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Abstract

Two sets of studies are described in this thesis. The first describes studies conducted
with sodium Bose-Einstein condensates (BEC) while the second focuses on the pairing of
fermionic lithium-6 pairs in an optical lattice within the strongly interacting BEC-BCS
regime. Common to both sets of studies is the use of a magnetically tunable Feshbach
resonance to manipulate interactions between the atoms.

In the first experiment, we destabilize a sodium BEC by switching its interactions from
repulsive to attractive and studied the resulting dynamics. A local amplification of low mo-
mentum energetic instabilities was observed and the measured rate of amplification agreed
well with theoretical predictions. For large condensates, this process depleted the conden-
sate faster than the global inward collapse.

Subsequently, I describe the major construction effort that was undertaken to convert
our BEC machine to a two-species machine capable of cooling fermionic lithium-6. Upon
its completion, we obtained a resonance superfluid of loosely bound 6Li pairs in the BEC-
BCS crossover. When placed in a shallow optical lattice, long range phase coherence of
this resonance superfluid was inferred from the presence of sharp interference peaks after
ballistic expansion. With this observation we have obtained the first evidence of superflu-
idity of fermions in an optical lattice. A loss in phase coherence occurred when the lattice
depth was increased past a critical value, possibly signaling a transition to an insulating
state. Further preliminary explorations of this novel system is described followed by an
outline of its potential for studying condensed matter phenomena like high temperature
superconductivity.

Thesis Supervisor: Wolfgang Ketterle
Title: John D. MacAurthur Professor of Physics
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Chapter 1

Introduction

1.1 The allure of high temperature superconductors

Nothing better illustrates how deeply a scientific concept has penetrated the popular imagi-

nation than its ubiquitous presence in science fiction. Superconductivity is one such concept

- its history is littered with Nobel prizes and Hugo awards alike. A superconductor supports

current flow without dissipation, wasting no energy in the form of heat. This conceptual

simplicity and its rich technological possibilities lends itself easily to futuristic visions of the

world and emphasizes its potential applications.

In fiction, temperature is often a conveniently ignored detail. In reality, the first transi-

tion to the superconducting state was observed by Kamerlingh Onnes to happen in mercury

at Tc = 4.2 K in 1911, for which he was awarded the Nobel prize in 1913. This was far too

low for practical applications and for many decades, known Tc's stayed below 23 K. Fast

forward to 1986, when Bednorz and Mueller [1] discovered high temperature superconduc-

tivity in a ceramic cuprate material with Tc = 35 K, and its significance was immediately

acknowledged by a Nobel prize in 1987. Shortly thereafter, a similar material with Tc = 92

K was found, attaining an important practical milestone: cooling can now be done cheaply

with liquid nitrogen at 77 K. The highest transition temperatures of these "high Tc" su-

perconductors climbed quickly in the following decades, to stand now at 138 K. Clearly,
another important milestone would be reached if a room temperature superconductor were

to be discovered or constructed.

Yet to this day, the theory of high Tc stands incomplete. The complexity of real con-

densed matter systems makes them difficult to treat theoretically, yet without a good un-

derstanding, the search for ever higher Tc can only proceed through trial and error. Lately

however, a new frontier has opened up - if we begin thinking about generalized charge car-

riers and artificial crystals, fresh angles with which to attack the problem began to appear.

Enter cold gases.



1.2 Of bosons and fermions...

When Bose and Einstein first demonstrated in 1924 that non-interacting, indistinguishable

bosons could condense into the same quantum state [2, 3], it had merely been an ideal-

ized exercise in statistical mechanics and no one suspected the far-reaching ramifications.

Everyone knew that electrons - the charge-carrying particles - were fermions and therefore

forbidden to occupy the same quantum state. This made them ineligible for Bose conden-

sation. It wasn't until 1935 that Fritz London linked superconductivity to Bose-Einstein

condensation [4].

The difference between bosons and fermions can be related to a simple sign change in

the exchange symmetry of the wavefunction. If two particles A and B are identical, then

the probability of finding particle A in state 1 and particle B in state 2 has to be equal to

the probability of the converse. Their wavefunctions obey

IVP(al, b2) 2  = j4(bi,a2)12 (1.1)

= * (al,b2) = +±(bl,a2 ) (1.2)

By stipulating indistinguishability, all particles are grouped into two classes: bosons (plus

sign) and fermions (minus sign). From quantum field theory, the fundamental property that

is responsible for this difference in the exchange properties was identified as spin - bosons

have integer spin, while fermions have half-integer spin. This gives rise to an additional

constraint for fermions. Following eq. 1.2, the situation where two fermions occupies the

same state implies

V)(al, bl) = -V(al, b5) (1.3)

==0(al,bi) = 0 (1.4)

Clearly, this is forbidden. This is known as the Pauli exclusion principle and it underpins

the behavior of all matter, ranging from the everyday observation that matter occupies

space, to the periodic table structure of elements.

However, if there exists many more accessible states than there are fermions or bosons,

the difference in their quantum statistics would not manifest itself. Which is why in our

everyday experience, both kinds of particles behave classically. It is not until the number

of energetically available states become comparable to the number of particles do we begin

to discern a difference and enter quantum degeneracy.



Bose-Einstein condensates (BEC)

For bosons, no constraint against occupying the same state exists and at zero temperature

large numbers of particles do end up in the ground state of the system. In other words, at

low temperatures the wavefunctions of particles begin to overlap and the particles are no

longer separable. The temperature at which this phase transition occurs can be estimated

by setting the spatial extent of the particle's wavefunction AdB = h to be equal to

the interparticle spacing n - 1/3 . This gives

T • h2 n2/3 (1.5)
kBm

In other words, these bosons have become degenerate and are considered "condensed".

The observation of Bose-Einstein condensation of dilute atomic gases in 1995 [5, 6]

was preceded by breakthroughs in laser cooling of atoms and heralded a new era in the

research of cold gases. The promise of atomic systems lay in its simplicity - compared

to traditional condensed matter systems, dilute gases were simpler to model and easier to

control. Interactions were typically weak and easily incorporated as a perturbation. In

addition, they opened up previously inaccessible parameter space, providing a new way of

testing the validity of various theories.

Bardeen, Cooper and Schrieffer (BCS)

Due to Pauli exclusion, quantum degeneracy of ideal fermions at zero temperature manifests

itself differently. As temperature is lowered, they will successively fill each available state

beginning from the ground state, until all the fermions are accommodated. The highest

filled level is known as the Fermi energy EF, which depends only on the density of states

and the number of fermions. Unlike the situation for bosons, the transition into quantum

degeneracy is smooth for ideal fermions and a good way of measuring degeneracy is to define

the relative "coldness" temperature T/TF, where TF = EF/kB.
The situation becomes much more interesting once we consider interactions. Fermions

are unstable at T = 0 against the addition of the slightest attractive interactions, preferring

to pair to lower their energy. This is the famous Bardeen-Cooper-Schrieffer state, named

after they who first wrote down its wavefunction. In this state, the pairing is weak and long

range, with the attractive interaction provided by the crystal lattice vibrations.

Driven by an interest in simulating real materials, efforts to cool fermions to quantum
degeneracy began soon after the successful condensation of bosons. Fermions are inherently
harder to cool than bosons, since the Pauli exclusion principle meant that interactions
between identical fermions could not be exploited for cooling purposes. However, this
restriction can be lifted by either using bosons as a 'refrigerant', or by cooling non-identical



Past Present Future

Figure 1-1: In 1995 and 1999, quantum degeneracy of ultracold Bose and Fermi gases
was achieved, strikingly demonstrating the difference in quantum statistics between the
two kinds of particles. Further innovations in fermion cooling led to the achievement of a
"resonance superfluid" in 2003, comprising of fermions paired up at intermediate distances

(see text). The goal of the future is to observe long range BCS pairing, where fermions
close to the Fermi surface are correlated in momentum space, and to obtain insight into
superconductivity.

fermions together. Using the latter method, a quantum degenerate Fermi gas was observed

in 1999 [7] by using fermions in two different states.

1.3 ...and everything in-between

While neutrons, electrons and protons are all fermions with spin 1/2, two fermions tightly

bound together behaves like a boson. Therefore what determines whether any given atom

ends up as depends on the sum of its constituents particles - odds fermions, even bosons.

All atomic bosons are fermionic composites. The fermions are so tightly bound together

that their individual behavior is irrelevant when viewed from a distance. This suggests that

the barrier between the two classes of particles is not insurmountable. If two fermions can

be persuaded to pair, we recover the physics of bosons. Cooper pairs of fermions correlated

in momentum space which can bose-condense is an example of bose-fermi physics.

Quantum
BEC

Degenerate
Fermi Gas

Resonance
Superfluid



BEC-BCS crossover

One can imagine how in the limit of extremely high density, the slightest attraction between

fermions would result in pairing [8]. In practice, it is easier to keep density constant and vary

the strength of the attraction, induced by bringing in a two-body bound state (Feshbach

resonance, see Chapter 2). Then there exists a smooth crossover between tightly bound

molecules and long-range Cooper pairs [9], and in 2003, the first experiments within this

crossover were reported [10, 11, 12, 13, 14]. Performed in the intermediate regime where the

molecular size was on par with the interparticle spacing, these experiments highlighted the

dual nature of particles within the crossover, where neither pure bosonic or fermionic physics

was sufficient for complete understanding. Fermion pairs could condense, both where a true

two-body bound state existed [10, 11, 12], and where it did not [13, 14], yet in both cases,

the levels of the harmonic trap would be filled up to the Fermi surface.

1.4 Optical lattices, low dimensions and the cuprates

Thus stands the complicated story of bosons and fermions. There is much to understand and

investigation is ongoing, but new challenges arise. Having created a resonance superfluid in

bulk phase, we now ask how its behavior changes when placed in a non-trivial environment.

That the environment is crucial in determining the physics of ultracold atoms is not

new. In BEC's, a simple harmonic trap confining the atoms modifies the density of states

sufficiently to allow for condensation in two-dimensions where none was possible before

[15, 16]. In one-dimension, a lineup of bosons where hopping across particles is not allowed

results in the system taking on fermionic characteristics (Tonks gas) [17]. One of the most

startling work comes from loading bosons in a periodic potential, and observing self-ordering

of the atoms from a superfluid to an insulating state [18].

The idea is to model as closely as possible the situation in the superconducting cuprates,
where square crystal lattices in two-dimensions are weakly linked together (Fig. 1-2). It

is suspected that the mechanism that gives rise to their high transition temperature is

dependent on its crystal structure. In atomic physics, nearly perfect periodic structures of

many different geometries may be engineered through clever interference of light. By placing

cold fermions within these structures, we reproduce the physics of electrons in a crystal,
with the added advantage of having tunable effective inter-and intra-well interactions. This,
combined with the new parameter space and observation tools that this system makes

available, explains its widespread appeal. Through its study, we hope to move closer to the

long-term goal of not only understanding, but perhaps also engineering a room-temperature

superconductor.
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1.5 Outline

This thesis is comprised of two sections. The first section chronicles my apprenticeship in

the techniques of manipulating ultracold gases and consists of experiments performed using

bosons. The second section is the main focus of this thesis, documenting our efforts to build

an apparatus capable of reaching the current frontier in ultracold fermion research, followed

by a series of experiments on resonance superfluids in an optical lattice.

Chapter 2 gives an overview of the Feshbach resonance, an anomaly in the scattering

properties that we use to tune interatomic interactions and a common theme of all the

experiments documented in this thesis. Here I also give the technical details of manipulat-

ing and improving our magnetic field stability, which was necessary for working within the

resonance. Chapter 3 describes how a Feshbach resonance is used to destabilize a sodium

BEC by switching its interactions from repulsive to attractive, and documents one mecha-

nism that contributes to the resulting condensate decay (publication reprinted in Appendix

A). Not elaborated upon here is the subsequent series of experiments on sodium molecules

formed near another Feshbach resonance (19, 20, 21], where the improved field control played

a crucial role. Full descriptions are provided in the theses of Jamil Abo-Shaeer [22] and

Kaiwen Xu [23], and the first of these publications are attached in Appendix C.

The latter half describes our progress in the much less well-understood regime of strongly-

interacting, quantum degenerate fermions confined in optical lattices. The optical lattice

setup was first set up to study the behavior of bosonic sodium in a periodic potential [24, 25],

before we decided to use it to study fermions instead. Chapter 4 gives a brief theoretical

overview of fermi physics, and Chapter 5 describes the two-species machine-building effort.

With its completion, we were in the enviable position of possessing the sole apparatus ca-

pable of loading long-lived fermion pairs into a three-dimensional optical lattice. Chapter 6



discusses some peculiarities of this system we had to understand and overcome and chapter

7 presents the first evidence of superfluid pairing of ultracold fermions in an optical lattice.

In a neat reversal, the optical lattice was then used as a tool to study the superfluid trans-

port of the paired fermions. Blueprints and technical details for the machine is included in

Appendix D and publication reprints are included in Appendices E and F.

Since this is very much a work in progress, this thesis wraps up with a lengthy chapter

8 exploring the behavior and potential of this system before concluding in chapter 9. Some

intriguing initial observations about our system as well as long-term goals will be discussed.



Chapter 2

Feshbach Resonances

Feshbach resonances have become ubiquitous as a tool for tuning the scattering properties of

ultracold atoms. In fact, it is the common thread that ties together the disparate parts of my

thesis. This chapter gives a brief introduction and provides technical details of the magnetic

field stabilization that was implemented in order to work near the Feshbach resonances of

both 6Li and 23 Na.

2.1 What is a Feshbach Resonance

In 1962, Herbert Feshbach predicted the presence of scattering resonances in nuclear physics

[26]. Since then, it has found wide application in atomic physics and many excellent ref-

erences has been written [27]. A Feshbach resonance occurs when the energy of the open

scattering state is made to match that of a bound state, and a coupling exists between the

two. Various means for inducing Feshbach resonances have been suggested, encompassing

the use of radio-frequency fields [28], dc electric fields [29], optical fields [30] and magnetic

fields. While both photoassociative [31] and magnetic Feshbach resonances [32] have now

been observed, only the latter is relevant for this thesis. It works by exploiting the difference

in the total magnetic moments of the open and bound states, bringing them into resonance

at certain magnetic fields (see Fig. 2-1). Atoms in the open channel can then scatter into

the intermediate bound state, before transitioning back to the open channel again.

2.1.1 The open channel

s-wave scattering length

In ultracold gases, two neutral atoms interact via the van der Waal's potential V = -C6/r .

Scattering is then dominated by spherically symmetric s-wave scattering if the particles are

not identical fermions, since the energies involved are typically too low to allow significant
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Figure 2-1: An s-wave feshbach resonance occurs when a level crossing between a bound
and open scattering channel happens for certain values of the magnetic field. For ultracold
collisions, the kinetic energy in the open channel is negligible.

higher partial-wave scattering. In this limit, the net effect of the central potential with

range ro on an atom at distance r > ro is merely to bring about a constant phase shift in

the asymptotic wave function. From scattering theory, this phase shift is given by

6 ka (2.1)
1 + ika

where we have defined an s-wave scattering length a such that when ka is small, it completely

parameterizes the scattering (see Fig. 2-2). The scattering amplitude f and hence cross-

section a can also be determined from Eq. 2.1 to be

f = 6/k (2.2)

do = If 2 dQ2 (2.3)

=a = 47a 2  (2.4)

Close to a Feshbach resonance, the bound state affects the open channel atoms by adding
to this phase shift, since atoms can now accumulate additional phase shifts while temporarily
residing in the bound state. From second order perturbation theory, the modification of
the s-wave scattering length would follow (neglecting contributions from other bound states
that are far-detuned)

E,•,s
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Figure 2-2: Relation between phase shifts and s-wave scattering lengths. For simplicity, we
have neglected the 1/r decay of the wavefunction. Dashed line gives the wavefunction for
V = 0, while solid line depicts the asymptotic wave-function for a square well potential of
finite depth V. For r < ro, the wavefunction depicted is an extrapolation of its asymptotic
form since details at r < ro is unimportant for the long-range behavior.
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Ca -~- (2.5)
Ethres - Eres

It follows that when Eres > Ethres, corresponding to a virtual bound state, a < 0

and when Ere, < Ethres, corresponding to a real bound state, a > 0. This distinction

becomes important in Chapter 6, where we discuss the pairing of fermions in the vicinity

of a Feshbach resonance.

This microscopic description of the interatomic interactions may be parameterized in

terms of the experimentally accessible magnetic field as

a(B) = ao 1 - B - Bo(2.6)

where ao is the background (unperturbed) scattering length far away from the Feshbach

resonance, Bo the position of the resonance and AB the width of the resonance (effective

range over which resonant scattering dominates). Eq. 2.6 clearly demonstrates how the

atom-atom scattering properties can be tuned at will in the vicinity of a Feshbach resonance.

2.1.2 The closed channel

In addition to its effect on the open channel, the bound molecular state is also interesting

in its own right. If a significant and stable population of the bound state can be engineered

from an ultracold atomic sample with no or little increase in the temperature, then we

have succeeded in performing 'quantum chemistry'. Ultracold molecules formed this way

neatly circumvents the traditional difficulty of laser cooling of molecules arising from their

complicated energy structure. The first direct observation of ultracold molecules produced

this way comprised of fermionic 6Li [33] and shortly thereafter we successfully produced

ultracold bosonic 23Na molecules [19]. Since Feshbach resonances between different atomic

species also exists, one can imagine forming ultracold hetero-nuclear molecules, with direct

application to various topics, for example the search for a permanent electric dipole moment

[34].
However, dimers formed in the vicinity of a Feshbach resonance are in the highest

ro-vibrational state. If their constituent atoms are bosons, this state is unstable against

collisions, which are greatly enhanced when a is large. As a result, they quickly decay into

deeper bound states tightly localized with size Ro, releasing a correspondingly large kinetic

energy r h2/mRg in the process. This energy is carried away by the colliding atoms, which

heat and leave the system. This is the source of the inelastic losses first used to infer the

presence of Feshbach resonances in bosons [32].

For dimers with fermionic constituents, the atom-dimer collisional relaxation is sup-
pressed close to the resonance, since in order to collide, all three particles need to come



close together but two out of the three participants will be identical and this is forbidden

by Pauli exclusion. This significantly lengthens the lifetime of such dimers, making them a

better candidate for studies of pairing as well as for down-conversion into the ground state.

2.2 Manipulating Interatomic Interactions

Theoretical calculations for the approximate locations of the 23Na and 6Li Feshbach reso-

nances were done by [35, 361, and the first experimental observations reported in [32] and

[37] provided a more accurate determination. Table 2.2 lists the Feshbach resonances for
23Na and 6Li .To utilize Feshbach resonances however, one has to have very good control

of the magnetic fields. There are two practical conditions to fulfill:

1. If electromagnets are used (almost always true to enable fast dynamic control), there

has to be sufficient capacity in the Feshbach coils to access the resonance. For reso-

nances occurring at high fields (true for both 23Na and 6Li ), the coils must either be

very close to the position of the atoms, or have very high current-carrying capacity.

2. The stability of the magnetic field has to be such that there is sufficient resolution

within the width of the Feshbach resonance, on top of the resonance position. As we

will see, this can impose a requirement of better than 4 orders of magnitude stability

in the current, a performance not easily achieved by off-the-shelf power supplies.

In the following section, I will give details of the modifications to our machine that was

necessary to work close to resonance. While this section is highly technical, it is meant

to serve as a future reference. Since the modifications were made throughout my graduate

career and put into place whenever the need arose, I will indicate where each scheme was

used where appropriate.

2.2.1 Electromagnet configuration

Fig. 2-3 shows the geometry of our modified loffe-Pritchard type magnetic trap. It consists

of four main pairs of coils: the pinch coils which provide axial curvature, the ioffe bars which

provide radial gradient, the anti-bias coils which cancel out the high bias fields provided by

the curvature coils, and the bias coils, wound concentrically with the anti-bias coils, which

provide additional bias fields when needed. Further details regarding the magnetic trap can

be found in Dallin Durfee's thesis [40].

When accessing the Feshbach resonances in 23Na and 6Li , the atoms are trapped using

optical fields, thereby freeing up the coils for Feshbach manipulation. Parallel currents

running in Helmholtz configuration in the bias and anti-bias coils provide bias fields at a



23Na

IF, mF) Imy, mi) Bo(G) AB (G)
1,1) I1-1/2,3/2) 853 1
1, 1) 1-1/2, 3/2) 907 1

11, - 1) I-1/2,-1/2) 1195 4

6Li

(IF, mF), IF, m)) (Imj, mi), Imy, mi)) Bo(G) AB (G)
(11/2,1/2), 1/2, -1/2)) (1- 1/2,1),1 - 1/2,0)) 834.149 300
(11/2, 1/2), 13/2, -3/2)) (11/2, 1/2), 13/2, -3/2)) 690.43 122.3

(11/2, -1/2), 3/2, -3/2)) (11/2, -1/2), 13/2, -3/2)) 811.22 222.3

Table 2.1: s-wave Feshbach resonances for 23Na (intra-state) [32, 38] and 6Li (inter-state)
[39]. Intra-state s-wave Feshbach resonances for 6Li do not exist due to Pauli exclusion.
The scattering states are labelled by both their IF, mF) and their Imj, mi) numbers - the
latter are good quantum numbers at the high magnetic fields of Feshbach resonances while
the same is true for the former at low magnetic fields where we trap and cool.

rate of 2.5 G/A, (1 G/A for bias coils, 1.5 G/A for anti-bias coils). Each coil is water cooled

and capable of supporting 500 A of current. Together they can easily reach magnetic fields

in the vicinity of 1200 G and they are referred to as the Feshbach coils. Additional current

in the pinch coils can add a small amount (; 10 G) to this value.

Nested within the pinch coils is the rectangular glass cell where all trapping, cooling,

and manipulation of the atoms take place. The glass cell is suspended between two bellows,

and the coils are clamped to aluminum bars surrounding the glass cell. The mounting

of these coils is neither rigid enough to withstand fast field ramps, nor perfect enough to

ensure a uniform bias field. The former problem gives rise to mechanical vibrations when

the current in the coils are ramped quickly, resulting in more background noise when we

take an absorption image of the atoms (see Widagdo Setiawan's thesis [41] for detailed

analysis). The latter problem gives rise to radial field gradients when only a uniform bias

field is desired. This problem is addressed by winding an additional coil and inserting it off

center to the pinch coils (nulling coil in Fig. 2-3). By judicious manipulation of the current

in the nulling coil and the pinch coils (to offset axial gradients introduced), the magnetic

field can be made free of gradients at the location of the atoms.

2.2.2 Stabilization of Feshbach fields (23 Na)

The widest Feshbach resonance in 23Na is found at 1195G resonance, with a width of a few

Gauss. In order work within the resonance with reasonable resolution, it is necessary to
stabilize the magnetic field to sub-Gauss precision, i.e. a part in 104. Rapid switching and
control of the magnetic field was also necessary to avoid collisional decay for the series of
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Figure 2-3: Modified Ioffe-Pritchard style trap. Also shown is the additional off-axis field-
nulling coil used to correct for radial gradients at the high bias fields during Feshbach
resonances.



Powe
Suppl

Figure 2-4: Magnetic field stabilization for 23Na Feshbach work using shunt currents. This
scheme was used for the work reported in Appendix C

experiments with quantum degenerate 23Na molecules.

The stabilization scheme used was modeled after that described by Brian deMarco in his

thesis [42]. A fast servo on each one of the Feshbach coils can be achieved by shunting out a

few amps of current in a bypass circuit (see Fig. 2-4) and changing the effective resistance

by operating a MOSFET in the analog region. A closed loop Hall probe measured the

currents going through the coils and the signal compared to the desired setpoint. A simple

PID circuit then drove the gate voltage of the analog MOSFET, which actually consisted

of an array of high power, thin film MOSFETs, wired in parallel and mounted on a copper

heatsink.

Without active stabilization of the shunt current, the DC peak-to-peak ripple (Vpp) of the

bias coils in current control mode was measured to be about 1A, with similar performance in

the anti-bias coils. After the bypass stabilization, Vp was reduced to 200mA. The transient

response to sudden induced emf (tested by switching off current in the pinch coils, a step

necessary for our experiments) improved from a sharp dip of 1A and a recovery time of 7ms,
to a recovery time of 2ms with no change in the amplitude of the dip. This stabilization

circuit was used for the work described in [19], included here in Appendix C.

Drawbacks of the shunt current stabilization include a daily drift of the setpoint needed
to achieve a fixed current, as well as the relatively poor transient response. Further im-
provement of the stabilization scheme was achieved by implementing a total current servo
on the bias coil by using an IGBT as a variable resistor (see Fig. 2-5) and operating the
power supply in voltage control mode.



Figure 2-5: Magnetic field stabilization for 23Na Feshbach work using shunt and total current
control. This scheme gave the best transient response for the field (see Fig. 2-6)

With just the total current servo, recovery time improved to 500 Ps with no change in

the transient amplitude. However, fast oscillations on the order of 10kHz was seen during

the transient. With both total and shunt current servo in place, the fast oscillations were

servoed out, with no change in the transient recovery time or amplitude response. In DC

mode, Vpp was reduced to less than 33mA, and the slow drifts of the setpoint was eliminated.

To a large extent, the total current servo acts as a slow control knob, with the shunt servo

acting as a fast, fine control. The improvement in the transient response is summarized in

Fig. 2-6. Altogether, the performance of our magnetic field has improved by an order of

magnitude, allowing us to perform field-sensitive experiments.

2.2.3 Stabilization of Feshbach fields (6Li )

One problem remains. Since the bias and anti-bias coils were wound concentrically and

driven by separate power supplies, their mutual inductance was very large and fluctuations

in one invariably affected the other. This crosstalk made stabilizing out current fluctuations

at the same time very tricky. Therefore, when the scientific focus of the lab was changed to

fermions, a major reconfiguration of the coils was done.

Feshbach resonances in 6Li are quite different from those of 23Na (for a discussion on

exactly how unusual the situation in 6Li is, see [43]). Between the two lowest hyperfine

states of 6Li there exists a 300G wide Feshbach resonance centered at 834G. This meant that

fast transient response was no longer necessary since switching the pinch coils would only
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Figure 2-6: The characteristic transient response of the Feshbach coils under different sta-
bilization schemes are shown here (not to scale). The baseline is set by panel (a), where
no active stabilization is used. Panel (d) shows the best performance, with both total and
shunt current stabilization. Panel (b) and (c) are the intermediate results, with just shunt
and just total current stabilization respectively.
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Figure 2-7: Scope trace from the current monitor of the Feshbach coils. Here, 500mV - 50A
~ 125G. Trigger indicates when the control sequence begins to ramp. (A) shows a close up
of the initiation of the field ramp, including a slight (100 ps) delay before the analog IGBT
begins to clamp the current. This delay varies from shot to shot, and is not controllable.
Field ramps down • 500 G in 100 ps. (B) shows the full ramp, where it takes 4 ms to ramp
up - 400 G. (C) shows the sequence we would like to have, where field ramps take no time.
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produce a change in magnetic field of a few Gauss, which would not change the scattering

length significantly. For the same reason, the requirement for DC stability was also relaxed.

