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Abstract

Using self-resonant coils in a strongly coupled regime, we experimentally demonstrate
efficient non-radiative power transfer over distances of up to eight times the radius of
the coils. We use this system to transfer 60W with approximately 45% efficiency over
distances in excess of two meters. We present a quantitative model describing the
power transfer which matches the experimental results to within 5%, and perform a
finite element analysis of the objects used. We finally discuss the robustness of the
mechanism proposed and consider safety and interference concerns.
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Chapter 1

Introduction

At the turn of the 20th century, Nikola Tesla [1, 2, 3] devoted much effort to developing

a system for transferring large amounts of power over continental distances. His main

goal was to bypass the electrical-wire grid, but for a number of technical and finan-

cial difficulties, this project was never completed. Moreover, typical embodiments

of Tesla's power transfer scheme (e.g., Tesla coils) involve extremely large electric

fields and are potential safety hazards. The past decade has witnessed a dramatic

surge in the use of autonomous electronic devices (laptops, cell-phones, robots, PDAs,

etc) whose batteries need to be constantly recharged. As a consequence, interest in

wirelessly recharging or powering such devices has reemerged [4, 5, 6]. Our attempts

to help to fulfill this need led us to look for physical phenomena that would enable

a source and a device to exchange energy efficiently over mid-range distances, while

dissipating relatively little energy in extraneous objects. By mid-range, we mean that

the separation between the two objects effecting the transfer should be of the order

of a few times the characteristic sizes of the objects. Thus, for example, one source

could be used to power or recharge all portable devices within an average-sized room.

A natural candidate for wirelessly transferring powering over mid-range or longer

distances would be to use electromagnetic radiation. But radiative transfer [7], while

perfectly suitable for transferring information, poses a number of difficulties for power

transfer applications: the efficiency of power transfer is very low if the radiation is

omnidirectional (since the power captured is proportional to the cross-section of the



receiving antenna, and most of the power is radiated in other directions), and requires

an uninterrupted line of sight and sophisticated tracking mechanisms if radiation is

unidirectional (which might also damage anything that interrupts the line of sight).

An alternative approach, which we pursue here, is to exploit some near-field in-

teraction between the source and the device, and somehow tune this system so that

efficient power transfer is possible. A recent theoretical paper [8] presented a detailed

analysis of the feasibility of using resonant objects coupled through their near-fields

to achieve mid-range energy transfer. The basic idea is that in systems of coupled

resonances (e.g. acoustic, electro-magnetic, magnetic, nuclear), there may be a gen-

eral strongly coupled regime of operation [9]. It is a general physical property that

if one can operate in this regime in a given system, the energy transfer is expected

to be very efficient. Mid-range power transfer implemented this way can be nearly

omnidirectional and efficient, irrespective of the geometry of the surrounding space,

and with low losses into most off-resonant environmental objects [8].

The above considerations apply irrespective of the physical nature of the res-

onances. In the current work, we focus on one particular physical embodiment:

magnetic resonances [10], meaning that the interaction between the objects occurs

predominantly through the magnetic fields they generate. Magnetic resonances are

particularly suitable for everyday use because biological tissue and most common

materials do not interact strongly with magnetic fields, which helps make the sys-

tem safer and more efficient. We were able to identify the strongly coupled regime

in the system of two coupled magnetic resonances by exploring non-radiative (near-

field) magnetic resonant induction at MHz frequencies. At first glance, such power

transfer is reminiscent of the usual magnetic induction [11]; however, note that the

usual non-resonant induction is very inefficient unless the two coils share a core with

high magnetic permeability or are very close to each other. Moreover, operating on

resonance is necessary but not sufficient to achieve good efficiency at mid-range dis-

tances. Indeed, Tesla's pioneering work made extensive use of resonant induction,

and many technologies available today (e.g., radio receivers, RFID tags, and cochlear

implants [12]) also rely on resonance, yet their efficiencies are not very good at mid-



range distances. Operation in the strong-coupling regime, for which resonance is a

precondition, is what makes the power transfer efficient.

The work presented in this thesis was done in collaboration with Aristeidis Karalis,

Robert Moffatt, Prof. J. D. Joannopoulos, Prof. Peter Fisher, and Prof. Marin

Soljaaid. Our main results were published in the July 6th 2007 issue of Science [13].



