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Abstract

There is growing recognition that transportation or infrastructure improvements can have
longer-term catalytic impacts economic productivity, which are in addition to the direct,
indirect, or induced household spending impacts. These economic catalytic effects are
fundamentally different from traditional measures of the impacts from spending in the
air transport sector. In contrast to the generally positive regional economic benefits of
aviation, however, aircraft noise has emerged as a major negative externality of the air
transportation system and continues to be a controversial issue in communities around
airports.

In this analysis, I develop a methodology to highlight interrelationships between
airport flight operations and noise impacts on surrounding communities, and between
air transport industry and regional economic growth. I calculate the noise-damage costs
under different airport growth scenarios at London Heathrow and the East Midlands
airport, and then apply an econometric input-output model to estimate the regional
catalytic economic impacts associated with the growth of the air transport industry
under these same scenarios. I find that the local airport noise damages are very small
compared to the regional economic impacts from aviation. Furthermore, I find that the
wider catalytic economic impacts due to increased productivity and accessibility are
greater than the economic impacts from aviation sector itself at the regional level.
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Chapter 1

Introduction

Over 2.1 billion airline passengers flew 3.9 trillion revenue passenger-kilometers

(RPKs) in 2006, generating $452 billion in revenue for the world's commercial airlines

(International Air Transport Association, 2007a, p. 4). The airlines also carried another

39.5 million tonnes of freight across the globe-accounting for around 35% of global

merchandise trade ($4.2 trillion) by value (International Air Transport Association, 2007b).

Since 1960, the number of tonne-kilometers flown by the global commercial airlines

has increased by a factor of nearly 30, while global Gross Domestic Product (GDP)

increased by a factor of four (International Civil Aviation Organization, 2005, p. 1-1). In

the United Kingdom alone, overall air mobility has increased nearly fourfold over the

last three decades, with RPKs increasing from 60 million in 1975 to 290 million RPKs

in 2005 (UK Civil Aviation Authority, 1995, 2006b). The world's leading commercial

aircraft manufacturers, Boeing and Airbus, are predicting growth rates of about 4.8% in

passenger traffic and about 6.0% in freight traffic over the next twenty years (Boeing,

2006a,b; Airbus, 2006).

The rapid growth of aviation has enhanced mobility and created global supply chains

throughout the world, but has also exposed over 20 million people around the world



to high levels of aircraft noise (IATA, 2004, p. 5). Dempsey (2000, p. 249) notes that

aircraft noise has been one of the most prominent of environmental concerns affecting

aviation since the advent of the jet aircraft, and airport development, expansion, or even

airspace reconfiguration projects continue to attract vehement political opposition to this

day (McKie et al., 2008; Milmo, 2007; Ritea, 2007).

The responses to aircraft noise conflicts include airport-specific operating restrictions,

aircraft-technology policy mandates, and limits to aviation expansion. Howard (1974, p.

569) suggests that community reaction to the roar and whine of the jet engine irreversibly

changed the course of aviation growth in the 1970s. He attributes the ending of the U.S.

supersonic transport and the abandonment of airport expansion programs as concrete

results of community action and national ecological movements of the era. Indeed, noise

conflicts in the United States have been partially responsible for the paucity of new airport

and runway projects over the past 20 years (Baliles, 2001, p. 1).

Such airport noise conflicts can be generalized as what the Organisation for

Economic Co-Operation and Development (OECD) refers to as a "Pressure-State-

Response" system (2006, p. 15). Economic pressures affect the state of the environment,

and eventually lead to environmental policy responses. Economic theory suggests that

these noise conflicts exist because the aviation community has not been able to capture

the full externalities that they create. To this end, the UK government is promoting the use

of economic instruments, such as taxes or other price mechanisms, to help encourage

industries to adapt, innovate, and foster sustainable development (UK Department for

Transport, 2003a). Under such polluter-pays principles, air-transport users may bear

additional environmentally related taxes as a means of handling the damage costs of



noise and emissions on airport-area residents (UK Department for Transport, 2000b, p.

2).

In its own strategy to support more efficient, sustainable resource use, the OECD

Secretariat (2002, pp. 9-13) has identified the need to "decouple" economic growth

from environmental degradation. To support this, the OECD is developing decoupling

indicators to compare changes in environmental pressure with changes in causally linked

economic variables (OECD, 2006, p. 15-18). The full environmental costs of transport

are very difficult to estimate, and decoupling indicators such as emissions of carbon

dioxide (C02) per unit of GDP can help policy stakeholders analyze the links between

the environment and the economy. While the OECD focuses on areas such climate, air

and water quality, and natural resources, similar types of decoupling indicators could be

developed for other policy arenas such as community livability or transportation noise.

Here, I consider how the economic benefits or positive externalities of aviation relate

to the noise damage costs or negative externalities which it creates. Howard (1974,

p. 569) recognized that although many costs of airport noise need to be internalized

within the air transportation system, the benefits of aviation also need to be identified

and quantified as best as possible. Cooper (1990, p. 125) found evidence to suggest

that airports had a significant impact on local and regional economies, but that these

impacts were not yet fully understood. Furthermore, there is a growing body of literature

on the catalytic impacts of transportation on increasing economic output, which have

not been considered within the context of airport environmental damages. Analysts use

the concept of catalytic impacts to describe the longer-term effects of transportation

on underlying economic productivity (Oxford Economic Forecasting, 1999, 2006a;



InterVISTAS-ga2, 2006) that are different from the traditional direct, indirect, and induced

impacts associated with spending in the aviation industry.

1.1 Research Questions and Hypothesis

In this analysis, I explore the externalities of local airport noise and regional growth in

order to highlight key sensitivities within the air transportation system and generate

some insights into the long-term sustainability of aviation and the economy. Analyzing

economic benefit and noise externalities in terms of a common (monetary) reference

unit allows analysts to compare them with other costs and benefits that are expressed in

monetary terms (Schipper et al., 2001, p. 173), and gives local and regional stakeholders

additional opportunities for dialogue and policy innovation.

Although aircraft noise impacts are mostly limited to the neighborhoods around

an airport, the economic impacts of air services extend far beyond those affected by

airport noise. The air transport sector itself is a large industry, and accounted for about

£6.1 billion in value-added in 2004--about 0.6% of the total value-added throughout the

United Kingdom (Office for National Statistics, 2006). The air transport sector can play a

more significant economic role at the regional level and accounts for about 1.5% of the

Greater London economy, or £3.2 billion in value-added (REMI, 2004a). As such, I have

designed my study to look at both the local communities around the airport as well as

their surrounding regions.

My primary research questions are: (1) what are the regional impacts associated

with the catalytic relationships between air transportation services and economic growth;

(2) how do the economic values of aircraft noise relate to changes in airport operations;
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and (3) how do these regional benefits from aviation growth compare to the localized

environmental damage costs of airport noise. My hypothesis is that the local community

noise damage costs are very small compared to the direct, indirect, induced, and

catalytic regional economic impacts from aviation services. A better understanding of

this relationship could inform the dialogue between policymakers and other aviation

community stakeholders, especially as environmental pressures, increasing fuel prices,

and the airline industry restructuring continues to threaten the long-term growth and

sustainability of the air transportation system.

1.2 Methodology

To test this hypothesis, I integrate a series of aircraft noise and socio-economic impact

models and analyze the impacts under a series of aviation growth scenarios for two

airports and their surrounding regions in the United Kingdom: London Heathrow Airport

and the East Midlands Airport. My objective is to analyze the relationships between

aviation activity, airport noise, local housing prices, and regional economic growth. I

differentiate the cases of the London Heathrow and East Midlands airports in terms of

airport size, projected air-traffic growth, urban context, and regional economic activity,

which provides a good contrast in looking at the potential range of impacts associated

with aviation. I also introduce a number of scenarios that incorporate an advanced

technology, low-noise aircraft to look at the sensitivity of these relationships to future

changes in technology.

Figure 1-1 shows my overall framework for linking aviation growth scenarios with

local airport noise and regional economic performance using environmental and
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economic impact models. My analysis starts with a set of long-term aviation growth

scenarios that are based on airport capacities and mobility projections. I use a regional

econometric input-output model jointly developed by Regional Economic Modeling, Inc.

(REMI) and ECOTEC Research & Consulting (ECOTEC) to analyze the wider sensitivity

of the economy to growth in the air-transport sector and related industries. I considered

other economic modeling strategies, such as input-output, econometric-only, or system

dynamics, but for this analysis, the REMI-ECOTEC system provided the best combination

of industry detail from the input-output portion of the model and long-term dynamic

forecasting from the econometric portion of the model. I also investigate the wider, long-

term catalytic impacts of aviation on investment and productivity. I then look at the local

impacts of this aviation growth by using the Federal Aviation Administration (FAA)'s

Integrated Noise Model (INM) to identify the community noise levels under the different

airport activity scenarios. I apply a hedonic-price model to estimate the aggregate

monetary impacts of the noise damages on housing values-or inversely, the benefits of

silence (Schipper et al., 1998).

I jointly consider the results of these economic and noise impact models to illustrate

the interrelationships of noise and economic growth within the air transportation system.

Given the long-term uncertainty of socioeconomic conditions and air-travel demand,

my analysis focuses on the differences between the model scenarios rather than the

absolute values of the various summary metrics that I present. My aim is not to create

a single index that captures the full complexity of the relationship between aircraft

noise, aviation growth, and regional economic performance. Instead, I establish a set

of plausible relationships and sensitivities that could be further explored by others with

alternative modeling strategies.
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1.3 Contribution

My major contribution will be to link airport flight activity directly with community noise

damages and regional economic growth within a single analysis. Although many

economists, such as Nelson (1980) and Schipper et al. (1998), have developed and

applied community Noise Depreciation Index (NDI) estimates, there have been few

applications of NDIs under different airport-specific operational scenarios. My study of

the noise impacts within the context of regional economic growth highlights some of the

more critical interrelationships between the air transportation system, local communities,

and regions. One of my major aims is to provide policymakers and researchers with a

framework to consider the long-term effects of aviation and other transportation access

on regional economic growth. By applying an analysis of the catalytic economic effects

of aviation at the regional level, I also demonstrate the importance of considering such

non-traditional economic impacts when assessing transportation impacts.



This analysis of aviation and regional development will also help to fill a gap in the

urban studies literature. Taaffe (1956) and other planners and geographers have long

observed the relationship between air transportation and the geography of economic

activity, yet, the overall research in this area remains rather limited. Furthermore, airport

noise issues are representative of typical planning conflicts involving benefits to a wider

community at the expense of negative externalities affecting a small population, and this

research is thus relevant to other planning issues and at different scales of analysis.

Finally, I note that this research was conducted as part of the Cambridge-MIT

Institute (CMI) Silent Aircraft Initiative (SAI), a multi-disciplinary program to design

conceptually an advanced-technology, low-noise aircraft. By analyzing some of the

tradeoffs between the regional economic benefits of airport expansion along with the

local community damage costs of airport noise, I demonstrate why such an aerospace

technology research program is relevant to a wider audience-including public policy,

transport economics, and regional development.



Chapter 2

Regional and Local Impacts of
Aviation Growth

Air transportation is a critical enabling factor in economic development and is vital in

unlocking global tourism as a development strategy (Graham, 1995, p. 102). In 2001,

over 680 million international tourists spent about $472 billion throughout the world-

with a large proportion of these (39%) traveling by air (International Civil Aviation

Organization, 2005, p. 1-5). Air transport has also facilitated international trade by

providing major travel times savings, overcoming physical geography, and provided

reliable economic access in politically sensitive areas (Graham, 1995, p. 88). In addition

to these tourism and regional trade benefits, airports generate jobs, tax payments, and

generally help to create wealth (Banister and Berechman, 2000, p. 299). Indeed, one

of the economic benefits of air transportation is that it connects areas of high and low

economic wealth (International Civil Aviation Organization, 2005, p. 1-5). Figure 2-1

shows the relationship between increasing GDP per capita and the propensity to fly,

measured in terms of RPKs per capita.

The close relationship between the air transportation and the economy is also

reflected in the historical growth of GDP and passenger air traffic (RPK) in the United



Kingdom (Figure 2-2). Given the concurrent success of the global airline industry and

the rise of globalism, the relationship between aviation and economic growth has almost

become dogma. Airport development is often widely viewed as necessary to support

the economy or to expand essential transport links, yet these wider regional, national,

or international economic benefits may conflict with the negative environmental impacts

on surrounding local communities (Caves and Gosling, 1999, p. 101).1

Like Caves and Gosling (1999) and others, I consider the balance between the

benefits and costs of aviation growth. Here, I apply and extend this notion by quantifying

and contrasting regional economic growth and local airport noise-damage costs under

different growth scenarios for two specific airport-regions. I begin by presenting some

background on the techniques that analysts typically use to identify the relationships

between aviation and economic growth. In addition, I discuss the metrics that are used to

analyze and monetize the damage costs of airport noise, and how airport noise conflicts

have resulted in changes to the aviation system.

2.1 Regional Economic Impacts of Aviation

Generally, transportation investments reduce the cost of intermediate inputs for

production-either through decreased direct trip costs or shortened travel times and

reduced outlays (Flyvbjerg et al., 2003, pp. 65-66). Bennathan and Johnson (1990, p.

104) find that total transportation costs account for about 2% of the total output value

of industries. Reductions in price, time, inconvenience, or other factors all translate into

lower general transportation costs for travelers and shippers alike. Under neoclassical
1In many parts of the world, however, the economic benefits of aviation are seen to outweigh the costs at

any price (Caves and Gosling, 1999, p. 109).
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economic theory, reductions in transportation costs should lead to increased productivity

and output. Post-keynesian regional economic growth theory suggests that increased

price competitiveness due to reductions in transportation costs leads to increases in

regional exports and inward investment, migration, and overall growth (Malizia and Feser,

1999, pp. 130-131). Regional competitiveness is thus extremely critical from an economic

growth standpoint.

Another analytical perspective, however, is the derived-demand hypothesis. This

core concept in transport and economic geography states that transportation itself has

no intrinsic value without the activities at either end (Rodrigue, 2006, p. 1449). As such,

Schipper et al. (2001) and Rothengatter (1993) argue that transport externalities are

pecuniary (pseudo) rather than technological (real) because they redistribute income

rather than creating a change in output. In a globalized environment, though, these

externalities can provide a major strategic competitive advantage-especially at the

regional level (Porter, 2001b). Caves and Gosling (1999, p. 103) suggest that given

the derived nature of transportation demand, using expenditures to measure economic

impacts is a fallacy.

Nevertheless, transportation analysts have traditionally focused on the activity,

employment, and payroll that can be attributed to the airport itself (Butler and Kiernan,

1992, p. 2). In the United Kingdom alone, for example, aviation industries directly create

about 200,000 jobs, and indirectly support another 600,000 jobs (UK Department for

Transport, 2003e). In addition, about 17 million foreign tourists arrive in the United

Kingdom by air each year, helping to support about two million jobs in the tourism

industry. Here, I discuss several common economic assessment techniques used by



aviation analysts, as well as some emerging state-of-the-art methods that test the

derived-demand hypothesis.

2.1.1 Measuring Economic Impacts

Airports often commission economic impacts studies to justify the high levels of public

and private investments necessary to sustain the air transportation system. A typical

methodology involves applying local or regional economic multipliers to spending or jobs

data. Analysts use economic data or surveys of business activity to generate the wages,

sales, and spending data, which are used along with input-output multiplier models, such

as the US Bureau of Economic Analysis (BEA) Regional Input-Output Modeling System

(RIMS II), or the Impact Planning Model (IMPLAN), in order to approximate the direct,

indirect, and induced impacts of the airport and related sectors (Crihfield and Campbell

Jr., 1991). Analysts also typically incorporate these methods within cost-benefit or cost-

effectiveness studies to compare the relative impacts of different airport traffic levels or

different project investments.

In order to look at the regional economy-wide socioeconomic impacts over time,

analysts use integrated econometric input-output or Computable General Equilibrium

(CGE) models to compare the impacts of a counterfactual scenario relative to a baseline

forecast (Loveridge, 2004, p. 10). At the national level, analysts also use macro-

economic models to identify the larger-scale impacts of aviation. One of the more recent

studies in the United States, for example, found that civil aviation accounted for 9% of

the US GDP in 2000, or about $900 billion dollars and 11 million jobs (DRI-WEFA, 2002).

Transportation economic impact studies can also be framed in terms of user travel-time



savings or congestion by converting these costs into monetary units and setting them

as a cost to the economy (Delcan Corporation and Economic Development Research

Group, 2003).

Weisbrod (2000a) contrasts these types of impact studies with comprehensive

economic development studies that focus on broad impacts of regional growth or

strategic infrastructure. Airport operators often desire to make the nexus between air

service and firm location, supply-chain integration, or market access, but this often

involves more intangible impacts, which are often not measured under traditional

economic impact analysis methods. Analysts must often rely on anecdotal evidence

and other qualitative methods in order to illustrate the potential business-side impacts

which could occur. Weisbrod's Economic Development Research Group (EDR Group),

for example, use case-study interviews to describe how Boston-area firms rely on air

travel to support their core businesses Economic Development Research Group (2001).

Although such qualitative studies can be useful for policymakers, they do not lend

themselves to detailed economic-impact assessments and policy modeling.

2.1.2 Regional Catalytic Impacts of Aviation

Aviation analysts traditionally focus on industry spending and employment impacts

rather than the wider regional productivity benefits associated with air service-enabled

accessibility. Yet, even the US Federal Aviation Administration recognizes that there

are regional productivity gains and other logistical benefits from aviation that are not

measured in traditional input-output analyses (Federal Aviation Administration, Office of

Aviation Policy and Plans, 1999, p. 61). Air service creates access to suppliers, markets,



capital, and ideas (Tam and Hansman, 2002), and thus potentially has wide regional

impacts on economic productivity and geography. The availability and reliability of fast air

travel in recent years, for example, has contributed to the growth of global supply chains

and has shaped where and how goods are produced.

These impacts on the underlying structure of a regional economy may be a

fundamentally different type of economic impact than the supply-chain relationships

reflected in traditional economic accounts. Air transportation costs may only be a minor

percentage of the total value of the overall inputs that feed into the production of a final

good, for example, but may indeed be the most important factor in determining the

potential of where or how a good is produced. An emerging method of applied analysis,

however, focuses on these longer-term effects of transportation connectivity on economic

productivity. Analysts use these "economic catalytic effects" to account for the way in

which air transport "contributes to a country or economy beyond any effects that are

directly or indirectly associated with the air transport industry itself (Cooper and Smith,

2005, p. 12). Such methodologies are useful when analyzing the wider benefits and costs

associated with air transport service, because traditional methods may undervalue the

importance of air transportation.

Long before the concept of "economic catalytic effects" came into widespread

use, analysts in the regional planning, geography, and urban economics fields began

using econometric models to investigate the association between transportation and

economic growth-although they generally stopped short of applying these models to

forecast the impacts of transportation growth. In these models, the analysts typically used

independent variables, such as professional employment (Ivy et al., 1995), administrative



employment (Debbage and Delk, 2001), and service-related employment (Brueckner,

2003), in order to explain the differences in the use of air transportation. As with most

econometric methods, simultaneity and causality remain major methodological issues,

but analysts overcome some of these limitations using simple correlation coefficients

(Debbage and Delk, 2001), two-stage least squares regression models (Brueckner,

2003), lead-lag analyses (Goetz, 1992), simultaneous equation models (Ivy et al.,

1995), and other methods. In general, these analysts have found positive associations

between various metrics of air-transportation activity and economic growth. Brueckner,

for example, found that a 10% increase in passenger enplanements is associated with a

1% increase in service-related employment (Brueckner, 2003, p. 1467).

More recently, other analysts have also begun to use the term catalytic effects to

describe various types of economic impacts other than direct, indirect, and induced

impacts. In a recent study on air-service liberalization, for example, InterVISTAS-ga2

(2006, p. 5) described the catalytic economic impacts as "the investment made by

organizations in plants and facilities, and the increased trade flows driven by increased

capacity of the air transport system." The International Civil Aviation Organization (2005,

pp. 2-5) defines the catalytic impacts as the off-airport expenditures directly related to

the use of air travel and shipment of freight--such as tourism and other freight activities.

Although these uses of the term catalytic capture some of the benefits and costs of air

transportation services, they do not fully describe the long-term, regionally differentiating

impacts on economic productivity that may result from enhanced access to air-transport

services.
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Figure 2-3: Traditional and catalytic impacts of air transportation services

Figure 2-3 shows a methodological framework developed by Oxford Economic

Forecasting (OEF). This methodology goes beyond the traditional measures of

employment and spending, intermediate purchases, and household spending by workers

directly and indirectly employed by the air-transport sector. The economic spillovers of

households and other companies in the wider economy are called the economic catalytic

effects (Cooper and Smith, 2005, p. 13). These supply-side impacts of air transport

are based on empirical econometric relationships between economic productivity,

investment, and air-transport usage. OEF further distinguishes between supply-side and

demand-side catalytic effects. Supply-side catalytic effects refer to the performance of

the economy and long-run productivity and livability, while demand-side effects include

the use of air services to transport goods, business travelers, and tourists (Cooper and

Smith, 2005, p. 16). The supply-side impacts include the long-term impacts on labor

supply and investment, as well as the impacts of market structure and congestion on

productivity. All of these economic impacts can be measured through the long-run effects

on GDP.
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In addition to these impacts, the other benefits and costs associated with air-

transport services include the user "consumer-surpluses" from low airfares (travelers

paying less than their willingness to pay) and other environmental and social impacts

(Cooper and Smith, 2005, p. 14). The OEF studies do not focus on these other benefits

and costs because the economic benefits from consumer surpluses are unclear, and an

analysis of environmental impacts was outside the scope of their studies (Cooper and

Smith, 2005, p. 16). Although the consumer surplus impacts of aviation development may

be very large, such as what Norris and Golaszewski (1990) found at Dallas-Ft. Worth

and another unnamed island airport, such benefits should eventually be captured by

long-term economic equilibrium models as consumers change their spending patterns

over time. Other noise-related externalities, such as reduced educational performance of

children in schools near airports (Shield and Vilatarsana, 2004; Welchman, 1999), may

also incur real long-term economic costs. Such costs, however, may be difficult to isolate

from other geographic and socio-economic factors.

2.2 Local Impacts of Aviation Growth: Airport Noise

In contrast to the generally positive regional economic benefits of aviation,2 airport noise

has emerged as a major negative externality of the air transportation system. Airports

are also major sources of air and ground pollution, and aviation generally contributes to

global climate change. From a community perspective, however, noise is often the most

urgent and obvious environmental problem (Andre, 2004, p. 36). The growth of aviation
2Caves and Gosling note that given the preponderance of UK holidaymakers among UK regional

airport passengers, the net effect of air accessibility on the local UK economy may well be negative, even
though most of the holiday spending goes to UK airlines, airports, and tour operators rather than to foreign
economies (Caves and Gosling, 1999, p. 103).



has exposed over 20 million people around the world to high levels of aircraft noise

(IATA, 2004). Personal annoyance and property depreciation have long been identified

as key factors behind airport noise conflicts (Stevenson Jr., 1972, p. 14). Stevenson Jr.

noted that property-value assessments in 1961 were reduced by as much as 20% near

Los Angeles International Airport after the introduction of jet aircraft; similar reductions

occurred near New York's John F. Kennedy International Airport and the Toronto Pearson

International Airport.

Despite major declines in the number of residents exposed to noise due to changes

in aircraft technology, operations, and aviation policy, noise issues continue to generate

substantial opposition to airport and aviation expansion projects (US GAO, 2001). In

a 2000 survey of 50 of the busiest commercial airports in the United States, the US

GAO (2000c, p. 11) identified noise as the most critical environmental issue, although

air quality was seen as becoming more serious in the future. Problems with noise have

limited airport expansion projects throughout the United States and elsewhere. In this

section, I discuss the methods which policy analysts use to measure and evaluate airport

noise impacts.

2.2.1 Quantifying Noise Impacts

The aviation and scientific communities use a range of different metrics in order to

describe general sound levels, certify aircraft, and identify the noise impacts around

airports. In general, sound energy is measured in a unit of sound pressure level called a

decibel (dB). These units are measured logarithmically-i.e., an increase of 10 decibels

doubles the sound that people hear (US GAO, 2000b, p. 39). A-weighted decibels (dBA)



Table 2.1: Typical sound levels of common occurrences

Sound level in
Event A-weighted

Decibels

Rock band (indoors) 108-114
Food blender 88
Vacuum cleaner 70
Conversation (indoors) 60
Dishwasher on rinse cycle at 10 feet 60
Bird calls (outdoors) 44

Source: US GAO (2000b, p. 40) from Federal Interagency Committee
on Noise (1992)

discount the very high and low frequencies that are outside the perceptible range of the

human ear. An alternative measure, "C"-weighted decibels may better reflect the type of

noise generated by aircraft due to the way it weights the different frequencies of noise,

but it is not typically used in environmental analyses. Sound levels for single events, such

as those shown in Table 2.1, are called SELs and are typically measured in dBAs.

Airport noise exposure is generally measured in terms of the average sound levels

generated by the total number of aircraft operations over a period of time such as a day

or night, and are measured in dBA. The Equivalent Continuous Noise Level (LAeq) metric

used in the United Kingdom, for example, averages the noise levels over a 16-hour period

(0700-2300) during an average summer day (BAA, 2002). In the United States, FAA uses

the Day-Night Level (DNL) metric, which places a higher weight on nighttime operations

(10pm to 7am) in order to reflect the greater noise sensitivity of residential communities

at night. DNLs levels above 65 dBA are considered to be incompatible with residential

uses (US GAO, 2000b, p. 46). Figure 2-4 compares key LAeq and DNL metrics at London

Heathrow Airport. An additional metric, Day-Evening-Night (Lden), is now used in the

European Union as the standard metric for airport studies and incorporates different



Source: Author's calculations using INM 6.2, ArcMap 9.1 and data from UK DfT and CAA

Figure 2-4: DNL- and LEQ-based noise contours at London Heathrow Airport,
2005

weightings for day, evening (7pm to 10pm), and night-time operations (UK Department

for Transport, 2003e, p. 35).

The UK Department for Transport (UK DfT) uses the 57-dBA LAeq level to mark

the approximate onset of significant community annoyance (UK Department for

Transport, 2003e, p. 34). Noise annoyance can occur at levels lower than 57-dBA LAeq,

however, and the World Health Organization has noted that moderate and serious noise

annoyance occurs at the 50- and 55-dBA levels, respectively. In their recent Attitudes to

Noise from Aviation Sources in England (ANASE) study, MVA Consultancy (2007) implies

that a 50 dBA LAeq level may better reflect changes in community sensitivity to noise,

especially since the UK DfT selection of the 57-dBA LAeq level was based on a 1982

study. The UK DfT uses the 63-dBA LAeq level to designate areas exposed to medium

to high levels of noise, and airport operators are required to offer acoustic insulation to
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Figure 2-5: Comparison between dBA and EPNL

homes and community buildings in these areas (UK Department for Transport, 2003e, p.

36). Airport operators are also expected to relocate households and purchase properties

within the 69-dBA LAeq level, including those that experience large (3-dBA) increases in

noise (UK Department for Transport, 2003e, pp. 34-36).

Finally, aircraft are certified using a third type of noise metric. The Effective Perceived

Noise Level (EPNL) metric is a special scale (measured in Effective Perceived Noise

Level in A-weighted Decibels (EPNdB)) which correlates the annoying properties of

jet aircraft noise as well as subjective responses to pure tones in the noise spectrum

(Ashford and Wright, 1992, p. 489). EPNL levels are measured at specific locations

relative to a typical takeoff and landing, as specified by government regulations, such



Table 2.2:
Take-Off

Aircraft Weight

(000 Ibs.)
EMB-145 49
CRJ-700 75

B737-700 155
MD-80 160
A320-200 162

B757-200 220
B767-300 351
A330-300 507
B777-200 545

A340-300 595
MD-11 631
B747-400 875

Source: FAA AC-36-1H

Typical aircraft noise levels in

dBA

Takeoff Approach

68 83
69 83

71 88
82 85
73 85

73 90
80 89
n/a n/a
72 89

n/a n/a
n/a n/a
91 93

dBA and EPNdB

EPNdB

Takeoff Sideline

79 85
83 89

84 94
91 97
87 93

86 94
91 97
94 98
86 95

96 95
95 96
99 98

as the FAAs 14 CFR Part 36. Figure 2-5 compares the EPNL and dBA scales, while

Table 2.2 compares the noise levels for typical commercial airliners at typical airport

measurement points using the two different metrics. Noise from landing aircraft can be

louder than that from aircraft on takeoff, due to the added airframe noise from landing

gear, flaps, slats, and other sources.

2.2.2 Noise-Damage Costs

The nuisance caused by aircraft noise has a major impact in the affected communities,

but monetizing these impacts is a challenging exercise. Welchman (1999) has

qualitatively documented the impacts of airport noise at Heathrow on the learning

environment, and Haines et al. (2002) and Shield and Vilatarsana (2004) have found

impacts of aircraft noise on educational performance. While recognizing the critical

importance of noise in community livability and overall socio-economic environment,
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93
93

96
94
97

100
102
98
98
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105
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many analysts nevertheless use economic instruments, such as housing values, as the

primary proxy to explore the damage costs of noise. Hedonic price methods are the

most widely used technique for evaluating the social costs associated with noise (Lu and

Morrell, 2001), with analysts using the variation in average housing sale prices to reveal

the implicit value of an attribute such as noise. Analysts have also used contingent-

valuation surveys to reveal how much people are willing to pay for silence, and Feitelson

et al. (1996) found that it revealed higher noise-damage costs relative to hedonic price

studies. There have been very few contingent valuation studies on noise due to the

difficulties of developing good survey methodologies (Navrud, 2002), although the UK

DfT recently included a contingent valuation analysis as part of the ANASE study. In the

ANASE study, the MVA Consultancy (2007) found an implied willingness to pay of about

£3.80 to £11.50 per annum per decibel reduction in noise (LAeq).

Urban economists, such as Schipper et al. (1998) and Nelson (2004), have

presented the results of hedonic price studies in terms of an Noise Depreciation Index

(NDI) that describes the percentage change in housing prices associated with a change

in noise level, as measured in decibels or some other metric. These NDIs can vary

widely, due to the ways in which analysts setup their empirical models, as well as the type

of data which are available. I discuss some of the differences between these different

NDIs in Chapter 6. In a survey of thirty different hedonic price studies between 1969 and

1996, Schipper et al. (1998) found NDI estimates ranging from 0.10% to 3.47%, with a

mean value of 0.83%. In other words, every decibel increase in noise levels around an

airport is associated with a 0.83% decrease in housing prices on average. Nelson (2004),

in another meta-analysis of studies in Canada and the United States, found an average

noise discount of 0.58% per decibel of noise. Both Schipper et al. (1998) and Nelson



(2004) used a meta-analysis to reconcile the wide differences in NDIs found in previous

studies: using a statistical regression model to control for the variations and minimize

the effects of outlying data (Schipper et al., 1998; Lazic and Golaszewski, 2006). This

permits NDIs to be more useful for benefit transfer applications, such as in the calculation

of the monetary value of noise-damage costs around specific airports.

Around the Chicago O'Hare airport, for example, McMillen (2004) found that home

values were about 9% lower within a 65-dBA DNL noise level, and he estimated that the

current runway reconfiguration program could increase housing values by as much as

$300 million. Cohen and Coughlin (2007) used a spatial hedonic price model to find that

homes affected by noise around the Atlanta Hartsfield-Jackson International Airport (70-

75 dBA DNL) sold for about 21% less than other homes (below 65 dBA DNL). Using a

1% per dBA NDI, Morrison et al. (1999, p. 733-735) calculated that a 5-dBA reduction in

aircraft noise would increase housing values by about $6,000 per home and have a total

value of $5 billion in the United States.

Other analysts have applied NDIs in other aviation-related policy studies. Pearce and

Pearce (2000) used noise-damage values to set environmental charging schemes, while

Lukachko (2002) and Morimoto and Hope (2005) applied the values using cost-benefit

analyses to evaluate the implementation of advanced-technology, low-noise aircraft.

Although this notion of damage costs indirectly reveals the sensitivity between noise

and airport-area communities, aircraft noise conflicts also imposes direct costs on the

air transport system. In the next section, I discuss the responses of the air transportation

system and communities to aircraft noise.
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Figure 2-6: Decline in US population exposed to airport noise

2.3 A Coupled System

In the United States, noise issues continue to generate substantial opposition to airport-

expansion projects, despite major declines in the number of residents exposed to noise

(US GAO, 2001, p. 3). As Figure 2-6 shows, there has been a 95% reduction in the

number of residents near airports who are exposed to high noise levels over 65 dBA

DNL in the United States since 1975. Quieter aircraft engine technologies and flight

procedures have enabled this decline in noise exposure to occur, even as commercial

passenger traffic grew almost sixfold during this same time period (Waitz et aI., 2004; US

Bureau of Transportation Statistics, 2006). Yet, although the transition to quieter aircraft

in the United States and elsewhere has dramatically reduced the number of residents

exposed to aircraft noise, the FAA and other aviation stakeholders still fear that increased

flight activity may eliminate some of these gains in the future (US GAO, 2001, p. 17).
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Land-use planning issues are the root of airport noise conflicts, yet the structure

of the political economy and the air transportation system makes it difficult to resolve

these conflicts. In the United States and elsewhere, the promotion and maintenance of

air transportation infrastructure is often a national responsibility, while land-use planning

and zoning is conducted by the states and local communities (US GAO, 2001, p. 19).

Although airports have very little authority to control land uses outside of airport property,

local communities gain from increased tax revenues and other incentives associated

with land development around airports (Ming Li et al., 2007, p. 51).3 These conflicts are

a long-recognized problem. In his early study of the political economy of airport noise

conflicts, Stevenson Jr. (1972, p. 33) suggested that land developers had unchecked

power in creating airport noise conflicts and bore the least consequences. Stevenson

Jr. observed that developers were motivated by housing shortages, high profits, while

the FAA had little influence on local zoning boards to stop them. Development pressures

have not decreased in the thirty years since then, and FAA land-use guidelines have only

had mixed results in deterring residential development around airports (US GAO, 2007, p.

2).

In addition to nuisance and depreciation, there may be other sociological factors that

affect the response of communities to airport noise (Horonjeff and McKelvey, 1983, p.

575). Airport noise conflicts, for example, may be related to historical antecedents or

airport-community relationships (Andre, 2004; Stevenson Jr., 1972). In a survey of the

50 busiest airports in the United States, the US GAO (2007, p. 26) found that over half of

the noise complaints come from people in areas where airport noise levels are deemed to
31n the United States, the FAA has the power to evaluate tall buildings and other airway obstructions

within an area up to 3.8 miles (6.1 kilometers) from public-use or military airport runways, but this is not a
specific land-use power (FAA Southern Region, 1998, p. 111-15-17).



be compatible with residential land use (less than 65-dBA DNL). BAA Heathrow (2007a) 4

notes that 36% of the 5,800 noise complaints at Heathrow airport in 2006-2007 came

from five callers.5 While the Government Accountability Office (GAO) and FAA have

explored the adequacy of the DNL metric in reflecting community expectations of noise

sensitivity, it nevertheless remains the primary noise metric in the United States (US

GAO, 2000b, p. 52). Another possibility is that airport-area communities can become

more sensitive over time, as MVA Consultancy (2007) has hypothesized after a recent

noise study for Heathrow Airport. Finally, the reconfiguration of aircraft flight paths-such

as is currently underway in the New York-New Jersey-Philadelphia metropolitan area-

can also trigger concerns over equity and environmental justice issues, especially when

such actions relieve the burden of noise impacts on some communities at the expense of

others (Ritea, 2007; US GAO, 2007).

