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Abstract

Recent developments in atom optics have brought Bose-Einstein condensates within 1 pm
of solid surfaces where the atom-surface interactions can no longer be ignored. At long-
range, the atom-surface interaction is described by the weakly attractive Casimir-Polder
potential which is classically predicted to accelerate an incident atom toward the surface
where it will interact strongly with the internal modes of the surface, lose energy, and land
in a bound state of the surface. When the incident atom is very cold, on the order of a few
nanokelvin, however, the acceleration of the atomic wavefunction is so abrupt that the atom
may partially reflect from the attractive tail in a process known as quantum reflection.

This work presents experimental evidence for quantum reflection from a solid surface at
normal incidence. Using atoms from a 23Na BEC, cooled to a few nanokelvin in a recently
demonstrated single-coil trap, controlled collisions were induced between atoms and solid
silicon surface. A maximum reflection probability of - 12% was observed for an incident
velocity of 1 mm/s. Atoms confined against the surface at low density exhibited an enhanced
lifetime due to quantum reflection.

A surprising aspect of quantum reflection is that nano-structured surfaces are predicted
to exhibit enhanced quantum reflection due to the reduction of the atom-surface interaction
from reduced density surfaces. Using a pillared surface with an density reduced to 1% of
bulk density, we observe an enhancement of the reflection probability to ' 60%.

At velocities from 2-25 mm/s, predicted threshold dependence of the reflection proba-
bility was observed. At velocities below 2 mm/s, the reflection probability was observed to
saturate. We develop a simple model which predicts the saturation as a result of mean-field
interactions between atoms in the incident Bose-Einstein condensate.

Thesis Supervisor: Wolfgang Ketterle
Title: John D. MacAurthur Professor of Physics

Thesis Supervisor: David E. Pritchard
Title: Cecil and Ida Green Professor of Physics
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Chapter 1

Introduction: Nanokelvin Atoms

and Surfaces

In the early 1800's, Cambridge, through the entrepreneurship of William and Frederic Tu-

dor, became a major center for cold atom technology [188]. Although mechanical refriger-

ation techniques involving vapor compression and expansion were being developed at the

time, the dominant source of "cooling" was an environmental reservoir, specifically the

frozen layers atop small, bodies of fresh water like Fresh Pond and Walden Pond. Blocks

of ice from these ponds were harvested in the winter, stored, and shipped as far as India

as the ice trade flourished in the century or so following its inception. Today, Cambridge

continues as a center for low temperature science and technology. The Center for Ultracold

Atoms at MIT and Harvard boasts one of the largest consortiums of scientists working at

temperatures below 1 pK, a regime non-existent in nature. While no new economy has

yet sprung up around ultracold atoms, the techniques developed here are part of a rapidly

expanding field that promises to revolutionize precision measurements [82], offer new in-

sight into condensed matter systems [61, 196], realize new materials [4, 102] and allow the

processing and storage of quantum information [17].

The scientific community's fascination with low temperatures stems from a desire to

see what lies beyond the limits of ordinary human experience. There are phenomena, like

Bose-Einstein condensation, that could never be observed without years of pre-planning

and sophisticated apparatus [88, 32]. There is also simplicity in the well controlled, isolated

system; the physics uncovered at low temperatures is ubiquitous, but obscured by the

relatively high temperatures encountered daily. Moving to the bottom of the energy scale

allows scientists to understand natural phenomena from the ground up rather than attempt

to de convolve the myriad factors which underlie them.

The main experimental achievement of this thesis, quantum reflection, involves the
question of what happens when atoms strike a solid surface. Will the collision be elastic



Figure 1-1: At high temperatures, atoms sparsely occupy the energy levels of a system, as
shown in the left panel. In the zero temperature limit (right panel), bosonic atoms "pile
up" in the ground state of the systems forming a Bose-Einstein condensate.

or inelastic? Will the atom reflect from the surface at all, or will it stick? The wonder

of working with ultracold atoms is that even mundane questions such as these can have

surprising answers that help us to understand the world around us.

This Chapter motivates the work of the thesis and provides some background in the

physics of Bose-Einstein condensates and surface potentials.

1.1 Phase transitions for dilute gases

A Bose-Einstein condensate (BEC) is the macroscopic occupation of the ground state of a

system. A fair understanding of BEC is reached through a simplified 1D system: a harmonic

oscillator potential with frequency w containing N non-interacting, identical bosons and

comprising an infinite number of evenly spaced energy levels Ej = jhw. At a temperature

T, energy levels with Ej < kBT, where kB is the Boltzmann constant, are classically

accessible to each of the bosons. At high T, kBT/hw > N, and the probability of any one

state being occupied is small. But as T is reduced, the bosons are restricted to fewer energy

levels. When the number of accessible levels is less than N, the occupation of the ground

state becomes larger than unity and the bosons in this ground state are referred to as the

Bose-Einstein condensate.

A model 3D harmonic oscillator potential and rigorous accounting for the occupation of

energy levels gives a transition temperature, Tc, for the onset of BEC as

kBTc = h(D (1.1)

where ((3) a 1.202 and 6) = (wxwyWz) 1/3 is the geometric mean of the trap frequencies.

In our magnetic trap (discussed in Section 2.1.4), - 27r x 100 Hz and N - 107 , giving



Tc - 1 pK. The peak density of atoms is typically 1015 cm - 3 , far below the density of

air (n - 1020 cm 3 ). This low density is extremely important: higher densities would

give significantly higher transition temperatures, but the 3-body collision rates which allow

molecules to form would lead to significant trap loss, preventing the BEC transition.

Even at the low densities in our traps, the long-range atom-atom interactions play a sig-

nificant role in condensate behavior, e.g. collisions are responsible for the re-thermalization

of the cloud during evaporative cooling. Interactions are accounted for by including a term

in the Schrodinger equation characterizing an atom's interaction with all other atoms in

the trap. In the simplest case, only the lowest energy, s-wave collisions are considered by

including a potential V(r) = 4rh2a/m x n(r), where the parameter a = 2.75 nm is the

scattering length and n(r) is the local density. This introduces a density dependent term

into the Hamiltonian and generates the Gross-Pitaevskii equation (GPE) [63, 138]

( 2 47•h2a
h 2 V2 + Vtrap(r) + n(r) V(r) = po(r) (1.2)
2m n m

where Vtrap is the external potential and p is the chemical potential which generates the

temporal evolution of the condensate wavefunction I(r,t) = V(r)e -i(/ / h)t. The density

dependent term, while small, will dominate the kinetic contribution to the total energy

when Einteraction oc 47rh 2a/m x N x N/l13 > Ekinetic Oc Ngh where lho = h-/mU is

the trap length. This is the Thomas-Fermi limit in which most of our experiments are

performed [35, 136].

The most prominent effect of the inclusion of this atom-atom interaction energy is the

spatial expansion of the ground state wave function with increasing condensate number. In

the absence of interactions, condensing atoms which "pile up" in the ground state are all

energetically confined to the same limited region of space near the trap center and the size

of the condensate is independent of the number of atoms. With atom-atom interactions,

however, the size of the condensate grows with N as the collisions between atoms act

to "push" the atoms up the sides of the trap. In the Thomas-Fermi limit, the spatial

derivative term is dropped from the GPE resulting in definitions for the chemical potential

and condensate radius, RTF:

A= Ch 15N-Y (1.3)
2 lho

( ) t / 2

RTF,i = 2 (1.4)

for atoms in a 3D harmonic trap.

For a full, easy-to-read treatment of fundamental condensate physics, I recommend the

review paper by Pitaevskii and Stringari [35] or the book by Pethick and Smith [136].
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Figure 1-2: The atom-surface interaction is short range repulsive and long range attractive.
In general, the potential minimum supports many bound atomic states.

1.2 Atoms near surfaces

The interaction between atoms and surfaces is typically long-range attractive and short-

range repulsive, as sketched in Figure 1-2. The repulsive interaction is Coulomb repulsion

that onsets when the electron clouds of the incident atom begin to overlap with those of the

surface. The long-range attractive interaction, known in various regimes as the London-van

der Waals [106], Casimir-Polder [23], of Lifshitz force [103, 117] originates in the fluctuating

dipole moment of atoms and is a theoretical challenge that, even today, attracts continued

study [6]. Part of what makes the interaction so intriguing is that, classically, it shouldn't

exist at all; the energy needed to create an atomic dipole moment exceeds the energy that

can be gained from the interactions of that dipole moment with another atom or a surface.

Only when the atom is considered quantum mechanically do fluctuations in the atomic

ground state necessitate a fluctuating dipole moment and insure that atoms interact at

great distances [174].

The atom-surface interaction is mediated by the electromagnetic field. Accounting for

the various frequency dependencies of atoms and surfaces, correlations between the atoms

and surfaces, and the quantum and thermal fluctuations of the electromagnetic field is

difficult, and the general theory developed by Lifshitz leads to expressions like

urf(d) kBTo (Eo0 - 1) KT 3
4d3  (E + 1) c3 n=

Sexp (- [- p) (1.5)
c [(/ el - 1 +- p2 + p)



+ (1 - 2p2) 1±p2 + pE) dp

Fortunately, these expressions simplify to more wieldy expressions, like Vcp(d) = C4/d 4,

as long as we are only concerned with interactions on a particular length scale. Here, the

C4 coefficient encompasses all of the relevant information about the surface in question and

certain assumptions have been made about the atomic structure. Ab initio calculations

of the C4 coefficient are difficult, requiring precise knowledge of the frequency dependent

terms in the atomic polarizability and the dielectric function of the wall, but have been

done for many alkali species on a range of conducting and dielectric surfaces [175, 192, 91,
112, 38, 111, 55].

There is a more illuminating, if less rigorous, path to understanding atom-surface in-

teractions. The system of choice for an atomic physicist is the isolated atom; the isolated

alkali atom is ideal for its simple optical structure, dominated by the behavior of the valence

electron. The presence of other atoms is accounted for as a perturbation to the single-atom

picture, as was done above in Section 1.1. Atom-atom interactions are also responsible for

the atom-surface interactions when the surface is understood to be a high-density collection

of atoms: intuitively, any surface can be broken down into its constituent atoms which

interact with the atom in free space. These interactions are summed to give the atom sur-

face interaction [118]. This treatment, best detailed in Ref. [174], is complimentary to the

rigorous quantum electrodynamical treatment of Refs. [103, 138, 117].

1.2.1 The atom-atom interaction

Electromagnetic forces dominate the inter-atomic and intra-atomic interactions. At short

ranges, on the order of the Bohr radius a0o, as in solids or molecules, the response of the

electron wavefunction to the nuclear Coulomb potential determines the behavior of the

composite material [9]. At large distances and low energies, as in Bose condensed atomic

gases, the pure Coulombic potential (c< 1/r) is absent; neutral atoms have no net charge and,
to first order, we expect no interaction when the distances separating the atoms becomes

large relative to ao. For neutral atoms, the dominant term in the electric field is the dipole

term:
1 (3p-i)·i-pE(r) = (1.6)

47Eo JrJ3
where p is the dipole moment of the atom.

For two isolated dipole moments, there is an energy associated with the relative orienta-

tion of the dipoles, specifically, Vdipole-dipole(r) = (1/47rCo)(PIP 2 -
3 (pi - i(p 2 i))/r 3 . It is

worth noting that atoms do not have permanent electric dipole moments, that is, (p) = 0.
Eigenstates of the atomic Hamiltonian are also eigenstates of the parity operator [31]. Some



A= r/4

A=2r O

)=lOr 0 0 ----

Figure 1-3: For EM modes with A = c/w much smaller than the separation of two atoms,
we expect that the driven-dipole fluctuations will be uncorrelated, except in the particular
case when only one mode of the field is occupied, as in a laser field. For EM modes with
A larger than the separation of two atoms, however, the field does not change appreciably
between the two atoms, and the fluctuations will be strongly correlated. These correlations
survive time averaging, and so we expect an interaction between fluctuating neutral atoms
as a result.

perturbation, typically in the form of an electric field, must be present to mix states of def-

inite parity, allowing the dipole operator, p = ez, which is parity odd, to take a non-zero

value'. Therefore, while the average interaction between two atoms is zero, in the presence

of fluctuations, there may be higher order terms that survive the temporal averaging.

Fluctuations of the electromagnetic field, either due to the zero-point energy of the

vacuum or to thermal fluctuations, play a critical role in the interactions of neutral atoms;

any occupied mode of the electromagnetic field will drive dipole fluctuations in atoms. The

magnitude of the potential experienced by dipole pl due to the field of fluctuating dipole

P2 can be approximated as

0O
V(x,, 2 , = t) 1 (, t)E 2 •L (, t)N ()dw (1.7)

where E 2 , 1 is the field of dipole p2 at xl and N(w) is the density of modes of the elec-

tromagnetic field as a function of frequency, w. Not all modes of the fluctuating field are

relevant to this integral, as discussed in Figure 1-3. Specifically, only modes with wave-

length A = c/w > x2 - X1 will contribute to the integral because the electric field is nearly

the same at xl and X2. Since shorter wavelengths interfere destructively, the integral can

be effectively cut off at w = c/r.

The response of a neutral atom to an oscillating electric field is, approximately, for the

'There may be states of opposite parity that are degenerate or very nearly degenerate, as in the 2s and

one of the 2p states of hydrogen. This degeneracy is only broken as result of zero-point fluctuations of the

electromagnetic field which give rise to the Lamb shift.



center of the electron wavefunction to be displaced slightly from the nucleus. As long as

the fields are not too strong, the electron can be likened to a mass on a spring; the induced

dipole moment is proportional to the applied electric field p = a(w)E. The polarizability,

a(w), characterizes the response of an atom with ground state Ig) and excited states 1k)

and to an applied electromagnetic field at frequency w, such that:

2e2  Wkg|(klzIg)12a(LU) = 2e- 2h L0kglWkjzlg>12 (1.8)
k kg

where Ek - Eg = hWkg is the energy difference between the various excited states. For an

atom with a dominant transition wo, this expression simplifies to:

e2  1
(W) = 2 (1.9)

m W,
2 

- W2

where we have made use of the Thomas-Reiche-Kuhn summation rule to set the oscillator

strength for transition wo equal to 1. Obviously, this result breaks down very close to

resonance as we have ignored radiative damping in our treatment of the atomic oscillator.

At large distances, the radiation field of a driven dipole moment P2 goes, approximately

as E2,1 = P2 /C2 r = a(w)E(X2 )W2 /C2r. Since the time averaged field at x 2 is the same as

at xl, Equation 1.7 simplifies to

V(xl,X 2 )- c 1(0)O2(W) E(wd) 2 dW (1.10)

where the usual substitution N(w) = w2/c 3 has been made.

We are now in a position to evaluate Equation 1.10. There are three relevant limits that

emerge2

Casimir-Polder limit: r > c/wo

At large distances, that is for separations larger than the transition wavelength of the

atoms, the relevant modes of the fluctuating field are low frequency. At low frequency, the

frequency dependence of the atomic polarizability is trivial, simplifying the treatment. A

substitution of IE(w) 12 = hw to account for the vacuum fluctuations of the electric field

gives, finally, Vatom-atom(r) = h CCtlo 2/r 7. This expression is the famous Casimir retarded

potential for atom-atom interactions. The term "retarded" refers to the fact that a radiative

field couples the atoms and the finite speed of light becomes relevant. In the van der Waals

limit discussed below, the correlations between atoms exists in the near field of the atomic

dipole and the speed of light can be safely ignored. The dependence on h shows that the
2We restrict the following discussion to the interaction between two identical atoms for simplicity.



long-range atom-atom interaction is a purely quantum effect.

Lifshitz limit: r > c/wo and r > AT

At large distances and finite temperatures, the zero-point fluctuations can be dominated by

the background of thermal photons. The energy in a particular mode of the electromagnetic

field due to zero point fluctuations is Ezeropoint 2 0, whereas the energy in that mode

due to thermal fluctuations is
hwo

Ethermal h (1.11)
e kbT - 1

For small wo, Ezeropoint approaches zero while Ethermal l kBT, so thermal fluctuations

dominate for wavelengths larger than the thermal wavelength, AT = hc/kBT.

Using the earlier expression for the classical potential, Equation 1.7, but substituting the

thermal mode energy removes an hc/r and replaces it with a kBT, giving Vatom-atom(r ) =

ala2kBT/r 6 . The disappearance of the h from this expression shows that the quantum

fluctuations of the vacuum are no longer responsible for the atom-atom interaction at very

long range.

van der Waals limit: r < c/wo

In the limit that the atoms are spaced more closely than the wavelength associated with the

dominant electronic transition, we cannot make the simplifying assumption that the atomic

polarizability remains constant and, additionally, the near field of the dipole becomes dom-

inant. Instead, we must approach the problem from perturbation theory. At second order,

a non-zero atom-atom potential potential emerge, Vatom-atom(r) = [Vdipole-dipole(r)12 /(Ee-

Eg), where (E, - E.) gives the characteristic excitation energy of the system, typically on

the order of e2 /ao when the dipole moments are of order eao, where e is the electron charge

and ao is the Bohr radius. This expression gives Vatom-atom(r) = -hwo(ao/r) 6 , which shows

the typical r - 6 dependence associated with the van der Waals interaction.

1.2.2 The atom-surface interaction

A simple way to extend atom-atom interactions to atom-surface interactions is to integrate

over the many atoms that make up a surface. An integration over the volume shows that the

atom-surface interaction will necessarily depend on the density of the surface. The atom-

surface separation determines which limit of the atom-atom interactions will dominate. In

other words, the bulk of the atom-surface interaction for a separation r derives from the

atoms in the layer of thickness r near the surface. For the three relevant limits above, the



Figure 1-4: Cartoon explanation of atom-surface interactions. The individual atom-atom
interactions between the incident atom and the constituent atoms of the surface gives rise
to the atom-surface potential.

expressions for the atom-surface potential can be written as

C4 P) (1.12)
VCasimir-Polder - (1.12)

VLifshitz CL()T (1.13)

C3 (p)
Vvan der Waals - (1.14)

This approach, while intuitive, ignores the structure of the surface and the generally complex

frequency dependencies that arise when atoms are spaced at distances comparable to ao,

and should not be used to derive a value for C3 or C4.

Effect of non-equilibrium temperatures

Concurrent to the quantum reflection work presented in this thesis, theoretical work by

Stringari's group [119, 11, 6, 7, 5, 139] and experimental work by Cornell's group [70,
127, 128] has addressed direct measurement of the atom-surface force in the regime where

thermal fluctuations become relevant. While the dominant contribution of thermal radia-

tion to the atom-surface potential has been well understood since Lifshitz [103, 138, 117],
there had been no measurements of such forces and the non-equilibrium system had not

been considered. When the surface temperature Tsurf differs from the temperature of the

vacuum between the atom and the surface Tva, the potential takes the form Vnon-eq

- (C2)(Ts2urf- T2ac) [7].



1.3 BEC III research

Over the past 5 years, research efforts in my research group, BEC III, have been directed

toward understanding condensates in double-well potentials and the interaction between

atoms and surfaces. Following the construction of the Science Chamber and initial trans-

fer of atoms [64], the first atom chip installed in the science chamber revealed that wire

imperfections posed serious challenges for working with atoms near surfaces [100]. Some

creative thinking from Aaron Leanhardt, then a senior graduate student, led to the very

successful optical double well trap used by Yong-I1 Shin to first demonstrate phase coher-

ent splitting of BEC [1691 and to study the formation of condensates out of cold thermal

clouds [170, 157]. The introduction by Michele Saba of Bragg scattering to couple atoms

from one well to another replaced the matter wave interference readout of the phase [3] with

the continuous monitoring of the relative phase of the two BECs with either an atomic or

optical signal [148] and created a novel geometry where the two condensates were weakly

coupled in a controllable fashion [168].

Parallel to the work on atoms in double well geometries, a second effort was directed

toward quantum reflection of BEC at normal incidence from solid surfaces [133, 151] and

the improvement of quantum reflection by tailoring the atom surface potential [132].

Perseverance with the challenges of atom chips led to a better understanding of the

sensitivity our continuous deformation splitting scheme to technical noise [171] and led

to the adoption of a more successful method pioneered by the Schmiedmayer group in

Heidelberg [158]. In the past year, our rf splitting atom chip has, under the adept hand of

Gyu-boong Jo, produced number squeezed splitting and record setting coherence times [82]

and allowed studies of the recombination of condensates in trap [81] and the influence of

phase fluctuations on condensate coherence [80].

This thesis will focus on the atom-surface interaction work because I was more deeply

involved with that work. For a detailed review of our group's early work on condensates

in double-well geometries, please refer to the theses of Aaron Leanhardt [98] and Yong-I1

Shin [172].

1.4 Outline of thesis

Chapter 2 introduces the experimental apparatus that was nearing completion as I joined

the group in 2002 and provides an overview of the experimental techniques for working

with nanokelvin atoms. The Chapter also focuses on the single coil trap geometry used

in the quantum reflection experiments. Chapter 3 lays the theoretical groundwork for the

quantum reflection studied in this thesis. Chapter 4 reviews the current state of quantum

reflection research and describes the first experimental effort on quantum reflection within



the Ketterle group. Chapter 5 describes our work at improving the reflection probability

by reducing the density of the reflecting surface. Our group's contribution to the current

theoretical model of BEC quantum reflection is described in Chapter 6.

The final year of my thesis research has been dedicated to a major extension of the

experimental apparatus to produce degenerate Fermi gases of sympathetically cooled 6Li.

Section 2.3 describes some aspects of the upgrade.





Chapter 2

The Science Chamber Apparatus

The experimental apparatus used for all of the experiments in this thesis came online in 2001

as a third generation machine in the Ketterle/Pritchard group, intended to allow for easy

manipulation of sodium Bose Einstein condensates (BEC). Following the naming traditions

of the lab, the machine was given a name describing its major feature (the Science Chamber)

and the group who constructed and maintained it a serial name (BEC III). In the Science

Chamber, BEC is transported with optical tweezers from the production chamber into the

auxiliary "science" chamber, an independent vacuum chamber with improved optical access.

Once in the science chamber, condensates are loaded into magnetic and optical micro-

traps for study. The science chamber affords flexibility in experimental design and rapid

cycling of experiments without compromising the ultrahigh vacuum required for condensate

production. Research in the science chamber is focused on the manipulation of condensates,
novel trapping geometries, and atom interferometry [25, 98, 157, 151, 172].

An extensive description of the construction and design of the Science Chamber can be

found in Ananth Chikkatur's thesis [25]. Most aspects of the machine were modeled on the

successful BEC I and BEC II machines, so the thesis work of Dan Stamper-Kurn [176] and

others are also relevant.

This chapter will present an overview and details of the most relevant aspects of the

apparatus.

2.1 Apparatus overview

The science chamber apparatus was designed as a condensate beamline which would sepa-
rate the production of BEC from the experiments performed with BEC. All of the techniques
in the following discussion are used in the experiments we publish, they are typically sum-
marized by a single line: "Bose-Einstein condensates containing more than 107 23Na atoms
were created in the weak field seeking IF = 1, mF = -1) state in a magnetic trap, captured
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Figure 2-1: 23Na D2 line structure, adapted from Ref [180]. MOT trapping light is near
resonant with the F = 2 -- F' = 3 cycling transition, repumping light is near resonant with
the F = 1 --+ F' = 2 transition, and slowing light is 1GHz detuned from the F = 2 --+ F' = 3
transition. Trapped atoms are typically in the ground (F = 1) state, and are imaged
with light near the repumping frequency or optically pumped into the F = 2 state with
repumping light then imaged with light near the MOT frequency.

in the focus of an optical tweezers laser beam and transferred into and auxiliary "science"
chamber as described in [641." This section presents a less streamlined overview of the ex-
periment, as might be given to an undergraduate interested in working on the experiment.
The presentation is intended to supplement a technical description of the machine [182, 25]
by giving the reader an appreciation for the various systems that must be maintained in
order to work with BEC.

2.1.1 23Na

In the Science Chamber, we work with 23Na, an alkali metal total nuclear spin I = 3/2 and
a single, ground-state valence electron in the 3S orbital (S = 1/2, L = 0). The first excited

r n



Atomic Mass 22.989 u= 3.818 x 10-26 kg
Melting Point 97.80C
Ground State Magnetic Moment B1/2 = 463.70 J/T=0.7MHz/G
Natural Line Width 27r x 9.795 MHz
Recoil Velocity 2.9461 cm/s
Saturation Intensity 6.40 mW/cm2

Scattering Length 2.75 nm

Table 2.1: Sodium data collected from Ref. [180].

state sees the promotion of this electron to the 3P orbital (S = 1/2, L = 1), resulting in

the fine structure doublet. Of these, the D2 transition from the 32S1/2 state to the 32P3/2
state is the one used for trapping and cooling. The relevant optical structure is shown in

Figure 2-1. A few relevant physical properties are collected in Table 2.1.

2.1.2 Vacuum system

The vacuum system for the BEC III lab was designed with four main sections, visible in

the photo of Figure 2-2. The "main" chamber, where BECs are created, was designed to

accommodate the magnetic field coils and half-dozen optical axes necessary for cooling and

trapping. Slowed atoms are introduced to the main chamber via the multi-species oven [178]

and the Zeeman slower, a - 2 m long tube connecting the oven to the main chamber. These

three sections comprise the heart of any large number BEC apparatus [182]. The science

chamber, is connected to the main chamber by a pneumatic gate valve. When closed off, the

science chamber can be vented to atmospheric pressure and reconfigured to introduce new

experiments. When opened, the gate valve allows for condensed atoms to be transported

via an optical dipole trap (ODT) from the main chamber to the science chamber. Since the

original construction, described in Reference [25], the science chamber has been replaced

with a larger volume chamber as described in Reference [172].

