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Abstract

This work explores the problem of distinguishing potentially interesting new exotic
states in QCD from conventional scattering states using lattice QCD, and addresses
the specific case of the search for localized resonances in a system of five quarks.
We employ a complete basis of local interpolating operators, as well as a number of
spatially distributed operators, to search for localized resonances in the system of
five quarks. Motivated by initially promising experimental searches for the 8+(1540)
pentaquark, we have set out to implement new approaches, both on the theoretical
and computational side, to allow for calculations deemed infeasible by other groups
searching for pentaquarks on the lattice. We restrict our system of five quarks to the
quantum numbers of the E+(1540) pentaquark and get an insight into the structure
of its states, calculate their energies and explore their properties. Finally, we use the
obtained results to discriminate between scattering and exotic states. The calculation
is performed in the quenched approximation with heavy Wilson fermions.
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Chapter 1

Introduction

Supported by vast experimental evidence, quantum chromodynamics has been es-

tablished as the correct theory of strong interactions for decades. Looking at its

remarkably simple Lagrangian, one could hope that many aspects of it can be easily

developed and understood. However, despite the seeming simplicity and constant

effort of the world's best talent, QCD has so far eluded exhaustive mathematical ex-

planation. Its significance and difficulty is well illustrated by the fact that one of its

fundamental challenges, proving confinement, is among the seven Millennium Prize

Problems selected by the scientific advisory board of the Clay Mathematics Institute.

We take as a starting line the spectroscopy arm of quantum chromodynamics.

One of the things that theorists have long sought was bound states that would not

fall into the category of either a quark-antiquark meson or a three-quark baryon.

Nothing explicitly prohibits such states, called exotic for their rarity, in the funda-

mentals of QCD. Nonetheless, not a single experimental observation has confirmed

their existence for many years, adding up to the list of QCD mysteries.

That's why the apparent observation of the 0 + particle with minimal quark con-

tent uuddg created tremendous interest in high-energy and nuclear physics. Upon

solid confirmation, this particle could pave the way to a manifold of other exotics,

ultimately taking us significantly further in our understanding of QCD.

However, reality has put this plan to a serious test. As the flurry of experimental

searches following the original discovery was running into problems trying to con-



firm the observation, the effort on the part of lattice QCD theorists reflected that

spirit, yielding inconclusive, ambiguous calculations. Lattice theorists were facing a

multitude of problems, most of them new and unexpected. Major ones were correct

identification of localized narrow resonances, weeding out scattering states from the

spectrum, and the enormous computational cost of the new calculation. Taking the

analogous baryon spectroscopy calculations as a start, one would expect to keep the

cost under control as it has been low by the lattice QCD standards. However, group

theory results for pentaquark spectroscopy has set a remarkably different scale on

such calculations, forcing most LQCD collaborations to compromise by employing

non-physical cost-reduction recipes.

Hence, in this work we have developed a thorough theoretical approach to the

issues unique to lattice pentaquark spectroscopy. We explore a few sets of inter-

polating operators, including a complete basis of local interpolating operators, in

high-statistics, high-cost calculations.

1.1 Background and context

Studies of what we would now call exotics began as early as the late 1950's, before

the introduction of quarks, when the KN(K+p) system was explored. The area had

attracted an increasing amount of attention through the 1970's as it was realized that

three quarks cannot produce S = +1 baryon resonances, or Z-resonances. Consider-

able experimental effort was going into the area. The experimental activity was dying

out, however, as no positive results were found.

Robert Jaffe suggested the possible existence of pentaquarks in 1977. Then in the

early 1980's Lipkin considered the uudse pentaquark, while the E+ emerged in 1983

with new developments of the Skyrme model, a low-energy approximation to large Nc

QCD. The latter, while not applying directly to the real world, is remarkably close in

many features to real-world QCD. In the Skyrme model and a more general class of

chiral soliton models, the baryons are associated with solitons, while the fundamental

degrees of freedom are non-linearly coupled quasi-Goldstone SU(3)f pseudoscalars. In



the chiral soliton models, the second excited state soliton is a i SU(3)1 antidecuplet

requiring more than 3 quarks to construct. The first two states are a I+SU(3)f octet

and a ý+SU(3)f decuplet.

The mass of the antidecuplet's lightest member was estimated at roughly 1540

MeV, although the fact that it cannot be constructed out of 3 quarks was widely

perceived as a fundamental flaw in the model as no such states had been experimen-

tally found. There was, however, one paper by Diakonov, Petrov and Polyakov [1],

appearing in 1997, that had a different view. Assuming the model is valid despite the

lack of experimental evidence, they calculated masses and widths of various members

of the antidecuplet. The important lesson learned from the calculation was that the

lightest state had a width of less than 15 MeV, making it feasible to hope for its

experimental observation. This anomalously narrow state inspired more theoretical

papers on the subject and the first experiment in Japan.

One of the most counter-intuitive predictions of the chiral soliton models is that

E+ , containing one anti-strange quark, is actually lighter than any non-strange mem-

bers of the antidecuplet. This follows from the SU(3) breaking in the antidecuplet

being linear in hypercharge, a property analogous to that of the baryon decuplet.

We can illustrate this as follows. All states in the antidecuplet can be generated

from IO+ ) = luudds) by applying a U-spin lowering operator which replaces d by s:

U_ d) = Is), UIS) = -Id). This would give us the non-strange member N* after the

first iteration, eliminating the anti-strange quark:

IN*) = U_ audds) = - I uuddd) + d ss). (1.1)

Thus, N* being heavier is no longer a mystery as its wave function contains a

strange-anti-strange pair in one of its components. Its net strangeness is, of course,

zero, while its mass is higher compared to 6 + by approximately 2x ( 2 -1 = 1/3

of the mass of the strange quark.

That's why the first experiment based on photo-production on Carbon at LEPS-

C [7] targeted specifically E+. Positive results were reported, generating considerable



excitement in high-energy and nuclear physics. The state was observed at 4.6a with

the mass of 1.54(1) GeV and width of less than 25 MeV. Naturally, it inspired many

more experimental searches and theoretical developments. The role of providing an

exhaustive QCD analysis of the pentaquarks, however, rested with lattice QCD. It

was understood that the analysis was a difficult problem requiring considerable time,

since sorting out unstable resonances in lattice QCD is notoriously tedious. The main

problem of filtering out scattering states is especially difficult for 6 + as it lies above

the scattering state KN and is thus shadowed by the corresponding tower of states.

Positive results in a variety of channels started pouring in after the initial dis-

covery of O+ . Somewhat miraculously, however, much of the independently collected

experimental evidence is now suspect as the three-star status of O+ in the 2004 Re-

view of Particle Properties has been downgraded to one star in the 2006 edition and

omitted from the summary table [2]. We review the history and status briefly here

and refer readers to other experimental reviews [3, 4, 5, 6] for details, with Fig. 1 of

Ref. [4] being particularly useful.

The initial positive experimental report at LEPS-C was followed by a positive

result in photo-production on Deuterium at CLAS [9] and LEPS [10]. A subsequent

high-statistics measurement at CLAS [8] in a similar setting was negative. In photo-

production from the proton, the initial positive result in the 7w+rK-K+(n) channel at

SAPHIR was not confirmed at CLAS [13], but a positive result in the 7+K-K+(n)

at CLAS [14] is one of three surviving candidates. In K + + n scattering, the positive

result at DIANA [15] was followed by a negative result at BELLE [16]. A second

surviving candidate is the reaction pp - E+O + using time-of-flight at COSY [17].

In scattering electromagnetic probes at higher energy, positive e+d results at HER-

MES [18] were followed by negative results with higher statistics form BaBar [20, 21],

but the positive e + p results at ZEUS [19] still stands as the third candidate. Re-

analysis of five neutrino bubble chamber experiments at CERN and Fermilab yielded

evidence of a pentaquark peak but also unexplained excess events at higher masses.

Hadronic probes at high energy have also yielded mixed results, with SVD-2 reporting

a positive signal for protons on nuclei [22, 23], but with negative results for E- on



nuclei by WA-89 [24] and for protons on nuclei by SPHINX [25], HyperCP [26], and

HERA-B [27]. Additional negative searches were reported by BES [28], CDF [29],

and ALEPH [30]. The present status [6] is that a number of early observations have

been refuted by subsequent measurements, the three surviving first generation exper-

iments mentioned above and second generation results at LEPS and SVD-2 are still

positive, and new analyses and measurements underway at COSY, HERMES, KEK,

LEPS, CLAS, H1, and ZEUS should bring further clarity.

Although models, such as the chiral soliton models [1] or diquark model [31] are

a valuable exploratory tool in suggesting exotic states, the only quantitative method

to study them from first principles, in a model-independent way, is lattice quantum

chromodynamics. Starting immediately after the first apparent observation of the

O+ , a number of lattice QCD analyses have now been carried out [32, 33, 34, 35,

36, 37, 38, 39, 40, 41, 42, 43, 44]. However, reflecting the difficulty of the problem,

the conclusions varied even more than the experimental results. We summarize the

salient features and results of these lattice QCD calculations to motivate the present

work.

Because of the resources required for dynamical quarks, all these calculations were

carried out in the quenched approximation and used Wilson [32, 33, 37, 38, 40, 41,

42, 44], overlap [34, 35], or various improved fermion actions [36, 39, 43].

With one exception, all these works have considered at most three simple inter-

polating operators, or "sources", for spin-1/2 pentaquarks: the diquark source

yIdiquark - EabcEbefEcgh (UTeCdf) (uTg C 5 dh) C Tc (1.2)

the K-N source

IKN Eab(UTa C75d b)Y5U('y5d) - Cabc(UCTa 5db)d( y 5U), (1.3)

and the color-fused K-N source

IicfKN = Eab(UTa C 5d b) y• e5 U (s 5ds ) - Eabc(UTa C 5db)-5deSe2 'ysu'), (1.4)



where C is the charge conjugation matrix.

The choice of operators has been motivated by their relatively small computational

cost, since these three are nowhere near any possible fourth as far as computer time

is concerned.