With the limited success and formidable political challenges associated with airport

noise conflicts, policymakers have focused their attention in four main areas: (1)

modified flight operations, (2) aircraft noise abatement, (3) insulating/removing affected

parties, and (4) reducing the demand for air transportation. Although Nelkin (1974, p.

37) noted that vertical take-off and landing aircraft and high-speed rail could provide

alternatives to conventional air transportation and thus airport noise problems, such

solutions have proved to be either technically or politically infeasible in the United States.

Here, I discuss some of the costs associated with aircraft operational changes, noise-

reduction technologies, and community mitigation. These costs provide further context
4BAA is a private company which owns and operates the three major London airports (Heathrow,

Gatwick, and Stansted) as well as four other airports in the United Kingdom. It is now owned by consortium
led by Ferrovial.

514% came from one person, and 26% came from two people. The top 20 callers accounted for 49% of
the complaints.
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Figure 2-7: Major strategies to resolve airport noise conflicts

for understanding the relationship between regional economic growth and local noise-

damage costs.

2.3.1 Airport Operational Restrictions

Airport-specific modifications to standard flight-operating procedures have been used

for decades to lessen the noise impacts around specific communities. They may incur

some direct costs to the airports and also limit the flexibility of air-traffic controllers-

reducing the overall airport capacity and contributing to congestion during peak periods

or inclement weather. Typical operating restrictions include special flight paths to

avoid overflying specific communities. At London's Heathrow airport, for example, a

longstanding (since 1952) community agreement with the town of Cranford prevents

the northern runway from being used for easterly departures. Heathrow's air-traffic

controllers send departures and arrivals over less-densely populated areas to the west



of the airport whenever possible, but also attempt to balance the noise burden between

communities on both sides (BAA Heathrow, 2007b, pp. 4-5). Burn et al. (1996) found that

the more circuitous routings from such noise abatement flight tracks costed up to $25.3

million a year in extra fuel burn at Boston Logan Airport and $61 million at Los Angeles

International Airport.

In addition, a more unusual strategy is that the airport uses a published 4-week

rotation schedule for alternating the use of the northern and southern runways for

landings and arrivals, so that residents can plan their activities accordingly. The BAA

Heathrow (BAA) also enforces financial penalties for aircraft that deviate from normal

flight tracks and exceed noise limits, and it reinvests these funds into community projects

(BAA Heathrow Planning and Environment, 2001, p. 3). Other types of noise-abatement

policies, such as steeper takeoffs with reduced-power climb or managed Continuous

Descent Approachs (CDAs), may further limit the flexibility of air-traffic controllers and

pilots, but may, in some cases, achieve other environmental benefits, such as reduced

fuel consumption and emissions (Clarke et al., 2004; Reynolds et al., 2007).

Airports may also impose nighttime curfews or restrictions on specific aircraft types

as part of an overall noise-reduction strategy. Heathrow airport uses a quota system to

promote the use of quieter aircraft at night and also restricts operations based on aircraft

noise levels (94 dBA daytime max). The airport also uses strict aircraft noise limits (87

dBA) for the period between 11:30pm and 6:00am (BAA Heathrow, 2004a, pp. 39-42). In

the United States, the FAA Part 161 program provides a national process for communities

to restrict certain types of aircraft operations, but demands detailed studies to show the



benefits of flight restrictions (US GAO, 2007, p. 26). As such, US airports tend to favor

informal agreements rather than mandatory restrictions.

Finally, other types of capacity restrictions may be imposed as part of environmental

clearances or other legal processes. The construction of a fifth passenger terminal at

Heathrow Airport was only granted under the condition that total airport operations be

limited to 480,000 air transport movements (ATMs) per year, and that the land area

affected by aircraft noise does not grow (BAA Heathrow, 2005b, p. 2). As part of a 1985

settlement agreement, the John Wayne Orange County Airport was originally bound to

strict limits on average daily flights, annual passengers, terminal size, automobile parking

spaces, and even the number of aircraft loading bridges (John Wayne Airport, 2008).6

Globally, such local noise-related restrictions on aviation continues to spread-

increasing the constraints on the air transportation system. Over 500 airports throughout

the world have implemented special flight procedures, nighttime curfews, or other

measures in order to reduce the operational impacts of aircraft noise (Boeing, 2007).

Figure 2-8 shows the rapid growth of airport noise restrictions over the last 35 years, and

indicates the increasing sensitivity and communities to noise.

2.3.2 Community Noise Damage Mitigation

In addition to modifying aircraft flight operations, airports often attempt to mitigate the

noise damages by funding community sound insulation or relocation programs. These

programs incur direct costs to the aviation system, and they also indicate the magnitude

of airport noise issues. In the United States, a voluntary FAA noise compatibility program
6The agreement has since been amended to focus on daily flight and annual passenger limits.
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Figure 2-8: Growth in worldwide airport noise restrictions

distributes federal funds to over 300 airports for soundproofing, property acquisition,

and relocation (US GAO, 2007, p. 3).7 Airports in the United States spent $4.4 billion

dollars in noise-related projects between 1982 and 1999, representing 9.1% of the total

federal airport improvement program and passenger facility charge-funded projects

(US GAO, 2000b, p. 35). In a 2004 survey of 39 airports in the United States, Landrum

and Brown (2008) found that airports spent an average of $27,500 per home and $1.5

million per school for sound insulation. Over half of these airports were located in dense

urban environments and another 30% were in suburban residential areas. Altogether, the

reporting airports have insulated over 65,000 homes and 250 schools, with have another

33,000 homes and 90 schools planned for the near future (Landrum and Brown, 2004).

At Heathrow, the BAA has spent over £10 million since 1996 to insulate about 8,500

homes around the airport within the 69 dBA LAeq contour (BAA Heathrow, 2008a). This

daytime noise scheme included free secondary glazing on existing windows and/or partial
71t should be noted that 14 of the nation's busiest airports do not participate in the FAA Part 150 Program,

leaving over 320,000 people living around these airports ineligible for federal funding (US GAO, 2000a, pp.
79-80).



grants for special double-glazed windows. BAA Heathrow (2008b) has introduced a new

nighttime scheme to insulate bedrooms in about 41,000 homes around Heathrow that

are within a 90 dBA contour level of the airport. This is based on the footprint of the

noisiest aircraft currently allowed at night-the Boeing 747-400. In addition, BAA also

provides relocation assistance of up to £12,500 for homeowners within the 69 dBA LAeq

contour to move outside the 63 dBA leq contour (BAA Heathrow, 2005b). To date, BAA

Heathrow (2007a) has spent £1.3 million to help 230 homeowners relocate to quieter

areas. The airport is also distributing up to £25 million over five years to insulate noise-

sensitive schools, hospitals, nursing homes, and other community buildings within the

2002 standard 63-dBA LAeq noise level (BAA Heathrow, 2005a).

2.3.3 Technological Changes

To overcome local noise concerns, international and national policymakers have

traditionally focused on controlling aircraft noise at its source. Quiet high-bypass turbofan

engines and other technological improvements have reduced aircraft noise by about 20

decibels since the 1950s (IATA, 2004, p. 6). Yet these improvements also incur costs to

the air transportation system. The US GAO (2001, p. 3) estimated that US airlines spent

up to $4.9 billion dollars in order to upgrade their aircraft fleets to the quieter "Stage 3"

(International Civil Aviation Organization (ICAO) Chapter 3) noise standards. The ICAO

and FAA have also recently implemented a new noise standard, called Chapter 4 or

Stage 4, which requires new aircraft to be 1/3 quieter than Chapter 3 aircraft (IATA, 2004,

p. 9).
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Figure 2-9: The SAX-40 is a conceptual design for an advanced technology,
low-noise aircraft

For aircraft manufacturers and operators, noise reduction goals also often

create conflicting design requirements, and they may negatively affect emissions,

flight performance, and operating costs (ICCAIA, 2004, p. 27). Researchers at the

Massachusetts Institute of Technology (MIT) and the University of Cambridge, among

others, have considered the conceptual design of a commercial aircraft that may reduce

the airport noise footprint to near-ambient urban noise levels (Hileman et al., 2007).

Between 2003 and 2006, the Cambridge-MIT Institute (CMI) Silent Aircraft Initiative (SAI)

engaged over 40 student, post-doc, and faculty researchers at both institutions to use

noise reduction as the primary goal in an integrated airframe-engine design. In the end,

the researchers developed a concept design for a commercial airliner called the SAX-

40, which would achieve a single-event noise-contour of about 61-dBA at the perimeter

fence of a typical international airport, such as at London Heathrow Airport (Hileman

et al., 2007). Because there are significant technological challenges associated with

"



developing such an advanced-technology, low-noise aircraft to meet all airline market-

demand segments, the SAX-40 is designed as a 215-seat airliner with a range of 5,000

nautical miles. A low-noise aircraft designed for short-haul operations (e.g., 130-seats at

2,000 nautical miles) or high-capacity, long-haul flights (650 seats at 9,000 nautical miles)

would have a different configuration than the SAX-40 design depicted in Figure 2-9.

In addition to conceptual design integration, short-term operational enhancements

and the application of incremental technologies, such as noise-minimizing CDA

procedures, were also integral parts of the SAI project (Hileman et al., 2007). A

schematic of the project organizational structure is shown in Figure 2-10, and shows

that one component of the project was to assess the regional and national economic

impacts of aviation to the United Kingdom. This task included evaluating the extent to

which low-noise aircraft technology could be used to alleviate the external costs or enable

the growth of air transportation in the United Kingdom (Dowling and Greitzer, 2003, p.

17). Based on this research objective and as a key member of the SAI Economics team,

I focused the regional economic and noise impact modeling on two case studies located

in the United Kingdom. In the next chapter, I discuss the methodology adopted for this

analysis.
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Chapter 3

A Methodology for Analyzing
Aviation Growth

As discussed in Chapter 2, the tension between aviation impacts on local communities

and the accessibility demands of wider regions underlies much of the social, political, and

environmental conflicts involving the air transportation system. While aircraft noise, air

pollution, and congestion generally affect a limited area immediately around an airport,

the jobs and longer-term economic impacts associated with that airport are spread

across a much wider geographical area.

Having identified aviation as a major factor affecting both regional economic

development and local community livability (noise), I now set forth a methodology

for modeling and analyzing the impacts of aviation growth on these areas. I jointly

consider the impacts of aviation growth on regional economic growth and community

noise. Although these two thematic areas have very different scales of impact, they are

inherently related as parts of a politically linked socio-economic system. As an example

of a Pressure-State-Response system (OECD Secretariat, 2002), economic growth

could slow as environmental policies (for noise or other effects such as climate change)

increase the price of air travel and as airports reach capacity limits. I hypothesize that the



long-term economic growth and regional restructuring associated with aviation growth is

much larger than the localized airport noise-damage costs associated with that growth.

My underlying assumption is that aviation growth enables global trade and facilitates the

economic development of high-value and service-related industries.

I test this hypothesis within a regional economic modeling system by using various

exogenous changes to air transportation-related sectors that will simulate aviation-

enabled catalytic economic growth. These economy-wide simulations are based on

empirical relationships observed in the literature, consultation with industry experts, and

through my own analysis of two airports in the United Kingdom. I also use applications

of new economic geography theories to analyze these complex, long-term regional

interactions between regional accessibility and productivity. New economic geography

theory is the latest attempt in economics to account for the increasing productivity or

returns to scale associated with agglomeration (Fujita et al., 1999, pp. 1-3). Along with

improvements in information and communications technologies (ICT), access to air

transportation creates "virtual agglomeration" by enabling global supply chains-thus

creating the potential to reshape regional and local economies.

Figure 3-1 illustrates my general methodology. Starting from a set of long-term

aviation growth scenarios, I identify the impacts of additional air transport industry output

on the long-term performance of the regional economy. I frame these impacts against

an analysis of the noise-damage costs associated with increased flight activity at two

airports. I also include an example of an advanced technology, low-noise aircraft to look

at the sensitivity of these relationships between airport operations and the damage costs.
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Figure 3-1: Concept diagram showing methodology for analyzing relationships
between aviation growth, local noise impacts, and regional economic growth

I use a set of consistent growth scenarios as a common framework to explore the

interrelationships between aviation, regional economic growth, and local community

noise-damage costs. I analyze the impacts of these scenarios while recognizing the

limitations of forecasting over long time horizons as well as potentially large uncertainties

in the empirical data used to model these relationships. Overall, I use these different

types and scales of economic and environmental impacts to identify some of the

externalities of air transportation beyond the impacts of the sector itself. Analyzing the

noise and economic benefit externalities in terms of a common (monetary) reference unit

also allows for a comparison with other costs and benefits that are expressed in monetary

terms (Schipper et al., 2001, p. 173). This also provides a useful means of applying and

communicating these results to policymakers and other stakeholders.



First, I discuss my methodology for analyzing the regional economic impacts of

aviation growth and the local airport-related noise-damage costs. Then, I describe the

models that I apply for the specific regional economic and local noise impacts, as well

as the particular economic indicators of interest. I also discuss the two airport-region

case studies and the long-term aviation growth scenarios that I use as the context for this

analysis.

3.1 Methodology Development

From the outset, the SAI Economics team chose to use a set of models linked under

common growth scenarios in order to illustrate the complex interdependencies and

relationships between air transportation policy, technology, and the economy. The nature

of this research domain (airport noise and regional economic growth impacts) lends itself

to such a coupled modeling approach. Indeed, models are widely used in the design of

public policy in order to identify how a policy change or project may affect a particular

economy or region (Pindyck and Rubinfeld, 1998, p. 279). In addition to enabling

appropriate resource planning and informed policy decisions, models help analysts

identify the dynamics and sensitivities of complex systems that may not be readily

evident. In utilizing this methodology, however, I remain cognizant of the subjectivity

embedded within models.

3.1.1 Modeling and Subjectivity

One of the analytical challenges in interpreting long-range economic and environmental

policy models is that the underlying baseline scenario--often called "No-Build" or
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"Business as Usual"'-is itself a forecast. Policymakers commonly use these baseline

forecasts as a reference from which to identify the positive and negative consequences

of different counterfactual policy options (Pindyck and Rubinfeld, 1998; Mills, 1993).

The baseline forecast incorporates trends that are expected to occur if no changes are

made to the structure of the regional economy. The counterfactual scenario involves

introducing a change to the economic system, and then identifying the differences in

the resulting forecast (Loveridge, 2004, p. 10). Analysts can then use the differences

in the ex-ante forecasts to identify the major characteristics of the change and affected

areas. Many economic models are based either on historical trends or static input-output

accounting relationships. Although these techniques may be suitable for short-term

economic forecasts, they may be subject to errors over longer time horizons.

Analysts also often introduce additional subjectivity into their models as they convert

transportation productivity metrics (such as available passenger-miles) into emissions

units (such as CO2 ) and monetary values. Schipper et al. (2001) describe this emission-

exposure-effect value chain as a pathway of transport externalities. Figure 3-2 illustrates

this generalized methodology for environmental studies (Givoni, 2006) . Note that as

changes in transport output (Step 1) are converted to environmental impacts (Steps 2-

4) and monetized (Step 5), the level of scientific understanding of the problem decreases

and the subjectivity of the analysis increases. Similarly, the conversion of transportation

measures into parameters suitable for use in economic models might involve the

calculation of spending impacts or the exposition of policy links (Pereira and Polenske,

1996, p. 128).



Figure 3-2: Methodology for environmental analysis of transportation

Although the physical propagation of sound energy is a very well-understood

phenomena from a scientific point-of-view (Steps 1-4 in Figure 3-2), much less is known

about the socio-political ramifications of noise in each community. Thus, attempts to

monetize these impacts (Step 5) are extremely subjective. A similar challenge exists with

representing the relationship between air transportation and economic growth, except

that the complexity of regional development makes it difficult to isolate the effects or

impacts associated with aviation itself (Step 4). Nevertheless, monetary units provide

the most useful information for policymakers, even though the corresponding reduction

in scientific understanding decreases the robustness of the analysis (Givoni, 2006).

3.1.2 Open versus Closed System Modeling Approach

Given the goal of analyzing very long-term impacts of regional development and

aviation growth, one of the analytical challenges was how to manage the subjectivity

and uncertainty in the modeling process. Greenberger et al. (1976, pp. 63-70) note
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that modelers often must balance the trade-offs among theory, data, and methodology

when representing a given reference system as a model. Theory refers to the underlying

hypotheses in the model, while methodology includes the tools that are used to transform

the mental conception of the reference system into a formal model (Greenberger et al.,

1976, pp. 66-74). Data links the model to its reference system and are used to gain

confidence in it and its results.

One of the early methodological questions was whether to approach the airport

economics-noise modeling either as a single, closed system integrating feedbacks

between aviation, the economy, and community noise responses, or to use open models

with distinct, separate pathways. For the integrated, closed-system modeling approach, I

considered developing a system dynamics model, such as Ishuktina's (2008) analysis of

the global economic impacts of aviation. System dynamics is a simulation methodology

that is based on feedback control theory (Ford, 1999, p. 5); dynamic, causal relationships

that are represented by differential equations and designed to highlight questions and

observations about the world (Meadows and Robinson, 1985, p. 28). The underlying

assumption of system dynamics is that the dynamic tendencies of any complex system

arise from its internal causal structure (Meadows and Robinson, 1985, p. 34). Yet

because system dynamics makes minimal use of data and theories from social science, it

is frequently a target of criticism (Greenberger et al., 1976, p. 187). An integrated system

dynamics approach would focus on representing the causal interactions between aircraft

noise, community socio-political pressure, and airport noise restrictions within one single

system. The model would also have to include causal relationships between airport

flight activity and economic growth in order to balance the local pressure that constrains

the airport with the increased regional demands for aviation. Firm-level surveys and



historical data on regional business patterns could be used to estimate some of these

relationships.

Due to lack of data, time, and resource limitations, however, I decided not to adopt

a closed-system model.' Instead, I use an open-system approach to model the regional

economic and noise impacts as separate pathways that are conceptually linked under a

set of consistent growth scenarios. I also chose to structure the analysis around pre-built,

regional economic- and noise-impact models-again, partially due to limited time and

budget resources. One of the major advantages of this approach is that it enabled me to

build upon state-of-the-art, industry-standard methods of analysis. This has the additional

benefit of allowing this methodology to be more immediately relevant to transportation

and environmental planning practitioners. Using two separate open systems also limits

the propagation of forecasting errors through the analysis; a mis-specified noise-damage

cost index will not necessarily affect the calculation of regional economic growth. Finally,

the causal feedbacks between aviation noise and the resulting constraints on the aviation

system are very much a function of the regional political economy, and they would be

difficult to quantify at a global level. Indeed, Ming Li et al. (2007, p. 52) were unable to

find consistent relationships between population characteristics and noise complaints in a

study of several major US airports.

'Such an approach that captures the major relationships between aviation and the environment, however,
is currently being undertaken by researchers at MIT and Cambridge University (Committee on Aviation
Environmental Protection, 2007; Reynolds et al., 2007). The large-scale Aviation Environmental Portfolio
Management Tool (APMT) and Aviation Integrated Modeling Project (AIM) projects generally use economic
growth to drive the demand for air transportation and predict the resulting emissions-a different focus than
the analysis presented here.



3.1.3 Pathway Methodologies

Having established the decision to model the economics and noise impact pathways

separately, the next major decision was to identify the specific methodologies for each

pathway. Due to the time and resource limitations of the SAI project, I focused on pre-

built models. The selection of the noise impact model was relatively straightforward, since

the only publicly available airport noise model was the FAAs Integrated Noise Model

software. The selection of the regional economic model, however, was a much more

complex process due to the wide range of methodologies and models used in regional

economic-impact analysis. In developing the economic-impact methodology, several key

model requirements emerged, including a regional scale of analysis and the ability to

provide detailed long-term forecasts. As such, I did not consider simple multiplier or static

input-output techniques--such as the Regional Input-Output Modeling System (RIMS II)

or Impact Planning Model (IMPLAN) models in the United States. Budget constraints also

played a role in the model selection process.

The SAI Economics team investigated several leading econometric input-output

and CGE models in the United Kingdom, including those made by Experian Business

Strategies (EBS), Cambridge Econometrics (CE), Centre for Economic and Business

Research (CEBR), and OEF. Table 3.1 summarizes the differences between these

models. The long forecasting horizon and multi-regional capability of the CE Multisectoral

Dynamic Model (MDM) initially emerged as the most suitable for this analysis, and the

SAI Economics team procured an initial set of baseline forecasts through 2030, as well as

historical economic data from 1971 through 2003. After this initial forecast was acquired,

however, the SAI Economics team learned that ECOTEC had developed a partnership



Table 3.1: Comparison of the four main
the REMI-ECOTEC model

UK economic forecasting models with

Centre for
Cambridge EconomicsExperian Oxford Uenomis ECOTECModel Cambridge Business Economics UK, Ltd.Econometrics & Business

Vendor Econometrics Services Forecasting (REMI-(CE) (EBS) (OEF) Research ECOTEC)
(CEBR)

Forecasting 2015 a  + 10-15 yearsc + 10 years + 5 years 2040
Horizon
Regions 12b 12 13 5+d  anyc

Sectors 49 30-57 over 70 8 53e
User No n/a n/a n/a Yes
License f

Notes: a Possible to do until 2020. b 20 years and beyond for demographic and supply-side
scenarios. c Any area for which data are available. d A 12-region study has also been done. e

The input-output model has 123 sectors. fOriginal survey conducted in 2004. Most forecasters
subsequently developed user license-based models. Source: Adapted from Morimoto and Hope
(2004)

with REMI to create a regional model for the United Kingdom. Also, we would not have

been able to do the CE runs ourselves, and the cost of doing runs with the CE model was

large. For budget and user-operability reasons, the team switched to the REMI-ECOTEC

model for the remainder of the project. In the next section, I discuss the use of the REMI-

ECOTEC model as well as the other economic and noise submodels in more detail.

3.2 Impact Models

In this section, I discuss the major models and empirical relationships which I apply

within each of the regional economic and noise-damage cost pathways. For the regional

economic impact analysis, I use the REMI-ECOTEC model along with studies of the

catalytic effects of enhanced productivity and accessibility. For the noise-damage cost
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pathway, I use the FAA Integrated Noise Model to identify the noise levels around an

airport and then apply hedonic price studies to monetize these impacts.

3.2.1 Regional Economic Analysis Framework

The REMI-ECOTEC Policy Insight model (UK Version 6.0) was developed jointly by

REMI and ECOTEC for the United Kingdom, but it is based on the US version of the

REMI model. The US version of the REMI model is the most commonly used regional

forecasting and simulation model in the United States (Weisbrod, 2000b, p. 19), and

is tailored for the types of studies that are conducted by policy analysts. REMI focuses

on a few select economic phenomena that are of particular interest to policymakers,

including employment, productivity, taxes, and production costs (Treyz and Treyz, 2004b,

p. 167). One of the key strengths of the REMI-ECOTEC model is that it enables analysts

to analyze the relative performance of different regions as compared to the nation and the

rest-of-world.

The REMI Policy Insight model structure combines elements of input-output,

econometric, and CGE methodologies into its single dynamic economic forecasting

framework. The various feedbacks in the model affect personal income, consumer

spending, population migration, prices, and market shares in each region (REMI, 2004b).

At the core of the model is a set of 53-sector regional input-output accounts, which

capture the inter-industry demand relationships. The model also contains detailed

demographic and labor data for specific occupations. Time lags and elasticities of

demand for labor and products are also included in order to simulate the dynamic

properties of regional economies. In addition, the relative commodity- and labor-



accessibility attributes of different regions are used to model changes in transportation

and flows. Like other econometric and computable general equilibrium models, the

REMI model is solved through a series of simultaneous equations that relate regional

industrial-sector activity to estimated time-series relationships. Changes in one sector of

the economy are allowed to affect other sectors, which feed back on the original sector in

an iterative fashion until the disequilibrium caused by an initial policy stimulus significantly

dampens (Polenske et al., 1992; Pereira and Polenske, 1996)

The REMI model uses economic behavioral assumptions to compare the relative

economic performance of industries, firms, and individuals in different regions, and

then accordingly adjusts the flows of activity between the regions. Industries produce

output using a mix of intermediate inputs, labor, fuel, and capital that is determined

by the relative cost of each input. Relative labor intensity is determined by relative

costs according to a Cobb-Douglas production function (Bolton, 1985, p. 511), while a

stock-adjustment process includes region-specific capital preferences and a speed of

adjustment (Rickman et al., 1993, p. 206). Relative costs and accessibility affect the

regional and global market shares for each industry (REMI, 2004b, p. 21), as consumers

try to minimize costs and producers try to maximize profits. The inclusion of behavioral

assumptions rather than just econometric trends is fundamental to the structure of

the REMI model and represents a theoretical strength relative to other non-structural

modeling approaches.2

Model Application. The REMI model is designed as a regional policy analysis

tool. The general application of the REMI model includes (1) determining the direct
2Nonstructural models are based on past trends (including statistical econometric methods), regional

changes derived on past trends, and shifts in the local share of national industries (Treyz, 1993, p. 7). In
contrast, structural models are developed using cause-and-effect relationships based on economic theories.



(exogenous) effects of a policy over time; (2) entering these effects into the model

through a series of policy variables; and (3) using the model to generate the regional

economic and demographic changes that occur (Treyz and Treyz, 2004a, p. 11). One of

the key steps in conducting an analysis using the REMI model includes determining the

correct policy variables to use.

Within the model, a large number of policy variables affect the inter-regional

relationships between industry-level output, labor and capital demand, demographic

trends, production costs, and market shares. These policy variables are specified for

a specific region and period of time. Examples of input data might include firm sales,

consumer spending, induced employment, wage rates, housing prices, or foreign imports.

As industrial output changes due to an exogenous policy intervention, the various

feedbacks in the model will affect personal income, consumer spending, population

migration, prices, and regional market shares (REMI, 2004b, p. 13). As such, the model

can show how industries and people interact due to changes in employment, inter-

regional competition, investment, government spending, and other factors.

Pereira and Polenske (1996, p. 137) note that the large number of policy and

population variables provides great flexibility to model users for describing a particular

policy within the modeling framework. The explicit structure of the REMI model also

makes it easier to track the policy effects on all the variables in the model (Treyz et al.,

1992, p. 222). Although this theoretical structure limits the ability of REMI modelers

to specify ad hoc equations that reduce the model's prediction errors, it provides more

accurate economic explanatory power (Cassing and Giarratani, 1992, p. 1554).



Figure 3-3: Economic catalytic effect methodology

3.2.2 Catalytic Effects

As Figure 3-3 shows, I use changes in total factor productivity (TFP) and commodity

accessibility within the REMI-ECOTEC model to identify the catalytic impacts associated

with different levels of aviation growth. The productivity-based analyses rely on the

latest OEF elasticities (0.06), while the accessibility-based analyses are based on the

commodity-access relationships within the REMI-ECOTEC model.

Productivity-Based Model. To examine the magnitude of these catalytic effects

of aviation at the regional level, I test several increases in TFP in the East Midlands,

and then analyze the resulting changes in regional Gross Value Added (GVA). I use

an economy-wide increase in TFP to frame the upper range of the catalytic impact

estimates, and an increase in selected private non-farm industries (manufacturing,

retail/hotels/catering, transport, telecom, and basic regional export-related services) to

frame the lower range of the estimates. My underlying assumption is that air transport is



inherently related to the viability of regional supply chains in manufacturing, services, and

tourism-thus enabling such industrial activities to locate in a given region such as the

East Midlands. I test changes in overall TFP in the East Midlands that are proportional

to the assumed growth rate scenarios and the OEF elasticity of 0.06, thus assuming a

constant linear relationship between growth and TFP.

Accessibility-Based Model. I simulate the effect of increased air services by

modifying the commodity-access coefficients for the air transportation sector within the

model. In the REMI-ECOTEC model, the Commodity Access Index measures the relative

change in access to specialized inputs for production in order to predict the change in the

productivity of intermediate inputs (Regional Economic Models, 2007). The commodity-

access index affects the intermediate inputs and productivity (and output), as well as

migration/population. Ultimately, it affects both the composite cost of production by

industry and the consumption-access index in the economic-migration equation (Lee and

Zohir, 2006, p. 6).

3.2.3 Airport-Communities and Noise

I apply an airport noise model to identify the neighborhoods affected by airport noise, and

then use a hedonic price model to calculate the total value of these damage costs. Within

the airport noise model, I focus on the higher-level relationships between aggregate

fleet mixes and total operation levels on community noise impacts. Understanding this

relationship is important because although larger, heavier airplanes generate more

noise than smaller, lighter ones, the frequency of total operations is a major factor in

airport noise contours and nuisance in general. I use the monetary value of aircraft noise-
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Figure 3-4: Airport noise analysis methodology

damage costs on housing sales prices in order to study the impacts of aviation growth on

local airport-communities. This general methodology is shown in Figure 3-4.

Modeling Airport Noise. Although the number of aircraft operations per day and

their time of occurrence can strongly influence the degree of annoyance experienced by

those residing near airports (Ashford and Wright, 1992, p. 488), other factors such as

the magnitude of aircraft sound levels, flight paths, and runway operations can also affect

how airport noise is perceived by a community (Horonjeff and McKelvey, 1983, p. 575).

One of the major factors that contribute to airport noise levels, for example, is the mix of

aircraft at an airport. Although large wide-body jets generate more noise than smaller

aircraft, they may only account for a small fraction of total operations and thus have a

relatively small effect on overall averaged noise levels. I apply an airport noise model

to calculate the average daily noise levels around London Heathrow and East Midlands

airport under various scenarios based on different distributions of aircraft types by flight

track, runway use, and time of day.
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To model the airport noise impacts, I use the Federal Aviation Administration

Integrated Noise Model Version 6.2. The FAA has used the INM model to determine

and plot community noise levels for use in environmental-impact assessments and other

airport operational assessments since the 1970s (Horonjeff and McKelvey, 1983, p. 590).

It is also used by over 700 organizations in over 60 countries throughout the world (FAA

and ATAC, 2002, p. 1). I use this industry-standard model in order to model different

airport flight operational scenarios and take advantage of its detailed population- and

noise-output data. I note that the UK Civil Aviation Authority (CAA) uses the UK Aircraft

Noise Contour Model (ANCON 2) system instead of INM. Because this model contains

more UK-specific aircraft, population, and operational data, it generates contours that

are 20-30% different in size than INM (Monkman et al., 2005). Although I do not use

the ANCON 2 model due to its proprietary nature, I consider the published CAA noise

contours in evaluating my INM model inputs. In Appendix C, I directly compare the INM

and ANCON 2 noise contours for the London Heathrow airport. Moreover, I focus my

analysis more on the sensitivity of the changes due to traffic growth, rather than the

absolute noise levels under each scenario.

Noise-Damage Costs. I use housing values to understand the economic value of

community damages from aircraft noise. For each of the different airport operational

scenarios, I calculate the theoretical appreciation in residential property values due to

reductions in noise exposure levels. I use a Geographical Information System (GIS) to

calculate the number of housing units and the average housing sales price within each

band. For each of the airport growth scenarios, I use a range of NDI values to identify

the effect of aircraft noise on housing values. I apply NDI values of 0.51% to 0.67% per

decibel in noise change, as Nelson (2004) recently found in a meta-analysis of previous



Table 3.2: Summary of previous meta-analyses: noise-depreciation indices per
decibel

NDIStudy(per dB) Metric Notes

Schipper et al. (1998) 0.9 meta LL/SS; 1.30 for Box-Cox
Nelson (2004) 0.51-0.67 meta US/Canadian airports
Nelson (1980) 0.58 meta In NEF; 0.29 to 1.10
Johnson and Button (1997) 0.37 meta R2 of 0.13

NEF = Noise Exposure Forecast.

noise studies in the United States. Table 3.2 compares the results of several recent meta-

analyses.

I identify the affected population and dwelling units using UK Office of National

Statistics shapefiles and census data at the output-area level. I used the population-

weighted centroids (reprojected to World Geodetic System 84 coordinates) as the basis

to identify whether or not a particular output area was affected at a given noise contour

level. I use average housing sales price data from the UK Land Registry Department at

the postcode-sector level. In the study area around London Heathrow, there were 628

postcode sectors, each with an average of about 6,600 residents and 2,900 dwelling

units. The census output-area data provided much more detailed data, however, and was

about 11.6 hectares in size and contains about 300 residents and 130 dwelling units on

average. Figure 3-5 compares the different output-area and postcode-sector geographies

around the London Heathrow Airport, and Figure 3-6 shows the average housing sales

prices in London at the postcode-district level (about 22,100 persons and 9,600 dwelling

units in each district) from 2005.

I also use other data at the at the larger administrative ward level. Although the

average ward in London is about 400 hectares in size and contains about 8,200 persons,
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Figure 3-5: Data sources and geography



Source: Author's calculations using data from UK Land Registry and ArcMap 9.1

Figure 3-6: Average housing sales prices in Greater London, 2005

the average output area is 11.6 hectares and contains about 300 residents and 130

dwelling units. The average housing sales price for the 38 wards in London in 2001 was

£231,000 pounds with a median price of £182,000. In the 17 wards immediately in and

around the East Midlands airport, the average sales prices was about £90,000 pounds,

with an median price of £73,000.

Because the INM software identifies the precise noise level at each of the centroid

locations, I use the difference in noise relative to the 57-dBA baseline in order to calculate

the associated damage costs. This approach differs from many hedonic noise studies,

which assign housing and population within 3- or 5-dBA contour bands rather using

than the more precise noise level data upon which these contours are derived.3 Some

analysts then convert the band-level data into continuous variables by using the noise at

the midpoint of the band (McMillen, 2004, p. 630).
3This is presumably due to the type of noise impact studies that are typically available to most

economists.



My damage cost calculations assume that the 57-dBA LAeq noise contour contracts

inwards to the airport boundary, and thus that no residential dwellings around the

airport would experience noise levels above 57-dBA. Dwellings within the existing 72-

dBA contour, for example, would experience noise reductions of up to 15 dBA, while

dwellings inside the existing 60-dBA contour would experience reductions of only 3 dBA

on average. Note that I do not assume any changes in population growth nor housing

values in order to focus on the sensitivity of the noise contours themselves rather than the

effects of socioeconomic growth. This is relatively consistent with the REMI-ECOTEC

baseline control forecasts, which predict a relatively low population growth for these

regions (0.3% per year for Greater London and about 0.9% for the East Midlands).

3.3 Aviation Growth in Two Airport-Regions

As discussed at the end of Chapter 2, this analysis is based on research conducted

under the SAI project. For this reason, I focus my analyses on two cases in the United

Kingdom. Good data availability, a mature aviation system, and strong reliance on

air transportation also make this a highly suitable national context for analysis. As an

island nation of almost 60 million people with only a single fixed rail link to the rest of the

European continent, the United Kingdom depends heavily on air transportation. In 2006,

about 238 million passengers and 2.6 million metric tonnes of freight on 3.7 million flights

passed through one of 67 airports in the United Kingdom (UK Civil Aviation Authority,

2006a). One-third of the exports by value are moved by air, while services-which rely on

air travel-account for another eight percent of the economy.



35% -
30%

25%

20%

15%

10%

* London ResidentsH Heathrow Residents
N London Workers

O Heathrow Workers

nU]
£JLLJ

Home < 2K 2-5k 5-10k 10-20k 20-30k >30k Other

Distance Traveled to Work

Other includes no fixed location, foreign, and offshore workers. Heathrow data
includes 2001 UK census output areas 00ASGP0006 and 00ASGP0020.