Bose-Einstein condensates exist at temperatures roughly a billionth of room tempera-

ture; nitrogen and oxygen molecules travel at speeds of -300 m/s at room temperature

while the atoms in a BEC travel at a few cm/s. Interactions between BEC and room

temperature gases must be avoided. All of our experiments are performed at "ultra-high"

vacuum (UHV) in an evacuated stainless steel vacuum chamber maintained at a nominal

pressure of 10-11 Torr, as opposed to atmospheric pressure of 760 Torr. The density of
"air" in the vacuum chamber is roughly 10-14 times the density of air at sea level; instead
of a number density of 2.6 x 1019 atoms/cm3 for air at standard pressure, inside the vacuum
chamber, the number density is roughly 3 x 105 atoms/cm3. There are no more than a few
billion room temperature air molecules inside the entire apparatus.



Figure 2-2: The Science Chamber as in 2007. There are four main vacuum sections: (a) the
main chamber for BEC production, (b) the multi-species oven for generating flux of 23Na
and 6Li, (c) the slower for slowing the atomic beams, and (d) the science chamber for rapid
cycling of experiments.

At such low pressures, the desorption of gases from surfaces becomes substantial, grad-
ually destroying the UHV environment. The vacuum is maintained from day-to-day by
several ion pumps and titanium sublimation pumps [129, 651. In the event that any part
of the system is exposed to air at atmospheric pressure, for example to refresh the atomic
source or reconfigure the science chamber, the vacuum is re-established with a turbo pump.
After brief, controlled exposure to an inert gas, like argon, vacuum can be re-established
within a day. For extended exposure to oxygen and water vapor, the surfaces of the vacuum
chamber typically need to be heated to 1200 C with the turbo pump running for one or more
days to allow these gasses to desorb from the surfaces completely. Extensive descriptions of
the baking procedures used by the lab to prepare the system for 10- 11 Torr can be found
in Reference [251.

2.1.3 Cooling atoms

Sodium and, recently, lithium atoms are introduced to the vacuum via an atomic beam
originating in the oven. A gas of the desired atom is produced by heating a solid sample in
the oven. A small hole in the oven, the nozzle, allows this gas to stream out of the oven and
into the Zeeman slower. Along the path to the main chamber, a series of apertures ensure
that only atoms traveling directly along the line connecting the oven to the center of the
vacuum chamber enter the ultra-high vacuum region.



Figure 2-3: Slowing of the atomic beam. When an atom traveling down the Zeeman slower
scatters a photon, it receives a "kick" of momentum hk opposite the direction of motion.
It may spontaneously re-emit this photon into a randomly directed the mode k', where
Jkl = Ik'j. As this event is repeated some N = 105 times, the hk kicks sum to remove the
majority of the atom's original momentum and the hk' kicks add in quadrature to give an
expected final momentum of v/hik, which is only about 1% of the initial momentum. The
figure shows the resultant momentum kick for N=4 scattered photons.

In the Zeeman slower, the atoms scatter light from counter-propagating laser light tuned

near resonance in a process called Zeeman slowing [115]. Many scattering events reduce

the mean velocity of the atoms from a velocity of " 800 m/s to - 30 m/s, as described in

Figure 2-3. Because of the large initial velocity, the atomic resonance is Doppler shifted by

- 1.5 GHz and a magnetic field profile must be added to Zeeman shift the atoms back on

resonance with the laser. The details and characterization of the Science Chamber Zeeman

slower can be found in Ref [25].

The Zeeman slower provides a continuous flux of - 1011 s- 1 atoms to the main cham-

ber. These atoms are continuously loading into a dark-SPOT [89] magneto-optical trap

(MOT) [142], as shown in Figure 2-4. The MOT comprises 3 pairs of counter-propagating

laser beams tuned near the F = 2 -- F' = 3 cycling transition which exert a force on out-

wardly propagating atoms, a spherical quadrupole magnetic field which brings the atoms

into resonance with the proper beam, and a repumping laser beam which transfers atoms

from the F = 1 lower ground state to the F = 2 upper ground state when an unfavorable
scattering process leaves the atom in the F = 1 state. In the MOT, atoms are further
cooled to the Doppler limit of 240 pK. Following a brief (- 5 ms) period of sub-Doppler
polarization gradient cooling, atoms are transferred into the magnetic trap.

The Zeeman slower and MOT rely on the scattering of resonant light to corral atoms
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Figure 2-4: The left panel, from Ref. [142], show the field and laser configuration for a

magneto-optical trap. The upper right panel, also from Ref. [142], shows how the energy

levels of a zero angular momentum ground state (S state) and an excited P state in a

hypothetical atom vary spatially in the quadrupole magnetic field, bringing escaping atoms

into resonance with the appropriate, counter-propagating MOT beam. The lower right

panel is a picture of a MOT through the bucket window of the vacuum chamber.

by "watching" for diffusive motion and opposing with small kicks any atom that is nearing

escape. Magnetic trapping of atoms, in contrast, creates a uniform potential of sufficient

depth that all atoms are contained by their small kinetic energy, the same way the earth's

atmosphere is confined gravitationally. Unlike the slower and MOT which are open systems

in which the light can carry away energy, atoms in a magnetic trap, which is a closed system,

are not "cooled", and can only exchange kinetic and potential energy with each other and

the trap. In order to cool in a magnetic trap, hotter atoms must be removed from the trap.

This is accomplished by evaporative cooling [90]; an atom in a "trappable" state is coupled

to an "un-trappable" state in a small region of the magnetic trap. This region is initially

placed far from the center of the trap so that only the most energetic atoms can reach the

region and be ejected from the trap. By selectively removing the high energy tail of the

thermal distribution of atoms, the remaining atoms are cooled. As the region is slowly

brought closer to the center of the trap, the temperature falls.

2.1.4 Magnetic and optical trapping

Atoms that have a non-zero magnetic moment can be trapped by magnetic fields. When

a magnetic moment is oriented along the magnetic field lines (polarized) it experiences an
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Figure 2-5: Panel A (reproduced from Ref.[182]) shows the assembly of the Science Cham-
ber magnetic trap. Panel B is a photograph of the actual coil before installation with
specifications.

energy shift, and therefore a force, due to a magnetic field gradient. The magnetic moment
of an atom is quantized with respect to the local field, and can be in a state that is drawn
towards regions of larger field or drawn toward regions of smaller field. These states are
identified as the strong and weak field seeking states. Strong field seeking atoms are "un-
trappable" in free space because magnetic field maxima are found only at sources. Magnetic
field minima are possible, so the weak field seeking states are "trappable".

The spherical quadrupole magnetic field, generated by a pair of coils running equal
currents in opposite directions, creates a central magnetic field zero which traps weak field
seeking atoms. As these atoms move away from the center, they enter regions of increasing
magnetic field and thus feel a restoring force. Our trap geometry, see Figure 2-5, is slightly
more sophisticated than a spherical quadrupole, having a non-zero field minimum in order
that the atoms remain polarized in the trap. Our cloverleaf magnetic trap is one form
of Ioffe-Pritchard trap [60, 141, 116], and is described in detail in many Ketterle group
theses [176, 25, 181]. The MOT windings provide the spherical quadrupole field for the
MOT, the curvature and anti-bias windings can provide either a low bias, high curvature
field (when Icurvature = -lanti-bias), or high bias, low curvature field (when Icurvature
-0.1 x lanti-bias), and the cloverleaves provide a magnetic field gradient.

In optical trapping, an induced electric dipole moment is generated and manipulated
by a strong laser. In a laser field, which is best described as an oscillating electric field,
the ground and excited states of a two-level atom are coherently mixed. The resulting
mixed states (the "dressed" states) have an energy that depends on the intensity of the

Qua



laser field and the detuning of the laser frequency from the atomic transition frequency.

Specifically, for red (blue) detuning, that is the laser frequency is lower (higher) than the

transition frequency, the mixed ground state has lower (higher) energy for higher laser field

intensities. Atoms are therefore drawn into regions of high (low) intensity. This "dipole"

force is different than the scattering forces involved with the Zeeman slowing or MOT

cooling of atoms as it can be made large in the absence of significant excitation of the

atom [115]. Traps using the dipole force for confinement are regarded as conservative.

Optical trapping is central to the "optical tweezers" (optical dipole trap) used to transfer

Bose-Einstein condensates from the main chamber to the science chamber [64]. Approxi-

mately 1 W of laser power at 1064 nm is focused by a series of lenses to a - 25 pm diameter

to create a trap in the center of the main chamber. As the laser power is ramped up, the

confinement of atoms is transferred from the magnetic field to the optical field until the

magnetic confinement may be turned off. The focus is then horizontally translated -36 cm

by horizontally translating one of the focusing lenses. After some hold time to relax the few

excitations that result from translation, the condensate is transferred into the experiment

by ramping up the experimental trap and reducing the laser field to zero.

2.1.5 Generation of light

The laser light at 589 nm necessary for the experiment is generated by a Coherent 899 dye

laser pumped by 8.5 W of 532 nm light from a Spectra Physics Millenia solid state laser on

an optical table separate from the experiment. The 899 is locked via saturated absorption

spectroscopy 200 MHz from the F = 2 - F = 3 transition in a vapor cell heated to 950 . A

series of acousto-optic modulators (AOMs) shift the frequency of the light to the relevant

frequencies, shown in Figure 2-1, and two electro-optic modulators (EOMs) add repumping

sidebands to the slower and MOT beams. Optical fibers carry the light between the laser

table, pictured in Figure 2-6 and shown in Appendix A of Reference [172], to the experiment

table.

Historically BEC III and BEC I shared control and maintenance of a laser table for

their experiments. In my first year at MIT, the two groups collaborated to duplicate this

system and allow for greater independence, resulting in the Science Chamber Na laser table

pictured in Figure 2-6. The separation allowed both machines to be run simultaneously,

but has meant increased upkeep for BEC III; the sodium laser's particular sensitivity to

fluctuations in temperature is problematic every summer as the temperature control in

the experiment room (26-248) shared by Science Chamber and Lithium Lab cannot be

maintained by MIT central services as well as the Lithium Lab laser room (26-242). A

typical plot of temperature (Figure 2-7) throughout the day shows the uncontrolled rise in

temperature. Consequently, the efficiency of experiments in the Science Chamber during



Figure 2-6: The sodium (top) laser and lithium (bottom) laser tables.
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Figure 2-7: A plot of the temperature inside the Na laser table during summer 2007. Grid

lines show the approximate location of midnight. The daily outdoor highs are given for

each day. Days 8 and 9 are Saturday and Sunday, when the machine was not turned on.

The source of the small fluctuations before noon on those days is probably due to the

temperature being appropriately regulated by the AC unit to ±0.20 C.

the summer is greatly decreased.

2.1.6 Imaging atoms

All data on Bose-Einstein condensates are collected photographically. When a resonant

laser beam is shown onto a cloud of atoms, some of the light is scattered, that is, absorbed

by the atoms and emitted into a vacuum mode. The beam is now "missing" some photons.

By comparing an image of the beam with atoms to an image of the beam without atoms

reveals a "shadow" where the BEC "absorbed" light from the beam. This form of imaging

is called absorption imaging.

In this work, two forms of absorption imaging are used. In F = 1 imaging, atoms in

the F = 1 lower ground state are imaged with light resonant with the F = 1 to F = 2

transition. In F = 2 imaging, atoms are first optically pumped into the F = 2 upper

ground state and then imaged on the F = 2 to F = 3 cycling transition. In F = 1 imaging,

each atom scatters, on average, two photons before transitioning into a non-resonant state,

where as in F = 2 imaging atoms at a given density scatter a known fraction of the laser

field. Some sample BEC F = 1 images are shown in Figure 2-8.

At times, the density of atoms is too high to obtain a decent image or the dimensions

of the trapped atoms are too small to be resolved optically. In this situation, the trapping

potential can be removed such that the atoms, allowing the atoms to expand as they fall

under the influence of gravity. During this "time of flight", the potential energy of the



Figure 2-8: Some sample images of BEC. The upper images show a BEC from the main
chamber magnetic trap containing a) 3 million atoms with 25 ms time-of-flight and b) 14
million atoms with time-of-flight 65 ms. The lower images show a BEC of 1 million atoms
c) in the optical tweezers trap and d) with 10 ms time-of-flight.

trap and the mean-field energy are converted into kinetic energy. The expanded clouds are
typically of sufficiently low density to image after - 10 ms time of flight. The images shown
in Figure 2-8 have differing time of flight from the same trap.

2.1.7 The science chamber

The Science Chamber has enjoyed success in various aspects of condensate physics, contin-
uous BEC [27], BEC interferometry [148], atom chips [82], atom surface interactions [133],
and guiding atoms through fibers [189] in large part due to the flexibility of the science
chamber at accommodating new experiments on a routine basis. The science chamber, ini-
tially a small spherical chamber with an atom chip, a piece of glass for quantum reflection,
and a beam shutter for the continuous BEC experiment crammed inside. Since then, the
science chamber has been replaced with a 6 inch cube with full sized viewports which can
accommodate a wide range of vacuum feedthroughs and provides optical access comparable
to the glass cell of BEC II [43]. Of particular note is a stepper motor controlled linear
motion feedthrough that was installed and tested during the second quantum reflection
experiment.

Linear motion feedthrough

One benefit of the science chamber is the ability to host several experiments simultaneously.
To achieve the best control over the externally applied bias fields, however, all experiments



Figure 2-9: A series of quantum reflection images collected by moving the surface into

the condensate at 8 mm/s. The surface was stopped in the center of the condensate and

immediately removed. It remains visible in the first several images. The center of mass of

the reflected atoms oscillates in the trap as expected, but the reflected cloud has "velocity

sidebands" of up to ±20% of the center of mass velocity which spatially separate during

the dipole oscillation.

would be situated in the center of the science chamber. In the past, we had compromised

by running two experiments simultaneously, with each of slightly off center. During the

construction of the reduced-density quantum reflection experiment, we wanted to be able

to accommodate more than two surfaces and wanted to be able to compare the performance

of these surfaces in the same trapping potential. This meant finding some way to reposition

the surfaces in vacuum. Further, if the surfaces could be moved relative to the trap, we

could "hit the atoms with the surface" rather than "hitting the surface with atoms" during

the experiment.

To this end, we installed a linear actuator (MDC part number BLM-133-2-03) in a

"mini-flange" port of the custom designed 6-port flange shown in Appendix E. Two of the

remaining mini-flange ports were used for electrical connects and the 2 3/4 inch port was

used for a window to maintain the imaging axis. The actuator was connected to a "cart

on rails" apparatus which held the various surfaces above the single coil, as pictured in

Figure 4-2 and shown in Appendix E. The actuator was controlled by a 200 W AC servo
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motor (Yaskawa part number SGMAH-02BAN21) fitted with an interface collar and driven

by a Legend digital torque amplifier (Yaskawa part number SGDG-04GT). The motor had

a built in 13-bit encoder and a maximum angular speed of 5000 rpm, corresponding to a

maximum linear velocity of - 5 cm/s (1 revolution = 0.025 inches of linear travel). The

encoder signal allowed for closed loop control of the angular position to less than 1 pm. A

PC interface card (SPiiPlus PCI-4) was used to pre-trogram and adjust motion waveforms.

The performance of the linear feedthrough apparatus was both good and not good.

Point-to-point control of the surfaces was reproducible over many runs of the experiment and

the resolution of the system was below the diagnostic limits of our imaging. Additionally,
we did not observe any deleterious effects (vibrations, etc.) from the torques generating

linear accelerations. However, there were problems with the "smoothness" of acceleration

and deceleration. The most telling diagnostic are a series of quantum reflection images that

puzzled the group for several weeks, shown in Figure 2-9. While the physics of the observed

"velocity sidebands" may be related to the deceleration of the surface at the moment of

reflection, we think that the discrete nature of the sidebands must come from the discrete

nature of the encoder in the feedback loop.

There are a few other options for generating linear motion in UHV. Of note is the

Nanomotion linear motor which interfaces piezo elements with a friction plate to generate

nanometer resolution motion with unlimited travel. Some systems are compatible with

10-10 Torr.

2.2 The single-coil trap

This section supplements work reported in the following publication, included in Appendix

A:

* A. E. Leanhardt, T. A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D. E.
Pritchard, and W. Ketterle "Cooling Bose-Einstein condensates below 500 picokelvin", Science
301, 1513 (2003).

Many of the experiments described in this work were performed in a trapping geometry

designed and implemented during my first year at MIT. The "single-coil" trap or "gravito-
magnetic" trap rivals the planar "z-trap" for simplicity. The single coil trap comprises a
single current-carrying coil to provide a magnetic field gradient which levitates the atoms
against gravity and an external bias field to create an on-axis field minimum which confines
the atoms in the horizontal plane'. The defining characteristics of the single-coil trap are

'We were interested to learn, after the fact, that the single coil trap had been described previously by
Chris Monroe for the trapping of cesium atoms. A similar trap geometry, the opposed coil trap, was used
to trap cesium atoms [121]



extremely low mean trap frequencies (on the order of a few Hertz) and densities (on the

order of 1011 atoms/cm3 ) in a geometry that ranges from spherical to "pancake". Through

adiabatic decompression, the single-coil trap has been used to create the coldest manmade

temperatures [99, 491 of 450 picokelvin for samples of a few thousand atoms.

The single coil trap is a specialty of our labs, crucial to the quantum reflection ex-

periments presented here, and quickly becoming unfamiliar on the hallway. This section

is therefore intended as both a primer and a troubleshooting guide. The section begins

with an analysis of the hypothetical "single loop" trap, much of which directly extends to

the many-loop single coil trap. The sensitivities of the single coil trap and some standard

techniques for using the single coil trap are then discussed.

2.2.1 Single-loop trap geometry

A single loop of radius R carrying current I creates an on-axis magnetic field profile that

is a maximum at the center of the coil and falls off with height z as

0ol R2

B = (2.1)z 2 (R2  2 )3/2

where ILO is the permeability of free space. The gradient of this field,

B o = 0I 3R 2 z
B' = (2.2)S 2 (R 2 +Z2)5/2

will exert a force, FB = pB', on an atom with magnetic moment I. In the single loop trap,

this force is used to balance the force of gravity on the atoms, giving an expression for the

required levitating gradient B1 = 2mg//B ; 8G/cm where m is the mass of the atom, g

is the acceleration due to gravity and we have used A = PB/2 as the magnetic moment of
23Na in the F = 1, mR = -1 state, where /LB is the Bohr magneton. Because the force of

gravity on the atom is constant, but FB falls off with z, there is, given sufficiently large I, a

point above the loop where the magnetic force balances the gravitational force, as shown in

Figure 2-10. There are typically two real roots to the expression mg = AB/2 x B'; the smaller

of these roots is not a stable trapping point because the curvature is negative below z = R/2.

The expression for the trapping minimum, zo, is easily found by selecting the correct root

when substituting B6 into the above expression. As the current in the loop is decreased,

zo moves closer to the z = R/2. Below the threshold current, Imin m 4.66 x mgR 2/ B/IO,

there is no point with sufficient gradient to levitate a sodium atom.

The resulting trapping potential, Vz = IB + mgz, is not harmonic in z, as is readily

apparent from Figure 2-10, but may be approximated as harmonic for small oscillation

amplitude. The trap frequency is found from the second derivative of the potential as
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Figure 2-10: In the vertical direction, the force on an atom due to the gradient of the
magnetic field of a single loop is used to balance the force of gravity. The top panel shows
the acceleration (in units of g) of a 23Na atom above a 1 cm diameter loop running 28 A.
The zero crossing is the vertical trapping position, zo. The total trapping potential (solid
line) is the sum of the gravitational potential (dashed line) and the magnetic potential
(dotted line), shown in the bottom panel. The potential can be approximated as harmonic
for small displacements.
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Figure 2-11: The geometry for the magnetic field calculations. (a) The coil resides in the x-y
plane. The magnetic field profiles for Bz(p) (dashed), B,(p) (dotted), and Btot(p) (solid)
are shown for (b) z = 0 and (c) z = R.

fz = w/2ir = 1/27r x (Vz/m) 1/ 2. Within the experimentally relevant region (zo >R),

tighter (looser) confinement in the vertical direction can be obtained by working closer to

(further from) the loop where the field curvature is larger (smaller) or by working with a

smaller (larger) radius loop which provides a larger (smaller) field curvature. The vertical

trap frequency is fairly insensitive to z0o, varying only by a factor of 2 over the range

R < z < 2R. It should also be noted that adding a bias field in the z direction, as

is necessary for radial confinement, will not change the location of the trap minimum or

change the vertical trapping frequency.

Support against gravity is necessary, but not sufficient, to provide three-dimensional

confinement for atoms. In order for the atom to be confined radially, we require that the on-

axis magnetic field be a local minimum (positive radial curvature). In this scenario, atoms

in the weak field seeking state will be drawn toward the axis. Analytic off-axis calculations

of the magnetic field of a loop are notoriously un-illuminating, involving elliptic integrals

and requiring numeric evaluation. Reasonable treatments use the vector potential as in

Jackson [79] or the Biot-Savart law as in Griffiths [62]. However, by approximating the off

axis field to second order, some general observations can be made [12].
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Maxwell's equations constrain the behavior of static fields [190, 121, 149]. Specifically,

i=3 0Bi8-- = 0 (2.3)
axi

S= (2.4)
Oxj Oxi

If we approximate the vertical field at the trap position to second order as: Bz = Bo +

(mg/l)z + KzZ 2 + Ipp 2, Maxwell's equations require that Bp = -(mg/l)p - 4ilzp and

2K2 = '1. We therefore write

Bz = Bo+ _z + -(z2 - 1p2 )  (2.5)
A 2

mg
Bp 2 p - pz (2.6)

Close to the axis of the loop, the total magnetic field, Btot(zp) = Bi + B 2 , is dominated

by Bz, with Bp increasing roughly linearly off-axis. When the fields add in quadrature, the

term linear in p in Bp combines with the bias field B 0 to give a total field with a lowest order

quadratic dependence Btt 0 Bo + ([Bz] 2/8Bo)p 2. The radial trap frequency proportional

to B'/VrB. An exact calculation of the near-axis magnetic field is shown in Figure 2-11.

In the plane of the loop, the radial curvature of the total magnetic field is positive,
providing a radially confining potential Vp = pBtot(p). Out of the plane of the loop, the

radial curvature of the total magnetic field decreases from its on-axis maximum, eventually

becomes negative (anti-trapping) at a height, zocu - 0.63 x R, as shown in Figure 2-12.

The radial curvature reaches a minimum value at mincu,,,, 0.98 x R, before increasing to

zero at z = oo.

The isolated single loop, then, has a 3D stable trapping point for height 0.5R < zo <

0.63R. The current running in the loop must be chosen to provide the appropriate vertical

gradient to support atoms against gravity. The minimum 3D trap frequency is found with

z0o close to 0.63R.

In practice, it is useful to trap atoms further from the plane of the loop, where the

radial curvature due to the loop current is negative. This is accomplished by introducing

a singularity in the potential experienced by the atoms. By applying an "anti-bias" field,
Banti in the z direction, Bz is completely canceled on-axis at a height z'. At this point, Btot

is dominated by Bp, which increases linearly off-axis. The discontinuity in B'ot becomes a
positive singularity in the radial curvature, as shown in Figure 2-13(a). This extends the
range of positive curvature to all points above the loop, excepting a small region between

Z0curv and the zero crossing created by the singularity. This technique has the further benefit
of independent control of the vertical trapping position and the radial trap frequency, as
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Figure 2-12: The radial trap frequency as a function of z for a 1 cm diameter loop carrying
1A. The trap frequency scales as the square root of the current, so the value of wp can be
found by scaling this plot by v/. Negative values for the trap frequency indicate an "anti-
trapping", negative curvature. The inset shows the radial potential topology for typical
trapping parameters. The limited trap depth is discussed in Section 2.2.3.

shown in Figure 2-13(b). With zo set by the loop current I, the radial trap frequency

can be varied between zero and any positive value by changing the value of the anti-bias

field. Atoms can be loaded into a tightly confining trap and adiabatically decompressed

(and cooled) by decreasing or increasing the anti-bias field and moving the location of the

singularity.

In a common situation, the loop is actually a series of loops comprising a coil. Most of

the "loop" analysis above transfers directly to the "coil" analysis by careful accounting of

the magnetic field produced by each winding. In practice, such calculations are overkill when

atoms are supported more than a loop radius away from the center of the coil. Comparisons

for the single coil used in this experiment to a single loop are shown in Figure 2-14. The

coil shows a slightly decreased (about 10%) vertical trap frequency for a given trapping

height. The only major difference is in the current required. Significantly less current is

required to levitate atoms at a given height when the current passes through several, tightly

wound loops. Because the radial trap frequencies are controlled by a bias field, any change

associated with the coil configuration can be compensated by changing the bias field slightly.

To summarize the single coil trap: a single coil can support atoms against gravity by

balancing the force of gravity with the force on the magnetic moment of the atom from the

magnetic field gradient; the horizontal confinement of the atom is achieved by adjusting an

anti-bias field, ensuring that the total magnetic field is a minimum on axis.

