: yo, y7 and 'y2. We should also include gauge

field fluctuations above the mean-field theory. The full lagrangian is:

L = (8, - ial 1') 'YA' Tr f + -- (2.40)A 2g2

where b = ~'to. So the low energy effective theory of the SU(2)-linear state is a

QCD 3 with a SU(2) gauge field and two massless 4-component Dirac fermions (or

2Nf 4-component Dirac fermions which form Nf SU(2) gauge doublets in the large

Nf limit, notice Nf = 1 is the physical Heisenberg model's case).

The ... in Eq. (2.40) represents other terms which may be generated by the

interactions as we integrate out high energy fluctuations. Understanding those terms

is the key to understand the low energy behavior of the model. Those terms must be

consistent with the underlying lattice symmetry. So in the following, we will study

the symmetry properties of the effective theory Eq. (2.40). We will show that none

of terms allowed by the symmetry are relevant at low energies. None of those terms

can cause infrared instability. As a result the mean-field SU(2)-linear state leads to

a stable algebraic spin liquid.

2.5.2 Space translation and rotation symmetry

Now let us think about the corresponding lattice symmetry in continuous limit.

Firstly let us discuss translation by one lattice site along x-direction Tz, in terms

of the lattice fields:

Tx i { - =(2.41)
Uij U uýij = ui-z,j-2
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Figure 2-3: Figures (a)-(d) illustrate how the SU(2)-linear state respects translation
symmetry T.: (a) original ansatz (b) after T, (c)do WT, (d) go back to original ansatz.

It seems that the translation symmetry is broken since ujj is not invariant:

Ui,i+z
Ui,i+, =

ix,

i(-)izX

Uj ix,

uýi,i+ -i(-)iX
(2.42)

But as shown in Fig.2-3 one can do an extra local SU(2) gauge transformation WT,
to transform uij back. Let

(2.43)

Then

WT, : { (2.44)
U3 --- .= W i3 WS3 $3 S3 j

where

I!

Ui,i+z

Ui,i+•l

-= i+ = ix = ui,i+
2,±1 = I"

Here we point out that the combination of WT, and T, is a transformation leaving

(2.45)

i

X

1 1

I



Uij invariant. We call such a transformation an element of PSG. PSG, by definition,
is the collection of all transformations leaving the ansatz Ujj, al , invariant. Here in
SU(2)-linear state, al, is zero, so it is also invariant.

After choosing the unit cell as in Fig.2-2, in terms of the four component / fermion,
the combination of WT, and Tx transforms:

/io

Oil

V•i2

'Ii3 =40

0

0

-1

0

0

-1

0

Vio

Oil
Oi2

(2.46)

Here we assumed in the continuous limit, /i and Vi+x are on the same position. We

can do the extra rotation to transform into ý, the usual Dirac fermion:

0

0

0

-1

RJ-
0 0 -1 0
0 0 0 -1

-1 0 0 0
0 -1 0 0>"= -3

(2.47)

Eventually we know that the PSG element WT, o T, which is the lattice symmetry, if

translated into continuous limit, is the internal symmetry -y3. Note that the minus

sign actually corresponds to a global SU(2) transformation: Wi = -1. So we have

the correspondence:

WT o Tx -73 (2.48)

Similarly one can study the translation by one lattice site along y-direction; we find:

WT, o T, 75 (2.49)

For the reflection P, : x --+ -x:

WP. 0 P0 ( yi (2.50)

For the reflection P, : y -- -y:

Wp, o Py --) 72 (2.51)

' '= RtO' = R t



For the reflection Px, : x - y, y -* x:

(2.52)

Note that Tx, T,, Px, Py, Pxy already give the full space-time symmetry. For example,

rotation by 90 degree R90 : x -- y, y - -x is a combination of P. and Pxy:

R9o = Pxy o Px (2.53)

2.5.3 Time-reversal symmetry

Now let us study the time-reversal symmetry T. In terms of spin operator:

T: S -* -S (2.54)

One should be cautious that T is not a usual linear operator, instead it is an anti-linear
operator:

Ti = -iT (2.55)

What does this operator correspond to in terms of lattice fermion and bond variable
U[j? We know that

S = I~f 0f2
So the corresponding transformation on f fermion is:

T : f -+ ia2f, T: ft -+ ft (i( 2)t (2.57)
TST-' = Tft-1ToT-1T fT - 1

= ft(io2)t (1, -- 2, 1O3) (i 2)f

= ft (-, -o 2, -U 3 ) f

(2.58)

(2.56)

---

WpXY o Pxy (-- (71 - 72)(73 + 75)2



Here we used the anti-linear property of T operator. Therefore the T transformation

on ¢ fermion is:

T: = f - = i720* (2.59)
Our convention of notation is that in terms of f fermion, we use a to denote Pauli

matrices; while in terms of ? fermion, we use T to denote them.

What is the time-reversal transformation on Usj? Here we notice that Uij has two

meanings: in Eq.(2.7) it means the operator defined as in Eq.(2.6); while in Eq.(2.14)

it means the average value of the operator on mean-field ground state. Let us take a

look at how the operator transform under time-reversal:

TX^iT-' = T fLfjQT-' = T fITT-'TfjT - '

= fif(i0 2)t(ia2)fj = fifj = X6j (2.60)

T#I3T- 1 = Tfi fE, T-' = Tf T- 1e Tt fT-1

= Iff (ia2)t Eaa(ia2) 3fj6 = ff ESjf = i (2.61)

Therefore we know that the Ui0, as an operator, is invariant under T. Here it is

helpful to write down Usj in terms of / operators:

( ij Xij )t• )t

Notice Eq.(2.59), under T transformation, the first term transforms into the second

term, and the second transforms into the first. So the whole Uij is invariant. One

can also check that together with transformation Eq.(2.59), the Lagrangian Eq.(2.7)

is invariant under T. This is expected since the original Heisenberg Hamiltonian

Eq.(2.1) is T invariant.

But things are different if Uij condense, more specifically, if it has some non-zero

average value: Uij = (F IUjj I). Because T is an anti-linear operator, it transforms

Uij into Upj. We know that for two arbitrary states la), I,), the anti-linear property

of T gives

(ajP) = (T3ITa) (2.63)



Therefore for an arbitrary linear operator 0,

(a|oO|) = (Otalo) = (TO3TOta) = (T/3TOtT-I|Ta) (2.64)

let 0 = it., and a) = 10) = IT), one immediately see that under T transformation,
the average value of ýij operator transforms as:

xi= - XL = (TPKJlijJT')

- = (2.65)

Here we know that the mean-field variable Uij, as the average value of Uij operator,
transforms into Ufi under T. This is consistent with our understanding of anti-linear

7T operator, since it transforms any c-number into its complex conjugate.

T: Uij -- TUijT - 1 = Uij (2.66)

In general, Uij can be written as:

U i= Uj o + ti 1 + tUT2 + U 2T3  (2.67)

where To is identity matrix. For spin rotation invariant system, one can show that
u is pure imaginary, while unj i = 1, 2, 3 are pure real.

How does mean-field Hamiltonian transform under T? Here we need combine
transformations on b and Uij:

tUijoj #(iT2 ) t Ui, (i 72 )

(using Eq.(2.67)) =T (-Uij)bj*

(Uij = U ), = 0)UJ40s (2.68)

Comparing with the term in original mean-field Hamiltonian OtUji4i, one concludes
that the transformation of mean-field hamiltonian under T can be simply expressed
as Uij - U*i, with no fermion transformation. If U*j and original Uij can be related
by a SU(2) gauge transformation, the system has time-reversal symmetry; otherwise
the T was broken.

For our SU(2)-linear state, Ui*, and Uij are indeed related by a gauge transforma-



WT: Wi = -(-)'+m

After choosing unit cell, in terms of four-component fermion 0,

Vio

Oil

Oi3

WT": I
(2.69)

(2.70)
11i

In terms of usual Dirac fermion b:

WT : -- (2.71)
-1 = Yo0

1/

The combined transformation WT o T leaves Uij invariant. So WTo T is another

element if PSG. And we know in terms of Dirac fermion b,

WT oT: -0 - ' = (iT2)70o (2.72)

This is very similar to the time-reversal transformation in usual Dirac field theory.

2.5.4 Spin rotation: "charge conjugation"

There is another important symmetry, the global spin rotation. Let us think about

rotation around y-axis by 180 degree:

Rý,,s : (S., S,, Sz) -+ (- S•x, S, -Sz) (2.73)

In terms of f spinon,

Rspin : f --+ f = (iU2)f = -fT) (2.74)

tion WT.



In terms of / fermion,

Rpi - ' (i) * (2.75)

It seems Eq.(2.75) is identical to Eq.(2.59), which means T and Rpi, are identical.

This is obviously wrong, the difference here lies in the fact that T is anti-linear but

Ri, is linear.

In terms of 4-component Dirac fermion 7p:

Rspn : = Rt --+Rt(iT2 )4* = (iT2)RR*p* = (i&2 )(-7175) * (2.76)

The transformation rule above is in real space. In momentum space,

Rpin : k e-ik

- (-ir2)( 71 5) -e e-ikj

= (--iT2) (7Y5)-*k (2.77)

i.e., the spin rotation transformation Rpin also flip the sign of momentum!

Now think about how Uj transforms under Ri,. The form of Eq.(2.62) is ex-

plicitly Rpin invariant, so Uij is Rpin invariant. This is expected since we have

spin rotation invariant ý and i). This is actually the point of this slave-boson mean-

field approach. We choose the mean-field variables to be spin rotation singlets, such

that even it acquires non-zero average value, it doesn't break spin-rotation symmetry,

which describes spin liquid states. Moreover, since Rpsn is a linear operator, we know

that the average value of Uij is also Rs,p, invariant.

Rspin : U -+ R epinUijRS-n = Uij (2.78)

This is consistent with the usual property of linear operator: it commutes with c-

numbers.

What is the transformation on mean-field Hamiltonian? We should put transfor-



Table 2.1: Transformations of Dirac fermion /, here C is Rpi, and We is identity.

mations on fermion Eq.(2.75) and Uij Eq.(2.78) together:

using Eq.(2.67) =T(-Ubj)O

This is just another term in the original mean-field Hamiltonian. We conclude that

Hmean is invariant under Ri,. This again is expected since our spin-liquid states

should not break Rpi,. So Rpi, is also an element of PSG.

Here we point out that the form of Rpi, transformation Eq.(2.76) is very similar

to the charge-conjugation transformation C in usual Dirac field theory. In fact we

can denote Rpin as C in our later discussion. We summarize the transformations on

Dirac fermion in Table 2.1.

2.5.5 Transformations of fermion bilinears

Let us focus on SU(2)-linear state. We know that the mean-field Hamiltonian is

characterized by a SU(2) doublet of massless Dirac fermions. But can the mass

gap be generated after including quantum fluctuations? If yes then the mean-field

theory cannot describe the real physical system at all since the low energy behavior

is completely different. In this section we will show that this is not the case.

We know that for a certain mean-field state, it has a certain PSG, which is the

symmetry of the mean-field hamiltonian. After we include fluctuation, this symmetry

will still be respected. Suppose we go through an renormalization group process to

find the low energy theory, any counter-term explicitly breaking PSG will not be

generated when taking care of fluctuations.

PSG element Transformation on fermion
T G = WTo Tx Y3

J PSG WTIOTy o
pPSG = Wp o P 71

I = WP o Py 72
pJ = - PIy Pr -2 Y 7)( + 75)

TPSG = WT o T b (i-z2 )Y0 * (anti-linear)
C PSG W o C -- (iT2)Y71y5 * (linear)



This can be viewed in the following way: let L(Vi, Uij, ao•) in Eq.(2.7) be the

Lagrangian describing the dynamics of fermion and gauge fields. In the original

theory, we have a huge "symmetry" group leaving L invariant, for example, the

translation along x-axis by one lattice site Tx:

L(pl#, JUj) = L(TViT)-1, TUjTrx-1 ) = L(i-1_, [^7i_,J_X) (2.79)

or an arbitrary local SU(2) gauge "symmetry" transformation W (here the meaning

of quotion mark is that gauge "symmetry" is not a physical symmetry, instead it is

just a many-to-one bad labelling.):

L(Op, U^j) = L(Wf4io, Wulw4 !W) (2.80)

But after LUij condense, things are different. The above huge "symmetry" group

will be "spontaneously" broken (the unbroken state must have Uij = 0). PSG is the

remaining unbroken "symmetry" group after this symmetry breaking. PSG is defined

as the collection of all transformations leaving the Lagrangian L(JO, Tijj, a•i) invariant

and also leaving average value Uij invariant. Let P be an element of PSG, then

L(4', Uij) = L(PoiP- 1, PUijp-1) (2.81)

Uij = PUP -1  (2.82)

We can consider fluctuation around the average value Uij:

Uij = Up + 5Uij (2.83)

Plugging into Eq.(2.81)

L(?i, Uij + 5Uij) = L(P#4P-', P(Uij + 5Mij)P -1)

= L(P4iP- 1, Uij + PbNUijP-') (2.84)

So the Lagrangian for the fluctuations L(Oi, SJUij) must be invariant under PSG trans-
formations.

We want to find out the transformations of fermion bilinears under PSG. Because
if they all transform non-trivially under PSG, they will be all forbidden. That is why
the fermions remain to be massless after including fluctuations.

Here we will consider only the fermion bilinears of form ý1i. The bilinears of



Table 2.2: Transformations of 16 fermion bilinears. All transform non-trivially.

forms 0p and itYt are not invariant under the spin S, rotation and are not allowed

in the effective Lagrangian. Since we are using 4-component fermion, there should be

4 x 4 = 16 different fermion bilinears of form ýt. From Table 2.1, it is quite easy to

find the transformations of all fermion bilinears under PSG. It turns out that among

these 16 bilinears, as shown in Table 2.2, there are four 1-dimensional representations

and six 2-dimensional representations of PSG. All the fermion bilinears transform

non-trivially under the PSG. So perturbatively, the fermions remain massless after

inclusion of fluctuations.

Now let us consider the fermion bi-linear terms that also contain a single spatial

derivative. Those terms represent marginal perturbations when Nf = oo. From

the table 2.2, we see that the only term that is allowed by the PSG is 4y7 1'i +

IOc-y 2O. All other terms are forbiden. The reason is as follows: The 1-dimensional

representations together with a spatial derivative cannot be Lorentz singlet, so are

ruled out. Among 2-dimensional representations together with a spatial derivative,

only 87l + y72¢ is invariant under translation T P SG (in fact, it is invariant under

full PSG); all others are ruled out. But the term yj171l + 8&27 2 , which is already

present in Eq.(2.40), only changes the velocity of the fermions. In a RG study, this

counter-term means a wavefunction renormalization. The low-energy effective theory

Eq.(2.40) remains valid.



The next question is, will there be 4-fermion interaction terms? The answer is

yes. For example, we choose a certain 1-dimension representation in Table 2.2, say

'b, then couple this term to itself to make a 4-fermion interaction. It is obvious

that this 4-fermion term is PSG invariant, which is allowed in the Lagrangian. Will

this kind of 4-fermion term change the low energy behavior drastically? The answer

is no. This is because we are in 2+1 space-time dimension, and by power counting

4-fermion terms are of dimension 4, so they are irrelevant couplings. Same argument

can be done for fermion bilinear terms with second order derivatives; those terms are

also irrelevant.

In summary, we have discussed the possible fermion self-interactions. Our conclu-

sion is that in perturbative sense, these fermion self-interactions will not change the

low energy behavior from the mean-field result. We may say that the SU(2)-linear

mean-field state is stable under fermion self-interactions.

2.5.6 Emergent Sp(4) physical symmetry

In this section we will discuss the emergent symmetry for SU(2)-linear phase whose

low energy effective theory is Eq.(2.40). We already know that there are two fermion-
chiral symmetry generators y3 and Y5 , and they are anticommuting. (Here please note
that we are talking about fermion-chiral symmetry, which is different from the spin-
chirality in the later discussion about chiral spin liquid.) Therefore the symmetry of
SU(2)-linear phase contains at least a global SU(2) fermion-chiral Lie group whose
generators are y3 , 75 and i- 3 - 5 .

We also know that the theory should be global SU(2) spin-rotation invariant, since
we are talking about a spin liquid phase here. Thus there should be at least another
SU(2) spin-rotation symmetry group. However after the particle-hole transformation
we made in Eq.(2.8), this spin-rotation symmetry was hidden in our formalism.

The full physical symmetry group of SU(2)-linear phase should contain both the
SU(2) fermion-chiral and SU(2) spin-rotation as its subgroups. The naive guess for
the full group is SU(2) x SU(2) but it turns out to be wrong. We will show in this
section that the correct full symmetry group is Sp(4). We noticed that the same
Sp(4) symmetry was found earlier by Tanaka and Hu[42] by viewing the ir-flux state
as a fermionic mean field state, i.e., ignoring the effect of SU(2) gauge field. Here we
clarified the gauge field effect and obtained the same global flavor symmetry. Then
we can classify all the fermion bilinears according to their transformation rules under
Sp(4) group.



Later, we will show that after including the SU(2) gauge fluctuations, the SU(2)-

linear state remains gapless and the correlations between various operators remain

algebraic. But the exponents of algebraic correlations may be modified by the SU(2)

gauge interaction. Classifying fermion bilinears according to their transformation un-

der the Sp(4) group is very important in understanding the scaling properties of those

operators. The operators that belong to the same irreducible Sp(4) representation

will have the same scaling dimension.

First we consider the spin rotation group; basically it will mix '0 and ¢*. To

make the spin rotation transformation explicit, it is convenient to reintroduce the 1b

formalism in Eq.(2.10):

V = ia2V)* = f(2.85)

Let us look at lattice fermion V) at certain site. If we put V (2-component, corre-

sponding to spin up and down) and V (2-component) together to form a 4-component

vector:

TW (2.86)

then it is straightforward to write down the spin rotation transformation. For exam-

ple, the rotation around z-axis:

V (e 0 ei/2 0 e-i/2 (2.87)

Therefore

1 0 ei0ea3/2,I (2.88)

where the identity matrix labels the internal space of 0 (spin up and down), while

eiea3/2 acts on the space mixing 4 and 7i.

What about rotation along y-axis? Suppose we do an infinitesimal transformation

f -- f + f -- f- fT (2.89)2 2



it implies:

(2.90)

thus

1
01 1+ 0V2*

0-
2 (2.91)

0

-02
in terms of I:

I --+ 1 0 ei6a2/2O (2.92)

Similarly the rotation along x-axis is:

T --+ 1 0 e1i0a/2TJ (2.93)

To summarize, we know that the spin rotation is acting on the space mixing 7 and

Let us go to continuous limit, and consider the 4-component Dirac fermion SU(2)

doublet b in Eq.(2.36). Again we write it together with ?P:

(2.94)

Note that actually I has 16 components and 16 = 4 x 2 x 2 where 4 is the number

of Dirac components, the first 2 is for SU(2) gauge doublet and the second 2 is for

the space mixing 4 and 4. From the above discussion, the space mixing 4 and ?

is actually spin rotation space. A generic transformation G on fermion field can be

written as a transformation on 'I:

G = GDirac 0 Ggauge @ Gspin (2.95)

where the transformations with subscripts act on each corresponding space.

The three spin rotation generators are, from above discussion:

1 9 1 0 ol, 1 0 10 2 , 10 10 3 (2.96)

The fermion-chiral generator 73 is acting on 4. One can easily check that while

1CI1~



acting on xII, since i = ia 2 V*, the generator has the form: Y3 0 1 0 a3. Similarly one
can find the other two generators of fermion-chiral transformation. In summary, they
are:

3 0 10 a3, 75 0 1 0 a3, i7375 0 10 1 (2.97)

Now if we do commutations between Eq.(2.96) and Eq.(2.97), the full set of sym-

metry generators can be found:

1 01 0 a, y3 01 0 a, '75 0 1 ® a, i7375 0 10 1 (2.98)

Totally 3 + 3 + 3 + 1 = 10 elements, which satisfy Sp(4) algebraic relation.