Figure 3-7: Average distance traveled to work

I use regions as the unit of analysis for studying the economic impacts of aviation

growth. Airports are well-known to have major economic impacts in their localities (up

to 15 miles), and more widely across regional and international contexts (Banister and

Berechman, 2000, p. 288). Figure 3-7 shows that about 56% of all workers and residents

in London commute over 5-km to work. Workers at Heathrow airport tend to travel further

than typical Londoners, with over 82% commuting over 5-km. The 300-odd residents in

the two census tracts immediately adjacent to Heathrow Airport have somewhat shorter

commutes, with about 19% employed within 2-km of their homes. This could reflect the

large economic opportunities at the airport (almost 30,000 employees were recorded in

the two Heathrow census tracts), as well as the socio-economic status of these residents.

Although specific employment data for the air transport industry were not available,

Figure 3-8 shows that there is a large cluster of employment in the overall transport
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Source: Author's calculations from UK ONS data (UV34 dataset) using ArcMap 9.1

Figure 3-8: Share of residents employed in transport and communications
industries around London Heathrow airport, 2001

sector around London Heathrow airport. Banister and Berechman (2000, p. 288)

estimate that economic impacts associated with airport-related jobs extends as much

as 15 miles from an airport. Other analysts suggest an economic catchment area of a

90-minute commute time to an airport.

Moreover, policymakers in the United Kingdom have remained focused on regional

issues since the discovery of structural regional disparities in the 1930s (Hall, 2007,

p. 10). Regional post-war policies focused on steering the manufacturing industry

from the South East to the North of England, South Wales, and Central Scotland,

but this ended with the overall decline of manufacturing in the United Kingdom. With

the re-emergence of the Labour Party in the 1990s and European Union incentives,

policymakers created new institutions, such as Regional Development Agencies

(RDAs), to enhance competitiveness and bolster economic growth at the regional level.
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Figure 3-9: Map of Central England showing the London Heathrow and East
Midlands airport-regions

These RDAs have a wide authority to further economic development, competitiveness,

employment, sustainability, and skills (Twedwr-Jones and Allmendinger, 2007, p. 21-28).

3.3.1 Case Selection

One of my research objectives is to contrast the impacts of aviation growth in an urban,

global international hub and a rural, regional airport. Although traffic increases at

the regional airport could potentially result in very large changes to both noise and

economic growth, such impacts might have less of an economic value than at the large

international airport. This could affect the stakeholder relationships and present some

policy ramifications. Here, I analyze the impacts of projected aviation growth for two

specific airports and their surrounding regions: London Heathrow and East Midlands.

The key characteristics of the two cases are shown in Figure 3-9.

;

0 50 n Petr capita income: £17v200

I L ý'Ilncludes transfer passengers. Data from 2005 CAA Annual and REMI-ECOTEC (UK) version 6.0



As the world's busiest international passenger gateway with significant growth

pressures and a long history of community noise conflicts, London Heathrow airport

provides a strong case for analysis. London Heathrow Airport handled about 67.9 million

terminal and transit passengers in 2005. This accounted for about 49% of all air traffic

to/from/through London.4 There were a total of 477,000 flight operations, of which 99%

were operated by commercial airliners. Heathrow handled about 1.3 million metric tonnes

of cargo-about 53% of the cargo moved through all UK airports. Operations at Heathrow

have been growing about 1.0% per year on average since 1996.

To identify the second airport case, the SAI team developed a number of screening

criteria which included regional socio-economic indicators, airport traffic characteristics,

and the built urban form of the communities around the airport. The team considered

several UK regional airports, including Birmingham, East Midlands, Leeds/Bradford,

Luton, Manchester, Newcastle, and Stansted airport. The 2003 Aviation White Paper

identified noise issues as potentially constraining growth at Birmingham, Manchester,

and Stansted (UK Department for Transport, 2003e)-making these airports attractive

candidates for an in-depth study. The large size of these city-regions, however, made

them too similar to the case of Heathrow airport. While Newcastle and Leeds have

good development potential, these markets are too small to support substantial levels of

international traffic service-even given the expected growth through 2025.

The East Midlands Airport handled about 4.7 million passengers in 2006. There

were a total of 88,600 flight operations. Only 64% of these flights were for commercial

passenger, cargo, or air taxi services; the remainder were general aviation or training

flights. Total operations have grown on average by about 5.4% per year since 1996. East
4Gatwick had 25%, Stansted 17%, and Luton had 7% of all passenger traffic.



Midlands Airport also handled almost 300,000 metric tonnes of cargo and mail-about

12% of the UK total. It is the largest pure-freight airport in the United Kingdom. Situated

within a three-hour drive of most of England's major cities, the airport has become a

major base for key cargo carriers such as DHL, TNT, UPS, and the Royal Mail. Most of

these freight operations occur at night, when noise issues are most critical. The large

presence of nighttime freight operations and logistics handling in the East Midlands

was one of the major criteria for its selection as the regional case. Oxford Economic

Forecasting estimates that 18% of all firm sales are dependent on air services of one

form or another. About one-third of all express packages at the East Midlands Airport are

originating or destined to local companies based in the East or West Midlands (Oxford

Economic Forecasting, 2006b, p. 8).

3.3.2 Aviation Growth Scenarios

In this analysis, I consider how UK regional socio-economic growth may be affected by

changes in aviation. Growth in the aviation sector, for example, could slow as airports

reach capacity limits or as environmental policies (for noise or other effects such as

climate change) increase the price of air travel. I analyze different air transport growth

rates to assess the sensitivity of other sectors in the regional economy to changes in

aviation. Aviation growth enters into my analysis in two ways: (1) regional growth of the

air transport sector, and (2) increased flights at specific airports. Due to the long-term

nature of economic restructuring and technological change, I focus on the long-term

growth trends of aviation.

84



(a) London Heathrow Airport

(b) East Midlands Airport

Note: Each dot represents about 300 people and 130 housing units.
Source: Author's calculations from UK ONS data using ArcMap 9.1

Figure 3-10: Comparison of population density around the London Heathrow
and East Midlands airports



The world's largest air transport manufacturers, Boeing and Airbus, have forecast

long-term global passenger traffic growth rates of about 4.9% and 4.8% annually through

2025--essentially maintaining the same rate of growth that has occurred over the last 20

years (Boeing, 2006a; Airbus, 2006, p. 17). Total passenger traffic would grow from 4.0

billion to 10.5 billion RPKs by 2025 (Boeing, 2006a, p. 37).

The European Commission has developed the European Constrained Scenarios on

Aviation and Emissions (CONSAVE) forecasts to illustrate the range in air travel forecasts

that might be expected due to variations in GDP, population growth, technology, and

energy usage. These CONSAVE scenarios reflect underlying differences in globalization,

travel, and even social attitudes towards the environment (Berghof and Schmitt, 2005,

p. 3). The "Down-to-Earth" scenario, for example, assumes some environmental

changes, modest GDP growth, and a decline in air transport due to higher costs and low

profitability, while the "Regulatory Scenario" has a high increase in traffic and decrease

in aviation costs tempered by capacity restrictions and environmental regulations. The

average annual growth in air travel demand (passenger-kilometers) for each scenario

ranges from 0.9% to 3.4% through 2020.

Figure 3-11 shows the global air traffic forecasts from the leading air transport

manufacturers and ICAO along with the CONSAVE scenarios. The contrast between

the industry forecasts and the CONSAVE scenarios show that slight differences in global

socio-economic development could have large impacts on air traffic levels and suggests

that long-term forecasts may need to consider the ramifications of such embedded

assumptions.
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Figure 3-11: Actual global air travel demand with comparison of
CONSAVE, ICAO, and Airbus/Boeing growth forecasts, 1985-2050

In the United Kingdom, the UK DfT forecasts increases in air travel demand of about

two or three times the current levels. In 2006, the UK airports handled about 235 million

passengers and about 2.4 million air transport movements (ATMs). The unconstrained

demand at UK airports is expected to rise to 400-600 million passengers per year

by 2030 (UK Department for Transport, 2003e, p. 9). Underlying this forecast is the

assumption that GDP will increase by 2.25% per year in the United Kingdom and other

industrialized countries, with higher growth rates in developing countries.

Air Transport Industry Growth. Economic impact models typically describe the

air transportation sector in terms of the monetary value of industry output such as GVA

rather than physical output in terms of RPKs or other metrics of airline passenger or

freight traffic flows. As is to be expected, Figure 3-12 shows that there is generally a good

correlation between RPKs and GVA. I use the latter metric while analyzing the impacts

of the air transport sector on regional socio-economic growth. I adopt a relatively simple
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Figure 3-12: Association between air transport industry output
and passenger traffic in the United Kingdom, 1985-2005.

methodology for testing a range of growth scenarios relative to a baseline forecast within

the regional economic modeling system.

For my baseline reference, I use the REMI-ECOTEC forecast of about 2.2% average

growth in the output of the air transport industry. Under this forecast, the air transport

sector in the East Midlands will grow to about £230 million in GVA by 2030. I use a "Low

Growth" scenario, which corresponds to the most conservative CONSAVE estimates of

passenger growth: about 1.5% per year. Under this scenario, the air transport sector

GVA in the East Midlands would reach about £176 million pounds. I also analyze the UK

DfT forecast of 4.5% growth through 2020 (UK Department for Transport, 2003e) as a

"High Growth" scenario-essentially tripling the size of the aviation industry over current

levels. I also consider a "Medium Growth" scenario with air transport growth of 3.4%

annually. I model these alternative growth scenarios in the REMI-ECOTEC model by

using exogenous changes in air transport industry sales within the East Midlands in order

to set the overall growth to the target scenario levels. Figure 3-13 shows these scenarios

in terms of total air transport output for the East Midlands.
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Figure 3-13: Air transport growth scenarios, East Midlands.

Air Traffic Growth. Changes in airline industry output or revenue passenger-miles

may not necessarily correspond directly with changes in airport-specific flight operations,

due to differences in the geographic distribution of traffic flows, airline route network

structure, aircraft size, average flight length, or even bilateral treaty agreements. In the

United States, for example, the FAA expects that by 2025, passenger traffic will grow

by about 2.0 to 3.0 times current levels, while the number of flights will increase by 1.4

to 3.0 times current levels (US DOT Joint Planning and Development Office, 2004).

Runway and air traffic control capacity are frequently one of the major constraints on

air traffic capacity. At London Heathrow, for example, runway capacity is expected to

be one of the key constraints limiting growth. In order to facilitate continued passenger

traffic growth and make the most efficient use of scarce takeoff and landing slots, BAA

is actively encouraging its operators to increase the capacity at Heathrow Airport by

promoting the use of larger aircraft like the Airbus A380. The average aircraft size is

expected to increase from 185 to 191 seats. Long-term traffic scenarios are 79 to 80
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million passengers per year in 2015, and between 89 to 135 million passengers per year

in 2030 (BAA Heathrow, 2004b).

The scenarios shown in Figure 3-14 are based on capacity limits and long-term

traffic growth forecasts developed for the UK Aviation White Paper (UK Department for

Transport, 2003b,d) and also the East Midlands Airport Draft Master Plan (Nottingham

East Midlands Airport, 2006). For Heathrow, I include a medium-growth scenario that

fully maximizes the use of the existing runways under mixed-mode operations and a high-

growth scenario that also relies on mixed mode operations but adds a third runway. The

runway alternation scheme at London Heathrow segregates the operations under a multi-

week schedule so that all landings occur on one of the parallel runways and all takeoffs

occur on the other in order to provide noise relief for communities living near the airport.

Eliminating this operational scheme could immediately increase runway capacity by 15-

20% (Webster, 2005), without the construction of any new runways. At the East Midlands

airport, the UK DfT predicts that traffic will grow to about 12-14 million passengers per

year and 2.5 million tonnes of freight by 2030. This would involve about 60,000 cargo

flights a year (UK Department for Transport, 2003e, p. 97). There are no plans for runway

expansion at the East Midlands Airport, so any traffic increases will be confined to the

existing runway.

Advanced Technology, Low-Noise Aircraft Scenario. Finally, to examine how

changes in aircraft technology could potentially affect the noise-damage costs, I introduce

an advanced technology, low-noise aircraft into the analysis. I evaluate how the SAX-

40 would affect the noise contours and associated noise-damage costs under different

fleet penetration scenarios. My SAX-40 scenarios include the replacement of (a) all
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comparable aircraft such as B757s, B767s, B777s, and A330s, and (b) the replacement

of all longhaul aircraft such as A340s and B747s.

3.4 Analytical Instruments

I use regional economic growth and aircraft noise-damage costs as two research

instruments to analyze some of the wider positive and negative externalities, respectively,

of the air transportation system. An underlying assumption of my regional economic

analysis is that regional economic growth is good because it leads to increased

household earnings and disposable income per capita. But accessibility is not always

good: more competition for jobs and increased population in-migration could lead to

increased housing prices and even decreased wages. In addition, there are questions

as to whether or not nuisance values are accurately capitalized within housing values.

The failure of housing consumers to understand the long-term impacts of noise might

explain why airport noise continues to create socio-political conflicts. Nevertheless, both

of these instruments are relatively simple to understand and well-used by analysts and

other environmental and political stakeholders alike. Despite their limitations, they are

useful tools to help communicate the complexity of the situation.

3.4.1 Key Economic Indicators

In order to measure the economic activity in these regions, I primarily focus on the

supply-side value-added produced by the various industrial sectors. Value-added is the

total monetary value of the outputs produced by a sector minus its material inputs-and

thus can essentially be considered as total profit and compensation or wages (Miller
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and Ervin, 2004). Total value-added is also equivalent to aggregate Gross Regional

Product-another commonly-used metric. Total GRP equals the total of personal

consumption, investment, government expenditures, and net foreign exports.

Although I have obtained detailed UK inter-industry transaction data for up to 123

industrial sectors5 , I primarily focus on a simplified analysis framework with the following

9 key aggregated sector-groups: (1) Agriculture and Mining, (2), Manufacturing, (3)

Utilities and Construction, (4) Retail Services, (5) Hotels and Restaurants, (6) Other

Transport Services, and (7) Air Transport Services. In my analyses, I also divide the

services sector between locally-oriented services and telecom (8), and non-local

professional services and household services (9). In regional economic terminology, the

local and non-local services are called the Non-Basic and Basic sectors, respectively.

An example of a local or non-basic sector is Equipment Renting or Sewage Disposal,

while Banking/Finance or Research and Development are examples of non-local or basic

sectors, the demand for which comes from outside of the region. For the purposes of

this analysis, I classify these sectors as basic or non-basic based on the share of local

consumption relative to total exports.

The 2002 UK input-output regional accounting framework is based on the European

System of Accounts 1995 (ESA 95) standard and defines the air transport sector as the

output from scheduled and unscheduled air carriers (UK Office for National Statistics,

2002, p. 5). This rather narrow definition excludes aircraft manufacturers or supporting

industries, such as travel agents or ground handlers. I primarily analyze the economy-

wide impacts of the air transport sector, but also consider growth in other industries that
5UK Office of National Statistics input-output tables; I also use data from REMI-ECOTEC (53 sectors) and

Cambridge Econometrics (34 sectors.)



rely on air transport. Such industries may use air transport for only a small percentage of

their total inputs or purchases, but yet rely heavily on air transport for global connectivity

and knowledge exchange. Such sectors include creative industries, such as advertising,

fashion, or film production, or consulting and service sectors.

As my case studies are focused on the Greater London (Heathrow) and East

Midlands airports, I primarily analyze the economic activity in these regions. Based on

input from Greater London Authority (GLA) Economics, I also include discussion of the

South East region of England as part of London's catchment area. I focus on the relative

inter-industry relationships between these regions relative to those in the rest of the

United Kingdom and the Rest of the World. Employment, relative wages, and relative

prices of goods all affect how economic growth and migration are distributed among the

various regions and their overall performance.

3.4.2 Noise and Damage Cost Indicators

Despite the known physics of sound propagation, aircraft noise measurement is

nevertheless a complex process that is often debated between anti-noise advocates and

noise regulatory agencies, such as the FAA or the BAA (Stenzel et al., 1996, p. 19). In

the United Kingdom, the UK DfT uses the 57-dBA LAeq noise level as the threshold for

significant community annoyance from daytime noise (UK Department for Transport,

2003c, p. 9). I use this threshold as a reference to identify the changes in noise-damage

costs. The UK DfT also uses the 63- and 69-dBA LAeq contours to determine the points of

moderate and high aircraft noise exposure or annoyance, respectively.



3.4.3 Evaluating the Results

One of the key questions is how to evaluate the results of these analyses and

this methodology as a whole. Input-output models are well-established and very

straightforward. While the REMI-ECOTEC model is one of the most popular economic

policy models of its type in the United States, it is still somewhat of a black box. I focus

my model evaluation on three areas: (1) understanding the structure of the models

that I utilize, (2) ensuring that I use appropriate model inputs, and (3) evaluating the

reasonableness of the results.

First, I review the model documentation and conduct simple sensitivity tests to

understand the model assumptions and behavior as best as possible. While basic

econometric models are evaluated in terms of how well they fit the empirical data,

behavioral models such as REMI-ECOTEC need to be evaluated in terms of their

performance: how well the model behavior reflects overall theory and expected

outcomes. In addition, the long-term, ex-ante nature of this analysis means that

understanding the differences between the scenarios, is more useful than the economic

forecasts themselves. I then use this understanding of the model to ensure that the

model inputs are appropriate in magnitude and reflect the types of effects that I am trying

to model. Finally, I evaluate the outputs to see if they are reasonable.

3.4.4 Methodological Limitations

Although there are a number of methodological limitations with the estimation of noise-

damage costs and regional economic impacts, I use these analyses as more general

research instruments to understand some of the internal and external relationships



within the air transportation system, rather than as definitive statements on the value of

aircraft noise impacts. Ashford and Wright (1992, p. 498-499) note that measuring airport

noise impacts is an inexact science that requires considerable attention to its subjective

aspects. The limitations of hedonic price studies include statistically confounding factors,

equilibrium assumptions, unequal day/night benefits, non-uniform populations, and self-

selection biases (UK Department for Transport, 2000b, p. 4). Although I recognize these

limitations, I use hedonic price studies in the absence of other market-traded (economic)

proxies to ascertain the value of airport-noise damages.

There are certainly also limitations with ex-ante regional economic-impact studies,

but such methodologies have been used for decades by regional analysts. In such

studies, one of the major sources of error is in estimating the size of the exogenous

shock-such errors may be greater than those due to the choice of modeling technique

(Loveridge, 2004, p. 313). Although integrated econometric input-output models such as

the REMI-ECOTEC Policy Insight offer the econometric advantages of dynamic forecasts

while providing the detailed industry-level specifications of input-output models, the lack

of regional-specific data or fixed [input-output] technology proportions may lead to the

misspecification of the model or other errors (Loveridge, 2004, p. 310). Also, input-output

models are often based on the transactions accounted for within a single year, and may

thus project such irregularities over time (Bendavid-Val, 1991, p. 113). Nevertheless,

input-output models can be used to identify the indirect impacts of an economic change

and highlight the explicit interconnections of different sectors within an economy-thus

keeping it an indispensable part of effective regional science research (Isard et al., 1998,

p. 42).



One of the potential limitations of this specific version of the REMI-ECOTEC model

is its use of US and European data to calibrate some of the economic-geography

relationships. Because this model is based on the 2002 UK input-output tables, however,

it does not provide ex-post forecasts of previous years for comparison. Also, the

implementation of the new economic geography features in the REMI model have not

been generally critiqued in the literature, although previous versions of REMI have been

discussed (Bolton, 1985; Mourouzi-Sivitanidou and Polenske, 1989; Rey, 2000). Even so,

I have used REMI-ECOTEC for almost three years and have become very familiar with its

operation. In comparison with other UK models, the vendor has been willing to allow us

to operate the model ourselves-enabling us to gain experience and familiarity with the

model parameters and sensitivities. In contrast, other vendors required that their services

be hired; we determined that the costs of this were excessive and that we also would not

know the model well unless we operated it ourself. Also, the model is a close derivative

of a well-established and widely-used model in the United States (REMI Policy Insight),

thus providing a larger resource base of practitioners and academics. Indeed, Loveridge

(2004, p. 306) notes that factors such as model availability or budget, user experiences,

or desired outcomes, often drive model selection in practice
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Chapter 4

Accounting for the Multi-Regional
Economic Role of Air Transport

To document the role of air transport in the regional and national economy of the United

Kingdom, I use a regional economic accounting framework which focuses on the

economic output of the air transport industry (and related industries) rather than metrics

of physical output, such as number of passengers or freight-tons moved. I discuss the

magnitude of the air transport sector and its role relative to other industries in the regional

economy using a well-established regional input-output accounting framework.

Although such static analyses include the direct and indirect supply-chain impacts,

they do not show how these impacts might evolve over time. As discussed in Chapter 2,

policymakers and other community stakeholders often use dynamic economic models to

consider long-term, inter-regional policies--especially when the scale and wide scope

of transportation systems brings issues of equity and resources to the forefront of policy

debates. I extend my analytical framework to include such an analysis of aviation growth

over time and across regions. I use the REMI-ECOTEC model to simulate different levels

of economic activity at the East Midlands airport and identify the associated economic

impacts across different regions of the United Kingdom. I also use the example of a



temporary increase in air travel demand, such as during a cycle of airport growth and

decline, to illustrate the structure of the REMI-ECOTEC model.

4.1 Aviation and Regional Economies

Regional analysts often exploit the descriptive analytical power of input-output analyses

to create comprehensive pictures of how economies work (Bendavid-Val, 1991, p. 113).

Using such studies of interregional production linkages, analysts can identify how exports

and imports contribute to regional economies and highlight strategic opportunities to

strengthen regional incomes and employment. Hirschman (1958, p. 100), for example,

used the backward derived-demand linkages between intermediate and total purchases

to identify local suppliers that could enhance the effectiveness of industrial development

strategies. Hirschman also used the concept of forward linkages to identify how the

outputs from one industry can enable the growth of other industries (Polenske and

Sivitanides, 1990, pp. 148-149).

In this section, I use the 2002 UK input-output tables to discuss the role of the

air transport sector and its relationship to the biggest industrial sectors in the United

Kingdom. By identifying these primary attributes of the regional and national economies, I

will set the groundwork for the analysis of aviation growth over time.

4.1.1 National and Regional Role of the Air Transport Sector

Table 4.1 shows the national supply and demand for the air transport sector in the United

Kingdom as described by the 2002 UK input-output tables. Over half of the £21 billion
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Table 4.1: Supply and demand for air transport in the UK, 2002

Amount Percent
Type Category ( £ m) (%)

Total intermediate demand 5,418 25.8
Household Consumption 11,005 52.3

Demand EU Service Exports 2,049 9.7
Non-EU Service Exports 2,561 12.2

Total Demand for Air Transport 21,033 100.0
Total domestic output of products 13,008 62.7
EU Imports of Services 4,171 20.1

Supply Non-EU Imports of Services 2,763 13.3
Taxes less subsidies on products 814 3.9

Total Supply of Air Transport 20,756 100.0
Output in basic prices; supply in purchasers' prices. Self-supply excludes margins and net taxes.
EU Data includes 25 member states. Source: Author's calculations from UK ONS Data

total demand for air transport is for final personal consumption by households (i.e.,

personal travel). Exports account for over 20% of the total air transport demand in the

United Kingdom. UK companies supply about 60% of the total economic demand for air

transport in the country, while over 30% of the demand is met through imports from the

rest of Europe and abroad (i.e., UK passengers purchasing tickets on foreign air carriers).

Just over a quarter of the total demand for air transport in the UK was for

intermediate use by other industries-about £5.4 billion. Table 4.2 shows how different

types of industry sectors use air transportation to meet their total intermediate demands.

In essence, this table shows how much air transport each sector uses in order to produce

its final output. The manufacturing sector, for example, purchases about £675 million

in air transport each year--or about 0.3% of its £258 billion in intermediate inputs. The

basic services and telecom sectorgroup is the largest user of air transport-accounting

for about 1.2% of its total intermediate inputs and £2.5 billion in intermediate demand.
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Table 4.2: UK demand for air transport as a percentage of total intermediate
Inputs, 2002

Sector Inte
DI

Agriculture and Mining
Manufacturing
Fuel
Utilities and Construction
Retail Services
Hotels and Restaurants
Other Transport
Air Transport
Basic Services and Telecom
Nonbasic Services and
Households

Total

In 2002 £. Source: Author's calculations from

Total
rmediate
emand
£ m)

20,793
245,070

12,868
121,852
103,360
32,674
50,499

7,811
191,070

180,052

966,049

UK ONS data

Air Transport Sector

Share of
D( m) aIntermediate

Demand (%)

122 0.59
657 0.27

17 0.14
41 0.03

518 0.50
127 0.39
472 0.94
562 7.19

2,544 1.33

357 0.20

5,418 0.56

Overall, the intermediate demand for air transport (£5.4 billion) represents about 0.6% of

the total £966 billion in intermediate purchases.

Because it is a vertically integrated industry with specialized sub-suppliers, the air

transport sector purchased a very large portion of its intermediate inputs from itself.

Airlines, for example, purchase goods and services from aircraft catering and aircraft

maintenance firms who are also identified as part of the air transport sector. Retail and

hotel/restaurant sectors were very large consumers of air transport for intermediate

purchases as a percentage of total intermediate inputs (0.5% and 0.4%, respectively).

The top ten industrial sub-sectors that use air transport are shown in Table 4.3.

These ten industries account for about two-thirds of the total intermediate demand for air

transport, or about £3.6 billion. The Banking and Finance industry was the top purchaser

of air transport-purchasing over £750 million of air transport services and about 14%
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Table 4.3: Top ten UK industrial sectors' use of air transport (intermediate
demand) by rank, 2002

Demand PercentRank Sector Group Industry Sub-Sector (£ m) (%)(Cm) (N)
1 Basic Services Banking & finance 755 13.9
2 Air transport Air Transport 562 10.4
3 Basic Services Insurance & pension funds 541 10.0
4 Basic Services Ancillary transport services 379 7.0
5 Basic Services Postal & courier services 342 6.3
6 Retail Services Wholesale distribution 300 5.5
7 Basic Services Other business services 284 5.2
8 Basic Services Recreational services 155 2.9
9 Retail Services Auto distribution, repair, and fuel 137 2.5
10 Manufacturing Printing & publishing 131 2.4
- All Other Sectors 1,831 33.8

Total Intermediate Demand 5,418 100.0

In 2002 £. Source: Author's calculations from UK ONS data.

of the total intermediate demand. The insurance and pension funds sector invested or

purchased £540 million from the air transport sector in 2002. Much of this demand for

air transport is also presumably related to aircraft leasing and finance, and the insurance

and pension funds rely on these leases as part of their overall investment portfolio.

Table 4.4 shows how the air transport sector uses £7.8 billion in inputs from other

sectors in order to create its £13.0 billion in output. In the input-output accounting

framework, it is the spending by the air transport sector in these other areas that

lead to the indirect economic effects. A large percentage of the inputs are from the

manufacturing sector--which includes refined petroleum. About 20% of the total

intermediate inputs came from the petroleum sector (about £1.6 billion). This roughly

matches with the fuel costs as reported by the airline sector-about 25% of all operating

expenses for large airlines in the United States in 2007 (US Bureau of Transportation

Statistics, Office of Airline Information, 2008). 1 Other large intermediate demands by the
'Data from 2007, before the dramatic increases in fuels costs during the first half of 2008.
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Table 4.4: Commodity purchases for intermediate use by the
sector, 2002

Int
Sector r

Agriculture and Mining
Manufacturing
Fuel
Utilities and Construction
Retail Services
Hotels and Restaurants
Other Transport
Air Transport
Basic Services and Telecom
Nonbasic Services and Households

Total

In 2002 £. Fuel includes coke ovens, refined petroleum, and
calculations from UK ONS data

termediate
)emand
(£ m)

0
770

1,581
94

113
172

1,528
562

2,366
625

7,811

nuclear fuel.

Air Transport

Percent
(%)

0.0
9.9

20.2
1.2
1.4
2.2

19.6
7.2

30.3
8.0

100.0

Source: Author's

air transport sector include computer services, aircraft, pension funds, and real estate.

Later in this chapter, I discuss how these production relationships are applied within

the REMI-ECOTEC model in order to estimate the wider indirect and induced economic

effects of an exogenous shock.

4.1.2 Air Transport Relative to the Entire Economy

Having identified the role of the air transport sector, I now focus on how air transport

compares to other sectors. As shown in Table 4.5, REMI-ECOTEC estimates that the air

transport sector produced £3.2 billion of regional value-added in London and about £100

million in the East Midlands region. This amounted to about 1.5% of the total economy in

Greater London and 0.2% in the East Midlands. Nevertheless, the air transport sector in

2005 employed about 43,000 people in Greater London and 2,000 in the East Midlands-

making these airports among the largest employers in either of these regions.
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Table 4.5: Gross regional value-added by sector, 2005

Region
UK

Value-added by sector (£m) Greater South East Rest of Total
London East Midlands UK

Agriculture and Mining 2,520 3,160 1,160 21,800 28,650
Manufacturing 17,270 25,570 19,310 132,580 194,730
Fuel 280 3,050 490 23,180 27,010
Utilities and Construction 11,150 12,410 5,700 54,250 83,520
Retail Services 19,930 20,540 7,740 71,850 120,050
Hotels and Restaurants 9,060 6,400 2,330 24,370 42,170
Other Transport 8,710 6,310 2,560 22,160 39,740
Air Transport 3,230 1,310 130 1,690 6,360
Basic Services and Telecom 78,620 45,050 11,070 125,860 260,590
Nonbasic Services and 61,820 44,480 16,310 177,540 300,160
Households

Total 212,600 168,290 66,800 655,280 1,102,970

In 2002 £. Source: Author's calculations from REMI-ECOTEC UK Version 6.0

Table 4.6: Total forward and backward linkages in REMI-ECOTEC model by
industry-groupings

Total Linkages* Rank Order

Sector Name Backward Forward Backward Forward

Agriculture and Mining 1.639 1.984 8 3
Manufacturing 1.641 1.654 7 6
Utilities and Construction 2.148 1.862 1 4
Retail Services 1.904 1.751 3 5
Hotels and Restaurants 1.702 1.178 6 9
Other Transport 2.051 2.494 2 1
Air Transport 1.703 1.499 5 7
Basic Services and Telecom 1.836 2.278 4 2
Nonbasic Services and Households 1.631 1.362 9 8

*Direct and indirect linkages. Source: Author's calculations from REMI-ECOTEC UK version 6.0
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Table 4.7: Air freight as percentage of total UK trade by volume and value, 1998

Trade by Volume Trade by Value
Total Air Freight Air Freight TotalTonnes Tonnes Value Air Freight Air FreightTonnes Tonnes Value (em) Share

Share (%) (m) (£m) Share (%)
(m) (m) (£m)

Imports 177.2 0.9 0.50 172,500 53,600 31.0
Exports 169.1 0.7 0.39 147,500 46,600 32.0

Source: UK Department for Transport (2000a). Data from CAA, HMC&E

One way of illustrating the relative impact of these supply-chain relationships for

different industries is shown in Table 4.6. Backward linkages show the dependence of

a sector on other sectors, while forward linkages show how the output from one sector

is utilized in other sectors (Dietzenbacher, 2002, pp. 126-127). Backward linkages are

calculated by summing down each of intermediate demand columns in a direct-input-

coefficient table (inputs per unit of output), while the forward linkages are the row sum

from a direct-output-coefficient table (sales per unit of output) (Polenske and Fournier,

1993; Miller and Blair, 1985).

Higher relative forward linkages show greater utilization of that sector as

intermediate inputs into other sectors. As an intermediate industry, aviation has

relatively low backward and forward linkages compared to other industries such as basic

services/telecom or even other types of land transport in general. Indeed, Table 4.3 on

page 103 shows that over 52% of the demand for air transport in the United Kingdom

comes from household consumers in the form of final demand.

Although the air transport sector itself is a relatively small industry within the context

of supply-chain purchasing relationships, other evidence suggests that it is crucial to

national exports. Table 4.7 shows that while only about 0.5% of all UK imports and 0.4%
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of all exports by volume occur via air-freight in 1998, this accounts for over 30% of all

trade by value. The strategic value of an input is not necessarily reflected in the input-

output linkages, because such simplified models do not account for alternative production

technologies or changes inter-regional purchasing relationships. Some analysts try to

incorporate such longer-term trends within more sophisticated econometric input-output

models, such as REMI.

4.2 Forecasting with the REMI-ECOTEC Model

Having discussed the role the air transport sector and its relationship to the rest of

the regional economy in the United Kingdom, I now focus on the use of a model to

explore these relationships over time. The transition between documenting economic

relationships to modeling and forecasting these relationships over time, however, is not

necessarily straightforward. Although modelers make tradeoffs between theories, data,

and methodologies (Greenberger et al., 1976, pp. 63), they often select models based

on outcome or availability (Loveridge, 2004, p. 306). Stakeholders and decision-makers

in areas such as energy policy or international trade regularly view computer models

with suspicion (Meadows and Robinson, 1985, p. 6)-presumably due to the difficulty in

evaluating modelers' underlying assumptions and motivations. Moreover, Greenberger

et al. (1976, p. 20) suggest that the political environment plays a decisive role in how

models are received by policymakers and the public; models can be bitterly attacked

despite the use of well-known theories (Greenberger et al., 1976, p. 67).2
2In 1976, Greenberger et al. noted that the use of models in analysis, guidance, and problem-solving

in the rational validation of policy decisions will give way to their use in providing political validity. Complex
models employed to corroborate policy proposals may be used as political instruments not only by their
sponsors, however, but also by antagonists (Greenberger et al., 1976, pp. 43-46).
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Nevertheless, computer-based forecasting models are recognized as being able

to bring elements of rigor, comprehensiveness, logic, accessibility, and flexibility to

socio-economic decision-making processes (Meadows and Robinson, 1985, p. 6). For

this analysis, I use the REMI-ECOTEC model-a UK-specific version of a widely-used

regional forecasting model in the United States. Here, I refer to the theory, data, and

methodology behind the underlying US REMI model.

4.2.1 Theory, Data, and Methodology

The REMI model generates industry-level details on output and employment, as well as

detailed regional forecasts of population migration, prices and inflation, labor supply, and

other socio-economic indicators. The REMI model variables and structure closely map

the data and tools that policymakers use in real-life, and is thus easier to understand

than many economic models. The REMI model is based on neoclassical economic theory

and assumptions that firms and consumers are rational profit and utility maximizers and

that entrepreneurs have perfect information about relative national and regional costs

(Polenske et al., 1992, p. 6). The underlying basis for the REMI model is that economic

units in one region of a country have the same behavioral characteristics as in other

regions, and that there are no unique interregional differences in firm or household

motivation or behavior. The model assumes that regional and national production

processes are the same, but with different total factor productivity and factor intensities

in each region (Polenske et al., 1992, p. 6).3 As such, the observed differences among

regions in reaction to exogenous shocks can be explained by differences in industrial
3The model uses a Cobb-Douglas production function with constant returns to scale.
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composition, regional purchase coefficients, and other variables that can be modeled

(Cassing and Giarratani, 1992, pp. 1562-1563).

The data used to solve and calibrate the REMI-ECOTEC model structure include

a 53-sector version of the 2002 UK national input-output tables, as well as data on

employment, wage rates, productivity, occupational characteristics, and growth rates

from the UK Office of National Statistics, Eurostat, the United Nations, and other sources.