I I
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Figure 2-13: The single loop trap with an applied anti-bias field. The magnitude of the
anti-bias field was selected to exactly cancel Bz for a 1 cm diameter coil carrying 28 A
(zo P 1 cm) at z = 1.5R (dashed line) and z = 1.2R (solid line). The zero bias field
line is shown for reference (dotted line). For the solid (dashed) line case, the radial trap
frequency is -2 Hz (-85 Hz) at z0 . The inset shows Vp at z = R for various anti-bias field
strengths; Banti =0 (dot-dashed line), 1.5 G (dotted line), 2.5 G (dashed line), and 3.5 G
(solid line). An on-axis field maximum is turned into an on axis minimum. The large tick
marks represent the location of the coil. The overall offset of the potential is unimportant.
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Figure 2-14: The vertical trapping potential for a single loop (dashed line) compared to
a single coil (solid line) for a constant trapping position, zo ~ 1 cm. The vertical trap
frequency for the coil is reduced by approximately 10%. The inset shows the on axis
magnetic field strength for the single loop running 1 A (dashed line) and single coil with
integrated current 1 A (solid line).
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2.2.2 Sensitivity of the single-coil trap to external fields

One of the challenges of working with the single-coil trap is its sensitivity to external

magnetic fields. At this point, we have only considered the field of the coil and an external,

vertical anti-bias magnetic field. We now discuss the effect of (a) external bias fields in the

horizontal (X-Y) plane and (b) magnetic field gradients.

Bias fields in the horizontal plane shift the position of the magnetic field minimum off

axis. Without a bias field, the BP is zero on axis; and the addition of a bias field, AB

moves the location of the zero off axis by approximately AB/B,. For the typical trapping

parameters of R = 5 mm, I = 28 A, zo = 1 cm, and wp = 5 Hz give a residual bias field of

Btot ~ 1 G. Adding a 1% horizontal bias field of 10 mG shifts in the point where Bp = 0 off

axis by 25 pm and the trapping position 60 pm off axis. These distances are comparable

to typical condensate length scales. The shift off axis changes the trap frequency by less

than 0.1% and, as such, a jump in the horizontal bias field will "kick" the trapped atoms,

providing a useful mechanism for measuring a trap frequency.

It is worth noting that the horizontal component of the Earth's magnetic field in Boston

is roughly 200 mG [1871, which, unless compensated, will shift the trap position roughly

1 mm off axis and therefore must be compensated in our experiments.

External magnetic field gradients are less prevalent than bias fields, and their effect on

the trap less important. Vertical gradients will exert a force on the atoms which will add

or subtract from the force of gravity. It is unlikely, therefore, that vertical gradients would

be detected unless they were transient. Near the axis, Bp changes linearly, so adding a

gradient would just emphasize or de-emphasize the role of Bp, increasing or decreasing the

trap frequency correspondingly. The greatest impact of a horizontal gradient is to break the

cylindrical symmetry of the trap, giving different trap frequencies in the direction parallel

to and perpendicular to the gradient.

Static magnetic fields and gradients, then, are a significant, but not major, hassle when

working with the single coil trap. Transient fields, however, can be very troublesome. In

any trap, the timescales for relaxation scale with the trap frequency; excitations in the

single coil trap damp some tens of times slower than in the ODT or a chip-based wire trap.

Furthermore, the electronic noise at low frequencies may be larger. Experiments in the

single coil trap take seconds to perform as opposed to milliseconds, creating large temporal

windows for excitations to enter the system.

One notable source of transient excitations is the Lithium Lab magnetic trap, used to

create kG bias fields for working with Feshbach resonances. These fields are generated

approximately by a pair of coils run in Helmholtz configuration roughly 2.5 m away from

the Science Chamber apparatus. The fields fall off as ~ 1/r 3 , which drops the field by a

factor of - 104, meaning that the residual field is several 10s of mG. This is sufficient to
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Figure 2-15: a) The Feshbach coils of the BEC I experiment and science chamber y-bias
coils of the BEC III experiment are collinear. (b) The current in the BEC I Feshbach coils
is monitored by a Hall probe. A proportional current through the compensation coil, tuned
using the above circuit, will cancel the magnetic field above the single coil experiment.

shift the horizontal trap position more than 1 mm when the coils are running.

To protect against these transient fields and allow both experiments to be run simulta-

neously, we considered both passive and active stabilization techniques, finally settling on a

compensation coil installed collinearly between the two experiments, as shown in Figure 2-

15. Conveniently, the axis of the Li Feshbach coils is aligned with the axis of the science

chamber. A pickup circuit was installed, see Figure 2-15, to monitor the current in the

Li Feshbach coil and apply a proportional current in the compensation coil. The current

in the compensation coil generated a field that canceled the field of the Li Feshbach coils

in the center of the chamber. When put into operation, the compensation coil removed

any measurable effect. As a negative side effect, the compensation coil introduced a stray

magnetic field gradient of about 3 mG/cm (up from 0.7 mG/cm with the Feshbach coil).

A second technique considered for maintaining field stability inside the science chamber

was the installation of a passive high magnetic permeability (mu-metal) shield around the

chamber. Such shields are in wide use in precision experiments and can reduce field strengths

by orders of magnitude. Ultimately, this choice was unwieldy because of the size of the region

to be shielded (the external bias field coils must be enclosed by the shield) and the proximity

of stray field sources, like ion pump magnets, whose field lines could be concentrated by the
optical apertures in the shield.

A third technique, still in development, was small, vacuum compatible magnetic field
sensors. An array of such sensors could be used to actively monitor the field inside the
science chamber and correct for fluctuations by feeding back on the external bias coils.

(b)
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Figure 2-16: Winding pattern for the single coil used in the quantum reflection experiments.
The loops were supported by an aluminum cylinder, also used for mounting purposes.

Such a system may be considered for future applications.

2.2.3 Experimental single-coil trap

Having established the theoretical operation of the single coil trap, we turn now to the

implementation of the single coil trap used for the first quantum reflection experiment. The

coil comprised 24 turns of Kapton coated 30 gauge wire (0.5 mm diameter with coating)

in an aluminum holder, configured as in Figure 2-16. The coil was coated in an electrically

insulating, vacuum compatible epoxy (Epo-Tek H77 Epoxy). The final trapping position

was on-axis approximately 8 mm above the 10.5 mm (average) diameter coil, well outside of

the zero-bias trapping region. The anti-bias field was provided by a pair of 10 cm diameter

coils mounted outside of the science chamber (the z-bias coils).

The single coil trap is characterized by three trap frequencies, the vertical trap frequency

and two horizontal trap frequencies. For a given coil geometry, the vertical trap frequency

is purely a function of the vertical trapping position, z 0o, while the horizontal trap frequency

depends on both the vertical trapping position and the applied anti-bias field. These trap

frequencies are easily measured by (1) changing the current running in the single coil or

(2) applying an external, horizontal bias field. The vertical trap position can be changed

by changing the coil current. Typically a change of a few tens of milliamps is sufficient to

induce a small amplitude oscillation that is monitored to give the vertical trap frequency.

As discussed in Section 2.2.2, the addition of a horizontal bias field shifts the trap center

off-axis. Typically a field of a few tens of milligauss is sufficient for measuring a horizontal

trap frequency. In the quantum reflection experiment, the angular trap frequencies are

typically held at in the range of (w, wx, y) = 27r x (8,4,5) Hz or (6, 2, 2.5) Hz.

Condensates of 23 Na were transferred into the science chamber with optical tweezers
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Figure 2-17: Trap depth for the single coil vs. applied anti-bias field. Calculations are done
with a 1 cm diameter coil running 28 A, where zo z 1 cm.

in the usual way, described in Section 2.1.4. Once in position above the single coil, the

currents in the single coil and the external bias coils were ramped up over 2 s after which

the power in the tweezers beam was ramped to zero over 2 s. Regardless of the desired final

trap frequencies, transfer was always done into the "compressed" trap with (w, x, wy) =

27r x (8, 4, 5) Hz. Typically, the two traps would need to be aligned on a daily basis. The

horizontal alignment was more sensitive than the vertical alignment. Because the combined

single coil/tweezers trap was dominated by the optical potential of the tweezers, alignment

was monitored by looking for center of mass oscillations in the condensate after transfer.

The current in the single coil was adjusted to compensate for vertical misalignment and

the external x and y-bias fields were adjusted to compensate for horizontal misalignment.

Transfer into the single coil trap was nearly lossless, leading to approximately 5 x 105 atoms

in the trap.

Following the transfer into the single coil trap, the final trapping parameters were ad-

justed. The vertical trap position was adjusted first by increasing current in the single

coil. The anti-bias and horizontal bias fields also required slight adjustments during this
"rising" stage. The timescale for rising, about 5 s followed by a 4 s hold time, was set by

the need to remain adiabatic with respect to the low trap frequency. The final horizontal

trap frequencies were then adjusted via adiabatic decompression by reducing the anti-bias

field over 5 s, as suggested by Figure 2-13. Again during decompression, the horizontal bias

fields were adjusted slightly to maintain the horizontal trapping position. In the second

quantum reflection experiment, the atoms could be delivered to the science chamber at the

correct vertical position, owing to the translation of the surfaces, so only the decompression

stage was necessary.
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Figure 2-18: Trap depth for the single loop vs. applied bias in the "bias-free" trapping
region between 0.5R and 0.63R. Calculations are done with a 1 cm diameter coil running
3.85 A, where z0o 0.3 cm. The inset shows how the trap depth varies with the trap
frequency as the bias field is applied.

For a single atom, it is possible to reduce the horizontal trap frequencies without limit.

However, for a condensate with mean-field interactions, the depth of the trap might ul-

timately limit decompression. Because for p > R, Vp(p) falls to zero, the trap depth is

defined as the difference between the maximum of Vp(p) and the on axis local minimum

Vp(O). Because the radial trap frequency scales as B1/vf• and B' = BR/2 is fixed, the

trap frequency can be reduced to zero by increasing the on axis bias field to zero.

First, we consider the case where the atoms are trapped at z > 0.63R, such that an anti-

bias field is required to create a radial minimum on axis. There are two regimes determined

by the location of the trapping height relative to the singularity of Figure 2-13. When the

anti-bias field is just sufficient to provide a radial trapping potential, the trap depth due

to the quartic term in the potential Vp is already significant, approximately h x500 kHz.

Increasing the anti-bias field will decrease Bo on axis and increase the trap depth until

the singularity reaches the trapping point, as shown in Figure 2-17. Further increasing the

anti-bias field beyond this point will gradually decrease the trap frequency to zero while

maintaining substantial trap depth (- 2 MHz at Banti = oo). For comparison, the vertical

trap depth, which is asymmetric due to gravity, is approximately 17 MHz in the -ý direction

and infinite in the +2± direction.

Trap depth limitation during decompression is more significant when the trap is operated

in the "bias-free" region between 0.5R and 0.63R, that is, where a bias field need not be

I 1



Trap Geometry w/27r (Hz) N (atoms) Tc (nK) no (cm- 3)
Magnetic trap (evaporation) (20,200,200) 10T 1000 3 x 10 4

ODT (tweezers) (4, 440,440) 2 x 106 500 1014
Atom Chip trap (10, 2000, 2000) 106 1500 1015
Single coil (8, 4, 4) 106 25 5 x 1012
Single coil (decompressed) (2,1,1) 105  2 5 x 1010

Table 2.2: A comparison of parameters for the various trapping geometries used in the
Science Chamber. The parameters are the typical angular trap frequency w, the typical
condensate atom number N, the condensate transition temperature Tc and the central
atom number density no.

applied to achieve a 3D trapping potential. When decompression is attempted in this regime

by applying a bias field (as opposed to an anti-bias field), the trap frequencies are reduced

to zero at the expense of the trap depth, as shown in Figure 2-18. The opposite sign of the

quartic term in Btot is responsible for the limiting trap depth, a difference which can be

seen by comparing the insets of Figure 2-12 and Figure 2-13.

2.2.4 Further applications of the single-coil trap

The single coil trap provides unique access to ultra-low temperatures and ultra-low densities,
as shown in Table 2.2. Low temperatures and densities are useful for precision metrology,
where Doppler broadening and collisional broadening and line shifts must be controlled.

When the number density is so low, on the order of 1011 cm - 3 , the interactions between

atoms in a condensate are drastically reduced. Reducing interactions has proved useful in

some atom interferometry schemes [186, 76]. The single coil also provides support against

gravity with minimal radial confinement, which may be useful for lattice experiments where

external harmonic confinement is undesirable.

2.3 Modifications for dual species work

In 2006, one of the major frontiers cold atom physics lay in the merging of two recently

developed fields: optical lattice potentials for ultracold gases and well controlled interactions

with ultracold fermions. As a group, BEC III realized that, while high quality physics

remained in studies of pure BEC, the best direction for the lab was to put fermions in

optical lattices. Preliminary studies in this field were, literally, surrounding us in the major
results of BEC I [196], BEC II [19], and BEC IV [28]. Not wanting to fall behind our
hall mates, and with a cautious optimism that defines any major operation, we decided to
upgrade our machine to incorporate fermionic lithium [57].

The Science Chamber apparatus is ideally suited for the demands of optical lattice



science. Transfer to the science chamber should be possible for ultracold fermions, possibly

for bosons and fermions simultaneously, and the auxiliary chamber can be reconfigured, as

was done in BEC IV [16], for optical lattices.

This section will detail a few of the upgrades made over the last year.

2.3.1 Multi-species oven

Lithium atoms were introduced to the vacuum system via a dual-species oven designed for

the BEC I experiment by Claudiu Stan [178, 177] which replaced the sodium oven [25]. The

basic design involves two isolated atomic sources which are connected by a small nozzle

which allows the species to mix. A second nozzle in the "mixing chamber" creates the

effusive beam that is coupled into the Zeeman slower. The system was so successful that

it was installed on the BEC II apparatus in 2004 and on our experiment in 2007. The

installation proceeded smoothly and the system appears to be robust.

2.3.2 Lithium laser table

Because - 90% of the vacuum system remained unchanged, the major component of the

lithium upgrade was the design and construction of the laser source. We considered two

schemes: a single source design involving a tapered amplifier and a distributed source design

using the recently developed Mitsubishi slave diodes. Both schemes were successfully in use

along the hallway; BEC I had developed the Mitsubishi diodes to viability and BEC II had

recently acquired a tapered amplifier system. At the time, neither system seemed to be the

overwhelming favorite, so, due to the availability of parts on the shelf, we chose to work

with the slave diode scheme.

In the slave diode scheme, a master laser (Toptica DL 100 grating stabilized diode

laser) generates - 25 mW of optical power near the lithium D2 transition wavelength of

671 nm. Acousto-optic modulators are used to generate the various frequencies needed for

optical trapping, slowing and imaging. These low-power - 3 mW beams are coupled into

slave diodes where they are amplified to high-power - 100 mW, while retaining the narrow

spectral characteristics of the master laser. The beams are then shaped, coupled into optical

fibers and transferred to the experiment. Details of the experimental techniques associated

with maintaining the slave locking are found in the excellent Appendix of Ref. [66]. The

only major difference between our laser scheme and the one described in Ref. [66] is that

we use an EOM to generate repumping sidebands on the slower beam rather than using

modulating the slower slave diode. A schematic of the table is shown in Figure 2-19 and a

picture is shown in Figure 2-6.
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Figure 2-19: Lithium laser table layout. Dashed beam lines derive from flipper mirrors and are typically not present on the table.



AOM driver power supplies

During the development of the laser table, we were troubled with electronic noise in the

frequency range of 20-100 kHz. Eventually, we traced the problem to switching power

supplies in use in the AOM drivers we had built and were able to mitigate the problem by

exchanging the switching power supplies with linear power supplies. Linear power supplies

generate voltages by step-down transforming an AC line, then rectifying and regulating

the output voltage. Switching power supplies, in contrast, rectify the AC voltage directly

and use rapidly switched MOSFETs and capacitors to step down the DC voltages. The

switching rate is typically near 50 kHz. The output voltages of a switching power supply

are intended to float, and are not well referenced to ground as with a linear power supply,

i.e. the common output at 0 V is really a 5 V square wave at 30kHz.

Our analysis of the problem is this: there is nothing inherently wrong with switching

power supplies as long as care is taken to isolate the supply voltages from ground. If,

however, the isolation is done poorly, the lab ground can become seriously contaminated

with high frequency noise. Since the main advantages of switching power supplies are

reduced cost and weight, the tradeoff does not favor their use in lab electronics.

Laser stabilization

During the construction of our laser table, a diploma student in BEC I, Peter Zarth, was

constructing a similar laser table for use with potassium. Rather than use the typical

scheme for saturation absorbtion spectroscopy for referencing the laser to the atomic line,

Peter constructed a frequency modulated (FM) scheme. His success convinced us to try the

fm scheme on our lithium laser table. Our success has further convinced both BEC I and

BEC II to switch their lithium spectroscopy as well. Peter's thesis provides some details on

the implementation of fm spectroscopy [194].

Saturated absorbtion spectroscopy is a well-understood technique for extracting a nar-

row atomic feature from a severely Doppler broadened sample. In a hot (- 1000 C) vapor

cell, the spread in atomic velocity causes the cell to scatter a near-resonant "probe" laser

over a line-width determined by the temperature of the cell (- 1 GHz) rather than the

shape of the underlying atomic transition, which typically is much narrower (- 10 MHz).

The narrow spectral features can be recovered if the atoms of a particular velocity class

have their transition saturated by a strong "pump" beam, sent counter propagating to the

probe beam. The absorbtion of the probe beam will be the same except when the beam

is resonant with the saturated atoms. Then, the absorbtion of the probe beam will be

reduced as the two beams "compete" to excite the same atoms. The width of features in a

saturated scheme are determined by the line-shape of an individual atom rather than the

hot ensemble.



Saturated absorbtion spectroscopy provides a minimum when a resonance condition is

satisfied by the pump and probe beams. However, locking to a minimum is inconvenient.

How, for example, do you tell which way the frequency is drifting or when the "minimum"

has been reached? The differentiation of the signal is accomplished by introducing some sort

of frequency modulation, thereby sampling a small region near the center frequency. The

frequency modulation is detected in the probe beam and interpreted as the derivative at the

center frequency through lock-in detection. In the typical saturated absorbtion spectroscopy

scheme, the frequency modulation is applied to the pump beam by an AOM modulated at

- 20 kHz. In the FM scheme, the frequency modulation is applied to the probe beam by

an EOM driven at - 20 MHz. For the FM scheme, the derivative is more "non-local", but,

due to its high frequency, provides a higher signal to noise ratio.

The FM spectroscopy scheme is visible in the upper left hand corner of Figure 2-19.

Approximately 2 mW of light from the master laser is frequency shifted and delivered by

optical fiber to the lock region where it is divided roughly evenly into pump and probe

beams. The probe beam has sidebands at 20 MHz added (the frequency modulation)
before being sent, counter-propagating to and overlapping with the pump beam, through a

lithium vapor cell [177]. The probe beam is then detected on a fast photodiode (Thorlabs

part number PDA10A).

The signal detected on the photodiode depends on the relative phase and intensity of

the sidebands on the probe beam. When the laser falls on the photodiode,the sidebands

interfere, modulating the laser intensity at the sideband frequency. The amplitude of the

in-phase component of the modulation can be interpreted as the derivative of the absorbtion

line. The phase is detected by a home built lock-in amplifier described in Ref [58] and used

to provide an error signal to a PID controller (Toptica PID110).

Extracting a good signal from the fm spectroscopy lock has proved difficult. Eliminating

electronic noise from the system by (1) grounding one plate of the EOM to the optics table,
(2) separating the rf amplifier from the detection electronics, (3) adjusting the length of

cable in the detection electronics, (4) shaping the pump and probe beam with an optical

fiber, and (5) filtering higher harmonics from the photodiode signal have all helped to

improve the error signal. In the end, we are able to lock the laser for long periods of time.

The quality of the lock will be determined when we have ultracold lithium atoms to diagnose

the laser line-width.

2.3.3 Large bias-field generation

One immediate requirement for future work in BEC III is control over the atom-atom

interactions. As has been shown in recent years, the easiest way to control atom-atom
interactions is by adjusting the magnetic bias field to raise the energy of a bound molecu-



Bias (G/A) Gradient (G/cm/A) Curvature (G/cm /A)
Curvature Coils 3.00 0.50 0.86
Anti-Bias Coils 3.05 1.46 -0.081
MOT Coils 3.82 1.23 0.40

Table 2.3: Fields, gradients, and curvatures generated by the main chamber magnetic trap.

lar state near threshold. Two atoms colliding at near zero velocity are resonant with the

molecular state. The presence of this "Feshbach resonance" strongly influences the scatter-

ing, and hence, the strength of inter-atomic interactions. Experiments have shown useful

Feshbach resonances for Na-Na scattering at 907 G [78], for Li-Li at 822 G [39], and for

Na-Li 746, 760, and 796 G [179].

Ultimately, we anticipate that the majority of future experiments will be performed in

the science chamber where new coils can be designed and installed for the sole purpose of

generating kilogauss fields. In the mean time, this work could be performed in the main

chamber. In this section, we discuss how the main chamber magnetic trap might generate

these magnetic fields with little modification.

Fields from the magnetic trap

Helmholtz coils are a pair of co-axial current carrying loops of radius R which are separated

by a distance R. When the current is run in the same direction in both loops ("Helmholtz"

configuration), the on-axis field halfway between the loops is uniform, having no gradient

or curvature. When the currents are run in the opposite directions ("anti-Helmholtz"

configuration), the gradient is uniform, having no bias field or curvature. Spacing the loops

closer (further) than R retains the behavior of the on-axis central bias-field and gradient

in either configuration, but adds a positive (negative) curvature to the field in Helmholtz

configuration. Pictures and schematics of the Science Chamber magnetic trap in Figure 2-

5, show 3 pairs of co-axial coils in near Helmholtz configuration: the curvature coils, the

anti-bias coils, and the MOT (quadrupole) coils. In reality, the coils, with average radius

26 mm, 63 mm, and 46 mm, are spaced at 69 mm, 39 mm, and 67 mm respectively such

that none of them will provide a curvature-free bias field. The bias-fields and curvatures

provided by these coils in Helmholtz wiring and the gradients provided in anti-Helmholtz

configuration are given in Table 2.3.

These coils are currently wired as shown in Figure 2-5. In this configuration, the cur-

vature and anti-bias coils combine to provide (nearly) bias-free curvature by being wired

in Helmholtz configuration, but it the opposite direction from each other so that the bias

fields cancel out. If the wiring of the trap were re-configured such that current could be

provided to either the curvature coils or the anti-bias coils, running - 300 A in either pair



would produce a bias field near 1000 G with a curvature of -250 G/cm2 or ~-25 G/cm2 .

The second would be preferable for working with lithium atoms in the ground state [195].

As an alternative, a zero curvature bias field of 1000 G can be generated by running current

in the curvature and the anti-bias coils in a ratio of - 1 : 10, such that the curvature is

canceled. A similar current of - 300 A would be required.

Thermal management of coils

The wire comprising the magnetic trap is low resistance, , 2.5 mQ/m, however, because

of the lengths involved with winding the coils ('- 5 m) and the high currents necessary

to generate tight confinement (" 100 A), significant power is dissipated (- 200 W). This

power is dissipated by a stream of water constantly circulated through the coils. During

evaporation, the circulating water is warmed by about 30 C from an initial temperature of -

20°C. Because the Feshbach fields require currents approximately 3 times larger, the power

dissipated will increase by an order of magnitude, as will the rise in water temperature.

We anticipate a final water temperature near 500 C when 300 A is run through either the

curvature or anti-bias coils.

It is unfortunate that this puts us within a factor of 2 of catastrophic coil failure (when

the circulating water boils), even more-so given the crude nature of the temperature mea-

surements. Care must be taken when first raising the current to ensure that the heat load

does not overwhelm the system. In the event that sufficient field cannot be achieved with

a single set of coils, it would be possible to split the current amongst all three sets of coils

(curvature, anti-bias, and MOT). Because the field scales linearly with current, but the

power dissipated scales with the square of the current, this operation should be failsafe.

With 100 A running in each coil, we obtain a total bias field of - 1000 G and a curvature of

- 100 G/cm2 . The positive curvature would need compensation when working with ground

state lithium atoms, e.g. by optical dipole forces.

Precision control of bias fields

Because atomic properties vary so strongly with magnetic field near the Feshbach resonance,
it is crucial that the magnetic field be stable and reproducible. A stabilization scheme

described in Ref [37] was implemented first in BEC II [24] and later in BEC I. The scheme is
this: a power supply run in voltage control mode will provide an arbitrary current depending
on the resistance presented. The current is controlled by an IGBT operating in the regime
of linear resistance. A PID controller maintains the current through the coil (as measured
by a hall probe) at the desired set point by changing the resistance of the IGBT.

Finally, it is useful to maintain the bulk of the bias field with a single set of coils and
provide tuning with a second coil set. This is simple for us to accomplish by re-wiring the
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Figure 2-20: Schematic of MOT control box. MOSFET switches, boxed in either grey or
white are to be switched simultaneously. For the MOT fields, the coils run in anti-Helmholtz
configuration. For Feshbach tuning fields, the coils run in Helmholtz. TTL controls for the
box are not shown.

MOT coils to run in Helmholtz as opposed to anti-Helmholtz configuration. A schematic

for the control box is shown in Figure 2-20.

The proposed wiring of the magnetic trap, shown in Figure 2-21 integrating these control

schemes. The major electronic components have been assembled, but at the time of this

writing, not installed in the apparatus.
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Figure 2-21: The proposed wiring configuration for the magnetic trap includes additional
power supplies and control IGBTs to allow the production of 1 kG bias fields. In parallel
to each power supply is the associated "de-bounce" circuit. The "curvature" and "bias"
power supplies are labeled according to lab terminology for clarity.