Chapter 2

Theory of strongly coupled systems

2.1 Motivation and basics

In order to achieve efficient power transfer, it pays to have a methodical way of tuning

the parameters of a given system (such as its geometry, the materials used, and the

resonant frequency) so that it operates in the strongly coupled regime. In some

cases, this analysis can be done directly in term of familiar quantities. For instance,

when dealing with coupled LCR systems that are composed of lumped elements to a

good approximation, one can solve the circuit equations directly and work exclusively

with regular inductances, capacitances, and resistances. Our experimental system,

however, consists of self-resonant coils which rely on distributed capacitances and

inductances to achieve resonance, and cannot easily be analyzed in terms of lumped

elements. In contrast, coupled-mode theory [14] provides a simple yet accurate way of

modeling this system, and gives a more intuitive understanding of what makes power

transfer efficient in the strongly coupled regime.

The essence of coupled-mode theory is to reduce the analysis of a general physical

system to the solution of the following set of coupled differential equations:

am(t) = (iWm - iFm)am(t) - E iimnan,(t) + Fm(t), (2.1)
na m

where the indices denote the different resonant objects. The variables am(t) are de-



fined so that the energy contained in object m is lam(t) 2, Wm is the resonant frequency

of that isolated object, and Fm is its intrinsic decay rate (e.g. due to absorption and

radiated losses). Thus, in this framework the variable ao(t) corresponding to an un-

coupled and undriven oscillator with parameters wo and To would evolve in time as

e- iwot - r ot. The Emn are coupling coefficients between the resonant objects indicated

by the subscripts, and Fm(t) are driving terms.

The first assumption of coupled-mode theory is that the range of frequencies of

interest is sufficiently narrow that the phenomenological parameters in Eq. 2.1 can be

treated as constants and the coupled differential equations can be treated as linear.

The second is that the overall field profile can be described as a superposition of the

modes due to each object. The second condition usually implies that the interaction

between the resonators must not be strong enough so as to significantly distort the

individual eigenmodes. In that sense, the "strong" in "strong-coupling regime" is a

relative term, one that we will make more precise below.

We limit our treatment to at most two objects. We denote them by source (iden-

tified by the subscript S) and device (subscript D). The coupling coefficients .SD

and rDs are not independent. Indeed, an undriven system consisting of these two

objects would lose energy at the rate

d

d (Jas+ aD 2 )= as S + saS + aDD + UDaD

= -2Fs as 2 - 2FD aDI2

-- i (SD - DaSa + S DsasaD - DsaSaD) , (2.2)

where we plugged in Eq. 2.1 between the first and second lines. Since the only

mechanisms through which the system can lose energy are incorporated in Fs and FD,

the third line in Eq. 2.2 must equal 0. Moreover, the phases of as and aD are arbitrary,

and we find that KSD and KDS are real and equal. Clearly, this property holds for

all the 'mn used in Eq. 2.1. We shall henceforth use the single coupling coefficient

K = KSD = KDS. Eq. 2.2 also indicates that n is related to the transfer of energy

between the two oscillators, and we shall use that property below to theoretically



derive K for our experimental system.

2.2 Single oscillator driven at constant frequency

For a single driven oscillator at steady-state, Eq. 2.1 reduces to

&(t) = -i(wo - ir)a + Fe - i "t, (2.3)

where Fe-i" t is the steady-state driving term. The solution is

Fe-iwt
as(t) = i( -w)+ (2.4)i(wo - W) + r,

One way to measure 17s experimentally is to drive the oscillator at steady-state

and determine the frequency width Aw for which the amplitude of the oscillation is

greater than 1/V/ of the peak amplitude (which occurs at w = ws). From Eq. 2.4

we find that 21 = Aw. It is also convenient to work with the dimensionless quality

factor Q defined as

Q = 2r - (energy stored)
(power dissipated per cycle)

2F
•0• 

(2.5)

That is, in one period of oscillation a resonant object loses 1/Q of its energy.

2.3 Two coupled oscillators

We now solve the coupled-mode equations in two different cases: undriven and driven.

The undriven result is useful for extracting r, from computer simulations of the system,

while the driven result allows us to determine K from experiment.



The system of equations for the undriven case is

=s = -i(ws - iFs)as - iraD

aD = - - iD)aD - inas. (2.6)

This has solutions with eigenfrequencies

1
W1, 2 = [WS+WD- (r + FD)]

1 [4n2 + (ws - WD) 2 - (S - FD)2 -2i(- 2i(Fs- )(S - WD)]1/2 (2.7)

For the case of two identical oscillators with ws = WD = wo and s = = PD = F, this

simplifies to

o1,2 = W0 - if ± K. (2.8)

Thus we see that n. is related to the splitting between the eigenfrequencies by 2, =

W1 - W2.