Long-term regional demographic trends, such as population, survival rates, migration,

and labor force, are also integrated into the model parameters and are based on data

from the UK Actuary Department. Inter-regional commodity and labor flows are calibrated

using data from the United States and Europe, while the response rates to economic

stimuli are set to be faster than in Europe in general, but slower than in the United States

(Whitfield, 2005).

The REMI model iteratively couples input-output and econometric sub-models until

a equilibrium solution is reached (Loveridge, 2004, pp. 309-310). Loveridge notes that

such a methodology overcomes many of the criticisms of standard input-output (I-0)

approaches, but that the inter-regional trade estimates still rely on fixed regional

trade relationships (i.e., the regional purchase coefficients). The model parameters

reflect the causal relationships between the exogenous (external to the model) and

endogenous (internal to the model) variables that are based on historical data. The

distinction between these variables is that the endogenous variables, such as personal

consumption, are used to represent economic phenomena that are determined within

the economic region of interest, while the exogenous variables, such as national exports,

are determined outside the region (Treyz, 1993, pp. 7-8). Socio-economic data at the
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Figure 4-1: Overall structure of the REMI-ECOTEC model

regional level are typically more scarce and inconsistent than national data, so the REMI

approach of using a relatively large amount of local data to calibrate these relationships

ensures better model performance (ECOTEC Research and Consulting Limited, 2004,

p. XXIV) and a richer representation than would be otherwise possible (European

Commission Regional Policy Evaluation Unit, 2003, pp. 3-4). Overall, this modeling

approach may actually improve the long-term forecasting accuracy of the REMI model

over other economic models (Cassing and Giarratani, 1986, p. 1611), because the

forecasts are based on fundamental economic principals instead of historical data.
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The different linkages within the model are shown in Figure 4-1, and are conceptually

organized into the following five blocks: (1) Output, (2) Labor and Capital Demand,

(3) Demographics, (4) Wages, Prices, and Production Costs, and (5) Market Shares.

As with traditional macro-economic models, industry-level output (Block 1) is affected

by personal consumption, investment, government spending, and exports. Output

affects employment (Block 2) and wages (Block 4). Wages and transportation costs

affect the delivered prices for each industry (Block 4), which then affect the regional and

international market shares for each industry (Block 5). Relative wages, employment

opportunities, housing prices, and purchasing power also affect economic migration and

population (Block 3), which then affect government spending and output. Investment

(Block 1) is based on the difference between optimal and actual capital stock (Block 2)

for residential, non-residential, and equipment needs (REMI, 2004b, p. 7-8).

4.2.2 Model Application

As part of the development of a region-specific model, Regional Economic Modeling,

Inc. (Amherst, Massachusetts) and ECOTEC (Birmingham, United Kingdom) (REMI-

ECOTEC) develop a baseline control forecast by setting the exogenous variables and

then solving for a unique set of endogenous variables that are consistent with both the

model parameters and baseline exogenous variables (Treyz, 1993, pp. 7-8). The model

calibration process involves two parts. First, the overall model structure is calibrated by

using information from cross-sectional studies using data from all regions of the United

States in order to yield econometric response parameters that are representative of all

regions. Next, REMI solves for the region-specific coefficients that capture the explicit
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demand and supply relationships for labor and product markets (Cassing and Giarratani,

1992, pp. 1550-1551). For the UK-specific REMI-ECOTEC model, the inter-regional

commodity and labor accessibility relationships are calibrated using data from both

the United States and Europe. To reflect the nature of the United Kingdom economy,

the economic response rates are set to be faster than in Europe, but slower than in the

United States (Whitfield, 2005).

With a baseline regional forecast, model users can then simulate changes to the

economy by modifying any of a wide range of "policy variables" that are included as part

of the model structure itself. These policy variables include typical economic analysis

categories, such as industry sales, demand, government spending, consumer spending,

or investment. The selection of the appropriate policy variables is one of the most critical

steps in the modeling process, especially since the REMI model has thousands of

variables. This process is somewhat subjective, and it requires the analyst to determine

how the shock will affect the economy-thus where it would best fit within the model.4

The analyst then runs the model with these changes in order to determine the changes

in multi-regional effects. By comparing the economic impacts of a policy simulation with a

baseline regional control forecast that is supplied by REMI, analysts can identify the wider

effects over time of a given policy change across different sectors and regions.

Analysts often use a detailed diagram of the REMI model structure, such as one

similar to that shown in Figure 4-2, in order to help conceptualize the appropriate policy

variables to use. The diagram shows the overall structure of the REMI "economy,"

including the general location of the key policy variables within the model, as well as
41n some cases, consultants from REMI have suggested spreading economic shocks across several

different policy variables, in order to capture the effects (Regional Economic Modeling, Inc., 2005).
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the main linkages between the variables. In the scenarios tested later in this chapter,

for example, changes in exogenous industry sales for the air transport industry affect

overall industry output (Block 1). These changes in output affect the level of employment

in each industry (Block 2), and then wage rates and relative employment opportunity

(both in Block 4), as well as real disposable income (Block 1). Relative wage rates affect

economic migration and population demographics (Block 3), and then feed back into

housing prices (Block 4). Wages and prices then affect overall domestic and international

market shares (Block 5).

The yellow shaded boxes and dashed blue lines in Figure 4-2 highlight the

commodity and labor accessibility features that are embedded within the REMI model.

Commodity access flows are determined by the relative distance between and size of the

industries in each region and affect outputs (and market shares), economic migration,

and composite prices. Labor access is determined by commuting costs and affects

employment, wages, and prices. These accessibility relationships are discussed further

in Chapter 5, when I apply these relationships to simulate the long-term catalytic changes

in regional economic activity associated with increased air services.

4.2.3 Model Evaluation

The REMI-ECOTEC model was developed jointly by REMI and ECOTEC for the

United Kingdom, but is based on the REMI Policy Insight model. Historically, one of

the distinguishing features of REMI has been its user transparency and documentation

compared to other models. Mills (1993) lauded REMI for keeping explicit detail about its

methodologies within the public domain. He contrasted this with the proprietary models
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Adapted from REMI (2004b, pp. 19-20)

Figure 4-2: Detailed structure of the policy variables and accessibility
relationships within the REMI-ECOTEC model
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of many consulting firms, for which there is often no easy way to evaluate the outputs or

model structure (Mills, 1993, p. 30).

Analysts have found the REMI model in the United States to be comparable to other

modeling approaches (Bolton, 1985; Mourouzi-Sivitanidou and Polenske, 1989; Rey,

2000). Rickman and Schwer (1995, p. 372) found that the multipliers in the REMI models

were statistically indistinguishable from other popular regional impact models, such as the

IMPLAN and RIMS II models, after benchmarking and controlling for the differences in

the model structure. The IMPLAN and RIMS II models are commonly used throughout

the United States for simple impact analyses.5 Because they are static input-output

models, which use a fundamentally different methodology than REMI to determine the

regional flows of goods and services, they are limited in comparability (Rickman and

Schwer, 1995, pp. 365-372).

Cassing and Giarratani (1992) and Polenske et al. (1992) conducted comprehensive

reviews of the South Coast Air Quality Management District (SCAQMD) version of the

REMI model. Cassing and Giarratani observed that the model responded in the proper

size and direction to changes in the cost of production and the effects of an export shock,

and that there are advantages to REMI's explicit theoretical structure. Polenske et al.

(1992, pp. 28-31) conducted sensitivity tests of several variables, such as consumer

spending and relative energy costs, within the context of assessing proposed policies for

the SCAQMD. Polenske et al. found that the economic impacts resulting from changes

to specific policies are very small-thus demonstrating that the model is not sensitive to

small biases or errors in preparing the inputs to the model. 6

5IMPLAN was initially developed by the US Agriculture and Forest Service
6For example, they found regional employment impacts of fewer than 10 jobs from a one-time change

(+/- 20%) in the demand for public utilities-impacts which are essentially zero. They also found the dynamic

115



Since the time that many of these evaluations were conducted, the REMI model has

evolved substantially to include features such as a dynamic capital-stock-adjustment

process (Rickman et al., 1993), migration equations with detailed demographics

(Greenwood et al., 1991; Treyz et al., 1993), consumption equations (Treyz and Petraglia,

2001), and commodity/labor accessibility features (Fan et al., 2000). REMI has updated

the Policy Insight model almost yearly since 2002, with additional data, new policy

variables, expanded industrial sectors, and several new population cohorts. The continual

model revisions and some changes to the user interface have made it difficult for

independent analysts to conduct detailed evaluations of the REMI forecasts and model

structure, although Tirado (2004) conducted a limited sensitivity analysis and Barbhaya

(2005) examined the economic and population variables in a baseline model.

In a multi-regional model of El Paso County, Texas, Tirado (2004, pp. 102-103) found

that the test shocks produced the expected related increases to output and employment,

which were linked, in turn, to increased wages, economic migration, and population.

Tirado noted that the relatively small multiplier effects, however, were due to economic

"leakages" from El Paso to the larger neighboring regions. Barbhaya (2005, p. 78) found

that potential labor force, relative employment opportunity, and relative wage rates all had

significant impacts on economic migration and population changes in a baseline REMI

model of Hamilton County, Ohio. Although Barbhaya concluded that the amenities and

commodity access were of less importance to overall population change than the other

variables that he studied, his methodology did not include any sensitivity tests. It is also

not evident if he enabled the commodity-accesss index.

structure of the model means that input values have different effects depending on the year of entry into the
model (Polenske et al., 1992, p. 28).
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To my knowledge, there have been no recent analysts who have described or

evaluated the theoretical structure and performance of the recent versions of the US

REMI or UK REMI-ECOTEC models. As such, I conduct my own sensitivity tests

to examine the interregional and dynamic impacts of the REMI-ECOTEC model. I

observe how the model responds to a temporary shock and how it returns to its baseline

equilibrium in order to demonstrate and examine the model's structure and dynamics.

I focus my sensitivity analyses in three main areas: (1) interindustry performance,

(2) interregional competition, and (3) socioeconomic indicators.

4.3 Model Sensitivity Test

In this section, I use the example of temporary growth in the air transport sector in the

East Midlands region to analyze the interregional and dynamic impacts of the REMI-

ECOTEC model. Although Tirado (2004) focused on single-year shocks to the El Paso

region, I use multi-year shocks to explore some of the long-term effects in the REMI

model. In this sensitivity test, I also analyze how the economy returns to the pre-shock

equilibrium, in order to understand the relationships embedded into its structure.

I develop this example based on the experience of two regional airports in the

Southeastern United States that handle roughly the same number of passengers as

the East Midlands Airport: Raleigh-Durham, North Carolina, and Nashville, Tennessee.

Both of these airports experienced a rapid traffic growth in the mid-i 980s as American

Airlines built large hubs to connect passengers from Florida to the Northeast and
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Figure 4-3: Hub-related enplanements relative to total
enplanements at Nashville and Raleigh-Durham

Midwest, respectively.7 Due to competition and changing global airline industry dynamics,

however, American shut both hubs by 1995. Figure 4-3 shows the additional airport

traffic generated by the hubs relative to the local non-connecting traffic. At its peak, the

presence of the hub nearly tripled the passenger enplanements at Raleigh-Durham (1.8x)

and doubled those at Nashville (0.9x). Traffic levels declined slightly in 1990 due to the

outbreak of the first Gulf War and declined to pre-hub levels within 8-9 years.

I construct a similar hypothetical example of a temporary hub using an exogenous

increase in air transport industry sales in the East Midlands. I increase the proportion of

exogenous sales by amounts corresponding to levels seen at Nashville (except for 1990,

when I remove the downturn associated with the Gulf War for simplicity), and assume

that the first year of impacts is seen in 2006. Within the REMI-ECOTEC model, I use the
7With new terminals, runways, and other support facilities, American by 1991 was providing nonstop

service from Raleigh-Durham to 62 cities in North America and the Caribbean. Yet the airline closed its hub
operations by 1995.
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"exogenous industry sales of air transport" policy variable, because this increases the

activity in the region of interest only (East Midlands)-just as airport growth at the East

Midlands Airport (EMA) would affect the region. Using the air transport demand policy

variable, in contrast, would increase air transport activity in the East Midlands as well as

the regions that typically supply air transport to the region, such as London and the South

East.

Under the REMI-ECOTEC baseline control forecast, the total output of the air

transport sector in the East Midlands in 2005 is £303 million, with total value-added of

£127 million. Only about £83 million of the total air transport output is consumed by the

East Midlands region itself (self-supply), and the remaining £230 million is exported to

other regions and the rest of the world. Total air transport demand for the East Midlands

is £1,045 million. To meet this demand, another £962 million of air transport is imported

from other regions and the rest of the world.

The East Midlands hub scenario adds between £89.8 to £339.1 million in exogenous

air transport industry sales to the East Midlands economy between 2006 and 2014. In the

peak year of the scenario (2012), the total output of the air transport industry increases

to £711 million. Figure 4-4(a) shows the changes in air transport demand by region under

the hub scenario relative to the baseline control forecast. The underlying baseline control

forecast, for example, includes £370 million of air transport industry output in the East

Midlands in 2012. The hub scenario increases the air transport output by £341 million

over the baseline-as shown in Figure 4-4(a).

Because the hub scenario adds the extra air transport activity as exogenous sales

(outside the model), the maximum annual increase in regional demand for air transport
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Figure 4-4: East Midlands hub scenario - Air transport sector output and
demand by region

relative to the baseline is only about £14.6 million in 2012. In addition, almost all of this

increase is added to the East Midlands (per the modeled scenario), and there is very little

increased air transport demand in other regions. This is shown in Figure 4-4(b).

In the REMI-ECOTEC model, changes in output and demand are translated into

employment (Figure 4-5). In 2012, for example, the increased air transport output in the

East Midlands requires an additional 2,300 jobs in the air transport sector relative to the

baseline scenario. As shown in Figure 4-5(a), about 95% of all additional employment

impacts for the hub scenario in the air transport sector are located in the East Midlands

region. But only a little over a quarter of the total impacts across all sectors are in the air

transport sector itself. At its peak, the additional air-transport employment in the East

Midlands also generates another 2,300 jobs in other sectors of the economy. This, in

turn, creates 4,500 jobs throughout all other sectors in the rest of the United Kingdom.

The total economy-wide employment impacts relative to the baseline forecast are shown

in Figure 4-5(b).
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4-5: East Midlands hub scenario - Air transport and total employment by

This added economic activity and employment also has long-term impacts on

population growth, and the REMI model makes slight adjustments to the overall impact

forecasts in order to capture some of these other impacts. Figure 4-6(a) shows the

total cumulative impacts on population by region. The additional economic activity

increases the population of the East Midlands faster than would otherwise occur under

the baseline scenario-by about 350 persons in 2014. As such, London, the South East,

and the rest of the United Kingdom would have slightly slower population growth than

the baseline scenario. Most of this population growth is due to the economic migration

associated with the increased job opportunities in the air transport and other sectors in

the East Midlands relative to other regions. Figure 4-6(b) shows that in the East Midlands

between 2006 and 2014, about 90 to 98% of the annual population growth is due to

economic migration-adding another 50 persons per year at its peak in 2012. As the

base population of the region increases, the natural population growth (total births less

deaths) also accounts for an increasing part of the population. Although these changes
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are relatively small-especially within the context of a region, which contains about 4.3

million people--they illustrate how the REMI model adjusts ths impact forecasts beyond

the direct, indirect, and induced economic impacts associated with inter-industry activity.

4.3.1 Impacts by Industry and Region

About 30% of the total UK-wide economic impacts (in terms of value-added) are within

the air transport sector, and about 50% of the total impacts occur in the East Midlands.

The diffusion of the economy-wide impacts across the different sectors is determined

by the input-output relationships (technology coefficients), while the distribution of the

impacts across the different regions is based on relative production costs and delivered

prices.

The UK input-output table embedded in the REMI-ECOTEC model is responsible for

most of the interindustry impacts, but interregional competition is also responsible for

allocating the activity among the regions. About two-thirds of the total impacts between
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2006 and 2014 can be attributed to the basic input-output relationships (exogenous

households). Using a simplified input-output model, the total cumulative increase in GVA

in all regions through 2014 relative to the baseline would be £2.1 billion; the hub scenario

increases GVA by £3.1 billion in total.

Figure 4-7 shows the cumulative increases in GVA by sector and region for the East

Midlands hub scenario at its peak in 2012. Other than air transport, the largest GVA

impacts between 2006-2014 occurred in the manufacturing sector (about 15% of the

total, or £479 million. Most of these manufacturing impacts occurred in regions outside

of the East Midlands, London, or the South East, and they were concentrated in the

petroleum-refining sub-sector (37% of all manufacturing impacts). Indeed, about 86%

of the total petroleum-refining impacts are located outside of these regions under the

baseline scenario in 2005. As revealed in my study of the UK input-output tables (Section

4.1.1), these strong linkages between the manufacturing sector and air transport due to

the importance of fuel costs.

The next largest group of impacts occurred in the export (basic) and local (nonbasic)

services. Basic and nonbasic services accounted for 31.6% of all impacts (N£1 billion).

About the same level of impacts in the retail and nonbasic services impacts occur

in the rest of the United Kingdom as in the East Midlands. Utilities, retail, and other

transport services each accounted for about 6% (-V£190 million) of all impacts, while

agriculture/mining and hotels each accounted for about 2% (-£70 million) of all impacts.

The agriculture/mining impacts are largely concentrated in the oil/gas extraction sub-

sector, and are again located in regions other than the East Midlands, London, or the
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Figure 4-8: Regional purchase coefficients, REMI-
ECOTEC baseline model, 2005

South East-similar to the petroleum-refining sub-sector. Most of the hotel sector impacts

occur in the rest of the United Kingdom.8

The location or regional distribution of regional purchases is dependent on the

relative prices and delivered costs. These are reflected in the regional purchase

coefficients shown in Figure 4-8. The East Midlands has a much lower total share of self-

supply (about 50%) than other regions, and thus the overall economic impacts of any

increased activity in this region will be shared with suppliers in other regions.

Table 4.8 shows the prices and costs in 2005 for the air transport sector in different

regions relative to the UK national average (UK = 1.0). The smaller market share of

air transport in the East Midlands relative to other regions such as Greater London is

reflected by the higher overall relative delivered price of air transport there (1.001 versus

0.949). Figures 4-11 and 4-9 show the changes in relative costs, prices, wages, and labor

productivity for the air transport sector under the hub scenario. The large exogenous
81n aggregate, about 18% of the impacts in the rest of the United Kingdom occurred in the West Midlands.

Our license for the REMI-ECOTEC model does not include the West Midlands and some of its subregions,
although the model performs calculations for these regions as part of the runs.
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Table 4.8: Relative prices and costs in the air transport sector: Baseline versus
East Midlands hub scenario

East Greater South Rest of
Midlands London East UK

Relative Cost of Production
Baseline (2005) 1.0601 0.9427 1.0469 1.0677
East Midlands Hub Scenario (2012) 1.0578 0.9438 1.0481 1.0687

Relative Delivered Price
Baseline (2005) 1.0010 0.9495 1.0041 1.0158
East Midlands Hub Scenario (2012) 1.0016 0.9506 1.0050 1.0166

Source: Author's calculations based on data from REMI-ECOTEC UK version 6.0

increase in demand and output of air transport in the East Midlands enhances its labor

productivity (Table 4-9(b)) relative to other regions, thus reducing its overall cost of

production. As the relative price of air transport in the East Midlands decreases, the price

in Greater London increases.

The overall corresponding changes in multi-regional imports and exports of air

transport are shown in Figure 4-10. In order to meet the increased demand for air

transport in the East Midlands, large increases in regional exports occur in Greater

London and the South East while the hub is present (Figure 4-10(a)). Conversely, there

are large increases in imports of the air transport sector during the same time period

(Figure 4-10(b)).

The increase in output and employment for air transport in the East Midlands under

the hub scenario dramatically enhances that sector's relative labor productivity compared

to other regions (Figure 4-9(b)). This reduces the relative cost of production (Figure 4-

11(a)) and relative delivered prices (Figure 4-11(b)) of air transport in the East Midlands,

allowing it to increase its market share compared to other regions. Figure 4-9(a) shows

that the increase in output and supply of air transport also increases the relative wages.
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Figure 4-9: East Midlands hub scenario - Relative wages and labor productivity
for the air transport sector
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Figure 4-10: East Midlands hub scenario - Changes in regional exports and
imports for the air transport sector

127

£0.008

£8.0

£1.2

.EO

CIA A
I .u

_E



East Midlands Hub Scenario East Midlands Hub Scenario
£0.0005 £0.0003t

-£0.0005; -£0.0005

-£0.0010

-£0.0015
0.

-£0.0020

S-£0.0025

t --- East Midlandsn . .

- £0.0002

£0.0001

£0.0000

S-£0.0001

S-£0.0002

ai

-£0.0030 -£0.0003
2005 2010 2015 2020 2025 2030 2005 2010 2015 2020 2025 2030

(a) Change in Relative Cost of Production - Air (b) Change in Relative Delivered Price - Air
Transport Transport

Source: Author's calculations using REMI-ECOTEC UK version 6.0

Figure 4-11: East Midlands hub scenario - Relative costs and delivered prices
for the air transport sector

4.3.2 Context and Analysis

I compared the REMI-ECOTEC forecasts for the East Midlands hub scenario with an

approximation of a basic 1-0 model (Type I-exogenous households).9 Although the

standard REMI-ECOTEC model forecasts essentially the same impacts for the air

transport sector as an 1-0 model (< 1% difference), its total economy-wide GVA impacts

are about 50% higher. Figure 4-12 shows a comparison of these forecasts by region. The

REMI-ECOTEC impacts for the East Midlands are about 21% higher than those in the I-

0 model, and the forecasts for the other regions are essentially double those of the 1-0

model. The large differences between REMI-ECOTEC and standard input-output models

illustrate the importance of considering population changes and interregional competition

in prices and costs within a dynamic, multi-regional framework.

91 approximate this model by suppressing all of the features in the REMI-ECOTEC model except for the
input-output module. This also makes it similar to the RIMS II and IMPLAN multiplier-impact models in the
United States.
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One of the dynamic characteristics of the REMI-ECOTEC model is its inclusion

of long-term impacts as a regional economy returns to a baseline equilibrium after an

exogenous shock ends. A sudden decline in the air-transport sector, for example, should

lead to increased unemployment and slower economic growth than would be otherwise

expected. Increased competition for jobs should lead to declines in wages and even

regional out-migration. Figures 4-4, 4-5, and 4-6(a) show negative impacts to output,

employment, and population, respectively, between 2015 and 2030 as the economy

returns to its baseline forecast. The total cumulative reduction in GVA relative to the

baseline is £378 million between 2015 and 2030. Thus, the total net long-term impact

is only £2.8 billion after these negative impacts are taken into account. Considering these

post-shock negative impacts may be important for modeling certain types of temporary

policy changes.

One unanswered question is whether or not the REMI-ECOTEC model is overly

sensitive to changes in prices and costs. According to Rockier and Weisbrod (2007),

there are other attributes of production-such as quality, speed, inter-firm relationships,

or even tacit knowledge/skills-that may not necessarily be reflected in price competition.

From a modeling perspective, however, attributing regional change to these differences

is a perhaps a more practical (and theoretically cogent) way of reflecting economic

forecasts than other CGE or econometric methods, which obscure these changes

within statistical parameters. Relating industrial activity with employment and population

via prices and wages does provide a holistic and accessible "story" of how regional

economies change over time.
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Figure 4-12: Comparison of cumulative impacts on value-added as
forecast by the REMI-ECOTEC model and a basic input-output model
(exogenous households): East Midlands hub scenario, 2006-2014

Two other issues with this version of the REMI-ECOTEC model include the use of

fixed technical coefficients and the lack of international trade flows (Weisbrod/Rockler,

2007). Changing technology, energy resources, and globalization are likely to create

different intermediate commodity requirements and geographical distributions of activities

over the very long-term. Including such estimates, however, may introduce large sources

of bias into the forecast. Although international trade continues to shape regional

economic development due to global outsourcing and supply chains, the lack of regional

data on international trade often prevents their inclusion in economic models such

as REMI. Such impacts are especially important when considering the impacts of air

transportation on facilitating global trade and commerce. In Chapter 5, I overcome some

of these inherent limitations in the REMI-ECOTEC model by using exogenous changes to

industry activity to incorporate my own forecasts of growth into the model.
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Table 4.9: Baseline model: Economic activity in

Region
UK

Metric Greater South East Rest of Total
London East Midlands UK

Value-Added (£m)
Air Transport Sector 5,800 2,300 200 3,000 11,300
Regional Total 308,400 229,400 88,600 859,400 1,485,900

Employment (jobs)
Air Transport Sector 58,800 25,300 3,000 37,900 124,900
Regional Total 4,345,000 3,767,800 1,813,700 16,999,900 26,926,300

Population 8,096,800 8,617,600 5,277,100 43,139,500 65,131,000

In 2002 £. Source: Author's calculations from REMI-ECOTEC UK version 6.0

4.4 Alternative Air Transport Growth Impacts, 2006-2030

Having identified the key relevant characteristics and features of the REMI-ECOTEC

model, I use it to develop forecasts of the overall direct, indirect, and induced economic

impacts from the air transport sector in the East Midlands. For comparison purposes,

I reference the REMI-ECOTEC baseline forecast of about 2.2% average growth in the

output of the air transport industry. Under this forecast, the air transport sector in the East

Midlands will grow to about £230 million in GVA by 2030. Table 4.9 shows the baseline

2030 forecast in economic activity for the air transport sector and the region as a whole.

Table 4.10 shows the average annual growth in regional value-added between 2005 and

2030.

As discussed in Chapter 3, I develop aviation growth scenarios that are roughly

based on alternative forecasts from international air transport organizations. Again, I

use a "Low Growth" scenario that corresponds to the most conservative estimates of

passenger growth developed under the European CONSAVE scenarios (Berghof and
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Table 4.10: Baseline growth in regional value-added, 2005-2030

Region
UK

Scenario Greater South East Rest of Total
London East Midlands UK

Value-added, 2005 (£m) 212,600 168,300 66,800 655,300 1,103,000
Value-added, 2030 (£m) 308,500 229,400 88,600 859,200 1,485,800

Average growth in value- 3,800 2,400 900 8,200 15,300added per annum (£m)
Average growth rate per 1.8 1.5 1.3 1.2 1.4annum (%)

In 2002 £. Source: Author's calculations from REMI-ECOTEC UK Version 6.0

Schmitt, 2005)-about 1.5% per year. The UK DfT forecast of 4.5% annual growth

through 2020 (UK Department for Transport, 2003e) would essentially triple the size

of the aviation industry over current levels, and I include this in my analysis as a "high

growth" scenario. I also develop a "Medium Growth" scenario with air transport growth of

about 3.4% annually. These scenarios are shown in Table 4.11 and Figure 4-13.

In the REMI-ECOTEC model, I use changes to the "Exogenous Industry Sales - Air

Transport" policy variable (same policy variable as the example in Section 4.3) in order

to simulate this airport growth within the regional economy. I identify the target aviation

output levels associated with each growth rate. Starting in 2006, I gradually increase

the proportion of air transport sales above the baseline until the total air transport output

achieves the target level in 2030.10 For example, the total output of the East Midlands

air transport sector in 2030 under the baseline forecast (2.2% annual growth) is about

£540 million. Under the high-growth scenario (4.5%), the total exogenous output of the

air transport sector would be about £910 million pounds--or about £370 million above the

101 use proportions instead of specific amounts in order to reflect any economic recessions or other
changes during the time period which are a part of the REMI-ECOTEC baseline control forecasts.
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Table 4.11: East Midlands alternative aviation growth scenario inputs

Scenario

Metric Low Medium High
Growth Growth Growth

Average air transport annual growth 1.5 3.4 4.5
rate (%)

East Midlands - air transport 419 699 911
scenario output in 2030 (£m)
Difference from baseline (£m) -123 +157 +369

Ratio of scenario output to baseline 0.77 1.29 1.68
forecast output
Change in ratio relative to baseline -0.23 +0.29 +0.68

In 2002 £. Baseline air transport output in 2030 is £542 million. Source: Author's calculations
using REMI-ECOTEC UK 6.0

1 AA0 n
I ,UUU-

£800-
EO-
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£400-

£200-
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Source: Author's calculations using REMI-ECOTEC UK version 6.0

Figure 4-13: East Midlands air transport output growth scenarios relative to
baseline
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baseline (+69%). In the low-growth scenario which assumes that output is less than that

of the REMI-ECOTEC baseline, I decrease the total exogenous sales (and thus output) of

air transport until it reaches about £120 million below the baseline in 2030.

4.4.1 Alternative Growth Scenarios: East Midlands

Despite the large changes in aviation activity under the alternative growth scenarios

(up to -23% and +69% in the East Midlands), however, the resulting impacts on total

regional GVA are small: -0.10% and +0.29% relative to the baseline for the Low- and

High-growth scenarios, respectively. This is because the air transport sector is a small

industry in the East Midlands-less than 0.2% of total GVA. By 2030, the REMI-ECOTEC

baseline scenario forecasts that air transport will account for only about 3,000 jobs out

of 1.8 million throughout the East Midlands. And even though the high-growth scenario

would add nearly 2,000 jobs to the air transport sector by 2030, many of these jobs would

be displaced from other industries-thus having little net total impact on the regional

economy.

Table 4.12 shows the impacts on air transport and total regional GVA. Almost all of

the impacts to the air transport sector occur in the East Midlands (£157 million under the

high-growth scenario). Air transport only accounts for about 60% of the total economic

impacts in the East Midlands, however, as the indirect and induced purchases filter

through the regional economy (£262 million). These purchases also filter through the UK

as a whole, and thus the East Midlands only accounts for about half of the total economy-

wide impacts in the United Kingdom (£507 million).
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Table 4.12: Aviation growth in the East Midlands - Air transport and total regional
value-added relative to baseline scenario, 2030

Region
UK

Scenario Greater South East Rest of Total
London East Midlands UK

Air Transport Sector Value-Added (£m)
Low Growth -1.1 -0.4 -51.9 -0.5 -53.9
Medium Growth 1.4 0.6 67.3 0.6 69.9
High Growth 3.3 1.3 157.2 1.5 163.3

Total Regional Value-Added (£m)
Low Growth -17.2 -12.5 -86.6 -51.5 -167.7
Medium Growth 22.1 16.1 112.1 66.4 216.7
High Growth 51.9 37.6 261.9 155.6 507.2

In 2002 £. Source: Author's calculations from REMI-ECOTEC UK version 6.0

As such, the total economy-wide impacts under the different growth scenarios range

from a reduction in GVA of -£0.2 billion to +£0.5 billion, based on a change of -£0.1 to

+£0.3 billion in air transport sales. These suggest economic multipliers of 1.5 to 1.6, and

are well within the range of the economic impacts that are to be expected.

Table 4.13 and Figure 4-14 illustrate the changes to individual sectors by region.

Note the similarity to the impacts from the East Midlands hub scenario in Figure 4-7 as

well as the UK-wide impacts in Table 4.2 shown earlier. Because the underlying input-

output table is the same for all of these calculations, these impacts should be consistent.

Because these scenarios were modeled using exogenous shocks, air transport

demand remains relatively constant across the different scenarios-decreasing by

-£71 million (-0.3%) under the low-growth scenario and increasing by +£216 million

(+0.8%) under the high-growth scenario across the United Kingdom. Total demand also

remains relatively constant across the different scenarios-decreasing by £2.9 billion

(-0.1%) under the low-growth scenario and increasing by £8.7 billion (+0.3%) under
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Region
UKLondon East Midlands U

Manufacturing 3.2 4.5 6.3 28.2 42.2

Fuel 0.1 0.8 1.7 27.5 30.1Source: Author's calculations using REMI-ECOTEC UK version 6.0

Figure 4-14: Aviation growth in the East Midlands - Value-added impacts by

region and sector, 2030 high-growth scenario

Table 4.13: Aviation growth in the East Midlands - Differences in value-added by
sector, high-growth scenario, 2030 (holdm)

Region
UK

Value-added by sector (2m) Greater South East Rest of Total
London East Midlands UK

Agriculture and Mining 1.0 0.8 0.4 9.2 11.4
Manufacturing 3.2 4.5 6.3 28.2 42.2
Fuel 0.1 0.8 1.7 27.5 30.1
Utilities and Construction 2.5 2.2 12.9 10.1 27.6
Retail Services 3.3 3.3 11.2 11.7 29.5
Hotels and Restaurants 2.1 1.5 2.5 6.5 12.6
Other Transport 4.3 3.7 10.9 13.3 32.2
Air Transport 3.3 1.3 157.2 1.5 163.3
Basic Services and Telecom 21.7 14.6 40.6 30.1 107.0
Nonbasic Services and 10.5 5.0 18.2 17.3 51.0
Households

Total 51.9 37.6 262.0 155.3 506.9

In 2002 Em. Source: Author's calculations from REMI-ECOTEC UK version 6.0
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Table 4.14: Aviation growth in the East Midlands - Impacts on personal income,
2030 high-growth scenario

Region
UK

High Growth Scenario Greater South East Rest of Tntal
London East Midlands UK

Real Personal Income (£m) 20.1 15.7 132.6 53.6 222.2
Real Disposable Personal 14.4 12.0 103.7 39.9 169.9Income (Em)
Real Disposable Personal
Income with Housing Prices 12.5 10.7 94.1 37.9 155.3
(£m )

PCE-Price Index (£m) 0.0084 0.0070 0.0230 0.0067 0.0081
PCE-Price Index with 0.0107 0.0086 0.0567 0.0076 0.0114Housing Prices (Em)
Relative Housing Price 0.0002 0.0001 0.0013 0.0001 0.0002

In 2002 £. Source: Author's calculations from REMI-ECOTEC UK Version 6.0

the high-growth scenario. This affects the regional share of purchases and the overall

exports and imports by region. Due to the regional purchasing characteristics and market

competitiveness, only about 52% of the total impacts in GVA occur in the East Midlands;

another 10% are in Greater London and the remaining 38% in other regions of the United

Kingdom (including the South East).

Table 4.14 shows the impacts to total personal income under the high-growth

scenario. Across the United Kingdom, the additional £317 million in exogenous air

transport sales generates a total of £222 million in real personal income. This translates

to about £170 million in real disposable personal income, and £155 million in income

when increases in housing prices due to economic migration are taken into account.

Although the total net impacts in wages per capita are relatively small, the growth of

the air transport sector in the East Midlands does have wider regional benefit in terms

of raising overall income. The cumulative impacts between 2006 and 2030 are shown
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Table 4.15: Aviation growth in the East Midlands - Cumulative total value-added
impacts over 25-years, 2006-2030

Region
UK

Scenario Greater South East Rest of Total
London East Midlands UK

Air Transport Sector Value-Added (£m)
Low Growth -13 -5 -578 -5 -601
Medium Growth 16 6 749 7 779
High Growth 38 15 1,751 17 1,821

Total Regional Value-Added (Em)
Low Growth -201 -145 -973 -594 -1,913
Medium Growth 261 188 1,260 766 2,474
High Growth 612 439 2,944 1,794 5,789

In 2002 £. Source: Author's calculations from REMI-ECOTEC UK version 6.0

in Table 4.15. Total economic impacts over the 25-year period include an additional

£5.8 billion in total value-added throughout the United Kingdom under the high-growth

scenario.

Lastly, I do note that the when the dynamic and accessibility features of the REMI-

ECOTEC are suppressed, the total impact of a similarly-sized exogenous shock to the air

transport sector (+£353 million) results in a £474 million increase in total GVA relative to

the baseline-slightly less than that with the features enabled. This is a +0.032% change

in total GVA relative to a endogenous household baseline forecast (which itself is about

£12.2 billion less than the baseline REMI forecast (£1.47 trillion)--or about 0.82% less.

