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Abstract
Cells are not simple passive observers oblivious to their environment, but sense and
adapt to environmental changes in order to thrive. In addition to sensing the presence of
signals in the environment, cells can extract information relating to the dynamics and
spatial location of these signals and implement a response to these extracellular
perturbations. This work examines a variety of signal-processing and decision-making
processes across several different organisms.

To explore the connection between biological network topology and temporal
signal processing, we study how periodic signals are propagated in the Hog1 osmotic-
response pathway of the budding yeast Saccharomyces cerevisiae. Utilizing systems
identification tools from control engineering, we study how the cells rapidly and robustly
maintain osmotic homeostasis. By measuring the expression level of key proteins we
begin to understand how fluctuating environments regulate gene expression.

The lac operon in Escherichia coli has the ability to display a bistable, "all-or-
nothing" response to sugar. To understand how noise drives transitions between these
two stable states, we measure switching dynamics in a population of cells. A simple
model is constructed that can make predictions about system behavior unavailable from
a deterministic model. Further, by measuring individual switching events in a similar
bistable system implemented in the Galactose utilization pathway of Saccharomyces
cerevisiae, we find that correlations in switching times of related individuals can be
explained in terms of correlations in levels of key regulatory proteins.

Many single celled organisms, such as the slime mold Dictyostelium discoideum,
can sense and respond to concentration gradients of extracellular signaling molecules.
We find that the cells' ability to detect an extracellular signal is influenced by an
asymmetric intracellular signal, which varies in direction and magnitude from cell-to-cell.
Further, a model that accounts for both signals predicts the observed population
response to directed stimuli.

Finally, we explore a "bet-hedging" strategy for fluctuating environments with an
engineered population of Saccharomyces cerevisiae cells that randomly switch between
two phenotypes. Each phenotype is fit to one of two alternating environments. We find
that to optimize fitness, cells must tune the phenotypic transition rates in accordance
with the rate of environmental transitions.

Thesis Supervisor: Alexander van Oudenaarden
Title: Associate Professor of Physics
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1 Introduction

Cells do not simply observe their environment passively; instead they constantly react to

and interact with it. In order to thrive they must continually adapt to environmental

changes and utilize available information about potential harm or benefit conferred by
extracellular conditions. They have an extensive array of mechanisms to sense and

process signals from the external environment, make decisions based on these signals,
and finally implement a response. Specialized network modules of interacting proteins

and genes execute these various tasks and are capable of processing temporal signals

(e.g. changes in concentration of environmental factors) as well as spatial signals such

as gradients of metabolite or cell-to-cell signaling molecules. Not only must these

networks be highly specific, they must also be able to function robustly in the presence

of noise arising from the inherent stochastic effects that result from the discrete nature of

biochemical processes.

This work will explore several aspects of signal processing and decision-making

in single cells. Chapter 2 provides examples of a few key concepts used extensively in

later chapters, such as the link between network dynamics and structure, decision

making in a simple gene-regulatory network, and cell-to-cell variability (noise) introduced

through stochastic gene expression. Chapter 3 explores the link between network

structure and dynamic signal processing, while Chapter 4 focuses on the effects of cell-

to-cell variability on decision making in both temporal and spatial signaling pathways.

Finally, Chapter 5 examines decision making at the level of a population by asking how a

population of cells can improve fitness and "hedge its bets" by utilizing biochemical noise

to increase diversity in times of uncertainty. The remainder of this introduction describes

many of the individual problems addressed in later chapters and briefly summarizes the

key results.

Probing Network Dynamics with Periodic Stimuli
Cells use networks of interacting proteins and genes to perform desired functions, and

the topology of these networks has a large impact on how that cellular system will
process and respond to time-dependent signals. Recent work has focused on better
understanding the network's structure and its dynamic properties. The dynamic
properties of many simple network structural motifs have been well studied both
experimentally and theoretically (Alon 2007). While endogenous systems are often



composed of simple recurrent motifs, these natural systems are almost always much
more complex, suggesting that a full understanding of network function cannot be
reached from a simple reductionist perspective. Further complicating the analysis of
endogenous networks, the reactions in signaling cascades operate over a wide variety of
timescales ranging from rapid ligand-protein interactions to slower downstream gene
expression. Thus, it is often not clear which pathway components and reactions
dominate a system's output dynamics and should be included in modeling efforts. In
Chapter 3.1 we explore directly the link between network structure and signal processing
in a well-studied regulatory network. We find a noteworthy relation between the network
structure and the dynamic response of the system. In addition, we are able to utilize the
signal processing properties of the network under specific perturbations to better
understand the general properties of the network structure and function.

Mitogen-activated protein kinase (MAPK) pathways are highly conserved from
yeast to humans and are responsible for mediating a cellular response to various
extracellular signals, including stress and developmental cues. To learn how signals are
processed in a MAPK cascade, we begin by using periodic stimuli to experimentally
measure the frequency response of the osmo-adaptation pathway in Saccharomyces
cerevisiae (Hohmann 2002). This network contains multiple feedback loops, which act to
maintain intracellular osmolyte concentrations in response to changes in the extracellular
osmolarity. These feedbacks utilize diverse mechanisms such as protein-protein
interactions, gene expression, metabolic activity and membrane channel regulation.

We constructed a flow chamber apparatus capable of applying square wave
pulses of osmolyte to cells with temporal resolution on the order of seconds while
simultaneously imaging cells to quantify the system activity. Using the chamber, the
network's output (assayed by nuclear translocation of the MAPK Hogl) is measured in
response to a broad frequency range of square wave signals of the osmolyte NaCI.
System-identification methods from control engineering are used to infer a concise
predictive model of the dynamics of the MAPK Hog1. Possible model architectures that
can give rise to the observed signaling dynamics are explored and then compared with
known genetic and biochemical data. We find that the dynamics of osmo-adaptation is
dominated by a fast-acting negative feedback through Hog1 that does not require
synthesis of new proteins.

Given that de novo protein synthesis is not important for cells to adapt to osmotic
shocks, it is natural to ask what the role of new protein synthesis is in the osmotic shock



response. This was accomplished by measuring the response of cells to pulses of

osmolyte when cells were unable to produce new proteins. We found that at elevated
osmo-shocks the additional, much slower, negative feedback acting through gene
expression allows cells to adapt faster to future stimuli once cells have already adapted

to previous stimuli. This analysis sheds light on how the multiple feedback structure of

the osmo-adaptation network allows cells to respond rapidly and robustly to fluctuating
extracellular environments.

Gene Expression in Fluctuating Environments
Gene expression is often the cornerstone of cellular responses to a variety of
environmental stimuli. For example, as we explore in Chapter 3.1, when presented with
an increase in extracellular osmolyte, cells synthesize proteins responsible for producing
intracellular osmolytes, thereby counteracting the increase in extracellular osmotic

pressure. Cells must decide how much protein to produce given a specific extracellular

signal; if they produce too little they will not effectively balance out the extracellular
signal, whereas if they produce too much, they will overshoot the desired response.
Several factors complicate the decision of how much protein to produce. First, protein

production is not an instantaneous process. From the initiation of transcription, it can
take up to 30 to 60 minutes for the proteins to become fully functional because of the
delays in transcription, translation, protein folding and post-translational modification.
Further, once proteins are produced, they are often degraded slowly. This means that
any newly synthesized proteins likely remain in the cell for long periods of time. This can
lead to significant overcompensation if the external stimulus is short lived, which can be
potentially toxic to the cell. Finally, proteins production is not "free"; cells must be sure
that the benefit of the new proteins justifies the resources used to producing them.

We chose to measure how cells decide what quantity of proteins to produce
when presented with a temporally changing environment. As a reporter of gene
expression, green fluorescent protein (GFP) was incorporated under the control of a
promoter that is activated in response to increases in extracellular osmolarity. Cells
were then exposed to a slow but steadily increasing concentration of extracellular
osmolyte, while the amount of GFP was measured in a population of cells. We find that
a larger concentration of protein is produced when cells are exposed to more rapid
increases in osmotic pressure than when the increase is gradual. This finding is
consistent with a model of gene expression where cells are attempting to predict the



concentration of extracellular osmolyte at some point in the future by measuring the

current rate of change. We combine this analysis with the analysis of the activation of

the upstream signaling cascade presented in Chapter 3.1 and discuss the relative

contribution to signal processing for upstream and downstream components.