Here one thing we need to mention is that the three gauge transformation gener-

ators:

1 ~ 7 1 (2.99)

will also keep the Lagrangian Eq.(2.40) invariant. But they are gauge transformations

and should not be taken as physical symmetries.

We just showed the emergent Sp(4) global symmetry. Can the emergent contin-

uous symmetry group larger than Sp(4)? The answer is no, as one can see in the

following. We have totally 8 components of fermions, and they form four SU(2)

gauge doublets. For global symmetry we should only consider transformations in-

variant in the gauge sector, which means we should consider the transformation be-

tween the 4 doublets only (i.e., in flavor space but not in gauge space), including the

mixing between V; and O~. In Majorana fermion representation, it is obvious that

the allowed flavor transformations form SO(8) group. The Lorentz transformations

i7y07 1, i7yo707, iy17 2 generate SO(3) group in Euclidean space, and we also know that

Sp(4) = SO(5). The flavor symmetry SO(5) and Lorentz symmetry SO(3) actu-

ally commute. This SO(5) is the largest continuous subgroup of SO(8) which can

commute with SO(3) and has no common element with SO(3) except for identity.

Therefore Sp(4) is the largest continuous global symmetry.

If we introduce Nf flavors of fermions, it turns out that the emergent symmetry

group is Sp(4Nf). We should also include the Lorentz symmetry. Here by Lorentz

Group we mean the continuous group SO(2, 1), generated by 717Y2, 701, 7'Y7Y2. Note

that the physical lattice rotation is not identical to the rotation element in this emer-

gent Lorentz group. For example, according to Table 2.1, the rotation on lattice



R9o = P,, o P, is given by

R9o = (1 - 72)(73 + 75)71 = -(1 + 7172)(73 + 75)

1 1
= e~ 12 (Y3 + -s) = Dirac 900 Rotation - (TaY + 75) (2.100)

in the continuum limit. We can see that the physical rotation on lattice is a combi-
nation of the Dirac rotation and an element in the Sp(4): ('Y3 + 75). This element
actually exchanges 73 and y5s.

We should also include certain discrete symmetries such as time-reversal T, spatial

reflections P,, P, Py, total parity -1 and charge conjugation. But we know that

charge conjugation is related to the spin rotation, which is included in the Sp(4); P,,
is related to Dirac rotation, P, and element (-a + 7s) in Sp(4); and -1 is included
in Sp(4) as well, namely ei • Y3 . Therefore the full symmetry group of the low energy
effective theory for the SU(2)-linear state is Sp(4N1 ) x Lorentz Group x T x P, x Py.
Such a symmetry group is certainly much larger than the symmetry group of the
lattice model. (The effective theory for the SU(2)-linear state does contain terms
that violate the Sp(4Nf) x Lorentz Group. But all those terms are irrelevant and
have vanishing effects at low energies.)

One can classify the fermion bilinears according to their transformation rules under
Sp(4) and Lorentz group. It is convenient to rewrite the 16 bilinears in terms of V),
then in terms of IF:

7201 = -0747

1i00jji = 1PifP

= -- 1i72 b

'lPori'ib = 'lProrilP



07072 = 07720

oy = 'iY53

0-13Vo)= - oY1Y3'b

'07Y2750 = bziyY2Y 54

0i717Y-50 = ;iY1Y54'

i072730 = - 7i-273ý (2.101)

Here if there is no minus sign, it transforms as singlet under spin rotation. If there is

a minus sign after the equal sign, it means the fermion bilinear has a a3 in spin space,
which in turn means the fermion bilinear transforms as triplet under spin rotation.

Triplet should have 3 components, but in our 16 bilinears we only included one of

them (the one along z-axis). And the other two are fermion bilinears of form ?V and
tt.

One can express all the fermion bilinears in terms of II. In summary, one can

organize them as in Table 2.3. Notice that there are 10 conserved currents of Sp(4),

so they all have zero anomalous dimension.

In Table 2.3, we enumerate all the fermion bilinears. But what do they correspond

to in our original spin model? For example, let us look at a particular fermion bilinear

0yo03 1 0 1 a0 . We will show that this term corresponds to the spin triplet bond

order: (-)i Si x Si+.x Let us write this fermion bilinear interaction in terms of the

lattice fermion operators in a unit cell Oi (i = 0, 1, 2, 3), as shown in Fig.2-2:

0 -1 0 0 0o(- OOt t -1 0 0 0 1
~~Hl=~IPY y®1c~P( = 0L=2(2.102)

0 0 1 0 lattice. For example,

Now we can write down the Hamiltonian HSU(2)-linear+0H1 on lattice. For example,



Dirac Scalar T1 0® a1 , 9 iy73 01 1, 1iy5 ® 1®1
(5 elements)

Dirac Scalar ii-Y37 0 1 15
(1 element)

0o 1 F au, ýIYoY3 (91 9 aOr, qI7 07 5 ® i 1 'I a0,1 i'2101P
Dirac Vector iy~ 9 1 0 a0, i-yi173 01 9 0, CiNrys5  1 0 a*, yo7072 0 1 0 1

Ci72 9 1 (09", Xi'2Y3 9 1 04, C7275 9 1 9 'I, X•7071 0 1 1T

(30 elements)

Table 2.3: Under Sp(4) and Lorentz group, all fermion bilinears can be classified into
3 groups. A group of Dirac scalar and Sp(4) 5-dimenion representation, a group of
Dirac scalar and Sp(4) singlet, and a group with Dirac vectors in it. For a given group
of bilinears, they are connected by Sp(4 ) transformation in each row, and connected
by Lorentz group in each column. Totally there are 36 bilinears. All elements in
a given group have the same scaling dimension. In the group of Dirac vector, we
actually have conserved current corresponding to each column, totally 10 conserved
currents. Those are the conserved Sp(4) currents, and they all have zero anomalous
dimension after inclusion of the SU(2) gauge interaction.

the interaction between site-0 and site-1, in terms of f-operator, is

ixftaf ia, + 9e0ta•o3fP + h.c. (2.103)

which basically tells us that (fftf ) = ix + 0, and (f•fi) = ix - 0.

On the other hand, we can write down the spin operator So x S1 in terms of f

operators. Focusing on the z-component:

((So x Si)z) = -2i((fotfitflfol - f fiitlfot))

= -2i ((ft) fif * - (ft TfiT)*) = - 8xO : 0 (2.104)

Similarly one can show that ((S 2 x S3)z) = 8XO, and our correspondence is estab-
lished.

In Table 2.4 we list the correspondence between the field theory operators and
original spin operators. From this table we know that ferromagnetic order, triplet
VBS order and staggered spin chirality order all have zero anomalous dimension
and their correlation function all scale as 1 even after the inclusion of the SU(2)
gauge interaction. We also know that the Neel order and VBS order have the same
anomalous dimension which turns out to be non-zero after inclusion of the SU(2)
gauge interaction. We noticed that the same Sp(4) emergent group for wr-flux state



Dirac Scalar '1 0 1 0 ao Neel Order: (-)iSi

Siy3 1 @ 1 VBS: (-)iSi - Si+x

hi- 5 0 1 9 11F VBS: (-)ixS i • Si+,
Dirac Scalar i'y3y5 9 1 0 1i Uniform Spin Chirality: Si- (Si+= x Si+x+, )
Dirac Vector 7y0 0 1 0 ai Ferromagnetic Order: Si

''7073 0 1 0 ao Triplet VBS Order: (-)ivSi x Si+,

TfY7075 ® 1 9 ax Triplet VBS Order: (-)i Si x Si+y
i71yy2 0 1 0 1' Staggered Spin Chirality: (-)iSi - (Si+, x Si+,+,)

Table 2.4: The correspondence between fermion field operators and original spin
operators. In the group of Dirac vector, only the density components of each current
is presented, since the other components correspond to the flow of these densities.
From this table, we know that ferromagnetic order, triplet VBS order and staggered
spin chirality order all have zero anomalous dimension and their correlation functions
all scale as -. We also know that the Neel order and VBS order have same anomalous
dimension.

which rotates Neel order into VBS order was found[42] when ignoring the SU(2)

gauge field effect.

Here we should mention the work done by Hermele et.al[43], where the U(1)-

linear spin liquid was discussed and the emergent symmetry is SU(4), and similar

classification of totally 64 fermion bilinears was done. One can recover their result

from our formalism. From our formulation of SU(2)-linear phase, the U(1)-linear

phase can be regarded as a Higgs phase where SU(2) gauge field is broken down

to U(1). Let us assume the remaining U(1)-gauge symmetry is along T3 direction.

The only things one should add to recover their result are: first the gauge invariant

transformations not only include those in Eq.(2.98); we should also include

Y3 0 T 3 0 1, 5 ® 73 0 1, iY7375 703  a. (2.105)

So totally 15 elements, and they form a SU(4) algebra. Secondly the bilinear with a

T3 in the gauge sector is also gauge invariant, as shown in Table 2.5.

2.5.7 The effect of SU(2) gauge interaction on SU(2)-linear

spin liquid

We know that in the continuous limit, the full lagrangian should be Eq.(2.40). The

question is, will the SU(2) gauge interaction change the low energy behavior of mean-

field theory drastically? The answer is complicated. There are two main concerns:



Dirac Scalar 1 @ 1 a, 9iy3 175 1, iy5 ®1®1

T i-fY%5 0 -r3 0 aT
(15 elements)

Dirac Scalar Ii'y3'Y5 9 1 9 1'
(1 element)

'o0 @ 1 a, 7 1 9 or, T7o753 1 &07T05 10 aX, Ci71Y2 0 1 9 1T
Dirac Vector -i-t ® 1 a® , i717 3 9 10 a, 5 0 1 9 aP, [7072 0 1 10

%Fi-Y2 1 9 ax r•, XiN7213 (9 1 r0 y , XN7275 0 1 @9 aT, *7Yo"Yl 9 1 I•Q

TI'03 073 1T'I, 7075 O T3 ~0 , M i•q1'7 2 9 73 0 OT\

Ti'1t7 1 3 97"3 @9 1T, Ti'YY5 9r730 1T, P7 0 7 2 0 73 0& a@

iyi2 r3 9 I 73 ' 1T, Ti727T5 7"3 0 1, '0'7oy1 73 9 "
(45 elements)

Dirac Vector iTiyo 13  it 1'I, ýFiY1 ®' 3 0 1;P, 'i' 7 2 0 •T3 9 1i

(3 elements)

Table 2.5: Under SU(4) and Lorentz group, the total 64 bilinears can be classified
into 4 groups: A group of Dirac scalars and SU(4) adjoint representation with 15
elements, a group of Dirac scalar and SU(4) singlet with one element, a group of
Dirac vectors and SU(4) 12-dimension representation with 3 x 15 = 45 elements, and
group of Dirac vectors and SU(4) singlets with 3 elements.

spontaneous chiral symmetry breaking (SCSB) and confinement. SCSB means that

fermion mass is generated dynamically. And confinement means that no excitation

with gauge charge can show up in the spectrum, and gauge interaction is linearly

confining. If any of these happens, the low energy behavior of the system is changed

drastically and we say that the mean-field state is unstable under gauge fluctuation.

In this case, the mean-field SU(2)-linear state does not lead to a stable algebraic spin

liquid. (Actually, we do not know the low energy properties of the model beyond the

mean-field theory.)

This problem is a famous and difficult problem in QCD, since both effects are

non-perturbative. And these two effects are related: if there is a mass gap generated

for the fermion, then below the mass gap there is effectively no fermion to screen
the gauge interaction and we only have pure gauge field. We know that pure gauge
interaction is confining. So logically SCSB will induce confinement. The other way,
whether confinement will induce SCSB, is not clear yet.

Usually it is believed that for a SU(N) gauge theory coupled to Nf flavor of
massless fermions, there is a critical Nf[44, 45, 46]. If Nf is smaller than Nf, the
system have both SCSB and confinement. However if Nf is larger than Nf, there is
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Figure 2-4: The fixed point of many Dirac fermions coupling to SU(2) gauge field

a conformal invariant IR fixed point.

In particular, in 2+1 dimension, QCD always has a stronger interaction at low

energies. But if N1 is large enough, the fermion screening effect is dominant and

the renormalization group flow will terminate at an IR fixed point g,2 - -"L The

low energy behavior is governed by that fixed point, which is deconfined and has no

SCSB. When Nf -- oo, g, -- 0, we are in the perturbative region.

To have a quantitative study, we need work within large Nf limit[47]. Before we

study the SU(2) gauge fluctuation, it is worthwhile to mention the U(1) case[23].

The main result there was that in the large N1 expansion, the model remains gapless

and the spin-spin correlation function is a power law with an anomalous dimension

y. This anomalous dimension -y is calculable in large N1 expansion, and up to the

1/Nf (leading) order, y is found to be - 3

Now we look at the SU(2) case in detail. We will study the SU(2)-linear state

in particular. The low energy effective theory is Eq.(2.40). Technically there are two

ways to do large-Nf limit. The first way is a complete renormalization group analysis.

To have an controlled calculation, one first does an e-expansion, then studies the

renormalization group flow, finds out the IR fixed point, and the scaling dimension of

operators at that fixed point, finally sets N1 to be large. This way is generally accepted

and the result is thought to be reliable. However the calculation is complicated.

Here we do the large-Nf calculation in a different way[47]. Taking large-N1 limit:

N -- 00o, N g2 - const. (2.106)

The fermion contribution to any physical quantity can be expanded in -L system-

atically. This is just a way to organize the summation of Feynman diagrams. For

example, the leading order term usually corresponds to summation of fermion one-

loop diagrams. The IR fixed point can be found by cancellation of leading correction

to scaling. We will discuss this in detail soon. Here we want to discuss whether this

approach and the first approach are equivalent. There is no general proof that these

two approaches are equivalent, but in [47] quite a lot of examples are presented and it
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Figure 2-5: Gauge propagator at leading order of 1/Nf expansion

was found that these two approaches are equivalent, for example, in the case of Dirac

fermions coupling to U(1) gauge field, the scaling dimension and fixed point found in

the two approaches are consistent. Gracey et al. [48, 49] calculated large-Nf expansion

of anomalous dimensions of many quantities in QED3 and QCD3 , including fermion

mass, which is gauge invariant. Then they compared the results with results from

usual MS renormalization+dimensional regularization, and found they are consistent.

First let us take a look at the gauge interaction. From Eq.(2.106), g2 is of order

. In Figure 2-5, all leading order contributions to gauge propagator are summed

together. The double line represents the leading order dressed gauge propagator.

One can calculate the gauge-gauge two point function in Fig.2-5. The result is:

1 1 1 b
S A(k26• - kk,)A - NTrlTr(ra rb)A(k 2 , - k4k) A) A

(2.107)

Here 1 is the identity matrix in Dirac spinor space. In our SU(2)-linear example,
Trl = 4. And Ta are usual SU(2) Pauli matrices. Note that the term - is inde-

pendent of regularization scheme, but - is dependent. In different regularization
schemes, the coefficients in front of I are different. The result here - is from theA487rA

Pauli-Villar regularization.

One immediately sees that at low energy (k -+ 0), the term - dominates. The
low energy two point function of gauge field is:

NfTrA1 1 (k26, - kk,) A = ANf (k 2, - kk,k)A, (2.108)2I 64k =v 32k - A

The IR fixed point is found by cancellation of the leading correction to scaling.
Here it means that the -2 term and the - 1 term should cancel:'

1 NTrl 1 2 12rhA
2g, 2 487rA N* N(



The dimensionless coupling g*/A describes the strength of gauge interaction at the

energy scale A. We see that dimensionless coupling g*/A - 0 as the cut-off energy

scale A -+ 0 and Nf -+ oo, as we expected in the renormalization group flow diagram

Fig. 2-4. Remember that if the number of flavors of fermions is small, confinement

will happen, renormalization group flow will go to some fixed point of g2/A 2 1

as A -+ 0 and perturbation theory breaks down. The message is that the fermion

screening effect in our large N1 model drives the gauge interaction to weak limit at

low energies.

From Eq. (2.107), we know that the gauge field remains massless, and in deconfined

phase. So the SU(2)-linear state is also stable under gauge fluctuation. We can also

see that the scaling dimension of gauge field A is dA = 1 at leading order. With 1/Nf

correction, we expect to have dA = 1+ O (h). Now we can understand why the fixed

point g2 is IR stable. Suppose we are slightly away from the fixed point:

Nf 1
L = '(9, - ia' -r1) -yoi + j±.lTr [f ,fA,] + 6gTr [f ,f ,] (2.110)

i= 1g2tZ

By power counting, the scaling dimension of 6g is 4 + O(T-), so it is irrelevant.

Therefore at low energy 6g flows to zero and g, is IR stable.

In the above discussion, we have shown that the SU(2)-linear mean-field state

is stable under fermion self-interaction and gauge fluctuation in large Nf limit. So

it is a stable phase. Here by "stable" we mean that the low energy behavior does

not change drastically from mean-field result. When N1 = oo we are back to the

mean-field result, but if Nf large but finite, the low energy behavior is changed from

the mean-field result, but not drastically. Below we will see what this change is.

2.6 Spin-spin correlation function in SU(2)-linear

phase

In this section we investigate the spin-spin correlation function. In a frustrated spin

liquid, there is always a strong trend to antiferromagnetic long range order. To

describe this trend, we can calculate the staggered spin-spin correlation function in

fermion / formalism:

((-1)xSz(x)SZ(O)) = 64 (( (x) (0)) - (V)p)2 (2.111)



Figure 2-6: Spin-spin correlation function at zeroth order. Cross means spin operator
insertion.

Figure 2-7: Contribution to spin-spin correlation function at order of •

Here V is actually an 8-component fermion operator, with both spinor indices and

SU(2) gauge indices.

One can see that in field theory language, staggered spin-spin correlation function

is nothing but the mass operator correlation function. At zeroth order, we have

the free fermion Feynman diagram (Fig. 2-6). The staggered spin-spin correlation

function in momentum space at zeroth order is

1 f dp 3  [ )G2 + (q
< S.(q)S (-64 (2q) Tr [Gap(p)Gc, (q - p) - 128 (2.112)

The first order in f expansion involves diagrams in Fig.2-7. Note that the double

line represents the dressed gauge field propagator:

Dab = 1( k,1k •, 6 ab (2.113)'U Nf k1  ' k2

These diagrams will give the spin-spin correlation function an anomalous dimen-

sion. According to Eq.(2.112), the spin-spin correlation function in momentum space

scales like Ikli. With 1/Nf correction, the correlation function scales like -- Ik 1+2-"

Here y is called the anomalous dimension. The contributions from the three diagrams

in Fig.2-7 give (See Appendix A):

16
Sr2N (2.114)

We see that in the SU(2)-linear state, spin-spin correlation function remains gap-

less and algebraic, but the scaling dimensions of physical operators, for example spin

operator, are unusual due to the gapless gauge interaction. Actually there is no



Figure 2-8: SU(2)-linear phaseSU(2)-chiral phase

quasi-particle in this phase.

2.7 Phase transition between spin liquids

2.7.1 Phase transition between SU(2)-linear phase and SU(2)-
chiral phase

The effective field theory for phase transition

In this section we study the phase transition between SU(2)-linear phase (A in phase

diagram Fig.2-1) and SU(2)-chiral phase (D in Fig.2-1).

We have argued that the SU(2)-linear state is a stable phase. What about the

SU(2)-chiral state in Eq.(2.25)? One can check that the fermion spectrum is gapped

at mean-field level. As for gauge field, because time-reversal symmetry is broken in

the SU(2)-chiral state, a Chern-Simons term is generated after integrating out the

fermions. And that will also give gauge field a mass gap. So the SU(2)-chiral state

is a fully gapped state. We know quantum fluctuation cannot kill a gapped system

perturbatively, so SU(2)-chiral state is also a stable phase.