In comparison, the dynamic REMI model (findings presented earlier) has a +0.034%

change in GRP, so that the two models are relatively consistent.
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Table 4.16: Baseline model - Economic activity in 2030 by region

Region
UK

Metric Greater South East Rest of Total
London East Midlands UK

REMI-ECOTEC Baseline Value-Added (Em)
Air Transport Sector 5,800 2,300 200 3,000 11,300
Regional Total 308,400 229,400 88,600 859,400 1,485,900

Endogenous Household Value-Added (£m)
Air Transport Sector 5,700 2,300 200 11,100 2,900
Regional Total 311,300 227,700 84,900 1,473,500 849,600

In 2002 £. Source: Author's calculations from REMI-ECOTEC UK version 6.0

4.4.2 Alternative Growth Scenarios: Endogenous Household Model

The forecast also includes the impacts from induced spending by households receiving

income from jobs directly and indirectly supported by this extra activity. These impact

forecasts also incorporate adjustments to the regional economy which would result

from long-term population changes and inter-regional trade. The labor and commodity

accessibility increases the total value-added by about 7%; thus, most of the impacts

are derived from the air transport sector supply-chain plus related household spending.

Table 4.16 compares the REMI-ECOTEC baseline control forecast for 2030 with a

simplified forecast which only includes endogenous household impacts (no migration or

accessibility).

In order to look at the sensitivity of these forecasts to the dynamic forecasts of the

REMI-ECOTEC model, I also conducted a run with only the endogenous household

spending impacts enabled. This more closely simulates the typical multiplier impacts

models (such as the RIMS II or IMPLAN models discussed earlier). Table 4.17 shows the

results of these runs.
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Table 4.17: East Midlands air transport growth - Impacts to Air transport and
total regional value-added relative to an endogenous Household Model baseline,
2030

Region
UK

Scenario Greater South East Rest of Total
London East Midlands UK

Air Transport Sector Value-Added (£m)
Low Growth -1.2 -0.5 -48.4 -0.5 -50.6
Medium Growth 1.6 0.6 63.8 0.7 66.8
High Growth 3.8 1.5 149.7 1.6 156.5

Total Regional Value-Added (£m)
Low Growth -17.6 -11.8 -78.7 -45.2 -153.3
Medium Growth 23.3 15.6 103.7 59.9 202.6
High Growth 54.6 36.5 243.2 140.1 474.4

In 2002 £. Source: Author's calculations from REMI-ECOTEC UK version 6.0

4.5 Summary

In this chapter, I used a regional economic accounting system to document the role of

air transport in the regional and national economy of the United Kingdom. Based on

the supply-chain impacts alone, I see that continued growth in aviation could have large

economic impacts (assuming that the cost of aviation remains at current levels).

I found that aviation growth at 4.5% in the East Midlands alone would increase the air

transport GVA by £157 million in 2030 above the baseline forecast and add another £105

million in total regional GVA (total of £262 million). The cumulative impacts over 25 years

are £2.9 billion in the East Midlands and £5.8 billion throughout the United Kingdom. In

impact-multiplier terms, the additional growth of the air transport industry leads to another

1.6x the impacts through the rest of the economy.

This analysis, however, is based on the assumption that the structure of the regional

economies in the United Kingdom stays constant over time-that the supply-chain
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Table 4.18: Regional economic impacts relative to baseline scenario under an
East Midlands high-growth scenario (4.5% annually)

Impacts in 2030 (£m)

Sector Within East Other Total
Midlands Regions UK-wide

Air transport sector 150-160 5-10 155-170
Other sectors 95-100 225-240 320-340

Total impacts, all sectors 245-260 230-250 475-510

In 2002 £. Source: Author's calculations using REMI-ECOTEC 6.0

relationships do not change. My hypothesis, however, is that the way in which air

transportation enhances global accessibility can lead to a catalytic change in regional

economies and their supply chains. In the next chapter, I explore the magnitude of these

potential impacts on the regional economy.
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Chapter 5

Catalytic Growth Impacts

Direct, indirect, and induced economic impacts essentially measure how an economy

responds to the demands imposed by an external shock-such as the increases in

air transport activity, which I modeled in Chapter 4. Although such an impact analysis

may be appropriate for a typical manufacturing industry or for transportation under a

simplified "derived-demand" assumption (page 34), it would not necessarily indicate how

an economy might evolve relative to other regions as a result of changes to inter-industry

competition and access. Good passenger and freight air services are widely attributed

to provide a competitive economic advantage to a region (Porter, 2001a). Companies

can use air services to either enhance their supply chains or join other supply chains-

improving productivity (reducing costs) or improving quality. At the regional level, it is

important for planners and analysts to account for such catalytic or spillover effects of

transportation on shaping how and where activities occur. Memphis, Tennessee, for

example, has attracted more than 130 foreign-owned firms from 22 countries employing

over 17,000 workers-largely due to the presence of a FedEx hub (Oxford Economic

Forecasting and MacDonald, 2006, p. 30).
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Analysts often use survey-based methodologies to account qualitatively for the

impact of air transport services on business activity. Companies in the East Midlands

report that 18% of all sales are dependent on passenger or cargo air services (Oxford

Economic Forecasting, 2006b, p. 8). Another survey of banking, insurance, and other

professional services firms in London City indicated a strong recognition that air travel

was critical for staff, clients, and the delivery of air freight (Oxford Economic Forecasting,

2002, p. 22). Although such surveys provide evidence of the "catalytic" role of aviation

in shaping economic geography and inter-regional competition, applying these results

within forecasting models can be a subjective exercise due to limitations in both data and

methods. Dynamic changes to estimates of regional technical coefficients-the ratio of

goods and services demanded per unit of economic output-should be able to account

for some of these impacts, but many economic models do not incorporate such features

at the regional level.

In this chapter, I compare alternative methods of estimating regional catalytic impacts

at the regional level: one based on changes to economic productivity and another based

on changes to inter-regional industrial accessibility. I use changes in TFP and commodity

accessibility (affecting prices and costs) within the REMI model to identify the range in

catalytic impacts associated with different levels of aviation growth. Again, I focus these

analyses on the East Midlands region, since the complexity and size of the Greater

London economy makes it difficult to identify significant impacts from changes to the air

transport sector there.
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5.1 Productivity-based Catalytic Impacts

The concept of economic catalytic impacts, as defined by OEF and others, refers

to economic impacts that are in addition to the traditional direct, indirect, or induced

household spending. These economic impacts can include additional activities which

locate in a region (demand-side catalytic effects) or enhanced underlying economic

productivity (supply-side). For air transportation, the mechanisms generating such

catalytic effects include enhanced competitiveness due to price and travel times,

identifiable long-run impact on productivity and investment, and long-term attraction of

jobs (Airport Cooperative Research Program, 2008, p. 23). To quantify the impacts of

these supply-side catalytic effects, some analysts have estimated production functions

based on the relationships between public infrastructure ("public capital stock") and

changes in business output or costs (Weisbrod and Treyz, 1998, p. 73). These are

based on equations of the general form in which output is a function of the quantity and

productivity of labor, capital, public infrastructure, and other other factors:

( Quantity and productivity of employment, private

Output = f capital investment, public infrastructure, and other
input factors

Source: Weisbrod and Treyz (1998, p. 73)

In a seminal paper, Aschauer (1989, pp. 182, 193) used a production-function model

to find that a 1% increase in the ratio of public to private capital stock raised total factor

productivity by 0.39% between 1949 and 1981 and that most of this was attributable

to core infrastructure, such as airports, other transportation, and utilities. Although

this research was widely accepted by policymakers, economists question the direction
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Table 5.1: Summary of findings from previous studies of relationship between
infrastructure and productivity

Infrastructure ProductivityAuthor / Year Coefficient
Variable Variable

National-level studies

Aschauer (1989) 0.39 public capital national output
Munnell (1990a) 0.33 public capital national output
Aschauer (1989) 0.24 core public capital national output

Lynde and Richmond (1992) 0.20 public capital national output

Hulten and Schwab (1991) 0.03 public capital national output

State-level studies
Moomaw and Williams(1991Moomaw and Williams 0.25 highway density total factor(1991)
Costa et al. (1987) 0.20 public capital gross state product

Munnell (1990a) 0.15 public capital gross state product
Munnell (1990a) 0.06 highway density gross state product
Garcia-Mila and McGuireGarcia-Mia and McGuire 0.04 highway density gross state product
(1992)

Metropolitan-level studies

Deno (1988) 0.31 highway density personal income

Duffy-Deno and Eberts manufacturing
0.08 public capital(1991) output

core public manufacturingEberts (1986) 0.03 capital value-added

Source: OECD (2006, p. 41)
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of causality between public investment and output growth, and that it did not provide

any clear indications for public policy (Munnell, 1990b, p. 190). Some analysts were

astonished by Aschauer's findings of relatively large output elasticities and criticize his

methodology, data, and findings (Rockier, 2000, p. 30-31). Yet while Ashauer's research

was widely critiqued, many subsequent analysts have found statistical links between

the level of public infrastructure stock, economic growth, and productivity (Banister and

Berechman, 2000, p. 6).

In general, analysts have generally found productivity elasticities of 0.2 to 0.4 at

the national level, around 0.15 at the regional or state levels, and as low as 0.04 at the

metropolitan levels (Weisbrod and Treyz, 1998, p. 74). Using a cost-function model

and data on UK manufacturing sectors, for example, Lynde and Richmond (1993, p.

891) found public capital elasticities-the ratio of the change in output per change in

productivity--of 0.17. Most analysts have looked at the relationship between public

capital on economic growth and productivity, while only a few have looked specifically

at the role of transportation capital (Banister and Berechman, 2000, p. 145). Table 5.1

includes several studies which look at the relationship between highway density and

gross state product or personal income. Very few analysts, however, have looked at the

relationship between air transportation and productivity.

5.1.1 Air Service and Productivity

In a series of aviation-specific studies since 1999, OEF has quantified the supply-side

economic catalytic effects by analyzing the logarithmic relationships between total factor

productivity and investment with transportation demand. Total factor productivity is an
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Table 5.2: Economic catalytic effect elasticities

Study UK Aviation Eurocontrol UK Aviation
1999 2005 2006

Total Factor 0.135 0.056 0.060
Productivity Elasticity
Key Independent General Air Transport Air Transport
Variable Transport usage (metric Business Passengers

tonne-equivalent) and Freight / GDP
/ GDP

Data Level UK: 27 sectors EU: 24 countries UK: 31 sectors
1979-1997 1994-2003 1979-2005

n/a = not available. Sources: Oxford Economic Forecasting 1999, p. 85; Cooper and Smith 2005,
p. 41-42; Oxford Economic Forecasting 2006a, p. 67

index of technological change which compares total output per unit of total inputs. After

accounting for the weighted growth of labor and capital, the residual growth in TFP can

be attributed to education, innovation, economies of scale, technological change, or other

factors (Samuelson et al., 1995, p. 543). When compared to other metrics such as labor

productivity, analysts consider TFP to be a better measure of an economy's efficiency

and its rate of technical change because it measures the ratio of output to the sum of all

basic inputs (Wolff, 1985, pp. 30-31).

In all of these studies, OEF uses total factor productivity as the primary dependent

variable and presents these results in terms of an elasticity showing the change in

transport output per change in productivity. Table 5.2 shows that in the most recent of

these studies, OEF found catalytic impact elasticities of about 0.060--meaning that a

10% increase in air-transport output or business air traffic is associated, on average,

with a 0.6% increase in long-term total factor productivity. These elasticities can also be

analyzed in terms of the marginal contribution relative to GDP growth. In the Eurocontrol

study, for example, OEF found that air transport has contributed about 4.0% of the
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European GDP in terms of supply-side economic catalytic impacts (both investment

and productivity) between 1994 and 2003. This is equivalent to about 4410 billion euros

(Cooper and Smith, 2005, p. 46).

The main differences among the OEF studies involve the unit of analysis as well

as the specificity of the independent variables for transportation and other factors. The

two UK studies (1999 and 2006a) are based on the pooled effects of air transport on

productivity from each of up to 31 different sectors. In contrast, the Eurocontrol study

(2005) analyzes productivity across 24 countries and also incorporates other explanatory

variables, such as research and development intensity or education, to control for the

underlying economic differences between countries. Although the magnitudes of some

of these other factors are higher than that for air transport, the highly positive R2 (0.67) of

this model suggests that air-transport usage plays an important role along with research

and development spending, educational standards, and some country-specific effects in

influencing long-run underlying productivity (Cooper and Smith, 2005, p. 42).

One of the other key differences among the OEF studies is the level of specificity

for the independent variable for transportation. While the 1999 study used general

transportation output to explain the differences in the total factor productivity in the United

Kingdom, the 2005 Eurocontrol study focused on the output of the air-transport sector.

The 2006 UK study further refined this approach by creating a proxy that combines

business travelers and cargo into a 'Workload unit." The workload units are calculated

by multiplying the number of passengers by 0.1 and then adding the amount of air cargo

(in metric tonnes). In addition, both the Eurocontrol and the 2006 UK studies divide the

air-transport metrics by GDP in order to control for fluctuations in the overall economy
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and differences in wealth (and thus propensity to fly). Finally, although the increased

specificity of the independent variables for air transportation is more appropriate for these

studies, OEF admits that this in itself could be a source of bias in the estimates (Cooper

and Smith, 2005, pp. 35-37).

In another study for International Air Transport Association (IATA), Smyth and Pearce

(2006, p. 30) incorporate the size of the destination airport and airline route network

connectivity-measuring the product of the number of destinations, the frequency of

flights, and seat capacity per flight, all divided by a scalar factor of 1000. In general, the

magnitudes of these elasticities are consistent with, and slightly higher than, the results

with basic air-transport output, but result in a higher R2. In this study, connectivity feeds

directly into GDP-so that a 10% increase in connectivity leads to a 0.9% increase in

GDP. In addition, connectivity also affects GDP through investment. The ratio of capital

to GDP is 0.35, so that the 10% increase in connectivity leads to a 0.6% increase in

investment and a 0.2% increase in long-run GDP. Thus, the total impacts of connectivity

are 1.1% of GDP (Smyth and Pearce, 2006, p. 31).

A number of aviation stakeholder groups, such as the Heathrow Association for the

Control of Aircraft Noise (HACAN ClearSkies), Strategic Aviation Special Interest Group

of the Local Government Association (SASIG), and Friends of the Earth (FOE), have

critiqued the OEF studies and its role in UK aviation development strategy. Berkeley

Hanover Consulting (2000, pp. 27-28) notes that the original OEF study 1999 failed to

prove a clear statistical relationship between air transport and productivity growth. The

subsequent OEF studies cover this issue, but Boon et al. (2008, pp. 39-40) suggests that
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the observed relationships are due to the result of simple data mining--a larger number

of tests can result in a greater likelihood of finding a random relationship.

One of the more general issues is the potential for diminishing or negative returns

to investment from transport infrastructure in a mature economy, as suggested by

the Standing Advisory Committee on Trunk Road Assessment (1999, p. 70) and

AirportWatch (2006). The marginal benefits to productivity associated with current and

future projects may not be the same as the average benefits to productivity associated

with past spending (Weisbrod and Treyz, 1998, p. 76). Also, Cohen and Paul (2003)

found evidence of regional spillovers on airport investment-suggesting that network

externalities need to be considered in air transport policy. Although it is clear that the

literature in this area is still emerging, the OEF studies are among the first to apply such

productivity studies directly to the air transportation sector. Nevertheless, their findings

are generally consistent with the overall literature on transportation, public investment,

and productivity.

5.1.2 Productivity-based catalytic impacts

To examine the magnitude of these catalytic effects of aviation at the regional level, I

test several increases in TFP that are based on the relationships between air transport

usage and productivity. I use an economy-wide increase in TFP to frame the upper

range of the catalytic impact estimates, and an increase of TFP in selected private non-

farm industries' to frame the lower range of the estimates. My underlying assumption

is that air transport is inherently related to the viability of regional supply chains in
'Includes manufacturing, retail/hotels/catering, transport, telecom, and basic regional export-related

services.
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Table 5.3: Productivity-based catalytic impacts under an East Midlands high-
growth scenario (4.5% annually)

Productivity Impacts on value-added in 2030 (£m)
Scenario Change in Within East Other Total

2030 (%) Midlands Regions UK-wide

Low Growth 0.078 50-70 80-90 150-160
Baseline 0.132 90-110 160-170 250-270
Medium Growth 0.204 130-170 240-260 390-410
High Growth 0.270 170-230 310-340 510-540

In 2002 £. Source: Author's calculations using REMI-ECOTEC 6.0

manufacturing, services, and tourism--thus enabling such industrial activities to locate

in a given region such as the East Midlands.

I test changes in overall TFP in the East Midlands that are proportional to the

assumed growth rate scenarios and the OEF TFP elasticity of 0.06--assuming a

constant linear relationship between growth and TFP. These are summarized in Table

5.3. A 1.3% growth in air transport output should increase total factor productivity by

0.078%. In the East Midlands, this raises the total GVA above the baseline forecast by

about £50 to £65 million annually by 2030. I also found that an increase in total factor

productivity of 0.132% results in about a £130 million increase in GVA above the baseline

by 2030. In addition, I also considered productivity increases of 0.204%, and 0.270%

for the medium-growth, and high-growth scenarios, respectively. A 0.204% increase in

productivity translates into an annual increase of about £200 million in GVA by 2030,

while the impact is about £260 million for a 0.270% increase in productivity.

Although these productivity-based catalytic impacts were equivalent to only 0.06%

to 0.26% of the East Midland's £89 billion-pound economy in 2030, these impacts are

large relative to the total annual growth. REMI-ECOTEC forecasts that the East Midlands
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regional economy will grow by £672 million in GVA between 2029 and 2030. As such, the

catalytic impacts could thus contribute another 40% to the total annual regional economic

growth by 2030 under a high aviation growth scenario.

Due to variations in intermediate supply chains and regional competitiveness,

however, the wider productivity-based catalytic impacts are distributed differently across

the various UK regions than those from the baseline air transport growth scenarios.

Under the baseline aviation growth scenarios (in which only the air transport sector in the

East Midlands is modified), about 52% of the total economy-wide impacts are observed

in the East Midlands. Only about 36% to 42% of the total UK-wide productivity-based

catalytic impacts occur in the East Midlands. The enhanced productivity of industries

in the East Midlands presumably also helps to increase the competitiveness of nearby

regions such as the West Midlands or Yorkshire and Humber. The illustration of these

wider benefits to other parts of the country may help to inform regional policy and equity

concerns.

5.2 Accessibility-based Catalytic Impacts

Another approach to analyzing the catalytic impacts of air transportation involves

applying neoclassical economic trade theories to account for the inter-regional impacts

of distance and choice on productivity and output. Fan et al. (2000) demonstrated that

"new economic geography" or "accessibility" concepts can be used to reflect the urban

agglomerative or dispersal relationships related to the intensity of intermediate inputs

and land prices (Fan et al., 2000, p. 694). These accessibility impacts are essentially the

same types of "catalytic" effects discussed earlier, except that they enter the economic
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model directly through prices and economic migration rather than through aggregate

productivity. I consider these accessibility impacts to be catalytic effects because the

migration and changes in prices affects the underlying inter-regional and technical

structure of the economy.

In this section, I simulate the effect of increased air services by modifying the

commodity-access index for the air transportation sector in the East Midlands and then

analyzing the resulting changes in regional GVA. In the REMI model, the commodity-

access index measures the relative change in access to specialized inputs for production

in order to predict the change in the productivity of intermediate inputs (Regional

Economic Models, 2007). The commodity-access index affects the intermediate inputs

and productivity (and thus output), as well as migration/population. Ultimately, it affects

both the composite cost of production by industry and the consumption-access index in

the economic migration equation (Lee and Zohir, 2006, p. 6).

5.2.1 Accessibility and Agglomeration

In 2002, REMI introduced accessibility concepts into its U.S. Policy Insight forecasting

model to account for agglomeration in commodities, consumption, and labor (Treyz and

Treyz, 2004b, p. 7). The REMI-ECOTEC model is unique in that it is, to the author's

knowledge, the only known model that implements accessibility relationships to affect

interregional trade and migration, although the Regional Dynamics (REDYN) model

uses impedance measures to affect commodity flows (Rockler, 2007). The REMI model

assumes that regional agglomeration occurs because producers and consumers benefit

from access to variety, but that land prices and congestion will tend to disperse economic
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activities (REMI, 2004b, p. 3). The model also assumes that access to a large labor

pool will improve productivity by permitting a good match between jobs and skilled

workers. Proximity to suppliers is also important because distance and transportation

costs affect the overall delivered price of a commodity (REMI, 2004b, p. 17). Economic

migration between regions is based on the relative attractiveness of access to consumer

commodities or amenities.

In the REMI model, the accessibility linkages affect three elements of economic

forecasts: (1) interregional trade flows, (2) the price elasticity of demand, and (3)

composite prices. Trade flows are based on a distance-deterrence effect which uses

a double-constrained gravity model to predict regional output subsequent to changes

in output demand by industry and region; trade declines exponentially with distance

(travel times) and accessibility costs (Treyz and Treyz, 2004b). These parameters are

based on 30 years of time-series data by industry for each of about 3,000 counties in

the United States (Treyz, 2005, pp. 5-6). The price elasticity of demand is associated

with delivered costs or prices. The delivered price is the cost of producing the output

at the location of production, plus the costs of transporting the output to the location

where it is used. Finally, accessibility increases productivity-lowering costs, increasing

market competitiveness, and increasing output. These productivity benefits are reflected

in the composite prices. The composite price is the delivered price divided by the relative

access index.

The accessibility variables in the REMI model are sensitive to small changes. In

the examples provided by REMI, accessibility is usually measured in terms of changes

to vehicle-passenger miles or vehicle hours traveled, and trips. The REMI TranSight
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Table 5.4: Catalytic impacts under an East Midlands high-growth scenario (4.5%
annually) compared to a baseline scenario

Accessibility Impacts on value-added in 2030 (Em)
Scenario Change in Within East Other Total

2030 (%) Midlands Regions UK-wide

Low Growth 1.3 650 1,210 1,860
Baseline 2.2 1,090 2,030 3,120
Medium Growth 3.4 1,200 2,240 3,440
High Growth 4.5 2,210 4,090 6,300

In 2002 £. Source: Author's calculations using REMI-ECOTEC 6.0

software is typically used to analyze the impacts of specific surface transportation

projects. The proportion of travel in a specific corridor affected by such a project, for

example, may be extremely small relative to the total region-wide travel. The commodity-

access index can also be used to gauge how other changes in the regional economy

affects accessibility. The large growth of the East Midlands aviation high-growth scenario

(presented at the end of Chapter 4), for example, reduces the commodity-access index of

the air transport sector by -0.0000507 (-0.005%) to 0.9998. The additional growth in the

East Midlands air transport sector increases its productivity-thus reducing its cost and

making it more competitive relative to other regions. While some of these accessibility

effects are already reflected in the baseline REMI model forecasts, I also test direct

changes to accessibility (and thus delivered prices) in order to examine the range of

catalytic effects.

5.2.2 Accessibility-based catalytic impacts

Although I was not able to investigate the full relationships between air transport supply

and accessibility, I conduct some sensitivity tests using direct changes to the commodity-

156



Table 5.5: Regional distribution of catalytic effects over time (% share)

Productivity-based Accessibilty-based
2006 2015 2030 2006 2015 2030

East Midlands 16.2 29.9 33.9 8.2 28.6 35.0
Greater London 16.8 11.9 11.2 17.9 11.3 10.4
Rest of UK 67.4 58.2 54.9 73.5 60.1 54.5
Total 100.0 100.0 100.0 100.0 100.0 100.0

High growth scenario. Source: Author's calculations from REMI-ECOTEC UK version 6.0

access index. I apply changes to the commodity-access index from 1.3% up to 4.5%,

which correspond to the annual air transport growth rates. I conduct two sets of tests: (1)

a more conservative set which changes air accessibility to only those sectors that would

be most likely to be affected by improved supply-chain access to air transport, such as

manufacturing, tourism, or financial or consulting services, and (2) a more liberal set of

scenarios in which accessibility affects all sectors in the general regional economy.

The annual accessibility-based impacts on regional value-added in 2030 are

summarized in Table 5.4. I found that under a low-growth scenario, a 1.3% increase in

accessibliity in the East Midlands increased the region's GVA by £645 million in 2030.

The high-growth scenario (4.5%) increased the East Midlands GVA by £2.2 billion. About

35% of the impacts occur in the East Midlands, while 65% of the impacts occur outside of

the region. Overall, these impacts were equivalent to about 0.7% to 2.5% of the total East

Midlands economy, and over three times the total amount of annual growth in 2029-2030.

The total national accessibility-based catalytic impacts totaled £6.3 billion in 2030 under

the high-growth scenario. This was equivalent to about 50% of the total economic growth

forecast for that year (£12.2 billion in GVA, so it still represents a sizeable economic

benefit.
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Aside from the large differences in magnitude between the productivity- and

accessibility-based catalytic impact methods, one of the key differences was the timing

and distribution of these impacts over time. Table 5.5 shows the increase in value-added

for each region relative to the baseline scenario in 2006, 2015, and 2030 under the

high-growth scenarios for productivity and accessibility. During the initial year of the

change (2006), about 16% of the productivity-based catalytic impacts but only 8% of the

accessibility-based impacts were observed in the East Midlands. Ultimately, the regional

distribution of the catalytic impacts in 2030 was similar between both methods. In the

REMI-ECOTEC model, the accessibility-based changes to prices, market shares, and

output appear to be slower than the changes in total factor productivity--despite having a

larger total cumulative impact. The large magnitude of the impacts as well as the relative

decline of London also appears to reflect the agglomeration benefits associated with

enhanced economies-of-scale. The implication is that the market development benefits

associated with aviation accessibility may take longer to accrue, but may be larger than

the more immediate efficiency and productivity gains.

5.3 Summary

I found that the total accessibility-based impacts were much larger in magnitude than

the productivity-based catalytic impacts. Both the productivity and accessibility impacts

were large in the context of the total annual economic growth, but this underscores the

strategic value of air transport in shaping regional economic growth.

As shown in Table 5.6, both the productivity- and accessibility-based measures of

catalytic growth generally produced larger impacts than traditional direct, indirect, and
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Table 5.6: Comparison of productivity- and accessibility-based catalytic impacts
under an East Midlands high-growth scenario (4.5% annually) compared to a
baseline scenario

Impacts on value-added in 2030 (£m)
Type of Catalytic Impact In-region Out-of-region Total UK-wide

impacts impacts impacts

Productivity-based 170-230 310-340 510-540
Accessibility-based 650-2,200 1,260-4,100 1,900-6,300

In 2002 £. Source: Author's calculations using REMI-ECOTEC 6.0

induced impacts of aviation sector growth when all of the total national impacts were

taken into account. Under the high-growth scenario, for example, the total productivity-

based catalytic impacts were £550 million, while the accessibility-based impacts were as

much as £6.3 billion. Traditional measures of aviation growth result in an impact of about

£500 million.

Although these results are sensitive to different assumptions, the magnitude

suggests that these catalytic effects are significant compared to traditional measures

of economic impacts. Further testing is needed to identify the sensitivity of the REMI-

ECOTEC accessibility indices to variations in prices and costs as each region competes

for national economic activity.
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Chapter 6

Airport Noise Impacts

Having in previous chapters established the magnitude of the impacts of air transport

on regional socio-economic growth, I now consider how aviation noise affects the local

neighborhoods around London Heathrow and East Midlands airports. First, I use an

airport noise model to identify the changes in noise levels under different airport growth

scenarios. I then monetize these noise impacts and calculate the total and annual

community damage costs of these growth scenarios.

In particular, I use the depreciation on housing prices as a proxy for the socio-

economic impacts of airport noise on the surrounding communities. Analysts typically use

a Noise Depreciation Index (NDI) to describe these relationships. Because NDIs reflect

location-specific, empirically observed relationships of noise levels and housing prices

(after controlling for all other factors), Schipper et al. (1998) and others have used meta-

analyses of NDIs in order to generalize these results for benefit transfer applications in

different regions. Nelson (2004) conducted one of the most extensive studies in this area,

and I apply his findings to Heathrow and East Midlands.

To show the sensitivity of these noise-damage costs to the NDIs and other

parameters within the model pathway itself, however, I calculate the noise-damage costs
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using several different noise-depreciation indices, ambient-noise reference values, and

alternative annual-capital recovery methods. I focus on how differences in NDIs and

noise-damage costs reflect differences in noise measurement, threshold noise levels,

and the functional form of underlying statistical models. I use these sensitivity tests

to estimate the range of plausible values for the community damage costs and build

confidence in my results. I also analyze these costs within the context of other community

socio-economic indicators, such as income and housing tenure, in order to consider

some of the distributional and environmental-equity impacts of airport growth.

6.1 Community Noise Impact Modeling

As shown in Figure 6-1, the two main components of my noise-damage-cost calculations

are: (1) identification of the population affected by airport noise, and (2) calculation of the

property values and associated damage costs for these affected areas. I use the flight

operations under each airport growth scenario as inputs into INM in order to calculate

the noise levels at specific locations around the airport. I then use the noise levels at

each of these points together with population and housing unit counts, housing prices,

and a noise-depreciation index to calculate the total community noise-damage costs.

First, I discuss the flight operations data used to model the noise impacts of different

growth scenarios at London Heathrow and East Midlands airports. I then discuss my

methodology for applying the NDIs and annualizing the total community damage costs.
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Figure 6-1: Methodology for calculation of noise-damage costs

6.1.1 Airport Noise Impact Modeling

In order to focus on the aggregate long-term impacts of aviation growth, I apply simplified

model inputs using (1) how many flights are operated within each aircraft noise-class, and

(2) when these flights operate. I start with the annualized high and medium airport growth

scenarios for each airport to generate the number of average daily flight operations.

The high-growth scenario, for example, has 754,000 annual air-transport movements at

London Heathrow Airport and 262,000 annual movements at East Midlands. I use airline

schedule and operational data to allocate the flights by time-of-day (Table 6.1) and aircraft

noise class (Table 6.2), using five aircraft types (Dash-8, 737-700, 767-300, 747-400, and

747-200) as a coarse approximation for the fleet operated at each airport.

I generally assume the same fleet mix and flight timings for all scenarios, except for

replacing the handful of noisiest aircraft operations (represented by the 747-200) with the
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Table 6.1: Aggregate time-of-day distributions, 2005

Period Description Percent Share (%)
EastHeathrow Midlands

Day 7am-7pm 71.6 62.9
Evening 7pm-11 pm 20.1 13.9
Night 11lpm to 7am 8.2 23.2

Total 100.0 100.0

Source: Author's Calculations based on data from CAA, NEMA, and (Bowler, 2008)

Table 6.2: Aircraft class distributions, 2005

Noise Description Typical Percent Share (%)
Class Aircraft East

Heathrow Midlands

1/2 Turboprops Dash 8 0.8 7.1
3 Narrowbody jets 737-700 67.4 78.5
4 Widebody twins 767-300 18.3 11.3
5 Widebody longhaul 747-400 13.0 3.0

6-8 Older, noisier jets 747-200 0.6

Total 100.0 100.0

Source: Author's Calculations from CAA and NEMA
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747-400 under the medium- and high-growth scenarios. I explicitly do not consider the

overall evolution of airline fleets (replacement of all 737-200s with A319s, for example).

Although these simplified assumptions do not take fleet replacement into account and will

thus somewhat overstate the growth of the noise contours, they enable me to focus on

the impacts of growth rather than changes in technology. I consider technology changes

separately, by modeling several scenarios that assume that the Silent Aircraft Initiative

(SAI) SAX-40 replaces several categories of the nosiest medium- and large-aircraft types.

Analysts typically use INM to calculate aircraft noise for each given flight operation

using a combination of (a) aircraft spectral class profiles, (b) noise-power-distance

curves, and (c) various coefficients for jet, prop, flap, and other noise sources. Because

spectral class profiles were not available for the SAX-40, I use the spectral profiles for

the noisier Boeing 767-300 as a conservative substitution. The SAI team derived Noise-

Power-Distance (NPD) curves for the SAX-40 by integrating noise hemisphere data

from the different component sources of the SAX-40 design (Mobed et al., 2006). In

the absence of noise-source coefficients, I use fixed-point flight profiles (i.e., thrust,

altitude, and speed) at specified distance from the runway.' Finally, I setup 1.3-km

displaced-approach thresholds at London Heathrow Airport to reflect the special low-

noise operations that the SAl team designed to keep the SAX-40 at a higher altitude than

conventional aircraft when passing over the airport boundary.

Finally, I use average movement data to allocate the total daily flight operations

to specific runways and flight tracks. The set of arrival and departure flight tracks for

westerly operations at Heathrow Airport is shown in Figure 6-2. I digitized the flight
1These noise-source coefficients enable the user to calculate the noise based on how aircraft are flown:

manipulation of thrust settings, climb or descent angles, and energy management (flaps) to maintain altitude
or airspeed targets. Select aircraft, such as the MD-11 (with GE engines), are modeled this way when noise-
coefficient data are not available.

165



Figure 6-2: Example of 2005 flight tracks and noise contours: London Heathrow
Airport (Westerly operations)

tracks into INM using data from CAA and EMA. The distribution of ATMs on the various

departure flight tracks was published by the CAA and the East Midlands Airport. Table

6.3 also shows the directionality of the runway use at London Heathrow Airport. About

80% of the flight operations were in the westerly direction in 2004, but this decreased

to about 70% in 2005. This changes the cumulative noise impacts on the ground and is

important due to the densely populated areas to the east of Heathrow airport. For the

high-growth scenario at London Heathrow airport, I also add a third, 2000-meter runway

to the north of the existing runways. Up until 2007, the UK government had planned

the new runway for short-haul aircraft. The current scheme is for a more functional,

all-purpose 2,200-meter runway with additional displaced thresholds used for takeoffs

(Department for Transport, 2007, pp. 44-45).
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Table 6.3: Operational flows at London Heathrow airport, 1997, 2004, and 2005

Operational Flow Percent Share (%)

1997 2004 2005

Westerly (Runways 27R and 27L) 74.0 81.0 71.0
Easterly (Runways 9R and 9L) 26.0 19.0 29.0

Total 100.0 100.0 100.0

Source: CAA

6.1.2 Noise Damage Cost Calculations

The output from INM includes plots of noise contours (highlighting areas of similar noise

levels) as well as the actual predicted noise levels at specific locations. Each of these

locations corresponds to a census output area centroid, and thus each accounts for

roughly 300 persons and about 130 dwelling units. There are about 14,000 such points in

the 50x30-km (1,500 km2) study area around London Heathrow airport-encompassing

about 4.2 million people and 1.8 million households.2 In the 45x35-km (3,750 km2) study

area around the East Midlands airport, there are about 4,100 points. As discussed in

Chapter 3, I use a baseline reference noise level of 57 dBA, and calculate the difference

in noise levels relative to that baseline. In the baseline 2005 model, for example, there

were 550 output areas with noise levels of 57 dBA or greater. The average noise level for

these areas was 60.8 dBA, or +3.8 dBA relative to the 57-dBA baseline.

Using the noise levels and population data at each of these points along with the

associated average housing sales price data from the UK Land Registry Department, I

calculate the noise-damage costs for each of these output areas. This differs from almost

all other previous housing-price studies, in which census areas were assigned to noise-
2The size of these areas was constrained by a maximum grid size in the INM model.