Discrete Decisions and Stochastic Transitions

In some cases, rather than choosing and fine-tuning a response to an environmental

perturbation out of a continuum of possibilities, cells will make a decision between

discrete courses of action. For example, in the development of multi-cellular organisms,
each cell has identical genetic information but implements a different genetic program

based on its cell-type. As the organism develops, each cell must make a set of discrete

decisions about which type of cell to become, and then it must remember these

decisions indefinitely. Another example of a discrete choice is the regulation of genes

responsible for utilizing an energy source present in the environment. Cells make this

decision depending on whether there is enough of the metabolite present to make its

metabolism beneficial. Implementing these decisions typically involves stably modifying

the expression levels of key genes, leading to a distinct gene-expression pattern and

phenotypic state.

Recent work with simple endogenous (Ozbudak et al. 2004; Acar et al. 2005;
Suel et al. 2006) and synthetic (Gardner et al. 2000; Becskei et al. 2001) gene networks

has elucidated how these stable gene expression states are established. At their core,
these networks typically consist of a positive feedback loop that allows for two or more

gene expression states to be stable in a given extracellular environment. Simple

deterministic models have been developed which can explain how these multiple steady

states are formed (Chung et al. 1996; Ozbudak et al. 2004). At the same time more

complex models have attempted to describe how the discrete and stochastic nature of

molecular events inside cells can affect the proportion of cells in each stable phenotypic

state when the system has reached a steady state (Gardner et al. 2000). Although

much work has been done recently to understand how the stochastic nature of gene

expression can affect variability of protein levels in single cells (noise) (Arkin et al. 1998;

Thattai et al. 2001; Ozbudak et al. 2002; Paulsson 2004; Hooshangi et al. 2005; Pedraza

et al. 2005), it is still an open question as to how noise affects the dynamics of the

decision-making processes in single cells.



Chapter 4.1 and (Mettetal et al. 2006) experimentally examine a system whose
dynamics are heavily influenced by stochastic effects. Distributions of protein numbers in
a population are measured as a function of time in the Escherichia coli lactose uptake
network (lac operon). This network is well known for presenting an all-or-nothing (ON or

OFF) gene expression response depending on the environmental conditions.

Populations are exposed to time varying environmental conditions, which cause them to

transition between the stable phenotypes, while gene expression levels are measured in

single cells. These data show that two distinct types of transitions between steady
states occur: ballistic and stochastic. Ballistic transitions are characterized by a
population that transitions together in a synchronous manner from one state to the other.

On the other hand, stochastic transitions occur when individual cells randomly switch

from one state to another independently of the other cells in the population. A dynamic

stochastic model is then introduced to show that predicting the dynamic distributions of

protein levels characterizing these transitions requires only a few noise parameters in

addition to the rates that characterize a deterministic model. Whereas the deterministic

model cannot fully capture the observed behavior, the stochastic model correctly

predicts0 the experimental dynamics without any fit parameters. These results provide a
proof of principle for the possibility of faithfully predicting dynamic population

distributions from deterministic models supplemented by a stochastic component that
captures the major noise sources.

Correlations in Switching Dynamics
When cells divide, an entire pattern of gene expression can be passed from mother to
daughter via inherited proteins and epigenetic chromatin modifications. Once cell
division is complete, stochastic processes within cells cause this similarity to diminish,
with closely related cells growing less similar over time as a result. Recent investigations
of gene expression in single cells revealed the decorrelation time between related
individuals (Rosenfeld et al., 2005) resulting from the inherently stochastic nature of
mRNA and protein production. Nevertheless, it is still unclear how the correlation time
affects decision making. In Chapter 4.2 and in (Kaufmann et al. 2007) we measure
inheritance of a gene-expression state, and its subsequent decorrelation, in single yeast
cells.

To accomplish this, a genetic network is engineered such that individual cells
stochastically transition between two semi-stable states (ON and OFF) even in a



constant environment. We demonstrate that the switch times from the OFF to ON states

are well described by a constant-rate stochastic process. At the same time, we find that

even several generations after cells have physically separated many pairs of closely

related cells switch in near synchrony. We quantify this effect by measuring how likely a

mother cell is to have switched given that the daughter cell has already switched. This

yields a conditional probability distribution very different from the exponential one found

in the entire population of switching cells. We measure the extent to which this

correlation between switching cells persists by comparing our results with a model

Poisson process. Together, these findings demonstrate the inheritance of a dynamic

gene expression state whose post-division changes include both random factors arising

from noise as well as correlated factors that originate in two related cells' shared history.

To explain the behavior observed, we construct a stochastic Monte Carlo model that

demonstrates that our major findings can be explained by burst-like fluctuations in a

single regulatory protein. The model retains Poisson switching statistics while also

explaining the simultaneous switching time observed between distantly related cells. A

counter-intuitive aspect of the model is that the long-time correlations are actually

induced by randomness in the production rate of the regulatory protein, and the

correlations increase as more noise is introduced. Finally, we discuss potential benefits

and hindrances imposed by having cellular decisions occurring with synchrony in a

population.

Transduction and Fidelity of Spatial Signals

It is generally assumed that single cells in an isogenic population exhibit the same

behavior when exposed to an identical environment. However, it is becoming

increasingly clear that even in a genetically identical population, gene expression levels

can vary significantly from cell-to-cell giving rise to non-genetic individuality. It is an open

question whether a conceptually similar individuality can be observed in other cellular

activities, such as signal transduction. For example, it is unknown how the fidelity of

sensing a directed extracellular cue varies from cell-to-cell. Many studies have been

performed on sensing directional signals in single cells, however, most work on this topic

ignores cell-to-cell variability and has instead focused on understanding the deterministic

mechanisms by which extracellular gradients were transduced and processed (Insall et

al. 1994; Lilly et al. 1995; Xiao et al. 1997; Parent et al. 1998; Levchenko et al. 2002;

Janetopoulos et al. 2004; Manahan et al. 2004; Van Haastert et al. 2004). In Chapter



4.3 and in (Samadani et al. 2006) we explore the concept of population variability and
signal fidelity in the gradient sensing response of single Dictyostelium cells when
exposed to repeated spatio-temporal pulses of the chemoattractant cyclic adenosine
monophosphate (cAMP). We find the response of a single cell to be highly reproducible
from pulse-to-pulse. In contrast, a large variability in the response direction and
magnitude is observed between cells, even when different cells are exposed to the same
pulse. We find that this variability comes from two sources: 1) random orientation of an
intracellular asymmetry between cells and 2) cellular individuality in the magnitude of this
intracellular asymmetry. To explain these results, we propose that the effective signal a
cell detects is the product of the extracellular cAMP signal and the randomly oriented
intracellular signal. Using this model we successfully predict the observed population
response to extracellular signals. This stochastic aspect of directional sensing might, on
one hand, fundamentally limit the fidelity of signal detection and, on the other hand,
might be beneficial by diversifying phenotypes in an isogenic population.

Bet Hedging as a Strategy for Surviving Fluctuating Environments
A classic problem in population and evolutionary genetics is to understand how a
population optimizes its fitness in fluctuating environments (Cohen 1966; Levins 1968;
Schaffer 1974; Stearns 1976). Rather than maintaining a phenotypically homogenous
population, a population might enhance its fitness by allowing individual cells to
stochastically transition between multiple phenotypes, ensuring that some cells are
always prepared for an unforeseen environmental fluctuation. Recent theoretical models
(Lachmann et al. 1996; Thattai et al. 2004; Kussell et al. 2005; Kussell et al. 2005; Wolf
et al. 2005) have proposed that such a strategy is optimized when the transition rate
between phenotypic states is tuned to match the rate of fluctuations in the environment.
In Chapter 5.1 we experimentally explore how switching rates impact the population
fitness using the galactose utilization network of Saccharomyces cerevisiae.

A yeast strain is genetically engineered that randomly transitions between two
phenotypes due to stochastic gene expression (Paulsson 2004; Kaern et al. 2005;
Samoilov et al. 2006; Kaufmann et al. 2007; Maheshri et al. 2007). Each phenotype is
designed to confer a growth advantage over the other phenotype in a certain
environment. A custom turbidostat setup was built to accurately (2% error) measure the
population growth rates over long periods of time (up to 2 weeks). We compared the
growth of two populations with different switching rates between the phenotypic states



after environmental transitions. We find that fast-switching populations outgrow slow.

switchers when the environment fluctuates rapidly whereas slow-switching phenotypes

out compete fast switchers when the environment changes more rarely. These results

confirm the theoretical findings that, in order to enhance population fitness, cells may be

able to tune their inter-phenotype switching rate to the frequency of environmental

changes.