Reference [40] also considers a spatially displaced K - N source and a spatially

displaced source composed of two "good" diquarks of the form (uTC75d). This form is

favored by the most attractive channel of the one-gluon exchange potential or 't Hooft

interaction. Although a displaced interpolating operator is always more complicated

than the similar local operator, considering a small number of displacements does

not lead to a significant overall computational cost increase as propagator generation

remains the bottleneck consuming most resources.

Initially, there was a hope that one might distinguish localized resonance states

and scattering states by using diquark or fused sources having a small overlap with

K - N scattering states, and the K - N source having a large overlap with it re-

spectively, and hence observe states of interest in diagonal matrix elements [32, 33,

35, 36, 37, 39]. A more general approach is to diagonalize the correlation matrix in

the space generated by several sources, with the hope that it will contain and distin-

guish both resonant and scattering states, and several works calculated in the space

of two [38, 41, 42, 43], three [34], and five [40] sources. One limitation is the fact

that the basis must be somewhat larger than the number of states that one expects

to accurately approximate physical eigenstates.

The most common criterion for distinguishing scattering states and resonances was

comparing the volume dependence of the calculated energies with those determined

using the calculated N and K masses and the lowest momenta on the periodic lattice,

and in the majority of cases, the results were consistent with scattering states. Ref-

erence [36] also showed that when the boundary conditions were changed to shift the

K-N energy but not the 6+ energy, the energy of the would-be resonance also shifted,

indicating a scattering state. Several works considered the volume-dependence of the

spectral weight, which is proportional to the overlap between the localized source

and lattice eigenstate, and would vary as V -1 for scattering states and be volume



independent for a localized resonance. Reference [35] observed volume dependence

indicating a scattering state, whereas the results in Refs. [37, 41] were roughly vol-

ume independent, compatible with a resonance. The most suggestive evidence of a

resonance arises from the diagonalization of a 2 x 2 matrix in Refs. [38, 42]. The

lowest state has a volume independent energy close to the mass of an N + K and a

weight - V-1 , indicating a K - N scattering state. The excited state has an energy

below the first excited N + K scattering state and a volume independent weight,

suggesting a resonance, but suffering from the limitation of using both states in a

two-dimensional space.

1.2 Objectives

Given the limitations of lattice calculations to date, this work seeks to explore and

improve pentaquark spectroscopy in several ways.

One objective is to increase the basis of pentaquark sources by systematically con-

structing and using all the independent local sources. Hence, we have derived below

the 8 Lorentz covariant and 19 rotationally covariant operators with the quantum

numbers of an isosinglet pentaquark. Although there are many equivalent bases, it

is convenient and instructive to work in a basis in which pairs of light diquarks are

coupled appropriately to a strange quark. Diagonalization in the full 19 x 19 basis

allows calculation of low eigenstates without concern for the inaccuracy of the high-

est few states and enables study of the physical content of the various eigenstates by

calculating expansion coefficients and overlaps.

Given a set of independent source operators Hi, the conventional "variational

method" for spectroscopy [45] is to calculate the correlation matrix

Cii(t)= (Ii(t)IIt(0)) (1.5)

and solve the generalized eigenvalue problem:

Cii (t)un3(t, to) = An(t, to)Cij (to)un (t, to) . (1.6)



The time to is an arbitrary reference time that is chosen in practice for numerical

convenience, but in principle affects the coefficients of the eigenvectors and thus their

physical interpretation. Hence, we have developed a new way to understand and

remove to dependence from the final physical problem. In doing so, and also in

calculating overlaps between basis states and physical eigenstates, it is necessary to

use the correlation matrix at equal time, Cij(O) = (Ki(0)HII(O)), which requires a

correction to account for the proper definition of time ordering. We then seek to

utilize expansion coefficients and overlaps to understand the physical content of the

calculated eigenstates and to distinguish scattering states and resonance.

In order to understand spectroscopy in the 19 x 19 basis as fully as possible, our

numerical calculations have focused on the optimal case of heavy quark masses and

very high statistics, including as many as 4672 configurations where necessary. Hence,

this work necessarily postpones the physically most interesting case of light quarks in

full QCD, where both instanton-based arguments and arguments based on the static

one gluon exchange interaction indicate that diquark correlations and interactions

will be the strongest.

The second objective is to use another capacity for extending the set of pentaquark

sources by allowing them to be non-local. The possibilities here are manifold, and we

cannot realistically speak of constructing a basis of operators if we allow them to be

spatially distributed. Hence, we limit ourselves to the most computationally cheap

operators, the KN and K*N sources, but put their components in various spatial

locations. Then we proceed analogously to the local case by combining different

operators in sets and calculating the corresponding correlation matrices. The goal

here is to measure scattering states populating the relevant energy region so as to

compare them against the local basis results. The choice of operators is also due to

our observation that K, K* and N, mesons and baryons with the lowest energy, alone

comprise a significant portion of the energy spectrum of our system of five quarks when

we allow for a non-zero relative momentum. Had we added other hadrons, additional

states would have appeared far above the KN threshold.



Chapter 2

Sources

In our construction of interpolating operators (sources) we do not impose any restric-

tions other than the right quantum numbers. We also consider only local (single-site)

sources that do not have any spatial structure. We require that the sources belong

to the flavor antidecuplet of states, have strangeness S = +1, are color singlets and

have spin G1 corresponding to continuum spin of 1/2. The construction develops in

steps.

2.1 Step 1: fixing color structure

As we have at our disposal four quarks and one antiquark, in order to form a color-

singlet with the antiquark, the four quarks must couple to a color triplet. The fourfold

product

E = B )( @ EBE ) (2.1)

contains three triplets, one in each of the following products:

D D B
E0iD·'

0 0 ED

S ~efg6fab~gcd ,

E~abc 6dS + Eabd 6c ,

f Eacd6b + Ebcd 6 a

(2.2)

(2.3)

(2.4)



We will need to consider all three. The first one gives a start to operators of the

following form:

a b c d C
IIiajpkylkE = EefgEfabfgcd qiaq3qkyqld~s, C , (2.5)

where a, ... are color indices, i, ... flavor indices, a, ... Dirac indices and sc = CT

with C the charge conjugation matrix. As for the other two triplets, we can use the

identity

Eabcad + abd6c = ECefgEfad'-gbc + EefgfacEgbd (2.6)

and permute quark operators to show that the resulting operators can be rewritten

as Ilia 16 jp k•y e + •Iia kjp16 and HIia kyj• 6E - Hiia l6j lkyE, the exact same form obtained

from the first triplet.

2.2 Step 2: fixing flavor structure

We want all states forming the flavor antidecuplet. The only way to achieve it is to

couple the four quarks to an antisextet:

E1 O DE (2.7)

The same product (2.1), now interpreted in flavor space, contains two sextets, one in

each of the following products

S= , (2.8)

-0 D M. (2.9)

Since the four quarks are all light in the S = +1 component, we can write the

corresponding operators with SU(2) flavor indices,

fIIao6- = Eij 6  e gcd iaqqk •6b , (2.10)

= (112l ef i b b . (2.11)aI•66S = (iT2-,)ij(iT2Tn)kl Cefg fabEgcd qiqji3qk-YqI6 S " )



where T, are Pauli matrices.

Hence, we now have two general possibilities for our interpolating operators.

2.3 Step 3: fixing spin/parity

We shall now couple the Dirac indices to total spin G1. The operator HIIo is antisym-

metric under interchange of a and 0 or 7 and 6, while I"1 is symmetric. Both are

antisymmetric under interchange of the pairs (a, /) and (y, 6). This suggests that we

first couple each of the index pairs (a, /) and (7, 6) to spin A1 or T1 (0 or 1 in the

continuum), then couple the two pairs according to

A1, A1 = A1 , (2.12)

A l O TI = T1 , (2.13)

TI T= A1 D T E e T2 . (2.14)

After this, we couple the result to the antiquark. To obtain G 1, we cannot couple E

and T2, corresponding to continuum spin 2, with the G1 of the antiquark. Therefore,

the representation theory is the same as in the continuum, and so we can use con-

tinuum techniques to formulate the operators. We shall first contract pairs of indices

with appropriate gamma matrices. This is where we have to lock in on a gamma

matrix convention. We choose the Montvay and Miinster gamma matrix convention

for its computational convenience following from the diagonal form of the y4 matrix:(0 ii) 1 0 0 -1
i = , /4 7 ,5 71727374i 0 0 -1 -1 0

iT 0)
C = 7472 iT2 , C75 2

- i-2 0 0 iT2

The index pairs in IIoo are antisymmetric, so they can only be contracted with



the antisymmetric matrices C, Cy5 and CY%-y,,, as symmetric matrices give zero. If

we assume 3D-rotational covariance of the operators, antisymmetry between the two

pairs leaves seven possibilities for the remaining couplings:

(qaTC q )
(qaTC~ 5  q)

(qaTCy 5 q3)

(qWTC q)
(qiTC qjb)
(qaTC yy4

(qaTCy 5_y,qb)

cTC 5 d)(q TC y5 q,)

kqT C7575 y4q91)

cT 5p1d)(q Cy57pql
cT d)(q C7y5 ,y4ql)

cT 5pd)

cT d)(q TC-y5 pql)

(qT C qy5 ql)

where s e = OgT. Later on, we also consider an additional restriction of Lorentz-

covariance, which yields four operators generated by IlOO instead of seven.