167



contour bands-usually 3-dBA or 5-dBA wide. The additional precision offered by this

approach enables more accurate calculations of the damage costs, even though humans

can typically only perceive a 3-dBA difference in noise. For the baseline scenario, this

method produces noise-damage costs that are about 75% higher than those calculated

using population points assigned to noise-contour bands.

I calculate the noise-damage costs as a function of the total noise quantity and the

noise-damage costs value (per decibel). The general form of this relationship, as applied

by Pearce and Pearce (2000, p. 13) and others, is shown in Equation 6.1. I multiply the

proportion of households )-, within noise contour j, by the amount of noise generated

by the airport relative to a background noise level QNj, which is applied to the noise

depreciation index NDI and the assessed value of these homes P, in order to get the

total noise damage costs T,.

Tn= ( *QN) * NDI * P (6.1)
j=1

I use a more refined version of this model by using the population centroid-specific noise

levels to calculate the actual noise damages for each census output area--rather than

using the contour averages. I calculate the community noise-damage costs Tk for every

census output area, k, by multipliying the Noise Depreciation Index (NDI) by the noise

levels in that area relative to a background noise level (QNj), the number of households

(H), and the average home sales price (P). This is shown in Equation 6.2.

Tnk = E (Hk * QNk * NDI * Pk) (6.2)
k=1
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These NDI applications present the total cumulative damage costs of noise-as if every

household were compensated with a one-time payout. As another way of analyzing

these damage costs, I convert these noise-damage costs into an annualized cost using

a standard discount rate. The HM Treasury (2008, p. 97-98) recommends using a Social

Time Preference Rate (STPR) of 3.5% in order to discount future benefits and costs

across different generations in perpetuity. The STPR is based on the discount of future

consumption over present consumption, in addition to the expected rise in per capta

consumption and the associated change in utility of consumption. I use this STPR for my

annual damage-cost calculations in Section 6.2.

6.2 Noise-Damage Cost Results

In this section, I use the airport noise model and NDIs in order to calculate the community

damage costs at London Heathrow and East Midlands airports. I do not incorporate

expected reductions in the noise generated by conventional aircraft in the future, such

as the ICAO Chapter 4 noise requirements which took effect in 2006. Under the Chapter

4 requirements, all new commercial aircraft will be 1/3 quieter than current (Chapter 3)

aircraft (IATA, 2004, pp. 9-10). As such, my noise impact and damage costs calculations

are likely to be conservative over-estimates of the actual damage costs.

6.2.1 London Heathrow Noise-Damage Costs

Figure 6-3 shows my calculations for the current and future noise contours for London

Heathrow. The medium- and high-growth scenarios represent about 20% and 65%

increases in capacity over current levels. The 57-dBA contour increases by about 18%
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Source: Author's calculations using INM 6.1 and ArcMap 9.2

Figure 6-3: Baseline (2005) and future 57-dBA LEQ 16 noise contours at London
Heathrow airport

under the medium-growth scenario and 64% under the high-growth scenario. The

population and housing units both grow by about 19% and 67% under the medium- and

high-growth scenarios.

The noise-damage costs, however, rise much faster than the increases in affected

population or households. As shown in Table 6.4, the current noise damages are about

£310-£410 million. The noise damages increase by about 35% to £420--£550 million

under the medium-growth scenario, and increase by 85% to £570-£750 million under the

high-growth scenario.

To put this in a slightly different way, the baseline willingness-to-pay for a reduction

in noise is about £65-86 (E83-110) per dBA per household per year, based on a 3.0%

discount rate and a 30-year useful house life. The per-dBA willingness-to-pay per dB

per household has a large distribution of values and ranges from a minimum of £43-
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Table 6.4: Noise-damage-cost calculations at London Heathrow under different
traffic growth scenarios

Medium Growth
Baseline
(2005) Levels Change'

(%)

High Growth

Levels Change'
(%)

Annual Air Transport 461,000 551,000 20 754,000 64
Movements

Affected area at 57-dBA LEQ 16 level

Land area (km2) 84.8 99.8 18 139.4 64
Population 168,490 201,550 20 283,110 68
Housing Units 69,500 84,560 22 118,590 71

Noise-Damage Costs
Total cost (£m) 310-410 420-550 34 570-750 83
Annual at 3.5% (£m) 10.8-14.2 14.6-19.2 35 20.0-26.3 85
Annual cost per dBAnnual cost per dB 65-86 73-96 12 72-94 9
per household2 (£)

'Relative to baseline. 2At 3.0% for 30 years. Source: Authors' calculations using INM 6.2 and
ArcGIS 9.1

206 (455-263).3 In contrast, Kish (2008, p. 28) found a mean willingness-to-pay of 456

per-dBA/household/year around international airports and E76 for airports in the United

States. The higher values which I find for the UK airports reflects the more detailed noise-

level and population data used here.

In Table 6.5, however, I disaggregate the baseline noise-damage costs into 3-dBA

contour-bands using a 0.67% NDI. On a per-household basis, the noise-damage costs

amount to £18,500 for each of the 1,100 housing units in the 69- to 72-dBA contour.

This is less than 2% of all the households affected by noise (> 57-dBA). Notably, over

51% of the households are located in the 57- to 60-dBA contour, and have damage

costs of about £2,100 per household. Despite the large population in this area (36,000
3The average household in the area with noise levels above 57-dBA contains 2.4 persons. Using a 3.5%

annuity rate, the average willingness to pay is £45-59 or 458-76 per dBA per household per year.
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Table 6.5: Contour-level noise-damage costs at London Heathrow Airport under
baseline scenario (0.67% NDI)

Noise Housing Units
Contour

Level Share
Amount (%)

>72 dBA 230 0.3
69-72 dBA 1,110 1.6
66-69 dBA 4,700 6.8
63-66 dBA 10,410 15.0
60-63 dBA 18,980 27.3
57-60 dBA 35,860 51.6

> 57 dBA 69,500 100.0

NDI of 0.67%, and annual annuity rate of 3.5%.
ArcGIS 9.1

Total Damage Damage Costs
Costs per Household

Amount Share Total Annual
(£m) (%) (£) (£)

10 1.3 23,180 810
20 5.1 18,560 650
70 16.7 14,490 510

110 26.9 10,480 370
130 31.4 6,730 240
80 18.6 2,110 70

410 100.0 5,850 200

Source: Authors' calculations using INM 6.2 and

households), the relatively low damage cost-per household leads to a relatively low

overall share of total damage costs (18%).

I also use the noise-damage-cost calculations to identify how underlying areas are

affected by the changes in noise impacts under the medium- and high-growth scenarios

relative to the baseline. Because the total noise-damage costs combine the severity

of the impact (cost per decibel of noise level) with the extent of the impact (number of

housing units affected), it provides more depth than traditional analytical metrics. Figure

6-4 shows that only a small portion (6% or £30 million) of the noise-damage costs in the

medium-growth scenario occur in new areas that were not previously exposed to aircraft

noise above the 57-dBA LEQ level, while about 20% (£140 million) of the damage costs

under the high-growth scenario are in such areas. This is attributable to the addition of

the third northern runway under this high-growth scenario. In both scenarios, about a

quarter of the noise-damage costs are from areas that would be exposed to louder noise

levels.
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Figure 6-4: Changes in noise-damage costs relative to the baseline (2005)
scenario

6.2.2 London Heathrow Noise-Damage Costs with Low-Noise Aircraft

I consider the changes in noise damages at London Heathrow if air carriers introduced

an advanced, low-noise aircraft into their operating fleets, based on the estimated

performance of the SAX-40 concept aircraft (Crichton et al., 2007; Hileman et al., 2007).

I did not develop a set of advanced low-noise technology aircraft scenarios for the East

Midlands Airport, because medium- and long-haul aircraft currently represent a small

percentage of operations there. For this scenario, I assume that by 2030, advanced

technology, low-noise aircraft, such as the SAX-40, are readily available for incorporation

in the fleet. I stress that this is a scenario and may not reflect what is probable in this time

period.

I consider the high-growth scenario (754,000 annual air-transport movements) as a

basis for reference. Figure 6-5 shows the noise-contour calculations for a "SAX Phase 1"

scenario under which the SAX-40 replaces all Noise Class 4 aircraft (represented by the
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Figure 6-5: 57-dBA LEQ 16 noise contours under high-growth scenario and
alternative advanced technology, low-noise aircraft replacement scenarios

767), and a "SAX Phase 2" scenario under which the SAX-40 replaces both Noise Class

4 and 5 aircraft (represented by the 767 and 747, respectively). Again, note that the noise

characteristics of all other (conventional) aircraft remain unchanged.

Under the SAX Phase 1 scenario, the noise-contour area shrinks by about 18%

relative to the high-growth scenario. Table 6.6 shows that the corresponding noise-

damage costs decline by about 32% to £390-£510 million (versus £570-£730 million

for the high-growth scenario). Under the SAX Phase 2 scenario, the noise-contour area

shrinks by about 46% relative to the high-growth scenario, while the noise damages

decline more steeply-by about 66% to £1 90-£250 million. When compared to the

baseline (2005) contours, the SAX Phase 1 scenario has a 26% net increase in noise-

damage costs, while the SAX Phase 2 scenario has a 38% decrease.

To put these estimates in context, I compare the damage costs in 1997, 2005,

and the high-growth scenario in Table 6.7 and Figure 6-6. I calculate the 1997 noise
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Table 6.6: Noise-damage-cost calculations at London Heathrow under advanced
technology, low-noise aircraft scenarios

SAX Phase 1 SAX Phase 2
HighGrowth Change1  L Change1

Growth Levels N Levels (%)

Annual Air Transport 754,000 same - same -
Movements

Affected area at 57-dBA LEQ16 level
Land area (kin2) 139.4 116.5 -16 79.2 -43
Population 288,830 214,140 -26 125,150 -57
Housing Units 121,000 88,490 -27 49,420 -59

Noise-Damage Costs
Total cost (Em) 570-750 390-510 -32 190-250 -67
Annual at 3.5% (£m) 20.0-26.3 13.7-17.9 -32 6.8-8.9 -66
Annual cost per dBAnnual cost per dB 72-94 68-89 -5 57-75 -20
per household2 (£)

'Relative to baseline. 2At 3.0% for 30 years. Source: Authors' calculations using INM 6.2 and
ArcGIS 9.1

contours using INM along with Aircraft Communication Addressing and Reporting

System (ACARS) flight movement data (Bowler, 2008). Assuming the same population

characteristics and housing values which I use for the previous calculations, I find that

the total noise-damage costs under a 1997-type scenario is about £560-£730 million.

Thus, the damage costs in 2005 have been reduced by about one-third from 1997

levels. Although a high-growth scenario would create total noise-damage-costs only

slightly higher than 1997 levels, there are key differences in which communities would

be exposed to noise. The addition of a third northern runway, for example, would expose

a new set of households to high noise levels.
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Figure 6-6: Comparison of noise contours at Heathrow, 1997 and 2005
(baseline)

Table 6.7: Noise-damage-cost calculations at London
versus 1997 and high-growth scenario

Heathrow: 2005 baseline

Baseline 1997 High
(2005) Levels Growth

Annual Air Transport Movements 461,000 426,320 754,000
Contour Area (km2) 84.8 151.6 139.4
Population > 57-dBA 168,490 287,030 283,110
Housing > 57-dBA 69,500 120,210 118,590

Total Damage Costs (Em) 310-410 560-730 570-750
Annual Damage Costs at 3.5% (£m) 10.8-14.2 19.5-25.6 20.0-26.3
Damage Costs per dB/household/yearl (£) 65-86 68-89 72-94

'At 3.0% for 30 years. Source: Authors' calculations using INM 6.2 and ArcGIS 9.1
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Figure 6-7: Baseline (2005) and future 57-dBA 16-hour LEQ contours at East
Midlands Airport

6.2.3 East Midlands Noise-Damage Costs

The scenarios at East Midlands include a roughly 100% increase in operations under

the medium-growth scenario and 350% increase under the high-growth scenario. As

shown in Figure 6-7, the area of the 57-dBA contour grows by about 75% under the

medium-growth scenario and about 200% under the high-growth scenario. Although the

geographic extent of the noise impacts grows somewhat modestly relative to the increase

in operations, the number of housing units affected increases more steeply. Under the

current airport operational scenario, there are about 390 dwelling units within the 57-

dBA contour. As the traffic levels increase, the contour area grows to include about 1,300

housing units under the medium-growth scenario and 4,200 housing units under the high-

growth scenario.
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Table 6.8: Noise damage cost calculations around East Midlands Airport under
different traffic growth scenarios

Baseline
(2005)

Medium Growth

Levels Change'
(%)

High Growth

Levels Change'
(%)

Annual Air Transport 57,400 122,300 113 262,200 3Movements

Affected area at 57-dBA LEQ16 level

Land area (km2) 9.4 16.6 77 29.2 2
Population 890 3,000 237 9,930 1,C
Housing Units 390 1,300 233 4,200 9

Noise-Damage Costs

Total cost (£m) 0.94-1.24 3.33-3.47 180 10.83-14.23 1,C
Annual at 3.5% (£m) 0.03-0.04 0.12-0.15 275 0.38-0.5 1,1
Annual cost per dB 45-60 47-62 3 50-66
per household2 (£)

'Relative to baseline. 2At 3.0% for 30 years. Source: Authors' calculations using INM 6.2 and
ArcGIS 9.1
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The area surrounding the East Midlands airport is much more sparsely populated

than London, and the housing prices are also much lower-with average prices about

£93,000 to £100,000 pounds (compared to about £315,000 in London). As such, there

are disproportionate increases in the noise-damage costs relative to increases in

capacity. Table 6.8 shows that the current noise-damage costs range from about £0.18

to £0.24 million. Under the medium-growth scenario, the noise-damage costs increase by

about 300% to about £0.7-£1.0 million-a greater change than the population or dwelling

units affected. Under the high-growth scenario, the noise-damage costs increase to

£3.2--£4.2 million. On an annual per household per decibel basis and assuming a 3.0%

discount rate and a 30-year house lifetime, the average noise-damage costs are £45-

60 (E58-77) under the baseline scenario and £50-66 (4E64-85) under the high-growth

scenario.
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Table 6.9: Contour-level noise-damage costs at East Midlands Airport under
baseline scenario (0.67% NDI)

Noise Housing Units Total Damage Damage Costs
Contour Costs per Household

Level Share Amount Share Total Annual
Amount (%) (£m) (%) (£) (£)

>72 dBA
69-72 dBA
66-69 dBA
63-66 dBA -
60-63 dBA 260 66.5 1.1
57-60 dBA 130 33.5 0.1

> 57 dBA 390 100.0 1.2

NDI of 0.67%, and annual annuity rate of 3.5%. Source:
ArcGIS 9.1

90.2 4,320
9.8 940

100.0 3,190

Authors' calculations using INM

Table 6.9 shows a breakdown of the total damage costs and damage costs per

household under the baseline scenario at the East Midlands airport. At a per-household

cost of £4,320 in the 60-63-dBA band and £940 in the 57-60-dBA band, the noise-

damage costs at the East Midlands are significantly less than those for similar contour

areas at London Heathrow airport (Table 6.5).

6.3 Decomposing the Damage Costs

My calculations of the noise-damage costs in the previous section are based on the

concept of benefit transfer: using the findings or parameters from one study and applying

them elsewhere (Johnson and Button, 1997, p. 224). For my noise-damage-cost

calculations at London Heathrow and the East Midlands airports, for example, I use the

results of empirical studies that relate a change in property value per decibel change in

noise exposure. Yet differences in how these studies are conducted can produce wide
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variations in Noise Depreciation Indexs (NDIs). Schipper et al. (1998), for example,

found NDIs ranging from 0.10% to 3.57% change in property values per decibel change

in noise exposure. Some of the key differences in these studies include the way in

which the equations are specified, the threshold noise levels, and whether or not airport

accessibility is included in the model (Nelson, 2004, pp. 7-10).

As benefit transfers are often used in policymaking for purposes such as benefit-

cost analyses, analysts need to understand how key indices such as NDIs are developed

and applied. Here, I further illuminate the noise-damage cost pathway by conducting a

series of sensitivity analyses to identify how changes to key model inputs affect the noise-

damage costs. First, I examine how changes in the NDIs and baseline reference noise

levels affect the damage costs. I then compare the noise-damage costs using several

different noise metrics, and also look at sensitivity of different discount rates.

6.3.1 Noise Depreciation Indices

My damage-cost calculations in Section 6.2 are based on NDIs observed in previous

studies of airport noise. Yet NDIs can vary widely, due to the ways in which analysts

setup their empirical models, as well as the type of data that are available. In this section,

I analyze the sensitivity of the damage costs to the NDIs themselves, as well as the

noise-metric type and the background threshold-noise levels-two key factors in models

of noise and housing prices.

The NDIs used in airport noise-damage cost studies describe the percent change

in housing value per change in noise levels. One of the key differences among these

studies is in how the aircraft-noise levels are measured (McMillen, 2004, p. 629). Most
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Table 6.10: Noise impacts under different metrics

Metric

Impact NEF NNI DNL LEQ 16

Measurement Unit EPNdB EPNdB dBA dBA

Background Noise 25 27 55 57
Little or No Impacts 0-20 35 < 55 57
Some or Moderate Impacts 20-30 45 55-65 63
Considerable Impacts 30-40 55 65 69
Severe Exposure > 40 > 75 72

NEF = Noise Exposure Forecast; NNI = Noise and Number Index; DNL = Day-Night Level; LEQ 16
= 16-hour Equivalent Continuous Noise Level. Source: Horonjeff and McKelvey (1983), others

economists used the Noise Exposure Forecast (NEF) metric in hedonic-price studies

up through the 1980s, but began using Day-Night Level (DNL) as airports in the United

States adopted this metric. Analysts in the United Kingdom used the Noise and Number

Index (NNI) metric through the 1990s until it was replaced by the LEQ 16 metric.4 Because

these average peak noise metrics represent noise over a period of time, however, they

may understate the true disturbance cause by increased flight activity in airport noise-

housing-price studies (Feitelson et al., 1996, p. 12). Nevertheless, they are widely used

by airport operators. Table 6.10 compares the key noise threshold levels for the different

metrics. Analysts generally consider background noise to be at the 25 NEF level, or 55-

dBA DNL and 57-dba LEQ16.

Tables 6.11 and 6.12 show the wide range in NDIs and noise metrics found in recent

studies. Note that the NDIs in Table 6.11 are presented as the percentage depreciation

in housing-price per increase in noise level (in dB), while the NDIs in Table 6.12 are

shown as the percentage depreciation in total housing-price between a noisy and a non-
41 use this latter metric as the basis for the damage-cost calculations presented earlier.
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Table 6.11: Summary of noise-depreciation indices from previous studies: NDIs
per decibel

noisy area based on a specified background noise threshold (such as 65-dba DNL, for

example). This is because some analysts use a binary value (e.g., noisy or not-noisy)

in their hedonic price model rather than a continuous noise level variable (e.g., 65- or

66-dBA). Such an approach recognizes that noise is measured on a logarithmic scale,

and that the relationship between noise levels and damage costs may not necessarily be

linear (Cohen and Coughlin, 2007, p. 23). This non-linearity is contrary to what may be

suggested by a non-dimensional NDI.

The small number of noise studies sampled in Tables 6.11 and 6.12 show a relatively

wide range in NDIs based on a range of noise metrics, threshold levels, and model

types. The highest reported NDI in Table 6.11 is 3.5%, from a study of London airports

(Yamaguchi, 1996). Schipper et al. (1998) reported this finding, although they appear to
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NDI
Study (% per Metric Notes

dB)

Morey (1990) 0.10 NEF NEF 15-30

Pennington et al. (1990) 0.15 NNI NNI 27-40. Initial estimate only-
others insignificant. ( 6% of value)

Kaufman and Espey (1997) 0.34 DNL includes distance factor; noise at
65/70/75 DNL

O'Byrne et al. (1985) 0.64 NEF NEF 25-45
0.67 DNL DNL 65-80

Uyeno et al. (1993) 0.65 NEF Detached family houses; NEF 25-40
0.90 NEF Multi-unit Condos

Continuous and discrete (LEQ 60 or
Tomkins et al. (1998) 0.78 LEQ 57+); NNI 40 or 35+ not significant
Levesque (1994) 1.30 EPNL Number of events > 75 EPNL
Yamaguchi (1996) 3.57 LEQ 10.72 per 3 dBA LEQ; (2.14 NNI)

NEF = Noise Exposure Forecast, NNI = Noise and Number Index, DNL = Day-Night Level, LEQ =
Equivalent Continuous Noise Level, and EPNL = Effective Perceived Noise Level.



Table 6.12: Summary of noise-depreciation indices from previous studies: NDIs
per total house value

NDIStudy (Price) Metric Notes(Price)
Feitelson et al. (1996) 1.8-3.0 DNL For renters

65 DNL vs. 60 DNL zone; EqualsEspey and Lopez (2000) 2.4 DNL 0.28% per dB
For owners; stated preference; DNLFeitelson et al. (1996) 2.4-4.1 DNL For owners; stated preference; DNL55 vs. 70 (+15) or 50 vs. 75 (+25)

Tomkins et al. (1998) 5.3 LEQ 57 LEQ
Tomkins et al. (1998) 8.0 LEQ 60 LEQ

Collins and Evans (1994) 8.0-9.5 NNI NNI 27; Detached houses
McMillen (2004) 9.2 DNL 65 DNL; Equals 0.92% per dB

70 DNL vs < 65 DNL; distanceCohen and Coughlin (2007) 20.8 DNL -0.15; Equals 3.3% per dB

NNI = Noise and Number Index, DNL = Day-Night Level, and LEQ = Equivalent Continuous Noise
Level.

have converted Yamaguchi's NDI specification of 10.7 per 3-dBA LEQ contour band in

order to get an NDI on a per-decibel basis.

Using a stated-preference survey, Feitelson et al. (1996, p. 12) found slightly

lower NDIs for renters than for home owners-perhaps due to the reduced mobility of

homeowners relative to renters. In a relatively small study from 1987, Uyeno et al. (1993)

also found slightly higher NDIs for multi-unit condos than for detached family homes

around Vancouver, British Columbia.5 Espey and Lopez (2000) and McMillen (2004)

found NDIs of 2.4% and 9.2% of the total home value, but had different sample sizes and

sites (Reno and Chicago O'Hare airports). Cohen and Coughlin (2007) found a 20.8%

NDI on total housing-prices, but used a higher noise threshold than other studies: 70-75

dBA DNL.
5These could be due to the presence of newer, more expensive condos in the City of Richmond, relative

to older, more established homes in the Vancouver area.
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Day-Night Level = DNL, Noise Exposure Forecast = NEF, and LEQ 16 = 16-hour Equivalent Continuous Noise
Level.

Figure 6-8: Comparison of baseline (2005) noise contours at London Heathrow
airport using alternative metrics

Because the noise metrics and threshold levels jointly determine the number of

persons affected by airport noise, these become key determinants in the differences

in damage costs under different NDIs. Figure 6-8 compares the 55- and 65-dBA DNL

contours with 25-NEF and 57-dBA LEQ 16 contours based on 2005 operations at London

Heathrow Airport. The 57-dBA LEQ 16 contour (84.8 km2) is slightly larger than the the

25-NEF level (66.4 km2), but the 55-DNL contour is much larger than either of these

(167.7 km2).

In Figure 6-9, I plot the damage costs at London Heathrow Airport based on the

various methodologies shown in Tables 6.11 and Tables 6.12. The X-axis shows the

population affected under the each methodology (noise metric and threshold level). The

Y-axis shows the total damage costs at London Heathrow under each of the different

methodologies. Figure 6-9 shows that most of the methodologies using high thresholds
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Figure 6-9: Comparison of total damage costs at London Heathrow using
different NDIs based on NEF, DNL, and LEQ contour areas

(65- or 70-DNL) generally have total damage costs on the lower end of the range-less

than £100 million. The 25-NEF and 57-LEQ 16 have relatively similar damage costs-

around £300 to £500 million. The key difference, however, is that the 25-NEF level

contains about 114,000 residents, while the 57-LEQ level contains about 173,000

people. The meta-analyses of Schipper et al. (1998) (0.90% NDI) and Nelson (2004)

(0.51%-0.67% NDI) are on the higher end of both affected populations, due to the 57-

LEQ basis, and overall damage costs-excluding the major outliers of Yamaguchi (£2.2

billion at 57-LEQ) and Morey (£517 million for 877,000 people at 15-NEF). The higher

affected population and damage costs associated with these meta-NDIs reflects a

more conservative (and inclusive) modeling approach, from a damage-impact-modeling

standpoint.

Finally, I conduct a sensitivity test to examine the range in damage costs associated

with different NDIs for a given noise metric/threshold over the different growth scenarios.
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Table 6.13: Noise damage cost calculations at London Heathrow under different
noise depreciation indices

Current Medium High
(2005) Growth Growth

Total Damage Costs (£m):

at 0.50% NDI 300 410 560
at 1.00% NDI 610 820 1,120
at 3.50% NDI 2,120 2,870 3,920

Annual Damage Costs (3.5%; £m):

at 0.50% NDI 10.6 14.3 19.6
at 1.00% NDI 21.2 28.7 39.2
at 3.50% NDI 74.3 100.4 137.3

Source: Authors' calculations using INM 6.2

I test three different NDIs: 0.5%, 1.0%, and 3.5%. The DfT used NDIs of 0.5% to 1.0%

in its analysis of airports in the South East (UK Department for Transport, 2003d), while

Lazic and Golaszewski (2006) suggests that a 1% NDI is a reasonable estimate, based

on a survey of recent literature. Yamaguchi (1996) found an NDI of 3.5% for the London

airports.

Table 6.13 shows the noise-damage costs at London Heathrow under different NDIs.

An NDI of 1.0% results in damage costs of about £600 million under the current baseline

scenario, or about £21.2 million annually. At an NDI of 3.5%, the total current damage

costs increase to £2.1 billion, or about £74.3 million annually. The high sensitivity of the

damage costs to different NDIs underscores the importance of well-documented studies,

especially in benefit-transfer policy applications.
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6.3.2 Discount Rates

Another area of modeling subjectivity involves the discounting assumptions used to

convert the damage costs into an annualized value. Analysts use discount rates to

account for the existence of net productivity and interest rates as well as the time

preference of money: capital invested today will earn a profit (interest) over time, but

people prefer money today rather than money in the future (Clayton and Radcliffe, 1996,

p. 123).

Clayton and Radcliffe (1996, pp. 124-126) suggest that discounting makes it more

attractive to defer environmental costs to future generations, and that a discount rate

of zero may be appropriate if future generations will derive no less benefit than current

generations from an environmental resource. From a noise-nuisance standpoint,

however, the recent Attitudes to Noise from Aviation Sources in England (ANASE)

study suggests that people are more sensitive to noise today than they were in the past

(perhaps due to rising socio-economic standards)-suggesting that some discounting is

appropriate.

PV = P ( r(1 + r)n (6.3)
(1 + r)n -1

Pearce and Pearce used a HM Treasury real annuity interest rate RA of 6.0%, while

Lu and Morrell (2001) and Levinson et al. (1997) use the capital recovery formula shown

in Equation 6.3 to convert the average house value, P, into an annual house rent, P,.

Levinson et al. use an assumed discount rate, r, of 7.5% and an amortization period n
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Table 6.14: Noise-damage-cost calculations at London Heathrow under different
annuity rates

Current Medium High
(2005) Growth Growth

Annual Values based on Social Time Preference Rates (Em):
3.5% in perpetuity 10.8-14.2 14.9-19.2 20.0-26.3
6.0% in perpetuity 18.6-24.4 25.1-33.0 34.3-45.1

Annual Values based on Mortgage Rates (£m):
5.25% at 30 years 20.7-27.2 28.0-36.8 38.2-50.2
7.50% at 30 years 26.2-34.4 35.4-46.5 48.4-63.6

Source: Authors' calculations using INM 6.2 and ArcGIS 9.1

of 30 years. At the end of Feburary 2008, the mortgage rate in the United Kingdom was

around 5.25%, while the base 30-year, fixed-rate US mortgage rate was 6.24%.

Table 6.14 shows the different values of the noise-damage costs using both the real

annuity rates and the capital-recovery formulas. Using an annuity rate of 6.0% instead of

3.5% increases the annual damage costs by almost 80%. The use of the capital recovery

formula substantially increases the total annual damage costs relative to the real annuity

rates.

6.3.3 Reference Values

In Section 6.3.1, I note that the combination of the NDIs and the noise level thresholds

determines the affected population and the damage costs. Yet noise policies and

threshold levels also add some degree of subjectivity into damage-cost calculations,

by way of how these policies are established. Although analysts may recommend that

noise metrics and threshold levels correspond with the degree of annoyance in the

community, policymakers must also weigh the acceptability of such thresholds among
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a wide range of community stakeholders, including airport-area residents and airport

operators. U.K. policymakers, for example, selected 57-dBA as the baseline background

noise level based on its correspondence with NNI noise metric levels used for years, in

addition to results of noise-annoyance studies. The UK Aircraft Noise Index Study (ANIS)

study found that the onset of noise annoyance occurred at 55-dBA (LEQ 24hr), while high

annoyance occurred at 70-dBA. The study also found that sleep disturbance occurs at

about 45-dBA, but that the difference between interior and exterior noise accounts for

another 15-dBA. The most recent ANASE study suggests that residents have become

more sensitive to noise, and that annoyance may begin at the 50-dBA level.

In order to look at the sensitivity of these damage costs to noise policy thresholds,

I test the impact of different baseline reference values apart from the 57-dBA LAeq level.

Table 6.15 shows the damage costs against baseline reference noise levels of 55- and

50-dBA LAeq. Under the current baseline scenario, there are about 172,500 people within

the 57-dBA boundary. This increases to 260,800 people at 55-dBA, and 773,200 at 50-

dBA. Thus, lowering the noise threshold by 2-dBA to 55-dBA substantially increases the

damage costs from about £300-400 million to £550-725 million. At a threshold of 50-

dBA, the noise damages are £2.1-£2.8 billion. Annual damage costs could be as much

as £25 million at 55-dBA and almost £97 million at 50-dBA.

6.4 Context

Property values, however, do not tell the whole story. Although property values are

associated with household income and socio-economic occupational status, they may

not necessarily reveal the full extent of the damage costs imposed on communities.

189



Table 6.15: Noise damage cost calculations at London Heathrow
reference values: 55- and 50-dBA LEQ16

under different

Current Medium High
(2005) Growth Growth

Affected Housing Units

> 55-dBA 107,470 136,990 199,680
> 50-dBA 336,350 360,110 508,250

Total Damage Costs (0.51%-0.67% NDI)

> 55-dBA (Em) 550-720 750-980 1,040-1,370
> 50-dBA (Em) 2,100-2,760 2,470-3,250 3,410-4,480

Annual Damage Costs (3.5%)

> 55-dBA (Em) 19.3-25.4 26.1-34.3 36.4-47.9
> 50-dBA (fm) 73.4-96.5 88.5-113.6 119.3-156.8

Source: Authors' calculations using INM 6.2 and ArcGIS 9.1

Indeed, contingent-valuation surveys typically produce noise-damage costs values that

are higher than hedonic price studies, because they include loss-of-use value rather than

just market premiums (Feitelson et al., 1996, p. 12).

Here, I look at household income and other socio-economic indicators to add a

further dimension to the damage costs of airport noise on surrounding communities. I

use Geographical Information System (GIS) to map several key metrics associated with

environmental justice and equity considerations, including household income and socio-

economic occupational status. By identifying how these socio-economic characteristics

are related to each of the noise-damage costs scenarios, I provide a context from which

to analyze the damage costs.
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6.4.1 Noise-Price-Distance Relationships

The damage costs that I calculate in Section 6.2 are all based on population centroid-

based data for airport noise and housing prices. In Figures 6-10 and 6-11, I plot those

data to show the relationships among housing prices, distance to the airport, and noise

levels around London Heathrow Airport at the census output-area level.6

Despite the undesirable attributes of aircraft noise, Nelson (2004, pp. 8-9) and others

note that close proximity or accessibility to the airport can have a positive effect on

property value. Cohen and Coughlin (2007) incorporated this into their study and found

that housing values declined by -0.15% as distance increased from the airport. Figure

6-10, however, shows the opposite relationship at London Heathrow airport: increasing

housing prices with increasing distance from the airport. The R2 of 0.64 indicates a

relatively strong linear relationship. The high-priced outliers(£400,000) at 5-8km from the

airport are located near Windsor Castle on the east edge of Windsor and Maidenhead,

and represent a unique situation.7

In Figure 6-11, I plot the housing prices again on the Y-axis, and decreasing sound

levels along the X-axis--similar to the effect of increasing distance (i.e., noise levels

are lower as you get further from the airport). I find a positive relationship between

decreasing noise levels and increasing housing prices: as noise levels increase, average

house prices decrease. The minimum house price is about £150,000, but the maximum

house price increases from about £250,000 at the 72-dBA noise level to over £600,000

at the 57-dBA noise level. The wider range in housing prices at lower noise levels (57

to 60-dBA) is partially due the fact that there are some areas that are close to airport
6Again, each representing around 300 residents and 130 housing units
7Ward of Horton and Wraysbury (OOMENP), in the Royal Borough of Windsor and Maidenhead.
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Figure 6-10: Housing prices versus distance to airport - London Heathrow

(3-6 km), but which have low noise levels. Because Heathrow operates in an east-west

configuration, most of the noise impacts are concentrated to the east and west of the

airport. Although areas directly to the north and south of the areas have much lower

noise levels than areas to the east and west of the airport, they still have low average

housing prices.

6.4.2 Income

Having established basic relationships between the housing prices and noise levels (or

distance to the airport), I now look at the average income of the residents living near

Heathrow Airport. Although house value is itself a measure of household permanent

income (Nelson, 2004, p. 18), I use income as a more direct indicator of socio-economic

status. The 2001 UK census did not ask a question on household income, but the UK

Office of National Statistics (ONS) did publish ward-level estimates of weekly income. In
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Figure 6-11: Housing prices versus noise levels - London Heathrow airport

Figures 6-12 and 6-13, I show the estimated weekly net household income for residents

living around Heathrow Airport and the East Midlands airport, respectively. I also show

the 2005 baseline 57-dBA LAeq contour. Within the 57-dBA contour around Heathrow

airport, there is a broad range of weekly incomes up to £1200 pounds, but most of the

population is within the lower three quintiles (up to £900 per week). In general, incomes

are much lower around the East Midlands airport, but the 57-dBA contour contains

incomes within the middle and upper-middle quintiles (£475-624 pounds per week).

To explore the distributional characteristics of noise, I plot the average incomes for

households within 3-dBA contour bands in Figure 6-14. Around Heathrow Airport, the

louder areas (closer to the airport) typically have average household earnings that are

much lower than the regional average (about £760 per week). There is much less of

a relationship between noise and incomes around the East Midlands airport. Due to
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Figure 6-12: Estimated weekly household income - London Heathrow airport,
2001-2002 (Ward-Level)

Figure 6-13: Estimated weekly household income - East Midlands airport, 2001-
2002 (Ward-Level)
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Figure 6-14: Estimated weekly total household income by contour - Baseline
scenario (2005)

the relatively rural nature of the East Midlands region, the average household earnings

around the airport is slightly higher than the regional average.