The driven case adds a term Fe -i wt to the first line of Eq. 2.6. The solution to

the new system of coupled equations is

[FD - i(w - WD)] Fe -iwt
a• 2 + rSrD - (Ws - W)(WD - W) + i [rs(WD - w) + rD(Ws - w)]

-inFe-i t
aD = . (2.9)i2 + aSrD - S(L- D - L)(WD - w) + i [rS(WD - w) + rD(WS -W)]

Our measurement of K involves measuring the amplitude of the excitation at the

device object while sweeping the driving frequency w. Restricting ourselves to the

case of two identical oscillators, the two peaks in the amplitude occur at

wL0,2= 0ao 2 _± 2 . (2.10)

K is therefore obtained by measuring F and the frequency splitting between the two

peaks.



2.4 Transferring power

Once the device is excited by the source (which is in turn driven at constant fre-

quency), we can extract energy and convert it into useful work by adding a load

(denoted by the subscript W) to the device. In the particular case of electromagnetic

resonances, the load effectively acts as a circuit resistance connected to the device.

More generally, the load has the effect of contributing an additional term to the un-

loaded device object's ID. The total decay rate at the device is therefore changed to

PF = FD + Lw, where PD is the device's intrinsic decay rate, as before. The work

extracted is determined by the power dissipated in the load, i.e. 2FwlaD(t) 2 and the

overall efficiency of the system is

rwwaDI2

PslasJ2 + (PD + w)laD 12

Ls[(rL + IW)2 + ( - WD)] 2 + (D + ) 2 ' (2.11)

where we plugged in Eq. 2.9 when going from the first to the second line. We can

tell by inspection that the efficiency is maximized when w = WD. 1 Eq. 2.11 then

simplifies to
(Lw/rD)K2/(LSD)

77 (2.12)
[1 + rw/r/]DK 2/(rID) + [1 + rW ]2(2.12)

Maximizing the efficiency is now equivalent to solving and impedance matching prob-

lem: given the intrinsic parameters of the system, which load Fw maximizes rq?

Maximizing Eq. 2.12 yields the optimal value Lw = FD 1 + 2/SD.-

We have found that the efficiency of power transfer depends solely on the dimen-

sionless parameter KT/v_' F. Fig. 2-1 shows that the transfer is efficient (i.e. q is
1For electromagnetic systems, an intuitive way of arriving at this result is to note that the power

dissipated by each object is proportional to the square of the amplitude of the electromagnetic fields
that it generates, while the power transferred between the source and the device is represented by the
time-averaged Poynting vector (P) = -Re [E x H*]. Since the electric and magnetic fields generated
by a resonant object are r/2 out of phase, the time-averaged Poynting vector between source and
device is maximized when there is a 7r/2 phase difference between the two objects. We see from Eq.
2.9 that this occurs when w = WD.
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Figure 2-1: Efficiency as a function of the parameter tI/ sFD. In the vicinity of

•,/vsD - 1, the efficiency rises sharply, thus justifying the criterion ,/NFS/ > 1
for efficient power transfer.The efficiency curve asymptotes to 1 as I/V SFD/ -* 00.

of order 1) when r/,1 FFD > 1. This is what we denote as the strongly coupled

regime. An intuitive way of understanding why power transfer is efficient in this

regime is to note that v/FsFD is essentially the rate at which the source and device

dissipate energy, while , is a measure of how fast the two objects exchange energy. If

> ,FS D, then the energy travels from the source to the device before too much

of it gets wasted away.

Note that the results of this chapter apply to all physical systems of coupled

resonators. We now turn our attention to the system of self-resonant electromagnetic

coils which we used to demonstrate experimentally the principle of strong-coupling

and efficient power transfer.



Chapter 3

Analytical model for self-resonant

coils

3.1 Description of self-resonant coils

Our experimental realization of the power transfer scheme consists of two identical

self-resonant coils made of an electrically conducting wire of total length 1 and cross-

sectional radius a wound into a helix of n turns, radius r, and height h. To the

best of our knowledge, there is no exact electromagnetic solution for a conducting

helix of finite length in the literature, and even in the case of infinitely long coils, the

results rely on assumptions that are inadequate for our system [15]. We have found,

however, that a simple quasi-static model is in good agreement (approximately 5%)

with experiment. We have also tried to model the coils computationally using a

finite-element software package [16] but given the limited computational resources

at our disposal, we have been unable to extract all the parameters needed for a full

coupled-mode theory treatment. In this chapter, we present the analytical model,

while the computational analysis is described in the next.