For H11, the possible gamma matrices are symmetric matrices Cy, and Cu,,,

where a,,, = [-[, •y,]. This yields additional 12 3D-rotationally covariant spin cou-

plings:

1 7 = IIA'

IH7 = 1I =

II9e =V =

q) (qC'p4uql d)

qb) (q' Cp 4q,1)

(172n) i j (T 2 TE)kl CefgCfabEgcd (qaTC~yp qb) (qTC pqgqld)

lo10E = H = ipqr (27)2 (27) fgEfab~Egcd (QaT C qb) (qTC pq

HI 1 IAV
-- xPC

pqr efgaT (qk Cqql)i~pq, (r27)ij (T2Tn) k l Eefg~fab~qcd (qi C'p qjb) QC~Tgr d

(5Y5YpS)E ,

(2.22)

(Y574S)C ,

(2.23)

(Y5YqS, ) ,
(2.24)

('yrS, C),

(2.25)

(2.26)

PC
SE

= nsvVE

SIIPS'PE

r IPVAE

= IISIV=VE

I VV =

Eij

fij

ci

HoE

H2E

II3

H4e

Eefgcfab~gcd

e fg E fabigcd

6efgcfabEgcd

Sefg fabEgcd

ef gEf abEgcd

fefgEfabEgcd
ipqr

i C-pqr

(Se ), ,

(Y5YpSeC)E ,

9YS )E ,:

( eqrs,)e,

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

i (T2Tn) ij (72T) k l efgfabEgc d (qaTCy4

i (72Tn) ij (T2Tn) k l efgEfabgcd (qzaTCy,



Table 2.1: Norms squared at infinite quark mass of the two sets of operators used in

this paper.

i
n,/6144
'h?/128

=-IIAA'
1--12c s - A e

i
i /6144
ii2/128

8 9
9 18

27 54

1
1
12

11
9

108

2
3
6

12
18
54

3
1
18
13
9

432

5
3
18

14
36

108

6
12
36
15
18

648

16
36
108

17
36

432

=E,,pqr 72T)J (T27, kefgEfabEgcd (qaT Cp qb) (qkTC Uq 4q1)

1113, = P'A = Epqr ( 2Tr 2  efgfabEgcd (qaTCy4 q) (qk CyP q')
"= 'VA iEpqr (T2 Tn) Z3 (T2Tn)kl (efgfabgc aTCp qb) ('cT q )

11 14e = I'' = Pq, (T 2T)z (T 2 T)l EefgEfabigcd (qaTC qqb) (qcTCq qad)

1sE = rIIA'V' = pqr 72n 72 kl efgfab~gcd gaT 4 (qcT P1

I = IIA'A' = pqr (T 2 T) (T 2 Tn)kl efgEfabEgcd (qaTCup4 qb) (qTCT q4 q1l)

1 -8e = I-IA'V 6~pqr (T2Tn)
j (T2T k l effabEgcd (qaTCop 4 qb) (qcTCq4ql)

18
9

324

(YTS )C ,
(2.27)

(UqrSe ,

(2.28)

Uar4SC)B C
(2.29)

(qrS)e ,

(2.30)

(r4S~e)E
(2.31)

(r4S?)EC

(2.32)

(S)e.)

(2.33)

Imposing the additional Lorentz-covariance restriction would yield four operators

that are linear combinations of the above twelve.

In order to verify linear independence of the 19 operators, we compute the inner

product of the states created by the operators at infinite quark mass. We get the

infinite mass by substituting delta-functions as propagators in the contractions. We

.I



find that the operators are orthogonal (and therefore independent):

(vac|lIielt , |vac)o, = 6jj6 . (2.34)

The norms ni for a delta-function propagator (with unit prefactor) are given in

Tab. 2.1.

All the 19 operators are products of two diquarks and an antiquark, with the

diquarks of one of the following two forms:

Qf () = Efab •ij (qiaTCF) , (2.35)

Qf(F) = Efab (T2 Tn) i j (aTCFqb) , (2.36)

e.g., the first operator can be written as

s = .fg Qf(1) Qg •5) C . (2.37)

This special form is a result of our construction. However, since the construction

did not omit any operators, we have proven that all local pentaquark interpolating

operators can be written in this "diquark" form. The diquarks appearing in the

operators are a useful construction. In particular, there is no reason they should all

be "good" diquarks in the sense that QCD interactions would lead them to play a

dynamical role.

We use the diquark form for notation. Namely, the superscripts on II indicate

which spin/parity diquarks appear in each operator, while the subscript indicates to

which spin/parity the two diquarks couple. The remaining e is the free Dirac index

of a spin-1/2 interpolating operator.



2.4 Behavior under complex conjugation

The Wilson Dirac operator has the following behavior under complex conjugation:

D(U)* = C-ly 5D(U*)>, 5C. (2.38)

The above operators Hi(q, 9) all satisfy

IH(q, s)* = C-175lli(75Cq*, 9*C-1y5 ) . (2.39)

Since the gauge action is real and invariant under conjugation of the gauge field

and -y5CyC-1y 5 = 74, it follows that the spin- (but not parity-)averaged correlator

C (t) = (tr lYHII(t)IIW(0)) is real.

2.5 Operators with a definite number of upper and

lower components

Having constructed a complete basis of local interpolating operators, we are free

to switch to any other basis by taking linear combinations of the constructed 19

operators. As we are interested in the structure of the states, an aptly chosen basis

can give us additional insight into the structure if a state looks particularly simple

in the new basis. We do observe that with the following new basis inspired by the

non-relativistic limit.

We choose operators with a definite number of upper and lower components in a

nonrelativistic representation of the 7 matrices by inserting projectors P± = (1 ± 0)

This mixes operators which differ only by the presence or absence of 74 matrices.

We write the resulting operators in terms of the upper and lower components qI of

the Dirac spinor, i.e., q = (q+, q_) in a representation where -4 = diag(1, 1, -1, -1).

Gamma matrices then reduce to Pauli matrices aom and the charge-conjugation matrix

becomes c = -iU 2. The resulting (two-component) negative-parity operators are



no

II-

f16
fI•

6ij kl

€ij kl

ij kl

Fij kl

cij kl

Cmpq ij kl

('r27Tf)2
3 (7 7T)kl

(T2 T7n)J (72TT)kl

(727n T)i T727T)kl

(Tr2 Tn)j (T27T)kl

(727T"ij (727T)kl

(q c q

(qj- c q d

(q -c q d

qk + Co7M ql_
(q+ comql-

(q c+mql-

(q' cap q

CefgCfab~gcd (qi+ C qj+)

cefg fabigcd (qi+Tc qb+)

CefgCfab~gcd (qi+ c q_)
CefgCfabCgcd (qiQ C qjb+)

Cefgefabgcd (qaT C _)b

efg CC (qa4T C bmq3  )

6efg~fabEgcd (qi- C qj_)

C fgEfabigcd (a Tc qb )

Cefg fabgcd (qi+ c qj_ )

efg bq CUmq>

CefgCfabEgcd (qi+ Cmq _)

efgEf gd (bLTCCUmq

e fgEfabEged 9 C: m9
CefgCfabEgcd (qi+; Ccm q_)

CefgCfabfgcd (qiC4 mq )
6efg fablgcd (qi+ Comqj+)

6efgfab~ged q i+ clmqj-)

sc (2.40)

sc (2.41)

s , (2.42)

amS< (2.43)

(T+mSj , (2.44)

1mS S , (2.45)

qse± , (2.46)

OUmS , (2.47)

c7MT S , (2.48)

T _s , (2.49)

s , (2.50)

s , (2.51)

Sc (2.52)

asc (2.53)

7qS (2.54)

SC+ ,

Eimpq (T2T, )iJ(T27T)kl

= i ECpq (T2Tn~ )iJ(72T•nk

- i[ mpq (T727T)i(T 2T7,k

- mpq (727n)i"( 2 n)kl

Cefg fabCgcd

Cefg fabCgcd

efg fabCgcd

ce g fab~gcd

a(Tc . qb

qi+ COumqm-)

(q cTp

(qT cup(q CUP

(q TCUP
k+~ca

(2.55)

uqS1 (2.56)
qS S (2.57)

C
Se+

07 Se.
(2.58)

The positive-parity operators are obtained by flipping the strange quark parity

(qc+ comq)
cT dc

(q+ cu. q-)

(q CU qj- )

c T m q )dW-cTO C 1o.TcT

cT d

(qc+coY p q+ )

(qk+ cup q-d_)(q+co-p q,_

II=7

19

12 -

13 =

14 i

15 =i[

i •mpq

Smpq

Empq

+ 2 •mpq

fl6

II

II 3



(i.e., interchanging sc and se).

Just like the operators of the original basis, these operators are orthogonal:

(vacj IIvact ) = 6 j6, i ,
(~(valI, nli,,vac~oo = u _eif, (2.59)

with norms given in the last row of Tab. 2.1.

2.6 Relation between the bases

The two sets of operators introduced above are related as follows:

rIf -=In - I ,

I o 4 0 4 3

II =  4 I 4Ii•- 1 - l-II o -IIII
3It = in- I+ ,-

4- 1- 1-

t = -- 11,- ill-5 4 2 4 5
fI- = - oi-

ft- 1- 1 -

9 4 7 4 13,
t-o = 11,-8I 4 -10 ,

ft- = - ir- +irl
11--[ n ,-i9 - 4 4I13

l1 •0 = 41 4 18

ll2 - 4 11

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)

(2.73)

(2.74)

(2.75)

(2.76)

- 18 ,,

IIrz =II12 4 7 ,413 2- _ 12 1-

I14 4 9 - 15

15 -- 14 2 16 4 17

I, = II 9 - II15 ,



17 = 2 - 1 4  4 17 , (2.77)--1 - 1 - 1 -

-II-I + 11H- - 1i17 (2.78)18 4 14 16 4 17 , (2.78)

where H- denotes the negative-parity component of the four-spinor II.

2.7 Relation to other operators

As our technique embraces all possible local operators, while most other works use

three or less local operators, it is possible to write the diquark source, -IDiquark, the

K - N source, IIKN, and color-fused source, IIc fKN in eqs. 1.2 - 1.4 in terms of out 19

operators:

IIDiquark = 1l-o , (2.79)

I1 KN = + + +2 13

+ 3H4 ± IH5 + 6 II10
32 32 64 32

11 1+ H 2 - L13 + 1 H14

1 1 15 - -4 1116 - 4I17 (2.80)

I1cfKN 1ll-o 1-1- L I 2 +- 1 13

+ H4 + 5 + 116 + 10

- 1 + L12 - L 13 + H14

S32I15 - - 116 - -H17. (2.81)

We see that while the diquark source is just our first operator, the two KN-inspired

sources are rather long linear combinations of our operators. Expressing them in terms

of our operators allows for a quick reduction of our correlation matrices to various

smaller correlation matrices considered in other works.



2.8 Nucleons and kaons

Since the pentaquark is expected to be close to the N-K threshold (and what's worse,

above it), it is important to identify all scattering states in the relevant energy range.

We therefore measure nucleon and kaon energies, both at zero and non-zero momen-

tum.