Instead, we now needed to change the field quickly by a few hundred Gauss.

The system was improved and simplified by rewiring the coils such that a single dedicated

power supply drove both the bias and anti-bias coils. The power supply used was an ESS

30-500 model from Lambda, capable of going up to 500 A of current or a maximum voltage

of 30V. While we were now limited by the voltage to running only 450A through both

coils, it was still sufficient for our needs (see Appendix D for wiring diagram). Active total

current stabilization was implemented to ensure rapid control over the magnetic field while

an additional feedback path to the voltage control of the power supply ensured that the

analog IGBT regulating the total current was never dissipating too much heat [44]. In

effect, the analog IGBT now served as the fast servo, while the voltage control of the power

supply served as the slow servo. The bypass MOSFETs previously used for 23Na were no

longer necessary and were taken out.



Chapter 3

Bose Einstein Condensates with

Attractive Interactions

Interactions in any given atomic species depends only on its internal structure and varies

greatly. Without tunability, the only option is to switch atomic species each time a different

interaction is desired. The first two alkali species to be cooled and Bose-condensed in 1995

both had repulsive interactions [5, 61. The first alkali species with attractive interactions

to be successfully cooled to condensation was 7Li, in 1997 [45]. As we shall see, cooling,

with its accompanying enhancement of phase space density, is more difficult for atoms with

attractive interactions and only small samples could be obtained. Beyond that, instability

of the atom cloud and loss invariably occurred.

BEC's with attractive interactions have been likened to supernovas [46], in spite of the

vast differences in length, time and energy scales. The stabilizing and destabilizing forces are

now given by quantum degenerate fermi pressure and gravitational attraction respectively,

but both systems possess the same stability criterion. By creating an attractive BEC and

watching it decay, it can be said that one has simulated an astrophysical event in the lab.

Since the observation of magnetically tunable Feshbach resonances in 1998 [32], the

number of experimental testing grounds for attractive atoms have multiplied. Now large

condensates could first be formed with repulsive interactions before switching to attractive

interactions using the resonance. In this chapter, I will describe our studies of large sodium

BEC's with attractive interactions. At the time, the steady state properties of an attractive

BEC was already fairly well-understood. Debate centered instead around the loss dynamics

when the system became unstable. Many processes are likely to play a part [47, 48] but we

focus on the role of amplified local instabilities [49]. Our experiment was reported in:

J.K. Chin, J.M. Vogels and W. Ketterle, "Amplification of Local Instabilities in a Bose-

Einstein Condensate with Attractive Interactions, Phys. Rev. Lett. 90" 160405 (2003)



[50]. Included in Appendix A.

3.1 Mean-Field Interactions

In dilute gases, the length scales of the system are almost always well separated, with

ro(sub nm's) << a(nm's) << n- 1/ 3 (sub pum) (3.1)

where ro is the effective range of the interatomic potential and n - 1/ 3 gives interparticle

spacing. This simplifies the determination of the interactions considerably, since atoms that

spend most of their time far apart do not care much about the details of short-range scatter-

ing. A pseudopotential that reproduces the long-range scattering length a can then be con-

structed, and takes the form of a zero-range delta function potential V(r) = Uob(r)(6/6r)r,
where

47rh 2

Uo= -- a (3.2)
m

In turn, the many-body interaction can be approximated by averaging the two-body ef-

fective interactions of all other atoms (so called Hartree-Fock approximation), since the

diluteness condition implies that all three and higher-order scattering is very unlikely. This

constant mean-field term is given by U = nUo, and appears in the Gross-Pitaevskii equation

governing the evolution of a BEC as

- V2 4(r) + V(r)O(r) + Uo0I(r)l 2 = A/'(r) (3.3)2m

where V(r) is the external trapping potential and p the chemical potential.

3.2 Steady-state Behavior

In the simplest case, V(r) = 0, and the kinetic energy term is small for a large homogeneous

condensate. The GP equation then reduces to

Uoli(r)12 = sP (r) (3.4)

leading to a trivial condition for stability. If a > 0, the interactions are repulsive and the

BEC is stable. If a < 0, the atoms self-attract and implosion of the BEC occurs.

For a trapped BEC in a harmonic potential (by far the most experimentally relevant),
it is possible to have a small stable condensate with attractive interactions. In this case,
the negative mean-field energy is stabilized by the zero point kinetic energy of the harmonic



potential. For fixed a, the maximum atom number an attractive BEC can support in

equilibrium is given by

Ncr = kaho (3.5)

where aho h/mw is the harmonic oscillator length and k is a stability coefficient that

depends on the external trapping frequencies [51]. Condensates of 7Li with a small negative

background scattering length of -27 Bohr radii have been made, with Ne, 1250 atoms

[45, 52]. Once the condensates grow larger than Ner, a sharp reduction in the number of

atoms via a sudden collapse is seen. The functional form of Eq. 3.5 has also been verified

by [53] using 85Rb.

3.3 Dynamics - Local Amplification of Instabilities

Closer study of the dynamics of attractive BEC's have indicated that many processes con-

tribute to condensate decay, including bursts and jets of spin-polarized atoms as well as

invisible loss [54]. The former effect is mainly phenomenological and not well explained by

any existing theory. On the other hand, the latter has been shown to be due to molecule

conversion - i.e. atoms have populated the resonant bound state in the vicinity of the

Feshbach resonance, and likely decayed to more deeply bound states subsequently [55].

We add to the discussion by demonstrating yet another mechanism that contributes to

the loss of zero-momentum condensate atoms. In 2002, Yurovsky pointed out that large

attractive condensates have unstable modes with "imaginary eigenenergies" which undergo

exponential growth [49]. Contrary to the global collapse observed in [541, this amplification

of instabilities, or "quantum evaporation" for short (to borrow a term from the field of

liquid Helium), is a purely local process.

3.3.1 Bogoliubov theory of elementary excitations

Mean-field interactions in a weakly-interacting BEC modify its excitation spectrum and

cause it to deviate from ideal gas behavior. In particular, it couples the different free mo-

mentum states p s, such that they are no longer good eigen-states of the system. Bogoliubov

theory can be used to find the new eigenstates and eigen-energies of the system, which we

outline below:

In second quantized notation, the Hamiltonian for a uniform interacting bose gas system

is

cat U0 t
H- Pap + ý- E ap+qap,_qap (3.6)

p p,p,q



where co = p2/2m and the operators at and ap create or destroy one quantum of excitation

in the free space momentum mode p, q. By performing the canonical transformation

b t = upat + vpa_

bp = upap + va

where
E + noUo ±E(p)2 2 0 5p,7p 2E(p)

the Hamiltonian becomes diagonal again in the new Bose operators bt and bp, with eigen-

energy

e(p) = L( 2noUo + l) (3.7)2m 2m
The "good modes" bt and bp are now superpositions of the free particle operators at and

ap. For each free momentum state p = 0, the ground state population (atap) is finite, and

given by v2 (see Appendix B). This occupation of non-zero momentum states in the ground

state of an interacting BEC is known as quantum depletion.

3.3.2 Qualitative predictions

From Eq. 3.7, we can deduce most of the qualitative results from a few basic principles.

Exponential growth of unstable modes

Imaginary e(p) exist for all negative Uo, given arbitrarily low momentum p. For these

modes, the time evolution governed by exp[iE/ht] goes from stable oscillatory behavior to

exponential growth as Uo becomes more negative.

Number squeezing

Momentum conservation demands that the increase in atom number in each +p mode be

accompanied by a corresponding increase in each -p mode.

Depletion of the condensate

The zero momentum state condensate is increasingly depleted due to number conservation.
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Figure 3-1: (Color in electronic version) Panel (a) shows the dispersion relation (Eq. 3.7)
for U > 0 (red), U = 0 (green) and U < 0 (blue) plotted in dimensionless energy and

momentum units (E = 9, = - , c = ). Dashed line shows the asymptotic form for
U > 0, where the extrapolation down to p = 0 shows an energy offset equal to U. When
U < 0, there exists real eigen-energies only for P > 2. Panel (b) shows the behavior of jig(5)I
when it becomes imaginary. As discussed, all modes with P5 < 2 will grow exponentially.
For a fixed negative a, there exists a mode Ipl which has maximum growth rate.

3.4 Experiment

For a real system, V(r) is never zero. However, the previous formalism still holds as long as

the sample is large and the density does not vary quickly across the length of the sample.

This is valid as long as the interactions U is much greater than the zero-point motion hw

of the atoms (often called the Thomas-Fermi regime [561). The experiment described below

makes use of large sodium BEC's which are well in this limit. The gist of is given in the

publication [50], reproduced here in Appendix A, and only the highlights and some details

will be provided here.

3.4.1 Mode selection

We isolate a single mode for observation in order to obtain a clear signature of quantum

evaporation. Experimentally, it is much easier to change Uo than Ipl, so the condition

for unstable modes becomes |Uo0 > jp12/4mno for fixed Ipl. A small population is seeded

in a low momentum mode p before switching on the attractive interactions, thus favoring

its growth over the others. The growth of the -p mode then provides an unambiguous

visualization of the process (see Fig. 3-3).

A two-photon Bragg process (Fig. 3-2) was used as the seeding mechanism. Two light

beams with momentum kl and k 2 and energy difference hAw are incident upon the atoms
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Figure 3-2: Shown on the left is the dispersion for a BEC with U > 0 (from Eq. 3.7)
together with the energy matching condition for two-photon Bragg scattering. This process
is used to preselect a mode for observation of quantum evaporation. Shown on the right is
the corresponding experimental setup. For clarity, the Bragg beams are drawn as vectors
with infinitesimal width. In actuality, their beam waists were fairly wide and encompassed
the length of the BEC. Effort was made to have Ak = kj - k 2 to be predominantly in the
radial direction of the BEC. For optical access reasons, the orientation of kl was limited to
150 to the long axis.

Figure 3-3: The expected momentum of the
phonon amplification scheme. The appear-
ance of the -p momentum component pro-
vides a clear qualitative signature of quantum
evaporation, and the separation of both mo-
mentum components from the zero momen-
tum condensate makes it possible to quanti-
tatively track its evolution.
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initially at zero momentum. For given p = h(kl - k2), if the energy matching condition

Aw = e(p) is satisfied, then atoms will be transferred from the zero momentum state to

the p momentum state. The duration and intensity of the light beams determine the rate

and selectivity of the transfer, and a large detuning ensures only virtual population in the

excited state. For a more complete description, please see the thesis of Daniel Miller [57]

3.4.2 Direct determination of scattering length

In order to make quantitative comparisons with theory, it was necessary to obtain a very

good measurement of the scattering length in the vicinity of the Feshbach resonance. Tra-

ditionally the signature for Feshbach resonance, inelastic loss did not directly yield a value

for the scattering length, which was rather inferred from calculated widths.

A novel scheme for directly measuring the negative scattering length was implemented

by using a blue-detuned laser that acts to repel atoms via the AC Stark shift (see section

7.2). Fig. 3-4 illustrates how this works. The force produced by the anti-trapping optical

potential compensates for the attractive interaction and helps stabilize the condensate.

From this we can extract the scattering length a:

a oc Fattractive = Frepulsive oc I (3.8)

where I is the intensity of the antitrap. By only assuming the form of Eq. 2.6 and the high

field background scattering length of ao = 3.3 nm [58], the scattering length is completely

determined by the variation of I vs magnetic field for any given field.

3.4.3 Observations

The resulting observation of quantum evaporation (Fig. 3-5) agreed well with theoretical

estimates of the evaporation rate as well as the minimum lal required for instability to set

in.

3.5 Analysis

Here we give details of the analysis not covered in [50]. Ideally, the formal expression for

the evolution of an unstable mode p is given by [49]

p2(p))(t) sinh2 [A(p)t] (3.9)

where A(p) = jc(p)I/h and we have used pt, p to denote the creation and annihilation

operators of the unstable free momentum states at, ap, in line with the notation in [49].

Modifications to this expression due to seeding a small population v2 and initial quantum



Figure 3-4: Absorption images reveal the effect of a blue detuned laser beam on a BEC

with attractive interactions. Accurate alignment was achieved by making sure the atoms

with a > 0 were evenly split after holding in the anti-trap for 2 ms (a). When a < 0, the

application of the anti-trap stabilizes the global contraction of the condensate (b), which

would begin to shrink otherwise (c).

Figure 3-5: Observation of quantum evaporation. Insets show the density profile of a radial

slice through the condensate. In (a), a condensate with a > 0 has been seeded with a
small population in momentum state p. In time-of-flight, atoms in state p move out of the
condensate in a predominantly radial direction. In (b), the interactions in the condensate
has been switched to a < 0 after seeding momentum state p. Now ±p components are seen,
with higher population than the initial seed in the +p momentum state.



depletion of the condensate can be obtained by evaluating (v2 1I(t)p(t) Ip( 2), beginning with

the previously derived time-evolution of the annihilation operator (see Appendix B),

d(p) Up(t) = (cosh[A(p)t] - i sinh[A(p)t])(p(O) - i sinh[A(p)t]tP(0) (3.10)

where the detuning d(p) = (2 + U)/h and the coupling is given by U/h.

3.5.1 Seeding

In this case, the mode p has initial population v2 with all other modes having population

zero:

(v2 I(t) p(t)Iv 2) = cosh2[A(P)t] + (d(p) sinh[A(p)tl) 2) 2 + sinh 2 (At)
P A(p) sinh[2,pjt] + • sinh2(At)

= v2 1 + sinh2 (At) + sinh[A()t] )2 + sinh2 (At)

1 + A2(p) sinh2 (At) v2  2(p) sinh 2(At)

U 2

= v2 + (2 + 1) h2  sinh2(t)2 2(p)

Note that A2(p)+ d2(p) = U2/h 2 . As expected, the rate of growth does not change. Instead,

there is merely an offset corresponding to the initial seed population, and an enhancement

of the population in the seeded mode vs. unseeded modes by a factor (v2 + 1).

3.5.2 Quantum Depletion

The effects of quantum depletion is more complicated, since now all modes are initially

populated. Since all the modes are also coherent, the phase correlations can interfere either

constructively or destructively to affect the evolution. We simulate the effect of quantum

depletion in Fig. 3-6 using our experimental parameters and include the full calculation

in Appendix B. We see that the growth of the unstable mode actually slows down due to

quantum depletion.

However, the total fraction of quantum depleted atoms in a BEC with density no can

be estimated by 77o = 1.505y¶a [25]. For our parameters, this gives a quantum depleted

fraction of 0.5 . 1%, and we conclude that its effect is negligible.
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Figure 3-6: (Color in electronic version) Solid (red) curve shows the exponential growth
of a mode p with finite initial population due to quantum depletion. Dashed (blue) curve
shows the growth without quantum depletion (Equation 3.9).

3.5.3 Contribution to condensate decay

Finally, we place quantum evaporation in context amid the other decay processes by con-

sidering their respective time scales. In particular, we will compare it to global collapse.

Since the rate of quantum evaporation is a predominantly local effect, we expect that it

will dominate when the condensate is large enough for the Thomas-Fermi approximation

to apply. Conversely, if the condensate is small, the local description is invalid and global

collapse occurs. This is also supported by our observations.



Chapter 4

Quantum Degenerate Fermions

The rest of this thesis will focus on work done with ultracold fermions and this chapter

gives a brief overview of the quantum degenerate fermi gas.

4.1 Non-interacting spin-polarized gas of fermions

To a very good approximation, a spin-polarized gas of ultracold fermions is non-interacting,

since Pauli-exclusion forbids their interacting via symmetric s-wave collisions and higher

partial wave scattering is inhibited due to the low energies. This makes theoretical calcula-

tions simple and exact.

4.1.1 Zero temperature description

At T = 0, the expression for Fermi energy and distribution for an ideal Fermi gas may

be derived from the fully-filled Fermi sea distribution function: f(r, p) = 1 if p • PF (or

equivalently if Etotal(r, p) < EF) and is zero otherwise. In a harmonic trap with spherical

trapping frequencies wx,y,z = w, all distribution functions can be derived from the pair of

equations

h2k()2m + 2mwx? = EF (4.1)

d3 k
n(r) = (2) f(r, p) (4.2)

<kF (2xh)

Then the spatial distribution n(r) and the local Fermi energy E(r) defined in terms of the

local Fermi wavevector kF(r) becomes

n(r) = 2 kF(r)3 (4.3)



=F1 - 2s(3/2 (4.4)

where (4.5)

EF(r) F(r)2  (4.6)
2m

EF- V(r) (4.7)

Eq. 4.4 is known as the Thomas-Fermi distribution where EF is the Fermi energy. For a

total number of particles N, EF only depends on the number of fermions and the trapping

potential as

N = d3rnF(r) (4.8)

1(EF 3 (4.9)

or alternatively, EF = (6N)'/3 hY, corresponding to kF = /2mEF/h 2 at the center of

the trap where V = 0, and the spatial extent of the cloud in the trap is given by the

Thomas-Fermi radius Ri = 2. . For a homogeneous system, the local Fermi energy and

wavevector is just EF and kF.

4.1.2 Finite temperature

For a finite temperature analysis of the properties of a non-interacting Fermi gas, we turn

to Fermi-Dirac statistics. In a semi-classical description, the Fermi distribution function in

a harmonic potential can be written as

1f (r, p) = (4.10)exp[l(p2 /2m + Vho(r) - p)] + 1

where 3 = kBT, p is the chemical potential and Vho = E 1/2mw2r2 . The spatial distribution

is given by integrating over the momentum p, giving

n(r) h dp f (r, p) (4.11)

= 1 -PolyLog(3/2, -e(y-V(r)/kBT)) (4.12)
dB

where (4.13)

PolyLog(n, A) = d2n  1 (4.14)
r J" er2/A _- 1

is aa standard integral, and AdB = ih is the de Broglie wavelength. The total number

of particles may be recovered by integrating over the remaining spatial coordinates, giving



N = d3rn(r) (4.15)

Using a convenient property of the PolyLog functions,

J PolyLog(n, Ae- x2) = +/iPolyLog(n + 1/2, A) (4.16)

the total number of particles may be expressed as

N = kBTw ) PolyLog(3, -eI/kBT) (4.17)

When T -- 0, there is no drastic change in the distribution function. Instead, it smoothly

interpolates from a classical gaussian shape to a PolyLog function before finally reaching

the Thomas-Fermi profile (Eq. 4.4) at zero temperature.

4.1.3 Time of flight

By definition, a non-interacting gas expands ballistically in time-of-flight. The spatial dis-

tribution can then be obtained by making the substitution

xi(t) - xi() (4.18)
± + wt 2

V
V -+ (4.19)

leading to an expression for the spatial distribution n(x, t)

n(x, t) 1 1 PolyLog3/2 (-e-(V-_)) (4.20)
dB 1 ±3d + t2

4.2 Interacting two-component fermions

When we have a mixture of fermions in two different spin states, s-wave scattering between

them is permitted, and we have to include interactions. Of these, attractive interactions

are the most interesting since they give rise to pairing. For convenience, the two different

spin states are often referred to as spin-up (T) or spin down (1). For repulsive interaction,

the qualitative behavior in the bulk phase does not change even at zero temperature.



4.2.1 Weak attractive interactions - BCS state

For weak interactions where the range of the interactions a is much smaller than the inter-

particle spacing n - 1/3, the ground state of the system can be solved [59] and corresponds to

the famous BCS state first introduced to describe superconductivity. It turns out that the

three-dimensional Fermi sea is unstable even against the weakest attractive interactions,

preferring to form bound states (Cooper pairs) with exponentially small binding energy.

The pairs can then Bose-condense at a critical temperature given by

Tc 0.28TFe r/ 2kFa (4.21)

This superfluid Fermi gas exhibits frictionless flow, due to the presence of a finite gap Agap

in the single-particle excitation spectrum

e(k) gap + [hF(k - k)]2  (4.22)
where (4.23)

Agap 1.76kBTc (4.24)

For realistic values of kFa, the transition temperature for dilute gases quickly becomes very

small, making observation of the true BCS state difficult.

4.2.2 Strong interactions - Unitarity

One obvious solution is to increase kFa. Naively, we would expect Tc to approach 0.28TF

when 1/kFa tends towards zero. However, when a diverges in the vicinity of a Feshbach

resonance, the gas is no longer weakly interacting and standard derivations of BCS theory

are no longer valid. On resonance, a greatly exceeds all other length scales in the problem

and the only length scale left is the interparticle spacing n- 1/3 . This is known as the

unitarity regime.

Within this regime, the corresponding energy scale must be the Fermi energy EF =

T2 (61r2n). The chemical potential of the gas is then EF times a universal constant:

P = eCF (4.25)

Calculations of ý [60] are being constantly refined as new measurements are made [61, 62, 63],
but it is approximately

( 0.45 (4.26)

In a harmonic trap, the spatial distribution of the cloud in the unitarity regime again must
have the Thomas-Fermi profile (Eq. 4.4) except now we substitute in the chemical potential



p for the total energy EF. Then the Thomas-Fermi radius becomes RTF = N/2 l/mw2 and

normalization to the total number of particles yields

A = V1EF (4.27)

where EF is again the non-interacting Fermi energy (6N)1/ 3hw. The expression for peak

density in the Thomas-Fermi profile becomes

no = 62 )2/ (4.28)

1 2rNEF) 3/ 2  
(4.29)

A similar argument can be used for the critical temperature in the unitarity regime,

asserting that

Tc = aTF (4.30)

where a is also a universal dimensionless parameter. Without knowing its precise value,

this linear scaling with TF is already a vast improvement over the exponential suppression

with 1/kFa in Eq. 4.21. Experimental observations of condensates in the unitarity regime

have placed a to be - 0.2 [14].



Chapter 5

Experimental Setup for cooling 6Li

When the focus switched to studying fermions in optical lattices in 2004, there were already

many indications that 6Li would be a good choice. In 2003 - the "Year of the Molecules"

- one group after another had successfully obtained fermionic pair condensates [13, 14]. In

all these studies, the seconds-long lifetimes of 6Li condensates stood out. The only other

fermionic species cooled to condensation, 40K, had much shorter lifetimes of milliseconds

[10]. The longer lifetimes allowed for more efficient cooling, and 6Li pair condensates with

T/TF < 0.05 were routinely obtained.

In addition, a 23Na -6Li machine had previously been constructed in a neighboring

lab (BEC I) with great success [64, 65, 66, 44], and significant in-house expertise had

accumulated. This chapter documents our building effort, highlighting peculiarities specific

to our machine and provides some useful technical information.

5.1 Light

5.1.1 Power and Frequency Requirements

In laser cooling and trapping (6Li ), all optical power considerations begin from the sat-

uration intensity (2.5 mW/cm2), while frequency considerations stem from the D2 line

cycling transition (671.977 nm) and excited state linewidth (6 MHz). More specifically,
the linewidth of the laser needs to be significantly less (< 1 MHz) than the excited state

linewidth, and actively locked to the atomic transition.

Additionally, the total desired power is determined by the frequency generation design.

We list our requirements below:

1. The MOT is formed from 6 independent beams each with radius 1 cm 2. The indepen-

dent beam setup mirrors our 23Na MOT setup, and allows for easy MOT optimization.

Similarly, the large 6Li beam size matches the beam size for 23Na .



Power (mW)

MOT 6xirx(1 cm) 2 x 2.5 = 45
Repump 45
Slower 30

SubTotal 120

Pre-optical fiber (50%) 240
Pre-switching AOM's (80%) 300

Pre-Locking setup + Misc. Inefficiencies (10%) 350

Total power needed > 350

Table 5.1: Power needed from a 6Li laser source. Efficiencies of various stages are indicated
in parentheses.

2. An equal amount of repump and MOT light is needed. Unlike 23Na , repumping 6Li is

difficult due to its unresolved excited state (see Fig. 5-2). Because of this, repumping

light up to the saturation intensity is needed in all 6 MOT beams.

3. Light delivery to the MOT is decoupled from the laser output and frequency generation

table via polarization maintaining, single-mode optical fibers.

4. Acousto-optical modulators (AOM's) are used for fast switching (< 1ps).

5. 15 mW of light is needed for stable frequency locking using pump-probe spectroscopy.

Enough power is needed to obtain saturated absorption features.

These considerations are summarized in Table 5.1 and gives a total power requirement

of > 350mW.

5.1.2 Possible laser systems

The possible laser systems considered were:

Distributed low power sources

In a so-called "master-slave" configuration, light from a frequency-locked, low power source

(master) is divided up and frequency shifted before acting as a reference for several higher

power diodes (slaves). The maximum power obtainable in any one beam is then determined

by the power of a single diode. This was the scheme previously used in a separate lab within

our group.

However, the availability of high power (50-100 mW) slave diodes is driven by com-

mercial demand (e.g. DVD manufacturers), and fluctuates greatly. As diode technology

improved, the available wavelengths kept shifting lower, as shorter wavelength light meant

that the density of encoded data could be pushed higher. Wavelengths fell below 671nm, to



peak at about 660 or 650 nm. While heating the laser diodes could shift the lasing frequency

by a few nm's, shifting by >10 nm caused too much instability. After testing numerous

diodes, we concluded that their performance was inadequate. Moreover, a known problem

with multiple slaves was that the probability of any one of them becoming unlocked in a

given time period goes up rapidly with the number of slaves.

High power sources

Ideally we would like a single high-power source, capable of hassle-free operation for hours

at a time. Options considered include

* Tapered amplifier

This system derives its frequency characteristics from a diode where the linewidth has

been narrowed by active feedback. Power is then boosted by injecting the light into

a tapered amplifier. One such system was the TA100 with initial power estimates

of 250 mW from Toptica Photonics. Though the power was somewhat low for our

purposes, it could have been made to work in combination with one slave diode, but

finally indefinite delays in the fabrication of the amplifier chip forced us to consider

alternatives.

* Frequency doubled solid state laser

Another intriguing option is a solid state, frequency doubled red laser. The Nd3+

ion has a secondary lasing line near 1338 nm, which could be temperature tuned to

1343.95 nm, the fundamental wavelength for frequency doubling to 671.977nm (see

Fig. 5-1). In principle, such a laser would provide turn-key operation, good stability

and a TEM (0,0) mode.

Crystalaser had some initial success developing this laser in consultation with us. By

pumping a NbVO 4 crystal at 808 nm and intracavity doubling with an LBO crystal, a

preliminary model lasing at 671 nm with 250 mW of power and sub-MHz bandwidth

was obtained. Upon testing however, some problems with the continuous frequency-

tuning of the laser were discovered. Ultimately, this scheme was also not adopted,
although further development could yield a viable model in the future.