Chapter 3

Quantum Reflection Theory

Mechanics is concerned with the propagation of particles subject to forces or external po-

tentials. Newton's first and second laws are sufficient to describe classical motion: (1) in the

absence of a force, a particle will continue in its motion indefinitely, and (2) when subject

to a force an object will accelerate at a rate proportional to the force and inversely propor-

tional to the mass. In terms of potentials, an object with kinetic energy E (at zero potential

energy) is confined to regions of potential less than or equal to E. Points where the poten-

tial energy is equal to E are known as the classical turning points, as shown in Figure 3-1.

In an elastic collision, an object approaching a classical turning point is observed to slow

as kinetic energy is converted to potential energy, then to reverse direction and accelerate

away from the turning point as the potential energy is released. This process is known as

reflection. Reflection may be gradual, as in the case of a ball reversing its motion at the

top of its arc, or pronounced, as in the case of a ball bouncing off of a hard wall.

Reflection is also associated with the propagation of excitations, either electromagnetic

waves, such as light from a mirror, or matter waves, like sound or ocean waves. As these

excitations propagate through a medium, they do so without significant motion of the

medium in the direction of propagation, eg. sound is not carried by individual atoms in

the air. The character of the propagation, i.e. the speed, dispersion, etc. depend on the

character of the medium, e.g. light travels faster in a vacuum than through a piece of

glass. We require that the excitation satisfy a continuity equation at all points, so when the

medium changes, the details of the excitation must change as well. Whenever an excitation

meets the boundary of a medium, the excitation can be entirely or partially reflected. The

classic example is a beam of light propagating through partially silvered mirror; light divided

at the interface into a transmitted beam and a reflected beam.

Quantum mechanics is concerned with the propagation of quantum mechanical wave-
functions subject to external potentials. Because a matter wavefunction exhibits both wave
and particle properties, we expect that the process of reflection in quantum mechanics may
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Figure 3-1: Classical turning points confine a classical object to a region of space. The
position of a classical turning point depends on the kinetic energy of the object, as shown
in the left panel. Regions of strong quantum reflection, shown on the right, exist where the
potential changes abruptly relative to the kinetic energy and the de Broglie wavelength of
the particle.

show characteristics of both Newtonian reflection and of excitation reflection. This is in-

deed the case. Quantum mechanical reflection is similar to Newtonian reflection because

it involves the propagation of matter, not an excitation. Further, it is easily shown that

the behavior of wavefunctions at classical turning points is is the same as the behavior of

a classical particle. However, the quantum treatment of propagation resembles mathemat-

ically the propagation of excitations, and the wavefunction can become divided via partial

reflection when the propagation medium, that is, the potential, changes sharply, as shown

in Figure 3-1. Specifically, the quantum treatment reveals the partial reflection of a par-

ticle wavefunction without the presence of a classical turning point, a phenomenon called

quantum reflection.

This chapter addresses the theoretical treatment of reflection of cold (quantum) atoms

from surfaces and reviews the current state of research on the reflecting of atoms from

surfaces. I will begin with the most basic treatment of quantum mechanical reflection

and progress rapidly to an "experimentalist's" view of quantum reflection from a real solid

surface. Along the way, I will touch on some the subtler points of current quantum reflection

theory.

3.1 Quantum scattering from a 1-D potential

The general question we wish to address is: "How does a spatially isolated potential af-

fect a freely propagating particle wavefunction?" Answers to this question can be used to

determine the scattering properties of atoms, the decay of radioactive particles, and the

bulk interactions between atoms in a gas in addition to the reflection properties of sur-

faces. According to J. J. Sakurai, "it is impossible to overemphasize the importance of this

topic" [150]. The one-dimensional case is the simplest, free from considerations of angular



momentum.

Quantum reflection can be understood by starting with a canonical first year quantum

mechanics problem and generalizing to the semi-classical propagation of wavefunctions. As

quantum reflection represents the breakdown of classical behavior, we will see that quantum

reflection occurs when the semi-classical approximation fails [30, 110, 22, 120, 55, 114, 29,
56].

3.1.1 Barrier scattering

The canonical freshman quantum mechanics problem involves the scattering of a particle

from a one dimensional barrier of height V [36]. In this case, the potential is fixed and

solutions to the Schr6dinger equation

2 + V = h (3.1)2m a t

take on the particularly simple form of a stationary state multiplied by a phase factor

T(r, t) = 4(r)e-2 Et./h The time-dependence can be eliminated and the result is the time

independent Schrddinger equation

SmV + V 0 = E (3.2)
2m

Solutions to the time independent Schrddinger equation take the form of plane waves of

wavevector k, with k2 = 2m(E - V)/h 2 where m is the particle mass and h is Planck's

constant, h, divided by 27r. In the event that V > E, the wavevector is imaginary and,
instead of a plane wave, the solution is exponential decay or growth.

In the simplest barrier scattering case, a particle is incident on an infinitely sharp step

to a classically forbidden region. We consider 3 wavevectors in our solution, the forward

and backward propagating wavevectors (k and -k)in the classically allowed region and
the exponentially damped wavevector (-zk) in the classically forbidden region. The step

represents a classical turning point and the solution of the Schridinger equation reveals

that the amplitude of the reflected wave is equal to the amplitude of the incoming wave,
just as we expect classically (see Figure 3-2).

Suppose the particle is assumed to approach the infinitely sharp potential step with
sufficient kinetic energy to be classically allowed in either half space (see Figure 3-2). On
either side of the boundary, the wavefunction takes the form of a traveling wave. At the
boundary, the potential changes abruptly and to satisfy the requirements that the wave-
function and its first derivative be continuous, we include a third traveling wave. This
reflected component has the opposite wavevector of the incident component. The reflection
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Figure 3-2: Left panel: The quantum mechanical treatment of a potential barrier reproduces
the classical behavior if the barrier height exceeds the kinetic energy of the particle. The
incoming particle (black solid) will penetrate the barrier slightly (red dotted), but the
reflected amplitude (blue dashed) is equal to the incoming amplitude.
Right panel: The quantum mechanical treatment of a potential step reproduces the classical
behavior of accelerating or decelerating the particle, but introduces the novel behavior
of dividing the wavefunction into transmitted (red dotted) and reflected (blue dashed)
components. This behavior is more akin to the splitting of an excitation at a medium
boundary and a direct consequence of the wave nature of matter. We interpret the partial
reflection as a probability of the particle being reflected from the potential step.

and transmission probability are easily found as

R= = i k_/k) = - (3.3)1 + k'/k k + k'

2 2 k'2 4kkk'
T=- = 1 + k'/k (k + k')2

where k (k') is the wavevector in the region of space where the potential equals zero (V).

The partial reflection of the wavefunction may be interpreted as the probability that the

incoming particle was reflected.

Of particular interest is that Equation 3.3 applies to both a positive potential step

of amplitude V < E and a negative potential step (potential drop). Neither of these

is a classical turning point. Unlike the mechanical reflection due to insufficient energy to

penetrate a barrier, the partial reflection of the wavefunction at a step or drop is interpreted

as a demonstration of the wave nature of matter. In the limit of a large step, k > k' and

the probability of reflection goes to unity. This general feature of quantum reflection is
preserved in the generalization to an arbitrary barrier.

r



3.1.2 Threshold behavior

Briefly, we remark that the sophisticated theoretical apparatus we are about to construct is

not necessary to understand the threshold behavior of quantum reflection. The expressions

R and T in Equation 3.3 can be expanded for small values of k oc vrE. The results,

R - 1-4k/k' and T ý 4k/k' show that as the incident wavevector falls to zero, the reflection

probability approaches unity as 1 - VP with a proportionality constant determined by k',
which depends on the details of the potential barrier [101, 22].

3.1.3 Numeric solutions for quantum reflection

In general, the 1D scattering problem is not analytic. The sharp barrier is simple because

the time independent Schridinger equation can be solved exactly at all points in space and

the free coefficients matched at the discontinuity. However, when the scattering potential

is continuous, this strategy becomes intractable for most potentials1 . An alternative is

to assume that the wavefunction has a particular form at one point in space and use the

Schr6dinger equation to develop the wavefunction spatially. For a potential confined to

a region a -a < x < a, and a particle incident from the right (that is, from +oo), with

sufficient energy to propagate in the region -oo < x < -a will couple to two states after

interaction: a transmitted state propagating toward -oo and a reflected state propagating

toward +oo. By beginning in the region -oo < x < -a with a forward traveling wave,
propagating the solution through the region -a < x < a, and, finally, decomposing the

solution in the region a < x < o into forward traveling and backward traveling waves, the

reflection probability can be calculated numerically for a given incident energy. An example

of the propagated wavefunction in a 1/r4 potential is shown in Figure 3-3.

This is the approach, described at length in Christian Sanner's Diploma thesis [151] and

in Ref. [55, 114], that we will use to calculate the reflection probability for the Casimir-
Polder potential.

3.1.4 The badlands function

There is an alternative, analytic technique for understanding semi-quantitatively quantum
reflection from an arbitrary potential. The WKB or semi-classical approximation of the

propagating wavefunction takes the form:

1
'VWKB(X) = e p(x)dx (3.5)

1Although, interestingly, the function -sech(x) 2 has an analytic solution.
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Figure 3-3: The solution to the Schr6dinger equation (solid line) for a 1/r 4 potential (dotted
line) and the amplitude of the associated badlands function (dashed line) are the diagnostics
for quantum reflection, as described in the text.

where p(x) = \/2m(E- V(x)) is the momentum of a mass m particle with energy E trav-

eling in a potential V(x) [15, 62]. This wavefunction is a good approximation of the true

wavefunction V(x) when the energy of the particle need not be treated quantum mechani-

cally, i.e. where the kinetic energy is large and the particle wavelength is small relative to

changes in the potential. If this is not the case, we expect that the WKB approximation

will fail and quantum behavior will become relevant.

The second derivative of OWKB differs from the Schrodinger equation by a term B(x)p(x) 2 WKB

where B(x) is the badlands function given by

1 3p '(x)2  p"(x)
B(x) = [ ]  (3.6)

p(x)2 4 p(x)2  2p(x)

which must be small for the WKB approximation to remain valid [55]. Wherever this term

grows large, we find that the semiclassical treatment is poor. Figure 3-3 shows the the

badlands for the a sample 1/r 4 potential.

For the purposes of quantum reflection, we will consider the point where the badlands

function is a maximum to be the point where reflection occurs and the magnitude of that

maximum to be an indication of the reflection probability. The form of the badlands function

indicates that this point will occur when there is change in potential, through p' and p",

which is large relative to the local momentum of the particle. Both terms tend to grow



large at the same point and the essential physics is retained by focusing only the first term:

p(X)' mV''(x)A(x) = p(x) < 1 (3.7)

which has a maximum when V'(x) 2/V"(x) = p(x)2/3m. The situation where A' = 1

corresponds to the particle wavelength, A, increasing by A (a factor of 2) over a distance of

A and the breakdown of the WKB approximation.

By plugging the expression for the maximum of A' back into the Schr6dinger equation,
we arrive at an expression relating V to E. Here we find that the maximum value for the

failure occurs when V(x) = -2(+1E when the potential takes the form V(x) = -Ca/xa.a--2

This expression suggests that quantum reflection will not occur when a < 2, that is, for

potentials which do not fall off faster than 1/r 2. Bearing in mind that quantum reflection

does not really occur at a single point, this expression can also be used to determine the
"point" of reflection, r.o - (C,/E)1/ a. The value for A' can be evaluated at this point; the

result will in general depend on the incident energy as C-II/E-1/ a . Thus, higher reflection

probabilities are associated with lower incident energy and smaller Ca coefficients.

It is curious that weaker potentials with smaller Ca will exhibit greater quantum re-

flection; for the sharp step, quantum reflection from a smaller potential drop is smaller.

Why doesn't the power law potential behave like the sharp step? The difficulty with power

law potentials is that they have no characteristic length scale. However, because reflection

is strongest when the magnitude of the potential is roughly equal to the particle's initial

kinetic energy, there is a length scale associated with the particle energy. For a given ki-

netic energy, this length scale is shorter for a weaker potential, that is, the magnitude of

the potential reaches the initial kinetic energy closer to the origin. As any inverse power

law potential falls to -oo at the origin, the weaker potential appears "sharper" due to the

shorter length scale, and hence exhibits strong quantum reflection.

3.2 Reflection of cold atoms from a solid surface

The interaction between a classical atom and a solid surface is inelastic scattering. When
the atom reaches the short-range repulsive potential of the surface, it interacts with the

many degrees of freedom in the surface where it may gain or lose energy. If the atom loses

energy, it may not have sufficient energy to escape the attraction of the van der Waals
attraction and is adsorbed on the surface in a bound state. If the surface is sufficiently
warm, the atom will eventually be ejected from the surface [101, 22]. Evidence for this
behavior, which predicts that classical atoms will reach thermal equilibrium with confining
surfaces, is as close as the radiator or refrigerator; both devices rely on the thermalization
of surfaces and gases. Quantum reflection subverts this behavior by suppressing the overlap
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Figure 3-4: Numerically calculated reflection probability for sodium incident on the pure
Casimir-Polder potential of a silicon surface (upper curve) and the un-retarded van der
Waals potential of a silicon surface (lower curve). The range of velocities plotted extends
from - 1 nK to ' 1 pK.

of the incoming atomic wavefunction and the bound states of the atom-surface potential.

Having provided a general framework for understanding quantum reflection, we turn

our attention to the specific case of atoms incident on the Casimir-Polder potential of a

solid surface. As discussed in Chapter 1 Section 5, the dominant interaction between a

neutral atom and a solid surface is the fluctuating dipole-dipole interaction. This potential

is long-range attractive and takes the form Vc-p = -C 4/r 4. In the following calculations

use C4 = C4Si = 6.2 x 10-56 Jm4, calculated in Ref [192]. Our use of the purely retarded

form of the atom-surface potential is justified a posteriori by the observation that the point

of reflection as defined by the badlands function resides entirely in the region r > c/wo and

r < AT, as discussed in Section 1.2.

Using the techniques discussed above, we can analyze the atom surface interaction to see

when we anticipate significant reflection of an incoming atomic wavefunction. First, using

the analysis of the badlands function, we find that reflection of atoms at 10 nK (- 3 mm/s)

occurs approximately 1 /m away from the surface, while reflection of atoms at 1 muK

(- 30 mm/s) occurs at roughly 0.25 /m, well into the region where the region where the

potential is well approximated by the pure Casimir-Polder potential [55]. Second, using the

full numeric treatment [165, 151], we calculate a reflection probability that approaches unity

as the velocity approaches zero, shown in Figure 3-4. This figure also shows the reflection

probability from the potential VvdW = -C 3/r 3 , with C3 = 6.9 x 10- 49 as the van der Waals

coefficient 2 .

2This value is C4/( Xr A), where A = 589 nm is the wavelength of sodium [55].



The effect of resonances

In the previous section, the quantum treatment of the atom-surface potential focused on

the long-range attractive tail and ignored the short-range repulsive potential and the bound

states it hosts; only in the classical treatment of the atom-surface interaction did the bound

surface states come into the discussion. However, it is possible for a surface excitation to

resonantly connect an unbound state to a bound state. Resonances play a major role in

determining scattering behavior, as was discussed in Section 2.3.3.

A more sophisticated treatment of quantum reflection uses a potential which can support

the bound states into which non-quantum reflected atoms can become adsorbed [30, 120, 29].

What happens if one of these bound states is close to zero energy? The solid surface

itself has numerous degrees of freedom, and a correspondingly high density of low-energy

states which could connect an incident atom to a deeply bound state. What role does the

internal structure of the surface play in quantum reflection? An excellent discussion of these

problems, and of reflection processes in general is presented in Ref. [120]. The general result

is: when an isolated resonance exists at threshold, either a bound state with zero energy

or a bound state connected by a surface mode, it will play a role in reducing the reflection

probability. However, this case is exceedingly rare, and typically the many resonances near

threshold couple the incoming atomic state to the rapidly decohering internal states of

the surface leading to no net effect, and quantum reflection proceeds without concern for

resonant adsorbtion.





Chapter 4

Normal Incidence Quantum

Reflection

This chapter supplements work reported in the following publication, included in Appendix B:

* T. A. Pasquini, Y. Shin, C. Sanner, M. Saba, A. Schirotzek, D. E. Pritchard, and W. Ketterle,
"Quantum reflection form a solid surface at normal incidence", PRL 93, 223201 (2004).

The quantum interactions between atoms and surfaces has become increasingly impor-

tant in recent years; atom chips confine BEC within a few pm of surfaces [130, 50, 146, 47],

atom-surface interactions are being used to place limits on short-range Yukawa poten-

tials [70], material diffraction gratings are an important component in precision interferom-

etry experiments [134, 135], and a growing field of atom optics searches for novel devices

to manipulate and control ultracold atoms [144, 143, 51, 52]. Finally, quantum reflection,
as discussed in Chapter 3, is one of the most basic and beautiful demonstrations of the

wave nature of matter and the power of nano-kelvin temperatures to uncover fundamental

physics.

This Chapter contains a review of previous experiments studying quantum reflection and

details of the first observation of normal incidence quantum reflection with alkali atoms. The

major result is the observation of 1- V", threshold dependence of the reflection probability

at normal incidence for atoms with velocity from 1-10 mm/s. Further, atoms were held in

a trap divided in half by a solid surface.

4.1 Previous work on quantum reflection

The only requirements to observe quantum reflection are a population of atoms with well

controlled atomic velocity and a detector sensitive to the reflected fraction. However, be-



cause reflection drops off so quickly with increasing incident energy, quantum reflection has

been studied primarily in two settings: (1) the scattering of helium and hydrogen off of

liquid helium surfaces, and (2) with atomic beams incident on surfaces at grazing incidence.

The first scenario is favorable because of the anomalously weak interactions of liquid helium

and the availability of cryogenically cooled hydrogen and helium. The second scenario uses

the small transverse velocity of a collimated atomic beam to decrease incident energy while

maintaining high atom flux.

For the interaction of helium or hydrogen atoms on liquid helium, specular reflection can

be observed at temperatures below a few K; threshold quantum reflection, which displays the

appropriate vI scaling occurs at temperatures below 100 mK. Some experiments involve

generating a pulsed effusive beam of helium by localized heating and then detecting the

pulse as it travels either directly to a bolometer or is specularly reflected off a helium

surface [46, 122]. Other experiments pre-trap and cool a population of hydrogen atoms

before allowing one wall of the trap to be replaced by a liquid helium surface; the resulting

atom loss rate can be used as a measure of the reflectivity of the helium [41, 193]. Extensive

theoretical work [44, 45, 18] and experimental efforts [122, 191] on the helium-liquid helium

interaction have helped to clarify the initial work of Ref. [46]. Similar work was done with

hydrogen incident on liquid helium surfaces, first at high energy where threshold quantum

reflection behavior was not observed [14, 13] and later in the threshold regime [41, 73, 193].

Of particular note is the work of Ref. [13] where, working in a regime where the sticking

probability varied linearly with energy [14], hydrogen was focused by a concave liquid He

surface. Theoretical work with liquid He is complicated, however, by the presence of riplon

modes in the liquid surface and by the fact that, being a liquid, the "surface" of liquid He

is poorly defined.

The second class of quantum reflection experiments, grazing incidence thermal beams

on solid surfaces, has received more attention in recent years. In a typical experiment, a

highly collimated beam of thermal atoms impinges on a surface at angles of 800-90', such

that the velocity normal to the surface is a tenth to a thousandth of the beam velocity [2,

165, 67, 42, 126]. Such experiments are ideally suited for studying quantum reflection as

the incident velocity can be easily varied over orders of magnitude and, due to the high

flux of atoms, the reflection probability can be accurately measured down to the 10- 6 level

where quantum reflection occurs in the non-retarded region of the potential [42].

Grazing incidence experiments also allow the study of a wide range of surfaces, including

micro and nano-structured surfaces which demonstrate enhanced reflectivity. In Ref. [166],

silicon surfaces were etched to create a series of parallel ridges which were oriented per-

pendicular to the incident beam. The surface showed a greatly enhanced reflection. One

interesting side effect of periodically structured surfaces is the introduction of a wavevector



ksurf parallel to the transverse wavevector of the atomic beam. Instead of pure specular

reflection, atoms may also diffract from the surface, gaining or losing ksurf, thereby increas-

ing or decreasing the reflection angle relative to the incident angle. This effect was used to

demonstrate an interferometric "hologram" with quantum reflection [167].

A simple model to explain the enhanced quantum reflection due to structured surfaces

is an effective reduction in the C3 and C4 coefficients which reduces the strength of the

reflection potential, as discussed in Section 3.1.4. A more detailed analysis of the reflection

from ridged surfaces suggests that other physics is involved, namely, Fresnel diffraction of

the atomic beam [125, 95] 1. In this theory, the diffraction orders from the ridges will

add constructively to create the specularly reflected beam. There is little dependence on

the details of the atom-surface potential and the model is in good agreement with the

observations for grazing incidence beams.

Some experiments and theoretical models with evanescent waves have explored atom-

surface interactions and quantum reflection. Aspect's group found effects of the attractive
van der Waals potential when studying reflection from a repulsive evanescent wave optical

potential at normal incidence [97], an effect discussed at length in . references [163, 33]. In

an interesting modification to the typical blue-detuned (repulsive) evanescent wave mirror,
reference [72] discusses quantum reflection from a purely attractive red-detuned evanescent

wave. In related work, reflection from the periodic potential of blue-detuned 1D optical
lattice was studied in the context of quantum reflection [54].

4.2 History of quantum reflection experiments at MIT

Quantum reflection experiments have a history at MIT2 . The first observations of quantum
reflection were made in the early 1990's by Tom Greytek and Dan Kleppner by measuring
the sticking probability3 of evaporatively cooled hydrogen on films of liquid helium [193]. An
earlier work by the same group, Ref. [41], was in the appropriate regime to observe quantum
reflection, but failed due to an insufficient coating of highly reflective liquid helium on the
poorly reflecting sinter surface [73]. These studies led to a resurgence in theoretical treat-
ments of quantum sticking near threshold which have generally converged to the accepted
picture presented in Chapter 3.

When the first result of threshold quantum reflection from solid surfaces were reported
1A similar analysis may be performed by considering reflection as occurring due to the rapid, repeated

measurement of the atom wavefunction on the outside of the grating. This Zeno effect analysis of quantum
reflection is useful for approximating the reflection, but does not contain some of the essential physics [94].2There are interesting parallels between the history of quantum reflection experiments at MIT and "family
tree of atomic physicists" that was widely publicized when the Nobel Prize in 2001 was shared by Carl
Wieman, Eric Cornell and Wolfgang Ketterle [88, 32]. One notable difference is the major contributions
made to the field with atomic beam quantum reflection by F. Shimizu who has no connection to the "tree".3The sticking probability being the compliment of the reflection probability, S=1-R.
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Figure 4-1: The first signature of normal incidence quantum reflection. For times between

30 and 45 ms, the positions of the centers of the two condensate blobs are given. The inset

shows the image for 32 ms. **This figure will be updated**

by F. Shimizu in 2001 [165], the Ketterle group at MIT became interested in achieving unity

reflection of ultracold atoms from solid surfaces. The hope was that trapped BEC had such

well controlled velocity that quantum reflection could be observed at normal incidence and

could possibly be useful for manipulating and even confining ultracold atoms. The first

round of experiments loaded into the science chamber included a modest piece of glass,

mounted at 450 above the surface of the first atom chip. The experiment involved loading

atoms into the tweezers, translating to the science chamber and pushing the tweezers into

the glass slide. Quantum reflection would be observed as atoms being ejected perpendicular

to the trap due to the small trap depth. Unfortunately, no signal was observed. The negative

result was attributed to the velocity of atoms within the condensate was dominating the

center of mass velocity when the collision was induced.

I arrived at MIT in the fall of 2002 when a new quantum reflection experiment was being

mounted. The single coil trap had been designed by Dave Kielpinski as a way of reducing

the speed of sound4 . Later that year, the single coil trap was installed in the science chamber

- 1 cm below a plano-concave lens. The concave side was intended for use as a novel trap

in which quantum non-sticking would both support the atoms against gravity and confine

them radially, the flat side of the lens faced down and was intended for a conventional

study of normal incidence quantum reflection. Atoms were to be pushed upward into the

surface and reflect downward; the signature of reflection would be a sudden vertical shift

in the position of the atoms in time of flight, indicating they were moving downward, not

4Dave left the group before any result could be obtained with the trap.
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Figure 4-2: Pictures of the (now retired) experimental setups for studying quantum reflec-
tion. The silicon substrate is missing in the left panel due to damage.

upward when the trap was turned off. We were able to observe the signature of quantum
reflection as shown in Figure 4-1, but moved on to other projects immediately afterward;
characterization of quantum reflection along this axis was difficult. Instead, we used the
single coil to produce world record low temperatures [49, 99].

Encouraged by our preliminary result and hoping to capitalize on the very low horizontal
trap frequencies of the single coil, we designed a new set up in which a thin silicon substrate
was mounted above the single coil with its face parallel to the vertical axis, as shown in
Figure 4-2a. The success of this setup is described below. As a result of this work, a small
number of groups have developed numerical simulations of quantum reflection [162, 105]
to help explain the role that interactions and collective excitations play in the reflection of
condensates.

As we were developing our work on normal incidence quantum reflection, Shimizu ex-
panded on his original experiment by introducing structure to the surface, thereby modifying
the reflection potential and greatly enhancing the reflection probability [166, 167]. In our
next project on quantum reflection, we introduced several dilute surfaces into the science
chamber, shown in Figure 4-2b. The aerogel with a mass density of 2% of glass and the
nano-structured surface with mass density 1% of solid silicon were both expected to show
greatly enhanced reflection. The silicon surface from the first experiment was mounted
on a piezoelectric element so that its position could be rapidly varied in time, hopefully
averaging (and weakening) the potential of the surface. The successes (and failures) of this
experiment are also discussed below.