Now we have two stable phases. According to phase diagram Fig.2-1, there is a

phase transition between the two phases around J2 = 0.35. It also seems that the

energies of the two phases connect smoothly on the same diagram, which indicates

the phase transition may be continuous. We will study this phase transition in this

section.

Fig.2-8 shows the plot of the ansatzs of the two phases on lattice. Our notation



here is

SU(2)-linear phase: SU(2)-chiral phase:

ui,i+, = ix)

Ui,i+x = iX Uii+' ix(-)" (2.115)
ui,i+y = i(-)iYX. Ui,i++y = -ia(-) i,

In Fig.2-8, we also show the phases one fermion gains after hopping around a plaque-

tte. In SU(2)-linear case, this phase for the square plaquette is ir; while in SU(2)-

chiral case, this phase for the triangle plaquette is E. Those phases indicate the fluxes

through the plaquettes. After a time-reversal transformation, the flux will change

sign. For SU(2)-linear case, we have -7r flux, and -7r differs from ir by 27r, thus

equivalent. This indicates the SU(2)-linear phase respects time-reversal symmetry.

However for the SU(2)-chiral phase, we have -E, which is physically different from

•. So the SU(2)-chiral phase breaks time-reversal symmetry and the parity symme-

try. Other than that, one can show that SU(2)-chiral phase has full translation and

rotation symmetry:

Physical symmetry of SU(2)-chiral phase = {T,, Ty, R9 0o, C} (2.116)

The two phases involved in the phase transition, SU(2)-linear and SU(2)-chiral

states, have different PSGs, because even their physical symmetries are different. The

phase transition breaks time-reversal symmetry.

The low energy physics at mean-field level of the systems can be derived by taking

the lattice model into continuous limit:

SU(2)-linear phase: Lmean = lO^,0,I (2.117)

SU(2)-chiral phase: Lmean = t&7f4, + Ua[iy3 7s]5b (2.118)

To save notation, we dropped the tilde above the fermion operator 0.

Here we see that the a boson field is driving the phase transition. In SU(2)-linear
phase, (a) = 0; in SU(2)-chiral phase, (a) A 0. Therefore to understand the phase
transition, we need to know the dynamics of the a field. Let us include quantum



fluctuations of all fields, the low energy effective theory is:

Nf
L = (O, - iarT') 7p[i + Tr [f, f] + U' 3 5 ' + + (0 )2 + V(o)

i=2 2p2

(2.119)

Here to have a controlled calculation, we again introduced Nf flavors of fermion. The

first line is the Dirac fermion coupling to SU(2) gauge field. The second line is the

coupling between the fermion and a boson, and the dynamics of a boson field. The

potential V(a) is not known yet. Nevertheless we know in SU(2)-linear phase, the

dynamics of a boson gives (a) = 0; while in SU(2)-chiral phase, (a) 74 0, and the

time-reversal symmetry is broken. This is similar to the usual formalism of the phase

transition of symmetry breaking, except for the fact that we have gauge field involved

here.

The correct effective theory from PSG consideration

Eq. (2.119) is the effective Lagrangian for both phases. What is the symmetry that

the lagrangian should respect? It should respect the full symmetry of the lattice

model. Before the symmetry breaking the SU(2)-linear phase has a symmetry de-

scribed by the SU(2)-linear PSG. Thus, the effective theory for the phase transition

should respect the symmetry described by the SU(2)-linear PSG.

We have shown that, under the SU(2)-linear PSG, the fermion bilinears transform

in the way described by Table 2.2. For example, the transformation PrSG:

pPSG: i[Y7375] -i[7Y315] (2.120)

and

pPSG : - -a (2.121)

In fact, a is the average of i'[/y3'Y5]V and transforms in the same way as i[73751]0

under the SU(2)-linear PSG (see Table 2.2), thus the term a'[i-y3-y5]V is invariant

under the full SU(2)-linear PSG. We also see that the other three possible couplings

aUin, aUryoO, and aryly2,0 are not invariant under the SU(2)-linear PSG and hence

are not allowed the effective theory.

Similarly, the potential V(a) should also respect a -- -a symmetry and take a



Figure 2-9: The behavior of potential V(a) before(left) and after(right) the phase
transition from SU(2)-linear phase to SU(2)-chiral phase.

form

M2
V(a) = -02 +U4  (2.122)

up to quartic order. There is no cubic term since it breaks the pPSG
Here we see that PSG tells us the correct form of low energy effective theory:

Nj

L = + (, - ia ) b + Tr [f fJ]
i=-1

1 m 2

+ aU[iy3 7y5 ] + j(2 O 2 + -- Ua2 + Aa4  (2.123)

At the mean-field level, we already have the picture for this phase transition, as

shown in Fig. 2-9. We see that when m2 > 0, (a) = 0, we are in the SU(2)-linear

phase; when m2 < 0, (a) : 0, we are in the SU(2)-chiral phase. m 2 = 0 is the phase

transition point.

At this level the phase transition is second-order, (a) changes continuously from
zero to nonzero. The next question is, will this transition be second-order after
including quantum fluctuations?

The T breaking phase transition does not belong to the Ising class

To answer the above question, we need to count the number of relevant coupling

constants at the phase transition fixed point in the renormalization group sense. If

there is only one relevant coupling m 2, that means the phase transition is indeed

second-order, and m 2 = 0 is the critical point.

We can estimate the scaling dimension do of a field. In tree level, power counting

gives us d, = 5. But in large-Nf limit, the fermion dressing changes d, strongly. The
leading order a propagator in - expansion is shown in Fig.2-10. the a boson two
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Figure 2-10: The leading order a boson propagator in - expansion

Figure 2-11: a boson contribution to spin-spin correlation function at critical point
at the first order of -1 expansion

point function at leading order is

N~ ao (2.124)
16

which indicates that the scaling dimension d, = 1 + O(-L). Therefore the scaling

dimension of (aa)2 and a4 are both 4 + O(L-), which is larger than space-time

dimension 3 and thus irrelevant. As for the gauge coupling g, the argument in the

end of section 2.5.7 is still valid. So 6g is also irrelevant. Now we can safely say that

the only relevant coupling is 2~U2, whose scaling dimension is 2 + O(L).

We can calculate the scaling behavior at the critical point where a boson is also

massless. For example, we again compute the staggered spin-spin correlation function.

At the critical point, apart from the contribution from massless gauge field in Fig.2-7,

we have the contribution from massless a boson in Fig.2-11 as well.

So at the critical point, the staggered spin-spin correlation function not only re-

ceives an anomalous dimension from gauge field - = - 16 (Eq.(2.114)), but also

receives an anomalous dimension from the gapless a boson -y'. Detailed calculation

shows that at order of 1, 7' = (See Appendix A).

The total anomalous dimension 7Ytota, is the sum of y and -y':

44
Ytotal = Y + 7r = (2.125)37r2Nf

Fig.2-12 shows the change of scaling dimension of staggered spin-spin correlation

function during the phase transition. Note that in terms of symmetry breaking,

this phase transition is quite normal: it simply breaks the time-reversal, which is
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Figure 2-12: Change of scaling dimension of staggered spin-spin correlation function
during phase transition

a Z2-like symmetry. In our usual understanding of phase transition, the Landau-

Ginzburg paradigm, the symmetry determines the universality of the phase transition.

Therefore our usual understanding for this phase transition should be a Z2-like or

Ising-like phase transition. However, our study shows it is not the case. Although

the phase transition is characterized by the breaking of a Z2-like symmetry, it is

obviously not Ising-like. For example, an Ising like transition is gapless only at the

critical point, whereas in our transition the SU(2)-linear phase is also gapless. The

scaling behavior is very different from the Ising-universality. Actually with different

value of Nf, the scaling exponent can have infinite number of values, which indicates

infinite number of universalities.

The above discussion is at zero temperature, but in experiments, people can only

measure the system at finite temperature. What people can see in experiments ac-

tually should be crossover behavior between disordered phase and quantum critical

region, as shown in Fig.2-13.

2.7.2 Phase transition between SU(2)-linear phase and Z2-

linear phase.

Z2-linear phase.

In this section we study the phase transition between SU(2)-linear phase (A in phase
diagram Fig.2-1) and Z2-linear phase (G in Fig.2-1). The following is the ansatz of
the Z2-linear state (Fig.2-14).



maSs scale Quantu

SU(2)-linear a-=4

ac=4- 32 "

-E N•-•i '

mass scale
m Critical

32 + 8

N 37
2

N SU(2)-chiral

Shortrange

massless fermion " a boson mass
+massless gauge boson all gapped, short range

critical point
massless fermion + massless gauge boson

+ masslessa boson

Figure 2-13: At finite temperature T, system shows crossover behavior between
SU(2)-linear phase and quantum critical region (dashed line). But the SU(2)-chiral
phase and quantum critical region are still separated by a phase transition since there
is a physical symmetry breaking (solid line).

X

Figure 2-14: SU(2)-linear phaseZ2 -linear phase

Figure 2-14: SU(2)-linear phaseZ2-1inear phase



k.

Figure 2-15: The 4 fermi points of Z2-linear state

ui,i+m =ix,

ui,i+y =i(-)i1X

Ui,i+x+,y =--7 T 1

ui,i-+y =77r 2 . (2.126)

The fermion energy spectrum of Z2-linear state at mean-field level is characterized

by 4 fermi points as shown in Fig.2-15.

The low energy effective theory is the massless fermion coupling to Z2 gauge

field. At mean-field level where we do not include gauge fluctuation yet, after taking

continuous limit, we have

Lmean =,y7~b, + ' [r7rli'1yy5 + r72i72ry ] 2 (2.127)

Once again we need to argue that the Z2-linear state is a stable phase. Here

by stable we still mean that the low energy behavior is not changed after including

quantum fluctuations. Similar to what we did in Section 2.5, we can discuss the

stability of Z2-linear state.

Through a PSG analysis we can show that the fermion bilinear term is not allowed

and the fermions remain massless after including quantum fluctuation[27]. Therefore

the PSG protects the masslessness of fermion in the Z2-linear state. In addition,
Z2 gauge fluctuation is always gapped. For pure Z 2 gauge theory on lattice in 2+1

dimension, it can be in deconfined phase or confined phase[50]. Here we have massless

fermion coupling to Z 2 gauge field, fermion dressing effect should drive the system

even more likely to be deconfined. We assume that the gauge field is deconfined, then

the gapped Z 2 gauge fluctuation should be irrelevant. Therefore Z2-linear state is

also a stable phase.

In Eq.(2.127), r•r' and -T2 describe the fluxes through the red and blue triangle

plaquettes in Fig.2-14. Since the two fluxes are not colinear, the SU(2) gauge group



breaks down to Z2 gauge group. In Eq.(2.127), one can say that the 'q field is driving

the phase transition. When (?7) = 0, we go back to SU(2)-linear phase, and when

(?I) / 0, we are in Z2-linear phase.

We notice that q field is not gauge invariant. After a local SU(2) gauge transfor-

mation, the direction of 71 and 72 in Eq.(2.127) will be rotated. Thus we should use

a vector field n' to describe the fluctuations of 77. Furthermore, since the rq in front of

71y5 and the 77 in front of Y72Y3 should be able to fluctuate independently, we should

have two vector fields, say nl and n`2, to describe them. So the gauge invariant way

to write Eq.(2.127) would be:

Lmean = 0971,'• + V [(1 -19) iY175 + (' 2 .) iy 2Y3 ] i (2.128)

where n'l and 4i2 transform as the adjoint representation of SU(2) gauge group. Now

we include dynamics of n' fields. To have controlled calculation, we introduce Nf

flavors of fermions, too. The following is the low energy effective theory of the system:

Nj 1N)2
L = 8 j,/i0s, + 212 ((D,?,) 2 + (D,p•)2 )

i=1

Nj

+ · [('1 - F) i7_175 + (42 ) i7273] i + V('1, n2) (2.129)
i=-1

where D, is the covariant derivative of SU(2) gauge theory, and the form of potential

V(n'1, n'2) is unknown yet. The phase transition is described by a Higgs mechanism,

n1 and n 2 are Higgs bosons. When (in') = (n't) = 0, we are in the SU(2)-linear phase;

when (n'1) - 0, (n'2) - 0 and (i1) I ( 2 ), we are in the Z2-linear phase.

The low energy effective theory from PSG consideration

What is the symmetry that the low energy effective Lagrangian Eq.(2.129) should

respect? Again it should be the full symmetry described by the PSG of the SU(2)-

linear state. We simply need to review Table 2.2 again to see how n' fields transform



under PSG. For example:

TPSG:. 7175

TPSG .C [7'175]?

pps. [Y2Y3']

pPSG. ý[71751

To have the term [(iil

PSG, we should have:
-f) iy1' 5 + (ni2 -) iy 2'y3] Vi in Eq.(2.129) invariant under

TPSG . n1
n2

TPSG . nl
n2

pPSG n1
n2

-81
-4fl

n 2

-4 -A41

- --fl

- -n 2

- 10
• -n 1

(2.133)

(2.134)

(2.135)

In summary, the following three transformations of n-
potential V(n'l, n 2):

should be the symmetry of the

fi1 +- n2

which strongly constrains the form of potential V(i 1I, n'2).
invariant form of V(n'l, n2) up to quartic order is:

(2.136)

The only allowed gauge

V(f4, i52) =m2(~'( + 2i) + a(i~ + it) + b(,ig)

(2.137)

Terms like n'1 - n'2 and (n'l - 2)( 1)2 are forbidden since they break PSG.

A phase transition with no breaking symmetry.

One can show that the two phases involved in the phase transition, the SU(2)-linear
phase and the Z2-linear phase, have different PSGs. In [27], PSG of the SU(2)-
linear phase was labelled as SU2BnO, whereas PSG of Z2-linear phase was labelled

-[7Y2Y3]
-'¢b',%]

(2.130)

(2.131)

(2.132)
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Figure 2-16: Various Higgs condensed phases with different values of a, b and c.
In phase I, I(n'1)l = I(n' 2)1 and (n'1) _ (n-2), it is the Z2-linear phase. In phase II,
(n') = 0 and (n2) $ 0 or vice versa. It is a U(1)-linear phase which breaks translation
and rotation symmetry. In phase III, I(nil) = I(2) I and (n'l) I1 (' 2). It is another
U(1)-linear phase which breaks rotation and translation symmetry.

as Z2Azzl3. But after projection, the physical symmetries of the two phases are

identical. They both have the full symmetry of translation, rotation and time-reversal:

Physical symmetry of SU(2)-linear and Z2-linear states

= {T, T,, PX, Py, Px,, T, C} (2.138)

We are investigating a phase transition with no breaking of physical symmetry.

Here the introduction of quantum order, or PSG is inevitable. Otherwise we do not

know what is changed during the phase transition.

At mean-field level, we already have the picture for the phase transition. With

different values of coupling constant in potential V(n'l, n'), the Higgs bosons iz, ni2
may or may not condense. If they do not condense, we are in the SU(2)-linear phase.

If they condense in such a fashion that (n1) 1 (n 2 ), we are in the Z2-linear phase.

Detailed study of the potential shows that if m 2 > 0, Higgs bosons do not condense.

If m 2 < 0, Higgs bosons do condense, and the way of condensation is determined by

the value of parameters a, b and c as shown in Fig. 2-16. There are three different

Higgs condensed phases, labelled by I, II and III.

Our Z2-linear phase is phase I. On the mean-field level, the phase transition from

the SU(2)-linear phase to the Z2-linear phase can be described by changing m2 from

positive to negative, and m 2 = 0 is the phase transition point.

The next question is whether this mean-field picture survives after inclusion of

quantum fluctuations. If there is only one relevant coupling constant m 2, our mean-
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Figure 2-17: The critical theories are the same along the whole solid line.

field picture remains valid, otherwise it would fail.

We now estimate the scaling dimension of n' field. Again the fermion dressing is

strong in the large-Nf limit. Similar to our argument for a boson in section 2.7.1, we

know that the scaling dimension of n' field is d, = 1 + O( '). Therefore by power

counting, the terms (A, n) 2 and i 4 (those a, b, c terms) are both of scaling dimension

4 + O(-L), which are irrelevant. However since the Lagrangian Eq.(2.129) is not

Lorentz invariant, calculating the •- correction to di, would be complicated.

We have just concluded that there is only one relevant coupling m2 , so the phase

transition is second-order and m2 = 0 is the critical point. Although a, b, c couplings

are irrelevant at the critical point, they are important to determine which Higgs

condensed phase the system would end up. Therefore they are dangerous irrelevant

couplings. This can be seen from Fig.2-17. Although the critical theories for the

phase transition from the SU(2)-linear phase to Higgs condensed phases are the same,
the system may change into different Higgs condensed phases depending the values

of couplings a, b, c. Different Higgs phases separate from each other by first order

transition boundaries.

The transition from the SU(2)-linear state to the Z2-linear state is a phase transi-

tion without breaking of any symmetry. What are the changes in physically measur-

able quantities during the phase transition? Let us think about the staggered spin-

spin correlation function again. On both sides of the phase transition, the fermions

are massless so the spin-spin correlation functions are of power law. But the values of

power are different. As shown in Fig.2-18, in the Z2-linear phase, since Z 2 gauge field
is gapped, spin-spin correlation does not receive anomalous dimension. At the critical
point, due to the existence of the massless Higgs fields, the correlation function will
have another scaling exponent.
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Figure 2-18: The change of scaling exponent of staggered spin-spin correlation func-
tion during the phase transition from SU(2)-linear phase to Z2-linear phase

Phase transition from spin liquids to ordered phases

Spin liquids phases can also experience phase transitions into ordered phases. Our

discussion of phase transition between SU(2)-linear phase and chiral spin liquid is an

example where the time-reversal is broken, but no space translation or spin rotation

symmetries are broken. Here we focus on the phase transition from spin liquids to

phases breaking space translation or spin rotation symmetries. For example, it can

go into ferromagnetic phase, anti-ferromagnetic phase or VBS phase.

Suppose our starting point is the SU(2)-linear phase (or ir-flux phase). Table

2.4 is very useful. For example, a phase transition from SU(2)-linear phase to Neel

phase can be easily understood as the opening of a mass gap ¢b¢. Then because at

energy scale below the mass gap there is no fermion, we are left with a pure SU(2)

gauge field which is confined in 2+1 dimension. This phase transition then have two

ingredients in it: fermion-chiral symmetry breaking and confinement. Because of the

confinement effect the spinons are always bounded together and do not appear in

physical excitations.

Similarly one can study the phase transition from SU(2)-linear phase to VBS

order and ferromagnetic order. The features for these phase transitions are all similar:

opening of a mass gap and the confinement.



2.8 Conclusion

In this article, we studied the stability of various spin liquids, including gapless spin
liquid (also called algebraic spin liquid). Spin liquids are defined as the disordered

phases of a spin system. They have the full space-time translation and spin rota-
tion symmetries. Different spin liquids may have the same physical symmetry. To

understand the physics of these phases, first one needs to understand why they are

different despite they have the same symmetry. That means we have to classify quan-

tum states in greater detail than those achieved through usual symmetry group. This

is the main motivation to introduce the idea of quantum order. The PSG is just one
attempt to characterize quantum order mathematically.

We find that PSG is very important in understanding the stability of algebraic spin

liquid. Without PSG, it is hard to understand why fermions can remain massless af-
ter including fluctuations around the mean-field state. After considering certain PSG
transformations originated from lattice symmetry, we find that such PSG transfor-
mations turns into chiral symmetry in continuous limit, which guarantees the mass-
lessness of fermions. Using this idea, we show the existence of an algebraic spin liquid
- SU(2)-linear state - whose low energy effective theory is a QCD 3 with SU(2) gauge

group. The spin-spin correlation function is also calculated. We find that the SU(2)-
linear state has a large emergent symmetry - Sp(4) x Lorentz Group x T x Px x P, (or
Sp(4N) x Lorentz Group x T x P, x P, for the large N model) - at low energies. The
lattice model does contain terms that violate the Sp(4) x Lorentz Group symmetry.
But all those terms are shown to be irrelevant with the help of the PSG analysis.