5.1.3 Final choice - Dye laser

The final selection of a 699 Coherent Ring Dye laser model was meant to be a temporary
solution until better solid state options became available. It ended up staying in place for
over two years, until a tapered amplifier system was successfully developed and substituted
in (see the undergraduate thesis of Widagdo Setiawan [41]). While no longer in place, the



Figure 5-1: Energy levels and the first three
IE lasing lines of Nd3 + ion. Strongest emission

E O comes from the 1064 nm line, followed by
%0 emission on the 1319 and 1338 nm lines, both

with a factor of 5 lower stimulated emission

cross sections [67]. In order to have sustained
113/2 CW emission on the 1338 nm line, the other

two have to be suppressed.

dye laser system was used to obtain most of the results reported in this thesis, and I will

give a brief description of its operation here. This may also come in useful if an auxiliary

tunable red light source is needed for future experiments.

* Dye recipe (courtesy of John Thomas): ig LD688 dissolved in 1 liter of 2-phenoxy-

ethanol (EPH) and ultra-sounded overnight, since the dye is only slightly soluble in

EPH. Both can be obtained from Exciton Inc, and EPH is additionally available from

Penta Manufacturing (preferred).

* Pump laser: For good conversion efficiency, the pump should be close to in frequency,

but have higher energy than the output. In addition, the transverse spatial mode of

the pump beam also has to be perfectly Gaussian. Limited high power options lead

to a common choice of green light for the pump. Initially, we used an old Coherent

Innova 100 Argon-ion laser. However, a sagging filament in the aging ion tube resulted

in a deformed transverse mode and frequent pointing shifts. A newer model of Ar-ion

laser - the Saber TSM-15, encountered similar problems. Finally, a solid state Millenia

X system from Spectra-Physics with 10W of output power at 532 nm was used.

* Alignment: The high viscosity of EPH meant that the jet stream was fairly thick.

In addition, the 699 model had old and poorly designed mirror mounts, resulting in

a laser that was very difficult to align and optimize. The tweeter mirror focus was a

particularly sensitive knob. Small changes could result in dramatic improvement in

power and mode.

* Frequency noise: Initially, the dye laser exhibited frequency noise at 60 Hz. When

viewed on a 300 MHz scanning Fabry-Perot cavity, the sub-MHz linewidth of the light

was seen to break up periodically. This noise could also be seen directly - with the

laser locked to the reference cavity, the error signal showed jagged structure at 60 Hz.

The problem was finally solved by replacing the aging electrolytic capacitors (10mF)

that filtered the AC power input.



2 P3r2

D2-line
670.977 nm

2 Sin

1.7 MHz F='1/2
./L = r=6MHz
5/2

F=3/2

1/2

Figure 5-2: Level structure of 6Li and the frequencies needed for slowing and magneto-optic
trapping. The excited states of 6Li are not resolved, which makes it difficult to repump
6Li atoms from the F= 1/2 manifold.

Dye laser performance

In the end, we managed to obtain a relatively stable, high power light source. The laser

had sub-MHz linewidth, good transverse mode and produced up to 500 mW of power.

5.1.4 Frequency generation scheme

The physics of slowing a hot atomic beam and magneto-optic trapping has been treated

extensively elsewhere [68]. Here I summarize in Fig. 5-2 the concrete frequencies needed for

trapping and cooling 6Li , and outline our scheme for generating it in Fig. 5-3. Generally,
acousto-optic modulators (AOM's) were used to shift frequencies, save for the sidebands on

the slower, which were generated using an electro-optic modulator (EOM). An optics table

layout is also provided in Fig. D-3.



Note: all frequencies quoted in MHz

Figure 5-3: Frequency generation of the light required for cooling and imaging 6Li atoms and
molecules. Rectangles represent frequency shifters. The frequency of the slowing manifold
was determined by the detuning of the Zeeman slower at the oven, while the 3/2 and 1/2
manifold provided the MOT and repump light respectively. They also provided the light
needed for imaging atoms in both hyperfine states, tuned by a double-passed 80 MHz AOM.
The optional use of an additional double-passed 500 MHz AOM in the 3/2 manifold made
it possible to image atoms at high magnetic fields.



5.2 Vacuum

The vacuum system is similar to that previously developed by Claudiu Stan [69] (see Fig.

D-1). Two separate alkali reservoirs are used, each heated to a different temperature (420

OC for 6Li and 350 OC for 23Na ) to enable independent tuning of the two vapor pres-

sures (2.5 x 10- 4 mmHg and 8x 10-2 mmHg respectively). The two alkali species were then

overlapped by passing them through the same nozzle.

An additional stage of differential pumping was also added between the oven and the

main chamber where our experiments are conducted. It consists of an intermediate chamber

pumped by an ion pump and sandwiched between two low conductance differential pumping

tubes. Before, we had less than 3 orders of magnitude of differential pumping. After, the

sustainable pressure differential rose to 4 orders of magnitude. In the worse case scenario,
we could run the experiment when the oven pressure was in the low 10-6 Torr.

5.2.1 Baking out

Due to multiple gate valve failures, the main chamber had to be vented a number of times

over the years and we have accumulated quite a bit of vacuum lore. As a benchmark, I

include here a log of how the pressure typically comes down during a bake of a clean system

after a controlled vent with Argon gas with 5.0 (99.999%) purity.

Fig. 5-4 was recorded after a sodium change, performed when the main chamber could

not be fully isolated from the oven due to a gate valve failure. However, the intermediate

gate valve (IGV, second from the main chamber, see Fig. D-1) was still closing though not

sealing. The vent was therefore done with the main chamber filled with Ar gas and the

IGV closed, resulting in a very low conductance to the oven when it was opened and the

sodium reservoir refilled.

The log starts after the system has been pumped on for several hours by the turbo pump

mounted in the oven and the temperature of the bake had stabilized. This bake consisted

of heating the whole vacuum system to a temperature between 100 and 150 degrees Celsius,
the ion pumps in the main, slower, and intermediate chamber running and the intermediate

gate valve closed. After three days of baking, the system was cooled and the titanium
sublimation pump in the main chamber brought the pressure down to operating levels.

5.3 Cooling of fermionic 6Li

The actual cooling procedure has been extensively described in multiple theses from this
group and I will only give a brief description and include relevant experimental parameters.
For details, please refer to [70, 12].
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Figure 5-4: Pressure log of our vacuum system during a gentle bake (see text). Dashed
line A indicates when the oven temperature (set high during the bake) was turned down,
leading to a drop in the oven pressure. B indicates when the ion gauges were degassed, the
turbo pump in the oven was valved off and the ion pump started. Between B and C, the
IGV was opened, causing a spike in the intermediate chamber pressure. C marks the time
we began cooling down the whole system, and the log ends when the pressure in the main

chamber has fallen to the 10-10 Torr range and the Titanium sublimation pump was fired.
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Figure 5-5: (Color in electronic version). Magneto-optically trapped 6Li atoms.

5.3.1 Sympathetic cooling

Optical cooling of individual atoms is limited by the momentum "kick" that each atom

experiences when they re-emit the absorbed photon in a random direction [68]. This "recoil

limit" can be estimated by setting it equal the recoil energy kBTr = "h 2k2/2m. Typically,

this is on the order of a few pK. This is still far away from the BEC temperatures, which

are in the nK range for dilute gases.

While some tricks can be played to achieve sub-Doppler cooling using lasers, the most

robust form of further cooling is a form of evaporation. By ejecting the more energetic atoms

from the sample, the average energy is lowered. The key to cooling here is the interatomic

interactions - elastic collisions are needed to rethermalize the sample and drive the system

to a lower entropy state. If there are no interactions, the number of atoms in the low energy

states will not be increased even as the hot atoms leave.

For spin-polarized fermions, this is a problem since low-temperature (s-wave) collisions

are forbidden by the Pauli exclusion principle. One solution is to cool fermions by placing

them in thermal contact with bosons. At the cost of additional complexity, fermion number

is conserved as only bosons are evaporated. Given our existing 23Na BEC machine, this

was the most natural choice.

Our scheme for sympathetic cooling follows closely the method reported in [70] and is

summarized in Fig. 5-6. We start with a dual-species MOT obtained by first loading Li

atoms (see Fig. 5-5) for 10 to 15 s before loading Na atoms for another 1 to 2 s. Hyperfine

state selection using optical pumping then takes place for a few hundred tts during time-of-

flight from the MOT before the atoms are loaded into the magnetic trap. If both 6Li and
23Na are in their doubly polarized states ((3/2, 3/2 for 6Li and (2, 2) for 23Na ), the spin
mixture will be stable against spin-exchange collisions since there are no distinct pair of
states with the same total spin. Initially, the trap is fairly weak, with a high bias field of
80 G. This ensures good separation between the different hyperfine states of Na (see Fig.
5-7), allowing for additional optical pumping followed by a microwave field sweep to fully
eliminate population in the other magnetically trappable (2, 1) state. The trap is then



Optical pumping

0cr

Dual species MOT

Na Li F'
F'=2 -----

F=2- F= 3/2
F=1 1L F=1/2

* ,
*0l~r

Catch in magnetic trao

Forced microwave
evaporation of Na

Figure 5-6: (Color in electronic version). The stages of sympathetic cooling. Atoms slowed
by a Zeeman slower is loaded into a two-species MOT. Optical pumping of both 6Li and
23Na using o+ light transfers atoms into the fully stretched state, before they are caught in

a magnetic trap. Forced microwave evaporation of hot 23Na atoms lowers the total energy,
and rethermalization cools the remaining 23Na and 6Li atoms.
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Figure 5-7: Shown on the left is the hyperfine structure of 23Na as a function of magnetic
field. Evaporation takes place in the F = 2, mF = 2 hyperfine level by microwave transfer
of the energetic atoms to the untrapped F = 1, mF = 1 hyperfine level. The result is
a BEC of 23Na atoms in the (2,2) state, shown right in an absorption image taken after
20 ms time-of-flight. The condensate displays clear bimodality of the density distribution,
where a diffuse thermal cloud is seen to surround the much denser central condensate core.
The total number of condensed atoms is about 10 million, and the trapping frequencies are
VX,y,z = (110, 110, 26) Hz.
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adiabatically compressed by lowering the bias field down to a few gauss once evaporation

commences for fast rethermalization.

A microwave transition resonant with the untrappable (1,1) state of 23Na and far detuned

from all possible 6Li hyperfine transitions is swept from 1.95 to 1.77 GHz in 11s to eject

hot 23Na atoms. To obtain a maximally degenerate Fermi sea, all the 23Na atoms are

evaporated away.

F=2 BEC

The amount of cooling possible with this scheme depends on the size of the 'refrigerant'.

The larger the heat capacity of the refrigerant, the more 6Li we can cool and the colder it

will be. Fig 5-7 shows an absorption image of our F=2 BEC, which contains a respectable

10 million atoms. The size of the condensate in the upper hyperfine state is unsurprisingly

smaller than that prepared in the lower hyperfine (1, -1) state, since now the atoms are

no longer in the absolute ground state and losses are worse. It is useful to note that since

the sodium dye laser is locked close to the D2 line, the evaporation process is very sensitive

to scattered light from the neighboring laser table. Care was taken to mask off all light,

particularly if there were any beam paths that could inadvertently collect scattered light

and direct them at the main chamber.

Quantum degenerate Fermi sea

At the end of sympathetic cooling we obtain a quantum degenerate sample of spin-polarized
6Li fermions. Fig. 5-8 shows an absorption image of the cold Li cloud taken after ballistic

expansion. Around 15 million Li atoms at a temperature of 0.26 TITF are obtained.

5.3.2 Cooling near a Feshbach resonance

Close to a Feshbach resonance, two fermions with opposite spin can pair up and populate

the bound molecular state with energy close to the open channel energy. Since the resulting

composite bosons are quite robust (see Chapter 2), they open up a further avenue for

cooling - the composite bosons can be directly evaporated to below the critical temperature

for Bose-Einstein condensation.

The hyperfine structure of 6Li is shown in Fig. 5-9 as a function of magnetic field. The

various stages involved in cooling are marked from a to f. After sympathetic cooling, we

load about 10 million degenerate Li atoms into a tightly focused optical trap (TOT) (a).

Using a microwave pulse, we transfer the Li atoms into the lowest hyperfine state (b) before

ramping up the magnetic field to 822 G (c), close to a broad Feshbach resonance at 834 G.

In its vicinity, interactions can be made very strong, allowing for efficient evaporation. A



Figure 5-8: (Color in electronic version) Quantum degenerate sea of spin polarized 6Li atoms
after 9 ms time-of-flight. The twice-integrated density profile is shown on the right (red
jagged curve), fitted to the expected density profile according to Eq. 5.1. Fit parameters
yield a temperature TITE of 0.26. A gaussian fit to the same density profile yields a X2-
squared value that is still low, but twice higher, in accordance with the expectation of asmooth transition into quantum degeneracy.

very shallow crossed dipole trap with beam waists of about 60 microns (COT) and depth
of ; 3pK is also turned on at the same time in order to "catch" the 6Li 2 pairs as they
cool. A 1 MHz wide, non-adiabatic radio-frequency sweep around 80 MHz transferred
50 % of the atoms into the (1/2, -1/2) state (d), and after waiting 100ms for the atoms
to decohere, we directly evaporate the two component mixture, by lowering the power of
the TOT. As the atoms cool, they pair (e) and thermally populate the bound molecular
state. Below a critical temperature, the fermion pairs Bose-condense. We lower the optical
potential logarithmically for 500 ms before switching off the TOT, leaving all the atoms in
the COT. Further evaporation for 200 ms in the COT to a depth of 1.7 yK ensured the
lowest temperatures. Absorption imaging after ballistic expansion is done at 730 G on the
atomic line (f).

Shaping magnetic fields

By themselves, the Feshbach coils anti-confine the 6Li atoms in the relevant hyperfine states
along the trap axis [40], also the weakly confining axis of the TOT. Additional curvature
has to be provided by the pinch coils. Radial gradients are compensated for by running
current in the nulling coil, and by placing the optical trap in the position where gravity
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Figure 5-9: Hyperfine structure of 6Li at different magnetic fields. Picking up from where
sympathetic cooling left off, the stages for cooling near a Feshbach resonance are indicated
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cancels out any remaining vertical gradients. In the end, we managed to create condensates

in a very localized region where all field gradients were zero even with imperfect magnetic

field coils.

5.3.3 6Li 2 pair condensate

The first observation of a 6Li2 condensate was actually done without transfer into the COT,
and is shown in Fig. 5-10. Ballistic expansion followed by absorption imaging reveals the

momentum distribution characteristic of a BEC. Implementation of the COT with its nearly

spherical trapping frequencies came later, necessitated by mode-matching considerations

with the three-dimensional optical lattice. The form of the density profile does not change

with the COT and we obtain about 200, 000 Bose-condensed 6Li 2 pairs. This is the starting

point of all our experiments on fermions in optical lattices.

Lifetime

We investigated the lifetime of the first pair condensate obtained in the COT (Fig. 5-11).

The decay is well fitted by a double exponential with decay times -r = 67ms and T2 = is

respectively. While the observed lifetime is rather short relative to previously reported

lifetimes of 10 s [14], it is nonetheless sufficiently long for the experiments documented in this

thesis. The reason for its brevity is most likely misalignment of the two component beams

of the COT relative to each other. A second possibility is the presence of magnetic field

gradients due to the imperfect Feshbach coils (see Chapter 2). Subsequent improvements to

the alignment and magnetic field shaping extended the lifetime to approach several seconds.

5.4 Fitting formulas

From Chapter 4, we have all the information we need to evaluate our cooling of 6Li . For a

quantum degenerate Fermi sea e.g. Fig. 5-8, the spatial distribution of the twice-integrated

density profile is given by [44],

(x - xo) 2
n(x) = nPolyLog5/2 R• ln(1 + A)/A x (1 + A)] (5.1)

where A = exp[,u3] is a fit parameter. The first integration is done automatically when we
image, and the second integration is done during the analysis.

From this, we can extract the temperature T/TF from A using the relation

(T )3 1 1

(T 6 PolyLg(- ~) (5.2)
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Figure 5-11: Lifetime of pairs in the crossed-dipole trap. The decay is fit to a double
exponential with two characteristic time scales, T1 = 67ms and T2 = is. For this data,
the background pressure was 1.1 E-10 Torr, and the trapping frequencies of the COT were
vZ,v,z = (95, 97,135)Hz. Error bars show the standard deviation of 5 data points, and last
3 points were excluded from the fit due to slight differences in the condensate production.



derived from equating the two different expressions for N, Eq. 4.9 and Eq. 4.17. Note

that this extraction of temperature depends solely on the shape of the cloud, and does not

require previous knowledge of TF.



Chapter 6

Effects of Strong Interactions

This chapter examines in greater detail the key obstacle to observing phase coherence of a

fermi superfluid in an optical lattice. A highly abbreviated version is included in Appendix

E, but due to space constraints much of the material had to be edited out. Here we present

in full the discussions at the time.

In the course of seeking a signature of a superfluid Fermi gas in an optical lattice,
the question arose as to whether or not the standard signature - sharp interference peaks

during time-of-flight expansion - would indeed be observable. This observation relies on

ballistic expansion, where atoms freely expand with their initial momentum, such that

an absorption image after long time-of-flight yields a snapshot of the initial momentum

distribution. For this description to hold in real systems, scattering events arising from

interatomic interactions have to be minimal. For strongly interacting fermions, the fear

was that collisions would redistribute momentum during the expansion and smear out all

evidence of distinct components before they had a chance to separate out.

Interference was first used to prove the existence of a macroscopic order parameter in

a BEC [71] and has since become a standard tool in investigations of BECs. However, it

had never previously been observed in a fermionic superfluid system. Thus far, proof of

the superfluid nature of the Fermi gas have instead been obtained through observations of

anisotropic expansion and condensate fraction inferred from a characteristic density profile

in the low-collision limit [13, 14], observation of the pairing gap [721, and the most conclu-

sively through the observation of vortices [73]. With the possible exception of [73], none of
them required ballistic expansion.

6.1 The Nature of 6Li Pairs near the Feshbach resonance

To predict how the composite bosons would behave in free expansion, we take a closer look
at their nature. The Feshbach resonance of 6Li at 834 G is a broad resonance - i.e. one
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Figure 6-1: This figure shows in greater detail the behavior of the binding energy (solid line)
on detuning near a Feshbach resonance. The true resonance position is shifted from the
crossing of the bare molecular state Im) (slanted, dashed line) with the atomic continuum
states la) (horizontal dashed lines) due to strong coupling. Far away from the resonance,
the pairs are tightly bound and are almost purely molecular in character. Close to the
resonance however, the pairs are loosely bound and there is a strong admixture of atomic
character.

that satisfies

kFIR*I << 1 (6.1)

where the effective range of the interaction IR*| is proportional to the inverse width of the

Feshbach resonance. This implies that the effective range is unimportant at the many-body

level, and macroscopic properties of the gas only depend on the dimensionless parameter

kFIal. For the rest of this thesis, 1/kFa, also known as the interaction parameter, will be

used to parameterize our location within the strongly interacting regime.

Other notable characteristics of these composite bosons include

Binding energy Close to resonance, the binding energy of the pairs is

h
2

Eb = 2 (6.2)
ma

Fig. 6-1 shows how it varies close to the resonance.

Size From Eq. 6.2, the size of the two-body bound state is just the scattering length



a. However, in a many-body system, a can become larger than the interparticle

separation n- 1/3 and therefore ceases to be a relevant length scale. The pairing then

becomes mediated by the many-body physics, and the size of the pair is rather given

by n - 1/3

Atomic character Since the coupling is not diagonal in la) and Im), the solution 'i) to the

coupled problem HIe) = El') generally comprises of a superposition of both atomic

and molecular states. Due to the unusually strong coupling for 6Li , the estimated

fraction of molecular character close to resonance is actually less than 1% [74]. The

large shift in Fig. 6-1 in the resonance position is also a direct result of the coupling

strength. Experimentally, this property is exploited when we image the molecules on

the atomic transition close to resonance.

6.2 Collisions in Unitarity-Limited Fermi Superfluids

When 1/kFa < 1, we enter the strongly interacting regime and a falls out of the determi-

nation of scattering amplitude. Eq. 2.4 instead becomes

4r
S= (6.3)

1/kF is in turn on the order of interparticle spacing n - 1 /3 , in keeping with our initial

expectation.

In its simplest case, we would like to understand how a unitarity-limited superfluid

Fermi gas with two distinct and well separated momentum components (Ap on the order

of Fermi momentum PF) expands. There are two ways to think about this. As we shall see,

they are consistent with each other and result in the same observable behavior.

6.2.1 Collisions in a two-component Fermi gas

The strong admixture of the atomic channel in the paired state suggests that we can ignore

their bosonic nature and just treat the problem as that of a two-component, strongly inter-

acting Fermi system. In this case, it has been well established that the high elastic collision

rate can give rise to classical collisional hydrodynamics, independent of pairing. Quantum

statistics play a part only if there are no empty states for the fermions to scatter into and

collisions are therefore Pauli-blocked [75].

The effect of collisions on the phase space distribution f(x, p, t) can be calculated from
the Boltzmann transport equation [76]

Of Off + v x = ro l[f] (6.4)at 09x
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Figure 6-2: Collisions in a two-component Fermi gas in momentum space. Assume that the
two components have equal distributions and are labeled with p and q. In (a), there are
no empty final states in an isotropic, filled Fermi sea for particles p and q to scatter into.
(b) shows two filled Fermi distributions (say distribution A and B) with central momentum
Ap -= V2mEF apart. Within the gray area, particles from A (e.g. p) can always collide
with a particle from B (e.g. q) into initially empty final states (p' and q').

where v = p/m and ,,co[f] is the collision integral. The collisions act to restore local
equilibrium, and for sufficiently fast collisional relaxation, would always drive the system
towards an isotropic momentum distribution, leading to the hydrodynamic equations. Col-
lisional hydrodynamics is responsible for the anisotropic expansion of a strongly interacting
Fermi gas [61], where the deformation of the Fermi surface in time-of-flight opens up avail-
able states for scattering. As Fig. 6-2 illustrates, the situation we are investigating starts
out already highly anisotropic. No time is needed before the atoms begin to collide and
redistribute momentum.

6.2.2 Collisions in a BEC

Alternatively, we could choose to ignore the underlying fermionic nature of the superfluid
6Li2 pairs and instead treat them like a regular BEC, keeping in mind the unusually strong
interactions. In that case, they should evolve according to the Gross-Pitaevskii equation
3.3, where the dimer-dimer scattering length has been calculated to be add _ 0.6a [77].

Collisions between weakly interacting BEC's with high relative momenta have been
discussed in the literature [78], and observed [79]. It can be treated by incorporating the
next highest k term in the scattering amplitude, and re-writing the non-linear coupling



Figure 6-3: The effect of collisions on ballistic expansion. (a) shows a time-of-flight image
of a sodium BEC with 5 momentum components, 0, ±2hk and ±4hk. s-wave halos can be
seen between neighboring momentum components, most prominently between 0 and each
of the ±2hk momentum components. Faint second order s-wave halos between the ±2hk
components can also be seen. (b) In the case of strongly interacting fermions, multiple
collisions result in the smearing out of any distinct momentum components.

constant Uo in Eq. 3.3 more generally as

Uo = (-a + ika2) (6.5)
m

For two condensates colliding with large momentum difference k, the second term becomes

significant and introduces an elastic scattering loss from the colliding condensates into

initially unpopulated states. The beautiful 's-wave halos' which have been observed (see

Fig. 6-3 (a)) is described thus.

If we extrapolate from this and allow the scattered atoms to re-scatter and undergo

multiple collisions, then even the s-wave halos will smear out, ultimately approaching a

uniform gaussian, reflecting the isotropy in momentum space. This is the same end result

reached by considering the system as a two-component Fermi gas, and is indeed what we

see in Fig. 6-3 (b).
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Figure 6-4: Experimental sequence of the magnetic field ramp. Ramp down speed is limited
by the clamp voltage of the varister used and ramp up speed is limited by the maximum
voltage of our power supplies. Also shown is the inverse interaction parameter kFa corre-
sponding to each magnetic field for the Kapitza-Dirac experiment.

6.3 Solving the collision problem

6.3.1 Magnetic field ramp

Collisions have been problematic before, when initial observations of anisotropic expansion

[61] turned out not to be due to superfluid hydrodynamics, but probably rather to collisional

hydrodynamics [80, 81, 75]. The ambiguity was eventually resolved by a rapid magnetic

field ramp which quickly brought the system out of the strongly interacting regime and

collisions became negligible.

If the magnetic field ramp is sufficiently slow with respect to the coupling, its effect

is to transform the loosely bound two-body state close to the Feshbach resonance into a

deeply bound molecular state far from the resonance. Due to the strong coupling in 6Li ,

this condition is always fulfilled. However, the response of the many-body system is much

slower than the field ramp [82], and the deeply bound molecules can be treated as weakly

interacting bosons having the center of mass momentum distribution of the initial 6Li 2 pairs.

Out of the strongly interacting regime, the persistence of anisotropy then proved super-

fluid hydrodynamics. After sufficient expansion, the magnetic field can be ramped up close

to the resonance again for imaging on the atomic line. During time-of-flight, the density

of the pairs falls significantly, such that collisions do not recur. This technique was used

to observe the characteristic momentum distributions for a condensate of 6Li 2 pairs shown

in Fig. 5-10. The sequence of magnetic field ramp is also shown in Fig. 6-4. With slight

differences in the specific values, this is the general form of magnetic field ramp commonly

used to study strongly interacting superfluids.
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Figure 6-5: Visibility of distinct momentum peaks for different kFa. Within the strongly

interacting regime (kFa large), the different momentum peaks are smeared out.

6.3.2 Kapitza Dirac scattering at different kFa's

Using this magnetic field ramp, we perform a simple experiment to study how ballistic

expansion of different momentum components in a 6Li2 superfluid is affected by collisions,

as a function of when they were imprinted. A straightforward way to introduce different

momentum components into the system that relies only on single-particle physics is to

perform Kapitza-Dirac scattering [83, 84]. This is very similar to the two-photon Bragg

process described in subsection 3.4.1. The main difference lies in the duration of the light

pulse applied - if it is made very short, then energy is not conserved and the energy spread

is given by AE = h/At. The atoms can then acquire several momentum components in

multiples of ±2hk.

Our light pulse was made up of a single, retro-reflected, 1064 nm light beam, lasting

only 10 ps, with an energy spread of h x 100kHz, imparting momenta of ±15kHz onto the

system. The shortness of the pulse meant that we could pulse on the light at different values

of the magnetic field during the 100 to 150 ps field ramp, thereby imprinting momenta at

different kFa. The field ramp for all the experiments are the same, differing only in the

timing of the pulse.

Fig. 6-5 shows the results obtained. Deep in the strongly interacting regime the distinct

momentum components were smeared out into a broad featureless Gaussian, which is almost

isotropic. At kFa - 1, distinct momentum peaks begin to appear, becoming even more

distinct at lower fields, where interactions are weak. For our system, the mean free path of

a weakly bound pair while in the strongly interacting regime (- 1/kF) is always less than

the size of the sample.

| I | •



6.3.3 Collisional product?

A natural question to ask is what is the collisional product? The dimers are colliding with

energies h2k2/2m which can be larger than the binding energy (Eq. 6.2) close to resonance.