Lattice states are characterized by the group of lattice translations, rotations and

parity, Z3 >x 20 where 20h = 20 x Z 2, with 20 the double cover of the octahedral

group and Z 2 generated by space inversion. (Oh has two double covers, O , corre-

sponding to the two double covers Pint of the continuum rotation group 0(3).) In

the case of mesons with degenerate quark masses, there is also charge conjugation.

For vanishing momentum, the representations are given by those of 20h, namely

Alp, A 2P, Ep, T1p, T2P for bosons and Glp, G2P and Hp for fermions, where P = g, u

for even versus odd parity. We are interested in spin-1/2 pentaquark states, i.e., G 1.

Local operators (which don't have orbital angular momentum) can create the kaons

Al,g/u and Ti,g/u corresponding to spins 0± and 1' and nucleons Gi,g/u and Hg/u

corresponding to spins 1± and 1. We have to consider all these representations

as they can all couple to G1. Our choice of operators is given in Tab. 2.2. Charge

conjugation quantum numbers are also included.

Representations with non-zero momentum f are labeled by representations of the

corresponding little groups H which are given in Tab. 2.3 (see also [49, 50]). Dicn is

the dicyclic group of order 4n, generated by a rotation r by 27/n around the axis p7

and a reflection s from a plane that contains ',

Dic,, = (r, s; r2n =, n = s2, rsr = s) . (2.82)

Note that s squares to -1 on fermionic states. Dic2 is also known as the quaternion

group Q8, Dic4 as the first generalized quaternion group Q16 and Dic3 is equivalent

to the semi-direct product C3 x> C4 where C4 acts on C3 by inversion. Note that

the two Dicl are inequivalent subgroups of 20h . The decomposition of continuum

representations with helicities up to 3/2 are given in Tab. 2.4.



Table 2.2: Hadron operators for zero momentum. The superscript + refers to charge
conjugation for the cases with mq = mi. We write s = (s_, s+).

lattice rep. continuum rep. operator

A+g 0+ +  sq
A-g 0+ -  sy 4q
A+ 0-+ s+q+

s_q_
T +  1+ +  9_ uq+- s+oq_

9 +-T 1 s_ eqjq + T +q
TIn 1-- + q

eij (q T cqj- ) q_
1-Glu "I Eij (qT_ cqj+) q+

ij (q cqj_) q_

Hg 3+ Ei qI3 qY)Hg qi,+qj-q-
H3- (af 3 -y)Hu 22 qi+q4-q+

Table 2.3: Little groups for non-zero momenta and normal vectors
0 < a, b, c < 7r/alat are assumed to be all different.

H

(0, 0, a) Dic4  (1,0,0)

(a, a, a) Dic 3  (1, -1, 0) / v
(a, a, 0O) Dic 2  (0, 0, 1)

(a, b, 0) Dic1 = C4 (0, 0,1)

(a, a, b) Dic1 = C4 (1, -1, 0)/v/2

(a, b, c) C2

to reflection planes.

Table 2.4: Decomposition of continuum representations with non-zero moment
into lattice representations.

R3 x Pin-(3) f -~ (0, 0, a) (a, a, a) (0, a, a) (0, a, b), (a, a, b) (a, b, c)

(p, 0+) A1  A1  A1  A A

(p,O-) A 2  A 2  A2  B A

(p, ) El E, E E 2B

(p, 1) E2  E 2  B1 D B2  A B 2A

(p, ) E3 B1 2 B2 E E 2B

um



We use operators

ei eO(v) (2.83)

with O given in Tab. 2.5. Here ni is a unit normal vector to one of the planes of

reflection contained in the little group and Xy are spinors with definite helicity,

" 3 X± = ±x+. (2.84)

The phases are chosen such that the reflection along n maps the spinors into each

other, X_ = -i~i. 5-X+. Our choice of n is included in Tab. 2.3. As in the case of local

pentaquark operators, the operators are defined such that all correlators are real.

2.9 Scattering states

Once the masses of kaon and nucleon states are determined, we can make predictions

for scattering states. We are interested in scattering states with total momentum zero

and spin GI. The momentum-zero component of a product of two representations

with non-zero momentum is the representation induced in 20 by the product of the

representations of the little group,

([p-, p) 0 (ý-, p') = (O, Ind20 (P p'))+... (f / 6).... (2.85)

The induced representations of all products of a bosonic and a fermionic state from

Tab. 2.4 are given in Tab. 2.6. We need to consider all pairs that have a G 1 in the

last column.

2.10 Operators for scattering states

We also attempt to measure scattering states directly (instead of the single-particle

states they are made of) by using product operators. For negative parity, we couple



Table 2.5: Hadron operators for non-zero momentum. For E representations, sign
alternatives + refer to the two helicity components of the representation.

P lat.rep. cont.rep. operator
(0, 0, po) A+  0- + j+q+

sq_

s-: i p-q+ - s+±p i q-
A 0-- s_-p. -•q+ + a+ . -q-
A+  0++ sq
Al O+ -  sY4q

s+p uq+

E 1+ sXrXt q, t
E2j 1- sxxQ+ s xt

is+ XT X q+i2-x ±x+q-

(Po,Po, 0) A±, A± same as (0, 0, po)
B +  s_t. U q+ - s+• o q_
B- s_-t * 5q+ + s++ f-q_

is+p A ft. aq+ig_p A ft. aq

B+  s_- AnA a-- q+ - s+ A ft. uq-
B- g_i A ft - q + +9P A n a-q_

i+n - uq+

(0, O, po) E E (q2 +cqj+) X q+
Eij (q cqj ) Xt q+
Eij (qi+cqj-) xt q-

±Eij (q- ±tq+
±Eij (qi+cq+) xq-

±ci (qT-cqj+) X q-
(0, po, Po) E same as El



Table 2.6: Representations in 20h induced by product representations of the various
little groups.

F P p' Ind 2 h(p ® p')
(0o, , a) A1,2  El Gig Gu E Hg @ Hu

B1 ,2  El G2g G2u (D Hg ( Hu
E2 E1 Gig D Glu D G2g q G2u D 2Hg D 2Hu

A 1,2 E3 G2g D G 2u e Hg ( Hu
B 1,2  E3 Gi, D Glu, Hg ® Hu
E2 E3 Gig D Glu e G2g ( G 2u E 2Hg 1 2Hu

(a, a, a) A1, 2  B1,2  Hg a Hu
E2 B 1,2  Gig a Glu, G2g P G 2u D Hg ( Hu

A 1 ,2  El Gig D Glu D Gg 2g G 2u ( Hg ( Hu
E2 El Gig D GIu G2g D G2u D 3Hg D 3Hu

(0, a, a) A1 ,2  E Gig D Glu D G2g aD G 2u 2Hg D 2Hu
B 1,2  E Gig Glu, D G2g D G 2 u E 2Hg D 2Hu

(O, a, b), (a, a, b) A E GigE Giu G2gO G2u ( 2Hg, 2Hu
B E Gig E Glu E G2g D G 2u D 2Hg D 2Hu

(a, b, c) A B 2GIg B 2G1, D 2G2g D 2G2u D 4Hg, 4H,



nucleon and kaon operators to G1u and isospin 0,

NKohh - cij
Y,m<k

UaONipc ()K, ,(+ ( (en + ek)) ,

Ki = 9+qi+ ,

Kn = +,'nqi+ ,

Nia = ckl (qk+cql+)qi+,a

are the unique K, K* and N operators with only large quark components.

the operators have been chosen such that the correlators are real.

In momentum space,

NKooh = > e-iPmL/2i NI (pKj(-p) ,
g,m

NKOhh = e-i(Pm+Pk)L/2cij i N (pi K(-p
g,m<k

NKohh -ei(pm+Pk)L/ 2 Eij auNi(p-fk(-p-.

g,m<k

Since Pm = 27rnm/L, the phase factors are all ±1. Furthermore,

3 e-i(pm+pk)L/2 = ei(pl+P2+P3)L/2 e-ipmL/ 2

m<k

NKUOh = ij Nia (x)Kj (+ -jKe) ,
x, m

NKo =O j apNip~(~K, (* + ek),

NKOhh = ij i (£)Ki (£+ -(e, + ek)) ,
g,m<k

(2.86)

(2.87)

(2.88)

(2.89)

where

(2.90)

(2.91)

(2.92)

Again,

(2.93)

(2.94)

(2.95)

(2.96)

(2.97)



The prefactor is ±1 for even/odd ni + n2 + n3 . Therefore, the linear combinations

NKeven = NKooh + NKOhh , (2.98)

NKodd = NKOOh - NKOhh, (2.99)

NK00h + NKOhh = 2 E e-ipmL/2Eij Nia (pj kj(-p) , (2.100)
geven,m

NK00h - NKOhh = 2 : e-ipmL/2Eij Nia (PpKj(-p• (2.101)
fodd,m

(and similarly for NK*) contain only components with even resp. odd relative mo-

mentum. Of course, due to nucleon-kaon interactions, all relative momenta mix.

But we still expect these linear combinations to have good overlap with the cor-

responding scattering states. In particular, '+' should have good overlap with the

zero-momentum scattering state, and '-' with the state with ' = (0, 0, po).

We use translational and rotational invariance to replace the source operators by

NK Oh = E•i Nia (03 Kj (L 3) , (2.102)

NK h = Eij UlNip (0) KJ(fle 3) , (2.103)

NK hh Ei Nia ( 2 )Kj ( 3 ) , (2.104)

NKhh = Eij UagpNi (-e 2 )Kj,(ae3) . (2.105)

For positive parity, nucleon and kaon operators are coupled to Gig. If we only

use positive parity nucleon and negative parity kaon operators, then this requires

separations other than L/2. We use

NKOdo = Eij uamNi (Y)Kj ( ± 4aem) (2.106)

NK*A E ±cij N(x)Kj m (•± 4a'm) , (2.107)

NKE = ijEmkn k 3i*(')K ,(± 4a-m) , (2.108)
i,mk,n,-h



NKOdh = E -ij Or' Ni(Y)Kj (±4am + Lfk) ,

NK*AT = -i Ni( ,)Km (~14a e + k,
Odh ,k,

5,m n ,k,n,i

(2.109)

(2.110)

(2.111)



Chapter 3

Spectroscopic analysis

3.1 Equal-time correlation function and the trans-

fer matrix

We wish to extract information about energy eigenstates from the correlation matrix

C (t) = (I (t)II(0)) (3.1)

obtained from a lattice simulation. Here, HII are the operators from Eqs. (2.15)-(2.33),

projected to zero spatial momentum. In order to talk about energy spectrum and

eigenstates, we have to assume that a positive transfer matrix exists. Since this is

not the case for the quenched theory, the analysis presented in this chapter is, strictly

speaking, only approximate.