2 Background

2.1 Quantitative Methods

Fully understanding the cellular systems that are responsible for signal processing and

decision-making in single cells requires that we sidestep the reductionist approach

historically taken in biology research. It is not enough to study individual components or

interactions alone; rather, the entire network must be studied collectively. By combining

traditional biochemical techniques with mathematical models, the systems level

approach has been extremely useful in understanding a variety of biological phenomena

at the level of emergent network behavior (Ideker et al. 2001; Kitano 2002). This chapter

explores several simple systems that illustrate key concepts relating to the processing of
dynamic signals, decision-making, and stochastic effects (noise) in single cells. First,
the properties of bistability are explored in a simple gene regulatory network with positive

feedback. The second section uses Fourier analysis to explore how dynamic signals are

propagated through gene regulatory networks. Finally, the last section details how

stochastic effects in simple biochemical reactions and reviews how this noise affects
cell-to-cell variability in gene expression levels.



2.2 Decision Making: Positive Feedback and Hysteresis
Positive feedback is a common gene regulatory motif that is important for cellular
decision making. For example, cells can use this type of network in order to implement
a "memory device" where a gene-expression program remains in action after a transient
stimulus has been removed (Gardner et al. 2000; Xiong et al. 2003; Ozbudak et al.
2004; Acar et al. 2005). At their core, these networks function by using the proteins
produced from a gene to positively regulate (directly or indirectly) the promoter of that
gene. When the transcription factor is present at very low levels, transcription of its gene
locus is infrequent and the level of transcription factor remains low. On the other hand,
when the protein is present in large quantities, transcription occurs at a high rate and the
protein levels remain high. The concept of bistability induced memory is used
extensively in several systems studied in Chapters 4.1, 4.2, and 5.1. This section
demonstrates how memory and hysteresis arises in the context of a simple positive
feedback network, and while the systems explored in later chapters are more complex,
they share many similarities with the example given here.

rON roFF Tr

Figure 2.2.1 Simple feedback in a gene regulatory network. The gene p is transcribed to mRNA
and translated into protein P. Protein P can bind to the promoter increasing the rate ofexpression of the protein P.

To understand how bistability can arise when positive feedback is present in a
network, we begin by examining a system that has a positive feedback but does not
exhibit bistability. The system is shown in Figure 2.2.1 where the transcription rate of a
gene is regulated by its own gene product. In this scenario, the gene p encodes for
protein P. The protein P binds to a promoter upstream of the gene with a single binding
site. The rate at which the protein binds to its site on the promoter is first order in protein



levels and written as, rONP, where P is the concentration of the protein. Bound proteins

can then unbind with a rate rOFF, which does not depend on the concentration of free

proteins, but rather on the intrinsic affinity between the protein and the DNA. mRNA

(quantified by R) is produced from the DNA with rate a only when a protein is bound to

the binding site, while protein is produced from mRNA with rate p. mRNA is degraded

linearly with a rate constant yR while protein is degraded linearly with a rate constant y,.

The fraction of time a protein is bound to the binding site is written fbound, and these

processes are summarized in the following equations:

R = afbound - yRR
dt

d P = R - ypP
dt
rONP(1 - fbound) = rOFFfbound

We set the time derivatives of R and P to zero in order to find steady state solutions to

the system of equations, resulting in the following relations:

fbound = rPrONP + rOFF

R = a -- fbound

P ap bound
YP YPYR

Depending on the exact values of the parameters solving for P can give either two or

one steady state protein concentrations. For aFYoN > YPYRrOFF, the steady state solutions

are:

P = {0, ap roFF
YPYR rON

where the first steady state is unstable and the second is stable. When atoN < YPYRrOFF,

there is a single stable steady state at P=0. In either case, the system always has a

single stable steady state. The steady state is shown graphically in Figure 2.2.2 as



intersections between the rate of production and rate of degradation of proteins. From
Figure 2.2.2 it is clear that since the slopes of both curves are monotonic, they will
intersect at a maximum of two points leading to a single steady state solution, and to get
more than two steady states one of the two curves will need a non-monotonic slope.

n,"
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Figure 2.2.2 Rate of protein creation (blue) and destruction (green) as a function of protein levels,P. When the production is greater than degradation, protein levels increase (red arrows to right),but when destruction is greater than production the protein levels decrease (red arrows to left).
This means that there will always be at most a single stable steady state (red arrows point
towards steady state) at either one or zero non-steady states (red arrows point away from steady
state).

Bistability can be achieved very simply by modifying the example above and
introducing multiple interacting binding sites at the promoter of the gene. Interactions
between the proteins can cause the second protein to bind more or less rapidly when a
first protein has already bound to one of the two binding sites (Figure 2.2.3). Assuming
identical binding sites, al and a2 are the rates for going from zero bound to one bound
and from one bound to two bound, respectively. b2 and bl are the rates for going from
two bound to one bound and from one bound to zero bound, respectively. In this case
the fraction of time DNA spends with one protein bound is f, and with two bound is f2,
and assuming that protein is available in excess the dynamics of the bound fractions are
given by the following equations:



S= bf, - af
if= afo +b2 2 - bf -a 2f
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Figure 2.2.3 Autoregulatory network with dual identical binding sites. Transcription rates are low
when there are zero or one proteins attached to the DNA. When two proteins are attached,
transcription occurs at a higher rate. Proteins bind and unbind to the DNA preferentially when
there is already a single protein occupying the other binding site.

Assuming that the reactions are in steady state and that there is a small basal rate of

mRNA production (basal) in the absence of two bound proteins the equations governing

production of the protein will be:

1

+ b2 + b,
1+ (1+ 1 )a2P aP

R = a f2 + basal
YR

P = R = •(af + basal)
YP YP YR

This set of equations can have one, two, or three steady state solutions (Figure 2.2.4).
For small values of a, there is only one steady state solution. At intermediate values,

a,

b,



there are three steady states. The lowest and highest steady states are stable, while the
middle steady state unstable. In this range of parameters, identical cells can have
different levels of protein depending on which stable steady state they are in. For large
rates of protein production, there is only one large steady state with a large amount of
protein.

4

S 3
o, o0 2

Ca O/I 2 o

Protein Level Protein Level Protein Level

Figure 2.2.4 Steady states for the multiple identical interacting binding site system. Blue line is
protein production rate, while green line is protein degradation rate. When a is small (left panel)
there is a single stable steady state at low protein levels. For intermediate values of a (center
panel) three steady states are possible, a low stable steady state and a high stable steady state
are separated by an unstable steady state. For high values of a there is only a single steady
state at high protein levels. Parameters used are P= 10, yp = 1, 7,= 10, basal = 0.025, a, = 1, a2
1, bl = 5, b2 = 0.5.

These steady states are graphed in Figure 2.2.5, where the stable and unstable

steady are shown in green as the parameter alpha is varied. Because of the

arrangement of steady states, this system can exhibit hysteresis (Figure 2.2.5). Cells

initially prepared in the ON (OFF) state with large (small) a, will remain in the ON (OFF)

state when a is slowly decreased (increased) into the bistable region all three steady

states exist for a single value of a. Since these states are stable, cells will only leave

these states if a is modified so that the states are no longer stable (Figure 2.2.5, red

arrows), or if stochastic effects drive a rare transition between the states (Kramers 1940;

Risken 1996; Acar et al. 2005). This is similar to thermal noise driving transitions
between local minima in an energy landscape. Here the stable states correspond to the

local minima, the local maxima correspond to the unstable steady state, and thermal

noise is similar to the noise introduced by stochastic effects due to gene expression and
other biochemical processes.
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Figure 2.2.5 Steady states plotted as a function of the parameter a. Low values of alpha have a
low stable steady state protein level, while high values have a stable high protein level.
Intermediate values of a can stably support either high or low levels of protein.



2.3 Signal Processing: Network Structure and System Dynamics

To illustrate the connection between network topology and system dynamics, we
consider the dynamic signal-processing performed by a single gene that encodes for a

protein P. Here it is assumed that the rate of transcription of this gene is instantaneously

affected by the concentration of a transcription factor, S, whose concentration is varying

over time. Further, the protein is assumed to degrade linearly with a rate yp. By also

assuming that the production and degradation of mRNA is very fast compared to the

dynamics of protein levels, we can write the following relation for the concentration of

protein, p:

p = f(s)- ypp

Here f(s) is the rate of protein production (accounting for both transcription and

translation) for any given concentration of transcription factor, s. A schematic

representation of this process is shown in Figure 2.3.1.

0 Output

Signal

Input T

Signal S)

Figure 2.3.1 A single gene, p, under control of a transcription factor S. Molecules of S bind to the
promoter region of the gene and cause the rate of gene expression to change (quantified by f(s)).
Proteins, P, are linearly degraded with rate y,. The time dependent concentration of protein is the
module output. The filtering properties of this module are obtained by analyzing this system in
the frequency domain.