Energetically, it is possible for the dimers could break up into atoms, with each fragment

taking a part of the remaining kinetic energy. Less likely, but still possible, the dimers could

remain bound, and merely heat.

One way to distinguish between atoms and dimers would be to image at low magnetic

fields where the molecular transition is far detuned from the atomic transition. We at-

tempted to do this but unfortunately the results were ambiguous. There was evidence that

there was a slight increase in the atomic signal, but finally signal-to-noise was not good

enough for a firm conclusion. This measurement is also complicated by the fact that even

if the molecules broke apart during a collision, they can easily recombine again during the

field ramp and disappear from the atomic signal.

6.3.4 Interpretation

Collisions within the superfluid are only able to take place if the relative velocities of the

colliding particles exceed the critical velocity. This became the subject of a further inves-

tigation, expounded upon in the thesis of Daniel Miller, and appended here in Appendix

F. While details are not provided here, our measured critical velocity of a Fermi superfluid

was indeed much lower than the recoil momentum of 2hk.

6.4 Necessity of rapid field ramps

This demonstrates that collisions during the first few moments of expansion of a strongly

interacting system do inhibit observation of distinct momentum peaks. From [85], the

inverse collision rate at unitarity is estimated to be 0.23hEF/(kBT)2 , which evaluates to

40ps for a conservative estimate of T/TF = 0.1, faster than we are able to ramp out of

the strongly interacting regime.

In previous studies of strongly interacting Fermi gases, magnetic field sweeps were ap-

plied to prevent fermion pairs from dissociating, since Tc drops when density drops. How-

ever, it has recently been shown that fermion pairs survive during the first few milliseconds

of expansion even on the BCS side of the Feshbach resonance [861. In the work presented

here, the suppression of collisions early during the expansion required a faster magnetic

field switch off and was necessary on both sides of the Feshbach resonance.



Chapter 7

Paired fermions in an Optical

Lattice

In this chapter, I will expand upon the work reported in the publication:

J.K. Chin, D.E. Miller, Y. Liu, C. Stan, W. Setiawan, C. Sanner, K. Xu and W.

Ketterle, "Evidence for Superfluidity of Ultracold Fermions in an Optical Lattice, Nature

443" 961-964 (2006) [87]. Included in Appendix E

7.1 The Promise of Optical Lattices

An easy way to see the potential of fermions in optical lattices is to consider T, again

for weak attractive interactions. From section 4.2.1, we have TC -0.28TFelr/2kFa in the

bulk Fermi gas. It is this exponential suppression of Tc with increasing kFa that makes

BCS pairing so difficult to observe in the bulk system. In a periodic system however, the

dependence of the exponent changes. For a three-dimensional lattice, it has been predicted

that Tc ; te-7t/IUl in a shallow lattice where t >> U, t being the tunneling energy and U

the interaction energy [88, 891. As the lattice is ramped up, pairing is promoted through

increased localization, leading to an enhancement of Tc. A turning point in the value of

Tc comes when the localization becomes so strong that it inhibits the establishment of

a macroscopic order parameter necessary for superfluidity. In terms of the microscopic

scattering length a, the maximum Tc has been simulated to be 0.3TFkFl[a. Tc is now

expected to scale linearly with a, a dramatic improvement over the situation in the bulk.



7.2 Optical Lattices

To form a periodic potential for neutral atoms, the easiest way is to use light. Optical lattices

make use of a spatially varying AC Stark shift from far-detuned light and the interference

of two or more beams to form a conservative and periodic trapping potential for atoms. In

the limit when the detuning of the light A = wo - wlaser is much larger than the decay rate

of the excited state, A >> r, the dipole potential depends on the intensity profile I(r) as

3rc2 r
Vdip(R) = I(r) (7.1)

For a gaussian laser beam, the intensity profile for a beam propagating along z is

2P e_2r2/w2(z) (7.2)
r(r Z) w2(z)

where P is power, r is the distance from the axis of propagation, and w is the 1/e 2 radius.

w and z are related by w(z) = woo 1 + z 2/z 2 , and the entire beam can be characterized by

the Rayleigh range ZR and beam waist wo which are related by zR = 7rw2/AL.

Optical lattices are typically formed by light beams intersecting at their beam waists,

where intensity is at a maximum and the phase wavefronts are parallel. A standard beam

waist of about 100 pm leads to a Rayleigh range on the order of mm's. For cold atom sizes

of less than 100 pm, this ensures that the optical lattice is relatively uniform across the

entire sample.

In the simplest configuration, two counterpropagating laser beams will give a dipole

potential of

Vdip(r, z) = -Vo . e-2 r2 /w 0 sin2 (kLz) (7.3)

where k = 27r/AL is the wave vector of the light and Vo = 4 - (2P/irw2 ) is four times larger

than that of a single beam due to constructive interference.

7.2.1 Non-interacting systems in optical lattices

For a uniform system confined in volume V, the eigenstates to the free Hamiltonian Ho are

just plane waves:

Ho = - V2
2m

1p) = e ip/h

When a periodic potential with spatial periodicity of aL is present, the solutions must also

be invariant under translation by a unit aL, differing at most by a phase shift. Assuming a



periodic potential of the form

V = V (sin2(kLX))
2
7r

kL -
aL

From Bloch's theorem, the solutions then become

qq,n(x + aL) = eiqaL q,n(x) (7.4)

These are the Bloch functions and they are labeled by their band index n and the quasi-

momentum q. Their energies are plotted in Fig. 7-1. The recoil energy, defined as

h2 7r2
ER = 2ma2 (7.5)

becomes a natural unit for energy, and the depth of the lattice can be parameterized as

Vo = sER (7.6)

From Fig. 7-1, we can get a qualitative understanding of how the dispersion of a

periodic potential changes as a function of lattice depth. For a vanishingly shallow lattice,
the dispersion is just that of a free particle e(p) = p2/2m. As the lattice depth is increased,
gaps begin to open up at the band edges and the bands begin to flatten. Already for a

5E, deep lattice, the lowest band is almost completely flat.

Ground state in a shallow lattice

For a shallow lattice, the problem for H = Ho + V can be solved by perturbation theory.

Since the perturbing periodic potential V has non-vanishing components only between states

spaced kL apart, we need only consider the plane waves Iq), Ijq±mkL) where m is an integer.

To solve for the ground state where n = 0, we can already obtain a good approximate

solution by considering plane waves with m = 0, ±1.

The Bloch functions Oq,o are now superpositions of the free-momentum states (q), |q+kL)
and Iq - kL),

ZqO=  UmeimkLx (7.7)
m=0,41

Tight binding limit

In the situation where the lattice height is high and the tunneling between wells are small,
the expression for the dispersion E(p) assumes a simple analytic form:
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Figure 7-1: (Color in electronic version) Band structure of optical lattice for n = 0 (blue), 1
(green) and 2 (red). Solid lines show the level structure of a 5 E, deep lattice, while dotted
lines show that of a 1 Er deep lattice.



E(p) = 26[sin2(Pxd)+ sin22 p~ )+ sin2(Pxd)] (7.8)

where the bandwidth of the lowest band is 26 and decreases exponentially for large s as

6 = 8ERS3 /4 exp(-2V/) (7.9)
71

and the energy gap between the first and second band becomes

hWL = 2VsER (7.10)

This formalism is easily generalizable to two and three dimensions, and the presence of

an external trapping potential does not significantly change the solution as long as it varies

slowly compared to the lattice period. It can also tolerate weak inter-atomic interactions as

long as they are weak relative to the tunneling. Since spin-polarized fermions are close to

an ideal non-interacting gas, the above description has been shown to work well from direct

observations of the Fermi surface filling the first Brillioun zone [90], oscillation measurements

[91, 92], and anti-bunching reflecting the Pauli exclusion principle [93].

7.2.2 The single-band Hubbard model

However, the above model fails to capture the physics of phase transitions, when interactions

between particles become significant. This can happen in two ways - in the tight binding

limit, the on-site interactions can dominate over the tunneling energy, and when the s wave

scattering length a becomes so large that interactions can dominate even in a weak lattice.

To treat the first case, a second quantized, microscopic theory of particles in a periodic

potential has been developed. Known as the single band discrete Hubbard model, it was

originally a phenomenological model for studying solid state systems. In its simplest form,

it assumes that the atoms are very cold and only occupy the lowest band of a deep lattice

(valid when kT, EF <«< hwL). Then the Hamiltonian of the system can be written as

H = -t Z(cTcjt + cqcji) + VU niq (7.11)
(ij) i

where the indices i and j are over the sites in the lattice, and (i, j) correspond to neigh-

boring sites. The parameter t corresponds to the tunneling, and can be identified with the
parameter 1/26 in the previous model, while the parameter U describes the on-site inter-
actions between two fermions when they are localized on the same site. Using the effective
interaction given by Eq. 3.2, U can be expressed as
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and can take both positive and negative values.

Quantum phase transitions

It is the interplay of t, U and the filling factor p in an optical lattice that gives rise to the

different ground states (or phases) of the system. At the beginning of this chapter, we saw

how for moderate tunneling and U < 0, a BCS state at much higher Tc's become possible.

Additional rich physics also arise for U > 0 (see Fig. 7-2).

U > 0, p = 1: Antiferromagnetic ordering If the pairs repel each other and there is

exactly one fermion per site, then the lowest energy state for a bipartite lattice (e.g.

cubic) is a regular array of alternating spins (see Fig. 7-3).

U > 0, p < 1: d-wave superfluidity A d-wave superfluid is expected to form when the

filling factor is much less than 1 fermion per site. Since this is a suggested pairing

mechanism responsible for high Tc superconductors, it is particularly intriguing.

Limitations of the single-band Hubbard model

One of the limitations of the single-band Hubbard model is its inability to model systems

where the s-wave scattering length is larger than the lattice length scales (aho, aL). All the

aforementioned phase transitions take place at fairly low (T/TF << 1) temperatures, and

currently, state-of-the-art cooling has been most successful within the BEC-BCS crossover,

where temperatures in the bulk phase have reached T/TF m 0.05. However, interactions

within the crossover are in the unitarity regime and single band models no longer suffice,

since U can now be on the order of hWL. Moreover, the Feshbach resonances that make it

possible to tune interactions also bring into close proximity a closed channel bound state,
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Figure 7-3: Visualizations of (a) antiferromagnetic ordering in a square lattice and (b) spin
frustration in a triangular lattice.

which has to be taken into account explicitly. Some theoretical work is beginning to address
this problem, but as yet there is no real consensus [94, 95, 96].

7.3 Experiments with Strongly Interacting Fermions in Op-
tical Lattices

Our optical lattice setup was inherited from the previous generation of graduate students,
who had set it up to study the physics of bosons in optical lattices [24, 25]. Fig. 7-4 shows
the configuration of all the lattice and optical dipole beams. The details of aligning invisible
lattice beams is given in the thesis of Kaiwen Xu [23] and will not be elaborated on here.
I will only note that our alignment procedure for experiments with 6Li still began with
aligning the beams to the sodium BEC as it was simpler to produce and contained many
more atoms, making it much easier to observe slight perturbations to the sample when the
infra-red beam came close. Fine alignment is then completed using 6Li 2 molecules.

7.3.1 Techniques

Instead I will focus on the additional tricks involved in loading strongly interacting fermions
into an optical lattice. Not surprisingly, this turned out to be more complicated than simply
loading superfluid bosons.

If we restrict ourselves to using ballistic expansion as a diagnostic tool, there are three
ways to know that one has succeeded in loading fermions into an optical lattice without
significant heating. One can observe the sharp edges of a filled Brillouin zone [90] or see
anti-correlation peaks in the second-order correlation function [93). For superfluid systems
which reside in the ground state of the lattice, an additional signature comes from the
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Figure 7-4: The complicated optical setup of the far detuned 1064 nm light, used both for

creating a crossed optical trap and a three-dimensional lattice. Shown in (a) is their relative

paths to the rectangular glass cell, where, in lab terminology, they are (1) tight ODT, (2)

horizontal ODT, (3) vertical ODT, (4) left lattice, (5) right lattice, and (6) top lattice. The

top lattice beam is at a 200 angle to the vertical. For the lattice beams, lenses focus the

forward propagating beam down before retro-reflection from a mirror. (b) shows the lattice

geometry in momentum space and the expected image in time-of-flight.



Figure 7-5: The timing sequence that ensures
the ballistic expansion for observation of dis-
tinct momentum peaks. By quickly ramp-
ing to 470 G, strongly interacting 6Li2 pairs
are projected into weakly interacting, deeply
bound molecules. The fastest ramp we can
achieve is 150 ps due to technical limitations.

Time (ms)

sudden projection from the lattice ground state into the free momentum states according

to Eq. 7.7, yielding a characteristic interference pattern after ballistic expansion [18]. We

choose to observe the third.

Switch off procedure

During time-of-flight out of the lattice, a very precise timing sequence was used to ensure

optimal fringe contrast (see Fig. 7-5). The optical dipole trap was switched off as soon as

the magnetic field began to ramp down, while the optical lattice potential was kept on until

the magnetic field had fallen sufficiently to take the system out of the strongly-interacting

regime. The latter measure was necessary to solve the problem of collisions, as discussed in

Chapter 6.

In order to determine if the switch off procedure affected the many-body dynamics of

the system, the other time-scales present in the system has to be considered [44]:

Two body dynamics Given by h/(Obl|VIa) z h/gov~i, where (V) is the coupling be-

tween the molecular and atomic state (Fig. 6-1) [97]. For 6Li parameters and typical

densities on the order of 1013 cm - 3 , this evaluates to 20 ns.

Magnetic Field ramp Given by goAv /Ap'B 1.2ps, where B - 5G/fls for the rate
of our magnetic field ramp (Fig. 2-7). Therefore a long range molecule can always
adiabatically follow the field ramp and project into a short range composite boson,
thus revealing the center of mass distribution of the pairs within the resonance.
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Fermi energy Evaluates to h/EF , 5ps for our Fermi energy of EF = kB x 1.4pK.

Evaporation rate Given by trapping frequency, a 4 ms.

Recoherence rate This is likely bounded by the trapping frequency to be > 4 ms, al-

though there is some dispute [18]. We argue that if the sample has dephased, it has to

take the phase information finite time to disseminate throughout the system, and the

only global time scale available is the trapping frequency. Moreover, this is likely a

lower bound on the time it takes to recohere, since the presence of the lattice impedes

tunneling.

From this analysis, it seems clear that the many body dynamics could not have changed

on the time scale of the field ramp either due to further cooling or recoherence. Additional

evidence can be obtained from Fig. 7-10, where the width of central momentum peak is

seen to fully recohere only after 500 ps. Previous experiments have also established the

non-adiabaticity of the field ramp with respect to many body dynamics in the bulk [82],
and it likely remains true for the lattice system.

Lifetime of pairs at low magnetic fields

The former measure highlights another problem with keeping on any kind of confinement

when ramping magnetic fields out of the strongly-interacting region. During the ramp, the

loosely bound 6Li2 pairs are transferred into deeper bound states which have much shorter

lifetimes. If confinement is tight and density is high, this problem is exacerbated. Since the

volume of the cross dipole trap is small, the numbers are also low and care has to be taken

such that signal to noise is not degraded past resolution.

The most dramatic manifestation of this effect came when we were experimenting with

cross-dipole traps of different beam waists. Using a combination of two perpendicular

beams with waists of 20 pm and a 60 pm respectively, we created a crossed dipole trap

and attempted to characterize the condensate obtained using the same field ramp as before.

The high densities and small trap volume resulting from such focused beams meant that

switching off the COT simultaneously with the ramp down of the magnetic field still resulted

in catastrophic losses (Fig. 7-6) and some short time-of-flight had to be given before starting

the field ramp.

Had we left the COT on until the field had fully ramped down, the 6Li2 would have

fully decayed and heated, leading to the mistaken conclusion that a stable trap cannot be

made from these two beams due to beam profile imperfections etc.



Figure 7-6: The bimodal signature for a small 6Li 2 condensate can be easily masked by col-
lisional decay during the field ramp. Shown here are three absorption images of a 6Li2 con-
densate in time-of-flight from the same crossed-dipole trap, differing only in the elapsed
time t after the turn-off of the trap and before the magnetic field ramp down. (a) shows
a characteristic image for t = 0, (b) t = 10ps and (c) t = 50ps. The strong interactions
during the initial expansion quickly lowers the density, resulting in a larger but colder sam-
ple. (d) shows a twice-integrated density profile corresponding to (c) demonstrating clear
bimodality.



"Squeezing out of fermions"

Another complication surfaced when we began setting up an additional one-dimensional lat-

tice along a convenient axis to study two-dimensional systems (see Chapter 8). At the time,

we were using a large crossed-dipole trap with waists of 80 pm, and trapping frequencies of

50 Hz. Upon imposition of the 1 D lattice with beam waist of 200 pum and repeating the

switch-off procedure as before, superfluidity was lost and no interference fringes were seen.

Puzzlingly, the same lattice beam was well-behaved with bosons.

It turns out that this loss was due to the pairs being "squeezed out" of the confining

potential and into the axial extent of the lattice beam. The large admixture of atomic

character in the 6Li2 pairs (section 6.1) implies Pauli exclusion and the imposition of the

lattice beam reduces the number of states available for occupation. If the external confine-

ment is very shallow, the fermion pairs will be forced out. By increasing the depth of the

cross-dipole trap ten-fold before applying the optical lattice, this problem was solved.

7.3.2 Definition of quantities

To facilitate further discussions, I define commonly used terms and give numerical values

for the quantities used in [87]:

Fermi energy The non-interacting Fermi energy of N particles in a harmonic trap is given

by

EF = (6N)1 /3ah& (7.13)

where D is average trapping frequency. With 200,000 pairs and trapping frequencies

wx,y,z = 27r x (270,340,200) Hz, EF = kB x 1.4pK in our system.

Molecular recoil energy Throughout, we will use the molecular recoil energy which is

smaller than the atomic recoil by a factor of 2:

ER 4ma= 15kHz (7.14)

for 6Li 2 and aL, = 532nm. Similarly, lattice depth s will be quoted in units of molecular

recoil. Note that quoted this way, s is a factor of 4 larger than the equivalent number

for atoms in the lattice with the same optical power.

Filling factor The filling factor is the number of particles per site. Due to the external

harmonic confinement, there exists a spatial variation of the filling factor, from a peak

value in the center to a minimum at the edges. We will define a peak filling factor in



the unitarity regime where all our measurements have taken place and by assuming

that the atoms do not move around significantly when the lattice is applied. From

Eq. 4.29, this is calculated to be

np = 0.89 ; 1 (7.15)

Note that this is in contrast to the characteristic filling factor that exists within the

literature, defined as [90, 98]

NFd3
nc d3  (7.16)

= V2J/Mw2 (7.17)

where C is the spatial extent of the wavefunction in the lowest band and J is the

tunneling term. It is difficult for us to use this definition, since J is not clearly defined

for a strongly interacting system.

Adiabaticity condition To load atoms into the ground state of an optical lattice without

excitation into the higher bands, the turn on of the lattice has to be slow with respect

to the energy difference to the next highest band. For a non-interacting system, this

condition for a condensate with zero momentum is given by

OH AE 2(qt) (7.18)

dtdVo=• dt << 16E /h (7.19)

where AE is the energy difference between the ground state and the first excited

state. Given recoil energies in the kHz, this condition is easily satisfied. For 6Li 2 , the
right hand side evaluates to 4 ps per recoil of lattice depth and our experiment easily

satisfies Eq. 7.19 by ramping to 10 Er in 20 ms.

Again, there is a caveat for a strongly interacting system as as interactions can modify
the dispersion, rendering this condition invalid.

7.4 Superfluidity of 6Li2 in Shallow Lattices

Notwithstanding the lack of a full theoretical understanding, for a sufficiently shallow lat-
tice, intuition suggests that no drastic changes should occur. If we begin with a strongly-
interacting superfluid of 6Li2 pairs in the crossover, they should remain so when loaded
into an infinitely shallow lattice. Through quantum mechanical tunneling, the superfluid



Figure 7-7: Interference fringes of 6Li pairs
from a three-dimensional optical lattice with
s = 4 after 6 ms ballistic expansion. The
dashed circles highlight the areas where sec-
ond order momentum peaks corresponding to
momentum transfers of 2 h(kl +k 2 ) could also
be seen.

maintains a macroscopic order parameter, establishing a fixed phase difference between each

well. If the lattice is suddenly switched off, this long range phase coherence manifests as

sharp interference fringes after ballistic expansion, reflecting the free-momentum decompo-

sition of the ground state in the optical lattice (Eq. 7.7). This then is the commonly used

experimental signature for inferring superfluidity of atoms in an optical lattice [181.

In the experiment reported in [87], a 6Li 2 condensate held in the cross dipole trap is

adiabatically loaded into the three dimensional optical lattice (Fig. 7-4). The lattice is

linearly ramped to varying lattice heights before the switch-off procedure allows the atoms

to undergo ballistic expansion.

7.4.1 Phase coherence

Fig. 7-7 shows our main result. The strikingly sharp interference peaks confirms the

presence of long range phase coherence. The observed separation of the peaks in time-

of-flight of d = 2hk/m also confirms that the relevant mass m is that of a pair, and not

of isolated atoms. Assuming that the magnetic field ramp projects long range pairs into

their center of mass without changing the center-of-mass momentum distribution, we have

obtained evidence of superfluidity of ultracold fermions in an optical lattice.

Minimum Phase Space Density and Coherence Length

From the ratio of the width of the peaks to their separation, we can place a lower bound on

the coherence length. Since this derivation neglects broadening mean-field effects, we know
that it is an underestimate.

Fig. 7.4.1 (a) shows a twice integrated density profile of the interference peaks, while



(b) is a close-up of the central peak. sep simply scales with the time-of-flight t as

sep = t (7.20)
m

To obtain an approximate expression for width w, we begin with the assumption of a

classical thermal gas in a homogenous volume. Then coherence length is given by the de

Broglie wavelength

h
AdB =V (7.21)

From [76], the equilibrium distribution for the velocities in the gas is just the Maxwell-

Boltzmann distribution

f(v) = n 3/2 em(vvo) 2 /2kBT (7.22)

V = /kT/ (7.23)

where n is density. Assuming perfect ballistic expansion and a negligible initial size, the

spatial distribution after long time-of-flight is just f(x - vt). More specifically, the gaussian

width of the spatial distribution is just

w = ax = aTt (7.24)

The ratio sep/w can then be expressed as

sep 2hkL 
(7.25)

w m~,

using kL /L. Finally, substituting in Eq. 7.21 and eliminating the temperature depen-(7.26)
using kL = lr/aL. Finally, substituting in Eq. 7.21 and eliminating the temperature depen-

dence from Eq. 7.25, we obtain

AdB = (sep\ ) (7.27)aL /

With this, phase space density may be estimated by

P.S.D. = AB3no (7.28)

no = 1/aL (7.29)

We measured the separation of the peaks to be 380pm with gaussian widths of 15pm,
while no 0 1 from Eq. 4.29. This gives a coherence length of approximately 10 lattice



Figure 7-8: (a) Density profile of the central
and first order interference peaks. The ratio of
sep/w gives a minimum coherence length for
the pairs. The width of the interference peaks
was used instead of the main peak since they
contained smaller numbers and had less mean-
field broadening. (b) shows a close up of the
central peak fitted to a bimodal distribution
comprising of a gaussian and Thomas-Fermi
distribution. It argues further for superfluid-
ity of the 6Li 2 in the optical lattice.

sites and a corresponding minimum phase space density of 103, which is far in the quantum

degenerate regime.

Strictly speaking, long-range phase coherence does not necessarily imply superfluidity

[99, 100]. Traditionally the definition of superfluidity has instead relied on its transport

properties like frictionless flow. In Chapter 8, we will describe in more detail some ongoing

experiments that seek to probe the nature of the strongly interacting fermions in the lattice.

7.4.2 Density profile

In a recent work, an unambiguous way of identifying Bose condensation in an optical lattice

at finite temperature was proposed [101]. The change in the momentum distribution across

the condensation phase transition was calculated, taking into account both interactions and

the external trapping potential, and the authors concluded that observation of a bimodal

distribution of the central momentum peak can only arise from the presence of a condensate

in the optical lattice. This addresses the weakness of using sharp interference peaks as proof

of the superfluid state, since even uncondensed bosons in the normal state, assuming a cold

enough temperature, would exhibit sharp peaks [100].

We show in Fig. 7.4.1 (b) a close up of our density profile which does indeed exhibit

a bimodal distribution, further confirming that we have indeed observed superfluidity of

fermions in an optical lattice.



Figure 7-9: A loss of phase coherence is seen when the lattice depth is increased. Shown
here are interferograms for lattice depths (a) 0 Er , (b) 2.5 Er , (c) 4 E,r , (d) 5 Er , (e) 6
Er , (f) 7 E,, (g) 9 Er . (g) shows how the interference fringes reappear after first ramping
up to 10 Er , before ramping down to 2.5 Er .

7.5 Loss of Superfluidity in Deep Lattices

As the lattice depth is increased, a loss of phase coherence is seen (Fig. 7-9 (a)-(g)).
Upon lowering the lattice potential, coherence returns, signaled by the reappearance of the
interference peaks (Fig. 7-9 (h), Fig. 7-10).

7.5.1 Visibility

The visibility of the interference peaks can be parametrized quantitatively. Amongst ex-
perimentalists in the field, there is widespread use of the quantity

NA - NB
v = (7.30)

NA + NB

Here, NA is the number of atoms found at a reciprocal lattice vector (interference peak) and
NB is the number of atoms found an equal distance away, but at a rotated position such
that it is not at a reciprocal lattice vector. Due to the lack of perfect cubic symmetry, we
introduce an alternative measure of visibility in our work, obtained from fitting the twice-
integrated profile of the interference peaks (Fig. 7-11) and extracting the peak optical
density from the fit parameters:

Peak Optical Density oc hw (7.31)

1
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Figure 7-10: Time needed for recoherence.
Filled symbols denote the central peak width
of the inteferograms. Circles are gaussian
widths, while the diamonds are Thomas-
Fermi widths obtained from a bimodal fit.
Open symbols give the gaussian width of a
dephased sample, where phase coherence was
deliberately destroyed during the ramp on of
the lattice.
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Its relation to visibility is made clear by noting that it is equivalent to the numerator in

Eq. 7.30. Eq. 7.31 then defines an unnormalized visibility. Normalization was difficult for

our system due to the noisy background in the data.

Using this definition, the unnormalized visibility of the interference peaks may be inves-

tigated as a function of lattice depth and magnetic field (Fig. 7-12) and hence interaction

parameter 1/kFa. The disappearance of the peaks can be seen at 5 to 6 Er , when the

visibility falls below 0.1.