We also discussed the continuous quantum phase transition between spin liquids.
Again, the PSG plays a key role here. The first transition we studied is a quantum
phase transition that breaks time reversal and parity symmetries, which is the transi-
tion between the SU(2)-linear state and the SU(2)-chiral state. Such a Z2 symmetry
breaking transition has a well defined order parameter. However, as one can see
from the calculated critical exponents, the critical point at the transition does not
belong to the Ising universality class. It is interesting to see that even some symme-
try breaking continuous phase transitions are beyond Landau's symmetry breaking
paradigm in the sense that critical properties are different for those obtained from
Ginzburg-Landau theory.

The second transition that we studied is a continuous quantum phase transition
between the SU(2)-linear state and the Z2-linear state. The two states have the same
symmetry. Hence we show that continuous phase transitions even exist between two



phases with the same symmetry[34, 35, 36, 37, 38].

The third transition that we studied is a continuous quantum phase transition

between the SU(2)-linear state and a U(1)-linear state. Such a transition breaks the

lattice translation and lattice rotation symmetry. Amazingly, we found that the third

transition and the second transition are described by the same critical theory with the

same set of critical exponents. So it is possible for transitions between very different

states to have the same critical point.

All above phenonmena are beyond Landau-Ginzburg paradigm for phase and

phase transition. Those discoveries suggest that we need rethink Landau-Ginzburg

symmetry breaking approach to phase and phase transition. We know that stable

phases and critical points can all be viewed as fixed point in the renormalization

group sense. If a fixed point has no relevant operator that is allowed by the sym-

metry (or PSG), the fixed point will represent a stable phase. If a fixed point has

only one relevant operator that is allowed by the symmetry (or PSG), the fixed point

will represent a critical point between two phases. In this chapter, we found that one

cannot use symmetry to characterize all the possible fixed points. New kind of order

beyond the symmetry description exists. We showed that how to use the PSG analysis

to capture the new physics beyond Landau-Ginzburg symmetry breaking paradigm.

The phase transitions studied here are characterized by a change of quantum

order in addition to a possible change of symmetry. This is why those phases and

phase transitions are beyond Landau-Ginzburg paradigm of breaking symmetry. We

emphasize that quantum order, or PSG, is necessary to understand the correct low

energy effective theory and the critical phenomena. Also, an experimental discovery

of a new critical point (with unusual critical exponents) implies a discovery of new

quantum orders. Thus it is very important to measure critical exponents even for

seemingly ordinary symmetry breaking transitions.



Chapter 3

Spin-1/2 Kagome lattice

Recent experimental studies of a spin-1/2 Kagome system ZnCu 3(OH) 6C12 [51, 52, 53]

show that the system is in a non-magnetic ground state. The Kagome lattice can

be viewed as corner-sharing triangles in two-dimension(Fig.3-1(a)). The compound

shows no magnetic order down to very low temperature (50mK) compared with the

Curie-Weiss temperature (>200K). The spin susceptibility rises with decreasing tem-

perature, but saturates to a finite value below 0.3 K. The specific heat is consistent

with a linear T behavior below 0.5 K. There is no sign of a spin gap in dynamical

neutron scattering. These observations led us to re-examine the issue of the ground

state of the spin-1/2 Kagome lattice.

Based on Monte Carlo studies of Gutzwiller projected wavefunctions, we propose

the ground state to be a U(1)-Dirac spin-liquid state which has relativistic Dirac

spinons. The low energy effective theory is a U(1) gauge field coupled to four flavors

of two-component Dirac fermions in 2+1 dimension. This state was studied earlier

in the mean-field approximation[54]. However, that study focused on an instability

toward a Valence Bond Solid (VBS) state which breaks translation symmetry[54];

it was not appreciated that the U(1)-Dirac state can be a stable phase. Using the

Projective Symmetry Group[55, 56, 13] (PSG) technique, we reconsider the stability
of the U(1)-Dirac state and find it can be stable. Our numerical calculations confirm
that neighbor states like the VBS states and chiral spin-liquid state all have higher
energies.

One way to construct spin-liquid states is to introduce fermionic spinon operators
[7, 57] ft and f, to represent the bosonic spin operator: Si= f . This
representation enlarges the Hilbert space, and a local constraint is needed to go back
to the physical Hilbert space: ftfT + fitf = 1. For the nearest neighbor Heisenberg



model (with antiferromagnetic exchange J > 0)

H = J i -i S', (3.1)

we can substitute the spin operator by the spinon operators, so that the spin in-
teraction is represented as a four-fermion interaction. The four-fermion interaction
can be decomposed via a Hubbard-Stratonovich transformation by introducing the
complex field Xij living on the links. The path integral of the spin model is then
Z = f dxdAdfdfte- s, where the action is

S= Jd[f fi,fi + iAi(f ,fi - 1) + 2JIXij x 2 + +h.c.)] (3.2)
i ij

Here A is the Lagrangian multiplier to ensure the local constraint, and it can be viewed

as the time component of a compact U(1) gauge field, whereas the phase of Xij can

be viewed as the space components of the same gauge field. Only when the full gauge

field fluctuations are included can one go back to the physical Hilbert space.

With this fermionic representation, one can do a mean-field study of the spin-liquid

states by taking Xij as mean-field parameters. For the Kagome lattice, the mean-field

states are characterized by the fluxes through the triangles and the hexagons. Con-

trolled mean-field studies were done by generalizing the SU(2) spin model to SU(N)

spin model via introducing N/2 flavors of fermions[58, 54], and several candidate

states were found:

(i) Valence Bond Solid (VBS) states which break translation symmetry.

(ii) a spin liquid state (SL- [2, 0]) with a flux +ir/2 through each triangle on Kagome

lattice and zero-flux through the hexagons. This is a chiral spin liquid which

breaks time-reversal symmetry.

(iii) a spin liquid state (SL- [±!, 0]) with staggered -r/2-flux through the triangles

(+ through up triangles and - through down triangles) and zero-flux through

the hexagons.

(iv) a spin liquid state (SL- [L, ir]) with +rx/2-flux through the triangles and r-flux

through the hexagons.

(v) a uniform RVB spin liquid state (SL-[0, 0]) with zero-flux through both triangles

and hexagons. This state has a spinon Fermi surface.



(vi) a U(1)-Dirac spin liquid state (SL-[0, 7r]) with zero-flux through the triangles

and 7r-flux through the hexagons. This state has four flavors of two-component

Dirac fermions.

Among the states (ii)-(v), the chiral spin liquid SL- [, 0] has the lowest mean-field

energy [58]. But numerical calculations[59] do not support a large chirality-chirality

correlation, and Hastings[54] found SL-[0, 7r] to be the state with the lowest mean-

field energy among the non-chiral spin liquid states. However its mean-field energy

is still higher than that of (ii). The above arguments are based on the i expansion

treatment of gauge fluctuations, which may fail when N = 2 in the physical case. To

clarify which candidate is the lowest energy spin liquid state, we do a Monte Carlo

study on the trial projected wavefunctions[60].

As we mentioned, fermionic representation enlarges the Hilbert space. One way

to treat the unphysical states is to do a projection by hand. Given a mean-field

ground state wavefunction JI'mean(Xij)) with mean-field parameters Xij, the projected

wavefunction JIIprj(Xij)) = PDI4 mean(Xij)) is a physical state; here PD = li(l -

niTni•) is the projection operator ensuring one fermion per site. The calculation of

energy (prj IH I prj) can be implemented by a Monte Carlo approach with power law

complexity, which means that one can do a fairly large lattice. [60] We note that states

related by a global transformation Xij -+ -X* represent the same spin wavefunction

after projection. This is a special case of the SU(2) gauge symmetry[61].

For the model of Eq.(3.1), we did the Monte Carlo calculation for energies of

projected spin liquid states on lattices with 8x8 and 12x12 unit cells (each unit cell

has 3 sites). We chose mixed boundary conditions; i.e., periodic along one Bravais

lattice vector, and anti-periodic along the other Bravais lattice vector. The results

are summarized in Table 3.1.

We found that the U(1)-Dirac state [the projection of the mean-field state (vi)] has

the lowest energy, which is -0.429J per site. Note that these results change the order

of mean-field energies of the spin liquids (ii)-(vi), where the chiral spin liquid (ii) was

found to be of the lowest energy. In Table 3.2 we list the estimates of the ground state

energy by various methods. It is striking that even though the projected U(1)-Dirac

state has no variational parameter, it has an energy which is even lower than some
numerical estimates of ground state energy. Furthermore its energy is very close to
the exact diagonalization result when extrapolated to large sample size. Thus we
propose it to be the ground state of the spin-1/2 nearest neighbor Heisenberg model
on the Kagome lattice.

Hastings[54] proposed a neighboring VBS ordered state as an instability of the



Spin liquid 8x8x3 lattice 12x12x3 lattice
SL-J, 0 -0.4010(1) -0.4010(1)
SL- +, 0 -0.3907(1) -0.3910(1)
SL- , 7r] -0.3814(1) -0.3822(1)
SL-[0, 0] -0.4115(1) -0.4121(1)
SL-[0, r] -0.42866(2) -0.42863(2)

Table 3.1: For all candidate projected spin-liquids, we list the energy per site in unit
of J. The U(1)-Dirac state SL-[0, 7r] is the lowest energy state, and its energy is even
lower than some numerical estimates of the ground state energy(see Table 3.2).

Method energy per site
Exact Diagonalization[59] -0.43
Coupled Cluster Method[62] -0.4252
Spin-wave Variational method[63] -0.419

Table 3.2: We list the previous estimates for ground state energy in unit of J.

U(1)-Dirac state. This state can be obtained by giving the fermions non-chiral masses.

In particular, he proposed a VBS state with with a 2 x 2 expansion of the unit cell. The

12 hopping parameters on the boundary of the star of David (six triangles surounding

the hexagon) have amplitude X1, while all other hoppings have amplitude X2. Our

numerical calculations show that this VBS ordered state has higher energy (see Table

3.3), so the U(1)-Dirac state is stable against VBS ordering. Another neighbor state

of the U(1)-Dirac spin liquid discussed by Hastings[54] is obtained by giving the

fermions chiral masses. The resulting state is a chiral spin liquid with broken time-

reversal symmetry, and has 0-flux through the triangles and (r - 20)-flux through the

hexagons (if 0 = 0 the state goes back to the U(1)-Dirac state). In Table 3.3 we also

show that non-zero 0 increases the energy.

To determine whether the U(1)-Dirac state is a stable phase, we start with its

effective theory

S =1dx 3[.(&.x, av)2 + E ' (0., -ia,)T,

+ •4-" (o0, - ia,) T,12¼,] +..., (3.3)

where the first term comes from integrating out some higher energy fermions, and ...

represents other terms that are generated by interaction. The massless Dirac fermions

in the effective theory come from the gapless nodal spinons in the mean-field theory.



State 8x8x3 lattice 12x12x3 lattice
U(1)-Dirac spin liquid -0.42866(2) -0.42863(2)
VBS state(lxl/X21 = 1.05) -0.42848(2) -0.42844(2)
VBS state(Ixi/x 21 = 0.95) -0.42846(2) -0.42846(2)
Chiral spin liquid(9 = 0.05) -0.42857(2) -0.42853(2)

Table 3.3: We list the energy per site in unit of J for possible instabilities of the
U(1)-Dirac spin liquid, which were discussed in Ref[54](see text). Both VBS order
and chiral spin liquid increase the energy. Note that both the VBS and chiral spin
liquid states are obtained by continuous deformations of the U(1)-Dirac wavefunction;
because we are checking local stability, the parameters used here correspond to small
deformations, and the energy differences are rather small.

The two-component Dirac spinor fields are denoted by 0±,, where ± label the two
inequivalent nodes and a the up/down spins. Also, ±, = e r,T3, and the 7, are

Pauli matrices. The massless fermions lead to an algebraic spin liquid [55, 56]. The
stability of the U(1)-Dirac state can now be determined by examining the ... terms:

If --- terms contain no relevant perturbations - that is, if all relevant perturbations

are forbidden by microscopic symmetries - then the U(1)-Dirac state can be stable.

The potential relevant terms are the 16 gauge-invariant, spin-singlet bilinears of

40,. To see if those bilinears are generated by interaction or not, we need to study
how lattice symmetries are realized in the effective theory (3.3). Because spinons are
not gauge invariant, lattice symmetry is realized in the effective theory as a projective
symmetry, described by a PSG. This means that the realization of lattice symmetry
includes nontrivial gauge transformations. For example, translation TR by a Bravais
lattice vector R acts on the spinons by TR : fia -* g(i, R)fi/, where i' is the image

of the site i, and g(i, R) = ±1 is a position-dependent gauge transformation. Upon
diagonalizing the mean-field Hamiltonian for the U(1)-Dirac state and focusing on
the low-energy excitations near the Dirac nodes (see below), the action of TR (and
other symmetries) on the fermions )t4, of the effective theory can be worked out.
This in turn determines how the bilinears transform under microscopic symmetries.
The details of this analysis for the U(1)-Dirac state, which do not differ substantially
from similar analyses of other spin liquids[55, 56, 13], will appear in an upcoming
paper; here, we simply give the results.

We find that 15 of 16 bilinears are forbidden by translation symmetry and time-
reversal alone. The remaining bilinear, which is allowed by symmetry, is , a v,+.

This term shifts the spinon Fermi level to make the ground state to have exactly one
spinon per site. In this case, the lower three of six spinon bands are filled and the
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Figure 3-1: (a): We choose a six-site unit cell for the Kagome lattice. The sites are

labeled 0,..., 5 as shown. Only those bonds depicted as bold solid lines (positive

hopping) and bold dashed lines (negative hopping) are contained within the unit cell.

(b): The Brillouin zone for the doubled unit cell (gray area), with reciprocal lattice

basis vectors bi shown. The outer hexagon is the Brillouin zone for the 3-site unit

cell of a single up-pointing triangle. The positions of the Dirac nodes are denoted

by the black circles. (c): Plot of the band structure of the U(1)-Dirac state on the

line from k = 0 to k = b2 with energy in units of XJ(see text). The flat band is

doubly-degenerate; all others are nondegenerate. The Fermi level corresponding to

one spinon per site is indicated by the dashed line.

spinon Fermi level is exactly at the gapless nodal points. This analysis tells us that

the U(1)-Dirac state is stable in mean-field theory (and also in a large-N treatment).

Because not all scaling exponents are known in such an algebraic spin liquid, pertur-

bations other than fermion bilinears could in principle lead to an instability. However,

so far, the variational wavefunction analysis suggests that this is not the case and that

the U(1)-Dirac state is stable.

Now we study the U(1)-Dirac spin liquid on the mean-field level. The U(1)-Dirac

mean-field state is defined as the ground state of the following tight-binding spinon

Hamiltonian: Hmean = J ,ij) Xijfýtolf + h.c.. All Xij have the same magnitude and

they produce zero-flux through the triangles and 7-flux through the hexagons.

Although the U(1)-Dirac state does not break translation symmetry (because the

translated state differs from the original state only by a gauge transformation), the

2 \1 5

0 1 3 4



unit cell has to be doubled to work out the mean-field spinon band structure. One

can fix a gauge in which all hoppings are real as shown in Fig. 3-1(a). In this gauge

the Dirac nodes are found to be at k = (0, ± *) as shown in Fig. 3-1(b)(c), where

a is the Kagome unit cell spacing, i.e., twice the nearest neighbor distance. These

are isotropic Dirac nodes; i.e., the Fermi velocity is the same in all directions. In the

extended zone scheme, the Dirac nodes form a triangular lattice in momentum space

with lattice spacing '. The positions of the Dirac nodes are gauge dependent, but

the momentum vectors connecting any two Dirac nodes are gauge invariant. Because

the spinon excitations are gapless at the nodal points, we expect the spin-1 excitations

of the U(1)-Dirac spin liquid are also gapless at zero momentum and those momenta

connecting two Dirac nodes.

For the ZnCu3(OH) 6C12 compound, the Heisenberg coupling was estimated to be

J P 300K[51], and one can calculate the Fermi velocity at mean-field level. We
find vF = •XJ where X is the magnitude of the self-consistent mean-field parameter.

Hastings[54] found X = 0.221. X describes the renormalization of the spinon band-

width and is not expected to be given quantitatively by the mean-field theory. Hence

in the formulae below we retain X as a parameter. We find vF = = 19x -10" m/s.

We can also calculate the specific heat at the mean-field level. At low temperature
(kBT < XJ), one expects a C cc T2 law because of the Dirac nodes. The coefficient
is related to vF:

C 72((3)7rk3A
S= 1.1X -2 10-3 Joule/mol K3 , (3.4)

T2 (27rhvF)2

where A is the area of the 2-D system. (Note that for ZnCu3(OH)6 Cl2 compound, the
unit cell spacing a = 6.83A, so A = 2.4 -10 m2/mol, where mole refers to one formula
unit. We also used the fact that there are four two-component Dirac fermions.)

The gauge field also gives a T2 contribution to the specific heat. However, in a
large-N treatment this will be down by a factor of 1/N compared to the fermion
contribution. Furthermore, the self energy correction due to gauge fluctuations does
not lead to singular corrections to the Fermi velocity[64], so the T 2 dependence of C
is a robust prediction.

We notice that experiment observed that the specific heat of Kagome compound
ZnCu 3(OH)6 C12 behaves as C cc T2/3 in zero magnetic field over the temperature
window 106 mK < T < 600 mK[51], which is enhanced from C oc T 2 law. This
enhancement is suppressed by a modest magnetic field[51]. Furthermore, over a large
temperature range (10K to 100K), the spin susceptibility is consistent with Curie's law



with 6% impurity local moment [53]. We propose that these impurity spins (possibly

due to Cu located on the Zn sites) may be coupled to the spinons to form a Kondo

type ground state with a Kondo temperature < 1K, thus accounting for the large

C/T and the saturation of the spin susceptibility below 0.3K. The Kondo physics of

impurities coupled to Dirac spinons is in itself a novel problem worthy of a seperate

study. Meanwhile it appears to dominate the low temperature properties and obscure

the true excitations of the Kagome system. We propose that a better place to look for

the Dirac spectrum may be at higher temperature (above 10K) and as a function of

magnetic field, where the impurity contributions may be suppressed and the unique

signature of Eq.(3.4) may be tested. On the other hand, we caution that from Fig.3-

1(c), the spinon spectrum deviates from linearity already at a relatively low energy

scale(, 0.5XJ). Our theory also predicts a linear T spin susceptibility of kBT < xJ.

Knight shift measured by Cu NMR is the method of choice to seperate this from the

impurity contribution.

Finally we remark on a possible comparison with exact diagonalization studies

which found a small spin gap of ~ J and a large number of low energy singlets[59].

It is not clear whether these results can be reconciled with a U(1)-Dirac spin liquid.

Here we simply remark that in a finite system the Dirac nodes can easily produce a

small triplet gap and that the gauge fluctuations may be responsible for low energy

singlet excitations.

We thank J. Helton and Y. S. Lee for helpful discussions. This research is sup-

ported by NSF grant No. DMR-0433632 and DMR-0517222.



Chapter 4

Dichotomy in Doped Mott

Insulator

4.1 Introduction

One powerful experimental technique to study high-T, material is the Angular Re-

solved Photoemission Spectroscopy (ARPES)[65]. ARPES study for the pseudogap

region showed a strong anisotropy of the electron spectral function in momentum

space[66, 67]. Basically it was found that in the nodal direction, excitations are more

quasi-particle like; while in the anti-nodal direction, excitations have no quasi-particle

peak. This is the so-called dichotomy. If one lowers the temperature to let the ma-

terial to go into superconducting phase, it was found that anti-nodal direction also

has a small quasi-particle peak. Tunneling experiments show that the underdoped

samples are inhomogeneous[68, 69, 70]. Due to this inhomogeneity, it is possible that

the underdoped sample can be separated into optimal doped regions and underdoped

regions, and the quasi-particle peak only comes from the optimal doped region. With

such a point of view, it is possible that even the superconducting phase can have a

very anisotropic electron spectral function in momentum space.