If we assume that the fluctuations in the concentration of s are sufficiently small, we can

use a linear approximation of this relationship:



Sp = f(so) + 1dfs) - (p + p)

Here we defined & and Ap as deviations from a basal activity so and po:

Ss = s - so

P=P-o = df(s)
Yp ds I=, )

By defining the Fourier transform of &s and 8p as:

s(mo) = js(t)e'•dt

0s(o) = jp(t)e'"dt

the dynamic relation between 8s and 5p can be rewritten in Fourier space as:

1 df(s)
io) + yp ds =,

This relation allows one to determine the "filtering" properties of this gene as a function
of the signal's frequency. Figure 2.3.2 shows the amplitude and phase of the output

signal in response to an input of constant amplitude and phase, s(t) = so + cos(wt). For

low frequencies, the signal is propagated without damping and without a significant
delay. At higher frequencies, the signal is quickly filtered out by the slow accumulation
and degradation of proteins. The output signal for a given frequency input signal is

determined by two parameters alone. First the derivative df(s) 1 determines the
ds _

magnitude of the output because it quantifies how sensitively p depends on changes in
s. Similarly yp, determines the magnitude because it controls how quickly the protein is



degraded. As the only parameter containing units of time, y, sets the 'cutoff frequency'

(Figure 2.3.2) at which point the amplitude of the output signal begins to decrease.
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Figure 2.3.2 Filtering properties of a single gene with unit gain. The top panel is the amplitude of
the output when the upstream transcription factor oscillates at frequency o with unit amplitude.
The bottom panel is the delay, represented as a phase shift <. For frequencies lower than O = 1,
the gene output faithfully follows the input with little delay. At high frequencies the system filters
out the fluctuations in transcription factor. The parameter yis set to one in this calculation.

Next, we examine the filtering properties of a more complex gene regulatory

network similar to that of the 'repressilator' constructed by (Elowitz et al. 2000). By
utilizing nonlinear effects and large gains, this synthetic gene regulatory network is

known to produce spontaneous oscillations, suggesting that the simplified model
analyzed here should have a non-trivial frequency-dependent behavior. This network

consists of three genes: x, y, and z each encoding for a protein X, Y and Z respectively.

Gene x is regulated by protein Z as well as by an upstream transcription factor S.
Protein X binds to the promoter of y and regulates its expression, while Y binds to the

promoter region of z and regulates its expression. The concentration of transcription

factor S is therefore the input of the module and the concentration of protein X is the

output. This process is shown in Figure 2.3.3.
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Figure 2.3.3 Signal processing module comprised of three genes, regulating each other in a 'ring-
like' structure. When these proteins repress expression of the downstream genes, this network is
similar to that of the repressilator (Elowitz et al. 2000). Each protein effectively regulates its own
expression through an intermediate gene, and this leads to delays which can make this network
especially sensitive to specific driving frequencies.

The genes y and z form a feedback loop on the expression of x, and the delay

associated with this cascade will cause the network to be more sensitive to some input

frequencies than to others. Again, assuming first-order protein degradation of rate yfor

all proteins and fast mRNA production degradation kinetics, the dynamic equations

governing protein levels (Elowitz et al. 2000) can be written as:

x = f(s,z)- yx

y = g(x)- yy
= h(y)- yz

After defining deviations from a baseline network activity,

-S = S - So

f(SoZo),X = X - Xo = X (SO, zo

Sy =-y - yo = Y - g(xo)

z = z - zo = z h(y)
Y



and linearizing about this state, the dynamic equations become:

si = f,(so,Zo)3s + f (so,Zo)SZ - y6x

sy = g'(xo)Sx - ySy
si = h'(yo)Sy - yz

Here f' and fz are the partial derivatives of f with respect to s and z respectively at the
point So, z0. By defining Fourier transforms of the dynamic variables as before, the
dynamic equations can be written in frequency space as:

io&Si = fS(so,z o)6s + f~ (so, zo )63 - y7

iroj = g' (xo)3i - y79

iofii = h'(yo,)j - y,2

Finally, by solving for the Fourier transform of Sx alone, the dynamic relationship

between input and output can be written as a single equation:

8(8V (y+ io)2 f'

(y + iW)3 - fzgl h'

The frequency response is presented as a Bode plot in Figure 2.3.4. Because of the

delay associated with the feedback through genes y and z, we see that the amplitude

exhibits a peak in the response. The behavior is similar to that of a band-pass filter

where a narrow band of frequencies are allowed to pass through while frequencies

outside of the band are filtered out of the output signal.
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Figure 2.3.4 Frequency response of the three gene network. Top panel is the response
amplitude as a function of frequency, while bottom panel is the phase shift. This plot was
generated using y= 1, and a gain of -4 for each gene.

These two examples illustrate the signal processing properties of two simple gene
regulatory networks. As seen in the first example a single gene controlled by an
upstream transcription factor will have certain low-pass filtering properties that act to
constrain the range of signals to which the downstream protein levels will be sensitive.
The second example demonstrates how these modules can be connected to perform
more complex filtering properties. By exploiting the inherent delay present in a signaling
cascade (here gene y affecting gene z) a gene regulatory network may be highly
sensitive to a narrow band of frequencies while filtering out higher and lower
frequencies. It is worth noting that the example presented here does not autonomously
oscillate; given a non-fluctuating input signal, oscillations in the network will decay over
time. Nevertheless, large gains combined with non-linearities can cause a gene
regulatory network with an identical structure to oscillate in the absence of a driving
signal (Elowitz et al. 2000). While the calculations presented here use linearized
equations and therefore do not capture this behavior, they still predict that the network
will resonate strongly at a specific input frequency.
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2.4 Noise in Gene Expression

Biological networks frequently contain chemical reactions where reactants are present in
low numbers of discrete molecules, and this introduces inherent stochasticity to the
processes performed by these systems. The numbers of particular molecules in cells
can vary widely (from a single copy for DNA to tens or hundreds of thousands of copies

for a single species of protein), and the timing of individual reactions occurs in a random
manner. From simple statistical arguments, when the number of molecules is relatively

abundant, the expected cell-to-cell variability from the intrinsic stochasticity of that
process should be low. On the other hand, processes involving molecules with low

numbers or rare events, such as mRNA transcription from DNA, will yield larger amounts
of variability. Cell-to-cell variability due to stochastic gene expression has historically

been observed in a variety of contexts (Delbruck 1945; Benzer 1953; Lederberg et al.

1956; Novick et al. 1957; Powell 1958; Maloney et al. 1973; Spudich et al. 1976), but

only recently have the origins and details of this noise been experimentally and

theoretically understood. This section will introduce some of these concepts by
discussing the intrinsic noise of a constitutively expressed gene as well as the level of

noise in a gene controlled by a noisy upstream transcription factor.

The process of mRNA production from the DNA template on a constitutively

expressed gene is sufficient to illustrate how stochastic effects are introduced during

biological processes. Here the DNA is transcribed by RNA polymerase resulting in

mRNA. mRNA is assumed to be degraded in a Poisson manner. The rate of production

of mRNA (m) is written as a, while the degradation rate for m molecules of mRNA is ym,

linear with the number of mRNA molecules. This process is summarized in Figure 2.4.1.

a a
p(m-1) p(m) p(m+)

yK(m+1)

Figure 2.4.1 The rate of change of the probability of having m molecules of mRNA depends on
the probability of having m-1 and m+1 molecules of mRNA. Right arrows indicate rate of
production of mRNA molecules, while left arrows represent their rate of degradation.



The probability of having a cell with m mRNA molecules is written as p(m). The

process of creation and destruction can then be written in master equation form:

p(m) = -p(m)(my + a) + (m + 1)p(m + 1) + ap(m - 1).

When this process is stationary, p(m) = 0 and the equation has solutions of the form:

p(m) =

This is a simple Poisson distribution, and therefore has the following properties:

(p(m)) =

7(p(m)2) - (p(m))2 =

Therefore, the expectation is that from a single gene the variance in the number of

mRNA will be of equal to the mean number of mRNA's present in the cell.