7.5.2 Superfluid-Insulator Transition

Far in the BEC limit, the loss of phase coherence of a superfluid in an optical lattice can be

understood by considering on-site interactions. As the lattice depth is increased, the system

has to pay an increasing energy cost to delocalize due to atom-atom repulsion. Beyond a

critical lattice depth Ve, this cost becomes too high and the atoms arrange themselves in a

regular array, where, for a homogeneous system, each lattice site would contain the same

number of atoms. They choose not to tunnel, although in principle the barriers between sites

are not yet high enough to forbid tunneling. This superfluid to a Mott-insulator transition

was one of the first directly observed quantum phase transitions [18], and comes out of the

Bose-Hubbard model [102, 103].

Far in the BCS limit, the superfluid-insulator transition is also easily understood. With

an average filling factor of one pair of fermions (one spin up and spin down) per site, a loss

of phase coherence would imply that we have a band insulator, where the fermions cannot

hop, since they would then have to pay the energy cost to go to the next higher band. In

order to stay superfluid, the pairing interaction A must be large enough to overcome the
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Figure 7-11: Alternative definition of visibility. Represented here is a simulated twice
integrated density profile through the central momentum peak and one pair of interference
peaks. By fitting gaussians to all three peaks on top of a broad gaussian background, we can
extract the parameters h and w. Note that h is taken from the top of the broad gaussian
background. From this, we construct a peak optical density that is proportional to hw and
use it as a measure of visibility.

2 3 4 5 6 7

Lattice Depth (ER)

Figure 7-12: Visibility of the interference peaks as a function of lattice depth and interaction
parameter. Surprisingly, the disappearance of fringes does not seem to vary with interaction
strength.



Figure 7-13: A simplistic U vs. J curve for
strongly-interacting fermions. Here interac-
tion energy U is approximated by 1/2hwL
while the tunneling term J is calculated from
the non-interacting band structure. Their
crossing indicates the critical lattice depth
at which the Mott-insulator transition is ex-
pected to occur.

0 1 2 3 4 5

band gap hWL, since only in the non-filled bands can there be number fluctuations necessary

for a superfluid phase where a macroscopic order parameter exists.

These two extremes are illustrated in Fig. 7-14. What happens to strongly interacting

fermions within the crossover regime is unclear, but it is likely to be an interpolation of

the two. V, for bosons has been calculated to be around 13 Er [103], and fig. 7-13 gives a

simplistic estimate of V, = 3Er for interactions on the order of U = AwL. Our observed

value of V, - 6Er falls suggestively somewhere in between the two. Recently there has

been numerous of theoretical calculations [94, 95, 96] of the critical lattice depth where

a strongly interacting fermionic superfluid would enter the insulating phase. Due to the

strong interactions, any correct calculation will have to take into account multiple bands,

greatly complicating the physical interpretation of the insulating state. However, there is

reasonable agreement with at least one of them [95], and a consensus may emerge before

long.
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Figure 7-14: Superfluid-Insulator transition from the BEC to BCS limit for deep lattices.
Far in the BEC limit, a Mott insulator occurs when interactions dominate over tunneling.
Far in the BCS limit, a band insulator occurs for commensurate filling. On resonance, it is
likely to be some combination of the two.
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Chapter 8

Explorations

Strongly interacting fermions in optical lattices is still poorly understood and we have only

scratched the surface of a blossoming field. In this chapter, I will outline our exploration

of this fascinating system, summarizing some partial experiments that yielded tantalizing

but inconclusive results, and discuss some future experiments that are imminent, but as yet

unrealized.

8.1 Radio-frequency spectroscopy of 6Li 2 pairs in an optical

lattice

It has been predicted that a significant shift of the position of the Feshbach resonance

is possible due to additional confinement from the optical lattice [104]. The confinement

shifts the energy levels of the open channel upwards and not that of the bound level, since

the length scale of confinement is still much larger than the effective range of the closed

channel. The magnetic field where a real two body bound state would not exist is therefore

shifted. This prediction has been supported by measurements of finite binding energies

above the Feshbach resonance using radio-frequency spectroscopy for 1 and 3 D lattices

[105]. However, this analysis holds true only if one can treat the optical lattice as an array

of harmonic potentials, valid only in the limit of deep lattices. Solving the problem for the

full periodic potential is complicated, since now the center of mass and relative coordinates

can no longer be separated. The obvious presence of delocalized pairs in our system as

indicated by long range phase coherence suggests that a full treatment of the problem is

necessary.

Nonetheless, certain qualitative behavior has to be true. At zero lattice depth, no two

body bound state exists above the Feshbach resonance. In a deep lattice, one does exist. At

a critical lattice depth above the Feshbach resonance, there must be a transition between

these two regimes corresponding to when a bound state appears. Experimentally, one way
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Figure 8-1: (Color in electronic version) Three s-wave Feshbach resonances are shown here,
characterized by their diverging scattering length. In red is a12, centered at 834 G. Here
the hyperfine states of 6Li is numbered in increasing order of energy (see Fig. 5-9). In green
is a13 centered at 690 G and in blue is a23 , centered at 811 G [39].

of determining its presence would be to perform radio-frequency (rf) spectroscopy on the

transition between one atom in the pair and an initially unoccupied state. A discrepancy

from the bare transition would indicate a shift in the energy of the atom due to either mean-

field or pairing effects. To disentangle the two effects requires studying their dependence

on density n. A true two-body bound state would have a binding energy independent of

n, while mean-field shifts scale linearly with n. If both effects are present, then at low n,

the pairing shift is expected to dominate while at higher n, the mean-field shift would take

over.

Unfortunately, it is experimentally difficult to vary density across a wide range, and at

low densities we would begin suffering from poor signal to noise. In addition, rf measure-

ments in 6Li is complicated by the presence of broad Feshbach resonances between all three

combinations of the lowest three hyperfine states (see Fig. 8-1). This implies that transi-

tions from either state 1 or 2 to the final state 3 could still result in a strongly-interacting

sample. In a tight harmonic trap (an approximation of the individual sites on an optical lat-

tice), the solution to the two-particle problem for varying interaction strengths [106] yields

a binding energy dependence on the two-body scattering length of

,/F(-E/2 + 3/4) 1
F(-E/2 + 1/4) a

_I___
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Figure 8-2: (Color in electronic version) Solid (red) line shows the energy levels of two
fermions in states 1) and 12) interacting with scattering lengths given by Fig. 8-1, while
dashed (blue) line shows the energy levels for atoms in states I1) and 13). For this simulation,
lattice depth was 6 E, .

The dependence of E on a is plotted in Fig. 8-2 for both the (1,2) and (1,3) state. As can

be seen, there exists finite binding energy for states 1 and 3 in the vicinity of the 834 G

Feshbach resonance which further complicates the interpretation of any observed rf shift.

This is in contrast to the situation in the bulk phase, where no two-body bound state exists

between 1 and 3 above the (1,2) resonance since the (1,3) resonance position is lower. In

terms of the many body interactions, 1/kF a131 is already close to 1 at 834 G, and the system

is also no longer strongly interacting. Under these conditions, radio-frequency spectroscopy

has already been used extensively to measure the binding energy of the 6Li 2 pairs [72, 107].

Nonetheless, we present here some very preliminary rf spectra of 6Li 2 pairs in a lattice

in Fig. 8-3. We measure a confinement induced shift of 11 kHz in a 6 E, deep lattice,

which is much less than the value of 78 kHz calculated from Eq. 8.1. As a sanity check,

we measured our transition frequencies in the bulk phase of 25 kHz at 822G and 411 kHz

at 768G, confirming that the binding energies are larger further away from the resonance,

even though the absolute values seem to be off by a factor of two from the expected values

[72]. While the results are suggestive, interpretation of the spectra is complicated for the

reasons discussed above and we stop short of drawing any firm conclusions.
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Figure 8-3: Rf spectra on the 12) -- 13) transition. (a) is the bare atomic line at 81.7899(1)
MHz, where a pure sample of 12)'s and no 13)'s are present. Note how much narrower the
line is relative to all the others. (b) shows spectra taken for a 6Li 2 condensate at 822G,
giving a shift of the transition frequency of Eb = 25.3(7) kHz. (c) is again a 6Li 2 condensate,
but at 768G, with Eb = 411(2) kHz, and (d) is taken with the pairs localized in a lattice
with 6 Er at 822G, with Av = 11(1) kHz.



Figure 8-4: By using only two (a) or one (b) retroreflected beams, it is possible to enter
the 1 or 2 D regime and study low dimensional physics. While this creates an ensemble of

such systems, it has the advantage of signal amplification.

8.2 6Li 2 pairs in two dimensions

On a different front, optical lattices allow easy access to the lower dimensions. A three-

dimensional system can be made kinematically one (two) dimensional by freezing out two

(one) degrees of freedom. In the direction of tight confinement, hw can be much greater than

either kBT or EF, and the atoms stay in the ground state since they do not have sufficient

energy to reach the next higher state. Since the length scale of the lattice spacing is set by

the wavelength of the light which is typically on the order of a few hundred nanometers,

we can get very tight confinement using very little optical power. Finally, optical lattices

tends to create an ensemble of low dimensional systems (Fig. 8-4), which has the additional

advantage of boosting the signal to noise ratio.

The two-dimensional case is a special one. The introduction to this thesis has already

pointed out their relevance to the high Tc cuprates. By using a one-dimensional lattice,

we can create precisely this structure, with the additional advantage that we can tune the

interlayer coupling from zero through to infinitely strong. Studies on the behavior of the

6Li2 pairs in the BEC-BCS crossover in two dimensions is ongoing, and I highlight here a

number of issues that we would like to resolve.

8.2.1 Phase coherence

In an optical lattice, the possibility of tunneling across different lattice sites complicates

the definition of dimensionality. If atoms tunnel, the system might only be quasi-2D and

phase coherence could be established across the different lattice sites in the third dimension.

aL
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Figure 8-5: Loss of phase coherence in a 1D lattice. Images shown are for lattice depths
ranging from 0 (a) to 36 E, (j), at intervals of 4 Er

Kinematically we are easily in the 2D regime since EF is on the order of one Er and within
a few recoil we would have satisfied the kinematic criterion.

We determine when the system might enter the true 2D regime by investigating the
disappearance of the interference fringes in a 1D lattice. Qualitatively a similar loss of
coherence is observed as in the situation with a three dimensional lattice, although the
critical lattice depth Vc differs (see Fig. 8-5). Without detailed analysis, Vc appears to fall
between 20 to 30 Er . Upon ramping the lattice back down, a cold condensate is regained,
indicating once again that the atoms stay in a low entropy state.

We also changed the lattice geometry and made a 1 D lattice by interfering the ingoing
left and right lattice beams which are at 90 degrees to each other. The two beams are
set to have zero-detuning and are phase locked at the frequency source, thereby interfering
to give a lattice spacing of 752nm. From Fig. 8-6, the phase coherence seems to be lost
at lower lattice depths, perhaps between 15 and 18 E, . While our observations were not
conclusive, it could have been due to additional heating caused by phase noise between the
two different beams that form the lattice.

At this point, we might be tempted to assume that the pairs are unable to tunnel pasts =
25 E, . However, the non-interacting tunneling amplitude t given by Eq. 7.9 evaluates to
give a characteristic tunneling time scale of 53 ms. This is comparable to the rate at which
we ramp up the lattice, and is certainly not long relative to the time scale of the experiment.

However, the determination of the microscopic parameters U and J of the Hubbard
model in terms of the macroscopic experimental parameters a and s is not trivial for a



Figure 8-6: Loss of phase coherence in a 1D lattice with a larger lattice spacing. Images
shown are for lattice depths ranging from 0 (a) to 18 Er (j), at intervals of 2 Er -

strongly interacting system. For a weakly interacting system of pairs, tunneling amplitude

J is expected to vary as t2/U which could be much less than t for U > t due to the presence

of virtual transitions of one half of the bound pair to a neighboring site [88].

One intriguing cause of the loss of coherence in a lattice system with finite tunneling

amplitude is the establishment of a Mott phase, where atoms choose not to tunnel due

to the energy cost of on-site interactions. For a bosonic system, this is not predicted to

occur in a 1 D lattice since U can never become large enough to overcome t before the

tunneling time scale becomes longer than the experiment. For superfluid fermions however,

this transition is possible because of the reduction in the tunneling amplitude [108].

8.2.2 Modification of scattering properties

If we were to attain the two-dimensional limit, one of the first questions that could be asked is

what happens to the scattering when a > aho? This in turn determines properties as varied

as dimer lifetime, mean-field energy and superfluid pairing within the BEC-BCS crossover

regime. Preliminary investigations of the lifetime suggested that they are enhanced relative

to the 3D case, but effects due to the additional confinement have yet to be be fully sorted

out.
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8.2.3 A new setup for two-dimensional studies

A recent modification to our setup could open to door to some answers. A new retro-

reflected lattice with a large beam waist of 200 t/m was set up to overlap with the imaging

axis (along with beams 1 and 2 in Fig. 7-4), parallel to the axis of the uniform bias field

of the Feshbach resonance. While complicated to implement, this new geometry granted us

two new capabilities:

* A magnetic field gradient can now be applied along the lattice direction, enabling

studies of transport along the lattice and probes of its excitation spectrum. The pres-

ence of undamped Bloch oscillations could yield insight into the tunneling amplitude,
and a resonance in the excitation spectrum would confirm the presence of a Mott

state.

* Imaging perpendicular to the 2 D planes. The radial extent of the strongly interacting

superfluid can be obtained via absorption imaging of the atoms confined in the lattice,
giving a direct measurement of the mean-field energy within the crossover regime. A

careful correlation of the presence of a condensate with phase coherence across lattice

sites could then yield insight into whether or not interference fringes disappear due

to lack of tunneling and dephasing, or due to the destruction of the superfluid.

8.3 6Li 2 pairs in one dimension

Theoretical understanding of one dimensional systems is often better since the systems are

simpler and exact analytics can be obtained, making experiments in 1D more predictable.

Particularly for strongly interacting systems where computations in higher dimensions might

be difficult, 1 D systems would be a good first step.

One of the more intriguing theoretical predictions involve pairing with a finite momen-

tum when the Fermi seas of the two spin states are not balanced. Also known as the

Fulde-Ferell-Larkin-Ovchinnikov (FFLO) state [109, 110], it postulates that the in the pres-

ence of an imbalance, some of the fermions can pair with finite momentum, giving rise to a
spatially varying order parameter. This would truly be a novel superfluid phase. Beautiful
work with imbalanced systems have already been done in 3 D [111] but so far observations

of finite momentum pairing have been elusive. In 1 D however, there exist predictions [112]
that the fraction of finite momentum pairs would be much higher and therefore much easily
observable. A qualitative signature would involve observing a phase separation between the
fully paired fraction and the excess fermions, where contrary to the 3D scenario, the trapped
spatial distribution would show the fully paired fraction residing outside the spin-polarized
fraction.
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8.3.1 Possible setup for seeking the FFLO state in one dimension

By merely blocking the top lattice beam and tightly confining with the left and right retro-

reflected lattice beam, we can have a system of 1 D tubes with long axis aligned vertically.

By performing phase contrast imaging perpendicular to the tubes, the relative positions

of the polarized and unpolarized fractions would yield a clear qualitative signature of the

FFLO state in 1D.
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Chapter 9

Conclusion

9.1 Final thoughts

It is with bittersweet feelings that I end this thesis and my stint as a graduate student.

My departure coincides with that of all others who endured the rigors and vagaries of a

new-old machine. With our departure goes the vast store of knowledge accumulated from

experience, leaving behind distillates like this one.

Yet I believe the best is yet to be. During my tenure, I have witnessed and participated

in the lab's acquisition of a vision. Now the changing of the guard liberates the new

generation to realize this vision without the encumbrance of history. My doctorate was one

of construction and achievement. I wish for those after me to have one of discovery and

understanding.

9.2 Future challenges

The main goal of this lab is to harbor the ideal "artificial crystal", infinitely flexible in

geometry and tunability of parameter, making possible fast and reliable simulations of

various Hubbard models from condensed matter physics. Before that can be achieved

however, there are several more challenges. Here I outline a few:

9.2.1 Accessing the repulsive branch

We currently do not have access to the half of the phase space where temperatures are

low and U > 0. Close to the broad Feshbach resonance where the coldest temperatures
of <0.1 T/TF were reached and Bose-Einstein condensates of 6Li2 observed, the strong
coupling between the atomic and molecular states will always project the long range dimers
into deeply bound molecules when we ramp across the resonance. The challenge is to
break these molecules without increasing entropy. Possible methods include using Raman
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transitions and resonant magnetic field modulation to couple back from the molecular to

the atomic manifold.

9.2.2 Thermometry

Measurement of temperature in an optical lattice has to be improved. During adiabatic

ramp on of the lattice, some heating is likely incurred, as evidenced by an increased ther-

mal fraction when the lattice is ramped back down again. In this thesis, I have avoided

quantifying the temperature within the lattice for want of a good thermometer. This has

to change if accurate mapping of the system's phase diagram is to be done. Currently, the

best methods of quantifying temperature involves measuring filling within each lattice site

[105].

9.2.3 Detection

Finally, various detection techniques for the expected phases have to be developed. Noise

correlation [113] has been proposed as an excellent candidate for observing the ordering of

atoms in an optical lattice, but this is unlikely to work easily for 6Li systems due to the large

region of strong interactions and the finite time required to exit it. Another requirement for

this technique - shot noise limited imaging, is also not currently within our grasp, though

improvements are ongoing.

A more promising method might be to perform Bragg spectroscopy. By shining in light

at angles that fulfill the Bragg condition for constructive interference in the reflected signal,

the angle of light detection could also reveal the ordering of atoms within the crystal.
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Appendix A

Amplification of Local Instabilities

in a Bose-Einstein Condensate

with Attractive Interactions

This appendix contains a reprint of Ref. [50]: J.K.Chin, J. M. Vogels, W. Ketterle, Am-

plification of Local Instabilities in a Bose-Einstein Condensate with Attractive Interactions,

Physical Review Letters 90, 160405 (2003).
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Amplification of Local Instabilities in a Bose-Einstein Condensate with Attractive Interactions

J. K. Chin, J. M. Vogels,* and W. Ketterle'
Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
(Received 20 December 2002; published 24 April 2003)

We study the collapse of large homogeneous Bose-Einstein condensates due to intrinsic attractive
interactions. We observe the amplification of a local instability by seeding a momentum state p and
suddenly switching the scattering length negative via a Feshbach resonance. We also observe the
appearance of atoms in the conjugate momentum state as required by momentum conservation. For
large condensates, the time scale for this depletion process becomes faster than that for global collapse.

DOI: 10.1103/PhysRevLett90.160405

Our current understanding of the collapse of Bose-
Einstein condensates (BECs) with attractive interactions
is incomplete. While the experiments in 7Li provided
many insights into the formation kinetics and stability
[1], it was not until the discovery of externally induced
Feshbach resonances [2] that it became possible to tune
the value of the scattering length and study in detail the
effects of an attractive mean field potential. This tech-
nique was used by Donley et al. to study 85Rb with a
negative scattering length, and they have observed rich
dynamics inherent in the collapse of the condensate.
Among the most intriguing observations were the forma-
tion of low energy "bursts" which were ejected out of the
condensate [3]. While theoretically the enhancement of
quantum fluctuations could give rise to such phenomena
[4-6], there is currently no consensus on the exact
mechanism by which it occurs.

Thus far, theoretical developments have been limited
by having only one experimental testing ground. The
experiments using 85Rb were done using small conden-
sates ( - 15 000 atoms), where the attractive mean field
energy Iu is comparable to the hwo level spacing of the
harmonic trapping potential. In this paper, we study the
collapse of large sodium condensates far in the Thomas-
Fermi regime (Ili >> hw), where the spatial profile of the
condensate is relatively homogeneous. Much of the dy-
namics of such a system is then described by local phe-
nomena. When the interactions become attractive,
Yurovsky [5] predicts that local instabilities with momen-
tum on the order of the (imaginary) speed of sound will
undergo exponential growth. Simultaneously, momentum
conservation requires atoms to be generated in conjugate
momentum states. Since amplification happens on the
time scale of the chemical potential h/A, the resulting
quantum evaporation of the zero momentum condensate
atoms can happen faster than the global collapse where
the whole condensate "implodes."

We probe for local instabilities by seeding a particular
momentum state with an initial population, then suddenly
switching the scattering length negative via a Feshbach
resonance. At the same time, the trapping potential is

PACS numbers: 03.75.Kk, 34.50.-s, 32.80.Pj

turned off, so all subsequent dynamics are due only to the
intrinsic attractive interactions. The resulting amplifica-
tion and the associated generation of atoms in the con-
jugate momentum state verifies the theory. We end with a
discussion on the different collapse time scales of com-
peting processes and show that, for large condensates,
this decay channel becomes dominant.

The theoretical basis for the amplification of local
instabilities is the dispersion relation for the elementary
excitations in a Bose-Einstein condensate:

E 1p) 2 I p(2U )
E(p) - (2no U +-F2ým +2m-

where no is the density, U = 47rh2 2a/m = pt/no is the
contact potential, a is the scattering length, and m is
the atomic mass. For an elementary excitation whose
momentum satisfies Jp12/2m < 21|ul, an instability forms
when IA < 0 (i.e., a < 0) and oscillatory behavior gives
way to exponential growth or decay. A formal derivation
gives the evolution of these low momentum modes as

IUnoI2
(p)(t) Uno sinh2[A(p)t],h2A2(p)

where the growth rate A(p) is given by Ie(p)I/h [Eq. (1)]
when a < 0 [5] and ep is the destruction operator for
mode p. The instability of the mode pair (p, -p) results
in correlated growth, where the creation of an atom in the
+p state is accompanied by the creation of an atom in the
-p state. A similar phenomenon is also responsible for
the four wave mixing process observed in [7,8]. At higher
momentum, the energy becomes real again as the excita-
tions now have enough kinetic energy to stabilize them
against the attractive interactions.

In our experiments, we created large cigar-shaped
sodium condensates in the F = 1, mF = -1 spin state
with typical atom numbers of -30 million and peak
densities of 3 x 1014 cm - 3 in a loffe-Pritchard magnetic
trap. Following this, they were adiabatically loaded into a
mode-matched 1064 nm cylindrical optical dipole trap
with trapping frequencies of 250 and 2 Hz and held for 1 s
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to allow transient excitations to damp out. In the next

117 ms, the axial magnetic field was ramped up to an

intermediate value just short of the 1195 G Feshbach

resonance [9]. Two pairs of coils coaxial with the con-

densates contributed to the bias field: The bias coils

produced a large field of -1200 G and the pinch coils

produced a small field of - - 8 G. Since their mutual

inductance was small, the small pinch coils could be

switched off suddenly to jump up the field in under

10 ps with a negligible adverse effect on the bias field

( _< 1 G). By changing the intermediate field value, we
were also able to tune the scattering length a continuously
from the background scattering length ao to zero to arbi-
trary negative values. The reproducibility of the resulting
magnetic field was 0.4 G. At this point, the condensates
were slightly compressed by a small axial magnetic field
curvature, giving them radial and axial dimensions of
-15 [m and 1.5 mm, respectively, and a speed of sound
c = /Uno/m of 8 mm/s.

We imprinted a low momentum excitation onto a stable
condensate (a > 0) using a two photon optical Bragg
transition to couple atoms from the zero momentum state
to a low momentum state p [10]. The Bragg beams were
pulsed on for 400 As and were directed at an angle of 150
and 200, respectively, from the long axis of the conden-
sate, creating phonons propagating with a momentum of
m X 2.5 mm/s in a predominantly radial direction. With
this momentum p, the minimum value of lal required for
amplification to happen is estimated to be -0.06 nm. The
beams were red-detuned from the sodium D2 line by 3 nm
to minimize Rayleigh scattering, and had a frequency
difference of Acw = 27r x 700 Hz.

At this point, we changed the scattering length a
suddenly and entered the Feshbach resonance by turning
off the pinch coils. This technique reduced the time
available for three-body decay, thereby overcoming the
problematic high loss rate first observed by Inouye
et al. [2] and gave us a well-defined initial condition
similar to that in [3]. At the same instant, we also turned
off the optical trapping potential to allow the system to
evolve under its intrinsic attractive interactions. After a
variable time of 0 to 1 ms, the magnetic fields were
switched off, causing the scattering length to become
positive again. Following 6 ms of ballistic expansion, a
pump pulse from F = 1 to F' = 2 was applied. Radial
absorption images providing the momentum distribution
of the condensates were taken on the F = 2 to F' = 3
cycling transition.

The images in Fig. 1 probe the radial dynamics of the
condensates and provide dramatic visual verification of
quantum evaporation. Figure l(a) shows the +p excita-
tions moving out of the condensate without any amplifi-
cation. In contrast, Fig. 1(b) was taken after the
condensate had been held at a = -0.82 nm for 600 As.
Not only was the number of atoms in the +p momentum
state significantly amplified, it was accompanied by the
formation of excitations in the -p momentum state, here
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FIG. 1. Amplification of unstable excitations in a BEC with
a < 0. In (a), the unamplified +p excitations are shown mov-
ing out of the condensate after 6 ms ballistic expansion. In (b),
the +p excitations have been amplified and are accompanied
by the formation of -p excitations after 600 As of hold time at
a = -0.82 nm. The field of view is 960 /m by 100 ptm. The
insets show a radial optical density profile in arbitrary units
averaged over a - 100 tum long section of the condensate which
was relatively uniform.

seen moving out of the condensate in the opposite direc-
tion. These observations clearly demonstrate the instabil-
ity of a condensate with negative scattering length.

Because of the large aspect ratio of our condensates,
only part of the condensate could be imaged at high
magnification. However, since the +p and -p excitations
were created predominantly in the radial direction, this
was not a limitation. The small "kinks" that were also
apparent in our condensate are most likely a result of
imperfections in our optical dipole trap. Yet, rather than
degrade the signal, they highlight the parallel contours
between the condensate and the ridge of excitations as
atoms move out with a definite momentum.

In order to perform more quantitative tests of this
phenomenon, we first characterized the negative scatter-
ing length dependence on the field by directly probing the
strength of the attractive interactions. As before, optically
trapped condensates close to a Feshbach resonance were
prepared. The confining infrared laser beam was then
replaced with a repulsive 3 nm blue-detuned "antitrap"
beam as we simultaneously jumped to negative scattering
lengths. At the right intensity I, the antitrap beam pro-
vided the correct amount of repulsive dipole force needed
to compensate for the attractive interactions within the
condensate and suppressed any global contraction of size.
However, this is an unstable equilibrium and any sloshing
of the condensate or misalignment of the laser beam
caused the condensate to be repelled. Therefore the anti-
trap was fine aligned to milliradian accuracy such that a
condensate with a > 0 was ripped apart radially into a
hollow cylinder. Using this method, we were able to
stabilize an attractive condensate for 0.2 to 2 ms, depend-
ing on a(B), before unavoidable losses became significant.

160405-2
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FIG. 2. Characterization of the Feshbach resonance. The light
intensity needed to balance out the interatomic interactions
gives the dependence of the scattering length on magnetic field.
The solid line is a fit to the data.