Exact diagonalization on t-t'-t"-J model (t' and t" stand for next nearest neighbor

and next next nearest neighbor, respectively) with 32 sites has been done[71, 72]
for hole-doped case (one hole doped). It was found that if t' = t" = 0, J = 0.3t,
then the quasiparticle weight Z_ is almost a constant along the direction (7r, 0)-
(0, 7): Z_ = 0.311 at (w/2, 7/2), and Z_ = 0.342 at (w, 0). However if one put in
t' = -0.3t, t" = 0.2t, J = 0.3t, which is an optimal parameter fitting for Sr 2CuO 2Cl 2,
then there is a strong dichotomy feature: Z_ = 0.353 at (7r/2, r/2), and Z_ = 0.029



at (7r, 0). This suggests that the dichotomy can be a result of t' and t" hopping.

Exact diagonalization was also done for the electron doped case (a few electrons

doped on 32 sites) [72], where Z+ was measured. Due to the particle-hole symmetry at

half-filling, we know that if t' = t" = 0, Z+ and Z_ are equal up to a momentum shift

of (7r, ir). Therefore Z+ are also flat along the direction (ir, 0)-(0, 7r) in pure t-J model.

But when we put in t' = -0.3t, t" = 0.2t, J = 0.3t, the particle-hole symmetry was

broken. Z+ was found to develop a strong anisotropy along (7r, 0)-(0, 7r): Z+ = 0.005

at (r/2, 7r/2), and Z+ = 0.636 at (ir, 0).

What mechanism can destroy the quasi-particle coherence in the anti-nodal re-

gion? The simplest thing comes into one's mind is that we need some other things

to destroy it. For example, neutron scattering experiments indicate that there are

some low energy magnetic fluctuations[73, 74, 75, 76], and it was proposed[66, 67]

that magnon scattering process can destroy the quasi-particle coherence in anti-nodal

region. In this chapter, however, we propose a physically different scenario: The di-

chotomy is due to the t' and t" hopping terms. The quasiparticle spectral weight

Zk is naturally suppressed in some region in k-space to lower the t' and t" hopping

energy. This contradicts a naive thinking that hopping always enhance Zk. Using the

t-t'-t"-J model, we will show that the new scenario can explain the distribution of Zk

for both hole-doped and electron-doped samples in a unified way.

If we believe that the dichotomy is driven by the t' and t" hopping terms, then

there is an important issue: Is there a mean-field theory and the corresponding trial

wavefunction that captures this mechanism?

One way to understand high-T, superconductors is to view them as doped Mott-

insulators. Under Zhang-Rice singlet mapping[77], the minimal model which includes

the essential Mott physics is t-J model on square lattice. On the analytical side, a

powerful mean-field theory for t-J model, the slave-boson approach, was developed[7,

57, 61]. This approach emphasizes the fractionalization picture of the doped Mott

insulator: electron is splited into a spinon (a fermion with spin and no charge) and a

holon (a boson with charge and no spin), which characterize the low energy excitations

of the doped Mott insulator. This mean-field approach also successfully predicted the

pseudogap metal for underdoped samples. On the numerical side, the same physics

picture gives rise to the projected BCS wavefunction[78](pBCSwf), which turns out

to be a very good trial wavefunction for t-J model. However, more detailed studies of

pBCSwf[79, 80] indicate that the slave-boson approach fail to explain the dichotomy.

So a momentum dependent quasiparticle weight Zk remains to be a big challenge for

slave-boson theory.



In this chapter, we will use a new spinon-dopon approach[81] and the correspond-

ing trial wavefunction to study the underdoped samples. Instead of using spinons

and holons, in the new approach, we use the spinons and the bond states of spinons

and holons to describe the low energy excitations. The bond states of spinons and

holons are called dopons which are charge-e spin-! fermions. The spinon-dopon ap-

proach leads to a new trial wavefunction, the projected spinon-dopon wave function

(pSDwf). The new trial wave function turns out to be an improvement over the old

projected BCS wavefunction (pBCSwf).

The holon condensation in slave-boson approach correspond to spinon-dopon mix-

ing. However, in the spinon-dopon approach, the mixing can have a momentum de-

pendence, which is beyond the mean-field slave-boson approach. If we set the mixing

to have no momentum dependence, then the pSDwf turns out to be identical to the

old pBCSwf. So the pSDwf is a generalization of the pBCSwf.

Now the question is, why the mixing wants to have strong momentum dependence?

The answer is that the wavefunction with momentum dependent mixing can make the

hopping more coherent, and therefore gain hopping energy. Roughly speaking, the

pSDwf with momentum dependent mixing is the summation of the old projected BCS

wavefunction together with hopping terms c4cj acting on it. Here one should notice

that the old pBCSwf, with uniform mixing, already has a pretty good t hopping

energy. But to have a good t' and t" hopping energy, the mixing needs to have a

momentum dependence, along the direction from (i7, 0) to (0, i7). Our Monte Carlo

calculation shows that pSDwf with momentum dependent mixing is indeed a better

trial wavefunction in energetic sense. To get a quantitative sense how big is the

improvement, we find that the energy of a doped hole in pSDwf is about 0.4t lower

than that of a doped hole in pBCSwf. This is a very big improvement, indicating

that the spin-charge correlation (or more precisely, the spin configuration near a

doped hole) is much better described by pSDwf than pBCSwf.

Can one measure the momentum dependence of mixing? The answer is yes. In this

article we will show that the mixing is directly related to Z_, the quasi-particle weight,
which is measurable in ARPES. Roughly speaking, mixing is proportional to Z_. We

have also developed a Monte Carlo technique to calculate Z_. The calculation shows

that momentum dependent mixing pSDwf indeed has strong anisotropy in momentum

space, and consistent with the observed dichotomy.

Comparing pBCSwf and pSDwf, we like to point out two wave functions have sim-

ilar background spin-spin correlation and similar spin energy. However, that pBCSwf
does not capture the detailed charge dynamics. The new trial wavefunction, pS-



Dwf, contains more correct spin-charge correlation. As a result, the energy of doped

holes/electrons is much lower in the pSDwf. The holes/electrons in the pSDwf re-

produce the correct momentum dependence of quasi-particle spectral weight. We

also expect our pSDwf to have a strong momentum dependence in quasi-particle cur-

rent, which may explain the temperature dependence of superfluid density of High Tc

superconductors[82].

4.2 Spinon-dopon Approach and pSDwf

4.2.1 Slave-boson Approach and Projected BCS Wavefunc-

tion - Why the approach fails to capture k-dependent

features?

Why would we want to introduce the spinon-dopon approach to t-J model? Let

us firstly look into the previous mean field approach, more specifically, slave-boson

approach. The general t-J model can be written in terms of electron operator:

Htj =J E Si - Sj - nirj ) -cj ct i P. (4.1)
(ij)ENN ij

Here the projection operator P is to ensure the Hamiltonian is acting within the

physical Hilbert space: one each site, the physical states are I T), I ) or 10), i.e., no

double occupancy.

Slave-boson approach[7, 57] emphasizes the spin-charge separation picture. In

that approach, one splits electron operator into spinon and holon operators:

c, -= fi.bt, (4.2)

where f is spinon, carrying spin 1/2 and charge 0, i labels site and a labels spin; b is

holon, carrying spin 0 and charge 1. This splitting enlarges the Hilbert space. To go

back to physical Hilbert space, a local constraint is needed:

ftTf + ftfil + btbi = 1. (4.3)

Due to spin interaction, spinons form a d-wave paired state. The superconducting

phase is realized through an additional holon condensation at momentum k = 0.

Within such a construction, the quasi-particle weight Z is proportional to doping x



everywhere in k-space, in both nodal and anti-nodal region. To see this, one can

simply look at the mean-field Green function of electron:

(CkCt) = (b Obk t) = x( fkf). (4.4)

Therefore x is the residue of quasi-particle pole and Z = x is independent of k.

Slave-boson approach is supposed to capture the physics of spin-charge separation.
It has successfully generated the phase diagram of High-T, superconductor. But
this approach, at least at mean-field level, could not capture some more detailed
features, such as momentum dependence of quasi-particle weight or the quasi-particle
current. One can argue that including gauge fluctuation, those detailed features may
be reproduced, but here we will try to develop another approach which can capture
these features at mean-field level.

Before we go into the new spinon-dopon approach, let us see how far one can go
using slave-boson approach. One can actually try to build a trial wavefunction based
on slave-boson mean-field approach. We know that the mean-field approach enlarged
the Hilbert space, and the resulting wavefunction lies outside the physical Hilbert
space. Only when one includes the full gauge fluctuations can one go back to the
physical Hilbert space.

So one way to include the full gauge fluctuations, is to build the mean-field ground
state first, and then do a projection from the enlarged Hilbert space to the physical
Hilbert space. The wavefunction after projection would serve as a trial wavefunction
for the physical Hamiltonian. This projected wavefunction is supposed to incorporate
the effect of gauge fluctuation of the slave-boson approach, and may answer the
question that, after including gauge fluctuation, whether slave-boson approach can
capture the detailed features like dichotomy.

The mean-field ground state for underdoped case can be constructed as follows.
Let Nh be the number of holes, N1 is the number of spinons, and N = Nh + N1 is
the total number of sites. The slave-boson mean-field ground state is then given by

I|SB,mean) = (b=o)Nhf(uk + vkfkTftk)Io), (4.5)

k

where the spinon part of the wavefunction is a standard d-wave pairing state:

k A(k) (4.6)
Uk k + ýA+L(k)2'(.



where

k = -2X(cos k: + cos ky) - I

A(k) = A(cos k, - cos ky) (d-wave). (4.7)

Here Ip is the chemical potential to give the correct average number of spinon (E-• ffi) =

Nf; X and A are mean-field parameters which have been found to be - = 2 [83] atx
half-filling, and A decreases to zero at doping around J/t.

Now one can do a projection to go back to the physical Hilbert space. The

constraint for physical Hilbert space is Eq.(4.3). This constraint ensures that the

total number of spinon must be Nf and there is no double occupancy of spinon:

spinon number nf,i at site i has to be either 0 or 1. One can easily see that the

resulting wavefunction is the usual Projected d-wave BCS Wavefunction (pBCSwf):

IP4PBCS) = PDD SBP ISB,mean) (4.8)
= PDPN (uk + VkC TCLk )O) (4.9)

k

OC PD a(k)ctkT Ctki 0), (4.10)

where in the first line, PNB is the projection into fixed total number of particles, i.e.,

Nh holons and Nf spinons; while PSB is the projection into physical Hilbert space,

i.e., removing all states not satisfying constraint Eq.(4.3). In the second line, PN is

the projection into fixed total number of electrons, which has to be N1 , PD is the

projection which removes all double occupancies. a(k) is defined as a(k) = .

Projected BSC wavefunction turned out to be a surprisingly good trial wavefunc-

tion for t-J model[78]. However numerical studies[79, 80] showed that the quasi-

particle weight is almost a constant along the direction from (7r, 0) to (0, 7r), i.e.,

it fails to reproduce the dichotomy. The quasi-particle current of pBCSwf is also

pretty smooth in the k space[79]. It is because pBCSwf is unable to capture the

momentum dependence properties that we need a new approach to underdoped high

Tc superconductors.



4.2.2 How to capture k-dependence features?

- Spinon-dopon approach and projected spinon-dopon

wavefunction

Rebeiro and Wen[81] developed this new mean-field approach trying to capture the

spinon-holon recombination physics. In the following we briefly review their work.

We know that at low temperature, spinon and holon recombine pretty strongly to

give electron-like quasi-particle. So it is natural to introduce dopon operator - a

bound state between a spinon and a holon - to describe low energy excitations. Note

that a dopon has the same quantum number as an electron and describes a doped

electron (or hole). But the Mott and spin-liquid physics at half filling should also

be addressed. So one should also keep the spinon operator. As a result, two types

of fermions are introduced here: spinon f and dopon d. Spinon carries spin 1/2 and

no charge, and dopon carries spin 1/2 and charge 1. By introducing these two types

of fermions one enlarges the Hilbert space: now there are 16 states per site, among

them only three are physical. The three physical states on site i can be represented

in terms of spinon and dopon fermions as:

T) = I )I 1) =I > , 10) = T 1Td - If 1d). (4.11)

Here please notice that the constraints are two-fold: firstly there must be one f spinon

per site, secondly d dopon has to form a local singlet with the spinon.

One can do a self-consistent mean-field study. The mean-field Hamiltonian takes
the form:

Hmean = (-2X(cos km + cos k,) - .) ftkfk,

+ A(cos k. - cos ky)f t ftk + Ekdtcd

+ /k dka + h.c.. (4.12)

Here Hmean can be divided into three parts: spinon part, dopon part and spinon-dopon
interaction. The spinon part describes the usual d-wave paired ansatz: X = J(fLfk),
A = J(fkTf -k). The dopon part is simply a free dopon band, with Ek determined
by high energy ARPES measurement. Note that Ek is not taken as tunable mean-
field parameter. Finally the spinon-dopon interaction is described by a k-dependent
hybridization, roughly speaking f3 k = Ek(dtfi). One can see that dlf i is a bosonic
field carrying charge 1 and spin 0. Its non-zero average value corresponds to holon



condensation in slave-boson approach, which leads to superconductivity. At is the

chemical potential required to tune the doping.

Along this line Rebeiro and Wen did a mean-field phase diagram, and successfully

fit to ARPES data and tunneling data[84, 85]. Here we try to emphasize that the

main lesson we learned from this new mean-field approach is that one can have a

k-dependent hybridization at mean-field level (in Eq.(4.12) this hybridization is con-

trolled by 3 k and energy spectrum of spinon band and dopon band.), which is roughly

the counterpart of holon condensation in slave-boson approach. This is why one can

study detailed features like dichotomy in this new approach.

Several open questions naturally arise in this new approach. It seems there are

two types of excitations, spinon and dopon, what do they look like? We also know

that mean-field approach is not very reliable, so it would be nice to understand the

physical trial wavefunction corresponding to the new mean-field approach, from where

we would know exactly what we are doing. In the following we try to answer these

questions.

Let us construct trial wavefunctions based on this spinon-dopon mean-field ap-

proach. One can simply take a mean-field ground state wavefunction, then do a

projection back into the physical Hilbert space, just like the way we did in the slave

boson case:

JIPSD) = PSDPNI SD,mean). (4.13)

Here PN is the projection into fixed number of spinon and dopon, which gives the

correct doping; and PSD is the projection into to physical Hilbert space Eq.(4.11).

14SD,mean) is the ground state wavefunction of some mean-field Hamiltonian in the

form of Eq.(4.12). Suppose we know how to do this projection numerically, one can

do a variational study of the these Projected Spinon-Dopon Wavefunctions (pSDwf),

to see what is the lowest-energy ansatz. In general, however, the full projection is

not doable, so we develop a simple numerical technique to do a local projection to

have some rough idea about what kind of wavefunction is energetically favorable (See

Appendix B). What we found is that the best trial wavefunction for underdoped case



has the following form:

IPSD)= PSPNI D ,mean) (4.14)

= PSDPN exp b(k)flf' _k) (10) (4.15)
k

N+Nh

c ( Ps) 

!t

c PSD b(k)h fk 0), 
(4.16)

where

fit= kd (4.17)

Here f form a d-wave paired state and the superscript SC means this wavefunction

is superconducting. b(k) and 3k are some real functions and we assume 13k = 3-k to
respect time reversal symmetry. For this particular ansatz, full projection is doable

in low doping limit. In section 4.4 we develop the numerical method to do the full

projection and we will see that this wavefunction is a even better trial wavefunction

than pBCSwf.

Note that the total number of f and d fermions is N + Nh. Also PSD requires one

f-fermion per site, so totally N f-fermions. Therefore we must have Nh d-fermions,
which gives the correct doping.

4.2.3 How does pSDwf capture the k-dependent features? -
properties of wavefunction before projection IDCmean

Zk at mean-field level.

The form of 1PSD) looks very similar to pBCSwf, basically we are constructing a

pairing wavefunction based on hybridized fermion fk. In the next section we will see

that l1PSD) and pBCSwf are indeed closely related. For the moment let us have a

closer look at the wavefunction I'( D ,mean) before projection. The idea is that physical

properties may not change drastically after the projection. In this case the mean-field

level understanding will give us insight of the wavefunction after the projection.

First of all it is obvious that this wavefunction is superconducting. That is because
the nonzero Sk signals the mixing between spinon and dopon (f adkt ) # 0, and thus

signals breaking of charge conservation. It is natural to believe the superconductivity

survives after projection.



Let us introduce the other combination of f and d fermions:

- k=a _/i d,

and the quasi-particle operators:

t ~t
wht =e rk - k f-k4

7-ki = Ukf-k + kkf,!T,

where

1

1-+ b(k)2

are the coherent factors for a d-wave paired state. We can show that

IOSCD,mean) = exp b(k)ffk) 10),
k

satisfies:

dkoaV CD,mean) = 0,

and

7eskaICD,mean) = 0. (4.23)

The mean-field Hamiltonian which can generate I ,ea ground state is simply:DDm e an ) as ground state is simply:

Hmean = e((k)A kY-k + eq(k)d Qdak), (4.24)

with ce(k), ed(k) > 0. Later we will see that there are physical reasons that Ec(k) >

E (k), meaning f band is lowest energy excitation, and d band is fully gapped, Ed(k) >

0 for any k.

We can express f and d fermions in terms of y and d fermions:

fka = 1 - k3k(fiy ka, + ikEc67• k)- f3kdkci

dka = /k(fikka + )kEca6Hytk) + 1 -

(4.25)

(4.26)

(4.18)

(4.19)

(4.20)

(4.21)b(k)
l + b(k)2

(4.22)



Based on Eq.(4.25) and (4.26), it is easy to obtain:

c(DSD, mean I ffaC I CSD,mean) (1•-) (4.27)

(DSCD,mean I ID 'SC-,mean)

men dk mea = (4.28)
SD,mean SD,mean

We know that the mean-field wavefunction should give one f-fermion and x = N

d-fermion per site on average:

Z(1 - P•) = N (4.29)
k

ak2•bi =Nh (4.30)
k

In the low doping limit x -+ 0, it is clear from the above relations that P/2 o x.

Now let us understand how to calculate Z_ and Z+ on this mean-field wavefunc-

tion. Z+ and Z_ are defined to be:

S(N - 1, kIcklsN >12Z- = GS (4.31),k (N - 1,kjN - 1,k) (I(jsl•GNs)' (4.31)

I(N + 1, kIC GN 4s)12
Z+,k = (4.32)(N + 1, kIN + 1, k)( N ) (4.32)

where IN- 1, k) (IN+ 1, k)) are the lowest-energy N- 1 (N+ 1) electron states which
have nonzero overlap with Ck ls) (cGlkGS)).

In our mean-field wavefunction, the lowerest energy excited states are given by

creating y7k-quasi-particle. Note that now d4 is the hole creation operator, so at

mean-field level the Zk for spinon-dopon wavefunction are:

ZSD scDmean7k k C D,mean)2 = (4.33)
SD SDmean7'YkiT D,meanD SCD,mean sD,mean)

+,k = I ( CD ,mean Y 7-kdkT ID,mean I2  • 2kf.  (4.34)
(SD,mean Y-kYIk7kI SD,Nmean) SD,mean SD,mean)

At this moment, let us compare spinon-dopon wavefunction (SDwf) with BCS
wavefunction (BCSwf), both before projection (In Section 4.2.4 we will compare them
after projection).