3.2 Assumptions of the analytical model

We start by observing that the current has to be zero at the ends of the coil, and

make the educated guess that the resonant modes of the coil are well approximated by

sinusoidal current profiles along the length of the conducting wire. We are interested

in the lowest mode, so if we denote by s the parameterization coordinate along the

length of the conductor, such that it runs from -1/2 to +1/2, then the time-dependent

current profile has the form Io cos(ws/1)e-iwot. Using the continuity equation for

charge
dpO + V J = 0 (3.1)

(where p is the charge density and J is the current density) we find that the linear

charge density profile is of the form A0 sin(,rs/l)e-iWt, so that one-half of the coil (when

sliced perpendicularly to its axis) contains an oscillating total charge (of amplitude

qo = Aol/7) that is equal in magnitude but opposite in sign to the charge in the other

half.

3.3 Resonant frequency

As the coil is resonant, the current and charge density profiles are 7r/2 out of phase

from each other, meaning that the real part of one is maximum when the real part of

the other is zero. Equivalently, the energy contained in the coil is at certain points

in time completely due to the current, and at other points, completely due to the

charge. Using electromagnetic theory, we can define an effective inductance L and an

effective capacitance C for each coil as follows:

L Po drdr' J(r) -J(r') (3.2)
L =2 Ir - (3.2)

1 1 [ p(r)p(r')~d1 rdr' r)r') (3.3)C 4 oEo I qoI2 I Ir -r'I



where the spatial current J(r) and charge density p(r) are obtained respectively from

the current and charge densities along the isolated coil, in conjunction with the ge-

ometry of the object. One can then compute L and C by numerical integration. As

defined, L and C have the property that the energy U contained in the coil is given

by

U = -L1Io 2
2
= 1q12. (3.4)
2C

Given this relation and the equation of continuity, one finds that the resonant

frequency is fo = 1/27rV 7 U. We can now treat this coil as a standard oscillator in

coupled-mode theory by defining a(t) = L/2Io0(t).

3.4 Losses

In this model, the coils dissipate energy through two mechanisms: ohmic (resistive)

losses and radiation. At MHz frequencies, the electrical current in a typical metal

flows within a few tens of micrometers of the surface of the conductor because of

the skin effect [17]. For a uniform current flowing through a cylindrical conductor

of conductivity a, cross-sectional radius a, length 1, and skin depth V2/pToow, the

ohmic resistance would be R,, = 1/2•ruaJ = V/Pow/2u(1/21a). Our model assumes a

sinusoidal current distribution such that the spatial average of the amplitude-squared

is Io0 2/2. If we define the ohmic resistance Ro for our coil's non-uniform current

distribution such that the resistive losses equal R0o1o 2/2, then

Ro = (3.5)
V2o 47a

We may decompose the radiation emitted by the coil into two terms. One of them

is roughly a magnetic dipole term due to the current flowing around in loops, the



other is an electric dipole term created by the oscillating charge along the axis of

the coil. The far-fields created by each term have different polarizations and do not

interfere. Therefore the total power radiated is just the sum of the powers radiated by

each term. Proceeding as in the case of the ohmic resistance, we modify the standard

formulas for magnetic and electric dipole radiation and obtain

r ( wr 4 2 wh 2
R = 6 -n - + 37 (3.6)

The first term in Eq. 3.6 is the radiation due to the magnetic dipole and the second

is that due to the electric dipole. We can now compute the coupled-mode theory

decay constant for the coil as F = (Ro + R,)/2L, and the associated quality factor

is Q = wo/2F. For later comparison with the computational finite-element results,

it is convenient to define ohmic and radiative Q's: Qo = woL/Ro and Qr = woL/RE.

These two are related to the overall Q by Q-1 = Q 1 + Q-.

3.5 Coupling coefficient between two coils

We find the coupling coefficient IDS by looking at the power transferred from the

source to the device coil, assuming a steady-state solution in which currents and

charge densities vary in time as e- iwt.

PDS = drEs(r) -JD(r)

S-dr(As(r) + Vos(r)) -JD(r)

1 Js(r') Ps(r') r' - r
= drdr' A0 / +  r/ r JD(r). (3.7)

4r JIr r co Irl - rJ3 )' 3

where ¢ is the scalar potential, A is the vector potential, and the subscript S indicates

that the electric field is due to the source only. Js and Ps are proportional to Is,



while JDo is proportional to ID, so we find that

PDS = iwoMIsID, (3.8)

where M, the "effective inductance" is a function of wo and the geometry of the

system. We then conclude from standard coupled-mode theory arguments and a

comparison with Eq. 2.2 that n = woM/2x/LsLo .