The radial dimension was used to monitor the mechanical
dynamics of the condensate occurring on the 250 Hz time
scale of the trap frequency. For minimal distortion of the
spatial image, absorption images were taken after only
2 ms of ballistic expansion necessary for the high mag-
netic fields to die out.

In equilibrium, a oc Fattractive = Frepulsive oC I, and we
obtain the scattering length dependence on the magnetic
field by plotting I vs B (Fig. 2). A red-detuned laser beam
with a similar detuning of 3 nm was employed to obtain
the points for positive a. By fitting the expected Feshbach
curve a(B) = ao[l + (AB)/(B - Bo)] to our data, we find
the width AB of the resonance to be (2.4 ± 0.4) G which
determines the range of the magnetic field we have to
work within [11]. Here, ao = 3.3 nm is the triplet scatter-
ing length at high fields [12].

A quantitative analysis of the growth in the +p and -p
modes was performed by monitoring their occupation
number as a function of hold time in the attractive regime
(Fig. 3). The number count per mode was normalized to
the number of atoms in the condensate at the end of the
hold time to account for the high loss of atoms during this
process due to inelastic collisions [13]. The maximum
duration of amplification was limited by the lifetime of
the condensate, which was about 600 As for a =

- 1.35 nm. Following Eq. (2), an exponential dependence
was fitted to the data, yielding a common growth rate of
A = 5.89 ± 0.83 ms-' for both modes. This agrees well
with the theoretical value of 5.57 ms - ', estimated using
our initial mean field of h x 5 kHz.

We also investigated the dependence of the growth rate
on the strength of the interactions. By varying the
scattering length and extracting A as above, we observed
a strong increase of A with lal (Fig. 4). A fit to the
theoretical prediction A(p) = bylal - b2 [Eq. (1)]
yielded the fit parameters b, = (1.11 ± 0.14) X
108 nml /2 ms-1 and b2 = 0.078 ± 0.04 nm, in agreement
with theoretical estimates of 1.55 x 108 nm 1/ 2 ms-1 and
0.06 nm, respectively. For this sequence of measure-
ments, the initial mean field was A = h x 4 kHz. The
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FIG. 3. Amplification of excitations in a BEC with a < 0.
The growth of the normalized mode population in both +p and
-p modes as a function of hold time at a = -1.35 nm is fitted
to an exponential dependence according to Eq. (2), which gave
a common growth rate of 5.89 ± 0.83 ms- 1. A variable offset
accounted for the initial seeding of the +p mode.

large error bars reflect the high sensitivity of the dynam-
ics to the magnetic field. In particular, the inelastic loss
rates as a function of a have not yet been well charac-
terized, which limits the accuracy of our data.

The results presented here prove conclusively that
quantum evaporation is part of the complex dynamics
that occur during the collapse of an attractive condensate.
While we select a particular mode for observation, the
effect is predicted to happen for all modes satisfying
IP12/2m < 21/1. At short times, the pairwise emission
of atoms also implies that the number of atoms in the
conjugate mode pairs will be exactly correlated, although
as the condensate becomes increasingly depleted, higher
order effects will degrade the correlation [5].

Since quantum evaporation is intrinsic to the conden-
sate, a natural question to ask is how large a part it plays
in the unperturbed collapse of the condensate. From [5],
the depletion of the condensate density no is given by

C,

E
a,

0

0 1 2 3
lal (nm)

FIG. 4. Growth rate of excitations in a BEC with a < 0. The
rate increases with the magnitude of the negative scattering
length lal. The solid line shows a best fit to the predicted
bllal - b2 dependence.
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n fo = -4 a2 nexp(8rhilalnot/m).
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Using our parameters, we extract the time til/e taken for
no to decay to 1/e of its original value and compare it to
the observed time taken for the condensate to decay
without initial seeding until it is no longer discernable
(using a visibility threshold of about 10% to 20%) in
Fig. 5. As both the number of unstable modes and the
amplification rate increase with a, there is a significant
decrease of til/e with lal. We also considered the effect of
the initial quantum depletion (- 1%, [14]) on til/e, but
concluded that its impact is small.

In addition, we compare the observed collapse time to
the decay time predicted for global collapse. This implo-
sion corresponds to the unstable monopole mode and may
be qualitatively described by Eq. (1) if we assume a
momentum equal to h times the inverse size of the con-
densate. However, the global collapse is more accurately
described by accounting for the inhomogeneous spatial
profile of the condensate. The inherent pressure gradient
will cause the condensate to collapse inwards and the
resulting compression causes the density to increase and
sharply enhance the three-body recombination loss rate,
which goes like n2. We model the radial evolution using
the mean squared radius R = f r2 (r)12rdr. For our
cylindrical condensates with an aspect ratio of 100:1,
an analytical solution for the resulting 2D dynamics
exists [15,16], given by R = 4(E - w2R), where E is the
total energy of the system. Since w = 0 and 1 = 0 in ourdt
experiments, E is conserved and determined from initial
conditions. The time taken to reach R = 0 is

1 [o
tdecay = I aco o lal*

Equation (4) is also plotted in Fig. 5 and its intersection
with tile separates the graph into two domains. For small
lal, global collapse is predicted to dominate over quantum
evaporation while the converse is true at larger lal. This is
explained by noting that the decay of the condensate is
dominated by the amplification of unstable modes with
Pmax = /2imicl = fi/e, where S is the value of the
(imaginary) healing length [Eq. (1)]. When e is compa-
rable to the condensate size, the local description is
invalid and global collapse occurs. In the Thomas-Fermi
limit, however, e is small and local instabilities deplete
the condensate much faster than global collapse. This is
consistent with our observations in Fig. 5. We were unable
to study the condensate lifetime at even more negative
scattering lengths since the condensate then decayed al-
most instantaneously. To realize a global collapse time
much slower than til/e would require a combination of a
weak trap with a high number of atoms, which is cur-
rently out of reach.

In conclusion, we have shown that large condensates
far in the Thomas-Fermi regime undergo amplification of

E
v

E

0.

0-
0l

0 1 2 3 4 5

Scattering Length (nm)

FIG. 5. Time scales for BEC decay. The observed collapse
time is compared to the time taken for the condensate density
to fall to 1/e of its original value (til/e) due to instability
amplification [solid curve, Eq. (3)] and the expected tdecay for
global collapse [dashed curve, Eq. (4)].

local instabilities when their scattering length becomes
negative. We have studied the dependence of amplification
rate on the magnitude of the negative scattering length
and found reasonable agreement with the theory. For our
parameters, this quantum evaporation process becomes
faster than the global collapse.
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Appendix B

Bogoliubov calculations

Beginning from the Bogoliubov transformation Eq. 3.7 and the Hamiltonian in diagonal

form

H = e(q)bbq, E(q) = c2 q2 + 2 (B.1)

The equations of motion for aq and atq can be obtained from the time-dependent Schroedinger

equation,

daq =daq [H, aq]dt &
= i[H, ubq - vbfq]

= -~[(- + U)aq + Uaq]
dat  i [( q2

dt 2m

The solution of the two coupled equations yields solutions

aq(t) = f(t)aq(0) + g*(t)at_q(0)

af (t) = f*(t)aq(0) + g(t)aq(0)

f(t) = cosh[Atj - ( + U) sinh[At]hA 2m
iU

g(t) = U sinh[At]

The growth of the mode (aqat) (t) is given by

ataq(t) I= 2 a, qaq + IgI2a-qa + fga _qa + gfaqaq
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If the initial occupation of all modes is zero, then only the second term contributes and the

expression reduces to Igl2 = U sinh 2[At], which is exactly Eq. 3.9. Otherwise, it depends on

all the terms, including the cross terms (aqaq) and (a . These can also be calculated

and here I will just give their final forms:

(aaq) = = (aa-
(atqat) = -uV = (aqaq)

Finally, collating all results gives

where

agaq(t) = If 12 2 + 1g1 2(V2 + 1) - 2Re(fg)uv

1 .k2

If 12 = cosh2 [At] + ( + U) 2 sinh2 [At]

U2

Ig12  2 sinh 2 [At]
U k2

Re(fg) = ( + U) sinh2[At]T2 2

(B.2)
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Appendix C

Formation of Quantum-Degenerate

Sodium Molecules

This appendix contains a reprint of Ref. [19]: K.Xu, T. Mukaiyama, J.R. Abo-Shaeer,

J.K.Chin, D.E. Miller, W. Ketterle, Formation of Quantum-Degenerate Molecules, Physical

Review Letters 91, 210402 (2003).
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Formation of Quantum-Degenerate Sodium Molecules

K Xu, T. Mukaiyama, J. R. Abo-Shaeer, J. K. Chin, D. E. Miller, and W. Ketterle
Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, MIT

Cambridge, Massachusetts 02139, USA
(Received 1 October 2003; published 21 November 2003)

Ultracold sodium molecules were produced from an atomic Bose-Einstein condensate by ramping an
applied magnetic field across a Feshbach resonance. More than 105 molecules were generated with a
conversion efficiency of -4%. Using laser light resonant with an atomic transition, the remaining atoms
could be selectively removed, preventing fast collisional relaxation of the molecules. Time-of-flight
analysis of the pure molecular sample yielded an instantaneous phase-space density greater than 20.

DOI: 10.1103/PhysRevLett.91.210402

Atomic Bose-Einstein condensates (BEC) provide a
new window into macroscopic quantum phenomena [1].
A molecular condensate could lead to a host of new
scientific explorations. These include quantum gases
with anisotropic dipolar interactions, tests of fundamen-
tal symmetries such as the search for a permanent electric
dipole moment, study of rotational and vibrational energy
transfer processes, and coherent chemistry, where reac-
tants and products are in coherent quantum superposition
states. So far, the highly successful techniques for creat-
ing atomic BEC have not led to success for molecules.
Laser cooling is difficult due to the complicated level
structure of molecules [2], and evaporative cooling re-
quires the preparation of a dense gas of molecules, where
elastic collisions dominate inelastic collisions.

Alternative techniques, such as buffer gas loading [3]
and Stark deceleration [4], have been successful in ob-
taining cold molecules. Yet these methods are still far
from achieving the requisite phase-space density for
BEC. The difficulty in cooling molecules directly can
be circumvented by creating ultracold molecules from
quantum-degenerate atomic samples. This requires mole-
cule formation without release of energy, which can be
accomplished either by photoassociation [5] or by "tun-
ing" a molecular state via a Feshbach resonance [6] to be
degenerate with the atomic state. A Feshbach resonance
occurs when an applied magnetic field Zeeman shifts a
molecular state to zero binding energy. By ramping an
external field across a Feshbach resonance from negative
to positive scattering length, translationally cold mole-
cules in high vibrational states can be created adiabati-
cally [7-9].

The first observation of a Feshbach resonance in ultra-
cold atoms showed a high rate of atom loss [6,10].
Theories accounted for this loss by assuming the forma-
tion of ultracold molecules [7,8,11]. These molecules were
predicted to decay vibrationally in less than 100 ss due
to a two-body rate coefficient of order 10-10 cm3/s.
Because of this, no successful attempt was made to detect
a molecular signature until atom-molecule beats were
observed in 85Rb, lasting about 100 As [12]. Recent fer-
mion experiments using magnetic field sweeps have ob-

PACS numbers: 03.75.Nt, 32.80.Pj, 33.80.Ps, 34.20.Cf

served molecules with lifetimes approaching 1 s [13-16].
Until now, similar experiments with bosons have been
carried out only during ballistic expansion [17,18].
According to theory, the decay of molecules composed
of fermionic atoms is suppressed by Pauli blocking [19],
whereas molecules composed of bosons decay rapidly.
This could explain the low conversion efficiency of about
5% for bosons, compared to > 50% for fermions, where
more adiabatic field ramps are possible.

If highly degenerate atoms (both fermionic and bo-
sonic) are converted adiabatically to molecules, the mole-
cules can be created at a phase-space density exceeding
2.6, the critical value at which a uniform, ideal Bose gas
condenses [20]. Previous experiments [14,18,21] have
measured or estimated conditions close to or around
this critical phase-space density.

Here we report the production of trapped sodium mole-
cules from an atomic BEC. The initial phase-space den-
sity of the molecular sample was measured in excess of
20. High phase-space density could only be achieved by
rapidly removing residual atoms, before atom-molecule
collisions caused trap loss and heating. This was accom-
plished by a new technique for preparing pure molecular
clouds, where light resonant with an atomic transition
selectively "blasted" unpaired atoms from the trap. In
contrast to spatial separation via a Stern-Gerlach method
[17,18], this technique can separate out the molecules
faster and does not require a large difference in the
magnetic moments of the atoms and molecules.

To generate the molecules, sodium condensates in the
IF = 1, mF = -1) state were prepared in an optical di-
pole trap. The radial and axial trap frequencies of w,r =
27r X 290 Hz and wZ = 27r X 2.2 Hz, respectively, gave
Thomas-Fermi radii of R, = 5 ,m and Rz = 650 Lm,
and a peak density of 1.7 X 1014 cm -3 for 5 x 106 atoms
atoms. An adiabatic radio frequency sweep was used to
transfer the atoms into the 11, 1) state, which has a 1 G
wide Feshbach resonance at 907 G [6,22].

After 1 s equilibration in the optical trap, the molecules
were generated using the field ramping scheme illustrated
in Fig. l(a). An applied magnetic field was ramped in
-100 ms to 4 G below the 907 G Feshbach resonance.

0031-9007/03/91(21)/210402(4)$20.00 @ 2003 The American Physical Society210402-1 210402-1
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The field was generated using a pair of large bias and

small antibias coils. Because molecules are only created

when sweeping across the resonance from negative to

positive scattering length, the field was stepped up to

913 G as quickly as possible (-1 Ius) to jump over the

resonance with minimal atom loss. After allowing 2.5 ms

for transient field fluctuation to damp out, the field was

ramped down in time rdown- Because of atom-molecule

coupling, part of the atomic population was transferred

into the molecular state following the Landau-Zener

avoided crossing. With the given width of the resonance

and the atomic density, we use a simple Landau-Zener

model to calculate a ramp speed of -10 4 G/s to transfer

roughly half the atoms to the molecular state [7,8,11].

However, inelastic collisions led to fast decay for both

the atoms and the molecules near the resonance. We found

that a faster ramp speed of -10 5 G/s(corresponding to
Tdown = 50 As) gave optimal results. The conversion effi-

ciency of atoms to molecules was -4%. Slower ramp

speeds resulted in a similar number of molecules, but at

higher temperature [see Fig. l(e)].

a) O 000

_----------- 907Ga>0 - 1- ------ --v -- 907 G
a (i) () ------ 903 G

00

-- Optical Trap On -TOF-4+lmagingl
Time

FIG. 1. (a) Experimental method for producing and detecting
ultracold molecules. (i) Bose condensed atoms in an optical
dipole trap are exposed to a magnetic field just below a
Feshbach resonance. (ii) The field is quickly stepped through
the resonance to minimize atom loss. (iii) The field is then
swept back through the resonance, creating an atom-molecule
mixture. (iv) Unpaired atoms are removed from the trap with
resonant light, yielding a pure molecular sample. (v) The trap is
switched off, allowing the molecules to expand ballistically.
(vi) Finally, the magnetic field is swept back across the reso-
nance to reconvert the molecules to atoms for imaging (vii).
(b) Image of the atomic sample after ramping the field to
produce molecules; (c) after the resonant light pulse has re-

moved all unpaired atoms; (d) after the molecules (--105) have
been reconverted to atoms. (b),(c) were taken along the weak
axis of the trap after 17 ms ballistic (time-of-flight-TOF)
expansion. (e) An image showing both atomic (top) and mo-
lecular (bottom) clouds after 14 ms ballistic expansion, spa-
tially separated by a magnetic field gradient. With 4 ms field
ramp-down time, some molecules survived even without the
blast pulse, but are much more heated. The field of view of each
image is 1.8 mm X 1.3 mm.
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The blast pulse was applied along the radial axis of the

trap to minimize collisions between the escaping atoms

and the molecules at rest. A 20 As pulse of resonant light

removed all atoms from the optical trap, leaving behind a

pure molecular sample (see Fig. 1). At only 4 G below the

Feshbach resonance, the light was still close to resonance

with molecular photodissociation to low-velocity atoms,

but the overlap matrix element was sufficiently dimin-

ished to leave the molecules unaffected. After a variable

hold time, the optical trap was switched off and the

molecules expanded ballistically for between 4 and

20 ms. The molecules were detected by converting them

back to atoms with field ramp-up in Tup = 100 ps at the

end of expansion. Varying Tup between 50 .s and 4 ms did

not affect the recovered atom number, though shorter

7up's recovered atoms with larger kinetic energy [23].

Thus we assume all molecules are converted back to

atoms. A resonant absorption image was taken after an

additional 500 As, which allowed the imaging field to

settle. The rapid conversion of molecules to atoms after

a long expansion time ensured that the absorption images

accurately depicted the momentum distribution of the

molecular cloud.
Atoms and molecules were separated during the bal-

listic expansion by a Stern-Gerlach technique [Fig. 1(e)].

Because of trap imperfections, the large bias coils pro-

vided an additional radial gradient of the axial field of

-2.8 G/cm in the vicinity of the condensate. This value

was determined from the trajectory of the falling atoms.
Since the molecules have a different magnetic moment,

they separate from the atoms during the ballistic expan-

sion [Fig. 1(e)]. From the separation of the atomic and

molecular clouds at different times, we determined the

difference between atomic and molecular magnetic mo-

ments to be 3.2 AB (ILB is the Bohr magneton), in good

agreement with theory [11].
For different ramp down times T down, the time-of-flight

images of the molecular cloud exhibit drastically differ-
ent momentum distribution. The coldest cloud was ob-

tained with the fastest ramp down time possible,

'down = 50 As (Fig. 2). A Gaussian fit was used to deter-
mine the molecular temperature Tm and the phase-space
density. Because of the rapid ramp down, the molecules
had no time to adjust to the external trapping potential or
any mean-field interactions. Therefore, we assume the
molecules were uniformly created with the Thomas-
Fermi profile of the original atomic BEC. The peak
phase-space density is then given by

PSD = h 3 NmSDpeak 27k TmMm ~RR'
)3- A'7r~

where h is the Planck constant, kB is the Boltzmann
constant, Mm is the molecular mass, and Nm is the number
of molecules. The second factor in the equation is the
peak density for a Thomas-Fermi profile.

Figure 3(a) shows the phase-space densities obtained
for different holding time in the optical trap. Phase-space

210402-2
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4 ms 6 ms 8 ms 10 ms 12ms 14 ms 16 ms 18 ms 2r ms

FIG. 2. Ballistic expansion of a pure molecular sample.
Absorption images of molecular clouds (after reconversion
to atoms) are shown for increasing expansion time after
switching off the optical trap. The small expansion ve-
locity corresponds to a temperature of -30 nK, characteristic
of high phase-space density. The images are taken along the
weak axis of the trap. The field of view of each image is
3.0 mm x 0.7 mm.

densities in excess of 20 were observed, much larger
than the critical value of 2.6. This demonstrates that a
quantum-degenerate cloud of atoms can be transformed
into a quantum-degenerate molecular gas.

The high initial phase-space density decayed rapidly
(-2 ms), due to molecule loss and heating. For a pure
molecular sample at a peak density of 4 x 1012 cm - 3, the
molecule number dropped by half in 5 ms and the appar-
ent temperature doubled in 2 ms. Since the molecules are
formed in a high vibrational state with quantum number
v = 14, losses are most likely due to vibrational relaxa-
tion. The high loss rate of the molecules is consistent with
theoretically predicted two-body relaxation rate coeffi-
cients of 10-10 cm 3/s [9,24]. Because the loss of mole-
cules is faster at the high densities near the bottom of the
trap, it is accompanied by heating. This is in contrast to
evaporative cooling, where the losses occur at the top of
the trap. Such antievaporative heating gives a time con-

a) 2.
> 10

co 4 -

= 2-
0 0.1-

aOn

stant 4 times slower than the observed heating rate. We
therefore believe that the rapid increase in the apparent
temperature is due to the inward motion of the molecular
cloud (see below), and possibly transfer of the vibrational
energy of the molecules.

Our calculation of the phase-space density is conserva-
tive, since almost all errors lead to an underestimation of
the value. The most critical quantity is the thermal veloc-

ity vtherm = 12 kBTm,,/M obtained from the Gaussian fit
of the cloud, since the phase-space density scales with the
third power of Vtherm. We determined the velocity by
simply dividing the size of the cloud by the time-of-
flight, without correcting for imaging resolution and
initial cloud size.

Correcting for the imaging resolution of 10 /tm com-
pared to the typical cloud size of 50 /m would increase
the phase-space density measurement by 6%. In addition,
radial excitation of the trapped cloud (shown in Fig. 4)
contributed to the size of the cloud after the ballistic
expansion. From the fits, the smaller of the two Gauss-
ian radii was used to calculate Vtherm, assuming that the
larger size was caused by radial excitations. Yet since the
radial excitation can occur in two orthogonal directions,
we estimate that the extracted thermal velocities were
still overestimated by -10%. We also considered mag-
netic focusing of the cloud due to residual field inhomo-
geneities. Because we use large coils (-17 cm in diameter
and -4 cm away from the condensate) to produce a
homogeneous magnetic field, any residual radial curva-
ture due to radial fields is calculated to be < 0.1 G/cm2 .
An upper bound for the radial curvature of the axial fields
was obtained from trap frequency measurements and
ballistic expansion measurements as <1 G/cm2. This
can only reduce the size of the cloud by less than 2%
after a typical ballistic expansion time of 17 ms.

We assume resonant absorption in determining the
number of atoms. Any systematic effect such as small
detuning or saturation, would lower both N, and the
Thomas-Fermi volume (proportional to N3/ 5, where N
is the number of condensed atoms). The net effect is an
underestimate of the phase-space density. In addition,
because the molecular formation process is nonlinear in

I *,• o"Sl:
so 0

10
Hold Time (ms)

15 20

FIG. 3. Molecular phase-space density versus hold time.
(a) The phase-space densities of the trapped molecules were
observed to decrease significantly after a few milliseconds in
the optical trap. The open and solid squares are data from two
separate runs on different days. (b),(c) are absorption images
of the molecular clouds after (b) 0 ms, (c) 2 ms, (d) 5 ms,
(e) 10 ms, (f) 20 ms hold time in the trap. The field of view is
0.8 mm x 0.8 mm.
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FIG. 4. Images of (a) atomic and (b) molecular clouds. These
absorption images were taken after 7 ms ballistic expan-
sion and show the axial extent of the clouds. Radial excita-
tions in the optical trap resulting from the sudden switching
of magnetic fields are manifest as snakelike patterns. Such
excitations blur images (c) taken along the long axis of the
trap (in 17 ms TOF), leading to an underestimate of the phase-
space density. The fields of view are (a),(b) 0.6 mm X 3.2 mm,
(c) 0.6 mm X 0.4 mm.
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atomic density, the assumption of the atomic Thomas-
Fermi volume for molecules is likely an overestimate.
Furthermore, in the absence of strong mean-field repul-
sion (due to the much lower molecular density), the
molecular cloud would not sustain the initial size of
the atomic condensate [used in Eq. (1)], and shrink to
a smaller size within a few milliseconds (- radial trap
period). If we assume radial thermal equilibrium while
keeping the axial length fixed (as the axial trap period
is 500 ms), the phase-space density would be 2 to 4
times higher than is shown in Fig. 3. To sum up, the ex-
tracted peak phase-space densities are underestimated by
;ý 30%, and all other critical systematic effects would
raise the value even further.

When a molecular cloud with high phase-space density
equilibrates by elastic collisions, it should form a con-
densate. There is no prediction for the scattering length of
the molecules, which are formed in the Iv = 14, 1 = 0)
state [25]. Assuming a prototypical scattering length of
100ao (ao is the Bohr radius), we estimate the elastic
collision rate between molecules to be 6 s- 1, which is
smaller than our loss rate. Thus, the so-called ratio of
good and bad collisions is smaller than 1.

Recent work on molecules composed of fermionic lith-
ium [14,15] and potassium [26] atoms showed a dramatic
increase in lifetime close to the Feshbach resonance.
Theoretically, the rate of vibrational relaxation should
decrease with the scattering length as as oc as 2.55 due to
Pauli blocking [19]. In contrast, for molecules composed
of bosonic atoms, the rate should increase proportionally
to as [27]. On the other hand, the elastic collision rate is
proportional to a2 , so for large as one would expect the
ratio of good-to-bad collisions to exceed one. However, if
this condition is met at loss rates faster than the trap
frequency, the cloud can only establish local, not global
equilibrium.

Whether our molecular sample is a condensate depends
on one's definition of BEC. If phase-space density in ex-
cess of 2.6 (corresponding to a diagonal matrix element of
the single-particle density matrix larger than 1) is suffi-
cient, then one may regard a short-lived atom-molecule
superposition state [12] as a molecular BEC. However,
following this definition, a small excited state admixture
in an optically trapped BEC would qualify as BEC of
electronically excited atoms. If one asks for the additional
requirement of a pure molecular sample, we have
achieved that in this work. Another definition would re-
quire phase coherence, which could again be observed
even in short-lived samples. Should one also require a
lifetime of the degenerate sample exceeding the collision
time (to achieve local equilibrium), the trap period (to
achieve global equilibrium), or the inverse mean-field
energy (the typical dynamic timescale)? In our opinion,
BEC requires thermal equilibrium. High phase-space
density is necessary, but not sufficient.

In conclusion, we have created a quantum-degenerate
gas of 105 cold sodium molecules with a phase-space

210402-4

density >20. This was achieved with a fast magnetic
field sweep through a Feshbach resonance, followed by
quick removal of the remnant atoms with resonant light
This purification was necessary to avoid heating and
decay of the molecules through inelastic collision pro-
cesses. These processes could also be avoided by loading
the atomic BEC into an optical lattice in the Mott-
insulator phase with a filling factor of 2 [28,29] which,
after sweeping the magnetic field through the Feshbach
resonance, would result in a long-lived sample of isolated
molecules.
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Appendix D

Experimental Setup

This appendix contains the blueprints for building the new BEC II machine.
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Figure D-1: Schematic of the new BEC II machine.
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Figure D-2: Wiring of the various coils usqcjgor magnetic trapping and Feshbach fields.
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Appendix E

Evidence for Superfluidity of

Ultracold Fermions in an Optical

Lattice

This appendix contains a reprint of Ref. [50]: J.K.Chin, D.E. Miller, Y. Liu, C. Stan, W.