In Section 4.2.1 we view pBCSwf as the projected slave-boson mean-field state



Figure 4-1: Plot of u' (left) and v' (right) within one quarter Brillouin Zone, k, and

ky range from 0 to 7r.

into physical Hilbert space. We may also view pBCSwf as projected BCSwf with all

double occupancies removed:

I PBCS) = PDPNICBCS)
= PDPN exp(1 a(k)ckTct C-kl)lO)

k

where

Oc PD a(k)cktCt-ki ) Nf/2

leBCS) = exp(Z a(k)cTc i) 10)
k

ox JJ(uk + vkcTc-ki)l0).
k

(4.35)
(4.36)

(4.37)10),

(4.38)

(4.39)

Before the projection,

easily:

ZBCS-,k

the spectral weight of the electron operator ck can be calculated

v = nk Z7BCS k, (4.40)
-- Vk = nk •+,k = uk = 1 - nk,

where nk = (CkCk)BCS. For a d-wave BCSwf Eq.(4.6), we can plot the Zk in Fig.4-1.

In low doping limit, parameters are taken as p = 0, X = 1, A = 0.55. Such choice of

parameters leads to a pBCSwf with lowest average energy at half filling.

The Z+,k and Z-,k for the pBCSwf after the projection were also calculated[79].

Roughly speaking what was found is that the Zk profile after projection is similar

to that before the projection. There is a quasi fermi surface, which is roughly along



the diagonal direction, Z_,k is large inside the fermi surface and decreases very fast

when you go outside fermi surface; while Z+,k is large outside fermi surface, and

decreases fast when you go into fermi surface. But there is one big difference, which

is a reduction factor. For the Z+,k, this reduction factor was found to be proportional

to x. But for Z-,k, this reduction factor depends on k and is finite (around 0.2) for

k = (0, 0) even at low-doping limit. From slave-boson approach Eq.(4.4), we already

see that Z oc x at mean field level. Basically at half filling, Z = 0 and we have a

Mott insulator instead of a band insulator.

Notice that along diagonal direction (7r, 0) - (0, 7), the ZBCS is dispersionless:

ZkBCS = 0.5, which does not have dichotomy feature; After projection, there is a factor

x reduction, but Zk is still almost a constant along the diagonal direction[80, 79].

To compare the calculated Z from the BSCwf and SDwf, we note that the pro-

jected wave functions, pBCSwf and pSDwf, are closely related (see section 4.2.4).

More precisely:

VDPSD) = I-PBCS) if:

Uk = Vk, vk = Uk, and 3k = 3o (constant) (4.41)

It is easy to understand this identification at half-filling, since both wavefunctions

simply give the same spin-liquid (usually referred to as staggered flux spin liquid in

literatures), characterized by X and A. Now in the pSDwf f = f, with no mixing with

d-fermion. It is simply a particle-hole transformed pBCSwf, by which uk transformed

into bk and vice versa. The important message is that Uk, vk and ik, vk characterize

the spin dynamics, but /k characterizes the charge dynamics.

With this identification in mind, from Eq.(4.33,4.34) and (4.40) we immediately

know that when /k = o0 these two wavefunctions give the same mean-field Zk profile

except that SDwf has an extra x factor, because 2 = -02 oc x in low doping limit.

However, when 3k has a strong k-dependence, Zk from the two approaches can be

very different.

Let us think about whether or not these wavefunctions can capture dichotomy

in low doping limit. What did we learn from these mean-field result? We learned
that it is impossible to capture dichotomy by BCSwf, because in order to capture
the k-dependence along (0, 7r)-(ir, 0), one has to tune uk, Vk. Because d-wave Uk, Vk
are constant along (0, 7)-(ir, 0), one has to destroy the d-wave ansatz to have a k-
dependent uk, Vk along (0, 7r)-(r, 0). This leads to a higher J energy. On the other
hand, it is possible to capture dichotomy by SDwf, because one can tune /k to have a



strong k-dependence while keeping ik, Vk to be d-wave ansatz. This will not destroy

the spin background. Based on our experience of projection, we expect that even

after projection, the above statement is qualitatively true.

4.2.4 Why mixing /k has a strong k-dependence? -Relation

between pBCSwf and pSDwf

In the last section we see that pSDwf can potentially capture the dichotomy through

a k dependent /k. Now the issue is, why does the 3k want to have a k dependence

that can explain the dichotomy in Zk? Why does such k-dependent 3 k lead to a

pSDwf which is energetically more favorable? To understand this, we need to know

what a pSDwf looks like in real space.

The discussion below for identifying the relation between pSDwf and pBCSwf is

rather long. The result, however, is simple. Let us present the result here first. We

introduce k = =k/1 .-- /. In low doping limit, &k - Ak. For the simplest one-hole

case, if fk has the simplest modulation in k-space k = ý0 + 2ý (cos km + cos k.),
then the pSDwf can be viewed as pBCSwf mixed with the wavefunction generated

by the nearest neighbor hopping operators (see Eq.(4.56)). For more complicated

k = 30 + 23 1(cos k. + cos k,) + 402 cos k, cos ky + 2,33 (cos 2k. + cos 2ky), the pSDwf

can be viewed as pBCSwf mixed with the wavefunction generated by the nearest

neighbor, next nearest neighbor and third nearest neighbor hopping operators (see

Eq.(4.59)). Therefore to lower the hopping energy, finite 3i's are naturally developed.

This is why fk with a proper k dependence is more energetically favorable.

Before we look into pSDwf, let us review what a pBCSwf looks like in real space.

One can do a Fourier transformation:

IDPBCS) = PD a(k)ckT-k /210)

k

=PD a(Rj - tc 10), (4.42)

where a(r) = Zk a(k) cos(k -r). If we have a spin basis {RiT, Rjl}, where Ril labels
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the positions of spin up electrons and Rj3 labels the positions of spin down electrons:

({RiT, Rjl}jIPBcs) =

a(Rij - RIt)

a(R21 - RIt)

a(Rfa - R1T)
2

a(Rij - R2T) .'

a(R21 - R21) '"

a(Rl -R2T) "'
2

a(R11 - RL )
2

a(R2 - Ra,)

2(4.43)

(4.43)

We see that the overlap between a spin basis and pBCSwf is simply a single slater

determinant of a two-particle wavefunction. This is why pBCSwf can be numerically

simulated on a fairly large lattice.

Now we go

pSDwf as:

back to pSDwf. Up to a normalization constant, one can express

N+Nh2

(SD) = PSD b(k) ( fkt + k k + &d-k)kj -I)Y k j

where &k = k//1 -,o3. Since 8k cx V , in the low doping limit, 3k k= k.

One can also do a Fourier transformation into the real space:

IPS) = PSD - Z b(Rjj - Rit)(f 7T + od + EadB+6,T)
R-T ,R31

6
N+Nh

f t tRj• j + )odR, + jda 10), (4.45)

where 06's are the Fourier components of 3k:

k = / + 0 ik, + ýxe-ikz + eik + eik + • - ... (4.46)

We should only consider the rotation invariant /k, and let us only keep the first three
Fourier components:

&k =&o + 2/ 1 (cos kx + cos k,) + 4/2 cos kx cos k,

+ 2&3(cos 2k, + cos 2k,). (4.47)
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We claimed that if fk = -0, then pSDwf is identical to pBCSwf if b(k) = . Let

us see how that is true. Without 31,2,3, Eq.(4.45) is:

N+Nh

I4PSD(fO)) = PSD ( b(Rjl - RT)(fRt + ýodaR)(f + fodk•) 0).

(4.48)

What does a pBCSwf look like? If one does a particle-hole transformation ct

hil, pBCSwf is:

N+Nh

IOPBCS) = PD a(k) kThh-k) 10) (4.49)

N+Nh2
= PD b(Rjl - RT)ht ,Thtj, 10), (4.50)

where PD is the projection forbidding any empty site.

If we consider a spin basis {RT, Rjl}, with the empty sites {Rk,o}, then after

particle-hole transformation, we have single occupied sites {Rit,Rj1}, and double

occupied sites {Rk,o}. So the position of spin up and down sites in the hole represen-

tation are {R-, RjI}h, where {RiT}h = {RT} U {Rk,0} and {Rfj}h = {Rj} U {Rk,o}.
The overlap of pBCSwf and the spin basis in hole representation is:

({R~1 , RjJ} lPBcs) = ({Ri•, Rj4}h 4PBcs)
b(Rll - RiT) b(lRi - Rl2T) ... b(Ri4 - RN+NhT)

b(*2- fr) b(R2j - R2) ... b(R2i- RNT)

b(RN+Nh- RT) b(R Nh- R 2 T) ... b(R N+Nhl - RNz)

(4.51)

The equation works this way because if one simply expands the polynomial in

Eq.(4.50), each sum will give you one term in the expansion of the determinant in

Eq.(4.51), and Pauli statistics is accounted by the sign in determinant expansion.

Now we can do the same analysis on pSDwf Eq.(4.48). First of all /3o is not

relevant in the wavefunction, since we are projecting into a state with fixed number

of d-fermion, which means that all /3o does is to give an overall factor •oNh in front of
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Figure 4-2: pSDwf with only 0o. The site 0 is empty. f-fermions are represented by

green spin, and d-fermion is represented by red spin. Black valence bonds are bonds

with of f-fermions, while red valence bond has a d-fermion. The two figures are

two contributions of the overlap between pSDwf and a spin basis 11T 3 t21410emp),

and they correspond to the same term in determinant Eq.(4.52). The two fig-

ures give rise to states: left: I Tlo0fT3fI2fTodI4f) = I l1fT3fl2f4f (o10fOd)) and

right: I TlfodT3f-12fTof•4f) = -I TlfT32I2fI4f (Tofod)) The minus sign means that

the two figures contribute additively.

the wavefunction. To have an overlap with spin basis {RiT, RjI, Rk,o}, we know that

on empty site Rk,o the expansion of polynomial Eq.(4.48) should give either I T .d) or

Tdf). After projection each case would contribute to o10) where 0) = (I T f Id

)+ I Tld))
One immediately sees that the expansion of polynomial Eq.(4.48) gives similar

terms as the expansion of Eq.(4.50); actually corresponding to one term in determi-

nant Eq.(4.51), we have 2Nh terms from Eq.(4.48), since we can either have I Ta d) or

I Tdif) for each empty site. The details are visualized in Fig.4-2. Taking into account

the factor- of projection, one has:

=(Vx/3o)Nh

b(•li - RiT )  b(Ril - R2T)  .- b(Ril - R•N+h )

b(R21- RIT) b(R 21 - R 20) ... b(R 21 - f•N+N )

b(RN+Nh - R ) b(RaN+Nh, - R2t) ... b(REN+N 1 - RN+NhT)
2 2 2 ) T

(4.52)

we found that I4PBCS) and Is D(/0)) are the same wavefunction.

Now let us put in the simplest k-dependence in Ok:

3k = o0 + 20,(cos k, + cos k.), (4.53)

we try to write 4 SP(SD 00, 1)) in real space. After the Fourier transformation into
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real space:

(DS C
IPSD(30o, ,)) = PSD • b(R ~ - RT)(fTjl + /odt +-1 x dT +6,T)

N+Nh

(f + fodl + 13, d> 0). (4.54)

If we expand this polynomial Eq.(4.54), of course we will still have contribution

from ýo terms which is nothing but the right hand side of Eq.(4.52). But apart from

that, we also have contribution from P1, which makes the problem more complicated.

To start, let us consider the case of a single hole Nh = 1. To have an overlap with spin

basis {Rit, Rj3 , Rk,o}, the d-fermion on empty site Rk,o can also come from a bond

connecting a spinful site and Rk,o + 6, which is the /1 term effect. Let us consider

the case 6 = Y. We can also assume the spin state on site Rk,o + 6 is spin down.

Now it appears that we have two ways to construct the empty site on Rk,0: I Tf1d)

or I Tdlf). We study the two cases separately. Firstly if the empty site is constructed

by I Tf•1d), shown in Fig.4-3, careful observation tells us that the contribution to the

overlap is exactly cancelled by fermion statistics. On the other hand, if the empty site

is constructed by I Tdlf), we have the case in Fig.4-4. After careful observation, we

know that this type of contribution is -4o times the overlap between IsD(/o)) and

the spin basis that differs from {Ri•, Rj , Rk,o} by a hopping along /. Considering

the fact that the shift can also be -Y and ±+, one has:

({RT, aR,, Rk,o}0 PSD 0• o ( i 0T,) R Rj, ,o}IPBCS)

(+ )({RT R, Rk,0o} CRk,o+6,CR k,o,a IPBCS), (4.55)

where the minus sign in the second terms comes from Fermi statistics.

Just by looking at Eq.(4.55), we arrive at the conclusion:

I ° PS(lD ) = 1 PBCS) + P• D C+6,±Ci,,a•PBCS). (4.56)

Let us study Eq.(4.55). With out 1, one has a single Slater determinant for the

overlap with a spin basis; with 13, we have 1 + n,hift = 5 Slater determinants, where
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nshift is the total number of ways that one hole can hop. Later we will see that for

nh holes, the number of Slater determinants for the overlap is (1 + nshift)n h, which

means numerically one can only do few holes.

The result (4.56) is obtained by studying one-hole case, and it is not hard to
generalize the result for the multi-hole case. Basically, each hole may either not hop
or hop once with a prefactor -1, but not hop more than once.
two-hole case, we have:

= 1+PD Z_ C 2o i+6,aCi,a + PD (- 
2

, ^20o)

For example, for

t t
cj+6012 ,C j,a2 i+61,a• i,al

01,02=±tX,±y

j,i4j+52

I PPBCS),

(4.57)

where the constraint i # j + 62 makes sure no hole can hop twice, and the coefficient
1 comes from double counting.

We can also easily generalize it to the case with /2 and 33.... For two hole case,
we have:

KPSD(30,56))

1 + PD - +6, ci,a +
1

PD2! E
61,62

j,ioj+52

2( ;:)

In the end, the general formula for multi-hole pSDwf is:

1
where nhop = 0, 1 ensures that no hole can hop twice.
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(4.58)

I PSD(0o , 06)) = PD exPnhop=O, 1 + a c2
i,5 Pc+,ric ) ·,

(4.59)
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Figure 4-3: pSDwf with only 31. The site 0 is empty. f-fermions are represented

by green spin, and d-fermion is represented by red spin. Black valence bonds are

bonds with of f-fermions, while red valence bond has a d-fermion. Notice that the

position of d-fermion is shifted by -Y by •1 term effect (red dotted line). The two

figures show the two contributions of the overlap between pSDwf and spin basis

I1T3T21410emp), with spin of f-fermion on site 2 and spin of d-fermion on site 0 are

parallel. They give rise to states: left: I Tlf lodT3f 12fTof 14f ) = I TlfT3f 2f 4f (IOdTof))
and right: I Tlf12fT3f odTOf 4f) = -I TlfT3f f2fi14f (J0dTOf)) The minus sign means

the two figures contribute subtractively, i.e., they cancel exactly.

Figure 4-4: pSDwf with only 31. The site 0 is empty. f-fermions are represented by

green spin, and d-fermion is represented by red spin. Black valence bonds are bonds

with of f-fermions, while red valence bond has a d-fermion. Note that the position

of d-fermion is shifted by -ý by •1 term effect (red dotted line). This figure shows

another contribution to the overlap between pSDwf and spin basis 11T 3T21410emp),
with spin of f-fermion on site 2 and spin of d-fermion on site 0 are anti-parallel..

It gives rise to state: I T f10Tf 3f2f TodI4f) = -I T If3f 12f 4f (Td0Of)). Note that

there is a contribution for (1T3T0442empIPSD(i03)), with the same valence bond map,

where l1T3 T014 2 emp) is the result state after a hopping along Y acting on original state

|13T21410emp). That one would give a state I T11fofT3f12fT2d14f) = I lfI3f lOf 4f

(T2d42f))- The minus sign in the shifted d-fermion overlap comes from fermi statistics.
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4.3 How to measure the mixing ik? -Physical

Meaning of spinon excitation and dopon ex-

citation

From Eq.(4.34,4.33), we know what at the mean-field level, Pfk can be measured by

spectral weight Z. After projection, it is natural to expect that Z is also closely related

to 3k. But how to calculate Z after projection? Basically through Eq.(4.32,4.31), we

need a good trial ground state and excited state. The ground state would be nothing

but pSDwf. What is a good excited state? To be specific, let us study Z_, then the

question is how to obtain IN - 1)?

In pBCSwf, the good excited state (referred as quasi-particle state) is found to

be:

IN- 1)PBCS = PDCpPNIBCS), (4.60)

where PN project into fixed Nf number of electrons. The way we construct excited

state here is simple: first find a excited state on the mean-field level, then do a

projection. In pSDwf, which includes pBCSwf as a limit, we should have a similar

formula. But now we have two possible ways to construct excitation states, since

on mean-field level we have two types of fermions f and d, they correspond to two

types of excitations. Now it is important to understand what each type of excitations

looks like. It turns out that the f-type excitation corresponds to the quasi-particle

excitation, and d-type excitation corresponds to bare hole excitation. Thus the quasi-
particle state IN - 1) for calculating Z_ is the f-type excitation.

The main result for this section is Eq.(4.70,4.71) for f-excitation and Eq.(4.76)

for d-excitation. One can see that the f-excitation of pSDwf is just the quasi-particle

excitation in pBCSwf together with hopping terms acting on it. And d-excitation is

the bare hole on a pSDwf ground state. Let's see how those happen:

For f-excitation,

IN - 1)= PSDf pPNISD) (4.61)
V+Nh

= PSDf b(k)(ft + Idjt)(ftk, + i3kdtk) 10).

Here IN - 1)f has Nf - 1 number of electrons, because before projection there are
totally N + Nh + 1 fermions, and we know projection enforces one f-fermion per site,
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so totally there are Nh + 1 d-fermions, i.e., holes. What does this wavefunction look

like after projection?

To understand this we first try to understand the excitation of pBCSwf. What is

the excited state in terms of spin basis? One way to see it is to identify:

IN - 1)qPBCS PDCT ( a(k)ckT N/2- k

k(

xJ( ) N /2-1OC PDC pI a(k)ckT C-k
( k

10)o>.

(4.62)

(4.63)

In this form the overlap with a spin basis {Rit, Rj1} is easy to see. Notice now the

number of up spins is Nf/2 -1, and the number of down spins is Nf/2, so there is one

more site in {Rj3 }. The only fashion to construct a spin basis is: let ct create an

electron somewhere, then let a(k)cT k kj create the valence bonds. After observation,

the overlap is:

({R.g, RjJ,}N - 1)PBCS

a(R11 - R1T) a(R]

a(R21 - R1T) a(R2

I - R2T)

- R2T)

a(Rf - RIT) a(R_ - R2T)
21 2-

... " a(R11 - R - ,)
· a 1 z-2 -1,T

... a(R__ - R_ i

But to compare with pSDwf formalism, we want to see the same result in a different

way. Let us do a particle-hole transformation, just like what we did in Eq.(4.50).