I-'
Ikd)

z .

uV

W)

>)

I-.'

k1)

'4

.ii
U
Cd

-H(

Figure 4-3: Panel (a) illustrates how atoms are confined near a solid surface above the

single coil. Panel (b) and (c) illustrate the experimental techniques for studying quantum

reflection. Atoms initially confined a distance d from the surface undergo a dipole oscillation

when the trap center is shifted to the surface, as shown in (b). Atoms are loaded into

the surface trap by shifting the trap position halfway to the surface, allowing the dipole

oscillation to carry the atoms to the surface, then shifting the trap to confine the zero

velocity atoms against the surface, as shown in (c).

The ultimate limitations to quantum reflection with BEC, as discussed in Chapter 6

suggested further studies on the reflection of condensates. By the time the second project

wrapped up, however, we had decided to switch gears with the experiment. There are no

plans to continue research on quantum reflection at this point.

4.3 Reflection at normal incidence

Observing quantum reflection with nano-kelvin temperature trapped atoms is fundamen-

tally different than previous work with atomic beams. On the plus side, there is no need to

work at grazing incidence as the mean velocity of atoms at 1 nK is less than 1 mm/s; the

incident velocity must actually be increased by some other, easily controlled means, such as



a center of mass oscillation. On the other hand nano-kelvin atoms cannot yet be produced

continuously [27] or in large quantities, so experiments must be pulsed and are limited to

reflection coefficients greater than - 1% unless extreme measures are taken in detection.

Furthermore, at low temperature and large number, atom clouds tend to be quite extended,

so care must be taken in preparing the sample far from the surface5.

A picture of the experimental setup is shown in Figure 4-2, and an experimental

schematic is shown in Figure 4-3. Bose-Einstein condensates of - 5 x 105 23Na atoms

are prepared in the usual fashion (see Chapter 2) and transferred into the potential mini-

mum of a single coil trap (see Section 2.2). Approximately 1 cm above the coil, a 1 x 1 cm

sample of the surface to be studied was mounted. Condensates were positioned ~ 200 pum

away from the bottom edge of the face of the surface. Velocity perpendicular to the surface

was generated by shifting the trap minimum to be centered on the front face of the surface

by applying a bias field B 1 (see Section 2.2.2). By changing the initial position of the

trap relative to the surface, velocities between 0.5 mm/s and 25 mm/s were achieved. We

attempted to use an actuator to move the surface into the stationary BEC, but could not

control the velocity sufficiently well (see Section 2.1.7).

Reflection probabilities are calculated as the ratio of atoms reflected from the surface to

atoms incident on the surface, making quantitative measurements quite simple; because the

absolute number is unimportant, we can be a little careless in calibrating the imaging light.

Atoms were released from the trap and, when possible, the surface was removed from the

imaging field. A pulse of light resonant with the F = 1 -- F' = 2 transition was applied

to the atoms for 1 ms to pump atoms in the IF = 1) state into the IF = 2) state. Because

of the high optical density of atoms in the incident cloud, after optical pumping, the atoms

were allowed to expand with their acquired photon recoil momentum for 2 ms. The cloud

was then imaged on the F = 2 -+ F' = 3 cycling transition.

Also of interest were excitations that might occur during quantum reflection of Bose-

Einstein condensates. For observing excitations, imaging was done with low intensity light

on the F = 1 -- F' = 2 to obtain undistorted images.

4.4 Experimental results

The published experimental results of our work are included in Appendix B.

SActually, "surface evaporation" [107, 69] helps to maintain the low temperature of the BEC after the
excitations from loading and decompressing the single coil trap have dissipated.
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Figure 4-4: The reflection probability vs. incident velocity for sodium atoms reflecting off
a solid silicon surface. Theory curves are described in the text.

4.4.1 Reflection probability

Figure 4-4 is the major result of Ref. [133]. Vertical error bars show the standard deviation

of six measurements and horizontal error bars show the uncertainty in the initial velocity.

The solid curve is the same as in Figure 3-4, the numerically calculated reflection probability

for sodium on solid silicon. Two "interesting" features caught our attention: the data are

better fit by increasing the C4 coefficient by a factor of two and the lowest velocity data do

not show threshold behavior, but rather saturate near 10%. Unraveling these mysteries was

the subject of our second experiment with quantum reflection and, incidentally, the subject

of the following two Chapters.

4.4.2 Quantum reflection surface trap

One of our original motivations for studying quantum reflection was for its potential use in

trapping atoms [86, 193]. In the limit of zero incident velocity, a quantum reflecting surface

could be used to construct a physical container for BEC. Atoms were transferred into a

harmonic trap centered on a surface so that confinement in one dimension was provided by

a solid silicon surface, as described in Figure 4-3 and Ref. [133].

If the surface were perfectly absorbing, we would expect the atom number to fall to zero

within a half trap period, corresponding to - 50 ms for the compressed trap and - 150 ms

for the decompressed trap. That atoms remain in the trap beyond this time indicates that

quantum reflection enhances the trap lifetime. The lifetime measurement in Figure 4-5, in

conjunction with a crude model for reflection suppressed trap loss, gave a "zero-velocity"

reflection probability of between 50 and 70%.
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Figure 4-5: Lifetime measurements for atoms confined in the surface trap. Solid (open)
circles show the remaining atom fraction for a 2ir x (9,9,6.5) Hz [27r x (3.3,2.5,6.5) Hz]
trap. The fitted 1/e lifetimes are 23 ms and 170 ms respectively.

When the solid surface was replaced with the pillared surface, we did not observe a

dramatic increase in the lifetime as expected.





Chapter 5

Structured Potentials for Quantum

Reflection

This chapter supplements work reported in the following publication, included in Appendix C:

* T. A. Pasquini, M. Saba, G. -B. Jo, Y. Shin, D. E. Pritchard, and W. Ketterle, "Low-velocity

quantum reflection of Bose-Einstein condensates", PRL 97, 093201 (2006).

Initial results from normal incidence quantum reflection on silicon were limited to , 15%

at the lowest velocities as opposed to a predicted values near 50%. We had two goals with

our second quantum reflection project: (1) improving the reflection coefficient and (2)

understanding the limitations at low velocity. This Chapter will address our work on the

first of these two goals.

As discussed in Section 3.2, the reflection probability depends only on the incident veloc-

ity and the properties of the surface, specifically, the C4 coefficient 1 . Ab initio calculations

of the C4 coefficient are difficult, requiring precise knowledge of the frequency dependent

terms in the atomic polarizability and the dielectric function of the wall, but has been done

for many alkali species on a range of conducting and dielectric surfaces [175, 192, 91, 112, 38,
111, 55]. The resulting values for C4 vary only by factors of - 2 from the perfect conductor

to a strong insulator like glass [175, 165], so, apart from exceptional cases like liquid He,
changing the reflecting material will have only minor effects.

On the other hand, C4 is also approximately proportional to the density of atoms in

the bulk material [118], a fact which can be exploited by microfabrication [166], metal
foams [8] or silica aerogels [154, 48, 77]. For these surfaces, the atom-surface interaction is
reduced; lower density means fewer surface atoms to attract the incident atom. This was

1For the work presented here, C4 alone is sufficient to characterize the potential as the reflection occurs
deep in the retarded tail of the atom-surface potential.



the approach favored by Shimizu, whose work with structured surfaces [166, 167] guided

our efforts in improving the reflection coefficient.

In recent years, experiments and theory have addressed the question of how periodic

structuring of surfaces influence quantum reflection. Tailored surfaces achieved through

micro- and nano-fabrication have blurred the line between the interaction of atoms with

bulk materials and the interaction of atomic waves with periodic structures. Specifically,

the interpretation of the results of grazing incidence quantum reflection on grating sur-

face [166, 125, 95, 94] have been analyzed with reference to the properties of the surface

only as a correction term. Normal incidence quantum reflection from structured surfaces

provides the complimentary limiting case to grazing incidence quantum reflection. Further-

more, adapting normal incidence reflection to large angles would be possible. The studies

presented here show that, at normal incidence, a simple "reduced density" approach suf-

fices [118] to describe quantum reflection.

This Chapter contains details of the Science Chamber's published work on improving

quantum reflection probabilities by structuring surfaces. We report an enhancement of the

reflection probability by a factor of 4-5 at a velocity of 1 mm/s. Discrepancies from the

predicted behavior for sodium atoms on silicon are explained as resulting from adatoms on

the surface. The published work is augmented by extended discussions of techniques for

computing the relevant atom-surface potentials for structured surfaces.

5.1 Candidates for improved reflection

Because low-velocity quantum reflection occurs approximately 1 pm away from the surface,

improving the reflection properties requires reducing the density of the surface in the upper

1 pm. The following are the candidate surfaces for improving normal incidence reflection.

5.1.1 Silica aerogels

Silica aerogels push the low-density limit of bulk solids. Formed by controlled evaporation of

a suspension of silica strands with densities in the range of 0.5% to 50% of bulk silica [154,

53]. There is no regular internal structure apart from a distribution of pore sizes which

has been studied extensively [77, 48]. Above some typical length scale, ýo, aerogels appear

homogeneous. Below a second length scale, a, the gels properties are determined by the

surfaces of the silica clusters that comprise the aerogel. This makes them useful as a

technique for introducing impurities for studies of 3He [140, 68].

We obtained samples of aerogel manufactured to a bulk density of - 2% from Norbert

Mulders at the University of Delaware, the same source for the aerogels of Ref. [140]. In

Ref. [140] aerogels were characterized by 0o r 50 nm and a 2 3 nm. A photograph of the



Figure 5-1: One of the silica aerogels (outlined in red) used in the quantum reflection
experiment in its aluminum holder. The slight blue color is due to Rayleigh scattering.

sample is shown in Figure 5-1. This density was the lowest achievable if the gel was to
have a "flat" surface when removed from the growing container. Because any underlying
structure in the aerogel is characterized by length scales below o0 < 1 pm, this material
should be well approximated by reducing the effective C4 coefficient by a factor of - 50, as
described below in Section 5.2.

5.1.2 Periodically pillared surfaces

Interference lithography is a process by which the interference pattern of two overlapped
laser fields is transferred to a solid structure [173, 155, 153, 185, 152]. The much heralded
Nanoruler, produced by interference lithography, has potential uses in semiconductor pat-
terning and replication in addition to filling the role of a diffraction grating in telescopes [92].
By introducing two perpendicular interference patterns, the techniques for creating grating
structures can be used to create arrays of pillars on surfaces. The surface selected for our
experiment with quantum reflection was such a pillar structure etched into single-crystal
silicon, shown in Figure 5-2.

As opposed to the aerogel, the periodically pillared surface was quite thin (, 1 pm)
and supported by a thick substrate of silicon at crystalline density. We anticipated that,
because quantum reflection occurs a micron away from the surface, the bulk substrate would
play only a small role in determining the reflection properties of the surface, and that the
surface would be well approximated by an effective C4 coefficient of 0.01 x C4Si . However,
we were concerned that, because the size of structures on the surface was comparable to
the reflection distance that the potential, a bulk material approximation might not be
appropriate, as described below in Section 5.2.



Figure 5-2: A multi-step etching process is used to create the periodically pillared surface.

In the first step, a photoresist is annealed by the interference fringes of a 2D optical lattice

above the surface. The pillars are spaced at 500 nm. The surface is then etched, leaving

the array of pillars shown in panel (a). Repeated applications of etchant gradually remove

material from the sides of the pillars and the bulk material below, shown in panels (b)-(d).

In panel (d), the pillars are - 1 pm tall and approximately 50 nm in diameter.



5.1.3 Laser ablated surfaces

A surface that balances the structure-less nature of the aerogel with an etching process

that removes material in the top - 1 pm of a bulk surface is the femptosecond laser

ablated surface made by Eric Mazur at Harvard University [164]. The process involves

the irradiation of a silicon surface submerged in water, creating a molten layer of silicon

that rapidly cools in a "ripple" pattern. As this process is repeated thousands of times,
the various ripples interfere, leaving behind pillars with a height of - 500 nm spaced at

- 500 nm. Unlike the periodically spaced pillars, however, these ablated surfaces do not

have a periodic structure. After an application of HF, the pillars have a diameter of roughly

200 nm, giving a density reduction of approximately 90%. It appears possible that a second

stage of oxidation and HF etching could result in a reduced pillar diameter.

This surface was not available when we began our work on reduced density quantum

reflection, but would make an interesting comparison to the periodically pillared surface.

5.1.4 Carbon films

A third technique for reducing the atom-surface interaction does not vary the density at all,
but instead uses an extremely thin film. Section 1.2.2 arrived at the density dependence

of C4 through a volume integral over the surface to a depth comparable to the quantum

reflection distance. If the surface is thinner than this distance, the interaction can be

substantially reduced. In fact, the actual form of the potential is changed; the potential for

a t thick film can be calculated as the difference between the potential of two semi infinite

slabs separated by t. As t becomes very small, the -C4/r 4 form of the potential becomes

-Cs/r 5 [120]. Going from bulk to a film 1 nm thick, the temperature for 90% quantum

reflection is increased by about a factor of 100.

We selected a carbon film with 2.5 nm thickness (Goodfellow part number C 004905).

Thinner films are available, but, according to the manufacturer, would be difficult to mount

with significant unsupported area. As it turns out, we were unable to mount even this film

owing to the fact that, once it was separated from the substrate in water, none of us could
see it to mount it on anything. We did not attempt to work with thicker carbon films as
the enhancement factor becomes less than a factor of 2 for a 10 nm thick surface.

5.1.5 Piezo-modulated silicon

Our final technique for reducing the atom-surface interaction was to temporally modulate
the position of the surface. Because the atoms in the experiment move with such low
velocity (mm/s) and the reflection process takes so long (10 ms), we thought it would be
possible to reduce the effect of the surface by having it moved out of its "reflecting" position



for the majority of the time. As long as the modulation was much faster than the atoms

propagation, the atoms should respond to the time-averaged potential, as is the case in the

TOP trap [137]. Piezoelectric elements can be modulated at 10 kHz, significantly faster

than the inverse reflection time of 100 Hz.

We selected a 2 mm pizeo cube which could be changed in length by - 2 pm with the

application of 100 V. To the front side, we mounted a small silicon wafer with vacuum

compatible epoxy. The assembly is visible in Figure 4-2. Once mounted, we found the

maximum amplitude of motion could only be reached at frequencies near 1 kHz, so, we

chose to modulate with a sine wave rather than a square wave. This resulted in an effective

halving of the atom-surface potential. Since the reflection probability scales with the fourth

root of the C4 coefficient, however, we were unable to detect any change in the reflection

probability with this technique.

5.2 What potential does an atom see?

Our most successful experiment with reduced density surfaces used the array of nano-pillars.

We observed, as is discussed below, an enhancement of the low velocity reflection probability

by a factor of 4 to 5. However, in order to match our observations with theory, we needed

to understand the interaction between the pillared structure and the atoms. The naive

assumption, that the reduction in density can be averaged and the C4 constant reduced

proportionally, breaks down when atoms can "see" the structure during reflection.

We create three models for generating the reflection probability: (1) the "average den-

sity" approach makes the assumption that an appropriate reduction of C4 is sufficient to

describe the structuring, (2) the "average potential" approach uses a spatial average of the

full 3D potential of a structured surface, and (3) the "average reflection" approach uses

a spatial average of the reflection probabilities calculated from different points above the

full 3D potential. In the end, we find that all three models provide similar results in the

experimentally accessible regime for the surface used in our experiments, and so the average

density approach is sufficient in the nano-kelvin regime.

This section discusses the various numerical techniques employed to calculate the atom-

surface interaction for a surface with structures of comparable size to the atomic wavelength.

Furthermore, we discuss the role that surface adatoms play in reducing the reflection prob-

ability.

5.2.1 Models of the pillared surface

The pillared surface comprises a wafer of single crystal silicon with a 1 Pim thick overlayer

of 50 nm diameter pillars spaced in a square array with side 500 nm, as pictured in Figure 5-



2. In each model, silicon substrate is included as a semi-infinite slab of silicon which

provides a potential Vbulk(z) = -C 4/(z + 1Mm) 4, although we find that the inclusion of this

potential has negligible effect on the reflection probability in the experimentally relevant

region. The pillars, while somewhat irregularly shaped, are assumed to be cylindrically

symmetric. All calculations are strongly motivated by the "source theory" of Ref. [118]

and a presentation made at the 2005 CAMS conference by J. Babb [10]. Source theory

approaches the calculation of the Casimir type forces between dielectrics without explicit

reference to the zero-point-field energy.

The average density approximation

The simple average density approximation is attractive for its intuitiveness: a reasonable

expression for the atom-surface interaction can be built up from atom-atom interactions

and an appropriate density [118] or, on the other hand, can be derived by starting with

the surface-surface interaction and diluting the surface down to a single atom [6]. However,
such a simple picture misses certain aspects of a bulk material: the source theory Milonni

and Shih [118] overestimates the interaction between an atom and a metal surface by -

15% [10]. Furthermore, when dealing with a "real" surface, the dielectric function has

typically been measured for bulk materials only and small structures may exhibit different

frequency dependent behavior [20, 131]. Nevertheless, when the structure of the surface is

mesoscopic, it is reasonable to assume that the material behaves as the bulk.

Also supporting the use of an average density to simulate the surface is the large de-

Broglie wavelength, AdB ~ 1 pm, which exceeds the spacing of the pillars. This is a major

difference from grazing incidence reflection where the deBroglie wavelength parallel to the

surface is quite small [166, 95, 94].

By scaling the C4 coefficient for silicon down by a factor of 100, we anticipate improved

reflection as shown in Figure 5-4 with a dotted line. The original reflection probability

calculation for silicon is shown as a solid line.

The average potential approximation

A more sophisticated treatment of a structured surface would generate an atom-surface

potential with structure at length scales comparable to the scale of the structure. For our

periodic array of nano-pillars, we expect a Casimir-Polder type potential modulated with

some "egg-crate" function at distances less than - 1 pm from the surface. The potential

will be stronger directly above a pillar, would be substantially modulated at distances
comparable to the pillar spacing and strongly modulated at distances comparable to the
pillar size. Because the pillar spacing is 500 nm and we expect reflection to occur near
1 pm, this structure may be relevant.



To generate the full 3D potential of the structured surface, we first calculated the poten-

tial above a single pillar by integrating the atom-atom interaction over the region containing

matter. This integrated potential, with the limits taken to infinity, was scaled to match the

Casimir-Polder potential. With the potential of a single pillar, the full potential at a point

above the surface was "built up" by summing the contributions from all pillars within range

of the point. The relevant lines of Mathematica code are included in Appendix D.

The average potential was calculated by spatially averaging the potential. Twenty-

one points inside 1/ 8th of a unit cell (the region bounded by 4 neighboring pillars) were

chosen and appropriately weighted to give an average potential at atom-surface separations

from 0.1 - 7 pm above the pillared surface, that is, in the relevant region. The potentials

calculated by the average potential and the average density approximation are shown in

Figure 5-3.

The two potentials are indistinguishable (< 5% difference) above 5 pm from the surface,

but differ by a factor of 2 at 300 nm from the surface. Additionally, the pillar potential

appears softer, "turning on" - 10% further away from the surface. This is because at a

distance a > r > rpillar, the pillar radius, from the surface with pillars spaced at a, roughly

r2/a 2 of the incident atoms are strongly interacting with the full density silicon in the pillar.

Other atoms see the effect of the surface "turning off" gradually. This is why at distances

beyond a micron the average potential matches the reduced density potential, but the two

potentials diverge at short range. When r < rpillar, the fraction of atoms still interacting

strongly with the pillars is roughly r2pillar/a 2, and we again expect the average potential to

be close to the reduced density potential. We could not numerically check this limit due to

computing power constraints.

The average potential was fit with a polynomial expression and the reflection probability

was calculated from this polynomial fit. The reflection probability for the average potential

model is shown in Figure 5-4 with a dashed line. The observed softening of the potential

does not significantly affect the predicted reflection from the average potential, which is

almost identical to that from the average density surface.

The average reflection approximation

The final technique for calculating the reflection probability from the structured surface

uses the numerically calculated line potentials to calculate the reflection probability before

spatially averaging. This model relies on an Eikonal approximation, i.e. we assume that

the particle travels along a line perpendicular to the surface and ignore any initial parallel

velocity or parallel accelerations induced by the modulation of the atom-surface potential.

Again, twenty-one points were selected and the potential calculated above these points. A

fitting polynomial was generated for each, shown in Figure 5-3.
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Figure 5-3: Line potentials (multiple red and blue lines), calculated as described in the text,
above various points on the pillared surface show strong dependence on the structure of the
surface. The reflection probability for each line potential is shown in the inset. The spatial
average of these potentials (thick, black line) is used to calculate reflection probability in
the "average potential" model. The "average density" model (thick, dotted black line) is
indistinguishable from the other models at distances greater than a few microns. Finally,
the purely retarded potential of a solid surface is shown (thick dash-dotted black line).
Inset: The reflection probability is calculated from each of the line potentials (dotted lines).
The solid line is the prediction of the average density model.

The general trend is that stronger potentials are measured above points close to a pillar.

While we were unable to accurately calculate the potential closer than - 100 nm from the

surface, the potential just above the pillar (the uppermost thin line) appears to converge

to the purely retarded potential of a solid silicon surface, shown as a thick dot-dashed line,
as expected.

The reflection calculated from each of these line potentials varied substantially in mag-

nitude and velocity dependence, shown by the dotted lines in the inset of Figure 5-3. The

trend is for higher reflection probability to be observed for line potentials close to the pillar,
but at no point is the reflection as strong as for the reduced density approximation, shown

as the black solid line. At worst, in between the pillars, the reflection probability is worse
than for the solid silicon surface above 10 mm/s. The softening of the potential discussed
in the previous Section has become crucial in this model; when the potential levels off away
from the surface, the breakdown of the WKB approximation is no longer severe and atoms
are smoothly accelerated into the surface.

The reflection probabilities for the line potentials were spatially averaged. The reflection
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Figure 5-4: The predicted reflection probabilities are shown for four model potentials as
described in the text. The solid, dotted, dashed and dot-dashed lines correspond to the (1)
the solid silicon surface, (2) the average density model, (3) average potential model, and
(4) average reflection model of the pillared surface.

probability for the average reflection model is shown in Figure 5-4 with a dot-dashed line.

Unlike the average potential model, the average reflection model predicts a strong effect due

to the structure of the surface. This model, however, does not account for the transverse

coherence or transverse structure in the wavefunction, and is unlikely to give a good result

for ultracold atoms with large AdB.

Comparison of models

The numerical techniques for calculating the reflection probability were compared for the

limiting case of pillars spaces in a square array with spacing roughly equal to the diameter.

This corresponds to the case of a solid surface. All three models predict the same behavior

for the solid silicon surface as expected.

For the pillared surface, the three approximations predict enhancement of the reflection

probability, shown in Figure 5-4. The average density and average potential model predict

very similar results Only at higher velocity, around 70 mm/s do they differ by as much as

a factor of 2; only when the badlands region pushes further in toward the surface, do the

small differences in the two potentials become relevant. As such, we do not expect that our

experiment will be able to distinguish between the these two approximations. By increasing

the pillar separation, possibly by as little as a factor of 2, a repeated experiment would be

able to distinguish between these models.

The average reflection model, however, predicts that the modulated potential will limit

the enhancement of the reflection probability for surfaces with structures whose spacing is

comparable to the point of reflection as predicted by the badlands region. A comparison



between two similar average density surfaces with different spacings, such as a pillared

structure and an aerogel, would test the applicability of this model to the reflection of

Bose-Einstein condensates.

5.2.2 Spurious interactions

Much ado has been made in recent years about the effect of conducting and insulating

surfaces near Bose-Einstein condensates. Concern surrounds two major areas: the effect of

stray oscillating fields (primarily rf fields) associated with Johnson noise [71, 100, 83, 69,

104, 145] and stray static fields associated with adsorbed atoms (adatoms) on surfaces [69,
113, 128]. Both effects are deleterious to precision measurements with BEC.

In conducting materials, Johnson noise is present due to the thermal motion of electrons

which generates short range stray magnetic fields. Stray oscillating fields limit the lifetime

of atoms in magnetic traps by coupling trappable states to un-trappable states, similar to

the way forced evaporative cooling proceeds as discussed in Section 2.1.3. In contrast to

rf cooling fields, stray rf fields are not spectrally narrow and affect all atoms in the trap,
leading to an exponential decay of the trapped population. At distances beyond 100 pm,
the losses due to the surface are minor compared to background scattering associated with

our standard UHV conditions. Near a conducting surface, however, these effects can dom-

inate, dropping the lifetime by several orders of magnitude [100, 83, 69, 104]. Theoretical

treatments of the problem reveal that the skin depth of the material in question sets a

length scale on which particularly large interactions can occur [71, 145].

For our quantum reflection experiments, the effect of Johnson noise is negligble; working

with dielectric surfaces (which are poor conductors) as opposed to metal surfaces strongly

suppress the effect of Johnson noise. In two experiments, background gas limited lifetimes

were observed at distances down to 2.5 pm [69, 104]. Lin, et.al. measured an abrupt

reduction in the trap lifetime from 3.5 s to - 150 ms when a cold thermal cloud of atoms

was brought to 1 pm away from a silicon surface, however, the effect was attributed to

simple surface evaporation rather than fluctuating fields [104]. The theoretical treatment

of a glass surface by Henkel, et.al finds that the spin flip loss rate due to Johnson noise is

on the order of 10- 18 s- 1 at a distance of 1 pm from the surface, far below the observed

background gas loss rate in our trap [71]. We therefore feel confident that Johnson noise

plays an insignificant role in our system.