Fluctuations in protein levels are also important for affecting a cell's phenotype

and therefore noise in protein levels must be quantified in a similar manner as
fluctuations in mRNA levels. Before degradation, a single mRNA molecule may be
translated multiple times; each round of translation by a ribosome results in the
production of a new protein. This has the effect of amplifying the noise present in mRNA
levels leading to variability in protein numbers beyond those expected from simple
Poisson statistics (i.e. variance in protein levels will be much larger than the average
number of proteins). A similar calculation has been performed which takes into account
fluctuations in protein levels due to the discrete nature of the proteins in addition to the
discrete level of mRNA inside cells. The resulting variability in protein levels arising from
the intrinsic noise of mRNA and protein production and destruction can be approximated
as <gn2> = <n> (b+l) (Thattai et al. 2001; Ozbudak et al. 2002), where n is the number
of proteins present in a cell, and b is the average number of proteins produced from a
single mRNA. Because the proteins are produced from a single mRNA rapidly in



relation to the protein lifetime, the process of transcription from a single mRNA is
commonly referred to as a 'burst' of translation, and b is referred to as the 'burst size'.
Again, it is worth noting that this bursting process is amplifying the noise present in the
mRNA levels, causing proteins to have a variance, which is much larger than the mean
number of proteins.

While this example demonstrates how noise can be intrinsically generated by a
genetic network, variability in protein levels can also be introduced from extrinsic
sources. This is because other factors (e.g. numbers of ribosomes or upstream
transcription factors) often directly influence the rate of expression of a gene, and any
variability in the levels of these molecules will be transmitted directly into fluctuations in
the downstream gene of interest. This effect has been calculated theoretically (Thattai
et al. 2002; Paulsson 2004) and quantified experimentally (Hooshangi et al. 2005;
Pedraza et al. 2005; Rosenfeld et al. 2005) in simple gene-regulatory cascades where
noise from upstream genes is propagated into downstream gene expression levels.
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Figure 2.4.2 Regulatory cascade used to demonstrate propagation of noise from an upstream to
downstream gene. The first gene is constitutively (and noisily expressed) while X proteins can
bind to the promoter region of y, regulating the production of Y proteins.
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The propagation of noise from one gene to the next can be understood by

examining the following model system shown in Figure 2.4.2. Here protein X is

constitutively produced with rate ax, while fluctuations in X are propagated downstream

into the transcription rate of gene y. Both proteins are assumed to be lost linearly with

rate y. The rate of protein production for gene y is f(X) which is linearized about the

steady state and written as ay+ f(X-a-xy). These linearized equations can be written for

the dynamics of the two proteins, using the Langevin formalism:

X =ax - yX + 1x

Y = ay +fl(x - x) - yY + ,

Here irx and y, are random noise terms representing the stochastic variability introduced

by intrinsic fluctuations arising from the stochastic nature of X and Ys gene expression.

Here we assume that the fluctuations propagated from X into Y are sufficiently small that

qy is not significantly changed. Statistically, ,x and q, are derivatives of a Wiener

process and are uncorrelated random processes with strengths characterized by the

definitions:

< 17 >= 0

< ix,y (t)]x,y (t + At) >= 0•_-x,,S(At) .

Here 17-x and rq_, capture the magnitude of intrinsic fluctuations in X and Y. Defining

deviations from steady state values for X and Y as SX = X- x and SY = Y - 5, and
Y Y

Fourier transforming results in the following relations:

(ioj + y)SX = Ox
(ico + y)64 = P68 + •

Solving for (6X5*') and applying the Wiener-Khintchine Theorem results in a variance

for X given by:



2

2,v

Similarly, solving for S' yields:

(ico+ r)sY-fi +?
(ia + Y)

Applying the Wiener-Khintchine Theorem and noting that the intrinsic fluctuations

between X and Y are uncorrelated, (•xv) = 0 , results in:

2 2
S Y' -YO-_  2 • o-X

27 4y3

Similar to previously derived equations (Paulsson 2004), the resulting variance in Y is

the sum of noise from two sources. The first term on the RHS characterizes fluctuations

due to noise intrinsic to the expression of Y proteins, while the second term on the RHS
characterizes the noise propagated into the protein levels by noise in the upstream
protein, X. Intuitively, the magnitude of this noise is directly dependent on how strongly

X influences Y, characterized by P.



3 Biological Systems and Dynamic Signals



3.1 Probing Network Dynamics with Periodic Stimuli

3.1.1 Introduction

Cells have evolved intricate and elaborate mechanisms to sense and respond to
environmental changes, and these mechanisms involve complex systems of biochemical
reactions that occurring over a wide range of timescales. For instance, the processes
involved in a cellular response can be very fast, such as association and dissociation

between a ligand and its receptor, or very slow, such as protein synthesis. Though a
system may be comprised of hundreds of reactions, often only a few of these reactions

will dictate the system dynamics. Thus, building models that accurately reflect system

dynamics requires identifying the dominant processes and measuring them

quantitatively. Unfortunately, identification of such processes is often difficult, and many

models instead incorporate present knowledge of all known biochemical reactions in the

system. Although occasionally successful (Tyson et al. 2001; Slepchenko et al. 2003;
Kitano et al. 2005; Klipp et al. 2005), this exhaustive approach can still suffer from

missing information such as unknown interactions or parameters.

In this chapter we utilize systems engineering tools to study how oscillatory

signals propagate through a signal transduction cascade, thereby enabling us to identify

the properties of key reactions and to make a simple model of system dynamics. The

cornerstone of this approach is to measure cascade output in response to input signals

oscillating at different frequencies (Oppenheim 1983; Ljung 1999; Westwick 2003). For

instance, fast reactions can be studied by stimulating the cells with a rapidly oscillating

input; under such conditions, slow reactions cannot respond strongly to the rapidly

changing signal. By contrast, the contribution of slow reactions can be measured with

slowly oscillating inputs, where fast reactions equilibrate and cease to affect system

dynamics. By comparing the frequency response of the wild-type network to that of

mutant strains, the molecular underpinnings of the dominant time-scales can be

determined. Studies of neural and other physiological systems have employed these

principles from systems theory (Westwick 2003), while pioneering work has begun to

apply control theory concepts to cellular networks (Savageau 1976; Block et al. 1982; Yi

et al. 2000; Samoilov et al. 2002; Ingalls 2004; Lipan et al. 2005; Sontag 2005).
We focus on the high osmolarity glycerol (HOG) Mitogen-activated protein kinase

(MAPK) cascade in the budding yeast Saccharomyces cerevisiae. This cascade forms a



core module of the hyperosmotic-shock-response system and is particularly well suited

to frequency-response analysis for several reasons. The system contains multiple

negative feedback loops that differentially regulate osmoadaptation on different time-

scales (Hohmann 2002; Klipp et al. 2005; Gennemark et al. 2006), but it is still unclear

which negative feedback loop(s) dominates the system dynamics. Additionally, it is
unknown if the different feedback loops have distinct biological functions. Here, we

determine properties of the main negative feedback loops in the HOG network and arrive
at a concise predictive model of the signaling dynamics. Furthermore, by analyzing the

system's dynamics over a range of osmotic shock strengths, we begin to understand
how the multiple feedback architecture might be beneficial for osmoadaptation in
fluctuating environments.



3.1.2 Network Architecture

The system we study with periodic stimuli is the osmoregulatory network in

Saccharomyces cerevisiae. This system has been extensively studied (Hohmann 2002),
and many of the salient interactions are shown in Figure 3.1.1. The network is able to

keep intracellular osmotic pressure in check with the extracellular osmotic pressure

through a set of negative feedback loops. Changes in osmotic pressure are sensed

through several mechanisms. First, the transmembrane proteins Shol and Sin1 are

activated in response to osmotic shock, and both proteins lead to downstream increase

in Pbs2 activity. Doubly phosphorylated Pbs2 acts as a kinase to phosphorylate two

sites on the MapK Hog1 causing it to be activated. Active Hog1 preferentially

translocates to the nucleus where it can activate gene expression for a large number of
genes, notably Gpdl and Gpp2, which increase the rate of glycerol synthesis. Glycerol

is used as an intracellular osmolyte by the cell to increase the internal osmotic pressure

and counteract any externally applied osmotic perturbations. In addition to this feedback

loop through Hog1, a second feedback loop exists through the membrane glycerol

transporter Fpsl. Under hyper-osmotic stress, Fpsl channels close increasing the

intracellular glycerol concentration, while under hypo-osmotic stress, Fpsl channels

open decreasing the intracellular glycerol concentration.
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Figure 3.1.1 Structure of the osmoregulatory network studied in this chapter. The network is
characterized by a multiple negative feedback structure. One feedback occurs through osmotic
pressure interacting with Fpsl channels, while the second occurs with Hogl's proposed
interaction with Fpsl. The final feedback loop occurs when Hog1 upregulates gene expression of
Gpdl and Gpp2 which increase the production of glycerol.