3.6 Validity of the quasi-static approximation

So far, we have worked in the quasi-static approximation and treated the interaction

between the two coils as instantaneous. The quasi-static approximation is good as

long as woD/c < 1, where D is the distance between the source and device, the

longest dimension in our system. In the lab, we worked with frequencies of about

10MHz and distances of up to 2.5m, for which woD/c - 0.5. Thus, we need to justify

the quasi-static approximation more carefully.

The most significant corrections to the quasi-static regime would affect K, since it is

the only coupled-mode theory parameter which depends on the distance between the

coils. If this quantity is affected considerably, then the coupled-mode analysis would

be more complicated because of the non-instantaneous interaction. To quantify the

change in r,, we need to replace the instantaneous potentials in the second line of Eq.

3.7 by the retarded potentials

s(r7t) 1 ,pdr s(r', t)ei0wor'-r1/c
s/rst) = ) - 4w 0 ] dr47rco Ir' - r

As(r, t) = dr Js(r', t)ei r' - r  (3.9)47 r' - r (39)

where we have used the Lorenz gauge. We have explicitly computed these corrections

by numerical integration and found that they are within the error bars due to uncer-

tainties in the measurement of the geometrical dimensions. Therefore the quasi-static

approximation is valid for our purposes.



Chapter 4

Finite element analysis of the

resonators

4.1 Overview

In an attempt to check and improve upon the analytical model introduced in the

previous chapter, we modeled both isolated and coupled self-resonant coils using the

RF module of the COMSOL Multiphysics finite element analysis software. The basic

idea of finite element analysis is to discretize the system into a mesh of subdivisions

(hence finite element) and nodes. The nodes represent the degrees of freedom, and

each element is associated with a number of nodes. A physical quantity at an arbitrary

point in a given finite element is approximated by interpolation (with a suitable

function) from its values at the nodes associated with that element. The physical

equations governing the system are then used in conjunction with the interpolating

functions to determine a system of equations for an element in term of its nodal

degrees of freedom. The equations for different elements are then combined into a

set of equations describing the entire system, and these are then solved with the

appropriate boundary conditions.

The finite element analysis of the self-resonant coils is complicated by the lack of

symmetries of the coils which, if present, could have been used to significantly reduce

the number of degrees of freedom that need to be solved. Nevertheless, the current



Figure 4-1: Lowest eigenmode of a self-resonant coil, simulated with COMSOL Mul-

tiphysics. The colormap represents the z-component of the magnetic field.

results are encouraging and it is probable that given a relatively modest increase in

computational power we should be able to extract precise values for all coupled-mode

theory parameters from these simulations.

4.2 A single isolated coil

Solving for the eigenvalue of a self-resonant coil allows us to determine both its eigen-

frequency fo and its loss rate F (or, equivalently, Q). We performed this analysis in

two steps. First, we solved for the eigenvalue of a coil made of perfect conductor (i.e.

we imposed perfect electric conductor boundary conditions at its surface), then we re-

peated the procedure for a coil made of copper (by switching to impedance boundary

conditions). The first step serves two purposes: it yields the radiative quality factor

Q, and it determines the minimum distance necessary between the coil and the outer

boundary of the physical space being modeled. We chose this outer boundary to be

a sphere, and applied scattering boundary conditions to it, in order to prevent reflec-

tions back towards the coil. If the radius of this outer sphere is too small and the

boundary is too close to the coil, it will damp the oscillations of the coil and affect its

eigenfrequency. Thus, we know we have chosen an appropriate radius for the outer



Figure 4-2: Even (left) and odd eigenmodes of two coupled self-resonant coils. The
colormap represents the z-component of the magnetic field.

boundary when a further increase in radius does not change the eigenfrequency. The

eigenvalue of the coil with impedance boundary conditions determines the total Q,

from which we may obtain the ohmic quality factor through Qo1 = Q-1 - Q 1.

Although we had to limit the simulations (Fig. 4-1) to somewhat coarse discretiza-

tions, the values for fo and Q that we obtained are probably quite precise: between

the finest mesh for which we could solve and the next finest, there was only a 1%

discrepancy in fo, and a 2% discrepancy in Q.