Setiawan, C. Sanner, K.Xu, W. Ketterle, Evidence for Superfluidity of Ultracold Fermions

in an Optical Lattice, Nature 443, 961 (2006).
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Evidence for superfluidity of ultracold fermions
in an optical lattice
J. K. Chin', D. E. Miller', Y. Liu', C. Stan't, W. Setiawan', C. Sanner', K. Xu' & W. Ketterle'

The study of superfluid fermion pairs in a periodic potential has
important ramifications for understanding superconductivity in
crystalline materials. By using cold atomic gases, various models of
condensed matter can be studied in a highly controllable envir-
onment. Weakly repulsive fermions in an optical lattice could
undergo d-wave pairing' at low temperatures, a possible mech-
anism for high temperature superconductivity in the copper
oxides 2. The lattice potential could also strongly increase the crit-
ical temperature for s-wave superfluidity. Recent experimental
advances in bulk atomic gases include the observation of fer-
mion-pair condensates and high-temperature superfluidity - .
Experiments with fermions'" and bosonic bound pairs'2' 3 in
optical lattices have been reported but have not yet addressed
superfluid behaviour. Here we report the observation of distinct
interference peaks when a condensate of fermionic atom pairs is
released from an optical lattice, implying long-range order (a
property of a superfluid). Conceptually, this means that s-wave
pairing and coherence of fermion pairs have now been established
in a lattice potential, in which the transport of atoms occurs by
quantum mechanical tunnelling and not by simple propagation.
These observations were made for interactions on both sides of a
Feshbach resonance. For larger lattice depths, the coherence was
lost in a reversible manner, possibly as a result of a transition from
superfluid to insulator. Such strongly interacting fermions in an
optical lattice can be used to study a new class of hamiltonians with
interband and atom-molecule couplings'4 .

Previous experiments showing long-range phase coherence in
Bose-Einstein condensates (BECs) and in fermion superfluids used
ballistic expansion to observe the interference of two independent
condensates", vortex latticess"'6 7 or interference peaks after release
from an optical lattice'8 ,9. However, for strongly interacting fer-
mions, elastic collisions can change the momentum distribution
and wash out interference peaks. For an initially superfluid cloud,
such dissipative dynamics corresponds to superfluid flow faster than
the critical velocity. Consistent with this expectation is the obser-
vation that a strongly interacting Fermi superfluid initially contain-
ing distinct momentum components yielded a broad diffuse cloud
after expansion (Fig. 1). This issue was addressed by using a magnetic
field ramp that quickly increased the detuning from a Feshbach res-
onance, taking the system out of the strongly interacting regime and
enforcing ballistic expansion. In previous studies of strongly inter-
acting Fermi gases, magnetic field sweeps were applied to prevent
fermion pairs above the Feshbach resonance from dissociating 6"""'2 .In
contrast, our experiment required a magnetic field sweep both above
and below the Feshbach resonance to avoid elastic collisions.

Our experiments used a balanced mixture of 6Li fermions in the
two lowest hyperfine states. Evaporative cooling produced a nearly
pure fermion pair condensate that was adiabatically loaded into a

three-dimensional optical lattice. A broad Feshbach resonance
centred at 834 G enabled tuning of the interatomic interactions over
a wide range. On resonance, a bound molecular state becomes degen-
erate with the open atomic scattering channel, leading to a divergence
in the scattering length a. Here we explore the region of strong inter-
actions, also known as the BEC-BCS (Bardeen-Cooper-Schrieffer)
crossover, in which the magnitude of the interaction parameter IkFal
is greater than unity, and kF is defined as the peak Fermi wavevector
of a two-component non-interacting mixture of 6Li atoms. In the
crossover region, pairing occurs as a result of many-body interac-
tions. Below resonance, for strong interactions, the bare two-body
state has a bond length larger than the interatomic spacing and is
irrelevant. In a lattice, atom pairs above and below the resonance can
be confined to one lattice site", and crossover physics may require an
occupation larger than or equal to one.

The peak pair filling factor of the lattice was about unity. At
this density in the bulk, the fermion pair size is on the order of
1/kF = 170 nm, comparable to the lattice spacing of 532 nm. To probe
the momentum distribution, we ramped the magnetic field out of the
strongly interacting regime as fast as technically possible (about
150 ps) and then turned off the confining potential. Absorption
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Figure 1 I Dissipative collisions during expansion of a strongly interacting
fermionic superfluid. The schematic shows the time sequence of the
magnetic field ramp used throughout this paper. A one-dimensional optical
standing wave was pulsed onto the superfluid at different magnetic fields Bp(indicated by arrows at 822 G (a), 749 G (b) and 665 G (c)) during expansion,
creating particles at twice the photon recoilse. Absorption images taken at the
time marked with the cross show distinct momentum peaks only at magnetic
fieldsBp 5 750 G, where kFa s 1. At higher magnetic fields, the peaks blurred
into a broad diffuse cloud as a result of the larger collision cross-section.
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Figure 2 1 Observation of high-contrast interference of fermion pairs
released from an optical lattice below and above the Feshbach resonance.
a, The orientation of the reciprocal lattice, also with respect to the imaging
light. b-d, Interference peaks are observed for magnetic fields of 822 G
(b), 867 G (c) and 917 G (d). The lattice depth for all images is 5E,, and each
image is the average of three shots. The field of view is 1 mm X 1 mm.
Density profiles through the vertical interference peaks are shown for each
image.

images taken after 6.5 ms of expansion reveal sharp peaks at the

reciprocal lattice vectors-the signature of long-range coherence, a
strong indicator for superfluidity.

We observed these interference peaks at magnetic fields both above
and below the Feshbach resonance (Fig. 2). The six first-order dif-
fracted peaks are clearly visible around the zero momentum fraction
and their positions correspond to the expected momentum quanta of
2hkL carried by molecules of mass 2m, where kL is the lattice wave-
vector. At high magnetic fields (Fig. 2d) the visibility of the interfer-
ence peaks decreased and some additional heating was observed. This
degradation could be due to a higher fraction of thermal atoms as we
approached the BCS limit, but it was not studied in detail.

The narrow interference peaks clearly reveal the presence of a
macroscopic wavefunction possessing long-range phase coherence.
The separation between the interference peaks relative to their width
gives an estimate of the coherence length of about ten lattice sites.
This estimate is a lower bound, because effects of finite resolution and
mechanisms of residual broadening have been neglected. With unity
occupation, and in the absence of any discernible background at
magnetic fields near the Feshbach resonance, this implies a minimum
phase space density of 103 and shows that our samples are deep in the
quantum-degenerate regime. In previous studies of ultracold Bose
and Fermi gases, the appearance of a condensate fraction and long-
range phase coherence was shown to occur concurrently with the
possibility to excite superfluid flow8 6"'7 2 1. Superfluid hydro-
dynamics is usually regarded as the direct proof for superfluidity.
However, all reports of superfluidity of bosons in three-dimensional
optical lattices have relied solely on observations of sharp interfer-
ence peaks and inferred superfluidity from the established connec-
tion between long-range coherence and superfluidity 9,'22. Similarly,
our observations directly show long-range coherence and indirectly
show superfluidity of fermion pairs in an optical lattice.

For deep lattices, breakdown of superfluid behaviour has been
observed for weakly interacting BECs of different bosonic species9""23.
This phase transition to the Mott-insulator state occurs when on-site
interactions start to suppress atom number fluctuations and the
system undergoes a transition from a delocalized superfluid
962

Figure 3 1 Interferograms of fermion pairs released from different lattice
depths Vo at a field of 822 G. Values of Vo are OE, (a), 2.5Er (b), 4Er (c), 5Er
(d), 6Er (e), 7Er (f), 9Er (g) and 2.5E, (h). a-g were taken after an adiabatic
ramp up to the final V0, whereas h was taken after first ramping up to 10Er
before ramping down to 2.5Er.

described by a macroscopic wavefunction to a product of Wannier
states tightly localized at each lattice site. Experimentally, this is
manifested as a smearing of the distinct 2hkL interference peaks.

Figure 3 shows the change in the coherence properties when the
lattice depth was increased. The interference peaks became more
pronounced initially, because of increased modulation of the wave-
function. The interference peaks began to smear out, rapidly giving
way to a featureless cloud, beyond a critical lattice depth Vc 6Er,
where Er = h2 kL2/4m = h X 15 kHz is the recoil energy. This indicates
that all phase coherence had been lost. On subsequent ramping down
of the lattice, interference peaks became visible again (Fig. 3h), show-
ing reversibility of the lattice ramp.

We repeated this sequence for a wide range of initial magnetic
fields, both above and below the resonance, and observed the same
marked change in the interference pattern. Figure 4 displays the peak
optical density of the interference peaks for different lattice depths at
representative fields. Across all fields, the sharp decrease in peak
optical density occurred between 5E and 6 Er. A further increase in
the magnetic field resulted in decreasing overall visibility, until inter-
ference peaks could no longer be observed regardless of lattice depth.

The loss of phase coherence with increasing lattice depth is con-
sistent with the qualitative description of the superfluid to Mott-
insulator transition. However, the usual single-band description is
no longer applicable, because in the strong-coupling regime the
on-site interaction strength should be comparable to the band gap
hw, where w is the onsite trap frequency. Furthermore, Pauli block-
ing forbids the multiple occupation of the lowest state of an
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Figure 4 I Peak optical density of interference peaks for increasing lattice
depths at different magnetic fields. Values of magnetic fields are 842 G
(filled circles), 892 G (open squares) and 942 G (filled triangles). Peak optical
densities were estimated from fits to the peaks, including background
subtraction. The inset shows a sample density profile of the central and one
pair of interference peaks (dotted line), with a bimodal fit to one side peak
(solid line). Each point is the average of three different images with six
interference peaks per image. Error bars show s.d.
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Figure 5 I Restoring coherence from a deep lattice. The width of the central
peak is used as a measure of phase coherence after an adiabatic ramp up to
8E, followed by a fast ramp down to 2.5Er at a fixed magnetic field of 822 G.
Filled circles were extracted with the use ofa gaussian fit, and diamonds with
a bimodal fit. Also plotted for comparison is the gaussian width of the central
peak for a dephased sample, in which a field gradient was applied during the
ramp up of the lattice (crosses). All points were taken for 6.5 ms time of
flight.

individual lattice site by identical fermions, and modification of the
single-particle tunnelling rate is expected as a result of virtual pair-
breaking transitions1 4. One may still be tempted to use the standard
bosonic Hubbard model and estimate the critical lattice depth Vc for
an assumed value of onsite interaction energy U= h/o and non-
interacting, single-particle tunnelling J, but the obtained V, 3Er
is significantly smaller than our observation, which is in turn much
smaller than the V > 10Er observed for weakly interacting atomic
BECs19,23. Together with the observed insensitivity of V, to the mag-
netic field, this shows that models based on weak interactions are
inadequate.

Figure 3h shows the reversibility of the transition from a long-
range coherent state to a state without strong coherence. We now
study the timescale for this recoherence, by analogy with similar
measurements performed across the transition from superfluid to
Mott insulator in atomic BECs'9. Figure 5 shows that phase coher-
ence was restored on a submillisecond timescale, on the order of the
single-particle tunnelling time of about 500 gts (for a shallow lattice of
2.5Er). When the same lattice ramp sequence was applied to a super-
fluid that had been dephased by a magnetic field gradient"9 , the
system did not regain phase coherence on the timescales that we
probed. Evaporative cooling is therefore negligible during this time.
The short recoherence time of the condensate is evidence that the
system stayed in its ground state or at least in a low-entropy state
when the lattice was ramped up.

Figure 5 also provides evidence that the system could not recohere
during the 150-gs magnetic field ramp. In Fig. 3h, the central peak is
well fitted by a bimodal distribution with a width of 35 gm, in clear
contrast to the gaussian width of 105 gm obtained from Fig. 5 after
150 jis. We therefore conclude that the observed interference patterns
in Fig. 1 reflect the coherence of the cloud at the initial magnetic field,
in the strongly interacting regime.

We have shown long-range phase coherence of fermion pairs in an
optical lattice in the BEC-BCS crossover region by observing sharp
interference peaks during ballistic expansion. This indicates that we
have achieved s-wave pairing and superfluidity in a lattice potential.
Further studies will reveal how the pair wavefunction is affected
by confinement", and whether the lattice shifts the BEC-BCS cross-
over away from the Feshbach resonance2 . The loss of coherence
during the lattice ramp up and the rapid recoherence are character-
istic of a Mott insulator. However, definitive proof will require a
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better understanding of the unitarity-limited interactions in such a
Fermi system. Recent theoretical work' 4 ,2 6 predicts that strongly
interacting fermions in an optical lattice feature multiband couplings
and next-neighbour interactions and can realize the important t-J
and magnetic XXZmodels of condensed-matter theory. This demon-
strates that such atomic systems are an ideal laboratory for the
exploration of novel condensed-matter physics.

METHODS
Clouds of superfluid fermion pairs were created in a new experimental setup27 ,28

by using techniques similar to those described elsewhere'. In brief, a combina-
tion of laser cooling and sympathetic cooling of spin-polarized fermions by
bosonic 23Na was followed by a spin transfer to create a two-component
Fermi gas, allowing further cooling through direct evaporation of the fermions.
As the fermions cooled, they formed pairs that Bose-condensed.

Estimates of the scattering length, and hence the interaction parameter, from
the magnetic field were obtained with a(B) = - 1,405ao[1 + 300/(B - 834)]
[1 + 0.0004(B - 834)] (ref. 29), where B is measured in gauss and ao is the
Bohr radius. The calibration ofthe magnetic field in our system had an uncertainty
of about 5 G.

Evaporation was performed at a magnetic field of 822 G, at which strong
interactions permitted efficient evaporation. An estimated average final
number of N- 2 X 105 6Li pairs and harmonic trapping frequencies of
vY,z = (270,340,200) Hz gave a trap depth of 1.7 jpK and a Fermi energy of
EF = kB X 1.4 pK, where EF = /iw(6N) 1/3 and 39 is the average trapping fre-
quency. After evaporation, the magnetic field was brought to a desired value
Bo in 20 ms and the condensate was allowed to equilibrate for a further 200 ms.
Before ramping to values of Bo on the BCS side, we also recompressed the optical
trap to (340,440,270) Hz and 2.2 tK depth in 100 ms to accommodate the larger
Fermi clouds above the resonance7 .

A three-dimensional optical lattice was formed from three optical standing
waves, oriented such that the resulting unit cell had a sheared cubic structure,
with one axis tilted about 20' from the normal for reasons of optical access (see
Fig. la)2 3. The incident laser beams were focused down to the condensate with
waists of about 90 pm, then retroreflected and overlapped at the condensate to
generate the standing-wave potentials. All lattice light was derived from a 1,064-
nm single-frequency fibre laser, and each beam was detuned by tens of MHz with
respect to the others to eliminate interference between different beams.

The lattice potential was imposed on the condensate by adiabatically increas-
ing the intensity of the laser beams to a variable final value V0. The calibration of
Vo had an uncertainty of about 20%. A simple linear ramp with a constant rate
dVo/dtof0.5E, ms- was used unless otherwise specified. This satisfies the inter-
band adiabaticity condition of dVoldt < 16Er2/h.

Ballistic expansion for the detection of the different momentum components
was provided by a magnetic field sequence (shown in Fig. 1) that quickly brought
the system out of the strongly interacting regime when all confinement was
switched off. During the magnetic field ramp of about 150 jts, the lattice potential
was kept on. The first 2 ms of expansion took place at 470 G, at which the
molecules are tightly bound, before the field was ramped back up to 730 G in
the next 4.5 ms, at which the weakly bound molecules strongly absorb light near
the atomic resonance line and could be observed by absorption imaging. The
specific magnetic field sequence was chosen to minimize collisions within tech-
nical capabilities.
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Critical velocity for superfluid flow across the BEC-BCS crossover
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Critical velocities have been observed in an ultracold superfluid Fermi gas throughout the BEC-
BCS crossover. A pronounced peak of the critical velocity at unitarity demonstrates that superflu-
idity is most robust for resonant atomic interactions. Critical velocities were determined from the
abrupt onset of dissipation when the velocity of a moving one dimensional optical lattice was varied.
The dependence of the critical velocity on lattice depth and on the inhomogeneous density profile
was studied.

PACS numbers: 03.75.Kk, 03.75.Lm, 03.75.SsCIA0
IC

The recent realization of the BEC-BCS crossover in ul-
tracold atomic gases [1] allows one to study how bosonic
superfluidity transforms into fermionic superfluidity. The
critical velocity for superfluid flow is determined by the
low-lying excitations of the superfluid. For weakly bound
fermions, the (Landau) critical velocity is proportional to
the binding energy of the pairs, which increases mono-
tonically along the crossover into the BEC regime. How-
ever, the speed of sound, which sets the critical velocity
for phonon excitations, is almost constant in the BCS
regime, but then decreases monotonically on the BEC
side, since the strongly bound molecules are weakly inter-
acting. At the BEC-BCS crossover, one expects a rather
narrow transition from a region where excitation of sound
limits superfluid flow, to a region where pair breaking
dominates. In this transition region, the critical velocity
is predicted to reach a maximum [2, 3, 4]. This makes the
critical velocity one of the few quantities which show a
pronounced peak across the BEC-BCS crossover in con-
trast to the chemical potential, the transition tempera-
ture [5], the speed of sound [6, 7] and the frequencies of
shape oscillations [8], which all vary monotonically.

In this paper, we report the first study of critical ve-
locities across the BEC-BCS crossover, where a Feshbach
resonance allows the magnetic tuning of the atomic in-
teractions, and find that superfluid flow is most robust
near the resonance. Our observation of a pronounced
maximum of the critical velocity is in agreement with
the predicted crossover between the two different mech-
anisms for dissipation.

Critical velocities have been determined before in
atomic BECs perturbed by a stirring beam [9, 10, 11]
as well as by a 1D moving optical lattice [12]. In both
cases, the inhomogeneous density of the harmonically
trapped sample had to be carefully accounted for in or-
der to make quantitative comparisons to theory. Here

*Present address: Department of Chemistry and Chemical Biology,
Harvard University, Cambridge, Massachusetts 02138
SWebsite: cua.mit.edu/ketterle-group

we mitigate this problem by probing only the central re-
gion of our sample with a tightly focused moving lattice
formed from two intersecting laser beams. For decreasing
lattice depths, the critical velocity increases and, at very
small depths, approaches a value which is in agreement
with theoretical predictions.

In our experiments, we first create a superfluid of 6Li
pairs according to the procedure described in previous
work [13]. Forced evaporative cooling of an even mix-
ture of the two lowest hyperfine states is performed at
a magnetic field of 822 G, on the BEC side of a broad
Feshbach resonance centered at B0 = 834 G. This results
in a nearly pure Bose-Einstein condensate of N = 5 x 105
pairs in a cross optical dipole trap with harmonic trap-
ping frequencies yv,y,z = (65, 45, 50) Hz. The Fermi en-
ergy of the system is EF = hr (6N)1/3 = h x 7.6 kHz. To
form the moving lattice, we focus two phase-locked 1064
nm laser beams to intersect at the sample with an angle
of - 900 (see Figure 1). The resulting 1D lattice has a
spatial period of AL = 0.75 pm. A frequency difference
between the two beams of Av causes the lattice to move
with velocity VL = AL Av. The beams have e- 2 waists of
20 pm and 60 pm respectively, and address a relatively
homogeneous region at the center of the cloud which has
Thomas-Fermi radii Rz,y,z = (63,91, 82) pm. The mini-
mum density at the position of the e - 2 waist is 42% of
the central density.

The lattice which necessarily varies in depth across the
sample, is characterized by its peak depth Vo specified
in units of EF or the recoil energy E, = h2 /(8m2L) =
h x 7.3 kHz, where m is the molecular mass. The lattice
depth is calibrated using Kapitza-Dirac scattering. Due
to the inhomogeneity of the lattice, the uncertainty is
40%. The lattice depths explored in this work are suffi-
ciently small such that motion induced in the laboratory
frame is negligible, in contrast to [14].

The lattice moving at a constant velocity is adiabat-
ically ramped up and held for a time t up to 2 s, after
which the lattice is ramped down and all confinement is
switched off. As in previous work [13], a fast magnetic
field ramp is used to reduce strong interactions in order

Clr
0~

z



Lattice Velocity V (mm/s)

FIG. 1: Onset of dissipation for superfluid fermions in a mov-
ing optical lattice. (inset) Schematic of the experiment in
which two intersecting laser beams produced a moving optical
lattice at the center of an optically trapped cloud (trapping
beams not shown). Number of fermion pairs which remained
in the condensate Nc after being subjected to a Vo = 0.2 EF
deep optical lattice for 500 ms, moving with velocity vL, at
a magnetic field of 822 G (1/kFa = 0.15)) An abrupt onset
of dissipation occurred above a critical velocity ve, which we
identify from a fit to Equation 1.

to probe the center-of-mass momentum distribution of
the pairs. Subsequently, absorption imaging is done on
the atomic resonance line at 730 G. A bimodal fit re-
veals the number of pairs remaining in the condensate
Nc, providing a measure of the heating incurred during
application of the moving lattice.

Figure 1 illustrates the characteristic dependence of
dissipation on the velocity of the moving lattice. At low
velocities, the sample is unaffected. Above some critical
velocity v, dissipation sets in abruptly. We determine
vc from a fit of Nc to the intersection of two lines with
slopes 0 and a:

Ncond(V) = Ncond(0) x [1 - max(O, a x (v - vc))] (1)

The critical velocity which we obtain from this proce-
dure is consistent for a large range of hold times, varying
by less than 15% when the hold time t is changed by a
factor of 20. We explore the BEC-BCS crossover by adi-
abatically ramping the magnetic field to different values
after evaporation and repeating the measurement as be-
fore. The crossover is parameterized by the interaction
parameter 1/kFa, where kf is the Fermi wavevector and
a is the B-field dependent s-wave scattering length [15].
Again, we observe a threshold for dissipation.

Figure 2 shows the measured critical velocity through-
out the BEC-BCS crossover. The maximum near reso-
nance is consistent with the picture of a crossover be-
tween two different types of excitation, as discussed in
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FIG. 2: Critical velocities throughout the BEC-BCS
crossover. A pronounced maximum was found at resonance.
Data is shown for a Vo = 0.2 EF deep lattice, held for t=500
ms. The solid line is a guide to the eye.

the introduction, and confirms that superfluidity is most
robust on resonance.

To illuminate the role of the inhomogeneous density
distribution, we performed experiments in which the en-
tire sample was perturbed by a uniform lattice. Lattice
beams with 80 pm waists probed a more tightly confined
sample of 2 x 105 pairs, with spatial extent RTF "" 37[/m.
The onset of dissipation seen in Figure 3 is still striking,
but now loss is observed at much lower lattice velocities,
in spite of a larger Fermi energy EF = h x 12.4 kHz. More-
over, the onset of dissipation is slightly more gradual.
When the magnetic field was varied across the Feshbach
resonance, we again found a maximum of the critical ve-
locity near resonance. The lowering of the critical veloc-
ity due to the inhomogeneous density profile is expected,
since at lower density, both the speed of sound and (on
the BCS side) the pairing energy decrease. Although the
critical velocity should approach zero in the low density
wings of the cloud, we still observe a sudden onset of
dissipation at a finite velocity, similar to studies in Ref.
[9, 10, 11], where a laser beam pierced through the whole
condensate, but in contrast to studies reported in [12].

In the limit of vanishing perturbation, the critical ve-
locity should be given by the Landau criterion. In Fig-
ure 4 we address the effects of a finite lattice potential in
the original lattice configuration, as depicted in Figure
1. The critical velocity is shown to be a decreasing func-
tion of Vo0, saturating in the limit of low lattice depth
(Vo < 0.03 EF). This behavior is consistent with nu-
merical simulation [4, 16]. Measurements at the small-
est lattice depths had large uncertainties, as the hold
time required to observe a heating effect of the lattice
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FIG. 3: Effects of density inhomogeneity on the critical veloc-
ity. A configuration in which the lattice beams (80/Im) were
larger than the trapped sample (371Lm) results in loss in the
condensate number Nc at significantly lower velocity. Data is
shown for a Vo = 0.15 EF deep optical lattice held for 200 ms
at a magnetic field of 822 G.

approached the natural lifetime of our sample. For this
reason we studied the field dependence (Figure 2) at an
intermediate lattice depth, where v, was more well de-
fined.

For comparison with theory we reference the local
Fermi velocity at the trap center v, = v'. (1 + 0)-1/4

= 39 mm/s, where v' = V2EF/m is the Fermi ve-
locity of a non-interacting gas at the trap center, and
p = -0.58 is a universal parameter characterizing uni-
tarity limited interactions [17, 18, 19]. For vanishing lat-
tice depth, the observed critical velocity at unitarity ap-
proaches Vc/v, = 0.25. If we use the local Fermi ve-
locity v,,, at the e - 2 waist of the lattice, we obtain
vc/VF,w = 0.34 . The difference between these values
indicates the uncertainty due to residual density inho-
mogeneity. The local speed of sound in a Fermi gas at
unitarity is

c, = vF,1oc (1 + 3)1/ 2 /v/3 = 0.37 VF,loc . (2)

The critical velocity for pair breaking is
1 / 2

Upair = ((A 2 ± p - )/m)/2 = 0.34 v,loc (3)

with A= 0.50 v,oc/2m [17, 19] and~= (1 +) v2,oc/2m.
These two values should provide approximate upper
bounds to the critical velocity at unitarity [2, 3]. It seems
natural that the combination of both excitation mecha-
nisms lowers the critical velocity further. Within these
uncertainties, and those of the density, the theoretical
predictions agree with the experimental results.

Up until now, we have deferred a discussion of how the
moving lattice couples to the excitations. In a pure sys-
tem at zero temperature, one would expect the excitation
spectrum to exhibit discrete resonances, where the per-
turbation couples only to modes with the k-vector of the

if
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FIG. 4: Critical velocities at different lattice depths. The
results show vc to be a decreasing function of lattice depth Vo.
In the limit of low Vo, v, converges to a maximum value of 0.25
VF. Data was taken near resonance, at 822 G (1/kFa = 0.15)
for hold times t = 250 ms, 500 ms, 1000 ms, 2000 ms (squares,
diamonds, circles, triangles).

lattice. On the other hand, at finite temperature, it is
possible that the lattice drags along thermal atoms which
are point-like perturbations and can create excitations at
all k-vectors. Our observation that the dissipation sets
in at a certain threshold velocity and increases monoton-
ically with velocity is consistent with the participation of
the thermal component.

We further elucidated the role of thermal excitations,
by varying the temperature. Gradually reducing the trap
depth from U0 to U,min,, during exposure to a lattice mov-
ing above ve, will suppress the accumulation of a thermal
component. The lifetime in this case exceeded that for
a sample held at a fixed depth of either U0 or Umi,.
For Bose-Einstein condensates, theoretical papers em-
phasized the role of the thermal component in the Lan-
dau damping process in a moving lattice [20, 21]. This
was confirmed qualitatively in an experiment at Florence
[12] in which the lifetime of the sample was drastically
improved by eliminating the thermal atoms.