I

k.-

~g·--~~_~;_L~_-I_ ~;;i_~-C

------- 11-1~--·-^ ~~-· ~----~ I-··~-^·-~---·-··--r_1---·1^11·~------··

Ii

r



3.1.3 Experimental Setup

Cells are periodically stressed with an osmotic shock, using a flow chamber and a
computer-actuated valve to apply square-wave pulses of media with and without 0.2 M
NaCI while concurrently imaging cells and measuring their Hog1 localization (Figure
3.1.2). The chamber is constructed by cutting a channel into an adhesive gasket with a
thickness of 0.17 um (Grace Biolabs), which is then sandwiched between a microscope
slide and glass coverslip. Cells in log-phase growth from an overnight low-osmolarity
culture are concentrated (1mL of cells is spun at 13,000 rpm and resuspended in 0.lmL)
and immobilized on the coverslip with Concanavalin A. Cells are then visualized with an
inverted microscope (Nikon TE2000) and 100x phase contrast objective. Media is
constantly removed from the flow cell with a peristaltic pump (Pharmacia) coupled to a
125mL reservoir, which dampens sudden changes in pressure. A computer-controlled
valve selects the source of replacement media.

Top View

*i.Valve

Valve

Slide Gasket Inlet Cells Coverslip
with ConA

l----- --- - -~·--------

Computer Side View
control

Figure 3.1.2 Schematic diagram of the flow-cell setup. A pump removes media from the flow
chamber while a valve constantly selects from one of two fresh media sources.

To measure the time the flow chamber takes to equilibrate, a small concentration

of Rhodamine (Sigma-Aldrich) is added to the first media source. The average
fluorescence of a region in the middle of the chamber visualized with a 4x objective is
shown in Figure 3.1.4. The rapid equilibration of the fluorescent signal indicates that the
concentration of NaCI should also equilibrate in the chamber within 3-5 seconds.
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Figure 3.1.3 Fluorescent images of Rhodamine in a flow chamber using 4x objective.
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Figure 3.1.4 Flow cell characterization indicates that the time-constant for complete media
replacement in the flow chamber is significantly less than 10 seconds.

Upon hyperosmotic shock, membrane proteins trigger a signal-transduction

cascade that culminates in the double phosphorylation and activation of the MAPK
Hog1, which is primarily cytoplasmic prior to the osmoshock (Ferrigno et al. 1998). When
phosphorylated, Hog1 is rapidly accumulated into the nucleus. (Ferrigno et al. 1998;
Reiser et al. 1999). Once the osmotic balance has been restored, either through
changes to the extracellular environment or the intracellular osmolyte concentration,
Hog1 is no longer activated by the cascade, and the amount of nuclear Hog1 rapidly
decreases. We simultaneously monitored the cellular localization of a Hogl-YFP fusion
protein and Nrdl-RFP, a red fluorescent protein fused to a strictly nuclear protein. To
quantify the degree of Hog1 nuclear localization, we define the dynamic response

-L



function, R(t)= < Y nucleus as the ratio (averaged over many cells) of mean<YFP >cell )population

YFP pixel intensity in the nucleus and mean YFP pixel intensity in the whole cell.

An time series of this process is presented in (Figure 3.1.5A). Here cells are
initially stressed with 0.2M NaCI for 4 min at which point the NaCI stimulus is removed.
At t = 0 the YFP signal is mostly homogeneously distributed within the cell, with a slight
excess in signal coinciding with the nucleus. This is reflected in the response

measurement that starts around R = 1.2 in the absence of stimulus. It has been
reported that unphosphorylated Hog1 can be imported into the nucleus (Westfall et al.
2006), and this measurement indicates that the basal import rate is slightly greater than

the basal export rate. The nuclear YFP signal increases rapidly within the first 1-2

minutes of stimulation and saturates at a response signal of roughly R = 1.6. This

suggests that the signal propagation though the cascade is fast (order of 1 minute).

Similarly, upon removal of stimulus, the nuclear YFP signal decreases rapidly over 1-2

minutes, eventually returning to the prestimulus level. This indicates that the turnover of

Hogl-YFP in the nucleus is reversible, and that the turnover rate (import/export) of the

proteins occurs on a timescale less than a minute or two.
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Figure 3.1.5 Localization of the fusion protein Hogl-YFP acts as a reporter of the osmotic stress
pathway activity. Upon addition of extracellular NaCI, Hogl-YFP translocates to the nucleus,
which is visualized by the localization of Nrdl-RFP. When the stimulus is removed Hogl-YFP
rapidly translocates back to the cytoplasm. The population average translocation response (red
circles) is defined by the ratio of average YFP fluorescence in the nucleus to the average YFP
fluorescence. Bars represent standard error from pulse-to-pulse.



3.1.4 Frequency Response Data

Since we have demonstrated that we can quantify the response of the cells to alternating
environments, we next apply simple periodic square-wave stimuli using our automatic
flow cell apparatus and observe the average response in a population of cells. An
example of this is shown in Figure 3.1.6, where the driving signal, NaCI concentration,
oscillates between a concentration of 0 M and 0.2 M with a period of 16 minutes.

Stimulus: u(t) -. Driven -+ Response: R(t)
Svstem

1.60

-0

0.

0 50 100
Time [min]
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z1.2

0 50 100
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Figure 3.1.6 Square wave oscillations in the input of extracellular NaCI (blue line) with 16 min
period drive oscillations of Hogl-YFP translocation with the same frequency in a population of
cells (red circles).

The response of the system was measured when stimulated with square-wave
pulses with periods ranging from To = 2 minutes to To = 128 minutes and the raw R(t)
responses are presented in Figure 3.1.7. Two different behaviors are reached at the
upper and lower end of this range. For rapidly oscillating signals, To = 2 minutes for
example, the addition and removal of NaCI is too fast for the network to respond fully to
each pulse of osmolyte. Here, cells oscillate weakly at the driving frequency, and the
main feature of the R(t) curve shows that Hog1 initially accumulates in the nucleus within
about 2 minutes. After about 5 minutes it begins to leave, and after 10 minutes the
signal has returned to prestimulus levels. This is most likely occurring because the
system is averaging away the high frequency fluctuations and responding as if there
were a simple 0.1 M NaCI step function input. On the other end of the spectrum, To =
64min for example, the R(t) curves initially increase rapidly in response to each
individual pulse, and return to prestimulus levels after about 10 minutes of the initiation
of each pulse. This is occurring because the cells are in each environment long enough
to fully respond and finally adapt to each pulse of osmolyte. It is also worth noting that
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the cells respond in a very similar manner to each subsequent pulse, suggesting their

memory of the previous pulses is short lived (less than about 16 minutes).
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Figure 3.1.7 Example R(t) traces for the wild-type strain. Cells are stimulated with 0.2M square-
wave pulses of NaCI with periods, To, ranging from 2 min to 64 min. Black arrows indicate a new
field of view.

Once steady state oscillations have been reached, the output sine wave for

driving frequency c is represented through the formula (Figure 3.1.8):

R (t) = yo(w) + A(c)sin (ot +())

This has two parameters to characterize the oscillations, A and 0, and one parameter

which characterizes the baseline, yo. A and 0 are represented through the absolute value

and phase of the complex numberR(w) respectively. This complex number is calculated

from the Fourier coefficient of the experimental data, R,(t), taken for stimuli with period

To using the relation:
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(n+m)To -iR,(t )

R() )= 2 e R(t) dt.
nTo  m T0

The amplitude of the signal, is defined A(w) =1 R(w) 1, represents the half distance from

the peak to the trough of the output sine wave. The phase parameter, z(Co), can be

written implicitly as R(w) ei(#(w)-r/ 2). The parameter n is chosen so that the system is

allowed to reach steady state before calculating R(cw). The parameter m, which

represents the number of periods over which we calculate the Fourier transform, is set to

be at least two for periods less than 64 minutes. For periods greater than or equal to 64

minutes, we find the first period to be a good representation of the steady state

oscillations and calculate R(w) over this period alone. Using this Fourier analysis, we

approximate both the input and output signals as sine waves oscillating with a period

To = 2r. In principle, both the input and output signals also contain higher frequency

components. Nevertheless, here we focus on the driving frequency alone in order to

simplify analysis while obtaining significant information about the signal's strength and

timing. We quantify the response by a magnitude A(w) and phase shift b(w), shown as

Bode plots in Figure 3.1.9.
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Figure 3.1.8 Illustration of the input (NaCI concentration, blue line), the network response (Hogl-
YFP translocation, red circles), and the sine wave (black line) corresponding to the Fourier
component of the response at the driving frequency a. This Fourier component is described by
three parameters: A(w) (green) representing the amplitude of the oscillations, (o)) (brown)
representing the phase delay between the input and the response oscillations, and yo(ao)
representing the signal offset.