)N 1 P BCS
IN - ../) 1P cs

=PDCpT a(k)cT-k)CNf/
(k )N/

o) ~ct Ph,( b(k)hthkL) (N+Nh)/210) oc PDht b(k)hkt khk1(k k

The only way to construct a spin basis in hole representation {R14, Rgj}h is to let

ht p construct a hole somewhere, and let b(k)htkThtkI construct the valence bonds to-p4
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e-ipR21

-ipRN
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(4.64)
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fill the lattice. The overlap in hole representation is:

({Rit,R jIN - 1 ) PBCS({II•'T, Rjl I N - I qp

b(Rll - R•iT)

b(R21 - RitT)

= ({1•iTijI}hlN- -PBCS

b(R11 - R2T) ...

b( 21 - f 2T) ."

b(RlN+Nh+1 - Rit) b(RN+Nhl 1 1', - R2) ... b(R2 +1,1 -RN-Nh T )

Now let us go back to pSDwf. What is an f-type excitation? The only way to
construct a spin basis, {ITi.T, IFjl}h), is to let fit construct an f-fermion somewhere,

then let b(k)(fkt + kdkT)(ftkl + kdt- kl) construct the valence bonds to fill the whole

lattice. We first consider the case /k = /o. In this case, the constructing precess is in

exactly the same fashion as in Eq.(4.66), except for one difference: there is a coefficient

of -/4io for each hole. That is because for each hole there are two contributions, one

from Tf1d), the other from I Td-f), each with coefficient of %//2/3o; unless that
the hole and the spinon created by fp are on the same site, in which case we have

only one contribution. If we ignore the last effect (since it is an infinitesimal change

to the wavefunction in the low doping limit, and it also comes as an artifact of our

projective construction), we conclude that:

({RiT, Rj}I|N - 1, 0)f

b(R~ l - R110)

b(+R21_ + - 1lT)

b(RN+Nh - R)
2 +1,1, R )

-({1•.TijJhRIN - 1, o0)f

b(R•• - R20) ...

b(R21 - R2 t)

b(RlN+Nh, 1 - R2l) -

S(V 0o)N h+ l •

b(R11 - R N+N)
~b(fi .Nh- R7•T)

b(R2i - RN )2
2 ~2NT

(4.67)

(4.68)= (/o)Nh+ ({Ri, Rjl}IN - l)•PBCS
-r,3-) Nh+l1t--,T,--l~ ~ ,qp

IN - 1, o)f oc IN - 1)•BCS (4.69)

The point is that f-type excitation describes the spin-charge separation picture of the

excitation, because the hole and the unpaired spinon created by fp can be arbitrarily
separated. And it turns out to be the low energy excitation of t-J model.
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(4.66)

e-'PR11
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What if the mixing fk has momentum dependence? Similar to our study for the

ground state wavefunction leading to Eq.(4.55,4.56), one can convince oneself that,
in the one hole case

IN - 1i, o 1, 12, 33) Bf ociN - 1)BCS +

+ -2)PD2&o

+ ( SPoD2ý ) /

2 zo

E
i,6=±:2&,±I29

C P+6 ,i BCSC+•6ci, IN - 1)qpcS

t P B C S

Ci+6,a Ci,a - C qp

Ci+6,aci,a|N - 1)PBCS/qp (4.70)

And for multi-hole case, similar to Eq.(4.59)

IN - 1, 10, 6)! oc PD expnhop=O, +i
i,6

+6cN
20o 6'ac'a - 1)PBcs (4.71)

For d-excitation, story is different. It turns out d-excitation corresponds to bare

hole excitation. What is a bare hole excitation IN - 1)bh? For a pBCSwf,

(4.72)IN - 1)Bcs = cT IPBCS),

in terms of spin basis, it is easy to show that:

({RJ I,Rj,Rko}IN - 1)PBCS = (I{iT,Rji,Rko}IcpTI PBCS)

ccE e-ip Ro ({{1it, RkO}, Rj4} IdTPBCS)
k

a(Ri$ - RIt)

a(R 2 1 - RIT)
e-ipRko

a(R• - RIT)

a(Rlj - R2t)

a(R21 - R2T)

a(RN - R2T)

.. a(Ri1 - R1_1T)

. a.. (R21 - R2_1T)
2

' ~ 2 1)

What is a d-type excitation in terms of spin basis? We first consider the case
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a(R11 - Rko)

a(R21- RkO)

a(R2, - RkO)

(4.73)



where ak = 0,

IN - 1, O)d - PSDdl pPNI(SSCD)
N+Nh

=PsDdtp b(k)(fkT + kdkt) kdtk) 10). (4.74)

One can see that the only way to construct a spin basis, Il{it, Rljl}h), is to let

b(k)(fktT + kd&T)(f ki + fkdt-kl) construct the valence bonds to fill the whole lattice,
then find a site occupied by one ft-fermion only, and let dt dt_ construct a hole there.

By observation, we conclude,

IN - 1, ,o' oc CN - 1)hPBcs. (4.75)

If 3k has k-dependence, one can also convince oneself that

IN - 1, d o, 6)d Ic cplCPSD 0(, ) 6)) IN - 1 )SD (4.76)

i.e., d-type excitation corresponds to the bare hole in pSDwf.

To summarize, we have the following identification: f-type excitation corresponds

to the low energy quasi-particle excitation, i.e., a state constructed by putting c, op-

erator inside the projection; d-type excitation corresponds to the bare hole excitation,
i.e., a state constructed by putting cp operator outside the projection.

4.4 Numerical Methods and Results

We use Variational Monte Carlo (VMC) method to calculate the ground state energy

(of 2 holes), the excited state energy (of 1 hole) of pSDwf and pBCSwf and the

spectral weight Z-,k.

Our pBCSwf calculation is mostly traditional. Nevertheless the previous calcula-
tion of Z_[80] is indirect and having uncontrolled error bars inside the fermi surface.

We developed a straightforward technique to calculate Z_. Let us recall the definition
of Z_ Eq.(4.31). For pBCSwf, if we relabel IN - 1)P B cs as Ibh) and IN - 1) P B C S as

bh -qp
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jqp) to save notation:

I(qplbh) 1

, (qPqp) ('PBCS I'PBCS)
I (qp bh) 2  (bhlbh)

(qp qp) (bh bh) (DPBCSViDPBCS)
_ (qplbh)l2= nk (4.77)

(qpjqp)(bh bh)

where nk is the occupation number of particles at momentum k. nk can be calcu-

lated by VMC approach pretty straightforwardly[86]. In particular, one can easily

show that at low doping limit, which is the case considered in this chapter, nk 2=

independent of k exactly. The only thing one needs to worry about is the overlap

prefactor between Iqp) and Ibh). Instead of calculating the factor itself, one can split

the calculation into two. If we denote a spin basis as Is),

(qplbh) (qpls)(slbh) (slbh) I(qpls)12  (s bh)
(qPqp) - (qplqp) (slqp) qpjqp (s1b)P

(bhlqp) (bhls)(slqp) (slqp) I(bhls) 2  (s Iqp)
(bhlbh) - (bhjbh) (s bh) (bhlbh) (s lbh)

Since both (slqp) and (sIbh) are Slater determinant or sum of Slater determinants (see

Eq.(4.64) and Eq.(4.73)), the above two quantities can be calculated by Metropolis

program in a straightforward fashion. Then the product of the two gives the Z_,k.

This algorithm works for finite doping case, too.

For pSDwf, because we include k-dependent mixing, in each step of Metropolis

random walk, we need to keep track of all the (1 + nshift)nh matrices, which limit the

calculation for few holes.

4.4.1 Ground state at half filling and 2 holes

The calculation is done for t-t'-t"-J model on 10 by 10 lattice, where t = 1, t' = -0.3,

t" = 0.2 and J = 0.3. We choose periodic boundary condition in x-direction, and

anti-periodic boundary condition in y-direction.

For variational parameters, we choose the lowest-energy ansatz in Eq.(4.7)[87]

with parameters

x = 1, A = 0.55, p = 0. (4.80)
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energy per bond Si Si+1
-0.1710(1) -0.3200(1)

Table 4.1: half-filling ground state on 10 by 10 lattice

wavefunction A 2c z . .& total energy (S + i 1) T1  T2  T3
x x x po 0po 0o per bond per bond

pBCSwf 0.55 0 0 0 0 0 -0.1872(1) -0.2977(2) 2.64(1) 0.52(1) 0.48(1)
pBCSwf
(optimal) 0.55 -0.4 0.0 0 0 0 -0.1890(1) -0.2947(2) 2.66(1) 0.06(1) 1.07(1)
pSDwf 0.55 -0.5 0.1 0 0 0 -0.1885(1) -0.2872(2) 2.66(1) -0.23(1) 1.52(1)
pSDwf
(optimal) 0.55 0 0 -0.3 0.3 -0.1 -0.1918(1) -0.2943(2) 2.86(1) -0.46(1) 0.77(1)

Table 4.2: Two holes on 10 by 10 lattice. t = 1, t' = -0.3, t" = 0.2 and J = 0.3.
T1, T2 and T3 stand for nearest neighbor hopping per hole -Lci,6=+,,+ (cci +6),
next nearest neighbor hopping per hole 1 Zi, 6=+(+_),+(-•) (cci+6) and third nearest

neighbor hopping per hole i, 6=•2i+2,2q +6) respectively. We compare pBCSwf
of d-wave ansatz, pBCSwf with longer range hoppings X' and X", and pSDwf with
non-local mixings. The best trial pSDwf has an energy 1.5% below that of the best
trial pBCSwf with longer range hoppings. Comparing the first and the last line which
have the same spin correlation, we find that the energy of a hole in pSDwf is 0.46t
lower than that of a hole in pBCSwf. Note that pBCSwf with longer range hoppings
destroys the d-wave spin background. As a result, the attempt to lower the hopping
energy by tuning X' and X" is not effective since it would increase the spin energy a
lot.

The energy for half-filling ground state is listed in Table 4.1.

For two holes, we compare the energy of ground states of pBCSwf and pSDwf.
For pSDwf, to lower the t hopping energy, since t < 0, by Eq.(4.59), the sign of /1
should be negative. Similarly since t' > 0, t" < 0, the parameters lowering t' and t"
hopping energy have signs f2 > 0 and /3 < 0. We did a variational search for the
optimal values of /g. The results are listed in Table 4.2, where we also compare it
with pBCSwf with longer range hoppings (see Section 4.4.5).

We find that the energy of the best pSDwf is lower than the energy of the best
pBCSwf. We note that the pSDwf and pBCSwf are identical at half filling. So the
energy difference between the two states is purely a doping effect. Comparing the
first and the last line in table 4.2 which have the same spin correlation, we see that
the total energies of the two states differ by 0.0046 x 200 since the the 10 by 10 lattice
has 200 links. This energy difference is due to the presence of two holes. So the
energy of a hole in pSDwf is 0.46t lower than that of a hole in pBCSwf. This energy
difference is big, indicating that the charge-spin correlation is much better described
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Figure 4-5: Shapes of functions cos k, cos ky (left) and cos 2k, + cos 2ky (right) along
diagonal direction from (ir, 0) to (0, 7r).

by pSDwf than pBCSwf.

4.4.2 Hole doped case, quasi-particle excitations and Z_.

In this section we study the excitations of t-t'-t"-J model, which is one hole on 10x10

lattice. We also compare pSDwf with pBCSwf. We know from Eq.(4.71) that the

pSDwf f-excitation state goes back to pBCSwf quasi-particle excitation state when

all non-local mixings 06 = 0. Also from Eq.(4.71), one can see that to lower the t,

t' and t" hopping energy, we should also have 01 < 0, 02 > 0 and P3 < 0. Actually

in the low doping limit, one should expect the non-local mixing P6 for quasi-particle

excited states (f-excitation) to be same as the ground state. Here we adopt the values

of Pa from our study of 2-hole system ground state.

Our VMC calculation shows that the pSDwf or pBCSwf has finite Z_ deep inside

the fermi surface even in the low doping limit x -- 0. This is physically wrong

because deep inside fermi surface there is no well-defined quasi-particle, and the idea of

calculating Z_ by a single particle excited state is also incorrect. Nevertheless, because

the low energy excitation is more and more quasi-particle like as one approaches the

fermi surface, we expect that the Z_ calculation remains valid close to fermi surface,

roughly speaking, along the diagonal direction from (7r, 0) to (0, 7r).

From Eq.(4.33), we know that at the mean-field level, the modulation of Z_ is

controlled by O/3. It is important to study the shapes of 0fk for various cases. In

Fig. 4-5 we plot the shapes of functions cos kx cos k, and cos 2kx + cos 2ky along the

diagonal direction. If 3k = 0/ + 20/3(cos kx + cos ky), O/3 remains constant along the

diagonal direction. If 3k = 3o + 432 cos kx cos ky, for small 02 > 0, /3 is reduced at the

anti-nodal point. If /k = /3 + 20/3 (cos 2k + cos 2k.), for small /3 <0, 0/3 is enhanced

at the nodal point and suppressed at the anti-nodal point. Let us remember this

trend: positive /32 and negative g3 drive the modulation of Z_ in the way consistent

with dichotomy for hole doped samples.
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Figure 4-6: For one hole on 10 by 10 lattice, we plot Z-,k of pBCSwf (left, X = 1,
A = 0.55) and pSDwf (right, X = 1, A = 0.55, _ = -0.3, = 0.3, -0.).
pBCSwf has almost constant Z_ along diagonal direction from (rK, 0) to (0, 7r); while
pSDwf has Z_ suppressed at anti-nodal point.

For small values of 3 k we know that 3k ./3k. Eq.(4.33) suggests that along the

diagonal direction

Z-,k c (i30 + 42 k cos k. cos Iy + 2P3(cos 2k. + cos 2ky)) 2. (4.81)

But as a mean-field result, one should expect that the above equation is only valid
qualitatively. In fact to crudely fit the relation of the modulation of Z_ and 3, we
found it is better to have some order of unity extra factor in front of 3 terms, and 31
also contributes to the modulation of Z_ as a uniform shift.

Z-,k OC ( + + + 2 COS k • cos ~k + (cos 2k, + cos 2ky)) 2. (4.82)
2 2

For t-J model without t' and t", there is no reason to develop a finite value of

/,2 and /3 since there is no longer range hoppings. As a result, one expects that Z_
remains almost constant along the diagonal direction.

For t-t'-t"-J model with t > 0, t' < 0, t" > 0, we know that /2 > 0 and 33 < 0 have

to be developed to favor longer range hoppings. So one expect Z_ should develop
dichotomy shape along the diagonal direction.

In Fig.4-6 we compare the Z-,k of pBCSwf and pSDwf. One can see that pSDwf
shows strong dichotomy.

In Fig.4-7 we compare the energy dispersion of one-hole quasi-particle excitations
of pBCSwf and pSDwf. The energy of a doped hole in pSDwf is 0.38t lower than that
of a hole in pBCSwf.
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Figure 4-7: Quasi-particle spectrum for one hole on 10 by 10 lattice. t = 1, t' = -0.3,
t" = 0.2 and J = 0.3. The black square shows the spectrum of d-wave pBCSwf with
X = 1 and A = 0.55, and the red diamond shows the spectrum of pSDwf with X = 1,
A = 0.55, L - -0.3, = 0.3 and = --0.1. One can see the first hole doped to

Ao o0 00
(r/2, 7r/2). The energy of a doped hole in pSDwf is 0.38t lower than that of a hole
in pBCSwf.

4.4.3 Electron doped case

In electron-doped case, one can do a particle-hole transformation, then multiply a

(-1) for the odd lattice electron operators. By doing so, the original electron-doped

t-J model with parameters t, t', t", J transformed into hole-doped t-J model with

parameters t, -t', -t", J, together with a (7r, ir) shift in momentum space.

The approach outlined in Eq.(4.78) and Eq.(4.79) still applies here. But because

of the particle-hole transformation, we are calculating Z+ of the original electron-

doped system. Because t' > 0 and t" < 0, to favor longer range hoppings, we must

have 32 < 0 and 03 > 0, which differ from hole-doped case by a sign flip. As a result,

the Z+ now will be suppressed at nodal point, but enhanced at the anti-nodal point.

This is exactly what people observed in exact diagonalization[72].

We did a variational search for the optimal variational parameters for pBCSwf

with longer range hoppings X' and X", and pSDwf with non-local mixings. In Table

4.3 we compare the energy of pBCSwf and pSDwf with 2 electron doped on 10 by

10 lattice. In Fig.4-8 we plot the Z+ map of pSDwf, one can see pSDwf has spectral

weight of anti-dichotomy shape.

In Fig.4-9 we compare the energy dispersion of one-electron quasi-particle excita-

tions of pBCSwf and pSDwf. The energy of a doped electron in pSDwf is 0.25t lower
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wavefunction _6 2 X & • & #A total energy (SiA S+l9) T1  T2 T3
x x x 0o 0o 'o per bond per bond

pBCSwf 0.55 0 0 0 0 0 -0.1884(1) -0.2977(2) 2.64(1) 0.52(1) 0.48(1)
pBCSwf
(optimal) 0.55 0.2 0.0 0 0 0 -0.1888(1) -0.2964(2) 2.61(1) 0.70(2) 0.20(2)
pSDwf
(optimal) 0.55 0 0 -0.5 -0.3 0.3 -0.1910(1) -0.2971(2) 2.57(1) 0.86(2) -0.72(2)

Table 4.3: Two electrons on 10 by 10 lattice. t = 1, t' = -0.3, t" = 0.2 and
J = 0.3, and we mapped it into a hole-doped model with t = 1, t' = 0.3, t" =
-0.2 and J = 0.3 with a (r, 7r) shift in momentum space. TI, T2 and T3 stand
for nearest neighbor hopping per hole ~ , t(cjci+b), next nearest neighbor
hopping per hole ,i,6=±(~)±(_)(ccei+6) and third nearest neighbor hopping

per hole i,6=±2,±2 (cCi •+6) respectively. We compare pBCSwf of d-wave ansatz,
pBCSwf with longer range hoppings X' and X", and pSDwf with non-local mixings.
The best trial pSDwf has energy lowered by 1.2% from the best trial pBCSwf with
longer range hoppings. And comparing the first line and the last line which have the
same spin correlations, we find that the energy of a doped electron in pSDwf is 0.26t
lower than that of an electron in pBCSwf.

(0,R) (0,0)I I
0.116 0.090 .0.035 0.006 0.000 0.000

0.138 0.117 0.042 -- 0.001. 0001.001 0.002

0.1650.147 0.1080.008 -0.015..0.017

0.186 0.177 0.150-0.111 -0.070 '0.058

I .. 17I
(X,n) ((,0o)

(0,n) (0,0)

I I0.169 ..0.122 ..0.038 0.006 0.000 ..0.000

0.151 .. 0.115 0.032 -0.001 --0.000 0.003

0.118 .0.093 ..0.053 .-0.003 .0.013 ..0.019

0.111 0.091 ..-0.073 0.0730730.074 0.078

0.121 0.108 0.101 0.1240.155..0.161
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Figure 4-8: For one electron on 10 by 10 lattice, we plot Z+,k of pBCSwf(left, X = 1,
A = 0.55) and pSDwf(right, X = 1, A = 0.55, = -0.5, = -0.3, = 0.3). By
particle-hole symmetry, the Z+ of one electron pBCSwf is identical to the Z_ of one
hole pBCSwf together with a (r, ir) momentum shift. pBCSwf has almost constant
Z+ along the direction from (r, 0) to (0, 7r); while pSDwf has Z+ suppressed at nodal
point and enhanced at anti-nodal point.
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Figure 4-9: Quasi-particle spectrum for one electron on 10 by 10 lattice. t = 1,
t' = -0.3, t" = 0.2 and J = 0.3 (one can map it into a hole-doped model with t = 1,
t' = 0.3, t" = -0.2 and J = 0.3 with a (r, 7) shift in momentum space.). The black
square shows the spectrum of d-wave pBCSwf with X = 1 and A = 0.55, and the red
diamond shows the spectrum of pSDwf with X = 1, A = 0.55, 3 - 0.5, 2 = -0.3

and 3 = 0.3. One can see the first electron doped to (r, 0). The energy of a doped
electron in pSDwf is 0.25t lower than that of an electron in pBCSwf.

than that of an electron in pBCSwf.

4.4.4 A prediction

In hole-doped and electron-doped case, t > 0 and t' and t" have opposite signs, and as

a result Z_ develops strong k dependence along diagonal direction. What if t' and t"

have the same sign? If both t' > 0 and t" > 0, one expects that /2 < 0 and /3 < 0 to

favor longer range hoppings. But they drive the modulation of Z_ in opposite ways.

As a result, one expects that for certain ratio of values of t' > 0 and t" > 0 of order

1, their effects cancel and Z_ remains constant along the diagonal direction, but with

an enhanced value of Z_ than the case of pure t-J model. Similarly for certain ratio

of values of t' < 0 and t" < 0 of order 1, Z_ remains constant along the diagonal

direction, but with a suppressed value of Z_ than the case of pure t-J model. These

predictions can be checked by exact diagonalization.