For t > 0, the above correlator is equal to a matrix element

Cij(t) = (vac Hie-HfftIvac) , (3.2)

which is directly related to the spectrum of H.

For t = 0, the Euclidean correlator is no longer equal to the simple matrix element

(3.2), but rather to the vacuum expectation value of the normal-ordered product of



Hi and IIH [47],

C(0) = (vac|N[HiUH ]lvac) , (3.3)

where normal ordering is defined by its action on quark operators: in a basis where

-yo = diag(1, 1, -1, -1),

N[()O()] = { ()(YW) if oa, / = 1, 2

-qb3M(y)4a,(x) if a , 3 = 3, 4.
(3.4)

In order to compute the matrix element (3.2) without normal-ordering, we have to

sum the Euclidean expectation value over all contractions. In practice, this is achieved

by replacing the naive quark propagator at equal time by the one corresponding to a

non-normalordered expectation value,

Saia,bjp(_, t; -, t') =

+

CaiQ,bj/3(X, t; y, t') =

where

(3.5)

(3.6)

depends on the fermion action. For the Wilson action [47],

Caia,bjO(*, t; Y, t') = --Si(1- -4)oaBd-1 (, Y)(t, t1)

with

Bab(i, = 6abS(, 9)
3

-K Uiab b((i)6( + i, + U , i)
i=1

(3.7)

(3.8)

Sai a,bj,(', t; ', t')

Caia,bjO(/, t; , t1) ,

4aia(x, t)qýj (Oy t')

N[qai, (x, t)bjp (y, t')]



3.2 A variation on the traditional variational method

In order to obtain approximate energy eigenstates, one usually solves the generalized

eigenvalue problem

(3.9)

which is equivalent to the variational problem

6 (ue- Htu)
6u (u e-Hto u)

(3.10)

where u) = E 1i , vac)ui. The solutions for different eigenvalues are orthogonal with

respect to C(to),

Unjiij(t
o

)Umj = U if An Am .

We shall assume in the following that there are no degeneracies.

For large t, the lowest available energy eigenstate dominates the numerator in Eq.

(3.10), so the solution

u"(to)- limr un(t to) (3.12)nt---0o

maximizes the normalized overlap

I (En-,l
(3.13)

under the constraint (3.11). It can be written as

) = I E -ar Ear)Mm~,1(E are-Hto E ar, (3.14)

where M is the (n - 1) x (n - 1) matrix with components

Mmm, = (Ear'le-Hto E") (

(3.11)

cij(t) MUnj(t, to) = An (t, to) Cij (to) Uij(t, to) ,

(m, mn' = 1,...,n - 1) , (3.15)



and IE • ) is the energy eigenstate projected to the variational space,

IEvar ) = IIi)C(to)•l (HI j e- H t En) . (3.16)

Note that all quantities depend on to. The coefficients of the ground state solution,

for instance, are

Uo(to) = NoC(to) 1(IIj E o) (3.17)

where we have used that Eo) is an eigenstate of H.

In order to eliminate this dependence, we define coefficients

cni(t, to) - C(O)_lC(to)jkU nk(t, to) (3.18)

The large-t limit of Eo is to-independent,

(3.19)&0. - lim aoi(t, to) = NoC(0) l (I j IEo).t- O-*O0

They are the coefficients of the energy eigenstate projected to the variational space

with respect to the natural metric Cij(0) = (IIlIlj3 ),

(3.20)lIIoi)a = Pn Eo),

where

PH = 1-i)(j 1 (I1j • (3.21)

Note that, for to = 0, the new coefficients 0oi are identical to the original uoi.

For excited states, an additional complication arises: the projected states u0),

defined in (3.12), contain additional, to-dependent contributions from lower energy

eigenstates. These introduce a to dependence in ",

(3.22)ZIHi)an = Pn1 En) + PniEm)am(to).
m<n



This to dependence can be eliminated by orthogonalizing with respect to C(0),

ci (t, to) -- ni (t, to) - -miAm' 'CJk(O)ank ,(3.23)

where A is the (n - 1) x (n - 1) matrix with elements

Amm, = amiCij(O)amj (m,m' = 1,...,n - 1). (3.24)

The large-t limit c' of c satisfies

Sl )nic = PnItEn) - Pl Em))B,• •(EmIPnIEn),, (3.25)

where

Bm, = (EmlPnEm,) (m,m'= 1,..., n- 1). (3.26)

c' is to-independent and identical to ul(to=O). Explicitly,

lim cni(t, to) = lim uni(t, 0). (3.27)
t--+oo t-+oo

c, provides a means for computing the coefficient of the projected energy eigenstate

PIE,) from the eigenvalue problem for any to. This turns out to be numerically

advantageous in many cases.

Note that the components of PIE,), proportional to PniIEm) for m < n, which

are lost in the orthogonalization appearing in (3.25), cannot be determined from the

generalized eigenvalue problem even in principle. The corresponding components of

the solution are determined solely from the requirement of orthogonality with respect

to C(to). They are, of course, present only because of the truncation to the variational

space. The full energy eigenstates are orthogonal.





Chapter 4

Calculational details

A preliminary version of the numerical calculation is reported in [44]. This work

improves it in several ways. We still use quenched Wilson fermions with f = 6.0 and

m, = 0.90 GeV(Ku,d = K = 0.1530) on same two spatial sizes 163 and 243, keeping

Wuppertal and APE smearing parameters intact to allow for a direct comparison

with the earlier results. In regards to the improvements, first off, we increase the

time extent from 32 to 64 on both spatial volumes to catch longer plateaus, thus

reducing both statistical and systematical errors on our system's energy levels. Sec-

ondly, a lower light quark mass (r,d = 0.1558, m, = 0.55 GeV) was included in

the analysis, with the strange quark mass kept fixed. Given the different variation

of the pentaquark's, meson's, and baryon's masses with the light quark mass, this

offers the potential to further distinguish localized states of the pentaquark system

from scattering states of a baryon and a meson. Finally, the number of configurations

was increased to 4672 on a 163 x 64 lattice (only the heavier quark mass) and 1024

on a 243 x 64 lattice (both quark masses), amounting to a total of 3.2 terabytes in

propagators alone.

To improve the overlap of interpolating operators with low-lying energy eigen-

states, we employ Wuppertal smearing, a well-established method based on the idea

of increasing the spatial extent of the source to approximate that of a typical hadron.

The quark field q(, t) is replaced in the interpolating operators with the smeared



quark field 4((, t), given by

q(, t) = W ( I Y0; U(t) q(- t), (41)

where

3

i=1

The resulting interpolating operators are then used as both sources and sinks with

smearing parameters tuned to create a structure of a typical hadron's size, N = 50 and

a = 3.0. Note that the smearing function (4.2) includes the gauge link connections to

nearest neighbors as operator B (3.8), which we employ to obtain correct equal-time

correlation functions.

To maintain the physical advantage of increasing the spatial extent of the source

without introducing unnecessary noise due to fluctuations of the gauge fields, it is

useful to smooth the link variables in eq. (4.2) by APE smearing. We perform APE

smearing of the gauge field U entering the smearing function (4.2) with the following

formula for one iteration:

() = P U (x) +p E U, (z ) U,( X (+ ) U (X + )(4.3)

where P is a projection onto SU(3), which is not unique. Given an arbitrary 3 x 3

matrix V, we define its projection U E SU(3) by U = V(VtV) - 1/2 det(V-1 Vt) 1/ 6 [48].

Although we continue with this choice for consistency with our preliminary report,

we also consider another common choice of projection-U can also be taken to be the

matrix that maximizes ReTrUVt. Switching to the other projection turned out to

have a minuscule effect on correlation functions, which was many times smaller than

the statistical error. Twenty-five APE smearing steps with p = 0.35 were performed,

yielding a decrease of statistical errors by a factor of two with no significant effect on



overlaps of interpolating operators with energy eigenstates.

To avoid propagation of unwanted states across the time boundaries, we apply the

Dirichlet boundary condition by setting time-like gauge links to zero on the boundary

before calculating propagators:

U4(A, t = -1) = 0. (4.4)

We always put the source ten lattice spacings away from the boundary, thus com-

promising between a small boundary effect on equal-time correlation functions and a

large fiducial volume. To simplify the notation in this presentation, we re-define t so

that the source is located at t = 0.





Chapter 5

Optimizing contractions

In spectroscopy, the computational complexity of the problem increases dramatically

with the number of quark fields and the basis dimensions. The complexity of the 19

interpolating operators creates a number of challenges in implementing the calculation

of the correlation matrix. Having written the Wick contractions, we immediately no-

tice the overwhelming number of floating point operations, and thus face the problem

of reducing the number of operations by exploiting various symmetries of the matrix.

Secondly, we have to devise an effective memory layout, as well as a proper order

of performing those operations, so that cache misses do not delay the calculation.

Finally, we have a relatively small number of operations that we are able to perform

extremely efficiently, so that the program is CPU-bound. As a result, unlike most

lattice calculations, where propagator generation is normally the bottleneck, straight-

forward calculation of the correlation matrix would take an order of magnitude more

than the calculation of propagators. This situation, exacerbated by a lack of good

compilers for our primary computational resources, renders low-level optimizations

necessary. In the end, we have employed our own perl-based code generation to code

the core of the program in the PowerPC 440d assembly, achieving sustained perfor-

mance of 86% of the peak, an order of magnitude faster than what we could hope for

with a C compiler.

The first 7 of the 19 operators have two isoscalar diquarks, while the other 12 have

two isovector diquarks. From the implementor's point of view, this is a fundamental



difference. We, therefore, will refer to S- and V-operators, and the correlation matrix

will have four blocks-SS, SV, VS, and VV-corresponding to contracting an S-

operator with another S, an S with a V, and so on. It is numerically advantageous

to perform sums over color indices first, leaving Dirac indices for later stages. This

will conceptually reduce the bulk of the calculation to 4 massive summations over

color indices, corresponding to the 4 blocks of the correlation matrix. As will be seen

later, the VV block actually has all the steps needed to calculate the other 3 blocks,

so we can save some operations by calculating just the VV block and storing some

intermediate results for the subsequent construction of the SS, SV, and VS blocks.