The main feature of the wild-type Bode plots is that around wo = 0.28 rad min -'

the slope of the A(co) curve (green circles) rapidly changes from positive to negative on
the log-log plot while the phase changes from -90 to +90 degrees (brown circles). This
frequency, co,, separates two behavioral regimes: at high frequencies, Hog1 filters out
the rapidly oscillating input, while for low frequencies, the Hog1 signal responds only to
changes in the extracellular osmolyte rather than the concentration itself. Further, the
magnitude of coc suggests that the relevant processes involved in the Hog1 response are
occurring with timescales on the order of 10 min or less.
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Figure 3.1.9 (A) Measurement of the Fourier amplitude A(o) over a range of driving frequencies
along with model fit to experimental data shows two different power law behaviors, o and 1/o. (B)
Phase of the response measured relative to the driving signal along with model prediction of the
phase. Error bars represent standard error.
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3.1.5 Phenomenological Model

We use linear systems theory to develop a predictive model for the response to arbitrary

osmotic input signals u(t). We fit a general second order linear time invariant (LTI)

model to the data in Figure 3.1.9 and use the parameters extracted along with a simple

non-linear element to predict the response to a step input of 0.2 M NaCI. We write the

linear input-output relationship in Fourier space as:

H(zn + i)
Y(w) = Ao n +  U(w)

I(pn + kO)

Here Y(a) and U(o) are the output and input Fourier spectra, respectively. The

simplest such model from this class that accurately describes our data has three

parameters z, = 0, and complex p, and P2 yielding:

(p, + iw)(p2 + ic)Y(w) = (ic)AoU(w)

Applying the inverse Fourier transform produces a time derivative of u and y for each
factor of io in the frequency-domain, resulting in the following relationship in the time-

domain:

i + (p, + P2+ (PP2)Y = AU 2[1]

A best fit analysis (Figure 3.1.9) yields values for the wild-type of Ao = 5.5x10-3 M-1

p, = (0.0026 + 0.0038i)s-1 and p2 = (0.0026 - 0.0038i)s - ', and for the mutant (Pbs2

underexpression) strain of Ao = 5.8x10 3 M-1 , P, = 1.2x10 .3 s -1, and P2 = 1.6x10-2 -1

This LTI model predicts that the system will produce a negative output, y(t), in
response to a dramatic reduction in the osmotic stimulus (large and negative zu).
However, we observe that the amount of Hog 1-YFP in the nucleus does not significantly
decrease below the basal level, Ro, found in the absence of stimulus. We can easily
augment the model and increase its accuracy in this scenario by passing the output of
this dynamic linear equation, y(t), through a static non-linear element. This arrangement



of a dynamic linear system followed by a static non-linear element is commonly referred

to as a LN (Linear-Nonlinear) or Wiener System (Westwick 2003). To determine the

functional form of the non-linearity, we plot the output of the linear element y(t)

calculated from Equation 2 versus the measured data points R(t) in Figure 3.1.10. The

plot suggests that we relate the variable y(t) to the observable R(t) with a static

transformation:

Rmodel(t) = fn,(y(t)) + Ro

where Ro = 1.237 is the basal response prior to osmotic stimuli, and the non-linear

element fn,,(y) = y(t) + y(t)l acts as a rectifier to ensure that the response R(t) is always

greater than Ro. These functions, y(t) and ly(t)l are added with a slope of one because

any other constant slope will be absorbed into the constant A0. It is likely that this

rectifying effect is due to the signaling elements upstream of Hog1, which only activate

the downstream MAPK cascade in the presence of a positive osmotic pressure

difference (hyper-osmotic shock).
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Figure 3.1.10 (A) Diagram of the Wiener or LN setup of where the quantitative fitting of our linear
model is enhanced by adding a static non-linear transfer element. (B) Measured model output
plotted versus linear model prediction. The scatter plot shows that when the linear model predicts
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a negative response, the experimental system is near basal activity (gray boxes - individual
points, red boxes - average). To account for this, we use a nonlinear element shown by the blueline.
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Figure 3.1.11 Response of the
response predicted by the model.

system to a step increase of 0.2 M NaCI compared to the step
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3.1.6 Mechanistic Model

To compare our Bode-plot data with known biology, we write our second-order LTI

model as two coupled first-order equations. We can write a general first order two-state

model as a pair of differential equations with rate constants a, b, c, d, e and f

[X =[a b] e]

We assume that one of the variables alone, namely Y, represents the observable Hogi

localization, R(t). This is similar to assuming that the dynamic variable Y is representing

the activation and inactivation of the MAPK pathway, and that Hogl-YFP nuclear

enrichment does not depend on other internal pathways or state variables. Therefore, X

is the variable representing the hidden state, which does not directly influence the

network output, and u represents the osmotic stimulus. When these equations are

simplified to remove the hidden variable, X, we find a single second order differential

equation in Y.

0 = (cb - ad)Y + (a + d)Y - Y + (ce - af)u + fu

When this equation is compared to the LTI model, we find that the relations f = A4,

ce = aAo , and c 0 must be true in order for the equations to be equivalent.

Substituting these relations we obtain:

[ =[ b][X]+[ e] [ e [b iAOu + cXYY - - Y
ec

Defining yY, x =--cX, a•- , =- -bc, and y -dwe can write these
A0

equations as:



[k]= [a f ][Aou -x
k 1 -Y

Comparing this relation with the LTI model, we can equate coefficients to obtain the
relations:

a + y= p, +p2

ay +j8 P1 P2

and equivalently:

pA ((a +y)+ (a-)2- 4,8

S(ay2 - 46)

Figure 3.1.12A illustrates a systems interpretation of this state-space model while

Figure 3.1.12B shows the biochemical mechanisms through which osmotic adaptation is
regulated. Our model contains two negative feedback loops, which act to reduce the

difference, (Au - x), between the stimulus Aou and the internal state variable x. One

pathway increases x through the activity of our observable y (enrichment of
phosphorylated Hogl), while a second pathway increases x independently of y. Based
on the extensive Hog1 literature, we interpret the state variable, x, as the intracellular
osmolyte concentration. Yeast cells are known to regulate their osmolyte concentration
through two parallel mechanisms (Hohmann 2002; Klipp et al. 2005; Gennemark et al.
2006). First, the membrane protein Fpsl quickly (< 2 min) responds to changes in the
osmotic pressure by modifying the rate at which it exports glycerol across the membrane
(Luyten et al. 1995; Tamas et al. 1999). This causes cells to retain more (less) glycerol
when there is more (less) osmolyte outside the cell. In addition, active Hog1 increases
the expression of glycerol-producing proteins, thus increasing intracellular glycerol over
longer timescales (> 30 min) in high osmolarity environments (Albertyn et al. 1994).
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Figure 3.1.12 (A) Block diagram representation of the mechanistic model shows two linear
negative feedbacks: one dependent on Hog1 activity with strength ,, and a second independent
of Hog1 activity with strength a. The intracellular osmotic pressure is modeled as an integrator,
while the MAPK signal transduction pathway is modeled by the linear impulse response function.
(B) The osmo-adaptation network structure. Upon osmotic stress, cells increase or decrease their
export rate of glycerol through the trans-membrane protein Fpsl, which is modified by Hog1
independent and Hog1 dependent mechanisms. In addition, under high osmotic stresses, active
nuclear Hog1 is known to modify the expression of glycerol producing proteins over longer
timescales.

Although our model contains a Hogl-mediated feedback loop, it is unlikely that
this feedback involves protein expression because the model does not contain a delay
between the activation of Hog1 and the accumulation of osmolyte that would occur if the
cell first had to synthesize new proteins. Similarly, cells begin to adapt to the NaCI pulse
within 5 minutes and are finished adapting within 15 minutes. Both of these time-scales
are too fast for new proteins, synthesized ~15-60 minutes after Hog1 nuclear
accumulation (Klipp et al. 2005), to contribute significantly to the adaptation.
Furthermore, we observe that cells respond strongly and nearly identically to repeated
stimuli. This would not be the case if protein production were an important factor in the
observed dynamics, because proteins produced in the first pulse would facilitate the
response and thus diminish Hog1 nuclear accumulation upon subsequent pulses. This
suggests that both feedback loops are acting to control the rapid accumulation of
glycerol, which is consistent with previous observations that activity of channels



responsible for glycerol export can be modulated by both Hogl-dependent and Hogl-

independent mechanisms (Luyten et al. 1995; Tamas et al. 1999; Thorsen et al. 2006).