4.3 Two coupled coils

As shown in Eq. 2.8, one can derive the coupling r, from the splitting between

the eigenfrequencies of two coupled resonators. Since the two coils are identical, we

can exploit this symmetry and reduce the number of nodal degrees of freedom that

need to be solved for. By imposing perfect electric conductor and perfect magnetic

conductor boundary conditions at the plane of reflection between the two coils, we

can respectively solve for the odd and even modes of the coupled system.

Unfortunately, the frequency splitting is much smaller than the eigenfrequencies

themselves, and the latter would have to be precise to nearly one part per thousand

in order to reliably estimate r,. Even when taking advantage of the reduction in the

size of the system afforded by reflection symmetry, we were unable perform the finite



element analysis for a mesh that was sufficiently fine to attain this level of precision.

Nonetheless, the modes exhibit the expected qualitative behavior even at coarser

discretizations (Fig. 4-2).



Chapter 5

Comparison of theory with

experimental parameters

5.1 Frequency and quality factor

The geometrical dimensions for the two identical helical coils built for the experimen-

tal validation of the power transfer scheme are h = 20cm, a = 3mm, r = 30 cm, and

n = 5.25. Both coils are made of copper. For these parameters, our analytical model

predicts fo = 10.52MHz, Q = 2, 500, Qo = 3, 100, and Qr = 13, 100, while the finite

element modeling yields fo = 9.93MHz, Q = 2, 020, Qo = 2, 350, and Q, = 14, 500.

The resonant frequency and quality factor are measured experimentally by driving

the self-resonant coil with a coil connected to a function generator and measuring

the amplitude of the self-resonant coil's excitation with a pickup coil connected to an

oscilloscope (Fig. 5-1). To ensure that the driving and pickup coils do not load the

resonator and interfere with the measurement, we placed them at a sufficient distance

from it (we found 30cm to be enough). This experimental setup corresponds to the

case treated in Sec. 2.2.

We measured fo = 9.90MHz and Q = 950 ± 50. The frequency obtained from the

finite element analysis agrees remarkably well with the experimental result, while the

frequency predicted by the analytical model is just over 5% above the experimental.

On the other hand, the experimental Q is much below either theoretical prediction.



Figure 5-1: Experimental setup for measuring Q. The self-resonant coil is the copperwire wrapped around the piece of pink styrofoam. The excitation coil to its rightis connected to a function generator, while the pickup coil on the opposite side isconnected to the oscilloscope.

We believe this discrepancy is mostly due to the effect of the layer of poorly conducting
copper oxide on the surface of the copper wire, to which the current is confined by the
short skin depth (- 20pm) at this frequency. Although the two theoretical Qr's agree
reasonably well, there is a substantial disagreement between the Qo's. This may be
due in large part because we ignored in our analytical model the power dissipated by
the eddy currents that a loop of the self-resonant coil induces on its neighbors.

Because of the significant mismatch between the experimental and theoretical Q's,
we shall use the experimentally observed Q and Es = FD = F = w/2Q derived from
it in all subsequent computations.

5.2 Coupling coefficient

To measure the coupling K, we place the two self-resonant coils (fine-tuned, by slightly
adjusting h, to the same resonant frequency when isolated) a distance D apart then



Figure 5-2: Experimental setup for measuring K. The self-resonant coil on the right-hand side is driven by a coil connected to a function generator. A pickup coil measuresthe amplitude of the excitation in the second coil.

excite one of them while measuring the amplitude of the excitation in the second coil.
This is precisely the setup described by Eq. 2.10, and K is related to the frequency
splitting between the two peaks measured at the second coil by Aw = 2VK 2 -F 2.

Although our focus in these experiments is on the case where the two coils are aligned
coaxially (Fig. 5-3), we obtain similar results for , vs. distance for other orientations
(Figs. 5-4 and 5-5).

5.3 Range of the strong coupling regime

As we showed in Ch. 3, K and F are both functions of the frequency: K is roughly
proportional to w, while F is affected by ohmic losses (which scale as Wl/ 2 because
of the skin effect), radiation losses (whose electric and magnetic dipole components
scale as w2 and w4 respectively), and possibly also by eddy current losses (which
are proportional to w2 ). Because of these competing physical effects, K/F and the
efficiency are maximized for a particular value of f. Our experience with simulations
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Figure 5-3: Comparison of experimental and theoretical values for r as a function ofthe separation between coaxially aligned source and device coils (the wireless powertransfer distance). Note that when the distance D between the centers of the coils ismuch larger than their characteristic size, r scales with the D 3 dependence charac-teristic of dipole-dipole coupling.
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Figure 5-4: Theoretical and experimental K as a function of
coils is rotated by 45% with respect to coaxial alignment.