The scale of the calculation is indicated by the number of operations needed for

a few typical lattice tasks. Wilson propagator generation requires roughly 10 million

floating point operations (FLOP) per site, taking into account the necessary number

of iterations in the CG algorithm. Typical nucleon contractions need about 0.2 million

FLOP per site. Classical pentaquark sources (Sasaki, KN, color-fused KN) need about

1 million FLOP per site each. In contrast, the correlation matrix comprised of the

19 operators requires 200 million FLOP per site. This really dwarfs not only typical

contractions, but also propagator generation, thus becoming the new bottleneck.

We now proceed to a detailed description of our contractions.

5.1 SS block

S-operators (first 7) have the following common multiplier:

MSSx = ExfaEfde abcd de Ubdc (5.1)

where x, a... f are color indices and m ... p are Dirac indices. This multiplier has

one color and four Dirac indices. We use Latin letters for Dirac indices, and since

there are two sorts of these indices, it is convenient to distinguish them using upper

and lower case letters. Also, the color index x is external and stays apart from the

other color indices that are summed over in expressions to follow.



Now we simplify this expression:

SSx Eabc (6ad•ze - 6ae xd) ud,,u bd

= abc (Ua dxubdc - Um dUb dm n op mn op)

= _£abc a b odd U x a

The SS block of the correlation matrix includes this multiplier times the conju-

gated multiplier:

MSS x MSS aabc ABC bd x c x b da

x - AMX B -A -B 
)Finally, we have the following expression:

Finally, we have the following expression:

KMSS

where

abAB
mnMN

x M s s )

LAM = (u AM) being u- and d-quark propagator (L stands for the lower quark

mass).

Form (5.2) is used in the actual calculation. The optimized calculation makes

use of some symmetries of this expression. To reveal these symmetries we rewrite

expression (5.2) as follows:

MSS x Mss)
= Exfa Efde abcEXFA FDEEABC

X dbDB ecEC
moMO ' npNP)

_abc ABC [abAB xcXC
E LmoMO X npNP

± (x )- a,X --- A)] (5.2)

a b A -B a b A A B(mL nMX LbM (dmdndMLdN

L aB L bA L aA L bB
mN.nM mM.nN (5.3)

(5.4)



This expression is obviously asymmetric under the replacements

(M)N
(Nj;

and
A (O)

P

and symmetric under the replacement

m

o

M

O0

S
4-

n

p

N

P

Two asymmetries correspond to interchanging diquarks (we can interchange di-

quarks both in the source and the sink), while one symmetry corresponds to inter-

changing up and down quarks.

5.2 VV block

V-operators (last 12) have the following common multiplier:

1
M VV 1 x2 fa fdeEabcqm2 Td , •q2e b04 ,

MVVX_ d eb2

(5.8)

which is the analogue of expression (5.1) for the VV case.

Now we simplify this expression:

MVVXmnop

Exfa fde abc

2

X [udd

X (ub db)(

0 i

i 0
0 i

SUe

d
e

(5.5)

(5.6)

(5.7)

- ( c)de



S u(d dd( ( )

× Ub db

- (ud dd( )(:)
10 de

-= __xfa fde abc

2

X [- (-dUe + ddde) (b + dc)

+ (Ud e + d dd) (UbUc +dbdc)

- (Ud dUe) (ubdc + db )]

x fa f de abc

2
x (2Ud edbdc + 2ddde bUc - 4uddebd) ,

because

EfdeddSue = EfdeeST dd - EfdedST de = EfdeUdSde

for symmetric matrices S.

Therefore,

•Z V Vn x  abc (ad xe _pae xd)

x (Ud 1 uedbdc + dddeUbUc - 2Udde bdc)

= abc[ a Udbdc + dadxUbUc

- 2Uadxubdc - (x ~- a)]
- 2a Uxd b + u a

=Eabc[U Udd~, + -u upda dx

2Ua b dxde - (x a)]



Finally, we have the following expression:

K MVV x _MVV) = abc ABC

FaxAX bcBC axBC bcAX axAB bcXC
mnAN * opOP mnOP * opMN + 2 -mnA•t ' opNP

bcAX axBC bcBC axAX bcAB axXC
+ opMN mnOP + opOP mnMN + 2 opO mnNP

abAX xcBC abBC xcAX
moMIN ' npOP moOP npMN

moMO " npNP ( , • )A)+ 4X(aboABx (5.9)

This expression has the same symmetries (5.5), (5.6), and (5.7) as that of SS

expression (5.2). It is not so obvious as in the SS case, so we demonstrate this

explicitly. Formula (5.9) can be rewritten as follows:

( MVV X TI=VV) 2 EabcExaf de f gABC XAF DEF

X edED bcBC edBC bcED edEB bcDC
mnMN * opOP + mnOP " opMIN + mnMO * opNP

bcEB edDC ebED dcBC ebBC dcED
* opMO mnNP + moAMN npOP + moOP * npMN

+ 2. ebEB dcDC) (5.10)moAMO " npNP) "

Under transformation (5.5) this expression goes to

SVV X Tvv) 2EabcExaf Edef ABCXAF DEF

(edED bcBC edBC bcED edEB bcDC
X ,opMN * mnOP ± opOP * mnMN + opMO " mnNP

bcEB edDC ebED dcBC ebBC dcED
+ mnMO opNP omAIN ' pnOP + omOP * pnAIN

2 ebEB dcDC 2 aed xaf cbf ABC XAF DEF

{bcED edBC bcBC edED bcEB edDC
X \opAIN mnOP + opOP mnMN opAMO mnNP

edEB bcDC beED cdBC beBC cdED
mnAIO opNP + omAMN pnOP - omOP pnAIN

+ 2.beEB cdDC / X_ Tf V V
omMO * pnNP -\ X )VV



Under transformation (5.6) expression (5.10) goes to

MVV X MVV) 2 EabcExaf def ABCEXAF DEF

SedED bcBC edBC bcED edEB bcDC
mnOP opMN mnMN opOP + mnOM opPN

bcEB edDC ebED dcBC ebBC dcED
+ opOM " mnPN + moOP ' npMN + moMN * npOP

+2 ebEB dcDC 2EabcExaf Edef EAED XAF ECBF
moO M * npPN -

(edBC bcED edED bcBC edBE bcCD
mnOP ' opMN mnMN ' opOP mnOM ' opPN

bcBE edCD ebBC dcED ebED dcBC
+ opOM " mnPN + moOP ' npMN + moMN npOP

+ 2 moOM npPN - MVV MVV).

Finally, under transformation (5.7) expression (5.10) goes to

SMVV X MVV -) 2 ,abcxafEdefFABC XAF DEF

SedED bcBC edBC bcED edEB bcDC
,nmNM * poPO nmPO ' poNM + nmNP ' poMO

bcEB edDC ebED dcBC ebBC dcED
+ poNP anmMO + npNM " moPO + npPO * moNM

+ 2. "ebEB dcDC 2 EacbExaf edf ACB XAF EDF

X deDE cbCB deCB cbDE deDC cbEB
X nmNM ' poPO ± nmPO * poNM + nmNP poMO

cbDC deEB dcDE ebCB dcCB ebDE
+ poNP nmMO + npNM ' moPO + npPO * moNM

+ 2 dcDC ebEB MVV X ) .
• npNP ' moMO)- MVV MVV

We notice that the last term of expression (5.10) gives us the corresponding ex-

pression for the SS block. We use this fact to store the result of calculating this last

term to calculate the SS block.

5.3 SV and VS blocks

To get expressions for the SV and VS cases, we proceed analogously to the above

derivations. They also have the same three symmetries. Just like in the SS case,

the expressions are given by a few terms of expression (5.10), and so in the process



of calculating the VV block, we just store those terms to construct the SV and VS

blocks later.



Chapter 6

Lattice results

6.1 Nucleons and kaons

The lowest kaon and nucleon masses (at zero momentum) in each channel are given

in Tab. 6.1. In the negative-parity sector, only G1, (corresponding to spin 1+ in the

continuum) and A+ and T- (0- + and 1--) can give scattering states with energies

within 0.3a - 1 of threshold. We have also computed energies of states with finite

momentum for these spins. They are given in Tab. 6.2. By adding nucleon and kaon

energies, we obtain the predictions of energies of scattering states in Tab. 6.3. The

true energies will be modified by interactions, of course. Figure 6-1 shows all these

energies for the case of degenerate quark masses, together with energies computed

from the masses in the larger volume using the continuum dispersion relation for

negative parity.

In Fig. 6-2 we plot the analogous sums for the positive-parity sector.

6.2 Scattering operators

We start with lattice results for scattering operators here and then will proceed to local

operators, since the former are naturally connected to the nucleons and kaons. For

negative parity, we have four interpolating operators (2.102-2.105), while for positive

parity we use six operators (2.106-2.111). Thus, we are diagonalizing 4 x 4 and 6 x 6



Table 6.1: Masses of nucleons and kaons at rest. Charge-conjugation labels apply to
the cases with mq = ms only.

particle 20 h rep. 163 -64 243 • 64 243 • 64 cont.
mq = mn mq = ms mq < mT spin

N Gig 0.7966(17) 0.791(2) 0.570(3)
1.263(15) 1.263(13) 1.12(5)

Glu 1.044(6) 1.047(7) 0.88(3)
Hg 1.257(13) 1.279(12) 1.12(3) 3+

H, 1.053(7) 1.070(6) 0.91(2)
K A+ 0.4219(3) 0.4217(4) 0.3388(4) 0- +

0.847(28) 0.919(18) 0.88(4)
A+g 0.742(5) 0.735(6) 0.693(9) 0+ +

A-g 1.07(6) 1.16(6) 0+ -

Tu 0.5055(7) 0.5060(8) 0.4489(10) 1--
0.953(29) 0.984(16) 0.94(2)

Tg 0.767(5) 0.777(4) 0.732(7) 1+ +

TIg 0.772(7) 0.778(7) 1+ -

Table 6.2:
the lowest

Energies of nucleons and kaons with momentum, where po = 27r/L denotes
non-zero momentum on the periodic lattice.