Adatoms exist on all surfaces. The classical interaction between atoms and surfaces leads
to incident atoms landing in bound states of the van der Waals potential as discussed in

Section 3.2. These adatoms comprise a fractional monolayer on the surface and could safely

be ignored were it not for the fact that the electronic structure of atoms is altered in the

presence of the surface [156]. The atom can be partially ionized, leading to an electronic



dipole on the surface. The degree of ionization can be approximated by comparing the

ionization energy of the surface (work function) to the ionization energy of the atom. Since

ionization energies are smallest for alkali atoms, the dominant contribution to the adatom

field will be alkali adsorbates on the surface [113].

The static fields associated with these adatoms are more relevant for our quantum

reflection work. Rather than affecting the lifetime of trapped atoms, these fields combine

with the atom-surface potential to determine the reflection properties of the surface. For a

uniform distribution of adatoms, the electric field would be zero above a large surface. In

the case where the distribution of adatoms is localized, as might be the case if the adatoms

were deposited primarily by slamming BECs against the surface, the electric field falls off

with a power law dependence determined by the exact distribution of adatoms. The field of

a localized point distribution would fall off as 1/r 3, whereas a line of dipoles would fall off

as 1/r2 . A careful study of the adatom potential in reference [128] found that the electric

field fell off with a power of -2 to -2.3.

The potential of this adatom field and the Casimir-Polder potential, therefore, have the

same dependence on the atom surface separation; the electric field associated with adatoms

was found to fall off as 1/r 2 giving a potential Vadatom = -(Ca/2)Eadatom(r) 2 oC Cadatom/r 4 [113].

This adatom potential would be indistinguishable from the atom-surface potential at large

distances, and must be measured using alternative techniques [128]. Empirically, we find

an upper bound on Cadatom ~ C4 for our experiments with silicon surfaces [132].

Finally, we note that static patch charges will exhibit stronger interactions than an

identical distribution of electric dipoles due to adatoms. A surface charge will create a

uniform electric field, an a linear (point) distribution of patch charges creates an electric

field that falls off as 1/r (1/r 2 ). The potential for the line distribution Vpatch OC Cpatch/r 2,

which, as discussed in Section 3.2 will not quantum reflect atoms at all. Strongly insulating

surfaces which can support large patch charges without dissipation, like silica aerogels, will

not display quantum reflection, and this is most likely the reason why we never observe

quantum reflection from aerogels2

5.3 Experimental results

The published experimental results of our work are included in Appendix C.

2When we first became aware of this problem, we tried to establish the magnitude of the static charge
on our aerogel surfaces. When removed from their mounts, the static charge was sufficient to firmly attach

the aerogels worked with in this experiment to a gloved finger. Therefore, in addition to having stronger

dependence on r, it seems that the magnitude of the static charge was also quite large.
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Figure 5-5: The reflection probability vs. incident velocity for atoms reflecting off solid and
pillared silicon surfaces. All theory curves are described in the text.

5.3.1 Reflection probability

Figure 5-5 is the major result of Ref. [132], reproduced here to show how the models

discussed above apply to our experiment. In addition to the data of Ref. [133] and Figure 4-

4, data collected by the same technique but for the pillared surface pictured in Figure 5-2

are shown. To extend the experimental velocity from 0.5 mm/s to 25 mm/s, we used a

loose trap with frequencies 27r x (2.0, 2.5, 8.2) Hz and a tight trap with trap frequencies

2r x (4.2,5.0, 8.2) Hz. The data clearly show the enhanced reflection probability from the

pillared silicon surface.

We present several theory curves generated by the models discussed in Section 5.2. First,
the dot-dashed curves are the predictions for solid silicon and for the reduced density model.

Both predict significantly higher reflection probability that we observe. The dashed and

dotted curves show the predictions of the average potential and average reflection models

respectively. The average reflection model predicts lower reflection than we observe at

high velocity. Because there are no simple mechanisms for the model to underestimate the

reflection probability of the surface, this suggests that the premise of the model, that atoms

sample the potential in a very small range about their trajectory, is incorrect.

The solid curves use the same model as the dot-dashed curves, but have C4 adjusted

to fit the data at high velocity. This corresponds to roughly doubling the expected value

of C4. This is justified by the presence of sodium adatoms on the surface as discussed in

Section 5.2.2 and corresponds to a stray field of 10 V/cm (70 V/cm) for the pillared (solid)



surface.

Still apparent in the enhanced reflection data is the deviation at the lowest velocities

from the expected threshold behavior. This discrepancy is the topic of Chapter 6.



Chapter 6

Interaction Effects in Quantum

Reflection

This chapter supplements work reported in the following publication, included in Appendix C:

* T. A. Pasquini, M. Saba, G. -B. Jo, Y. Shin, D. E. Pritchard, and W. Ketterle, "Low-velocity

quantum reflection of Bose-Einstein condensates", PRL 97, 093201 (2006).

In our first experiment on quantum reflection, the three lowest velocity data points we

collected showed a strong deviation from the anticipated behavior, as shown in Figure 5-5.

Rather than rising to - 50% reflection probability as predicted, the data showed saturation

near 10%. We initially attributed the effect to "collective excitations", "acceleration due to

the harmonic trapping potential during the collision", and "mean-field interactions [via] the

local speed of sound" [133]. In the end, all three of these play an important role in the details

of reflection, but in a way that was difficult to understand at first. As we collected more

data on reduced density surfaces, we also developed a more complete picture of quantum

reflection of condensates as opposed to the well-developed theory quantum reflection of

atoms.

This Chapter discusses BEC III's work in identifying and clarifying the role of mean-

field interactions on quantum reflection of atoms from surfaces. Mean-field interactions are

accounted for as an additional potential seen by atoms during quantum reflection. Explicitly

including this potential predicts the saturation velocity and reflection probability accurately.

6.1 The failure of simple models

Excitations alone cannot describe the decreased reflection probability. Numeric simulations

of reflecting condensates show that excitations do occur during the reflection process and
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Figure 6-1: Predicted reflection probability when a "speed of sound" velocity is added in
quadrature to the center of mass velocity. The solid, dashed and dotted curves are shown
for a reduced density surface for the 0, 1.0 mm/s, and 1.7 mm/s speed of sound. These
values correspond to a non-interacting BEC and an upper and lower limit on the speed of
sound in our condensate.

that these excitations become most prominent when the incident velocity is low [162]. In

the ideal case, a reflected BEC would have the same spatial profile as the incident BEC, but

would have a reduced density. Excitations, on the other hand, re-distribute the incident

BEC wavefunction so that there are large regions of reduced density far from the center

of mass of the condensate. It was suggested that these regions of low density may go

undetected and could account for the observed saturation at low velocity. Accounting for

the severity of the saturation, however, required that the detection threshold be set far

below our experimental threshold.

Neither can sum of the center of mass energy and the energy of the local speed of sound

account for the observed saturation. In this model, the mean-field potential energy of the

condensate, which must fall to zero at the surface (along with the condensate density) could

accelerate the atoms into the Casimir-Polder potential, adding the speed of sound to any

center of mass velocity. These velocities would, then, add in quadrature giving a non-zero

incident velocity even in the absence of a center of mass velocity. This model predicts a less

dramatic onset of any saturation effect than we observe. Figure 6-1 shows how this model

varies for increasing values of the speed of sound.

6.2 An improved model for mean-field effects

Our improved model for including the effect of mean-field interactions is simple: quantum

reflection is well described by a local process comprising single atoms interacting with a
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Figure 6-2: The mean field model for quantum reflection of condensates. (a) The condensate
and harmonic trap provide a repulsive mean-field energy which is constant far from the
surface and, within the healing length, falls to zero (dashed curve). This potential combines
with the Casimir-Polder potential (dotted) to create the composite potential (solid curve)
used to model quantum reflection of condensates. (b) The reflection probabilities from the
same potentials at low velocity.

potential. To account for the effect of the trap and the presence of other atoms, the Gross-

Pitaevskii equation is solved for the reflecting condensate, and the combined potential of

the trap, the atoms, and the surface are summed to give the reflection potential for the

atoms. Constructing such a model is made difficult, however, by the interaction between

the reflection probability and the density in the trap at any point in time.

To create a tractable model which maintaining the relevant physics, we assume that the

effect of the condensate can be accounted for by including a potential which is constant

away from the surface and falls to zero at the surface over the healing length, ý, as though

a hard wall were present at the surface position, as shown in Figure 6-2. The expression

used is n(x) = no[tanh x/iV]2, where n(x) and (no) the density and peak density of the

condensate [136]. The combined potential differs only by an offset from the Casimir-Polder

potential for distances z << and z »> , but is dominated by the mean field potential for

z _ (. In this region, the potential is "softened" the edge of the condensate.

The effect on quantum reflection probabilities of including such a potential is dramatic.

Regardless of the density used to determine the healing length, we find that near threshold

(zero velocity), the reflection probability saturates and falls sharply before exhibiting the

characteristic rise to unity reflection at zero velocity. We can understand this effect by



considering how the point of quantum reflection changes with incident velocity. At high

velocity, the badlands is strongly peaked close to the surface, where the effect of the mean-

field energy is small. Here, we recover the long healing length limit, and the reflection

behaves as though the mean-field energy is just added to the incoming kinetic energy. As

the velocity is reduced, the point of reflection moves further away from the surface and enters

the region where the potential has been strongly influenced by the edge of the condensate.

The gentle acceleration due to the edge of the condensate diminishes the effect of the abrupt

acceleration due to the Casimir-Polder, causing the saturation and decline of the reflection

probability. The rise to unity reflection at very low velocity is an artifact of the exact shape

of the condensate; it corresponds to the badlands function being highly peaked inside the

condensate.

If the density of the condensate could be further reduced, there would be two effects: (1)
the healing length of the condensate becomes large and (2) the mean-field energy becomes

small. The first change would reduce the distortion of the atom-surface potential in the

region of reflection in our model. Instead of influencing the atoms during reflection, the

condensate would pre-accelerate the atoms toward the surface as discussed in Section 6.1.

The second effect would reduce the pre-acceleration to a negligible value, and explains why

a similar effect is not observed with thermal beams at grazing incidence, where densities

are much lower.

This simple model also recovers threshold behavior in the high density limit when the

healing length is shorter than the reflection distance. This, however, is a failure of the

model to account for the presence of the atom-surface potential; clearly the condensate

density cannot remain unaffected in the presence of a strong absorber. It is expected that

higher densities should lead to (1) further suppression of the maximum reflection coefficient

and (2) a commensurate increase in the velocity where saturation occurs. This is the likely

reason why we were unable to observe quantum reflection of atoms confined in the optical

dipole trap, as described in Section 4.2.

6.3 Experimental results

The published experimental results of our work are included in Appendix C.

6.3.1 Reflection probability

Figure 6-3 is the major result of Ref. [132], reproduced here to show how the mean-field

interaction model defines quantum reflection of BEC. Using the measured density to calcu-

late the mean-field potential and healing length, and adjusting the value of C4 to account

for adsorbed atoms (see Section 5.2.2) and to match the well-behaved data at high velocity,
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Figure 6-3: The reflection probability vs. incident velocity for atoms reflecting off solid
and pillared silicon surfaces. The solid lines are a single parameter (the stray electric field
gradient) fit to the data.

our simple model predicts the saturation of the reflection probability at very low velocities,

as shown in Figure 6-3.

It is unfortunate that the experiment is limited to the predicted saturation region and

does not adequately probe the predicted fall to 10% reflection probability that occurs near

0.1 mm/s.

6.3.2 Excitations during reflection

A condensate in the ground state of a harmonic trap has a well-defined, symmetric profile

when imaged. Apart from the fundamental dipole oscillation, excitations to the condensate

tend to induce density fluctuations. In collecting images of reflected condensates, as shown

in Figure 6-4, it is clear that strong excitations are present in the reflected cloud. Quantum

reflection of atoms is an abrupt process, resulting from the breakdown of the semiclassical

treatment of the atom wavefunction. At the point of reflection, the reflected component

of the atomic wavefunction interferes with the incident component to create strong density

oscillations. This alone, however, does not lead to the excitations. Excitations require

interactions between atoms to give a density dependent term in the Schrddinger equation,
as discussed in Section 1.1.

There are two types of excitations present in our system: single particle excitations

evidenced by the appearance of a scattering halo and collective excitations evidenced by a

I I I I I



Figure 6-4: As the incident velocity is decreased, the reflected condensate becomes in-
creasingly excited, as seen in panel (a)-(c). Panels (e) and (f) show the presence
of the s-wave scattering halo. A movie showing reflection at 3 mm/s is available at
http:/cua.mit.edu/ketterle_group/Animationfolder/QRMovie.wmv.

distortion of the reflected cloud. The single particle excitations are the result of individual

atoms within the incident and reflecting condensate colliding and re-distributing their mo-

mentum [59, 261. Conservation of energy and momentum in the two body collision require

that atoms retain their initial energy and magnitude of momentum in the center of mass

frame, but the direction of motion relative to the center of mass may take any direction. In

time-of-flight or after an appropriate hold time, the scattered atoms lie on a spherical shell

that appears like a halo when imaged, as in Figure 6-4e,f. This halo will be visible whenever

the two clouds collide at sufficiently high density, that is, when the reflection probability

is high. These excitations are not predicted by the Gross-Pitaevskii equation which de-

scribes only macroscopically occupied states. The re-introduction of these interactions can

be handled by simulating quantum fluctuations as classical fluctuations on the initial state

of the system via the truncated Wigner method [123, 124]. Collisions between atoms are

then accounted for as four-wave mixing between the highly occupied modes of the colliding

condensates and the quantum fluctuations. The scattering halos that we observe during

reflection are well described in this way, as demonstrated in the simulations of Ref. [159].

The collective excitations we observe are more interesting, and have inspired extended

numeric simulations. The "interferential disruption" is described in Ref. [162, 159j. When

interference between incoming and reflected atoms is established, the density of the cloud is

forced far from equilibrium. Halfway through the reflection, during the time of maximum
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overlap, the average density is increased by a factor of 1 + R, where R is the reflection

probability. Additionally, interference fringes create regions of constructive and destructive

interference, spaced at 1/k, where k is the incident wavevector, further increasing the den-

sity in the regions of constructive interference, creating a series of "pancakes" parallel to

the surface. This increased density leads to out of equilibrium mean-field interactions in

the directions parallel to the surface. The condensate relaxes by expanding each pancake

radially, in a sort of quadrupole oscillation. The interplay between (1) the constructive

interference and (2) the resulting quadrupole oscillation leads to the formation of solitons

and vortex rings. When the interference is long lived at low velocity, the quadrupole os-

cillation significantly re-distributes the condensate radially. At high velocity, the collective

excitations are doubly suppressed: reduced reflected condensates mean weaker interference

and high velocity means shorter time for the quadrupole oscillation to act. The collec-

tive excitations due to the density modulation during quantum reflection are similar to the

excitations caused by accelerating an optical lattice through a condensate [161, 160, 34].
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Chapter 7

Conclusion

7.1 Applications of quantum reflection

In recent years, encouraging work with high probability quantum reflection has led to spec-

ulation on useful applications of the effect. This section will review several proposals and

explain how our work, including some unpublished results, might apply. The proposals are

divided between three categories: trapping atoms, focusing and manipulating atom waves,
and fundamental science.

7.1.1 Focusing atomic beams

As a technology driven sub-field, atom optics pursues the tools of optics (lenses, mirrors,
beam splitters, etc.) for use with matter waves. While evanescent waves [87, 1] and per-

manently magnetized materials [74, 147] surpass solid surfaces as atom mirrors and ideal

beam splitters are currently realized in both confined [82, 169] and free propagating [186]

geometries, there is no equivalent of an ideal lens for atoms or atomic beams. The clos-

est realization is a focusing Fresnel zone plate which works by diffraction [21, 40]. In this

experiment, an atomic beam was partially focused from a 400 Im waist to a 25 pm waist

and increased in intensity by a factor of 4. Unfortunately, the majority of the beam was

unaffected by the zone plate, so the focused beam rested atop a plateau of unfocused atoms.

A second approach takes advantage of the weak interaction between He and monolithic Si,
which can be flexed by large electric fields, to quantum reflect helium into a partially focused

beam [75]. Strong geometrical abberations limit the usefulness of such a system.

Quantum reflection finds a suggested use in two schemes for focusing atoms. In the first,
dubbed the "atomic nanoscope", a transmissive, focusing mirror element is constructed
from a conical hole in a silicon wafer [96]. A collimated atomic beam incident on the hole
is partially reflected (ridges along the sides of the conical hole improve the reflectivity) and
focused. While the beam intensity is greatly reduced, the brightness may still be increased
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by the substantial focusing. A second scheme uses reflective Fresnel zone plates as a focusing

element [84]. Simulations have demonstrated an increase in density of an order of magnitude

when an appropriately designed zone plate is used in place of the plain or pillared surface

in the normal incidence quantum reflection experiments described above. Both of these

proposals are fairly simple extensions of previous work; more attention will probably be

paid to the Kouznetsov proposal because it is designed to work with collimated atomic

beams rather than with a condensate or atom laser [96].

7.1.2 Trapping of ultracold atoms

One attractive and widely touted use for quantum reflection is as universal confinement for

ultracold atoms [86]. Some studies of quantum reflection have actually relied on lifetime

measurements in such traps to determine the reflection probability [41, 193, 133]. Such a

trap would be useful for precision measurements because, the absence of confining lasers and

magnetic fields eliminates the fluctuations in these fields. Additionally, because the effective

confining potential is very short range, affecting only atoms within a few microns of the walls,

the atoms would behave as in a freely propagating state. Because the reflection probability

approaches unity as the velocity of atoms approaches zero, a quantum reflection trap would

be well suited to confining only the coldest of atomic samples. This too could be useful,

for the predicted lifetime of an atom in the trap is proportional to its velocity; the sample

would be effectively cooled by surface evaporation throughout the experiment [107, 69].

The publication of our result on normal incidence quantum reflection has sparked a series

of papers by H. Friedrich [85, 108] discussing the physics of such traps. A similar proposal

has even been suggested for the confinement of ultracold anti-hydrogen [184]. The primary

finding of this work is an effective 100 fold improvement in the surviving atom fraction (to

approximately 50%) for times - 400 ms when quantum reflection from surfaces provides

confinement. This is comparable to what was observed in our "half-harmonic" quantum

reflection trap reported in Ref. [133]. Confinement of atoms by quantum reflection against

a gravitational field, however, may prove impossible given the strength of gravity [93]; it

may be necessary to work in microgravity environments [183].

One final proposal suggests the use of quantum reflection traps to create new geometries

for confining condensates [109]. Here, the 1D box potential of Refs. [85, 108] is extended to

2D in a square and circular trap. Both traps behave similarly to the 1D box potential.

Our work with quantum reflection traps (see Section 4.4.2) continued when we began

using highly reflective structured surfaces. However, we did not observe a corresponding

dramatic increase in the lifetime of atoms held against a structured surface. Rather, lifetimes

similar to the plain surface trap were preliminarily observed. It is possible that our results

are limited by the experimental technique: i.e. excitations may result due to the method
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for bringing the atoms in contact with the surface.

7.1.3 Fundamental condensate physics

Condensates in dilute gases, for all of the attention directed toward them in the decade

following their first observation, are still being studied for their basic properties. Quantum

reflection of condensates has been used as a platform to study excitations [161, 162, 159] and

vortices [105]. These works are, at this point, mostly about testing the limits of numerical

simulations to explain the "messy" details of quantum reflection with condensates. In this

regard, more detailed experimental studies of quantum reflection will encourage further

developments in the field of simulations. Furthermore, as quantum reflection develops into

useable technology, such simulations may reveal unrealized applications. Finally, as was

demonstrated by our work [132], the role of mean-field interactions in quantum reflection

are not well understood, and an encompassing theory is still wanting.

7.2 The future of the Science Chamber

Immediately following the achievement of Bose-Einstein condensation in 1995 and again

when the Nobel Prize was awarded in 2001, the field of cold atoms drew enormous atten-

tion for its promise of controlled interactions and novel physics. In the intervening years,

experiments at MIT and around the globe have helped to keep that promise. Quantum

reflection is a beautiful effect with the promise of impacting the manipulation and storage

of ultracold atoms. As such, interest in quantum reflection has grown in part as a result

of the first experimental observations with alkali atoms. As has been shown in this thesis,

BEC offers a new way of studying the effect and provides new insight into the line between

mean-field physics and single-atom effects. This work has also uncovered some of the lim-

itations of quantum reflection for confining and manipulating ultracold atoms; quantum

reflection may be useful for particular applications where the lowest of temperatures and

the elimination of all fluctuating fields are necessary, but its usefulness for universal storage

is severely limited.

The Science Chamber was designed as a scouting experiment: as new opportunities

presented themselves, it served as a quick way to explore possibilities. In the years I've

spent at MIT, the machine has undergone many changes and I've had the opportunity to

be involved with many subfields of cold atom physics. Over the last year, we've begun

a major effort to rebuild the apparatus to join in a new paradigm of cold atom physics,
the simulation of condensed matter systems. It is a very exciting time for BEC III as the

finishing touches are put on the experiment and work can begin with the optical lattices and

Feshbach resonances that have become, in the last 5 years, the new workhorses of atomic
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physics.

When I arrived at MIT, there was a well-built experiment that allowed BEC III to

contribute to the field unhindered for many years. I hope that as I move forward, the new

foundation being laid provides for another era of contributions from the Science Chamber.

108



Appendix A

Cooling Bose-Einstein condensates

below 500 picokelvin

A. E. Leanhardt, T. A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D.

Kielpinski, D. E. Pritchard, and W. Ketterle

"Cooling Bose-Einstein condensates below 500 picokelvin,"

Science 301, 1513 (2003).
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Cooling Bose-Einstein
Condensates Below 500 Picokelvin
A. E. Leanhardt,* T. A. Pasquini, M. Saba, A. Schirotzek, Y. Shin,

D. Kielpinski, D. E. Pritchard, W. Ketterle

Spin-polarized gaseous Bose-Einstein condensates were confined by a combi-
nation of gravitational and magnetic forces. The partially condensed atomic
vapors were adiabatically decompressed by weakening the gravito-magnetic
trap to a mean frequency of 1 hertz, then evaporatively reduced in size to 2500
atoms. This lowered the peak condensate density to 5 X 1010 atoms per cubic
centimeter and cooled the entire cloud in all three dimensions to a kinetic
temperature of 450 ± 80 picokelvin. Such spin-polarized, dilute, and ultracold
gases are important for spectroscopy, metrology, and atom optics.

The pursuit of lower temperatures is motivat-
ed by the quest to observe phenomena that
occur on very low energy scales, in particu-
lar, phase transitions to new forms of matter.
The achievement of temperatures near 1 K in
solids and in liquids led to the discoveries of
superconductivity (1) and superfluidity (2),
respectively. The advent of laser cooling re-
sulted in microkelvin temperature atomic va-
pors (3-5), subsequently cooled to nano-
kelvin temperatures by evaporative cooling to
form dilute Bose-Einstein condensates (6, 7)
and quantum degenerate Fermi gases (8).
Collectively, these low-temperature systems
have a host of applications, including super-
conducting quantum interference devices
(SQUIDs) (9), superfluid gyroscopes (10,
11), and atomic clocks (12).

Temperature is a quantity that parameter-
izes how energy is distributed across the
available states of a system, and effective
temperatures can be defined for decoupled
degrees of freedom or subsets of particles.
For example, nuclear spins isolated from the
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kinetic motion of their respective atoms have
been cooled by adiabatic demagnetization to
an effective temperature of 280 pK (13). Spin
ensembles have a finite number of available
states, such that a spin-polarized sample, as in
our work, would be characterized by zero
effective temperature. In contrast, the motion
of free particles is subject to a continuum of
states, and the kinetic temperature of an en-
semble can only asymptotically approach ab-
solute zero.

Effective temperatures in atomic vapors
are defined by the widths of velocity distri-
butions, which can be much smaller than the
mean velocity of the sample. Raman cooling
(14, 15) and velocity-selective coherent pop-
ulation trapping (VSCPT) (16) have generat-
ed velocity distributions with very narrow
peaks, corresponding to nanokelvin and pi-
cokelvin effective temperatures. However,
these temperatures were associated with the
motion of only a subset of the atoms in the
cloud and/or with atomic motion in only one
dimension.

For trapped, partially condensed atomic
vapors, the condensate fraction has zero en-
tropy and the kinetic temperature of the sam-
ple is determined by the velocity distribution
of the thermal (noncondensed) component.
When released, the condensate fraction ex-
pands more slowly than the thermal compo-
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nent and has been characterized by pi-
cokelvin effective temperatures for anisotro-
pic (17) and noninteracting (18) gases.

Cooling the atomic motion of entire ensem-
bles in all three dimensions has proven difficult.
To date, kinetic temperatures of a few hundred
nanokelvin have been achieved with adiabatic
and optical cooling (19, 20), and evaporative
cooling techniques have produced condensates
with temperatures of 3 nK (21). By adiabatic
expansion and subsequent evaporation, we
have cooled partially condensed atomic va-
pors to picokelvin kinetic temperatures.