distance when one of the
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Figure 5-5: Theoretical and experimental K as a function of distance when the coilsare coplanar.

shows that this optimal frequency is in the range 1 - 25MHz for typical parameters
of interest and that picking an appropriate frequency for a given coil geometry plays
a major role in maximizing the power transfer. Because of the discrepancy between
the predicted and measured Q, however, we were unable to use theory to determine
the ideal frequency of operation for our coils. Instead, we relied on educated guesses
and some trial and error in the laboratory. Thus, although the coils were in the
strong coupling regime throughout the range of distances probed (Fig. 5-6), a better
understanding of the loss mechanisms would enable us to better fine-tune the system
and improve performance.
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Figure 5-6: Comparison of experimental and theoretical values for the parameter '/Fas a function of the wireless power transfer distance. The theory values are obtainedby using the theoretical r; and the experimentally measured F. The shaded arearepresents the spread in the theoretical r/F due to the ±5% uncertainty in Q.



Chapter 6

Measurement of the efficiency

6.1 Description of the setup

As the circuit driving the entire apparatus, we use a standard Colpitts oscillator whose

inductive element consists of a single loop of copper wire 25cm in radius(Fig. 6-1);

this loop of wire couples inductively to the source coil and drives the entire wireless

power transfer apparatus. The load consists of a calibrated light-bulb, and is attached

to its own loop of insulated wire, which is placed in proximity of the device coil and

inductively coupled to it. 1 By varying the distance between the light-bulb and the

device coil, we are able to adjust the parameter Fw/F so that it matches its optimal

value, given theoretically by 1 + K2 /F 2 . (The loop connected to the light-bulb adds

a small reactive component to Fw which is compensated for by slightly retuning the

coil.) We measure the work extracted by adjusting the power going into the Colpitts

oscillator until the light-bulb at the load glows at its full nominal brightness.

6.2 Results

We determine the efficiency of the transfer taking place between the source coil and

the load by measuring the current at the mid-point of each of the self-resonant coils
1The couplings to the driving circuit and the load do not have to be inductive. They may also be

connected by a wire, for example. We have chosen inductive coupling in the present work because
of its easier implementation.
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Figure 6-1: Schematic of the experimental setup. A is a single copper loop of radius
25cm that is part of the driving circuit, which outputs a sine wave with frequency
9.9MHz. S and D are respectively the source and device coils referred to in the text.
B is a loop of wire attached to the load ("light-bulb"). The various K's represent
direct couplings between the objects indicated by the arrows. The angle between coil
D and the loop A is adjusted to ensure that their direct coupling is zero, while coils
S and D are aligned coaxially. The direct couplings between B and A and between
B and S are negligible.
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Figure 6-2: Comparison of experimental and theoretical efficiencies as functions of the
wireless power transfer distance. The shaded area represents the theoretical prediction
for maximum efficiency, and is obtained by inserting the theoretical values from Fig.
5-6 into Eq. 2.12 (with Fw/FD = V + K2 /F 2 .) The black dots are the maximum
efficiency obtained from Eq. 2.12 and the experimental values of r/F from Fig. 5-6.
The red dots present the directly measured efficiency, as described in the text.
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with a current-probe (which does not lower the Q of the coils noticeably). This gives a

measurement of the current parameters Is and ID used in our theoretical model. We

then compute the power dissipated in each coil from PS,D = FLIIS,D D2, and obtain the

efficiency from q = Pw/(Ps +PD +Pw). To ensure that the experimental setup is well

described by a two-object coupled-mode theory model, we position the device coil such

that its direct coupling to the copper loop attached to the Colpitts oscillator is zero.

The experimental results are shown in Fig. 6-2, along with the theoretical prediction

for maximum efficiency, given by Eq. 2.12. We are able to transfer significant amounts

of power using this setup, fully lighting up a 60W light-bulb from distances more than

2m away.

As a cross-check, we also measure the total power going from the wall power

outlet into the driving circuit. The efficiency of the wireless transfer itself is hard to

estimate in this way, however, as the efficiency of the Colpitts oscillator itself is not

precisely known, although it is expected to be far from 100% [18]. Still, the ratio

of power extracted to power entering the driving circuit gives a lower bound on the

efficiency. When transferring 60W to the load over a distance of 2m, for example,

the power flowing into the driving circuit is 400W. This yields an overall wall-to-load

efficiency of 15%, which is reasonable given the expected efficiency of roughly 45%

for the wireless power transfer at that distance and the low efficiency of the Colpitts

oscillator.