4.4.5 pBCSwf with longer range hoppings

One can view pSDwf as an improved pBCSwf. We choose the d-wave pairing wave-

function b(k) with only nearest hopping X and pairing A parameters. Then 32 and /3
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wavefunction total energy (S- +) T T T3
x x x 0o 0o o0 per bond per bond

pBCSwf 0.55 0 0 0 0 0 -0.1793(1) -0.3075(2) 2.65(2) 0.43(2) 0.65(2)
pBCSwf 0.55 -0.4 0.0 0 0 0 -0.1796(1) -0.3043(2) 2.66(2) 0.02(2) 1.21(2)
pSDwf 0.55 0 0 -0.3 0.3 -0.1 -0.1815(1) -0.3058(2) 2.86(2) -0.49(2) 0.87(2)

Table 4.4: Two holes on 14 by 14 lattice. t = 1, t' = -0.3, t" = 0.2 and J = 0.3.
T1, T2 and T3 stand for nearest neighbor hopping, next nearest neighbor hopping and
third nearest neighbor hopping respectively. Although the spin energy of pBCSwf
with finite longer range hoppings X' = -0.4 is slightly lower than that of pSDwf on
10 by 10 lattice, it is much higher on 14 by 14 lattice.

encode some second-neighbor and third-neighbor correlations. The price to pay is to

include more than one Slater determinants in spin basis. One may naturally ask, sup-

pose we insist working on pBCSwf, if one puts in longer range hopping parameters like

X' and X" in the pairing wavefunction b(k), one also encodes some second-neighbor and

third-neighbor correlations, which may lower the second-neighbor and third-neighbor

hopping energies. But in this way one can still work with a single Slater determinant.

If our pSDwf with no-local mixing is physically similar to pBCSwf with longer range

hoppings, why should one bother to work with many Slater determinants?

We want to emphasize that our pSDwf is physically different from pBCSwf even

after we include longer range hoppings X' and X". We note that, in the infinite-

lattice limit with a few holes, the pBCSwf cannot have longer range hoppings (i.e.

X' = X" = 0). Otherwise we are considering some other spin wavefunction instead of

d-wave wavefunction, which will increase the spin energy by a finite amount per site.

Therefore X' and X" have to vanish in low doping limit. In contrast, for our pSDwf,
the the spin energy is not affected by finite 3i in the zero doping limit. Thus in the

low doping limit, the spin energy is perturbed only slightly by a finite/32 and 33. On

the other hand a finite /2 and /3 make the hopping energy much larger than that

of pBCSwf. So in the infinite-lattice limit with a few holes, 3i will be finite and the

energy of one hole will be lowered by a finite amount by turning on a finite 3i.

Physically this means that 32 and 33 characterize the charge correlations, while

x' and X" characterize the spin correlations. The above claim is supported by 2-hole
system on larger lattice, i.e., by lower the doping. In Table 4.4 we list the energies
of pBCSwf with longer range hopping and pSDwf on 14 by 14 lattice. Comparing
with Table 4.2 one can see the spin energy for pSDwf is lowered further than that for
pBCSwf.

Another way to see that these two wavefunctions are different is by calculating
Z_. Numerical results show that pSDwf has dichotomy whereas pBCSwf does not.
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Figure 4-10: For one hole on 10 by 10 lattice, we plot Z-,k of pBCSwf with longer
range hopping X' = -0.4 (x = 1, A = 0.55).

Actually on the mean-field level, a negative X' and/or positive X" even make the Z_

larger on the anti-nodal point than on the nodal point. After projection, we observe

that Z_ still remains almost constant along the diagonal direction for pBCSwf with

longer range hoppings. In Fig.4-10 we plot the Z_ map of pBCSwf with longer range

hopping X' = -0.4.

4.5 Conclusion

In this chapter we studied a new type of variational wavefunction, pSDwf. It can be

viewed as an improved pBCSwf, and the improvement is that pSDwf correctly char-

acterizes the charge dynamics and the correlation between the doped holes/electrons

and the nearby spins. This physics was missed by the previous pBCSwf. As a result,

pSDwf correctly reproduces the dichotomy of hole-doped and electron-doped Mott

insulator.

In pSDwf, we introduced two types of fermions, spinon f and dopon d. Spinons

f carry spin but no charge. They form a d-wave paired state that describes the spin

liquid background. Dopons d carry both spin and charge and correspond to a bare

doped hole. The mixing between spinons and dopons described by o0, 01, 12 and

/3 leads to a d-wave superconducting state. The charge dynamics (such as electron

spectral function) is determined by those mixings. 3o is the on-site mixing (or local

mixing), and 31, 32 and P3 are non-local mixings corresponding to mixing with first,

second and third neighbors respectively. If pSDwf has only local mixing, it is identical

to pBCSwf. With non-local mixings, pSDwf corresponds to pBCSwf with hopping

terms acting on it. Therefore the wavefunction develops finite non-local mixings to

lower the hopping energies. In particular, for the hole-doped case, to lower t' and t"
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energies, the mixing is described by /2 > 0 and P0 < 0.

The pSDwf can also be obtained by projecting the spinon-dopon mean-field wave-

function into the physical subspace. Therefore, one expects that some properties of

pSDwf can be understood from the mean-field theory. In the mean-field theory, it is

clear that the modulation of Z-,k in k space is controlled by the non-local mixings.

Our numerical calculation of Z-,k shows that the above mean-field result is valid even

for the projected wave function. We find that /2 > 0 and /3 < 0 give exactly the

dichotomy of Z-,k observed in the hole doped samples. Because /2 > 0 and P3 < 0

are driven by t' and t", the dichotomy is also driven by t' and t". Thus to lower the

hopping energy, the spectral weight is suppressed in some region in k-space. This

result conflicts a naive guess: to lower the hopping energy, the excitation should be

more quasi-particle like. We also predict that the dichotomy will go away if t' and

t" have the same sign and similar magnitude. In summary, we found a mean-field

theory and the associated trial wavefunction capturing the dichotomy physics.

Traditionally, in projected wavefunction variational approach, for example pBC-

Swf, people use wavefunctions which in real space correspond to a single Slater de-

terminant. The reason to do so is simply to make the computation easier. Our study

shows what kinds of important physics that may be missed by doing so. In real

space, the pSDwf is sum of (1 + nshift)"nh ol number of Slater determinants, because

each hole can either do not hop, or hop into one of nshift sites. So our calculation is

limited to few-hole cases. However, the idea of introducing many Slater determinant

is quite general. For example, one can study another improved pBCSwf, which allows

each hole to hop once but forbids two holes hopping together, therefore the number

of Slater determinant is (1 + fshift)nhole and many-hole cases are computationally

achievable. This new improved pBCSwf is the first order approximation of pSDwf

and remains to be studied. For a long time there is a puzzle that doped Mott-insulator

(ie the spin disordered metallic state) seems to be energetically favorable only at high

doping x > 0.3. For x < 0.3 the doped spin density wave state have a lower energy.

Our pSDwf may push this limit down to low doping which agrees with experiments

better. This is because that including many Slater determinants can lower the energy

per hole by a significant amount (about 0.4t).

As we have stressed, pSDwf provides a better description of spin-charge correla-

tion, or more precisely, the spin configuration near a doped hole. This allows us to

reproduce the dichotomy in quasiparticle spectral weights observed in experiments.

The next question is whether the better understanding of the spin-charge correlation
can lead to new experimental predictions. In the following, we will describe one such
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prediction in quasi-particle current distribution.

We know that a finite supercurrent Js shifts the superconducting quasiparticle

dispersion Ek. To the linear order in Js, we have

Ek(A) = Ek(O) + c-ljk -A,

where c is the speed of light and we have introduced the vector potential A to represent

the supercurrent: J. = fl A. jk is a very important function that characterizes how

excited quasiparticles affect superfluid density ps. We call jk quasiparticle current.

According to the BCS theory

&Ek
k = e k = evnormal, (4.83)

where Ek is the normal state dispersion which is roughly given by ek = -2t[cos(k,) +

cos(ky)].

The previous study[79] of quasi-particle current for pBCSwf shows that the quasi-

particle current is roughly given by the BCS result (4.83) scaled down by a factor a.

Such a quasi-particle current has a smooth distribution in k-space. Here we would

like to stress that since the charge dynamics is not capture well by the pBCSwf, the

above result from pBCSwf may not be reliable. We expect that the quasi-particle

current of pSDwf should has a strong k-dependence, ie a large quasi-particle current

near the nodal point where Zk is large and small quasi-particle current near the anti-

nodal point where Zk is small. Such a quasi-particle current distribution may explain

the temperature dependence of superfluid density [82].

Indeed, the mean-field spinon-dopon approach does give rise to a very different

quasi-particle current distribution which roughly follows Zk. For more detailed study

in this direction and possible experimental tests, see Ref. [88].
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Chapter 5

Summary of results and outlook

Let me summarize the understandings that we discussed in this thesis for exotic

phases and phase transitions in Table 5.1. Note to make the table logically complete,
I also include the gapped exotic phases, which are not discussed in this thesis. There

are also fascinating new physics associated with gapped exotic phases[89, 90].

Basically we are in the process of building a new paradigm to replace the tradi-

tional Landau's theory of phases and phase transitions. Here we made some attempts

to find the mathematical language to characterize the new phases and describe the

new type of phase transitions. However one should note that currently the under-

standing of exotic phases and transitions are more like case by case, and different

attempts come with different formalism. It will be very interesting and important to

unify them in a same framework. For example, find a systematic way to write down

the wavefunction and low energy effective theory for these new states of matters.

The current mathematical language of low energy excitations is mainly field theory.

Exotic phases simply mean exotic stable fixed points in the RG sense. How much do

we know about stable exotic fixed points in field theory? The answer is very limited.

Basically all the known stable exotic fixed points involve gauge fields. We showed that

the low energy excitations of an exotic phase usually involves gauge fields, but that

could be a result of our limitation of language. Therefore exploring new languages,
for example string theory, may bring us completely new understandings.

We proposed that by starting with a pure spin model, the low energy effective

theory can be QED or QCD. That means the QED and QCD in our real life, in

principle, can be the low energy theory of some spin model. Spin model may be the

microsopic theory of the high energy physics. There are recent works on realizing

gravitational interaction from a spin model[91, 92, 93]. Just like string theory, spin

model may deserve equal attention as a potential way to unify gravity with other
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Conventional phase Exotic phase

Examples spin ordered phase quantum hall liquid
fermi liquid, CDW... spin liquid

Characterization order parameter Quantum order
symmetry breaking No symmetry breaking
Symmetry group PSG

Excitations gapped gapped with GS degeneracy
gapless with free fermion gapless but
or free boson strongly interacting in IR
no fractionalization fractionalization

Phase transition fluctuating order parameter usually involves gauge theory
Landau-Ginzburg-Wilson

Table 5.1: Summary of conventional and exotic phases and phase transitions.

fundamental interactions.

We used projected wavefunction technique to study the doped and undoped spin

liquids. It is a very efficient way to construct spin disordered state, and it can provide

very good energetics, but there are a lot of issues remain unsolved. First of all whether

a projected wavefunction can be a ground state of any short-ranged hamiltonian is

unclear. In one-dimension we know a projected fermi-sea is the ground state of

Heisenberg model with a power law interaction[94, 95], and there are no results like

that available for higher dimensions. By studying projected wavefucntion, hopefully

we can answer the questions of the long range physics of the spin liquid ground state.

However the relation between projected wavefunction and the low energy effective

theory need to be further studied before any conclusive claim about long range physics

is made. For example for the U(1)-Dirac state discussed in chapter 3, one key issue is

whether the long range properties of the projected wavefunction is correctly described

by the low energy effective theory of QED3. We can measure the correlation functions

like spin-spin correlation or bond-bond correlations in the projected wavefunction,

but are they the same as those given by QED3? A lattice-QED calculation is really

necessary to answer this question, because by doing so we can compare the results

from the two approaches.

Projected wavefunction is just one numerical attempt of writing down a variational

state. There are other attempts such as the tensor product states[96, 97]. Is it
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possible to unify the different approaches and give a systematic way to write down

disordered ground state wavefunction? Instead of variational approaches, are there

quasi-exact numerical techniques to address the ground state issues? We know that

quantum monte-carlo seems to have unavoidable difficulties on frustrated spin models

or general fermionic models, which is called sign-problem. Are there ways to bypass

the sign-problem? All those questions are challenges in the numerical studies.

The above future directions are more or less "principle" motivated. There are also

experiment motivated issues. Currently there are a few candidate materials which

may have spin liquid ground states. But we still need smoking-gun experiments to

identify them. Designing such a smoking-gun experiment is extremely important for

the whole field of exotic studies. As usually happens in experiments, the material

will not be described by a pure Heisenberg model. There will be non-magnetic or

magnetic impurities, DM-interactions, phonon interactions(lattice distortion), etc.

In order to make a comparison with experiments, including these extra interactions

may be required. Spin-liquids coupled to impurities, phonons, and spin liquids in a

system with DM-interaction, are open and important issues. Studying these issues

can help us to identify spin liquid phase.

Suppose an exotic phase is identified, due to our understanding of the exotic phase

transitions, all the transition from that phase to neighboring phases necessarily con-

tain new physics. The first issue is what those neighboring phases are. For example,
what will happen if we apply magnetic field on the kagome material? Studying those

phase transitions would be very interesting and may provide extra ways to design

experiments to identify exotic phases.
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Appendix A

Detailed calculation of anomalous

dimension y

The scaling dimension of staggered spin-spin correlation function ((-)OS(x)(S)(0))
is calculated by the large-Nf expansion of quantum field theory. In our formalism,
one can show that the staggered spin-spin correlation function is just the fermion

mass operator (4 (x)?O(0)) correlation function in the effective theory Eq.(2.119).

By power counting, the scaling behavior should be (,)(x)4P(0)) = 7, but quan-

tum fluctuations change it into ( ?P(x)( (0O)) where No is called the

anomalous dimension of fermion mass operator. It turns out that the easiest way

of calculating 7y is not to calculate (OO(x)?0(0)) directly, but to calculate the

correlation function of fermion field b: (O(x)b(O)), and the three-point correlation

function ( O(x) (y),O(O)).

Let us firstly calculate the staggered spin-spin correlation function in SU(2)-linear

phase, where the low energy effective theory is Eq.(2.40). We need to understand the

gauge interaction. In the large-Nf limit, the gauge field is strongly screened by

fermions, and under renormalization group the coupling g will flow to an IR stable

conformal invariant fixed point g,2 • . Here A is the UV cut-off of our theory. To

Figure A-i: The dressed gauge propagator in the leading order of large N1 limit,
which is nothing but the one-loop correction in polarization.
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Figure A-2: Gauge dressed fermion propagator at first order of 1Nf

the leading order of ' the dressed gauge propagator is as Fig.A-1.Nf' Let us work

within Euclidean space and Landau gauge, where the bare gauge propagator is:

(A.1)Gab (x, y ) = (Al, (x) Ab (y))

dk3  ik.(-y) g2ab

(2•r) 3 k2(
kikv
k2

The bare fermion propagator is:

(0i(x)j (y)) = f dP3 eip.(xY) -i
(21r) 3 p2

where i, j label the gauge components. The dressed gauge propagator can be calcu-

lated as:

Gabv,dressed(k) = k2 (1 + H) (J31 (A.3)
kC2

where if we do Pauli-Villar regularization,

(k26, - kk)HII = Nfg2TF

1
=:(k26j, - ki,k,)Nfg2TF( 8k

8k

dq3 Tr [y, ,(0 - $)1
(27) 3  q2 (q - k)2
1

6irA )

Tr[Tab] = TFjab
1

TF- 2
(A.5)

At the fixed point, where g2 = Ns-, the dressed gauge propagator is:

Gab, k) =iv, dressed( NfTFk

-- V) (A.6)

we now study the fermion correlation function with first order correction in1
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Figure A-3: Gauge dressed three point correlation function at order of

expansion, as shown in Fig.A-2. The dressed fermion propagator is:

Sij(k) = (1+ E) (A.7)

where

fj dq Yy,(-i)($+ )yv CF8 ( q,_qv)
(27r)l (k + q)2  NfTFq q2

8CF k= -~ F log(-) (A.8)37r2Nf TF
and

3
T a a = CFI CF = (A.9)4

Thus we know that the anomalous dimension of V is:

1 8CF
7= -31r 2N (A.10)2 37r2NfTF

Then we look at the dressed three-point correlation function (V (x)?(y)$(0)) at

the order of -, as shown in Fig.A-3. Suppose we fix the momentum of Vi/ to be 2k,
while / and 0 each carry momentum k, then the tree level three point correlation

function will be G3(2k, k, k) = J ____ -= From the contributions of diagrams in

Fig.A-3, we will have the dressed three point correlation function:

1 k
Ga(2k, k, k) = 2 1 + (A + B + C)log( ) (A.11)

where A, B, C are the contributions from each corresponding diagram. Actually we
know that A + B + C = y• + 2 y,0. So by calculating A + B + C, we will know the
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5, \

Figure A-4: The contribution of a-boson to fermion propagator at order of , whereNfthe double dashed line is the dressed -boson propagator at leading order.
the double dashed line is the dressed a-boson propagator at leading order.

'I''

W

WW III, ~V\\ 5--

Figure A-5: Contributions of a-boson to three point correlation function at order of
1

Nf

anomalous dimension of fermion mass operator 74y.

It is easy to see that A, B are just from the dressed fermion propagator, which has

been calculated above: A = B = 2 7Y. New calculation needs to be done for vertex

correction in C.

Clog(A )

8CF dq3 q ,(h + 0)(h - 0)7), kk,,
Nf TF 1(2ir)3 (q + k)2(q - k)2q " k2

8CF kI N log( k (A.12)
7r2Nf TF Ao(~

Now we can compute y•,:

74' =A + B + C - 27y = C + 2-7

32CF 16
372NfTF 7r2Nf

We can also calculate the spin-spin correlation function at the critical point in a

similar fashion. The only difference is that the a boson becomes massless at critical

point and contributes to the anomalous dimension of correlation functions. The

contribution of a boson to fermion propagator and three-point correlation function
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are shown in Fig.A-4 and Fig.A-5. After similar calculation, we find that at the

critical point,

16 4-16 (A.14)
7¢ 2Nf 3+2Nf

where the second term comes from the contribution of massless a-boson. The change

of scaling behavior during this phase transition is shown in Fig.2-12.
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Appendix B

A simple algorithm to do local

projection

Suppose the wavefunction before projection is the ground state of some fermionic

quadratic Hamiltonian. One can always diagonalize the Hamiltonian so that all two-

point correlation functions of fermion operators can be calculated exactly. For our

SDwf, that means quantities like (fitfj), (df!fj), (dd)... can be calculated.

Projection is supposed to remove the unphysical states. For a site i, the following

operator removes the unphysical states.

1 1 1
Pi =n,(n, - 2)(nd,i - nd,i+1)(1 -nd,i , + Sd, i)) (B.1)

It obviously ensures that nf,i = 1, nd,i Z 2 and f and d fermions form local singlet.

To calculate energy, we do local projection on the relevant sites. For example, to

calculate the J term energy, one actually calculates

(PiPj(f, + Sd,i) (•f, + Sd,j)PiPj)
ASi " Sj),,j = P (P Pi) (B.2)(PiPj)

The denominator accounts for the wavefunction normalization due to projection. One

can write operators PiSi- jPj and PiSi SjPj in terms of fermion operators. By Wick's

theorem, the expectation values of these operators reduce to a sum of products of

fermion two-point correlation functions, which are known. Similarly for t term energy,
one calculates for example,

(PiPjfff hth f, JT PP)
(tCjt) prj = 3 3 (B.3)

(PiPP)
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where ht (fT d - fi dtT) is the operator that creates a hole at site i.

One may ask whether we can do local projections on more and more sites, then

the result will be closer and closer to the one of full projection. Unfortunately this

cannot be done, because the number of terms in the summation when we expand

1 Pi2 ... Pin increases exponentially fast as we increase n. Therefore we are limited

to few sites. The above method can only be viewed as some renormalized mean-field

approach.
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