Our thermometry is calibrated by the
Bose-Einstein condensation (BEC) phase
transition temperature, T, which in the ther-
modynamic limit for a harmonically trapped
ideal Bose gas is (22)

kBTe = JiO)%( 3)) 0.94h(7N 1

where kB is Boltzmann's constant, h is Planck's
constant h divided by 21T, ý(n) is the Riemann
Zeta function, i = (wxyoz) 1/3 is the geometric
mean of the harmonic trap frequencies, and N is
the total number of atoms, both condensed and
noncondensed. Thus, the atom number and the
trap frequencies set an upper limit for the tem-
perature of a confined Bose-Einstein conden-
sate. In our work, adiabatically weakening the
trapping potential to a mean frequency of
S= 2rr x (1.12 ± 0.08) Hz guaranteed
that partially condensed atomic vapors with
N - 8000 atoms had picokelvin tempera-
tures (T, - 1 nK).

Bose-Einstein condensates containing more
than 107 23Na atoms were created in the weak
field seeking IF = 1, mF = -1) state in a
magnetic trap, captured in the focus of an op-
tical tweezers laser beam, and transferred into
an auxiliary "science" chamber as described in
(23). In the science chamber, condensates con-
taining 2 x 106 to 3 x 106 atoms were trans-
ferred from the optical tweezers into a gravito-
magnetic trap (Fig. 1A). A small coil carrying
current Is generated a vertical bias field Bz and
supported the condensates against gravity with
a vertical magnetic field gradient, Bz = 2 mg/
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Ix - 8 G/cm, where m is the atomic mass, g is
the gravitational acceleration, and iB is the
Bohr magneton. Additional control over Bz and
B' was provided by two external coils carrying
independent currents I, and IL. Weak curva-
ture, B-, to the vertical bias field created stable
vertical confinement such that a harmonic re-
storing force was provided magnetically (grav-
itationally) for downward (upward) vertical dis-
placements (Fig. IB). A radial field gradient, B,
= aB, / ar = -B)/2, was also present and added
in quadrature with B_ to provide harmonic ra-
dial confinement with a restoring force propor-
tional to (B')2/Bz (Fig. IC). The trapping poten-
tial does not have fundamental radial asymme-
tries as do previously demonstrated loffe-Prit-
chard magnetic traps (17, 24, 25). In principle,
stable three-dimensional confinement is possi-
ble above a single coil in the presence of gravity
without the aid of external bias fields
or gradients.

For typical loading parameters-I s = 340
mA, Iu = 5.5 A, and IL = 0-the gravito-
magnetic trap was spherically symmetric,
with trap frequencies ox -" y - t - 27r x
8 Hz. Condensates loaded into the gravito-
magnetic trap from the optical tweezers were
held for 5 s to allow for the damping of
excitations. The resulting partially condensed
clouds had -5 x 105 atoms and a BEC
transition temperature T, = 30 nK. Through-
out our work, the atomic vapor maintained a
temperature T such that 0.5 < T/T, < 1.

Further cooling was accomplished by adi-
abatically decompressing the trapping poten-
tial in two 5 s stages, with a 5 s delay in
between to allow excitations to damp. In the
first stage, the vertical frequency was reduced
to wO = 27r X (1.81 ± 0.05) Hz by simulta-
neously raising currents IL and Iu by identical
amounts and lowering the current I s by a
factor of 10. This transferred the dominant
source of magnetic field gradient from the
small coil to the external coils, with the re-
maining vertical curvature still due to the
reduced I s . In the second stage, the radial
frequencies were reduced to w, = 21r x
(0.65 ± 0.05) Hz and oy = 2,tr X (1.2 ± 0.1)
Hz by raising IL and lowering Iu by identical
amounts. The vertical magnetic field gradient
and curvature remained constant, but the ver-
tical bias field, Bz, increased. This reduced
the radial confinement due to the scaling w, oc
BI / B'/2 (24, 25).

For currents I s = 34 mA, Iu = 14 A, and
IL = 44 A, the final gravito-magnetic trap
had a measured mean frequency C = 27rr X
(1.12 ± 0.08) Hz and axial bias field Bz = 17
G. The residual anharmonicities of the trap-
ping potential were small, with Aw/w = 0.1
for 500 Ipm displacements from the trap cen-
ter. Further radial decompression was not
possible because of a finite trap depth (Fig.
IC) and sensitivity of trap stability to milli-
gauss level radial bias fields.

A

U

B V(z)

z

C V(r)

-r

Fig. 1. Gravito-magnetic trap. (A) Bose-Einstein
condensates were levitated against gravity -5
mm above a 1-cm diameter, 25-turn coil
mounted inside the ultrahigh vacuum chamber
running current Is. Two 10-cm diameter, 20-
turn coils were mounted outside the vacuum
chamber and were supplied individually with
currents Iu and I,. The vertical separation be-
tween the large coils was 10 cm. The 1-cm
diameter coil was mounted radially off-axis
with respect to the pair of 10-cm diameter coils
by -1 cm. This broke the cylindrical symmetry
of the trapping potential. Additional bias fields
of -1 G were applied in the horizontal plane to
cancel the radial magnetic fields generated by
lu and IL on the axis of the small coil and to
maintain a stable trapping potential.g"denotes
the direction of gravitational acceleration. (B)
Magnetic potential due to Is (short dashed line),
gravitation potential (long dashed line), and
joint vertical potential of the gravito-magnetic
trap (solid line). (C) A radially repulsive poten-
tial magnetic potential was generated by run-
ning Is alone (dashed line); however, applying a
slight antibias field with Iu modified the radial
energy profile and created a magnetic field
minimum at r = 0 (solid line). In (A) to (C), the
solid oval denotes the trapped condensate.

After decompression, the partially con-
densed atomic vapors had -2 x 105 atoms and
a BEC transition temperature T, = 3 nK. T,
was lowered further by reducing the number of
atoms in the cloud (Eq. 1), while maintaining a
substantial condensate fraction at all times
(0.5 < T/T, < 1). The atom number was re-
duced by holding the atoms in the gravito-
magnetic trap for up to 200 s. Often, microwave
radiation near the II, -1)-- 12, 0) transition
was applied to shorten the hold time required to
arrive at lower atom number to 10 s. The atom
number reduction was accompanied by cooling,
during which the elastic collision rate (between
thermal atoms and the condensate) dropped
from 0.25 Hz to 0.01 Hz. Therefore, a few
collisions were sufficient to cause evaporation
out of the finite depth trap. This cooling was not
efficient in the sense of providing a gain in
phase-space density but still was capable of
maintaining thermal equilibrium and lowering
the absolute temperature of the vapor.

Using this technique, we cooled partially
condensed vapors containing up to 30,000
atoms to temperatures below I nK (Figs. 2
and 3). Our lowest measured three-

InC

0

11

0 200 400 600
Position (um)

Fig. 2. Picokelvin temperature thermometry.
Partially condensed atomic vapors confined in
the gravito-magnetic trap with (A) 28,000,
(B) 16,000, and (C) 2,500 atoms. The one-
dimensional cross sections (red) were obtained
by integrating the two-dimensional absorption
images of the trapped clouds along the y axis.
Bimodal fits to Eq. 2 (blue) yielded tempera-
tures of (A) 1.05 ± 0.08 nK, (B) 780 ± 50 pK,
and (C) 450 ± 80 pK, where the uncertainty is
due to the fit of an individual image. The ab-
sorption imaging light was resonant with the
F = 2 --- F' = 3 cycling transition for the
trapped atoms and was aligned with the verti-
cal (z) axis. The atoms were optically pumped
into the F = 2 hyperfine level with a pulse
resonant with the F = 1 -* F' = 2 transition.
The field of view for the absorption images in
(A) to (C) is 460 pIm X 460 Ipm.

dimensional kinetic temperature was 450 ±

80 pK for 2500 atoms at a peak condensate
density of 5 x 1010 atoms/cm 3. Under these
conditions, the peak atom-atom interaction
energy was p. = kg X 33 pK, while the zero
point energy of the harmonic trapping poten-
tial was (1/2)h i kB x 24 pK. Condensates
released from the gravito-magnetic trap
would expand with energies of this order and
therefore could be characterized by effective
temperatures -30 pK.

Additional cooling would require lower-
ing the trap frequencies further or reducing
the atom number more. However, weakly
confining traps have proven technically dif-
ficult to control such that lowering i/27rr
substantially below 1 Hz is challenging.
Likewise, because T ocC N 1/ 3, atom number
reduction by an order of magnitude only re-
sults in temperature reduction by a factor of
two. Furthermore, lower temperatures and
lower densities are accompanied by colli-
sional equilibrium times approaching 100 s.

Because pI - h@, the condensates in the
gravito-magnetic trap were in a density re-
gime intermediate between the Thomas-
Fermi (. >»> hA) and ideal (p.< < h@) gas
limits. No simple approximation describes
the condensate wave function, but the num-
ber of thermal atoms, Nth = t(3) x (kB T
h@)3, and the width of their distribution,
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Fig. 3. Bose-Einstein condensates at picokelvin
temperatures. The temperature of more than
60 partially condensed atomic vapors is plotted
versus total number of condensed and noncon-
densed atoms. A solid line at the Bose-Einstein
condensation phase transition temperature (Eq.
1) and a dashed line at 1 nK are provided as
guides. Condensate temperatures were deter-
mined from one-dimensional fits to atomic
density cross sections integrated along either
the x (closed circles) ory (open circles) axis (Fig.
2). Differences in the two measured tempera-
tures for a single condensate reflect the true
uncertainty of the measurement. Plotted error
bars represent the statistical uncertainty of the
fit. The inset shows that the 1/e condensate
lifetime in the gravito-magnetic trap was lim-
ited by one-body processes to 80 ± 5 s.

wth = (2kB T / m2)1/2, in any spatial direc-
tion can be related to the temperature, pro-
vided that the thermal energy is much larger
than the trap level spacing, kB T >> h fi,
where o is the trap frequency for the axis
along which wth is measured (22). The ratio
of atoms in the condensate, No, to the total
number of atoms, N = N o + Nth, is also
related to the temperature through NoN =
1 - (T/T,)3 . No, Nth, and wth are therefore
completely determined by T and N.

The temperature of the atomic vapors was
extracted by fitting integrated, one-dimen-
sional atomic density cross sections to a bi-
modal distribution (Fig. 2)

(N, - x lwh (2)

where Po is a bell-shaped function with
width wo that describes the condensate peak

[•2 = (15 / 16) wo ' max(l - x2 / W2,0)2 for
a Thomas-Fermi gas and 02 = Wo, .- 1/2

exp(- x2 / W2 ) for an ideal gas]. The fitted
parameters were T, N, and wo. We checked
that the fitted temperature did not depend on
the exact choice of the condensate wave func-
tion (inverted parabola or gaussian) or the
application of microwave radiation to reduce
atom number.

All atomic vapors represented in Fig. 3
had a clear bimodal density distribution from
which a temperature was reproducibly ex-
tracted. The temperatures extracted from one-
dimensional fits along both radial axes were
nominally the same, empirically indicating

that the atomic vapors remained close to ther-
mal equilibrium at all times.

In conclusion, we have created long-lived
(80 -± 5 s), low-temperature (450 ± 80 pK),
and low-density (5 x 1010 atoms/cm3) par-
tially condensed atomic vapors using a weak-
ly confining [w = 27rr X (1.12 ± 0.08) Hz]
gravito-magnetic trap. These samples are
characterized by a thermal velocity - 1 mm/s,
a speed of sound -100 p.m/s, and a healing
length limited by the -20-p.m harmonic os-
cillator length of the trapping potential. Low-
temperature and low-density ensembles are
important for spectroscopy, metrology, and
atom optics. In addition, they are predicted to
experience quantum reflection from material
surfaces (26-28).
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Quantum Reflection from a Solid Surface at Normal Incidence

T. A. Pasquini, Y Shin, C. Sanner, M. Saba, A. Schirotzek, D. E. Pritchard, and W. Ketterle*
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and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
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We observed quantum reflection of ultracold atoms from the attractive potential of a solid surface.
Extremely dilute Bose-Einstein condensates of 23Na, with peak density 1011-1012 atoms/cm 3, confined
in a weak gravitomagnetic trap were normally incident on a silicon surface. Reflection probabilities of
up to 20% were observed for incident velocities of 1-8 mm/s. The velocity dependence agrees
qualitatively with the prediction for quantum reflection from the attractive Casimir-Polder potential.
Atoms confined in a harmonic trap divided in half by a solid surface exhibited extended lifetime due to
quantum reflection from the surface, implying a reflection probability above 50%.

DOI: 10.1103/PhysRevLett.93.223201

Quantum reflection is a process in which a particle
reflects from a potential without reaching a classical
turning point. A solid surface provides a long-range
attractive potential for atoms. At separation, r, much
larger than the atomic radius the potential follows the
Casimir-Polder expression U = -C 4/[(r + 3A/2rT2)r 3],
where A is the effective atomic transition wavelength
[1]. Classically, an atom incident on such a potential
will be accelerated toward the surface, resulting in in-
elastic scattering or adsorption. A quantum mechanical
treatment of an atom-surface collision reveals that the
atom is reflected from the purely attractive surface po-
tential if the potential energy changes abruptly on a
length scale set by the quantum mechanical wavelength
[2-5]. The condition for significant reflection is that the

local particle wave number normal to the surface, k1 =

k2
o - 2mU/h 2 , change by more than k1 over a distance

l/k± . Here, k,~ = mv L/h is the normal wave number of
the atom far from the surface, m is the atomic mass, v1 is
the normal incident velocity, and h is the Planck constant
divided by 27r. The reflection probability, R, tends to
unity as the incident velocity tends to zero, R -
1 - 4/34mv±/h, where /34 is the length scale associated
with the C4 coefficient, C4 = 82i 2/2m. High probability
quantum reflection requires low incident velocity or weak
attraction to the surface, conditions previously realized
only in exceptional systems.

Studies of quantum reflection were first performed
with helium or hydrogen atoms incident on liquid helium
surfaces [6-9]. The extremely weak interaction strengths
and low mass atoms allowed for quantum reflection at
relatively high incident energies of -kBs 10 mK [6,9],
where kB is the Boltzmann constant. Reflection of noble
and alkali atoms from a solid surface requires that atoms
be incident with a million times less energy, ~-kB x
10 nK. This has been accomplished only by letting un-
trapped atoms hit solid surfaces at grazing incidence [10-
14], meaning that most of the velocity is directed parallel
to the surface and reflection only deflects atoms slightly.

PACS numbers: 34.50.Dy, 03.75.Be

Reflection probabilities in excess of 60% have been ob-
served for incidence angles of a few milliradians [12].
Atom-surface potentials have also been studied in the
presence of evanescent light waves generated by total
internal reflection at a glass surface [15,16].

Normal-incidence quantum reflection of trapped atoms
may be exploited in the construction of novel atom-
optical devices. The current generation of atom mirrors
for reflecting, confining, and focusing ultracold atoms
employs evanescent waves produced by total internal
reflection of laser light [17] or magnetized materials
[18]. An atom-optical device based on quantum reflection
is in a category of its own, as it works using the universal
atom-surface interaction and depends on the long wave-
length of ultracold atoms. Past experiments with grazing
incidence atomic beams have demonstrated a mirror [11],
a reflective diffraction grating [121, and a hologram based
on quantum reflection [13].

In this Letter, we demonstrate normal-incidence quan-
tum reflection of ultracold sodium atoms. Using the har-
monic trapping potential of a gravitomagnetic trap
[19,20], we varied the center of mass velocity of dilute
Bose-Einstein condensates and induced controlled colli-
sions with a silicon surface at velocities as low as
1 mm/s, corresponding to collision energies of kB x 1.5
nanokelvin or 1.2 X 10- 13 eV. A reflection probability of
-20% was obtained for an incident velocity of 2 mm/s,
realizing an atom mirror. Our experimental results are
in qualitative agreement with theoretical predictions
for single atoms incident on a conducting surface.
Additionally, atoms were confined in one dimension by
a silicon surface, where lifetime measurements indicate
reflection probabilities in excess of 50%.

Bose-Einstein condensates of 23Na atoms were pre-
pared and transferred into a gravitomagnetic trap, com-
prising a single coil and three external bias fields, as
described in Ref. [19]. Mounted 1 cm above the center
of the single coil was a -20 /um thick N-type doped
polished Si (100) surface with a resistivity of
1-10 fl cm. For typical loading parameters, condensates

© 2004 The American Physical Society0031-9007/04/93(22)/223201(4)$22.50 223201-1
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containing 3 x 105 atoms were confined 200 pm to one
side of the surface in a harmonic trap characterized by
(wo, to, Wz) = 27r X (10, 10, 6.5) Hz, where wo is the

horizontal trap frequency perpendicular to the surface,
oy is the horizontal trap frequency parallel to the surface,
and wz is the vertical trap frequency. At this point, wo
and wy were adjusted between 11 to 2 Hz by changing the

vertical bias field as described in Ref. [19]. The position of
the trap center relative to the surface was controlled by
applying a bias field, B1 , perpendicular to the surface
[21]. Empirically, we find that near the surface the non-
condensed fraction of the atomic cloud is reduced by the
"surface evaporation" effect, in which adsorption prefer-
entially removes the hottest atoms from the cloud [22,23].

The dipole mode of a harmonically trapped condensate
is identical to the behavior of a pendulum; atoms oscillate
with amplitude A and trap period TL = 27-r/wj. The
presence of a surface within the trapping potential dra-
matically alters the dipole oscillation in the same way a
wall would alter the oscillation of a pendulum. Bose-
Einstein condensates undergoing dipole oscillation in
the gravitomagnetic trap were made to collide with the
solid silicon surface as described in Fig. l(a). Collision
with the surface occurred at time Tc - T1 /4 with inci-
dent velocity v1 = Awo - 1.5 mm/s. This phenomenon
is observed in Fig. 2. Near rc, two distinct velocity
classes were visible corresponding to atoms in the initial
condensate and atoms reflected from the surface. The
simultaneous presence of incident and reflected atoms is
explained by the fact that the back of the condensate hits

--A 2-%-A 2-*-A/2i -- A A/2--

FIG. 1. Experimental schematic. Atoms were confined in a
gravitomagnetic trap [19] with trap frequencies ranging from
21r X (2,2, 6.5) Hz to 2r X (11, 11, 6.5) Hz, near a -20 ttm
thick Si surface. (a) Quantum reflection was studied by induc-
ing a dipole oscillation of amplitude A perpendicular to the
surface and centered on the surface. The incident velocity was
varied from 1-8 mm/s by adjusting A. (b) Atoms were loaded
into a surface trap with zero incident velocity using an inter-
mediate trap located at A/2. Atoms initially confined at a
distance A from the surface were made to undergo a dipole
oscillation of amplitude A/2 by shifting the trap center halfway
to the surface. After holding for half a trap period, T 1/2 , the
atoms were incident on the surface with near zero velocity. The
trap center was again shifted by A/2 towards the surface,
trapping the atoms against the Si wafer. To ensure contact
between atoms and the surface, the center of the final trap
was located -10% of the original condensate size beyond the
Si surface.

the surface -40 ms after the front end due to the
-60 Itm condensate diameter and slow (1.5 mm/s) ve-
locity. At collision, the harmonic motion of the atoms was
phase shifted by 2(·i - woIrc), as seen in Fig. 2(b).

The reflected atom cloud was smaller than the incident
one and had a comparable density. In some instances, the
cloud appeared to have a bimodal distribution, indicating
that coherence might be preserved in the collision. The
reflected atoms continued to oscillate in the trap with the
original amplitude, suggesting that atoms reflected spec-
ularly and that the kinetic energy was conserved during
the collision. Eventually, the reflected atom cloud under-
went a second collision with the surface at --T_/2 after
the first collision. Additional collisions were not observed
as the atom number fell below our detection limit

We observed reflected fractions that varied from
0-20% over the incident velocity range of 1-8 mm/s,
corresponding to a collision energy of -kB x (1 -
100) nK, for atoms with a peak density of -2 x
1012 cm - 3 in a 2rT x (3.3, 2.5, 6.5) Hz trap. Figure 3
shows the measured reflection probability, defined as the
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FIG. 2. Atoms reflecting from a Si surface. Atoms confined
-70 ,m from a Si surface were transferred into a harmonic
trap centered on the surface with 2x7 X (3.3, 2.5, 6.5) Hz. The
dipole oscillation of the condensate was interrupted periodi-
cally by collisions with the surface, which reversed the cloud's
center of mass velocity. After a variable hold time, atoms were
released from the trap, fell below the edge of the surface and
were imaged with resonant light after 26 ms time of flight. The
position of the atoms in time of flight is the sum of the in-trap
position at the time of release and the product of the release
velocity and time of flight. (a) Time-of-flight images of atoms
after increasing hold times show the partial transfer of atoms
from the initial condensate (right) into the reflected cloud (left)
as the collision occurs. The separation is due to the reversed
velocity. The vertical line shows the horizontal location of the
surface. The field of view is 1.4 mm wide. (b) The time-of-
flight positions of the incident and reflected atom clouds
relative to the surface are well modeled by a single particle
undergoing specular reflection in a half harmonic trap (solid
line). During collision, the behavior deviates from the single
particle model because of the finite cloud diameter of -60 tm.
A second reflection is visible at 270 ms.
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FIG. 3. Reflection probability vs incident velocity. Data were
collected in a magnetic trap with trap frequencies 27r X
(3.3, 2.5, 6.5) Hz. Incident and reflected atom numbers were
averaged over several shots. Vertical error bars show the stan-
dard deviation of the mean of six measurements. Horizontal
error bars reflect the uncertainty in deducing v1 from the
applied magnetic field B±. The solid curve is a numerical
calculation for individual atoms incident on a conducting
surface as described in the text.

ratio of reflected atom number to incident atom number,
as a function of incident velocity. The reflection proba-
bility increases with decreasing velocity, a signature of
quantum reflection. Similar behavior was observed for
atoms with a peak density of -7 x 1012 cm - 3 in a 27r X
(10.5, 10, 6.5) Hz trap. For comparison, we include a line
in Fig. 3 showing the calculated reflection probability for
a single atom incident on a conducting wall. The reflec-
tion probability was obtained by numerically solving the
Schr6dinger equation with the Casimir-Polder potential
using the C4 coefficient calculated for sodium atoms
incident on a conducting surface, C4 = 9.1 x 10-56 Jm 4

[1] and A = 590 nm. This model ignores the harmonic
trapping potential, interatomic forces, and electrostatic
effects of adsorbed alkali atoms on the surface, which
have recently been shown to distort the long-range po-
tential in the case of Rb atoms on insulating surfaces
[24,25]. Furthermore, the doped Si surface has a finite
conductivity, leading to a reduction in C4 of order
20%-40% and a slightly higher reflection probability
than a perfect conductor [261.

According to the model, reflection of atoms with
2 mm/s velocity occurs at a distance of -1 m from
the surface, where the full potential is approximated to
within 10% by U = -C 4/r

4 . The range of velocities we
could explore is not large enough to investigate the region
closer to the surface where the potential has a 1/r 3

dependence. It should be noted that without retardation,
the reflection probability would be more than a hundred
times lower. Ultimately, quantum reflection may be a
powerful tool to characterize atom-surface interactions.

We also observe dynamics, not present in single-atom
quantum reflection, when a Bose-Einstein condensate is
incident on a surface. For incident velocity below
2 mm/s, the measured reflection probability remained

100 200 300 400
Hold Time (ms)

500 600

FIG. 4. Lifetime in the Si surface trap. Solid (open) circles
show the remaining atom fraction vs time for a 27r X (9, 9, 6.5)
[21T X (3.3, 2.5, 6.5)] Hz trapping potential with an initial atom
number 3 x 104 (9 x 104). The solid line exponential fit gives a
lifetime of 23 ms (170 ms) for the high (low) frequency trap
geometry. The lifetime for atoms confined far from the surface
exceeded 20 s for either geometry.

approximately constant between 10% and 15%, in con-
trast with theoretical predictions and previous observa-
tion. This discrepancy may be due to collective
excitations of the atoms or acceleration from the har-
monic trapping potential during the collision. The shape
and density of the reflected atom cloud, as can be seen in
Fig. 2(a), were not reproducible from shot to shot.
Reflected clouds were excited and sometimes fragmented
and higher velocity incident atoms tended to produce
more dense reflected clouds, which may imply that an
excitation occurred during the collision that was more
pronounced at low collision velocities.

Furthermore, the role of the mean-field interaction
energy should be considered. When a condensate is re-
leased from a trapping potential, the repulsive mean-field
energy is converted into kinetic energy, imparting to the
atoms an average velocity equal to the local speed of

sound, c = -gn/m, where g = 4r7rh2a/m is the coupling
parameter associated with atom-atom interaction, and a
is the s-wave scattering length. We expect that the mean-
field energy will be released during the collision so that,
even for a condensate with zero center of mass velocity,
the incident velocity may be characterized by the speed of
sound. For Na condensates at a density of 2 X 1012 cm-3,

this velocity is -0.6 mm/s.
In the limit of zero incident velocity, a surface acting as

an ideal atom mirror could be used to construct a physical
container for ultracold atoms and Bose-Einstein conden-
sates. To examine the feasibility of confining atoms with
solid surfaces, atoms were held in a magnetic trap divided
in half by the Si surface. The transfer procedure is
described schematically in Fig. l(b). Figure 4 shows the
remaining fraction of atoms in the trap as a function of
hold time for two different magnetic trap parameters, one
at high trap frequency, 21r X (9, 9, 6.5), and the other at
low trap frequency, 27r x (3.3, 2.5, 6.5). After an initial
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loss due to the nonzero incident velocity (not shown), the
atom number was found to decrease exponentially. The
lifetime for the high (low) frequency trap was 23 ms
(170 ms). We attribute the losses of atoms to scattering
with the surface and adsorption. Fluctuating electromag-
netic fields in a (semi)conductor can also induce losses of
atoms due to thermally induced spin flips (see, e.g.,
Ref. [25]). However, at the large magnetic bias field of
-10 G, atoms can be ejected from the trap only with
fields of frequency -7 MHz. At an average distance of
-15 gm from surface, the spin flip decay rate should not
exceed 0.1 /tHz, a negligible effect in the present experi-
ment and not a significant limitation for future ones.