P lattice 163 . 64 243 . 64 243 . 64 cont.
rep. mq = mT mq = mT mq < mS hel.

N (0,0,po) El 0.8832(24) 0.8309(24) 0.629(4)
(0,po,po) E 0.9618(47) 0.8691(33) 0.682(5)

K (0,0, po) A+  0.5726(19) 0.4946(9) 0.4275(12) 0- +
(0, 0, po) Al 0.6323(19) 0.5681(12) 0.5187(16) 0+-

(0, 0, Po) E- 0.6327(20) 0.5682(12) 0.5190(16) 1-
(0,po,po) Aj+  0.678(10) 0.5582(22) 0.4997(35) 0-

(0, po, po) AT 0.746(4) 0.6206(24) 0.5753(35) 0+-

(0, po, po) B- 0.744(5) 0.6229(26) 0.5777(35) 1-
(0,po, po) Bj 0.748(5) 0.6228(26) 0.5783(36) 1-



Table 6.3: Sums of nucleon and kaon energies with negative total parity.

f N K 163 • 64 243 -64 243 • 64 cont.
mq = ms mq = ms mq < ms reps.

(0,0,0) Gig A+ 1.2185(18) 1.2126(19) 0.909(3) + 0-+

(0, 0, 0) Gig Tlu 1.3021(20) 1.2969(23) 1.019(4) 1+ 1--

(0, 0, p0) E1  A+  1.4558(39) 1.3254(28) 1.056(5) - 0- +

(0, 0,po) E1  A- 1.5155(38) 1.3989(31) 1.147(5) 0+-

(0, 0,po) E1  Eý 1.5159(39) 1.3990(30) 1.148(5)1 1-
(O, po, po) E A+  1.640(13) 1.4272(50) 1.182(8)1 0-+

(O, po, po) E Al 1.708(7) 1.4897(53) 1.257(8) 0+-

(0, po,po) E B- 1.706(8) 1.4920(55) 1.260(8) 1-
(0,po,Po) E B- 1.709(8) 1.4919(56) 1.260(8) 1-

C(
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Figure 6-1: Sums of nucleon and kaon energies with negative total parity. Different
relative momenta have the same line type for the same constituent hadrons.
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Figure 6-2: Sums of nucleon and kaon energies with positive total parity. Notation is
the same as in Fig. 6-1.



correlation matrices. We always count time from the source so that tsrc = 0 by

convention. The Dirichlet boundary is thus at t = -11. For the sake of convenience,

as well as for comparison with other works, we always use effective mass to present

measurements of eigenvalues of correlation matrices.

Effective mass is defined as follows:

Meff(t) = logA(t - 1/2) (6.1)
A(t + 1/2)

where t is in lattice units. Since an eigenvalue on the lattice is only defined in integer

points, t in the above expression has to be half-integer: ±1/2, ±3/2, and so on. Note

that our definition is different from the one used in many other works, where it is

such that effective mass also takes an integer argument. We emphasized symmetry

over convenience: a point on our graph immediately shows which two time slices the

underlying eigenvalues belong to.

Substituting the asymptotic expression for an eigenvalue

A(t) - exp(-Et) as t - oc, (6.2)

we get Meff(t) -- E as t - 00. This is the reason for introducing the concept of

effective mass: as we go to larger times, our signal converges to the energy we are

measuring. Plotting effective mass for a range of times gives us a means of assessing

the quality of the signal visually.

Technical methods used in literature for extracting energy E from an effective

mass plot vary. The simplest method is fitting it with a constant in some range

[ta, tb], where ta is chosen large enough so that the approximation (6.2) is valid, while

tb must be far enough from the boundary so as to minimize boundary effects.

On good signals, usually for low-lying states, we use an equivalent variation of

this method. We fit the underlying eigenvalue directly with an exponential. However,

choosing values ta and tb is an art rather than science-albeit the resulting energy

is insensitive to the choice provided the signal is good enough. We do always show

them by plotting the resulting errorband that starts at ta and ends at tb.



This method only works on good signals and good plateaus. Unfortunately, in

this work we often step in the territory where we are unable to obtain good plateaus

despite the enormous statistics. In such cases, fitting with something more elaborate

than a constant is desirable.

Motivated by the fact that the correlation function can be expressed as a super-

composition of decaying exponentials, we fit the underlying eigenvalues directly with

the truncated sum

f(t, A, m, A1, mi) = A exp(-mt) + A1 exp(-mit). (6.3)

We enforce the condition mi > m, so that (6.3) approaches the lowest state for large

enough t. We are still required to specify the fitting range [ta, tb] by hand.

In the case of a 1 x 1 correlation matrix, its only eigenvalue is also a correlation

function, so that it is a sum of the form

c.f.(t) = Aiexp(-Eit), (6.4)

where Ei are the energies in the energy spectrum, while Ai are overlaps of the inter-

polating operator with the state corresponding to energies Ei. Our fitting function is

just the first two terms in the sum.

This picture scales to the general case of an N x N correlation matrix when the

eigenvectors are independent of t, as its eigenvalues are then correlation functions.

The fitting function works well in practice, and we employ it wherever we do not have

a good enough plateau.

6.2.1 Negative parity

Fig. 6-3 and 6-5 show the eigenvalues of the 4 x 4 negative parity correlation matrix

on two volumes. On the same plots, we show the relevant sums of kaon and nucleon

energies from Tab. 6.3-also plotted in Fig. 6-1. Our interpolating operators (2.102-

2.105) are constructed with the goal of having a good overlap with four lowest-lying
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states. We see in the larger-volume figure 6-3 that the first three eigenvalues are close

to the first three sums of kaon and nucleon energies, although only the first and third

agree within statistical errors. The two sources involving K* have a worse agreement,

while the K sources agree beautifully.

As explained above, we fit the two lowest-lying eigenvalues with a single exponen-

tial. We employ our two-exponential fit (6.3) for the remaining two eigenvalues as

they do not have very good plateaus. The resulting errorbars are shown on the plots.

We expect our correlation matrix to be nearly diagonal, since our interpolating

operators have good overlaps with their own energy states and bad overlaps with

other states. Fig. 6-4 and 6-6 show the actual measurements of expansion coefficients

as functions of t. The correlation matrix is indeed nearly diagonal except on the

smaller volume with the highest state, where we observe strong mixing. Note that

statistical noise begins to set in at t ? 25 for excited states on the 243 lattice and the

ground state on the 163 lattice, and at t 1 15 for excited states on the 163 lattice.

6.2.2 Positive parity

We now proceed to the correlation matrix of the six operators (2.106-2.111) tailored

to positive parity. Unlike for negative parity, we only show results on the larger

volume here. Fig. 6-7 shows the eigenvalues of the 6 x 6 positive parity correlation

matrix with the relevant sums of kaon and nucleon energies from Tab. 6.3. They were

plotted in Fig. 6-2. Note that the spectrum is much more dense for positive parity

compared to the analogous case for negative parity. We can only clearly associate the

lowest measured scattering state with the lowest kaon-nucleon energy sum. The next

three states clearly do not agree within errorbars, although we could probably say

that the fourth state ought to be NK(p2), as all other candidates are either taken or

lie noticeably higher. Another thing we can say is that our operators do not capture

the two N*K states, since there is clearly a gap in the measured spectrum where

these states are supposed to be.

Note that we use two-exponential fits (6.3) for all six states in this case because

the signal is not as good as for negative parity, leading to a somewhat worse quality
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of the plateaus.

Of course, the picture clarifies once we look at the measurement of expansion

coefficients.

Analogously to the negative parity case, the six operators were designed to have

good overlaps with certain energy states and bad ones with everything else. The

correlation matrix is remarkably close to being diagonal here, as shown in Fig. 6-8.

With the help of this plot we confirm the observations made while looking at the

effective mass plot.

The sequence of states in the measured spectrum is as follows, low to high:

NK (p), NK* (p, Ej), NK* (p, A1), NK(p2), NK* (2, E2), NK* (p2, A).

Interestingly, E 2 states are lower than Al states in the measured spectrum and

higher in the sums of kaon and nucleon energies.

6.3 Local operators

We now proceed to lattice measurements for the nineteen local interpolating opera-

tors. Analogously to the scattering results, we start with eigenvalues and then move

on to the corresponding eigenvectors, or expansion coefficients. Since we have many

correlation matrices here, the results pertaining to expansion coefficients are moved to

a separate chapter. In this chapter, we concentrate on the analysis of correlation ma-

trices. We would like to carefully annotate what a particular correlation matrix brings

to the table, and at what cost, computational or otherwise. We consider two different

bases of local interpolating operators, but the difference between them is left for the

expansion coefficient section because correlation matrices are clearly independent of

the basis.

Fig. 6-9 shows the result of diagonalizing the 19 x 19 correlation matrix on two

volumes, and two light quark masses on the larger volume. Again we set t = 0 at the

source, and the Dirichlet boundary is at t = -11 with this convention. Effective mass



depends on two adjacent temporal points, and so we assign its value to the average

of those points, so that, for example, Meff(t = 1/2) depends on correlation functions

C(t = 0) and C(t = 1).

Gray errorbands on the plots correspond to two-exponential fits of the eigenvalues.

As for most cases for scattering operators, the fitting function (6.3) is employed. Note

that eigenvalues themselves, not effective masses, are fitted. At large t, the errorbands

show the value and error of fit parameter m that yields a particular energy level.

We compare our energy levels to those given by the three commonly used sources:

Sasaki, KN, and color-fused KN. In Fig. 6-10, we plot the signal from the three sources

together with the lowest two errorbands from Fig. 6-9. This shows us that the common

sources by themselves can only be used to extract the ground energy level, with KN

and color-fused KN being virtually as good as the result of diagonalization. The

Sasaki source apparently has much more admixture of higher-lying states, but still

can hardly be used to extract information about them.

Having a 3D-rotationally covariant basis of interpolating operators, we have many

options of picking elements in the basis to study other correlation matrices. We study

two options. First, we consider a complete basis, but with the stronger restriction of

Lorentz-covariance. This basis has 8 interpolating operators. Secondly, we construct

the conventional 3 x 3 correlation matrix with the three commonly used sources. Note

that those sources are Lorentz-covariant.