Chapter 7

Practical issues

7.1 Robustness of the strong coupling regime

It is essential that the coils be on resonance for the power transfer to be practical

[8]: we estimate that given the parameters of our system, the efficiency of an off-

resonant system would be suppressed by a factor of approximately 1/Q 2 , 106.

Experimentally, we find that the power transmitted to the load drops sharply as

either one of the coils is detuned from resonance. For a fractional detuning Af/fo

of a few times Q- 1 , the induced current in the device coil is indistinguishable from

noise. Although we were able to tune the coils manually with only a moderate amount

of effort, a practical system would need a feedback mechanism that would tune it

automatically.

A detailed and quantitative analysis of the effect of external objects on our scheme

is beyond the scope of the current work, but we would like to note here that, confirm-

ing our intuition that off-resonant objects couple relatively weakly, the power transfer

is not visibly affected as humans and various everyday objects, such as metals, wood,

and electronic devices large and small, are placed between the two coils, even in cases

where they completely obstruct the line of sight between source and device (Fig. 7-1).

External objects have a noticeable effect only when they are within a few centimeters

from either one of the coils. While some materials (such as aluminum foil, styrofoam

and humans) mostly just shift the resonant frequency, which can in principle be easily



Figure 7-1: 60W light-bulb being lit from 2m away. Note the obstruction in the lower

image.

corrected with a feedback circuit, others (cardboard, wood, and PVC) lower Q when

placed closer than a few centimeters from the coil, thereby lowering the efficiency of

the transfer.
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7.2 Safety and interference concerns

When transferring 60W across 2m, we calculate that at the point halfway between the

coils the RMS magnitude of the electric field is E,,,ms = 210V/m, that of the magnetic

field is H,,, = 1A/m, and that of the Poynting vector is Srms = 3.2mW/cm 2.1

These values increase closer to the coils, where the fields at source and device are

comparable. For example, at distances 20cm away from the surface of the device coil,

we calculate the maximum values for the fields to be E,,m, = 1.4kV/m, H,,,m = 8A/m,

and Srms = 0.2W/cm2. The power radiated for these parameters is approximately

5W, which is roughly an order of magnitude higher than cell phones. In the particular

geometry studied in this article, the overwhelming contribution (by one to two orders

of magnitude) to the electric near-field, and hence to the near-field Poynting vector,

comes from the electric dipole moment of the coils. If instead one uses a capacitively-

loaded single-turn loop design [8] - which has the advantage of confining nearly all

of the electric field inside the capacitor - and tailors the system to operate at lower

frequencies, it should be possible to reduce the values cited above for the electric field,

the Poynting vector, and the power radiated to below general safety regulations [19].

fo(MHz) r E,,,ms (V/m) H,,m, (A/m) Srms(W/cm 2 ) Power radiated (W)
10 83% 185 21 0.08 3.3
1 60% 40 14 0.04 0.005

Table 7.1: Effect of replacing self-resonant coils with capacitively-loaded loops and of
lowering the resonant frequency on electromagnetic fields 20cm away from the surface
of the device loop. The power radiated by the system is also shown. The total power
transferred is 60W.

We have performed calculations to simulate a transfer of 60W across two identical

capacitively-loaded loops similar in dimension to our self-resonant coils (radius of loop

30cm, cross sectional radius of the conductor 3cm, and distance between the loops

of 2m), and calculated the maximum values of the fields and Poynting vector 20cm

away from the device loop (Table 7.1). At 1MHz, all our fields are below the IEEE

safety guidelines (E,,, = 614V/m, Hrms = 16.3A/m, and Srms = 0.1W/cm2) for that

'Note that E = cupoH, and that the fields are out of phase and not necessarily perpendicular to
each other because we are not in a radiative regime.



frequency, and the power radiated is well below the limits for Bluetooth (100mW)

and WiFi (100mW or higher, depending on country).

7.3 Directions for future research

Although the two coils are currently of identical dimensions, it is possible to make the

device coil small enough to fit into portable devices without decreasing the efficiency.

One could, for instance, maintain the product of the characteristic sizes of the source

and device coils constant, as argued in [8].

We believe that the efficiency of the scheme and the power transfer distances could

be appreciably improved by silver-plating the coils, which should increase their Q, or

by working with more elaborate geometries for the resonant objects [20]. Nevertheless,

the performance characteristics of the system presented here are already at levels

where they could be useful in practical applications.
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