Finally, I also use occupational type to add further depth to this analysis at a more

detailed level (census output-area) than is possible using only income data (ward-level). I

use socio-economic classification (occupation) as a proxy for annual income. In Figure

6-15, I identify the percentage of workers in routine- and semi-routine jobs as well as

unemployed persons.8 The map shows large concentrations of residents in these lower

socio-economic class in the areas well within the 57-dBA boundary, close to London

Heathrow Airport. There are also large concentrations of such workers to the north of

the airport, and these communities would be adversely affected by the addition of a third

runway.
8This corresponds to the ONS socio-economic classification categories 6-8 in the UV31 dataset.
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Figure 6-15: Socio-economic classification, 2001

In Figure 6-16, I plot the distribution of workers by socio-economic status for each

contour band. As noise levels increase, the percentage of workers in the routine or

unemployed positions increases from 18% (regional average) at the > 57-dBA level up

to 26% at the > 72-dBA level, while those in high-level managerial positions decreases

dramatically from about 15% to 4%. The share of workers in mid-level or supervisory

positions remains relatively constant.

At one level, the association between higher noise levels and lower socio-economic

groups is consistent with the view of quiet as a luxury good: that people who can afford

to live elsewhere will do so. At another level, these data also show that residents in the

lower socio-economic groups are bearing a greater burden of the impacts associated with

airport noise-and would trigger environmental justice or equity considerations under

expansion.
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Figure 6-16: Socio-economic status by noise level, baseline scenario (2005)

6.4.3 Household Impacts

In the context of an average household living within the 57-dBA boundary around

Heathrow, the average damage cost per household is £4,451-£5,847 on average. This

is based on an average noise level of 60.8-dBA-about 3.8-dBA higher than a 57-

dBA ambient noise level. On an annual basis, this averages to about £156-£205 per

household based on a STPR of 3.5%, or £377-£495 based on a 7.5% capital recovery

rate. This is much lower than the $27,500 (£13,870)9 per-home that U.S. airports spend

on noise insulation (see page 54).

The average house price around London is about £314,500, or about £26,600 in

annual rent (under a capital recovery rate of 30 years at 7.5%; £7,408 at 3.5%). The

average house within the 57-dBA contour has a value of £253,112, or about £21,431 in

annual rent (£8,859 at 3.5%). Thus, the damage costs are worth as much as 1.8% to
91nterbank rate of 0.50426 on 05 July 2008 at www. oanada. com.
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2.3% of the total market value of a standard property. The total average weekly income

for the households within the 57-dBA contour is about £738, or about £38,367 per year

(52 weeks). Average net income after housing and taxes is £465 per week, or £24,158

per year. To put it another way, the monetized noise-damage costs on average, could be

as much as half the weekly income of a household around Heathrow.

6.4.4 Annoyance

Finally, I contrast these noise-damage-cost calculations with annoyance levels. Although

disturbance is also a function of flight frequency as well as sound levels, airport operators

and analysts do not typically publish metrics that incorporate such factors (Eagan, 2006).

Figure 6-17 shows a set of high-, medium- and low-annoyance curves for aircraft noise

as a function of DNL noise levels as estimated by Miedema and Oudshoorn (2001). In

Figure 6-17, I used data from Fidell and Silvati (2004) to plot the underlying observations

from social annoyance surveys--including a dozen recent studies which were not

captured by Miedema and Oudshoorn. I use these functions to calculate the levels of

population annoyance under the different growth scenarios at London Heathrow airport.

In Table 6.16, I1 find that there are about 120,000 residents living within the 55-dBA DNL

contour around Heathrow airport who are annoyed by noise. About 43,000 of these

residents are highly annoyed. Within the 65-dBA DNL contour, there are 19,000 residents

who are annoyed by aircraft noise, including 10,000 residents who are very annoyed. The

large magnitude of these numbers reflects a different dimension of the political economy

underlying airport-noise conflicts than is captured by the noise-damage costs, but also

underscores why noise can be such a critical issue in airport-communities.
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Table 6.16: Persons annoyed
airport, baseline scenario

as a function of noise level at London Heathrow

Annoyed Highly Annoyed
Noise Level Total Percent Percent

(DNL) Population Persons Percent Persons Percent
(M) (%)

55 dBA 428,050 118,940 28 43,930 10
65 dBA 39,960 19,300 48 10,570 26
75 dBA 220 160 73 110 49

Source: Authors' calculations using INM 6.2 based on Miedema and Oudshoorn (2001)
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6.5 Summary

I analyzed the noise-damage costs at London Heathrow airport using the 2005 levels

as a baseline-about 461,000 annual air transport movements, or 1,250 takeoffs

and landings each day. I compared a medium-growth scenario with 551,000 annual

movements, and a high-growth scenario, which adds a third runway to accommodate

754,000 annual movements. I assume current population levels and housing values for

this analysis. Based on my calculations for baseline scenario, there were about 168,500

residents living in 65,500 housing units exposed to noise levels greater than 57-dBA LEQ

around London Heathrow airport.

I find that the total noise-damage costs in 2005 were about £300-400 million, and

could grow up to £575-750 million under a high-growth scenario with a third runway.

I also found that the introduction of an advanced technology, low-noise aircraft could

reduce the noise-damage costs to £200-250 million, even under a high-growth scenario.

On an annualized basis using a 3.5% annuity rate, the baseline noise-damage costs were

about £11-14 million, growing to £20-26 under a high growth scenario. The average

noise-damage costs around Heathrow are about £5,850 per household, although this

ranges from £23,180 for the 230 homes exposed to noise levels greater than 72-dBA to

£2,110 for each of the 36,000 households exposed to between 57- and 60-dBA of noise

levels.

At the East Midlands airport, I found significantly lower noise-damage costs, or about

£0.94-1.24 million in total under a 2005 baseline scenario with 57,400 total annual air

transport movements. Under the baseline scenario, there were about 890 residents and

390 housing units exposed to noise levels above 57-dBA LEQ.
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I also found that different factors embedded within meta-analyses and NDIs of

previous noise studies (noise metric, threshold level, discount rates) all have large

impacts on the NDIs as well as the damage costs. Because small changes in these

assumptions can have big impacts on the final valuation, understanding these factors

is crucial for proper benefit-transfer policy applications. Espey and Lopez (2000, p.

415) also distinguish homeowners' willingness to pay to avoid airport noise versus the

average impact of noise on the market value of properties. As such, housing-price-

based NDIs that describe noise damage costs as a percentage effect per DNL may even

underestimate the actual welfare loss. Nevertheless, the calculation of these damage

costs suggests that the noise-damage costs are of a large magnitude-especially relative

to the greater regional benefits from aviation.
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Chapter 7

Conclusion

Aircraft noise conflicts continue to present significant challenges to policymakers and

airport stakeholders. Indeed, the National Research Council (2003, p. 23) counted 4

national interest groups and 69 local community organizations in the United States

that focus on airport noise issues. The role of airports in linking global economies and

local communities requires policymakers to balance the economic demands for air

transportation and regional growth while responding to the local needs of airport-area

communities.

In this analysis, I highlight the interrelationships between airport flight operations

and noise impacts on surrounding communities and between air transport industry

and regional economic growth. I estimate the regional economic and catalytic impacts

associated with the growth of the air transport industry under different airport growth

scenarios at London Heathrow and the East Midlands airport and then calculate the

noise-damage cost impacts under these same scenarios.
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7.1 Summary of Results

First, I compare the noise-damage costs and economic impacts associated with aviation

growth in the East Midlands region. To analyze the economic impacts of increased

flights at the regional level, I use the REMI-ECOTEC model and focus on the impacts

of the air transport industry on the rest of the economy. The REMI-ECOTEC model

is an econometric input-output model, which uses neoclassical economic behavioral

characteristics and fixed trade relationships to forecast changes in output, labor, capital

demand, wages and prices, demographics, and market shares across different regions.

The model also incorporates changes in labor- and commodity-accessibility to reflect

agglomerative and dispersal economic relationships associated with urban density. Model

parameters are calibrated using both national- and region-specific data on employment,

wage rates, productivity, demographics, and growth rates from the UK Office of National

Statistics, UK Actuary Department, Eurostat, and other sources.

Using this model, I test the impacts of changes to the economic output of the air

transport sector and compare these scenarios against a baseline growth forecast.

Under this baseline forecast, the total UK value-added grows at an average rate of

about 1.4% per annum over the 25 years between 2005 and 2030. The value-added

of the air transport sector grows at a faster rate during this same time period-about

2.2% annually, on average. The inputs used to model the direct, indirect, and induced

economic impacts (changes in aviation output) as well as the catalytic impacts (changes

in productivity or accessibility) for each growth scenario are shown in Table 7.1. For

the changes in air transport sector output, I assume that the air transport growth is

increasing or decreasing relative to the baseline scenario. I base the catalytic-related
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Table 7.1: Aviation growth scenarios and economic model inputs

Model changes relative to baseline in 2030
Air Transport

Scenario Growth Air Transport Catalytic Impacts (%)
(%) Sector Output Total Factor Commodity

(£m) Productivity Accessibility

Low Growth 1.1 -120 0.078 1.1
Baseline 2.2 n/a 0.132 2.2
Medium Growth 3.4 +160 0.204 3.4
High Growth 4.5 +370 0.270 4.5

In 2002 £. N/A = Not applicable. Source: Author's calculations using REMI-ECOTEC 6.0

increases in productivity on analyses conducted by Oxford Economic Forecasting

(2006a), and assume that each 1% increase in air transport growth is proportional to

a total factor productivity increases at a ratio of 0.06%. As such a 4.5% increase in air

transport industry output under the high-growth scenario is related to a 0.270 increase in

total factor productivity. For the catalytic-related commodity access growth scenarios, I

assume that accessibility increases at the same rate as the growth of the sector itself.

Under a high-growth scenario based on traffic projections by the UK Department for

Transport, I find that the total economic impacts of additional air transport sector growth

(4.5%) in the East Midlands are up to £510 million in total UK value-added per year by

2030. Of these impacts, about 30% (£160 million) are in the air transport sector in the

East Midlands; while another 20% (£100 million) are in other industry sectors in the East

Midlands. The remaining 50% of the impacts (£250 million) occur in other regions of the

United Kingdom and in sectors other than the air transport industry.

These impacts are derived from economic accounts of supplies and purchases

between different industry sectors and include the directly related spending and jobs

in the air transport sector as well as the indirectly related supporting sectors needed
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to handle the extra £370 million in air transport industry output relative to the baseline

scenario. The total output of the air transport sector in the East Midlands under this

scenario in 2030 is over £900 million-a total increase of almost 70% relative to the

baseline forecast of about £550 million in output. This forecast also includes the impacts

from induced spending by households receiving income from jobs directly and indirectly

supported by this extra activity. These impact forecasts also incorporate adjustments to

the regional economy that would result from longer-term population changes and inter-

regional trade. The labor and commodity accessibility increases the total value-added

by about 7%; thus, most of the impacts are derived from the air transport sector supply-

chain plus related household spending. I conclude that the air transport sector has wide

economic linkages that extend far beyond the region.

In addition to these impacts from the growth of the air transport sector employment

itself, I also consider the long-term catalytic impacts of air services on the enhanced

productivity of the regional economy. Here, I take into account the notion that an increase

in air accessibility can make businesses more productive-with the access to resources

making them more efficient and enabling them to expand their market share. Oxford

Economic Forecasting (2005, 2006a) and others have accounted for such catalytic

impacts by looking at the relationship between increased business travel or air freight

usage and total economic productivity growth. I apply these relationships to estimate

the catalytic increases in total factor productivity under different air transport growth

scenarios-an increase of up to 0.27% by 2030 under the high-growth scenario. These

aviation-related increases in total factor productivity affect output in various sectors and

then generate direct, indirect, and induced effects. Based on this, I find that the catalytic
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impacts from air transport growth on regional productivity under a high-growth scenario

could be £510-540 million per year throughout the United Kingdom.

Using an alternative way of estimating these catalytic impacts and more liberal

assumptions regarding changes to accessibility, I find that the catalytic impacts of

enhanced accessibility to the air transport sector could potentially increase total regional

value-added by £1.9-6.3 billion in value-added throughout the United Kingdom under

a high-growth scenario. These impacts are based on reductions in the effective cost

of air transport, and thus reflect increased utilization and efficiency of different sectors

that rely on air transport. As such, these impacts also include the associated direct,

indirect, and induced impacts of the increased activity in these other sectors. Although

these alternative accessibility-based catalytic impact estimates require further study

and analysis, they do show that there are much larger catalytic economic impacts from

growth beyond the traditional measures of direct, indirect, and induced activity from the

air transport sector itself.

Having identified the regional economic impacts from aviation growth, I use the

Federal Aviation Administration Integrated Noise Model to calculate the changes in the

airport noise levels associated with this growth. The flight assumptions used in the airport

noise model are shown in Table 7.2. I then value these impacts in terms of noise-damage

costs on housing prices, based on empirically observed relationships between noise

levels and differences in housing prices around airports in the United States, Canada,

and elsewhere. The underlying economic theory is that residents are fully mobile and

maximize their personal welfare by capitalizing the health, annoyance, and other physical

impacts of noise within their housing budgets. Assuming that people are fully aware of
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Table 7.2: Aviation growth scenarios and noise model inputs

East Midlands London Heathrow

Scenario Annual Air Growth vs. Annual Air Growth vs.
Transport Baseline Transport Baseline

Movements (%) Movements (%)

Baseline (2005) 58,000 - 456,000
Medium Growth 122,000 +110 551,000 +20
High Growth 262,000 +350 754,000 + 65

Note: Air transport movement = one aircraft takeoff or landing. Source: CAA, BAA, NEMA

airport noise as they make their housing decisions, the differences in housing prices

reflect the economic value of the noise impacts and thus incorporate the effects on health

and education. These values are generally comparable to stated preference surveys

and other methods that directly ask how people value aircraft noise impacts but are also

based on housing prices (Kish, 2008, p. 22).

Also, this average NDI-based approach produces more conservative noise-damage

cost estimates than an alternative method based on the marginal noise-damage costs

from each additional aircraft operation. This latter approach will underestimate the total

noise-damage costs at larger airports, such as London Heathrow Airport, because the

marginal sound energy from each additional aircraft operation is much less than the

average noise damage (Pearce and Pearce, 2000, p. 14).

At the East Midlands airport, the noise-damage costs would increase from £0.03-

0.04 million annually under the baseline scenario up to £0.4-0.5 million under a high-

growth scenario. Average airport-area noise levels above 57-dBA under this high-growth

scenario would affect up to 10,000 residents and 4,000 households. The average total

noise-damage cost per household is about £3,200, or about £110 annually. On an annual
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Table 7.3: Regional economic impacts and noise-damage costs under an East
Midlands high-growth scenario (4.5% annually)

Impacts in 2030 relative to baseline scenario (Em)
Type of Impact In-region Out-of-region Total UK-wide

impacts impacts impacts
Direct, indirect, and induced economic impacts on regional value-added

Air transport sector 150-160 5-10 155-170
Other sectors 95-100 225-240 320-340
Total impacts, all sectors 245-260 230-250 475-510

Catalytic economic impacts on regional value-added

Productivity-based 170-230 310-340 510-540
Accessibility-based 650-2,210 1,260-4,090 1,900-6,300

Noise-damage costs 0.4-0.5

Noise-damage costs in 2005 £; others in 2002 £. Source: Author's calculations using INM 6.2 and
REMI-ECOTEC 6.0
(eastmidsum)

per household per decibel basis and assuming a 3.0% discount rate and a 30-year

amortization period, the average noise-damage costs are £45-60 (E58-77) under the

baseline scenario and £50-66 (E64-85) under the high-growth scenario. For the East

Midlands region, I conclude that the economic impacts from growth in the air transport

sector far outweigh the noise-damage costs of that growth (Table 7.3).

I also analyze the noise-damage costs around the London Heathrow airport. The

annual noise-damage costs at London Heathrow are £11-15 million under a baseline

scenario and £20-26 million under a high-growth scenario. The higher annual noise-

damage costs reflect the higher housing values and much more densely populated

communities when compared with the East Midlands. To put this in a slightly different

way, the baseline willingness-to-pay for a reduction in noise is about £65-86 (483-1 10)
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per dBA per household per year.' This is higher than the per-dBNA/household/year values

that Kish (2008, p. 28) found in other studies, but reflects the more detailed noise-level

and population data used here.

Although I do not explicitly compare the noise-damage costs to the regional

economic impacts of the industry growth in the Greater London region, I note that these

higher noise-damage costs are contrasted against an air transport sector that is also

much larger in size: under the baseline year (2005), air transport in London is responsible

for 43,000 jobs and £5.8 billion in value-added. In comparison, the East Midlands air

transport sector has about 2,000 jobs and £230 million in value-added. Even under the

baseline scenario, the economic impacts of the air transport sector far outweigh the

noise-damage costs in Greater London.

I also look at the potential contributions of an advanced-technology, low-noise aircraft

to the noise-damage costs at London Heathrow. Under a limited implementation scenario

with only about 20% of the flights being operated by such low-noise aircraft, such an

aircraft could reduce the noise-damage costs down to £14-18 million annually--about

a third relative to the high-growth scenario. A more aggressive implementation scenario

(30% of all flights) would reduce the annual damage costs to £7-9 million-about two-

thirds below the high-growth scenario. When compared to the 2005 baseline instead

of the high-growth scenario, low-noise aircraft would reduce the noise-damage costs

by about 40% relative to the baseline levels while enabling aircraft traffic levels to grow

by about 60%. Although the development costs for such a future aircraft are unknown,

'Again, this assumes a 3.0% discount rate and a 30-year useful house life. I also note that the per-dBA
willingness-to-pay per dB per household has a large distribution of values and ranges from a minimum of
£43-£56 to a maximum of £157-206 (455-71 to C201-263). The average household in the area with noise
levels above 57-dBA contains 2.4 persons. Using a 3.5% annuity rate, the average willingness to pay is
£45-59 or E58-76 per dBA per household per year.
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this analysis shows that there is a measurable economic value from low-noise aircraft in

terms of reduced noise-damage costs.

7.2 Contributions and Policy Implications

In this analysis, I develop a methodological framework to compare the regional economic

impacts and noise-damage costs of aviation growth. I use the REMI-ECOTEC model

to forecast the economic impacts of growth in the East Midlands air transport sector

and the FAA Integrated Noise Model to model the noise impacts of additional flight

operations at London Heathrow and East Midlands airports. In addition, I am one of the

first analysts to consider and apply the long-term catalytic impacts of aviation on regional

growth. Moreover, my use of industry-standard models and realistic scenarios makes

this research methodology easily applicable by transportation planning stakeholders who

focus on environmental and economic issues on a daily basis.

This comparison of the noise-damage costs and regional economic impacts within a

single framework fills a significant gap in planning and transportation research. Although

there is a long history of applied practice in the areas of both noise impact and economic

analysis, integrating these areas within a single analytical framework has never been

done before. By analyzing both impacts within a consistent framework, I give greater

consideration to the larger context of community and the regional economy than has

been done with traditional aviation cost-benefit and cost-effectiveness studies.

In analyzing the noise and economic impacts, I also note the similarities in the

impact-chain methodologies (p. 63) used to analyze these two areas. As noise-damage-

cost indices are either revealed through empirical data on housing prices or contingent-
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value surveys, economic impact models are derived and calibrated through economic

data and spending/travel patterns. Recognizing these similarities can help bridge the

intellectual and cultural gaps between engineers, planners, economists, and policy

analysts.

My second contribution is in calculating the potential catalytic economic impacts

from aviation growth at the regional level. I found that in the East Midlands, the catalytic

impacts on productivity and accessibility are about equivalent to or larger than the

direct, indirect, and induced employment impacts of the air transport industry itself.

These catalytic impact forecasts are sensitive to the underlying productivity or growth

assumptions, and increasing the productivity of a different-sized region (such as London)

may have different catalytic impacts. Although these catalytic impacts need to be

investigated further using different methodologies, their relative magnitude nevertheless

indicates that air transportation can have a measurable impact at the regional level.

There are several policy implications of this research. First, the relatively low noise-

damage costs in the East Midlands suggest that the use of economic instruments or

compensation could be a viable strategy to decouple the local negative externalities of

aircraft noise from the positive economic benefits of aviation growth. Without downplaying

the importance of aircraft noise to local communities surrounding major airports, the

relatively small magnitude of the noise-damage costs compared to the economic impacts

indicates that there is a solution space within which policymakers can solve airport noise

conflicts.

Furthermore, the relatively low magnitude of the noise-damage costs compared to

the air transport sector and catalytic economic impacts supports airport development
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as part of a regional economic development strategy. Although I did not frame this

analysis as a means to evaluate competing development strategies, which may have

potentially higher-yielding economic impacts than growth of the air transport sector itself

(AirportWatch, 2006), I note that that relative prices and wages within the REMI model

do account for such economic-displacement effects. Moreover, economic growth has

historically occurred at least in parallel with increases in air traffic, and increased aviation

demand (and increased noise) should at least be expected as regional economies grow

over time.

I also note that these economic impacts are based on relatively conservative

forecasts embedded within the model itself. The REMI-ECOTEC model assumes an

overall baseline economic growth rate of about 1.8% on average for the entire UK

economy between 2005 and 2010, and 1.4% between 2005 and 2030. In contrast, the

HM Treasury (2006) forecasts a medium-term economic growth in the 2006 to 2011

period of about 2.75% in GVA.2 While the REMI-ECOTEC forecast includes demographic

trends and economic migration components, which may not be captured by other

forecasters, its relatively conservative forecast suggests that it may even underpredict

the economic impacts of the aviation sector presented here.

Finally, there is growing recognition that transportation or infrastructure improvements

can have long-term catalytic impacts on economic productivity, which are in addition to

the traditional direct, indirect, or induced household spending impacts. Analysts and

policymakers commonly discuss the concept of such impacts in order to justify airport

expansion schemes, but very few have quantified these catalytic effects under specific
2The 2.75% growth rate is for non-oil GVA. The GVA growth including oil is 2.4% per annum. Other

forecasters predict growth rates of about 2.6% to 2.9%.
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aviation growth scenarios. Modeling the catalytic relationships between economic

growth and transportation improvements requires further methodological development,

but understanding the relatively large magnitude of these impacts should help to call

attention to the importance of these impacts for policymaking purposes. It could be

argued that only the catalytic effects should be considered in policy analyses, because

these impacts are what differentiates between regions and alternative public investment

over the long-term. This would also be consistent with the derived-demand hypothesis,

which suggests that the economic impacts of the transportation industry itself are

irrelevant because transportation has no value other than the activities derived at either

end-the large size of the air transport sector itself, notwithstanding.

7.3 Future Research

Through the course of this analysis, I identified a number of areas where further research

could improve the modeling of the relationships between aviation growth, noise-damage

costs, and economic impacts. Due to the limitations of previous hedonic-price studies

on noise and housing prices, my noise-damage cost calculations are based on average

NDIs and assume a constant relationship between noise levels and housing prices.

Because of the logarithmic form of noise metrics (a +10-dBA change represents a

doubling in perceived noise), this may understate the noise-damage costs where there

are significant changes in flight operations against a low background noise level, such as

would occur in the communities around the proposed third runway at London Heathrow

airport. This may be less important in other areas where there are only marginal changes

to flight operations and high overall background noise levels (Wadud, 2008, p. 12).
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Nevertheless, integrating more detailed noise-level data into hedonic-price studies may

enable the estimation of elasticities for noise-damage costs at different noise levels and

housing-price ranges.

With regard to the estimation of catalytic economic impacts, more detailed studies

are needed to quantify the relationships between air transport accessibility and changes

in regional and metropolitan productivity. Such extensions could include: (1) conducting

detailed empirical analysis of the inter-regional variations in productivity or investment

at the regional level, (2) developing models that control for other economic productivity

impacts, and (3) using improved metrics, such as origin-demand flows rather than

passengers per GDP for capturing air travel demand. Issues of magnitude and marginal

impacts also apply to understanding the economic catalytic relationships. The catalytic

economic impacts associated with a doubling of flights at a smaller airport may also

have a different impact than when compared to a large airport like London Heathrow,

especially when such an airport already has a high degree of network centrality within

the global air transportation system (Guimera et al., 2005).

Further study and testing of the inter-regional components of the REMI-ECOTEC

model is also needed to refine its use in accessibility-based catalytic impact studies. A

good definition of aviation accessibility should be feasible and applicable using origin-

demand revenue passenger-mile (RPM) data-similar to the way in which vehicle-miles

traveled (VMT) and vehicle-hours traveled (VHT) are used to study changes in surface

transportation access. Moreover, there may be other ways of estimating the long-term

catalytic impacts of transportation. Malina et al. (2008) conducted a contingent-value

survey of businesses to derive the catalytic impacts based on the willingness-to-accept
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the closure of a local airport. Perception is an important component of strategic location

and economic development, and quantifying such concepts within economic forecasting

and policy models is an interesting prospect.

Finally, there may be other dimensions to the catalytic impacts beyond increases

in productivity and economic output at the regional level and metropolitan levels. I

hypothesize that there are measurable socio-economic catalytic benefits that reflect the

long-term impacts of leisure passenger air travel on livability. Air accessibility-including

both the level of service provided as well as the relative cost of these services-can

improve the quality of life by enabling outbound tourism as well as social and professional

networks. These networks and tourism opportunities enhance "global livability" and can

shape economic migration and industrial productivity-especially for consulting and other

service industries. In the REMI model, such qualitative attributes are reflected as the

"compensating differential" of a region-the difference in productivity and wages between

regions (Greenwood et al., 1991). Qualitative surveys and other social science methods

may reveal how global mobility and connectedness now shapes personal and firm-level

location decisions, travel patterns, and regional economic activity.
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Appendix A

Simplified Input-Output Analysis

Analysts primarily use input-output accounting frameworks for short-term impact

studies due to the limitations of constant technology assumptions, but also use them

as the basis for longer-term dynamic forecasting and environmental impact models.

Under an input-output framework, analysts conceptualize the economy as a set of

interdependent industries and activities, each of which requires the productive output

of the others as input to its productive process (Greenberger et al., 1976, p. 89). The

simplifying assumption is that the ratios of one industry's inputs to its outputs-the

technical coefficients-are fixed. Using this framework, analysts can infer the changes in

technology, labor force, or government spending by estimating their effects on production

coefficients and reworking the matrix calculations (Greenberger et al., 1976, p. 90).

Analysts can then generalize and extend these models into a dynamic framework by the

addition of capital stock, inventories, and capacity-building activities.

I use a simplified static economic impact model to illustrate the impacts of aviation

growth through the rest of the economy. I use the input-output and flow data from REMI

to create a basic model, and then enhance this model by adding import data. I then

construct a model using the base UK 2002 input-output data. I apply the methodology
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developed by Schaffer (1999) using a basic endogenous household model to look at the

direct, indirect, and induced economic impacts of an investment in aviation. Short-term,

localized economic impacts are commonly estimated using input-output multiplier models

due to their simplicity. In this way, the flows of dollars from an exogenous shock can be

traced as they circulate through an economy.

Table A.1 shows a simplified input-output table for the United Kingdom in 2002, with

intermediate and final demand components along with value-added. The rows represent

the total purchases (or demand) of a particular sector by other sectors. Columns

represent the total purchases of other sectors by a particular sector. The column total is

the total purchases by an industry, as well as the total value-added. The total purchases

and value added are used to produce the industry's output. The row total is the total

intermediate and final demand of a particular industry or commodity.
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Table A.1: 2002 simplified input-output table

Sector> 0 oc c M M z 'o > 0I co z 0) -no rn )
0) O• "Dn oD m - -Dc

Agriculture and Mining 4.0 19.5 10.6 0.8 1.0 0.2 0.0 0.6 0.5 11.9 0.9 16.1 66.0
Manufacturing 6.1 131.1 22.4 21.8 14.1 9.6 2.1 25.0 37.7 207.4 53.8 175.1 706.1Utilities and Construction 1.6 8.6 55.2 3.6 0.7 1.8 0.1 7.9 17.8 21.67 82.3 0.8 202.1

.,. 2 ODJ= (n=CO 0 3 C

Agriculture and Mining 4.0 19.5 10.1 0.5 0.1.0 0.4 0.5 2.4 0.4 11.0 0.0 4.5 20.7UtBasic Servies and C onstruction 1.6 8.6 55. 36.5 7.0.7 14.1 2.6 157.9 17.8 21.67 8298 .3 19.1 60.3 506.1

RetNonbasic Services 1 .2 7.6 8.1 1 5.1 1.2 4.6 0.5 17.0 1439.1 110 39.3 210.4 3.2 44227.2

Households + Labor Value Added 6.1 110.3 33.4 71.1 20.9 28.9 3.2 146.6 166.1 19.8 0.0 0.2 606.6

Capital Value Added 21.6 104.2 46.5 42.3 18.5 8.4 2.7 98.9 106.3 4.5 - - 454.0
Imports 15.1 232.4 0.7 2.0 9.2 6.2 6.8 28.9 3.3 0.2 - - 304.8

Total Output and Imports 66.7 706.0 200.6 227.9 80.6 98.5 20.7 506.5 447.1 708.7 383.0 273.7 3,720.1

Data in Billions of 2002 £. Note: In most cases, row sums should equal the column sums, but there are
Author's calculations from UK ONS 2004 Blue Book Data

slight discrepancies here due to missing data.



This table is based on the 53x53-sector sector direct requirements table which is

embedded into the REMI-ECOTEC model. The direct requirements table shows the total

intermediate and final purchases per unit of output-essentially showing the share of

inputs from each of 53 sectors that go into producing a single unit of output. To convert

the direct requirements into a transactions table that shows the flows of activity between

industries, I multiply each share by the total output from each sector. I then transform this

53x53-sector table into a consolidated 9x9-sector table that includes air transport and

hotels/restaurants as separate categories.

In order to include the induced economic impacts due to household spending, I also

calculate the total wages/salaries and final consumption for each of the consolidated 9

sectors. REMI-ECOTEC provides the total final personal consumption expenditures for

each of 12 categories, such as food, clothing, or other goods and services. To close this

model with respect to the amount of personal consumption expenditures on wages and

salaries, I use the portion of household expenditures that is included within the output of

the services industry (service activities and private households with employed persons-

such as in the employment of maids or babysitters). Table A.2 shows the simplified input-

output table, with intermediate and final demand components along with value-added.

Using the new consolidated transactions table (9x9-sector + households), I also

create a new direct requirements table (A-matrix) by dividing each column by the total

output of each consolidated industry. I then create a new total requirements table by

subtracting this A-matrix from an identity matrix (with ones along the diagonal and

zeros elsewhere) and then taking the inverse of the (I-A) matrix to directly calculate the

impacts. I incorporate data to close the model with respect to households, using personal
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Table A.2: Comparison of simplified models showing
inverse impacts from a £100 stimulus in air transport

Type I
(Household Exogenous)

Model basis Multiplier Leontief
(6 rounds) Inverse

REMI 117.0 119.0
REMI with Imports 145.1 145.3
UK I-0 data (with Imports) 168.0 168.5

Author's calculations from REMI-ECOTEC UK version 6.0 and O
(iocomparison)

total multiplier and Leontief
sector (in £)

Type II
(Household Endogenous)

Multiplier Leontief
(6 rounds) Inverse

365.6 476.0
201.3 210.8
280.1 316.2

)NS data

consumption expenditures along with wage and salary data by industry (instead of labor

value-added data) in order to close the model with respect to households. I determine the

household expenditures on wages by using the portion of nonbasic services that goes

towards other households or service organizations (UK sectors 122/123).

Using this simplified input-output model of the United Kingdom, I illustrate an

example of how £100 million of exogenous sales in the air transport sector filters

through the rest of the economy. Figure A-1 shows that the initial expenditure in the air

transport sector leads to about £54 million in sales through the first round of spending-

primarily through people employed in the air transport sector, and through intermediate

expenditures in the services and manufacturing sectors. Retail and hotels/restaurants

increase as a proportion of total sales in the second round of spending, especially

as workers employed by the other industries receive their wages and salaries. In this

simplified example with endogenous household spending, the initial £100 million in

the air transport leads to total economic impacts of about £330 million as the money

circulates through the economy. Schaffer (1999, p. 35) notes that in most cases (97%),

such models close after 6 rounds of spending.
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Figure A-1: Impact of a £100 expenditure in air transport.

I evaluate this model by comparing the results from a multiplier analysis with six

rounds of spending (as shown in Figure A-1) with a more traditional Leontief inverse

model. Although the Type I models with households exogenous matched reasonably well,

the Type II multiplier model with households endogenous does not close after 6 rounds-

and thus did not match the Leontief inverse solution. Because Schaffer (1999, p. 24)

keeps imports as part of the incomes quadrant (III) rather than in consumption (quadrant

I), I attempted to improve the model fit by including imports as part of the total output.

Imports added as much as 40-50% to the total output of each sector group. Including

imports improved the performance of the Type I (endogenous household) multiplier model

when compared to the Leontief model, and it converging after 6 rounds of spending.

The inclusion of imports also improved the performance of the Type II multiplier model

relative to the model without imports, although it still did not completely converge within 6

rounds of spending. I also applied this methodology using the 2002 UK input-output table

in order to replicate the results produced using the data from the REMI model. The total
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impacts predicted by the Type II multiplier model (households endogenous) were less

than the Leontief model, and the solution did not converge after six rounds of spending.

Overall, the inclusion of import data appears to improve the results of impact

analyses greatly, although both the models still do not fully converge after 6 rounds of

spending. The lack of convergence between the multiplier model and the Leontief inverse

model may not necessarily be important, but it shows that something is missing from

the model. In general, it appears that the REMI data are more conservative than the

UK input-output data. The REMI and UK data are relatively close in value, except for the

manufacturing sector, where the values are much larger in REMI than in the UK data set.

Imports are much larger in the REMI model than in the UK data. These basic models

show the strong direct and indirect linkages between air transport and manufacturing,

basic services (including telecom), and other transport. There are also large induced

effects with other service industries and households.
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Appendix B

REMI-ECOTEC Model Testing

Here in Appendix B, I describe the baseline control forecast in the REMI-ECOTEC model

in more detail. I also compare this forecast to other models, and conduct a number of

sensitivity tests in order to illustrate the model dynamics.

B.1 REMI-ECOTEC Baseline

This baseline forecast provides a reference with which to analyze the various policy

scenarios that I test-such as changes in aviation output or the regional accessibility

of different commodities. The baseline forecast also highlights the different structural

differences between the regions, and also the key trends over time. I start by describing

the general indicators of the regions, including population, employment, economic output

(Gross Value Added (GVA)), and productivity.

In Table B.1, I show the population, employment, and regional value-added in 2005

and 2030. I also show the average annual percentage growth over the 25-year period in

each of these areas. In 2005, there were about 7.5 million persons in the Greater London

region in 2005, with another 8.1 million in the rest of the South East, and 4.3 million in the
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Table B.1: Baseline model: population,
2030 by region

employment, and value-added, 2005-

Region
UK

Metric Greater South East Rest of Total
London East Midlands UK

Population (000s)

2005 7,490 8,110 4,330 40,060 59,980
2030 8,100 8,620 5,280 43,140 65,130
Annual growth (%) 0.31 0.24 0.79 0.30 0.33

Employment (000s)

2005 4,040 3,720 1,770 17,090 26,620
2030 4,350 3,770 1,810 17,000 26,930

Annual growth (%) 0.29 0.05 0.10 -0.02 0.05

Regional Value-added (Em)

2005 212,600 168,300 66,800 655,300 1,103,000
2030 308,400 229,400 88,600 859,400 1,485,900
Annual growth (%) 1.47 1.23 1.12 1.08 1.18

In 2002 £. Annual growth rates are averaged over the 25-year period. Source: Author's
calculations from REMI-ECOTEC UK Version 6.0
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East Midlands. Overall, the total UK population increases from about 60 million persons

in 2005 to 65 million in 2030--an average increase of 0.33% per annum on average.