In order to estimate the effect of quantum reflection on
the lifetime of atoms in the trap, we assume that the
atoms are incident on the surface with a velocity propor-
tional to the speed of sound in the condensate and that the
geometry of the trapped atom cloud is independent of
the trap frequency. The atom loss rate to the surface may
be expressed as dN/dt c -nSc(1 - R), where S is
the contact area between surface and condensate. From
this rate equation, we express the lifetime as 'rL =
-N/(dN/dt) = XTi/(1 - R), where X is an undeter-
mined numerical parameter independent of the trap fre-
quency. An identical equation would describe a thermal
cloud of atoms. Comparing the ratio -L/TI_ for the two
different trap frequencies, we cancel out the constant X.
Assuming the reflection probability for the high-
frequency trap, Rh = 0, gives a value of RI = 60% for
the low-frequency trap reflection probability. A more
reasonable assumption of Rh = 20% gives a value of
RI = 70%.

The results presented here demonstrate that large quan-
tum reflection probability is not confined to exotic sur-
faces or extreme angles of incidence: a simple silicon
wafer at room temperature can function as an atomic
mirror at normal incidence, reflecting ultracold atoms.
The construction of practical atom-optical devices based
on normal-incidence quantum reflection requires even
higher reflection probabilities than demonstrated in this
work. Such improvements are predicted for low-density
and extremely thin surfaces [4], and have been observed
with patterned surfaces, where a reduction in surface
density by etching increased the maximum reflection
probability by a factor of 2 [11]. Because reflection occurs
far from the surface, uniformity of the surface is not a
critical factor, as roughness is averaged over the atomic
wavelength.

Surfaces are traditionally considered enemies of cold
atoms: laser cooling and atom optics have developed
thanks to magnetic and optical traps that confine atoms
with nonmaterial walls in ultrahigh vacuum environ-
ments designed to prevent contact with surfaces.
Paradoxically, it turns out that in the extreme quantum
limit of nanokelvin matter waves, a surface at room
temperature might become a useful device to manipulate
atoms.
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We study how interactions affect the quantum reflection of Bose-Einstein condensates. A patterned
silicon surface with a square array of pillars resulted in high reflection probabilities. For incident velocities
greater than 2.5 mm/s, our observations agreed with single-particle theory. At velocities below 2.5 mm/s,
the measured reflection probability saturated near 60% rather than increasing towards unity as predicted
by the accepted theoretical model. We extend the theory of quantum reflection to account for the mean-
field interactions of a condensate which suppresses quantum reflection at low velocity. The reflected
condensates show collective excitations as recently predicted.

DOI: 10.1 103/PhysRevLett.97.093201

Recent years have seen an explosive growth of experi-
ments with cold atoms near surfaces, driven by the desire
to miniaturize atomic physics experiments using so-called
"atom chips" [1], for practical applications in magneto-
metry [2] and atom interferometry [3]. The Casimir-Polder
interaction becomes important close to the surface an atom
chip [4-6] and offers both fundamental and technical
relevance. Fundamental studies include the use of Bose-
Einstein condensates to determine the Casimir-Polder po-
tential [7,8], to observe its modification by thermal radia-
tion [9], and the intriguing question if unity quantum
reflection can be achieved at extremely low temperatures.
Quantum reflection is the phenomena by which an atom is
accelerated so violently by the attractive surface potential
that it reflects from the potential rather than being drawn
into the surface [10-13]. Current models of quantum re-
flection treat the atom-surface interaction as a single-atom
potential, and predict a monotonic rise to unity reflection at
zero velocity. However, in a recent study of quantum
reflection of Bose-Einstein condensates (BECs) [14], the
reflection probability saturated at -12% at low velocity
[15]. A Letter simulating quantum reflection of BECs
demonstrated excitations during reflection as a result of
mean-field interactions but could not explain the low re-
flectivity [16].

In this work, we address how quantum reflection of
BECs differs from the reflection of single atoms and dis-
cuss the role of interatomic interactions before, during, and
after reflection. Compared to our previous study, where
some effects of interactions were already observed but not
characterized or explained [14], we are now more sensi-
tive, having improved the reflection probability to 67% by

PACS numbers: 34.50.Dy, 03.75.Kk

using a pillared silicon surface, in the spirit of experiments
with grazing-incidence neon atoms on ridged silicon [17-
19]. In contrast to single-particle theory, we observe a
saturation of the reflection probability at low incident
velocity, suggesting that the description of quantum reflec-
tion is incomplete. We propose a simple theoretical exten-
sion incorporating a mean-field potential which is found to
dramatically suppress the reflection probability near zero
velocity. Further, we observe that interactions between the
incident and reflected condensate lead to predicted collec-
tive excitations of the reflected condensate [16] and inco-
herent scattering.

Bose-Einstein condensates of 23Na atoms were prepared
and transferred into a loosely confining gravitomag-
netic trap, comprising a single coil and three external
bias fields, as described in Ref. [20]. For typical load-
ing parameters, condensates with N - 1 x 106 atoms
were confined -1 cm above the coil in a harmonic trap
characterized by angular frequencies (wl, toy, woz)=

2vr x (4.2, 5.0, 8.2) Hz, where directions (1, y, z) are de-
fined in Fig. 1. At this point, w and w, were adjusted by
changing the vertical bias field as described in Ref. [20].
Typical densities in the trap were -5 X 1012 cm - 3 and
diameters were - 150 /tm. A silicon surface attached to a
micrometric, motorized linear actuator was mounted
-1 cm above the single coil. The position of the surface

relative to the center of the coil was adjustable during the
experiment as shown in Fig. 1(a).

The surface used in this experiment, provided by the
MIT Nanostructures Laboratory, was a pillar structure
etched into single-crystal silicon. The structure was created
by interference lithography and various subsequent etching

@ 2006 The American Physical Society
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FIG. 1 (color online). Experimental schematic. (a) Atoms were
confined in a gravitomagnetic trap near a pillared Si surface.
Atoms were accelerated towards the surface by displacing the
trapping potential a distance d (greatly exaggerated) so that it
was centered on the surface. The surface was mounted on a
translation stage and could be removed at any point for imaging.
(b) Scanning electron micrograph of the pillared Si surface used
in this experiment.

steps [21-23]. Figure l(b) shows the final surface as an
array of 1 /~m tall, 50 nm diameter pillars spaced at
500 nm. Such a surface should provide a Casimir potential
approximately 1% of the value for a solid Si surface. A
dilute surface is expected to exhibit enhanced quantum
reflection.

Studying the reflection properties of the surface requires
a controlled collision. After loading the condensate into the
trap, the surface was moved to a desired distance d from
the trap center. By changing the bias field B_ appropri-
ately, a dipole oscillation centered on the surface was
induced [14]. After waiting T 1 /4 = 27r/4wL the atoms
hit the surface with velocity vi = dwo. By varying coL
between 21r X 2 and 27r X 4 Hz and d over 50 1/m to
1 mm, velocities in the range of 0.5 to 26 mm/s could be
studied. The reflection probability was calculated as the
ratio of the average reflected atom number to the average
incident atom number [24]. The reflection probability
along with data for a solid silicon surface [14] are shown
in Fig. 2. The pillared surface shows higher reflectivity
over a wider range of incident velocity, as expected. The
reflection maximum is 67% for a velocity of 1.2 mm/s,
and reflection probabilities above 10% were measured at
velocities up to 20 mm/s. Below -3 mm/s, the reflection
probability flattens near 55%, qualitatively similar to the
behavior of the solid surface where the reflectivity flattened
near 12% in the same velocity range.

Reflection probabilities for a single atom were calcu-
lated by numerically solving the Schr6dinger equation for
a 1D potential [25]. The surface potentials of the Casimir-
Polder form C4/r 4 are obtained using Ci = 6.2 X
10-56 J m4 for bulk silicon [26] and combining contribu-
tions from both the pillar layer and the bulk substrate. We
average the density of the material before calculating the
potential, simulating the surface as a 1 /Lm thick overlayer
of material with C4 = 0.01 X CTi added to a semi-infinite
slab of material with C4 = C i'. The resulting reflection
probability curve is shown in Fig. 2 as dashed gray lines. A

Velocity (mm/s)

FIG. 2. Reflection probability vs incident velocity. Data were
collected in a magnetic trap with trap frequencies 27r X
(2.0,2.5, 8.2) Hz (squares) and 21r X (4.2,5.0, 8.2) Hz (tri-
angles). For comparison, data from Ref. [14] for reflection off
a solid silicon surface are shown as circles. Incident and reflected
atom numbers were averaged over several shots. For clarity error
bars for data below 5 mm/s are shown only in the inset plot,
which has a different horizontal axis to emphasize the low
velocity data. Systematic uncertainty in the velocity due to
residual motion is approximately 10%. Theoretical curves are
described in the text.

model which averages the 3D potential of the pillars to
obtain a ID potential shows similar results. Further, these
simulations show that the reflection probability depends
mainly on the diluted pillar layer and only weakly on the
bulk material underneath or the height or arrangement of
the pillars. Unlike grazing-incidence experiments [17-19],
here the de Broglie wavelength, AdB = 1 /m, exceeds the
spacing of the pillars and we are insensitive to the surface
structure.

Calculations predict that the reflection probability ap-
proaches unity for low incident velocity. This is in contrast
to our observation that the reflection probability saturates
below 2.5 mm/s for both the pillared and solid surfaces. It
was suggested that this saturation is due to low velocity ex-
citations which smear out the condensate density; although
the reflectivity approaches unity, some reflected atoms
would appear in a diffuse cloud which may fall below a
detection threshold [16]. However, this could explain our
previous results [14] only when we assume a density
threshold for detection of 0.25 x no = 1012 cm- 3 , where
no is the central condensate density, which is 20 times
higher than the lowest densities we are able to detect [20].

There is a finite-size correction to the standard descrip-
tion of quantum reflection, but it is too small to account for
our observations. For an incident atom cloud of size d, the
smallest incident velocity is h/md, approximately
0.2 mm/s for our parameters. We conclude that a single-
particle description cannot account for our low velocity
data and now discuss possible effects due to the conden-
sate's mean-field interaction.

The mean-field potential is taken to be that of a conden-
sate at rest with a fully reflecting wall as a boundary
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condition. The condensate's density decays tc
the wall over a characteristic length scale
healing length, 6. The atoms at the edge of th
thereby acquire a velocity given by -h/l
approximately equal to the speed of sound c.
length is much larger than the relevant
Casimir-Polder potential, approximately 1 p
by the so-called badlands region [13], one
that the mean-field potential simply accelerat
Atoms leaving the condensate enter the regio
reflection with an incident velocity ot
my 2/2 = U = mc 2 . This model would shi
atom quantum reflection curves by the veloc
which is 1.5 mm/s for our parameters. Th
small to explain the low reflectivity at our
ities. Additionally, the assumption that the h
be much larger than the distance at which qu
tion occurs is not valid for our data.

In order to fully account for interactior
calculate the quantum reflection probability
posite potential which includes both the C
potential and the mean-field potential [Fi
predicted reflection probability is shown in
high velocities (>3 mm/s), quantum refli
close to the surface where the mean-field p
no role. As the velocity is reduced, the poin
moves outward, into the region where the n
tential "softens" the Casimir-Polder poten
cally reducing the reflectivity. At very I
(<0.1 mm/s), when the badlands region is
surface, the predicted reflection resembles

)wards zero at probability from the mean-field potential of the condensate
given by the rather than from the Casimir-Polder potential and becomes
ie condensate unity at zero velocity [15]. This model predicts well,
n6, which is without any free parameter, the velocities below which
If the healing we have observed saturation of the reflectivity for both
range of the the solid and pillared surface as shown by the dot-dashed
Im as defined lines in Fig. 2. The data do not extend far enough into the
vould assume very low velocity regime to confirm the model's prediction
tes the atoms. of a sharp drop.
in of quantum The model does not include the effects of the moving
)tained from condensate, its observed collective excitations, or the dis-
ft the single- tortion of the condensate wave function by surface attrac-
:ity v = %12c, tion or the loss of atoms to the surface.
is shift is too The calculated curves are not in quantitative agreement
lowest veloc- with the experimental data; the observed reflection proba-
iealing length bilities are lower, even at high velocity. A possible expla-
Lantum reflec- nation is the modification of the potential by stray electric

fields, caused by sodium atoms deposited on the surface
n effects, we (adatoms). Recently, the partial ionization of rubidium
using a com- adatoms by bulk silicon has been shown empirically to
asimir-Polder produce an electric field of several V/cm at 10 pm from
g. 3(a)]. The the surface [5]. This electric field, which falls off as 1/r 2 ,

Fig. 3(b). At will produce an additional potential, VA(r) = -A/r 4 ,

ection occurs which will reduce the reflection probability. To account
otential plays for stray electric fields, we fit the high velocity data for the
t of reflection pillared (solid) surface using a potential Vtot = -0.01 x
nean-field po- C i/r 4 - AIr 4 (Vto t = -CSi/r 4 - A/r 4 ). We find for the
tial, dramati- pillared (solid) surface a value of A of 0.02 X C i' (CTi)ow velocities

far from the corresponding to a stray field -10 V/cm (-70 V/cm) at
1 rpm, which scales to 0.1 V/cm (0.7 V/cm) at 10 Am,the reflection
smaller than measured for rubidium. We may expect a
greater factor between the fields measured for a solid and
dilute surface owing to the factor of 100 difference in

o 2 4 6
Position (ptm)

0.8-
0.6-
0.4 -

0 1 2 3
Velocity (mm/s)

FIG. 3 (color online). Mean-field model for qu
of condensates. (a) The trapped condensate prov
mean-field energy which is a constant away fr
and, within the healing length 6, drops to zero. TI
shows this mean-field potential set to zero a
potential combined with the Casimir potential
creates the composite potential (solid curve) w
model reflection in the presence of a condensate
tion probabilities from the same potentials for I

surface area. However, the strength of the fields depends
on the specific geometry, surface material, and contamina-
tion level, which may vary between the two experiments.
Because of experimental limitations, we were not able to
confirm the magnitude of these stray fields or their sole

8 10 responsibility for the observed discrepancy, and include
their effect as a phenomenological fitting parameter for the

(b) high velocity data.
If we combine the stronger surface potential with the

mean-field potential, we have a phenomenological model
which is consistent with all our data, shown in Fig. 2 as
solid lines. It would be very interesting to test this model by

4 5 varying the density over a large range and try to observe the
predicted decrease of the saturation velocity for lower
density. We could not study reflection at lower density

antum reflection due to a rapid decrease of the signal-to-noise ratio.
ides a repulsive Another aspect of interactions are collisions between
om the surface incident and reflected parts of the condensate. This leads
he dashed curve.he dashed curve to a standing wave during the collision, for a time inverselyIt infinity. This

(dotted curve) proportional to the incident velocity. As this time becomes

'hich we use to comparable to the transverse and vertical trap periods,
. (b) The reflec- vortex rings, solitons, and other excitations may form,
ow velocities, distorting the cloud [16]. In our experiment, this veloc-
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FIG. 4. Menagerie of reflection effects. (a)-(c) As the incident
velocity is reduced, the reflected condensate becomes increas-
ingly excited. (d) By removing the surface at the moment of
reflection, we can see both the incident (left) and reflected (right)
condensates. The reflection probability is 30%. (e) The collision
of the incident and reflected condensates produces a strong
s-wave scattering halo at low velocity, visible here TL/4 after
reflection. The surface is still present on the left in this image.
Half of the halo is missing due to surface reflection or absorp-
tion. (f) With the surface removed, the scattered atoms remain in
the trap after an additional half trap period and appear reversed
in position and velocity. Field of view for images (a)-(c) is
540 pm and for (d)-(f) is 800 p/m; the dashed line is the
position of the surface (moved for imaging) at the moment of
reflection.

ity is approximately 2 mm/s. The higher reflection effi-
ciency of the pillared surface in excess of 50% allowed
us to observe these collective effects. At high velocities
(>4 mm/s), we observe that the reflected cloud appears,
apart from diminished size and number, similar to the
bimodal distribution of the incident cloud, shown in
Fig. 4(a). As the incident velocity is reduced, as in
Figs. 4(b) and 4(c), the cloud develops a complex surface
mode excitation [27].

Further, we observe elastic s-wave scattering between
atoms in the incident and reflected condensates leading to
halos [28,29], which we observe after a hold time T 1 /4
[Figs. 4(e) and 4(f)].

We also performed the experiment using an aerogel
surface. Aerogels are electrically insulating, randomly
structured, silica foams with a density of -2% of bulk
silica [30] and should display reflection properties similar
to the pillared surface. We were unable to observe quantum
reflection above our detection threshold of -2%, an effect
we attribute to uncontrolled patch charges which strongly
distort the Casimir-Polder potential.

We conclude with an outlook on how to further increase
the reflection probability for condensates. Our model pre-
dicts improvements for longer healing lengths. Improve-
ments to the reflectivity could also be made by further

reducing the density of the surface and would require
further advances in fabrication techniques.
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Appendix D

Pillared surface Mathematica code

The following Mathematica code was used to generate the various models of the pillared

surface.

The potential of a pillar

Evaluation of a 3D pillar at a point

Define the size of the pillar in nanometers. Zero is defined at the bottom center of the pillar.

Integrate over the regions that have material; assume cylindrical symmetry. The expression

to integrate is the atom-atom interaction potential.

widx=50; widy=50; widz=1000;

ToIntegrate [x,y, z]= (x*x+y*y+z*z) (-7/2);

OneIntegral y,z]=Integrate [2*ToIntegrate [x,y,z], {x,0,widx/2}];

TwoIntegral [y_,zpos] =Integrate [OneIntegral[y,z], {z,zpos-widz,zpos}];

OnePillar [ypos_,zpos_1:=

Integrate [TwoIntegral[y,zpos], {y,ypos-widy/2,ypos+widy/2}]

Calculation of the pillar potential on a grid

The potential should not be calculated inside of the pillar. The potential will only be

calculated in a quarter plane (with the pillar defining the space). Data are stored in an array
for later retrieval. This section is repeated for the medium grid size where GridSizeNano=50,
GridMaxY=5000, and GridMaxZ=12000. The arrays must be padded for use later; the
space left by the pillar must be filled.

GridSizeNano=5; GapSize=25;

GridMaxY=500; GridMaxZ=2000; k=1;

PillarPotentialArray=Table [0, {y,NEvalPts},{x,3}];
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CalculatePotentialAtThePoint:={

PillarPotentialArray [ [k,] =yposeval;

PillarPotentialArray [k,2]] =zposeval;

PillarPotentialArray[[k, 31] =N[OnePillar[yposeval,zposeval]];

k++};

For[ny=O,ny<=GridMaxY,

For[nz=O,nz<=GridMaxZ,

yposeval=ny;

zposeval=nz;

If [((yposeval>(widy+GapSize))I (zposeval>(widz+GapSize)))

CalculatePotentialAtThePoint,dummy=0O;

nz=nz+GridSizeNano];

ny=ny+GridSizeNano];

Export ["C: \PillarPotentialSmall.dat", PillarPotentialArray] ;

Conversion factors and constants

The original integrals were done with C4=1 and the grid in nm.

C4=4.48*10^(-33);

ConvertToKelvin=(10/pi)*C4*10"(36);

ConvertToNm=.00529;

ConvertToAu=1/ConvertToNm;

ConvertDegKToHartree=3.16681*10^(-6);

ConvertToHartree=ConvertToKelvin*ConvertDegKToHartree;

m=22.99*1.66 10^-27/(9.11.10^-31);

vO=2.9979*10^8/137;

rref=2.3 10^-9/(5.29*10^-11);

lengthscale=945.18;

Maxval=80/lengthscale;

Interpolation of numerical data to give potential at any point

Numeric results for the single pillar are only good to around 5 pm. For a given position,

the correct array must be interpolated.

PotentialSmall=Interpolation[PillarPotentialSmall];

PotentialMedium=Interpolation[PillarPotentialMedium];

GetPotential[yeval_,zeval_ := If [((yeval>500) II (zeval>1500)),

ConvertToHartree*PotentialMedium[yeval,zeval],
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ConvertToHartree*PotentialSmall[yeval,zeval]]

PillarPotential[xpos_,ypos_,zpos_]:=

If[(((Sqrt [xpos*xpos+ypos*ypos] *ConvertToNm)<5000)

&&(zpos*ConvertToNm<10000)

&&(((Sqrt[xpos*xpos+ypos*ypos] *ConvertToNm)>100)

I I(zpos*ConvertToNm>1050))),

GetPotential [(Sqrt [xpos*xpos+ypos*ypos] *ConvertToNm),

zpos*ConvertToNm],0];

PlusFullPotentialLg gives the potential of a pillar array plus the background

surface

PillarArray=Table[x,{x,1,441},{y,0,1}];

kk=l;

For[ii=-10,ii<=10,

For[jj=-10,jj<=10,

PillarArray [ [kk, 1] =ii;

PillarArray[[kk, 2]]=jj;

kk++;

jj++];

ii++];

PillarArray=PillarArray*500*ConvertToAu;

PlusFullPotentialLg xfull_, yfull_,zfull]:={

PointArray=PillarArray+Table {xfull,yfull},

{dummy,1,Dimensions[PillarArray] [[]] }];

CurrentValue=ConvertDegKToHartree*C4*ConvertToAu (4)

/mToNmConv^(4)*zfull^(4);

For[n=l,n<=Dimensions[PillarArray] [[1]],
CurrentValue=CurrentValue+

PillarPotential [PointArray lln, 1]],PointArray [[n,2]],zfull] ;

n++];

CurrentValue} [[1]]

Calculation of the line potentials

For the reflection calculations, we cannot use an interpolating function, so a fitting routine
must be constructed to accurately mimic the potential. This is the most critical part of the
full calculation.
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Potential for solid silicon and reduced density

potold[r_] =-ConvertDegKToHartree*C4*ConvertToAu (4)

/(mToNmConv) (4)r (4);

potoldsmall[r] =-0.01*ConvertDegKToHartree*C4

*ConvertToAu ^(4)/(mToNmConv)^(4)r^(4);

Fitting the potential

The selection of line potentials and fitting routine. Calculating reflection probabilities for

each of these line potentials gives the average reflection model. Point values are weighting

factor, xposition, yposition. The average potential is made by creating a running tally in

the loop; the result is given below.

PointValues = {{1/8,0,0},{1/2,50,0},{1/2,50,50},{1/2,100,0},

{1,100,50},{1/2,100,100},{1/2,150,0},{1,150,50},{1,150,100},
{1/2,150,150},{1/2,200,0},{1,200,50},{1,200,100},{1,200,150},
{1/2,200,200},{1/4,250,0},{1/2,250,50},{1/2,250,100},

{1/2,250,150}, {1/2,250,200}, {1/8,250,250}};

<< Statistics'NonlinearFit'

For[nnnn=1,nnnn<=21,

xvalue=PointValues [ nnnn,2]] *ConvertToAu;

yvalue=PointValues[[nnnn,3]] *ConvertToAu;

LinePot=

Table [PlusFullPotentialLg[xvalue,yvalue,z],

{z,1100*ConvertToAu,8000*ConvertToAu,50*ConvertToAu}];

TrialFit=NonlinearFit[Log[LinePot],

theta0+thetal*x+theta2*(x + thetal2) 2+theta3*(x+thetal3) 3+

theta4*(x+thetal4)^4+theta5*(x+thetal5) 5+

theta6*(x+theta6)^(-1) +theta7*(x+thetal7) (-2),

x,{thetatheta l,,theta 2,,theta22,,thetal2,theta3,teta3,theta4,

thetal4,theta5,thetai5,theta6,thetal6,theta7,thetal7},

MaxIterations -> 80001;

nnnn++;]

averagepot [x_ =-Exp [-75.65-6865/(-1628+x) -0. 1143x+0.0003988x'2

-9.113*^-7 x^3+207.9(4.705+x)^(-2)];

Calculate reflection probability (C. Sanner)

reflprob[velocity_] :={k=m*velocity/(1000 vO);
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p [r_]=Sqrt[k^2-2m*pot[r*lengthscale]];

psiwkb[r_] :=/Sqrt [p[r]] *Exp[-I*NIntegrate [p[rr],{rr,rref,r}]];

solution =NDSolve [{k^2/(2m)psi [r] +psi'' [r] /(2 m)-

pot[r*lengthscale] psi[r] == 0,

psi[rref+l] ==psiwkb[rref+l],

psi[rref+3]==psiwkb[rref+3]},psi, {r,rref,75000},

MaxSteps->8000];

approx = Fit [Table [{r,Evaluate [psi [r]/. solution] },

{r,45000,75000,1000}], {Exp[-Ik*r],Exp[I*k*r] },r];

Abs [approx [1,2, 1]]/approx [[, 1, 1,1 ] 2}[[1]]
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Appendix E

Technical drawings

A custom flange for the science chamber provides optical access along all three chamber axes

and ports for (1) a linear actuator and (2) various electrical feedthroughs. MDC Vacuum

adapted part number MAF600-6-133T (409006) according to the following design.

I ATMOSPHERE VIEW I
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