In our experiments, the clouds heated up during the
exposure to the moving lattice. Figure 5 shows the in-
crease in the number of thermal atoms and the loss in
the total number of atoms due to evaporative cooling. In
an idealized model, where density is fixed, constant dis-
sipation would result in a linear decrease in the number
of atoms due to evaporative cooling. Our data show an
accelerated decrease, possibly reflecting increased dissi-
pation due to the increasing fraction of thermal atoms.
However, an accurate model should include the change
in density (and therefore critical velocity) during the ex-
posure time. Additional impurity atoms (e.g. sodium
atoms) could cause dissipation even at zero temperature
and would allow more controlled studies of the dissipa-
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FIG. 5: Number of pairs which remained in the condensate
Nc (filled circles) and thermal component Nth (open circles)
after being held in a Vo = 0.35 EF deep optical lattice moving
with velocity vL = 6 mm/s for a variable hold time. The ther-
mal component shows a linear increase (dashed line), whereas
Ncond showed an accelerated loss, and is fit to a quadratic
function (solid line).

tion mechanism. Unpaired atoms in clouds with popula-
tion imbalance may not play this role because of phase
separation effects [22].

Another possible dissipation mechanism in a lattice is
the creation of two excitations through a dynamical or
modulational instability. Such an instability [23] occurs
already for weakly interacting particles moving through
a lattice with momentum q, when they collide and scat-
ter into states with momenta q ± 6q, analogous to opti-
cal parametric generation [24]. This process is energet-
ically possible only above 0.5 qB, where qB = h/2AL is
the Bragg momentum which defines the edge of the Bril-
louin zone. This corresponds to a velocity v = 11 mm/s
for fermion pairs (and twice this value for single atoms).
Since the highest critical velocities we observe are slightly
below this threshold, and strongly decrease already for
relatively small Vo, it is very unlikely, that dynamical
instabilities play a role in our experiments. Moreover,
such instabilities should be strongly modified by Pauli
blocking. For our ratio of local Fermi momentum to
the Bragg momentum of 0.9, the first band is nearly full
in the center of the cloud. For Bose-Einstein conden-
sates, it has been recently predicted [25] and experimen-
tally shown [14] that strong interactions can lower the
threshold for the dynamical instability, close to the Mott-
insulator transition. The range of 1-D lattice depths ex-
plored here (Vo < 2 Er) is far from the 1D Mott-insulator
regime. We have observed the loss of coherence which

typically accompanies the superfluid to Mott insulation
transition to occur only beyond Vo ~- 25 E,.

In conclusion, we have used a novel optical lattice ge-
ometry to determine critical velocities in the BEC-BCS
crossover without the complications of strong density
inhomogeneity. This configuration could be applied to
studies in atomic Bose gases which so far have been lim-
ited by the inhomogeneous density [9, 10, 11, 12]. In
addition, it would be interesting to study dynamical in-
stabilities for fermions and the role of Pauli blocking.
The authors would like to thank Aviv Keshet for exper-
imental assistance. This research has been supported by
the NSF and the Office of Naval Research.

[1] S. Giorgini, L. P. Pitaevskii, and S. Stringari, preprint
condmat/0706.3360 .

[2] R. Sensarma, M. Randeria, and T.-L. Ho, Phys. Rev.
Lett. 96, 090403 (2006).

[3] R. Combescot, M. Y. Kagan, and S. Stringari, Phys. Rev.
A 74, 042717 (2006).

[4] A. Spuntarelli, P. Pieri, and G. C. Strinati, pre-print
/condmat/0705.2658 .

[5] C. A. R. Sa de Melo, M. Randeria, and J. R. Engelbrecht,
Phys. Rev. Lett. 71, 3202 (1993).

[6] R. Haussmann, W. Rantner, S. Cerrito, and W. Zwerger,
Phys. Rev. A 75, 023610 (2007).

[7) J. Joseph et al., Phys. Rev. Lett. 98, 170401 (2007).
[8] A. Altmeyer et al., Phys. Rev. Lett. 98, 040401 (2007)

98, 040401 (2007).
[9] C. Raman et al., Phys. Rev. Lett. 83, 2502 (1999).

[10] R. Onofrio et al., Phys. Rev. Lett. 85, 2228 (2000).
[11] C. Raman et al., J. Low Temp. Phys. 122, 99 (2001).
[12) L. De Sarlo et al., Phys. Rev. A 72, 013603 (2005).
[13] J. Chin et al., Nature 443, 961 (2006).
[14] J. Mun et al., preprint condmat/0706.3946 .
[15] M. Bartenstein et al., Phys. Rev. Lett. 94, 103201 (2005).
[16] S. Ianeselli, C. Menotti, and A. Smerzi, J. Phys. B 39,

S135 (2006).
[17] J. Carlson, S.-Y. Chang, V. R. Pandharipande, and K. E.

Schmidt, Phys. Rev. Lett. 91, 050401 (2003).
[18] G. E. Astrakharchik, J. Boronat, J. Casulleras, and S.

Giorgini, Phys. Rev. Lett. 93, 200404 (2004).
[19] J. Carlson and S. Reddy, Phys. Rev. Lett. 95, 060401

(2005).
[20] S. Tsuchiya and A. Griffin, Phys. Rev. A 70, 023611

(2004).
[21] S. Konabe and T. Nikuni, J. Phys. B 39, S101 (2005).
[22] Y. Shin et al., Phys. Rev. Lett. 97, 030401 (2006).
[23] B. Wu and Q. Niu, Phys. Rev. A 64, 061603 (2001).
[24] G. K. Campbell et al., Phys. Rev. Lett. 96, 020406

(2006).
[25] E. Altman et al., Phys. Rev. Lett. 95, 020402 (2005).

Z



Bibliography

[1] J. G. Bednorz and K. A. Mueller. Possible high-tc superconductivity in the ba-la-cu-o
system. Z. Phys. B., 64:189, 1986.

[2] S. N. Bose. Plancks gesetz und lichtquantenhypothese. Z. Phys., 26:178, 1924.

[3] A. Einstein. Quantentheorie des einatomigen idealen gases. Sitzungsber. Preuss. Akad.
Wiss., Bericht 22:261-267, 1924.

[4] F. London. Electromagnetic equations of the superconductor. Proc. Roy. Soc. London,
Ser A:A152:24, 1935.

[5] M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell. Ob-
servation of bose-einstein condensation in a dilute atomic vapor. Science, 269:198-201,
1995.

[6] K.B. Davis, M-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn,
and W. Ketterle. Bose-einstein condensation in a gas of sodium atoms. Phys. Rev.
Lett., 75:3969-3973, 1995.

[7] B. DeMarco and D. S. Jin. Onset of fermi degeneracy in a trapped atomic gas. Science,
285:1703-1706, 1999.

[8] D. M. Eagles. Possible pairing without superconductivity at low carrier concentrations
in bulk and thin-film superconducting semiconductors. Phys. Rev., 186:456, 1969.

[9] A. J. Leggett. Diatomic molecules and cooper pairs. In Modern Trends in the Theory
of Condensed Matter. Proceedings of the XVIth Karpacz Winter School of Theoreti-
cal Physics, Karpacz, Poland, 1980,, pages 13-27, Karpacz, Poland, 1980. Springer-
Verlag, Berlin.

[10] M. Greiner, C. A. Regal, and D. S. Jin. Emergence of a molecular boseeinstein
condensate from a fermi gas. Nature, 426:537, 2003.

[11] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker
Denschlag, and R. Grimm. Bose-einstein condensation of molecules. Science, 302:2101,
2003.

[12] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, S. Gupta, Z. Hadz-
ibabic, and W. Ketterle. Observation of bose-einstein condensation of molecules.
Phys. Rev. Lett., 91:250401, 2003.

[13] C. A. Regal, M. Greiner, and D. S. Jin. Observation of resonance condensation of
fermionic atom pairs. Phys. Rev. Lett., 92:040403, 2004.

131



[14] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, A. J. Kerman, and
W. Ketterle. Condensation of pairs of fermionic atoms near a feshbach resonance.
Phys. Rev. Lett., 92:120403, 2004.

[15] V. Bagnato and D. Kleppner. Bose-einstein condensation in low-dimensional traps.
Phys. Rev. A, 44:7439, 1991.

[16] A. Grlitz, J. M. Vogels, A. E. Leanhardt, C. Raman, T. L. Gustavson, J. R. Abo-
Shaeer, A. P. Chikkatur, S. Gupta, S. Inouye, T. Rosenband, and W. Ketterle. Realiza-
tion of bose-einstein condensates in lower dimensions. Phys. Rev. Lett., 87:130402-4,
2001.

[17] B. Paredes, A. Widera, V. Murg, O. Mandel, S. Folling, I. Cirac, G. V. Shlyapnikov,
T. W. Hansch, and I. Bloch. Tonks-girardeau gas of ultracold atoms in an optical
lattice. Nature, 429:277-281, 2004.

[18] M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I. Bloch. Quantum phase
transition from a superfluid to a mott insulator in a gas of ultracold atoms. Nature,
415:39-44, 2002.

[19] K. Xu, T. Mukaiyama, J.R. Abo-Shaeer, J.K. Chin, D.E. Miller, and W. Ketterle.
Formation of quantum-degenerate sodium molecules. Phys. Rev. Lett., 91:210402,
2003.

[20] T. Mukaiyama, J. R. Abo-Shaeer, K. Xu, J. K. Chin, and W. Ketterle. Dissociation

and decay of ultracold sodium molecules. Phys. Rev. Lett., 92:180402, 2004.

[21] J. R. Abo-Shaeer, D. E. Miller, J. K. Chin, K. Xu, T. Mukaiyama, and W. Ketterle.

Coherent molecular optics using ultracold sodium dimers. Phys. Rev. Lett., 94:040405,
2005.

[22] Jamil Abo-Shaeer. Novel Ground States of Bose-Condensed Gases. PhD thesis, Mas-

sachusetts Institute of Technology, 2004.

[23] Kaiwen Xu. Effects of Interaction in Bose-Einstein Condensates. PhD thesis, Mas-
sachusetts Institute of Technology, 2006.

[24] K. Xu, Y. Liu, J. R. Abo-Shaeer, T. Mukaiyama, J. K. Chin, D. E. Miller, W. Ketterle,
K. M. Jones, and E. Tiesinga. Sodium bose-einstein condensates in an optical lattice.

Phys. Rev. A, 72:043604, 2005.

[25] K. Xu, Y. Liu, D. E. Miller, J. K. Chin, W. Setiawan, and W. Ketterle. Observation

of strong quantum depletion in a gaseous bose-einstein condensate. Phys. Rev. Lett.,
96:180405, 2006.

[26] H. Feshbach. A unified theory of nuclear reactions. ii. Ann. Phys., 19:287-313, 1962.

[27] T. Koehler, K. Goral, and P. S. Julienne. Production of cold molecules via magneti-

cally tunable feshbach resonances. Rev. Mod. Phys., 78:1311, 2006.

[28] A.J. Moerdijk, B.J. Verhaar, and T.M. Nagtegaal. Collisions of dressed ground-state

atoms. Phys. Rev. A., 53:4343, 1996.

132



[291 M. Marinescu and L. You. Controlling atom-atom interaction at ultralow tempera-
tures by dc electric fields. Phys. Rev. Lett., 81:4596, 1998.

[30] F. Fedichev, Y. Kagan, G.V. Shlyapnikov, and J.T.M. Walraven. Influence of nearly
resonant light on the scattering length in low-temperature atomic gases. Phys. Rev.
Lett., 77:2913, 1996.

[31] F.K. Fatemi, K.M. Jones, and P.D. Lett. Observation of optically induced feshbach
resonances in collisions of cold atoms. Phys. Rev. Lett., 85:4462-4465, 2000.

[32] S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn, and
W. Ketterle. Observation of feshbach resonances in a bose-einstein condensate. Na-
ture, 392:151-154, 1998.

[33] K. E. Strecker, G. B. Partridge, and R. G. Hulet. Conversion of an atomic fermi gas
to a long-lived molecular bose gas. Phys. Rev. Lett., 91:080406, 2003.

[34] M. G. Kozlov and L. N. Labzowsky. Parity violation effects in diatomics. J. Phys. B,
28:1933, 1995.

[35] A.J. Moerdijk, B.J. Verhaar, and A. Axelsson. Resonances in ultracold collisions of
61i, 71i and 23na. Phys. Rev. A, 51:4852-4861, 1995.

[36] M. Houbiers, H.T.C. Stoof, W. I. McAlexander, and R.G. Hulet. Elastic and inelastic
collisions of 61i atoms in magnetic and optical traps. Phys. Rev. A, 57:1497, 1998.

[37] K. Dieckmann, C.A. Stan, S. Gupta, Z. Hadzibabic, C.J.Schunck, and W. Ketterle.
Decay of an ultracold fermionic lithium gas near a feshbach resonance. Phys. Rev. A,
89:203201, 2002.

[38] J. Stenger, S. Inouye, M. R. Andrews, H.-J. Miesner, D. M. Stamper-Kurn, and
W. Ketterle. Strongly enhanced inelastic collisions in a bose-einstein condensate near
feshbach resonances. Phys. Rev. Lett., 82:2422-2425, 1999.

[39] M. Bartenstein, A. Altmeyer, S. Riedl, R. Geursen, S. Jochim, C. Chin, J. Hecker
Denschlag, R. Grimm, A. Simoni, E. Tiesinga, C. J. Williams, and P. S. Julienne.
Precise determination of 61i cold collision parameters by radio-frequency spectroscopy
on weakly bound molecules. Phys. Rev. Lett., 94:103201, 2004.

[40] D.S. Durfee. Dynamic properties of dilute Bose-Einstein Condensates. PhD thesis,
Massachusetts Institute of Technology, 2002.

[41] W. Setiawan. A new degenerate fermi gas apparatus, 2007. Massachusetts Institute
of Technology, Undergraduate Thesis.

[42] B. deMarco. Quantum Behavior of an Atomic Fermi Gas. PhD thesis, University of
Colorado, 2001.

[43] B. Marcelis, E. G. M. v. Kempen, B. J. Verhaar, and S. J. J. M. F. Kokkelmans.
Feshbach resonances with large background scattering length: Interplay with open-
channel resonances. Phys. Rev. A, 70:012701, 2004.

[44] M. Zwierlein. High-Temperature Superfluidity in an Ultracold Fermi Gas. PhD thesis,
Massachusetts Institute of Technology, 2006.

133



[45] C. C. Bradley, C. A. Sackett, and R. G. Hulet. Bose-einstein condensation of lithium:
Observation of limited condensate number. Phys. Rev. Lett., 78:985-989, 1997.

[46] M. Houbiers and H. T. C. Stoof. Stability of bose condensed atomic 71i. Phys. Rev.
A, 54:5055, 1996.

[47] R. A. Duine and H. T. C. Stoof. Explosion of a collapsing bose-einstein condensate.
Phys. Rev. Lett., 86:2204, 2001.

[48] E. A. Calzetta and B. L. Hu. Bose-einstein condensate collapse and dynamical squeez-
ing of vacuum fluctuations. Phys. Rev. A, 68:043625, 2003.

[49] V. A. Yurovsky. Quantum effects on dynamics of instabilities in bose-einstein con-
densates. Phys. Rev. A, 65:033605, 2002.

[50] J. K. Chin, J. M. Vogels, and W. Ketterle. Amplification of local instabilities in a
bose-einstein condensate with attractive interactions. Phys. Rev. Lett., 90:160405,
2003.

[51] A. Gammal, T. Frederico, and L. Tomio. Critical numbers of attractive bose-einstein
condensed atoms in asymmetric traps. Phys. Rev. A, 66:043619, 2002.

[52] J. M. Gerton, D. Strekalov, I. Prodan, and R. G. Hulet. Direct observation of
growth and collapse of a bose?einstein condensate with attractive interactions. Nature,
408:692, 2000.

[53] J. L. Roberts, N. R. Claussen, S. L. Cornish, E. A. Donley, E. A. Cornell, and C. E.
Wieman. Controlled collapse of a bose-einstein condensate. Phys. Rev. Lett., 86:4211,
2001.

[54] E. A. Donley, N. R. Claussen, S. L. Cornish, J. L. Roberts, E. A. Cornell, and C. E.
Wieman. Dynamics of collapsing and exploding bose-einstein condensates. Nature,
412:295-299, 2001.

[55] E.A. Donley, N.R. Claussen, S.T. Thompson, and C.E. Wieman. Atom-molecule
coherence in a bose-einstein condensate. Nature, 417:529-533, 2002.

[56] C. J. Pethick and H. Smith. Bose-Einstein Condensation in Dilute Gases. Cambridge
University Press, 2001.

[57] D.E. Miller. Optical Lattices, Bragg scattering and all that. PhD thesis, Massachusetts
Institute of Technology, 2007.

[58] C. Samuelis, E. Tiesinga, T. Laue, M. Elbs, H. Knoeckel, and E. Tiemann. Cold
atomic collisions studied by molecular spectroscopy. Phys. Rev. A, 63:012710, 2000.

[59] L. P. Gorkhov and T. K. Melik-Barkhudarov. Soviet Journal of Physics JETP,
13:1018, 1961.

[60] J. Carlson, S.-Y. Chang, V. R. Pandharipande, and K. E. Schmidt. Superfluid fermi
gases with large scattering length. Phys. Rev. Lett., 91:050401, 2003.

134



[61] K. M. O'Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, and J. E. Thomas.
Observation of a strongly interacting degenerate fermi gas of atoms. Science, 298:2179,
2002.

[62] J. Kinast, A. Turlapov, J. E. Thomas, Q. Chen, J. Stajic, and K. Levin. Heat capacity
of a strongly-interacting fermi gas. Science, 307:1296-1299, 2005.

[63] G. B. Partridge, W. Li, R. I. Kamar, Y. a. Liao, and R. G. Hulet. Pairing and
phase separation in a polarized fermi gas. Science, 311:503, 2006. published online 21
December 2005 (10.1126/science.1122876).

[64] Zoran Hadzibabic. Studies of a Quantum Degenerate Fermionic Lithium Gas. PhD
thesis, Massachusetts Institute of Technology, 2003.

[65] Subhadeep Gupta. Experiments with Degenerate Bose and Fermi Gases. PhD thesis,
Massachusetts Institute of Technology, 2003.

[66] Claudiu Stan. Experiments with Interacting Bose and Fermi Gases. PhD thesis,
Massachusetts Institute of Technology, 2005.

[67] Yong Wei, Ge Zhang, Chenghui Huang, Lingxiong Juang, and Min Wei. High power
single wavelength 1338 nm nd:yag laser. Optics and Laser Tech., 38:173-176, 2006.

[68] H. J. Metcalf and P. v. d. Straten. Laser Cooling and Trapping. Springer, 2001.

[69] C. A. Stan and W. Ketterle. Multiple species atom source for laser-cooling experi-
ments. Rev. Sci. Instr., 76:063113, 2005.

[70] Z. Hadzibabic, S. Gupta, C. A. Stan, C. H. Schunck, M. W. Zwierlein, K. Dieck-
mann, and W. Ketterle. Fifty-fold improvement in the number of quantum degenerate
fermionic atoms. Phys. Rev. Lett., 91:160401, 2003.

[71] M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, D. M. Kurn, and
W. Ketterle. Observation of interference between two bose condensates. Science,
275:637-641, 1997.

[72] C. Chin, M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, J. Hecker Denschlag, and
R. Grimm. Observation of the pairing gap in a strongly interacting fermi gas. Science,
305:1128, 2004.

[73] M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H. Schunck, and W. Ketterle.
Vortices and superfluidity in a strongly interacting fermi gas. Nature, 435:1047-1051,
2005.

[74] G. B. Partridge, K. E. Strecker, R. I. Kamar, M. W. Jack, and R. G. Hulet. Molecular
probe of pairing in the bec-bcs crossover. Phys. Rev. Lett., 95:020404, 2005.

[75] S. Gupta, Z. Hadzibabic, J. R. Anglin, and W. Ketterle. Collisions in zero temperature
fermi gases. Phys. Rev. Lett., 92:100401, 2004.

[76] K. Huang. Statistical Mechanics. Wiley, New York, 1987.

[77] D. S. Petrov, C. Salomon, and G. V. Shlyapnikov. Scattering properties of weakly
bound dimers of fermionic atoms. Phys. Rev. A, 71:012708, 2005.



[78] Y. B. Band, M. Trippenbach, J. P. Burke Jr., and P. S. Julienne. Elastic scattering
loss of atoms from colliding bose-einstein condensate wave packets. Phys. Rev. Lett.,
84:5462, 2000.

[79] A. P. Chikkatur, A. Gorlitz, D. M. Stamper-Kurn, S. Inouye, S. Gupta, and W. Ket-
terle. Suppression and enhancement of impurity scattering in a bose-einstein conden-
sate. Phys. Rev. Lett., 85:483-486, 2000.

[80] C. A. Regal and D. S. Jin. Measurement of positive and negative scattering lengths
in a fermi gas of atoms. Phys. Rev. Lett., 90:230404, 2003.

[81] T. Bourdel, J. Cubizolles, L. Khaykovich, K. M. F. Magalhes, S. J. J. M. F. Kokkel-
mans, G. V. Shlyapnikov, and C. Salomon. Measurement of the interaction energy
near a feshbach resonance in a 61i fermi gas. Phys. Rev. Lett., 91:020402, 2003.

[82] M. W. Zwierlein, C. H. Schunck, C. A. Stan, S. M. F. Raupach, and W. Ketterle.
Formation dynamics of a fermion pair condensate. Phys. Rev. Lett., 94:180401, 2005.

[83] P. L. Gould, G. A. Ruff, and D. E. Pritchard. Diffraction of atoms by light: the
near-resonant kapitza-dirac effect. Phys. Rev. Lett., 56:827, 1986.

[84] Y. B. Ovchinnikov, J. H. Mueller, M. R. Doery, E. J. D. Vredenbregt, K. Helmerson,
S. L. Rolston, and W. D. Phillips. Diffraction of a released bose-einstein condensate
by a pulsed standing light wave. Phys. Rev. Lett., 83:284, 1999.

[85] M. E. Gehm, S. L. Hemmer, K. M. O'Hara, and J. E. Thomas. Unitarity-limited
elastic collision rate in a harmonically trapped fermi gas. Phys. Rev. A, 68:011603,
2003.

[86] C. Schunck, M. W. Zwierlein, A. Schirotzek, and W. Ketterle. Superfluid expansion
of a rotating fermi gas. Phys. Rev. Lett., 98:050404, 2007.

[87] J.K. Chin, D.E. Miller, Y. Liu, C. Stan, W. Setiawan, C. Sanner, K. Xu, and W. Ket-
terle. Evidence for superfluidity of ultracold fermions in an optical lattice. Nature,
443:961-964, 2006.

[88] W. Hofstetter, J. I. Cirac, P. Zoller, E. Demler, and M. D. Lukin. High-temperature
superfluidity of fermionic atoms in optical lattices. Phys. Rev. Lett., 89:220407, 2002.

[89] R. Micnas, J. Ranniger, and S. Robaszkiewicz. Superconductivity in narrow-band
systems with local nonretarded attractive interactions. Rev Mod Phys, 62:113 - 171,
1990.

[90] M. Kohl, H. Moritz, T. Stoferle, K. Gunther, and T. Esslinger. Fermionic atoms in
a three dimensional optical lattice: Observing fermi surfaces, dynamics, and interac-
tions. Phys. Rev. Lett., 94:080403, 2005.

[91] G. Roati, E. d. Mirandes, F. Ferlaino, H. Ott, G. Modugno, and M. Inguscio. Atom
interferometry with trapped fermi gases. Phys. Rev. Lett., 92:230402, 2004.

[92] L. Pezze, L. Pitaevskii, A. Smerzi, and S. Stringari. Insulating behavior of a trapped
fermi gas. Phys. Rev. Lett., 93:120401, 2004.

136



[93] T. Rom, T. Best, D. v. Oosten, U. Schneider, S. Foelling, B. Paredes, and I. Bloch.
Free fermion antibunching in a degenerate atomic fermi gas released from an optical
lattice. Nature, 444:733-736, 2006.

[94] L.-M. Duan. Effective hamiltonian for fermions in an optical lattice across a feshbach
resonance. Phys. Rev. Lett., 95:243202, 2005.

[95] H. Zhai and T.L. Ho. Superfluid-insulator transition of strongly interacting fermi
gases in optical lattices, 2007. cond-mat/arxiv:0704.2957.

[96] L.M. Duan. General hubbard model for strongly interacting fermions in an optical
lattice and its phase detection, 2007. cond-mat/arxiv:0706.2161.

[97] T. Koehler, K. Goral, and P. S. Julienne. Production of cold molecules via magneti-
cally tunable feshbach resonances. Rev. Mod. Phys., 78:1311, 2006.

[98] M. Rigol and A. Muramatsu. Quantum monte carlo study of confined fermions in
one-dimensional optical lattices. Phys. Rev. A, 69:053612, 2004.

[99] R. Roth and K. Burnett. Superfluidity and interference pattern of ultracold bosons
in optical lattices. Phys. Rev. A, 67:031602(R), 2003.

[100] R.B. Diener, Q. Zhou, H. Zhai, and T.-L. Ho. Criterion for bosonic superfluidity in
an optical lattice. Phys. Rev. Lett., 98:180404, 2007.

[101] W. Yi, G.-D. Lin, and L.-M. Duan. Signal of bose-condensation in an optical lattice
at finite temperature, 2007. cond-mat/arxiv:0705.4352.

[102] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher. Boson localization
and the superfluid-insulator transition. Phys. Rev. B, 40:546-570, 1989.

[103] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller. Cold bosonic atoms
in optical lattices. Phys. Rev. Lett., 81:3108-3111, 1998.

[104] A. O. Koetsier, D. B. M. Dickerscheid, and H. T. C. Stoof. Bec-bcs crossover in an
optical lattice. Phys. Rev. A, 74:033621, 2006.

[105] T. Stoferle, H. Moritz, K. Gunther, M. Kohl, and T. Esslinger. Molecules of fermionic
atoms in an optical lattice. Phys. Rev. Lett., 96:030401, 2006.

[106] T. Busch, B. G. Englert, K. Rzazewski, and M. Wilkens. Two cold atoms in a harmonic
trap. Found. of Phys., 28:549-559, 1998.

[107] C. H. Schunck, Y. Shin, A. Shirotzek, M. W. Zwierlein, and W. Ketterle. Pairing
without superfluidity: The ground state of an imbalanced fermi mixture. Science,
316:867-870, 2007.

[108] G. Orso and G. V. Shlyanikov. Superfluid fermi gas in a Id optical lattice. Phys. Rev.
Lett., 95:260402, 2005.

[109] P. Fulde and R. A. Ferrell. Superconductivity in a strong spin-exchange field. Phys.
Rev., 135:A550, 1964.

137



[110] A.J. Larkin and Y. N. Ovchinnikov. Inhomogeneous state of superconductors. Zh.
Eksp. Teor. Fiz., 47:1136, 1964.

[111] M. W. Zwierlein, Andre Schirotzek, Christian H. Schunck, and W. Ketterle. Fermionic
superfluidity with imbalanced spin populations. Science, 311:492, 2006.

[112] G. Orso. Attractive fermi gases with unequal spin populations in highly elongated
traps. Phys. Rev. Lett., 98:070402, 2007.

[113] E. Altman, E. Demler, and M.D. Lukin. Probing many-body states of ultracold atoms
via noise correlations. Phys. Rev. A, 70:013603, 2004.

138