Fig. 6-11, Fig. 6-12 and Fig. 6-13 show the results of diagonalizing using the 8 and

the 3 interpolating operators. Again, we plot errorbands from Fig. 6-9, the results of

diagonalizing the 19 x 19 correlation matrix. Also, with dark gray we plot the results

of the analogous two-exponential fits to the shown data. The fit to the second energy

level is especially interesting. Since it shows the improvement by diagonalizing the

19 x 19 matrix compared to the 8 x 8 and 3 x 3 ones.

We do not have any problems extracting the ground energy level with any corre-

lation matrix, which is no surprise since we have already seen that just one operator,

say, KN, is sufficient to get the ground energy level.

As far as the first excited energy level goes, we notice two things. First, the



19 x 19 correlation matrix provides superior signals for this level, allowing for lower

statistical errors, by a factor of up to 3. Secondly, there is a rather small difference

between 8 x 8 and 3 x 3. Eigenvalues of these correlation matrices are rather close

to each other. It is the 3D-rotational covariance that allows us to get a better signal.

Ironically, the 8 x 8 correlation matrix requires just as much computer time as the

19 x 19 one, which is some 20 times more than the 3 x 3 one. The largest matrix is

much harder to calculate, yet it provides slightly better signals.

We consider the possibility of improving the signals further by employing other

correlation matrices. The idea is to truncate the basis of interpolating operators based

on eigenvectors. Say, we are interested in extracting nth energy level as precisely as

possible. We look at the elements of the corresponding eigenvector with largest moduli

and only keep the interpolating operators corresponding to them. The number of the

elements of the eigenvector with largest moduli is subjective and depends on the

energy level.

Since we are especially interested in the ground and first excited states, we pick

two sets of interpolating operators, one optimized for the ground state, the other

optimized for the first excited state.

The eigenvector for the ground state is strongly dominated by 3 interpolating

operators: 1112, 1114, and 1117. Keeping the 3 and removing the other operators from

the original set of 19, we obtain a new correlation matrix, 3' x 3'. We must not confuse

it with the correlation matrix comprised of the commonly used three operators.

As for the first excited state, it has a little of almost every operator in it. We

therefore select 5 eigenvectors with largest moduli: 111, 112, 115, 116, and I15.

We diagonalize the correlation matrices comprised of (a) the three, (b) the five,

(c) the eight (3+5) operators. The results are plotted in Fig. 6-14. As expected, the

3' x 3' matrix gives a good ground state, the 8' x 8' gives first two states, while the

5' x 5' gives none. Although the five operators are ideal for the first excited state,

they do not allow good extraction of the ground state, so that extraction of the first

excited state also fails in this case.

Surprisingly, getting rid of irrelevant operators does not improve the signal- -



diagonalizing the full 19 x 19 matrix gives about the same signal as diagonalizing the

optimized 8' x 8' matrix.

6.4 Expansion coefficients

Our last "measurement" section is devoted to generalized eigenvectors, or expansion

coefficients, corresponding to eigenvalues presented in the previous section. Although

we have already presented eigenvectors for scattering states, we should emphasize

some features of our eigenvectors that make them an especially valuable tool in ex-

ploring structure of pentaquark states.

Attempts have been made in literature to employ the naive solutions of the gen-

eralized eigenvalue problem (3.9) to make statements about structure of states. As

this is a common technique in spectroscopy, the demand for their meaningful inter-

pretation is high. Unfortunately, the attempts are largely thwarted by the lack of

independence of an unphysical parameter to as well as instability in t. The latter

problem is alleviated by choosing to = trc. However, this choice is only possible after

correct calculation of equal-time correlation function, cf. (3.3), which is practically

never done in lattice calculations.

In principle, the problem of to-dependence exists for eigenvalues, too. We shall

address it here by plotting the relative deviation of effective mass taken with various

values of to with respect to the to = 0 effective mass. The results are plotted in

Fig. 6-15.

We notice that the deviation is not always zero within statistical errors. However,

it is only significantly different from zero when the signal has not reached a plateau

yet, like in the lower-left corner of the graph which shows the result for the ground

state eigenvalue taken at t = 15. If we go back to Fig. 6-9 where these eigenvalues

are plotted, we see that the point t = 15 is not on the plateau yet. We have carefully

checked the to independence for all plateaus that we present in this work.

Things are usually much worse for eigenvectors. If we are unable to choose to =

tsrc, we face a significant dependence on both t and to, including the plateau region.



This is why eigenvectors are rarely used in lattice spectroscopy despite huge incentives

to do so.

This is where our two novelties come in. First, we always calculate equal-time

correlation functions correctly, which gives us the freedom to choose to = t,,r. But

more importantly, we develop a consistent definition of expansion coefficients. Our

coefficients, multiplied by the corresponding interpolating operators, give an operator

whose correlator is given by the eigenvalue, as it always should be with true expansion

coefficients. We test the effectiveness of the t and to dependence elimination process

by plotting our eigenvectors as functions of t and to.

In Fig. 6-16, we have plotted the expansion coefficients with errorbars on the

larger volume, for the degenerate quark mass. The plot shows a high degree of t-

independence of expansion coefficients.

To reduce statistical errors, we fit the expansion coefficients with horizontal lines.

The result of the fit for the ground state can be seen in Fig. 6-16.

Fig. 6-17 shows the success of our nearly to-independent definition of expansion

coefficients, which have far less to dependence that the naive solutions to the gener-

alized eigenvalue problem (3.9) that are conventionally used in other works. Indeed,

our coefficients are remarkably independent of to. There is no to-dependence within

statistical errors for the first two states, and only mild dependence in the second

excited state.

Finally, we compare our results for expansion coefficients for all volumes and

masses considered in Fig. 6-18, which shows the three cases for the lowest three

eigenstates, with errorbars, and sign encoded with the shade of gray. Note that the

coefficients are real.

We do not show the positive parity results from the local basis of interpolating op-

erators, since the energy spectrum there is very dense, leading to unstable correlation

matrix diagonalization.

The first observation we make is that the coefficients are close to each other for

all masses and volumes, indicating the very similar physical nature of the states in

each case.



Secondly, for the ground state, we see three dominant operators having much

bigger coefficients than the rest of the operators. These operators are the only ones

that have non-zero non-relativistic limit, and in each case correspond to a nucleon

plus a kaon.

Thirdly, for the first and second excited states, we conclude that we captured the

same states across various volumes and masses, but cannot determine clear dominant

operators for them.

To attempt to extract more information about the states from expansion coeffi-

cients, we have an alternative operator basis.

Fig. 6-19 is the analogous plot for the alternative basis. The new gem of informa-

tion we learn from it concerns the ground state. Now we have indisputable evidence

that the ground state is created by operator number 13 (2.53) in the alternative basis,

the only one composed of only upper quark components.

Unfortunately, no new information about excited states comes from the alternative

basis.
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Chapter 7

Summary

In this work, we have understood the physical nature of states of the low energy

states of our five-quark system using a combination of local and scattering bases

of interpolating operators. To summarize the arguments, we collect the relevant

negative-parity results from the local and scattering bases for the heavy quark case in

Fig. 7-1 showing energy measurements along with sums of nucleon and kaon energies.

These results were shown in more detail in Figs. 6-3, 6-5, and 6-9. Since high density

of states in the positive parity channel made discriminating among different states

problematic, we are summarizing measurements in the negative parity channel only.

The ground state is measured very well with both scattering and local operators.

From the local basis decomposition, we have seen a clean K - N scattering state

signal, since this state was dominated by the only three operators with a non-zero

non-relativistic limit. The alternative local basis of operators with a definite number

of upper and lower components further clarified the picture since the decomposition

was dominated by one operator. In the scattering basis, we have an excellent fit and

a decomposition dominated by the K - N operator, confirming the observation of a

K - N scattering state.

The decomposition of the first excited state in the scattering basis is dominated by

the K* - N operator in both volumes, and in the larger volume the energy fits agree

closely with the sum of K* and N energies as one expects for scattering states as the

volume increases. The local operators yield energies slightly above but statistically
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Figure 7-1: Volume dependence of lowest three states for negative parity.

consistent with those of the scattering basis for this state. Since the spectroscopic

analysis is based on the variational principle, it is expected that approximation of a

delocalized scattering state in a local basis will yield a higher energy than a delocal-

ized basis. Unlike the ground state case, the local basis contains no specific states

corresponding to K* - N scattering states, so the local basis decomposition by itself

does not provide a clear signature of the structure of the first excited state. Thus, all

the evidence indicates that the observed state is a K* - N scattering state.

For the second excited state, the scattering basis decomposition indicates that

it is a K - N scattering state, since it is dominated by the K - N operator with

the smallest non-zero relative momentum. This is confirmed by the energy fits in

the scattering basis, which in this case agree with the free scattering states at both

volumes. The calculations in the local basis have much larger error bars than the

scattering basis, as one expects for a trial function with a small overlap with the

eigenstate, and yield energies clearly higher than the scattering basis, as one expects

from the variational principle. Hence, all the evidence indicates that the observed

state is a K - N scattering state.

Therefore, we have shown that all the states in the energy region we have consid-

ered are scattering states and that there are no localized pentaquark states in this

region.
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For the lighter quark mass, we have performed the local basis analysis, but not

the scattering basis analysis. The results are shown in Fig. 7-2. The first two columns

are a restatement of the heavy quark results, whereas the rightmost column shows

the light quark results. For the ground state, we confirm the observation of a K - N

scattering state both from the energy fit and operator decomposition. Like in the

heavy quark case, decomposition does not provide a clear signature of the state for

the first two excited states. The energy fit for the first excited state is consistent with

the sum of K* and N energies, but the second excited state has a big statistical error.

The two major limitations of our calculation were the quenched approximation

and heavy quark masses. Although the techniques developed in the work provide a

methodology to analyze very light quark masses, the computer resources available at

the time did not allow for such a calculation. The problem is two-fold: light quark

analyses need higher statistics, while the cost per configuration grows significantly.

One also needs a well-defined transfer matrix to perform diagonalization in any basis,

and it is problematic for Domain Wall fermions.
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