Population growth is slightly less in the Greater London and Southeast (0.31% and 0.24%

per annum, respectively), while the population of the East Midlands increases from 4.3

million to to 5.2 million people--about 0.79% per year.

Greater London had about 4.0 million jobs in 2005, while the East Midlands had

about 1.7 million jobs. The average growth in employment between 2005 and 2030 for

the UK was about 0.05%. Employment grows faster in London (0.28% per annum) and

the East Midlands (0.10% per annum). In the East Midlands, the relatively low population

growth relative to the change in employment in the East Midlands suggests that the

residents are commuting to jobs in other regions, such as Birmingham, Manchester, or

London.

The total UK GVA is £1.1 trillion in 2005, and increases to £1.4 trillion by 2030. The

GVA in London is £212.6 billion in 2005, while the East Midlands GVA is £66.8 billion.

The long-term economic growth is 1.5% in London and 1.1% in the East Midlands-with a

UK total average growth rate of 1.2%.

I also focus on a more detailed analysis of economy activity at the sector-level. I

adapt the concept of economic base analysis to analyze the impacts of professional

services-a much larger sector than manufacturing and one of the key users of aviation

services. I focus on a subset of professional services that are primarily export-oriented

industries. This is referred to as the basic sector. The nonbasic sector focuses on

production linkages through different industries within a region (Bendavid-Val, 1991, p.

87). Table B.2 shows exports as a percentage of total output for service sectors in the
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Table B.2: Exports as percentage of total
Sectors - East Midlands Baseline, 2005

Basic Sectors Exports(%)

Financial Activities 63.1
Post and Telecom 53.1
Research and Development 48.8
Other Business Activities 25.6
Computer and Related 23.4
Banking and Finance 19.1
Insurance and Pensions 16.9
Culture and Sport 15.1

Basic Average 33.1

In 2002 £. Source: Author's calculations from REI

regional output for Basic and Nonbasic

Non-basic Sectors

Education
Equipment Rental
Real Estate Activities
Other services, Households
Public Admin and Defense
Membership Organizations
Sewage and Refuse
Health and Social Work

Nonbasic Average

AI-ECOTEC UK version 6.0

East Midlands. On average, about 33% of all output for the basic sectors are used for

exports, while about 13% of all non-basic sectors goes towards output.

Table B.3 shows the share of value-added in each sector in 2005, while Table B.4

shows the average annual growth in regional value-added by sector between 2005 and

2030. The air transport sector accounts for 1.5% of the total value-added in London, but

only 0.2% in the the East Midlands. Throughout the UK, the sector accounts for 0.6% of

the total value-added. Despite being a relatively small industry, however, air transport is

forecast to be one of the fastest-growing sectors through 2030-with an average growth

rate (2.25%) over 1 percentage-point higher than that of the UK average growth (1.18%).

Interregional trade and global exports are shown in Table B.5, and indicates that the

United Kingdom had a net trade deficit of about £31 billion in 2005. The relative regional

competitiveness is shown in Table B.6, while labor competitiveness is shown in Table B.7.

The real relative wage rate takes into account the average wage rates by industry and the

cost of living in region, including taxes and housing prices, and is shown as a percentage
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Table B.3: Breakdown of value-added by sector, 2005

Region
UK

Percent Share (%) Greater South East Rest of Total
London East Midlands UK

Agriculture and Mining 1.2 1.9 1.7 3.3 2.6
Manufacturing and Fuel 8.3 17.0 29.6 23.8 20.1
Utilities and Construction 5.2 7.4 8.5 8.3 7.6
Retail Services 9.4 12.2 11.6 11.0 10.9
Hotels and Restaurants 4.3 3.8 3.5 3.7 3.8
Other Transport 4.1 3.8 3.8 3.4 3.6
Air Transport 1.5 0.8 0.2 0.3 0.6
Basic Services and Telecom 37.0 26.8 16.6 19.2 23.6
Nonbasic Services and 29.1 26.4 24.4 27.1 27.2
Households

All Sectors 100.0 100.0 100.0 100.0 100.0

Source: Author's calculations from REMI-ECOTEC UK Version 6.0

Table B.4: Average annual growth in regional value-added by sector, 2005-2030

Region
Average annual percent UKAverage annual percent Greater South East Rest of Total

London East Midlands UK

Agriculture and Mining 0.83 0.51 0.16 0.52 0.53
Manufacturing and Fuel 0.83 0.66 0.44 0.46 0.52
Utilities and Construction 1.19 0.96 0.87 0.79 0.88
Retail Services 1.43 1.30 1.30 1.21 1.26
Hotels and Restaurants 1.65 1.59 1.58 1.54 1.57
Other Transport 1.75 1.61 1.50 1.48 1.56
Air Transport 2.28 2.25 2.26 2.21 2.25
Basic Services and Telecom 1.59 1.35 1.41 1.36 1.43
Nonbasic Services and 1.46 1.38 1.56 1.32 1.37
Households

All Sectors 1.47 1.23 1.12 1.08 1.18

Source: Author's calculations from REMI-ECOTEC UK version 6.0.
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Table B.5: Regional exports, 2005

Region
UK

Greater South East Rest of Total
London East Midlands UK

Net UK Regional Exports (£Bn) 46.2 2.2 -8.0 0.0 n/a
Net Global Exports (£Bn) -5.8 -4.0 -2.3 -19.0 -31.1

Imports / Demand (%) 27.9 37.5 49.6 14.9 14.5
Exports / Output (%) 35.0 37.2 45.8 14.1 13.3

In 2002 £. Source: Author's calculations from REMI-ECOTEC UK version 6.0

Table B.6: Relative regional competitiveness - Private non-farm industries, 2005

Region
UK

Percent Share (%) Greater South East Rest of Total
London East Midlands UK

Composite Price 0.795 0.990 1.024 1.054 1.000
Composite Input Costs 0.777 0.991 1.026 1.061 0.995
Delivered Price 0.953 1.013 0.996 1.009 1.000
Cost of Production 0.946 1.023 0.991 1.011 1.000
Labor Intensity 0.919 0.968 1.025 1,939 1.004

Source: Author's calculations from REMI-ECOTEC UK version 6.0

relative to the national average. The compensating differential is the amount of expected

income in area relative to the national average that will keep net economic migration at

zero: if the value is greater than one, then the area is considered to be amenity poor

and requires higher expected income and vice versa (Miller and Ervin, 2004). Together,

the relative wage rate and the compensating differential help to determine economic

migration.
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Table B.7: Regional labor competitiveness, 2005

Region
UK

Percent Share (%) Greater South East Rest of Total
London East Midlands UK

Compensating Differential 5.765 0.996 0.534 0.769 0.996
Real Relative Wage Rate 1.201 1.070 0.973 0.943 0.995

Non-farm Average Annual 28,369 24,830 21,009 20,691 22,456Wage Rate (nominal £)
Labor Productivity (2002 £) 100,753 89,364 76,058 76,485 81,940

Source: Author's calculations from REMI-ECOTEC UK version 6.0

B.2 Comparison with other models and forecasts

Economic forecasts can differ due to modeling methodologies and data, and can

even vary over time. The GLA analyzes several independent economic forecasts for

London before publishing its own official forecast. These forecasts include Cambridge

Econometrics (CE), The Centre for Economic and Business Research (CEBR), Experian

Business Strategies (EBS), and Oxford Economic Forecasting (OEF) (Greater London

Authority Economics, 2006, p. 3). Figure B-1 shows historical data and forecasts for

regional GVA from several different sources: CE, REMI-ECOTEC, the ONS, Eurostat,

and GLA Economics. The REMI-ECOTEC forecasts for value-added are much higher for

London than CE, ONS, and Eurostat, but are similar to the other forecasters for the East

Midlands.

While the various forecasters predicted annual growth rates in 2008 of 3.0% to

4.2%,' for example, the GLA's official estimate was 2.8% (Greater London Authority

Economics, 2006, p. 19). The GLA also refines its forecasts several times a year--

taking into account updated data and changing conditions. A comparison of different GLA
1Consensus average of 3.5%
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Figure B-1: Comparison of data and forecasts: Cambridge Econometrics, REMI-
ECOTEC, UK Office of National Statistics, and Eurostat.

forecasts are shown in Figure B-2. In January 2003, for example, the forecast growth rate

for 2005 was 4.0%. By March 2004, that had declined down to 2.9%, and by Aprill 2005

was at 2.6%. The final GLA published growth rate for 2005 was 2.1% (Greater London

Authority Economics, 2006, pp. 18-33).

B.3 Model Testing

While the model structure and its underlying data are as crucial to the REMI-ECOTEC

model as any other methodology, the selection and manipulation of its various policy

variables is also a key step in the policy analysis. Here, I describe a number of sensitivity

tests to explore the functionality of the model and how policy variables are applied within

its fixed structure. I focus on the sensitivity of key policy variables in the REMI-ECOTEC

model most relevant to regional air transportation policy assessment.

My sensitivity tests are centered around three main areas: (a) how the overall REMI-

ECOTEC model forecasts compare to other standard regional economic methodologies;
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Figure B-2: Comparison of London GVA Forecasts:
2003-2007

(b) more detailed analysis of the interactions between regions and industries in the

model; and (c) differences in how several specific policy variables are manipulated in

order to simulate a particular economic phenomenon.

B.3.1 Alternative Methodologies

First, I compare the performance of the standard REMI model with other traditional

methodologies such as input-output, endogenous household, and Computable General

Equilibrium (CGE) models. Standard input-output and endogenous household models

are similar to the RIMS II and IMPLAN models that are widely used in the United States.

I simulate these different methodologies by selectively turning off different components of

the REMI model. These model settings are shown in Table B.8. In these series of tests,

I use a one-time increase (10%) in air transport industry sales in the East Midlands, and

compare the differences in the resulting forecasts and the regional control.
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I expect that the input-output and endogenous household models would produce

forecasts that are lower than those from the REMI-ECOTEC standard model due to the

lack of investment and accessibility-related productivity. The REMI-ECOTEC model

should also produce different regional distributions of activity than the CGE-type model,

because its regional allocation is based on an economic theory (accessibility) rather

than econometric (statistical) relationships. While the total cumulative impacts are less

than the CGE model, the impacts should be potentially greater in regions where there is

agglomeration.

The total net increases in regional value-added between 2005 and 2030 for the

different scenarios and regions of impact are shown in Figure B-3. While the input-

output-type model generated total impacts about 21% less than those forecasted by the

complete REMI dynamic model, the endogenous household model and the CGE-type

models increased total GVA by 12% and 6%, respectively. I note that this comparison

does not take into account the alternative baselines which underlie the different model

scenarios; these alternative baseline forecasts (input-output, etc...) differ from the

REMI standard baseline-and thus produce different impacts over time. The dynamic,

interregional linkages in the REMI model do show up in this test; while the East Midlands

had changes that were relatively consistent with the baseline model (-11% to +1%), the

Greater London and the remaining UK regions had differences as much as negative

-38% or 44%.
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Table B.8: REMI-ECOTEC model settings used to generate alternative
methodology comparisons

Input-Output w/ Instantaneous
ECOTEC Output Endogenous Market Clearing

Households Wages/Prices
Standard (Type I) (Type II) (CGE)

Wage response to market conditions * *

Labor intensity response to relative
factor costs
Property income response to pop'n * *

Transfer payment response to pop'n *

Local consumption response to
income and prices
Investment stock adjustment a *
Government spending response to
pop'n
Government spending response to
real wages and unemployment

Composite price response to access
and production costs
CIF price response to transportation
and production costs
Trade flows with endogenous supply * *

Migration equation (2001 version) a *

Commodity access index *

Labor access index *
Housing price equation a *

Demand price elasticities a a

Wage equation coefficients a *

Unused Features: Alt migration equation 1993 version; Alt investment response to the level of
activity; Alt instantaneous market clearing wage; Alt trade flows with historic supply; Alt demand
price elasticities; Alt wage equation coefficients
Source: REMI-ECOTEC UK version 6.0
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Figure B-3: Impact of 10% increase in air transport sales in the
East Midlands under alternative methodologies

B.3.2 Effect of Investment and Intermediate Inputs

One of the unique features of the REMI model is that it uses adjustments to capital stock

investment in order to further refine the flows of economic activity between regions.

These relationships are based on traditional Cobb-Douglas production functions for labor

and capital. I expect that investment is probably a minor part of the economic impacts

for small, short-term shocks, but should have a larger role in the longer-term impacts.

Similarly, the increase in sales/exports without employment, investment, and wages

probably should not produce major differences in the forecasts in heavily capital-intensive

industries such as air transport.

In order to examine the contribution of investment and intermediate inputs, I use

several policy variables that enable the suppression of the investment, intermediate

inputs, or employment effects that are generated by an increase in industry sales. These

policy variables are typically used when increased industry sales are not expected to

250

E •C'

I I

i



affect the industry-perhaps when there is excess production capacity or some other

constraint on industry expansion.

Isolating the contribution of investment using these variables is conceptually different

than comparing it with the CGE-type model studied previously, because the impacts

of investment and intermediate inputs still occur elsewhere in the region. Here, I am

concerned with identifying the impacts of investment and intermediate inputs (or lack

thereof) due to the shock. For the sensitivity tests, I use a one-time, £31.5 million

exogenous increase in air transport industry sales (equivalent to 10%) and nullify the

same amount.2

Figure B-4 shows the difference in total regional value-added (2005-2030)-again,

associated with a roughly 10% increase in air transport industry sales. The total increase

in GVA in 2006 associated with the increased aviation sales is £48.4 million under the

baseline REMI-ECOTEC model. Nullifying the investment reduces the total impacts on

regional GVA by about 2% (£1.1 million). The intermediate impacts have a much bigger

impact on GVA, and they reduce the total impacts by about 55% (£26.5 million). Including

industry sales but without employment, investment, and wage effects has a net effect

of reducing the impacts by 43.0% (£39.7 million) relative to the baseline scenario. In

this case, the intermediate effects are significant-much greater than the total impacts

themselves-and are much greater than investment.
2The specific policy variables are: (a) Nullify Investment Induced by Industry Sales / International Exports;

(b) Nullify Intermediate Inputs Induced by Industry Sales / International Exports; and (c) Industry Sales /
International Exports Without Employment, Investment, and Wages (amount). These impacts are entered as
monetary units rather than percentage shares due to the limitations of the policy variables.
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B.3.3 Regional Response Speed

Another distinguishing characteristic of the REMI model is that it uses different response

speeds (to economic shocks) in order to affect the interregional flows-thus reflecting the

stock-and-flow relationships for investment and population. In contrast, CGE-type models

require all markets to clear simultaneously. Here, I conduct several sensitivity tests in

order to understand whether or not the regional responses are sensitive to different sizes

and timings of exogenous shocks. As the size of the shock increases (and for a longer-

time), I expect the East Midlands to be able to capture a larger part of the total activity-

thus drawing more business from the other regions and creating larger impacts. Due to

the regional scale of the REMI model and the small relative size of the air transport sector

in the East Midlands, it should be more sensitive to larger shocks than to smaller shocks.

I compare the basic impacts from an exogenous 10% increase in air transport

industry sales in the East Midlands for 1-, 5-, and 10-year time periods. I also look at
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Figure B-5: Cumulative economic impact from 10% increase in
exogenous air transport industy sales on GRP by region

a series of one-time shocks in a range of sizes up to 20%. Figure B-6 shows linearly

increasing impacts due to increasing magnitudes. The total regional GVA share for the

East Midlands ranges from 48% to 54% of the total impacts under the different scenarios.

Figure B-5 shows the cumulative effect of the shock over time in terms of total GRP.

In the East Midlands, over 90% of the economic impacts are seen immediately in 2006,

while the total impact is felt by 2020. The economic impacts in London and the rest of

the United Kingdom from this shock accrue much more gradually, where only about 65%-

75% of the total economics impacts initially occur in the year of the shock, with it reaching

100% by 2030.

B.4 Model Inputs

Table B.9 shows the policy variable settings which were used to generate the results in

Chapter 4 and 5.
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Table B.9: Air transport growth scenarios inputs

Variable: Industry Sales / Int'l Exports (share)
Detail: Air transport
Units: Proportion

Scenario
Year

Low Medium High

2003
2004
2005
2006
2007
2008
2009
2010

2011
2012
2013
2014
2015
2016
2017
2018
2019
2020

2021
2022
2023
2024
2025
2026
2027
2028
2029
2030

Source:
6.0

0.000
0.000
0.000
-0.009
-0.018
-0.027
-0.036
-0.045

-0.054
-0.063
-0.072
-0.081
-0.090
-0.099
-0.108
-0.117
-0.127
-0.136

-0.145
-0.154
-0.163
-0.172
-0.181
-0.190
-0.199
-0.208
-0.217
-0.226

0.000
0.000
0.000
0.012
0.023
0.035
0.047
0.059

0.070
0.082
0.094
0.105
0.117
0.129
0.141
0.152
0.164
0.176

0.187
0.199
0.211
0.223
0.234
0.246
0.258
0.269
0.281
0.293

0.000
0.000
0.000
0.027
0.055
0.082
0.110
0.137

0.164
0.192
0.219
0.246
0.274
0.301
0.329
0.356
0.383
0.411

0.438
0.465
0.493
0.520
0.548
0.575
0.602
0.630
0.657
0.684
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Appendix C

Airport Noise Model Details

C.1 Noise Model Assessment

My main criteria for evaluating the performance of the noise models was the relative

size of the 57-dBA 16-hour daytime LAeq noise contours. This is primary noise contour

that is currently used in the UK for policy-making purposes, although the EU is requiring

its member states to produce noise contours using the LDEN and Lnight metrics, which

do account for evening and nighttime weighting (Bickerdike Allen Partners, p. 10). I

compared the baseline forecasts against existing noise models published by the CAA and

the East Midlands Airport (EMA). Although the results from the CAA's ANCON2 model

for Heathrow are not directly comparable to my INM study, other analysts have developed

similar INM models for the proposed third runway at Heathrow and the East Midlands.

I also tested the effects of different model variables on the size of the 57-dBA

contour, including aircraft noise class groupings, time-of-day, aircraft takeoff weights, flight

tracks, and terrain. In general, my overall objective was to create models that were as

close as possible to existing published models, but yet that remained parsimonious and

credible. The results of the sensitivity studies are shown in tables C.1, C.2, and C.3.
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Figure C-1: Integrated noise model inputs
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In general, terrain reflectivity and departure track dispersion had very small effects

(less than 1%) on the size of the 57-dBA contours. The differences in time-of-day

distributions for arrivals and departures had slightly larger effects (slightly greater than

1%) on the size of the noise contours. Different assumptions for average aircraft trip

distances and alternative takeoff operational profiles also had small effects on the noise

contours. Although incorporating these assumptions into the model created larger

contours which were closer in size to those determined by the CAA, they add complexity

and uncertainity to the model. As such, I removed them from the final noise models.

When I expanded the model database to include 20-21 aircraft models, the effects on

the size of the contours were much greater--shrinking the contours at Heathrow and

enlarging the contours at Nottingham.' I also note that small changes in the size of the
1 Higher takeoff wights might also be assumed due to full passenger loads and fuel tankerage. Using the

OAG schedule data, I had initially found the actual average stage length for Class 3 (narrowbody) aircraft
flights was about 490 nautical miles (Profile Stage 1), but I tested the effect of increasing this average
distance to 1000-1500 miles (Profile Stage 3).
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Table

Area
Model Run (km2)

2004 Actual 117.4

L632 Base 88.4
L632_NT 89.1
L632TXNT 89.1
L632D_NT 72.9
L632M_NT 90.3
L632SANT 90.0
L632M_SA_NT 91.2
L632T7_NT 82.1

Source: UK DfT, INM 6.2

C.1: Heathrow sensitivity tests

Pct Chg vs.
Base (2004)

base 16 hour daytime

-24.7% 5 classes, terrain
-24.1% 5 classes, no terrE
-24.1% 5 classes, track di
-37.9% Detailed - 20 aircr
-23.1% Day-night mix
-23.3% Longer Class 3
-22.3% Day-night mix and
-30.0% Replace 767s with

in
spersal
aft

I longer class 3
777s

Model Run

Baseline

ThirdRwy_NT
ThirdRwy_FR
ThirdRwy_FRN
ThirdRwy_FR Il
ThirdRwy_TRK_

Source: UK DfT, II

Table C.2: Heathrow - third runway sensitivity tests

Area Pct Chg vs.
(km2) Base (2004) Remarks

28.0 base 16 hour daytime

35.0 +25.1% no terrain
31.1 +11.1% Flight operations

JT 31.4 +12.0% Flight ops, no terr
CAO_NT 34.9 +24.5% ICAO departures
FR 31.1 +11.2% Track dispersion

NM 6.2

noise contours often did not result in large changes to the population or dwelling unit

counts, and that this was considered when selecting the final models.

Because my modeling objective is to focus on the overall effects of traffic growth

as well as to match published contours as much as possible, I selected final models at

Heathrow and Nottingham with a reduced number of aircraft types and without the more

complex arrival/departure time-of-day operation distributions.

Figure C-2 shows a comparsion of my INM baseline noise contour for Heathrow

versus the 2005 actual contours for Heathrow. Table C.4 shows a comparison of the

259

ain



Table C.3: East Midlands airport sensitivity tests

Area Pct Chg vs.Model Run Area Pct Chg (2004) Remarks(ki2) Base (2004)

2005 Actual 12.1 base 16 hour daytime

A80 9.0 -6.0% Base
A80 NT 9.4 -1.7% No Terrain
A80TX 8.9 -7.0% Dispersed tracks (rough)
A80TX_NT 9.3 -2.8% Dispersed tracks, no terrain
A80S 8.6 -9.6% Revised stage lengths
A80D 13.2 +38.0% Detailed - 21 aircraft

Source: East Midlands Airport, Bickerdike Allen Partners, INM 6.2

contour areas and population. The baseline SAI contours are -7.0% to -24.1% smaller in

size than the 2004 actual contours. There are slightly larger differences in the population

counts-about -9.5% to -30.8%. The CAA notes that there is typically a 20%-30%

difference between INM noise contours and ANCON2 due variations in aircraft types,

departure flight trajectories, and terrain data. As such, my model falls well within the

range of expected performance.

For the third runway at Heathrow, my model generated a contour that was about

11.1% larger than Casella Stanger's INM runs. The key factors influencing these

differences might be the precise location of the flight tracks, runway location, and flight

profiles-but these differences can not be resolved with the readily available data.

My final model for Nottingham generated a 57-dBA contour that was about 1.7%

smaller than contours produced by Bickerdike Allen Partners. A comparision of these two

models is shown in Table C.5.
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Table C.4: Heathrow model comparision: CAA 2004 Actual vs. SAI INM model

Land Area (km2) Population

Contour CAA CAAContour CAA 632NT Difference CAA 632NT Difference
2004 2004

57 dBA 117.4 89.1 -24.1% 239,700 176,650 -26.3%
60 dBA 66.7 53.0 -20.6% 105,300 91,060 -13.5%
63 dBA 40.3 34.0 -15.6% 55,900 46,256 -17.3%
66 dBA 24.4 20.3 -17.0% 21,000 18,995 -9.5%
69 dBA 13.3 10.9 -17.9% 5,700 4,173 -26.8%
72 dBA 6.5 6.0 -7.0% 1,500 1,038 -30.8%

Source: UK DfT, INM 6.2.

Table C.5: Nottingham model comparision: BAP 2005 Actual vs. SAl INM Model

Land Area (kin2) Dwelling Units

Contour BAP A80_NT Difference BAP A80_NT Difference2005 2005

57 dBA 9.54 9.382 -1.7% 303 388 -14.5%
60 dBA 5.48 5.120 -6.6% 181 129 43.1%
63 dBA 3.08 2.874 -6.7% 130 0 -0.8%
66 dBA 1.79 1.720 -3.9%
69 dBA 1.11 1.219 9.8%
72 dBA 10.71 0.888 25.1%

Source: UK DfT BAP, EMA, INM 6.2.
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Figure C-2: Comparison of 57-dBA LEQ contours in INM and ANCON2.

C.2 SAX Noise Model Development

Darius Mobed developed the MATLAB codes to generate the NPD curves using input

data and codes from Dan Crichton, Jim Hileman, and David Tan. Table C.6 describes the

process used to calculate the NPD curves, while Table C.7 shows the settings used in the

noise model.

Table C.6: Methodology used to derive the noise-power-distance curves

Source: Mobed et al. (2006).
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1. For each flight condition, choose what noise sources are contributing to the
noise (Table C.7) and apply appropriate hemispheres

2. For each x position on the ground (given) calculate the height, angle pitch,
and velocity correction.

3. Determine the noise from each hemisphere and propagate to the X position.

4. Sum up all the effects of the individual noise hemispheres and obtain the
total aircraft sound pressure level at a certain velocity.



Table C.7: Noise hemisphere settings

Approach Cutback Sideline

Shielding
Fan Forward yes yes yes
Fan Rearward yes yes yes
Compressor
Turbine yes yes yes
Core yes yes yes
Jet yes yes yes
Airfoil yes yes yes
Wingtip yes yes yes
Aileron - 1 degree yes
Aileron -5 degree
Undercarriage yes
Roughness
Swirl tube 1
Wwirl tube 2

Source: SAI team

To examine the sensitivity of the NPD calculations, Mobed et al. (2006) also

calculated the NPD curves at the SAX measurement points and speeds as well as at the

INM reference points. Based on the INM technical guidance, the noise-power-distance

curves are supposed to be generated at a reference speed of 160 knots (296 km/h or

82.3 m/s) and at 1000-feet altitude (304.8 m). In contrast, the SAX flies at 120 knots

(222 km/h or 61.7 m/s) on approach or departure. Also, the SAX sideline measurement

point is at 308 feet (93.8 m), while cutback occurs at 1094 feet (333.4 m). The SAX

approach point is measured at 394 feet (120 m). The SAI noise assessment conditions

were converted to the INM reference speed and altitude. Because the INM reference

altitude is higher (1000' versus 394' at approach or 308' at cutback), the resulting effect

should make the NPD curves quieter than the SAI predictions. But the INM reference

speed is faster than the SAX approach/takeoff speed (160 knots instead of 120 knots or

222 km/h), the NPD curves should be noiser (more engine power).

263



For the approach condition, the NPD curve at the INM reference condition is initially

about 2 dBA lower than the SAI approach speed/altitude. The SAI curve falls off rapidly,

though, and then ends up about 10-11 dBA lower than the INM curve. On average, the

SAI curves difference is about 8 dBA less than the INM curve. For the sideline takeoff

condition, the difference between the INM and SAI curves is much smaller-with the SAI

curve about 3-dBA less than the INM curve, on average.

The approach, cutback, and sideline curves are shown in Figures C-3, C-4, and C-5,

with the respective takeoff and approach curves for a 767-300 shown for comparison. On

approach, the 767 NPD curves ranged from 99 down to 57 dBA, while the SAX curves

are 58 to 12 dBA. In general, these curves are about 33-46 dBA quieter on approach

and 36-55 dBA quieter on departure. These differences between the NPD curves for

the 767 and the SAX40 ranged in the order of about 30% to 80%. In contrast, the EPNL

calculations showed that the SAX40 was about 25-30% quieter than the 767-300, with

about 24-29 EPNdB differences in noise levels.

In general, the use of the SAI reference speed/altitudes produced slightly lower

(quieter) NPD curves than at the INM conditions. The INM reference conditions thus

produce curves which more closely match the expected noise signature-closer to those

of existing 767-300 aircraft. I selected the INM reference conditions as a conservative

modeling decision. Table C.8 summarizes the single-event sound levels for the Boeing

767-300 and the SAX-40.

INM uses three main types of data in modeling aircraft noise, including (1) NPD

curves, (2) aircraft noise spectral class profiles, and (3) thrust/flap coefficients. While

the SAI team was able to generate NPD curves for the SAX-40, the spectral class

264



Approach NPD Curves

---- SAX40 Approach - 160 kts, 1000 ft
--- SAX40 Approach - 160 kts, -394 ft

--- r-- SAX40 Approach - 120 kts, 1000 ft
-- X-- SAX40 Approach - 120 kts, -394 ft
- -- 767-300ER Approach (12K Ibs)

0 5000 10000 15000 20000 25000

Distance (feet)

Figure C-3: Noise-Power-Distance curves for SAX-40
(Approach).

and Boeing 767

Cutback NPD Curves

1 zu
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40

20

-- SAX40 Cutback - 160 kts, 1000 ft
-- +-- SAX40 Cutback - 160 kts, -1094 ft
-A-- SAX40 Cutback - 120 kts, 1000 ft

---- SAX40 Cutback - 120 kts, -1094 ft
- - - 767-300ER Takeoff (41K Ibs)

5000 10000 15000 20000
Distance (feet)

Figure C-4: Noise-Power-Distance curves for SAX-40 and Boeing 767
(Cutback).
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Sideline NPD Curves

- SAX40 Sideline - 160 kts, 1000 ft
----- SAX40 Sideline - 160 kts, -308 ft
-2--- SAX40 Sideline - 120 kts, 1000 ft
----- SAX40 Sideline - 120 kts, -308 ft
- )<- - 767-300ER Takeoff (41K lbs)

0 5000 10000 15000 20000 25000

Distance (feet)

Figure C-5: Noise-Power-Distance curves for SAX-40 and Boeing 767
(Sideline).

Table C.8: Comparison of SAX-40 and B767 SEL noise levels in dBA

Approach Sideline Cutback

B-767-300/300ER (dBA) 99.2 95.9 93
SAX-40 (dBA) 72.6 66.8 69.2

Difference (dBA) 26.6 29.1 23.8
Percentage (%) -26.8 -30.4 -25.6

Source: Author's calculations from FAA AC-36H, SAI Team
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profiles are produced by the FAA and was thus not available. The blended fuselage-

wing configuration of the SAX-40 should produce a spectral profile which was radically

different from existing tube-and-wing aircraft in terms of how the noise eminates from

the aircraft. Instead, I used the profile for a typical commercial jet airliner with high-

bypass turbofan engines. Although not ideal, this represents a limitation of this analysis.

Finally, the data to produce thrust/flap coefficients for the SAX were also not available, I

circumvented this limitation by using fixed-point flight profiles. Analysts use this technique

in modeling certain aircraft types (such as the MD-11) where thrust coeffients are not

available. In doing so, I was also able to take into account the steep approach and

unusual departure thrust cutback levels.

Figure C-6 shows the single-event contours. It compares an initial noise model

based on a 20-dBA reduction from a 767, and the final curves used for the SAX-40.

While the noise levels are almost unrealistically low, it essentially reflects a conservative

assumption that the SAX-40 would not generate noise levels above the ambient urban

noise at the airport perimeter.

C.3 Flight Operation Inputs

Tables C.9 through C.16 describe the actual flight inputs used to model the different

scenarios at London Heathrow and the East Midlands airports by time-of-day and aircraft.
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(a) Initial SAX noise levels based on 767 minus 20-dBA.

(b) SAX noise levels based on SAX-40 NPD curves.

(c) Noise levels for Boeing 767-300 and 747-400 (90-dBA SEL).

Figure C-6: Comparison of SAX noise levels (initial and final model) with Boeing
767-300 and 747-400.
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Table C.9: Baseline (2005) flight departures by aircraft type and time-of-day,
London Heathrow airport model

Period
Aircraft Type Day Evening Night Total

Dash-8 4 1 0 5
737-700 316 87 17 420
767-300 83 20 11 114
747-400 47 17 17 81
747-200B 2 1 0 4

Note: Same inputs used for arrivals. Source: Author's calculations based on CAA, BAA, OAG,
and ACARS (Bowler, 2008) data

Table C.10: Medium-growth scenario flight
of-day, London Heathrow airport model

departures by aircraft type and time-

Period

Aircraft Type Day Evening Night Total

Dash-8 5 2 0 6
737-700 379 114 16 509
767-300 98 24 16 138
747-400 73 16 13 102

Note: Same inputs used for arrivals. Source: Author's calculations based on CAA, BAA, and OAG
data

Table C.11: High-growth scenario flight departures by aircraft type and time-of-
day, London Heathrow airport model

Period
Aircraft Type Day Evening Night Total

Movements on Existing Runways
737-700 318 96 14 427
767-300 135 33 22 189
747-400 99 22 17 139

Movements on Third Runway
Dash-8 6 2 0 8
737-700 201 60 9 270

Note: Same inputs used for arrivals. Source: Author's calculations based on CAA, BAA, and OAG
data
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Table C.12: Advanced-technology, low-noise aircraft Phase 1 scenario flight
departures by aircraft type and time-of-day, London Heathrow airport model

Period
Aircraft Type Day Evening Night Total

Movements on Existing Runways
737-700 318 96 14 427
SAX-40 135 33 22 189
747-400 99 22 17 139

Movements on Third Runway
Dash-8 6 2 0 8
737-700 201 60 9 270

Note: Same inputs used for arrivals. Source:
data

Author's calculations based on CAA, BAA, and OAG

Table C.13: Advanced-technology, low-noise aircraft Phase 2 scenario flight
departures by aircraft type and time-of-day, London Heathrow airport model

Period
Aircraft Type Day Evening Night Total

Movements on Existing Runways
737-700 318 96 14 427
SAX-40 234 55 39 328

Movements on Third Runway
Dash-8 6 2 0 8
737-700 201 60 9 270

Note: Same inputs used for arrivals. Source: Author's calculations based on CAA, BAA, and OAG
data
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Table C.14: Flight departures by route, percentage share, London Heathrow
airport model

Departure Existing Runways (%) Third Runway (%)
Route 9L 9R 27L 27R 8L2  26R

WOB/BPK - 8.5 17.4 17.4 8.5 34.7
DVR/DET - 3.8 8.7 8.7 3.8 17.3
MID' - 2.3 7.8 7.8 2.3 15.5
SAM' - 2.3 - - 2.3 -
CPT - 2.1 - - 2.1 -
CPT/SAM - - 6.7 6.7 - 13.5

Subtotal - 19.0 40.5 40.5 19.0 81.0

'Assumes 50/50 split between aggregated MID/SAM departures (6.7%), as published by CAA.
2Assumes Cranfield Agreement does not affect new runway. Source: Author's calculations based
on CAA, BAA, and OAG data

Table C.15: Flight departures by route, percentage share, East Midlands airport
model

Departure Runways (%)
Route 9 27

DAVENTRY 19.0 44.8
DAV2 1.7
TRENT - 25.0
TRENT2 3.5
POLE 6.0

Subtotal 30.2 69.8

Source: Author's calculations based on NEMA, CAA, BAA, and OAG data

271



Table C.16: Baseline (2005) flight departures by aircraft type and time-of-day,
East Midlands airport model

Period

Aircraft Type Day Evening Night Total

Baseline
Dash-8 3.5 0.8 1.4 5.7
737-700 42.3 9.0 11.5 62.8
767-300 3.8 1.1 4.2 9.1
MD-11 (GE) 0.5 0.2 1.3 2.0
747-200B 0.1 0.0 0.3 0.4

Medium-growth
Dash-8 7.3 1.6 2.9 11.8
737-700 88.6 18.9 24.1 131.5
767-300 8.0 2.2 8.7 19.0
MD-11 (GE) 1.4 0.5 3.2 5.1

High-growth
Dash-8 15.8 3.5 6.2 25.4
737-700 190.0 40.5 51.7 282.1
767-300 17.2 4.8 18.7 40.7
MD-11 (GE) 3.0 1.1 6.9 11.0

Note: Same inputs used for arrivals. Source:
and NEMA data

Author's calculations based on CAA, BAA, OAG,
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