3.1.7 Frequency Response of Mutant Strain

To compare the gains, or relative strengths, of the Hog1 dependent and independent
feedback channels, we apply the same Fourier technique to a mutant strain (DMY008)
with reduced levels of Pbs2, the MAPK kinase that phosphorylates and activates Hog1
(Figure 3.1.12B). This strain is constructed by replacing the endogenous Pbs2 promoter
with the Ptet promoter which can be induced by doxycycline in cells that are also
expressing the tetracycline activator, rtTA. We find that when this strain is grown
overnight in the absence of doxycycline, the response dynamics to a step input of 0.2 M
NaCI are vastly different between the Pbs2 (DMY008) strain and the wild-type.
However, when cells are grown in the presence of doxycycline, the response dynamics
when stimulated with a 0.2 M NaCI step are indistinguishable from the wild-type
response (Figure 3.1.13).

Pbs2 Underexpression

16

- 14

12

0 20 40
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Figure 3.1.13 Pbs2 underexpression strain exhibits wild-type response dynamics to 0.2 M NaCI
shock when induced with 10mg/ml doxycycline and slowed adaptation dynamics when fully
uninduced. Error bars represent standard error.

Before probing the details of the signal propagation through the Pbs2
underexpression strain, we performed an additional experiment to determine which
upstream branch of the signaling cascade is responsible for propagating the signal into
to the MapK Hog1. Here, we compare the signaling dynamics in a strain (DMY017)
where one of the membrane sensors upstream of Pbs2, namely Shol, has been
inactivated (Methods). In this strain the response dynamics are indistinguishable from
the wild-type indicating that most of the signal is being propagated through the SIn1
branch. This is consistent with observations that the Sin1 branch is activated by small



osmotic shocks (0.1 M NaCI and up) whereas the Shol branch is only activated by much
larger osmotic shocks (0.5 M NaCl) (Maeda et al. 1995).

1.2

Shol Knockout

20
Minutes

Figure 3.1.14 Response of cells with Shol sensor knocked out to a 0.2M NaCl shock is almost
identical to wild-type. This suggests that the signal is being propagated through the Sin1
pathway.

As with the wild-type strain, we can now apply square-wave stimuli with various
frequencies and measure the downstream response. These raw R(t) data are shown in
Figure 3.1.15 for stimuli with periods of 2 min to periods of 64 minutes. When compared
to the data in Figure 3.1.7 it is clear that these response curves are dramatically different
from wild-type. Namely, the maximal values of R(t) are much smaller than in the wild-
type experiments, while the output curves look much more like square waves with little
transient response as seen with the wild-type.
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Figure 3.1.15 Example R(t) traces for the Pbs2 underexpression strain (DMY008) used to
calculate the A(w) and 0(w) data shown in Figure 3.1.16. Cells are stimulated with 0.2M square-
wave pulses of NaCI with periods, To, ranging from 4 min to 128 min.

Using this strain, we can effectively isolate Hog1-mediated feedback from Hogl-

independent feedback by quantitatively comparing the response dynamics Figure 3.1.15

to those measured in the wild-type strain. As shown in Figure 3.1.16A-B, the Bode plots

for this strain (gray squares) are notably different than for the wild-type strain. Fitting the

LTI model to the A(co) data alone yields a good fit (Figure 3.1.16A, black squares) as well

as an accurate prediction for the cmo) (Figure 3.1.16B, black squares) and R(t) data

(Figure 3.1.16C, black squares). Importantly, the R(t) prediction (Figure 3.1.16C, gray

line) reproduces both the reduced maximum response and the slower adaptation

dynamics observed in this strain.
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Figure 3.1.16 Response of the pbs2 underexpression mutant shows different dynamics than wild-
type. (A-B) Mutant strain has a greatly reduced amplitude and poles shifted to the left and right of
wild-type. (C) When exposed to 0.2 M NaCI step input, the mutant strain does not activate Hog1
nearly as strongly as wild-type, and it takes about three times longer for Hog1 activity to return to
prestimulus levels.

The mechanistic model shown in Figure 3.1.12 suggests that the smaller

response of the mutant, strain results from a reduced activation of Hog1 compared to

wild-type for the same osmotic shock. The model predicts that this will cause both the

amplitude of the response, R(t), and the feedback strength through Hog1 to be reduced

by a similar fraction.

To model the mutant strain, we use Eqn. 1 with a simple modification, namely

that the rate of activation of Hog1 is reduced due to the decreased concentration of the

upstream kinase Pbs2:

S= c(Aou - x) - yy

= a(Aou - x) + py

In this equation, c represents the relative decrease in Hog1 activation rate compared to

wild-type. We can define a new value of the y variable for the strain, ypbs2:

Ypbs2 =
C

AC)~



This allows us to rewrite the dynamic equations and the system output, R, as:

~pbs2 = (AOU - x)- YYpbs 2
i = a(Aou - x) +(c)ypbs 2

Rmodel(t) = Cf(Ypbs2(t) + Ro

From these equations, we can see two major differences from the wild-type cells. First,
the parameter p is now multiplied by the factor c, reducing the feedback from y into x.

Second, the response of the system is now scaled by c, reducing the amplitude of the

signal output from the system. In other words, we can expect the mutant strain to exhibit

a reduction in the output signal, characterized by A0, as well as a reduction in MapK

dependent feedback, characterized by the parameter P. Since both the amplitude and

the time to adapt are changed roughly by a factor of three, this suggests that feedback

through Hog1 is highly important in the response to increased osmolarity.

There is not enough information contained in the two dynamic parameters, pi

and P2, to determining a, p and yfor the wild-type or mutant strain alone. To resolve the

ambiguity, we fit the LTI model defined by Equation 1 along with the static nonlinear

element to the step function R(t), the A(m), and o(w) data for both the wild-type and pbs2

underexpression strains simultaneously. Since the signaling cascade is operating with

a decreased strength we assume that the parameters Ao and p vary between the wild-

type and mutant strains while a and , remain the same for the two strains. We break the

symmetry in the definition of a and y by noting that HOG1 still reaches maximal activity

on the order of 100 s in a strain whose FPS1 channels have been modified and can no

longer adapt rapidly to osmotic shocks (Klipp et al. 2005). Table 1 summarizes the

parameters resulting from this fitting procedure (Figure 3.1.17). We find that the mutant

is characterized by an Ao and P reduced from wild-type parameters by factors of

(0.45 ± 0.03) and (0.24 ± 0.15) respectively.
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Figure 3.1.17 Results of minimizing the j cost function over the (A) A(co) (B) <(o) and (C) 0.2 M
NaCI step response for the wild-type (blue) and mutant (red).

Table 1. Estimates of Model Parameters

wild type
(8.0 ± 0.3)x10-3 (M NaCI)-1

(3.4 ± 0.5)x10 5 s-1

(10.6 ± 0.7)x10 -3 S-1

(8.2 ± 5.0)x10-4 S-1

mutant
(3.7 ± 0.2)x10 -3(M NaCI)-1
(0.8 ± 0.5)x10 5 s-1

(10.6 ± 0.7)x10-3 S-
(8.2 ± 5.0)x10 -4 S1

In addition to using the Pbs2 protein to modulate the signaling dynamics of the
network, we also attempted to perturb the signal propagation at a second point, namely

through the Ypdl protein, which is part of the phosphorelay network upstream of Hog1

and downstream of the membrane sensor Sin1. In this strain, as with the Pbs2 strain,

the endogenous Ypdl promoter was replaced with the Ptet promoter allowing control of

gene expression through the addition of extracellular doxycycline. Since we know from
previous experiments (Figure 3.1.18) that the signal is propagated mainly through the
Sln1 branch of the pathway, reducing the concentration of this protein should inhibit the
pathway's ability to signal appropriately. We find that at low concentrations of

Doxycyline (< 0.04 ig/mi) almost no signal propagates, while for higher concentrations

(>0.05 ALg/ml) we get almost full propagation of the signal. Unfortunately, the
dramatically reduced signal magnitude prevents observing changes in dynamics.
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Figure 3.1.18 Response of a ypdl inducible strain when subjected to a 0.2M shock of NaCl.
Doxycyline concentrations above 0.05 gg/ml result in dynamics similar to the wild-type. Below
this level of expression, however, almost no signal is transmitted through the network making it
difficult to measure a significant change in signaling dynamics.
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3.1.8 Network Dynamics with Cycloheximide

Although the time-scales associated with our data suggest a model where cells adapt
through a Hogl-mediated feedback that does not require protein synthesis, previous
studies have suggested that the creation of glycerol-producing proteins is important for
osmoregulation (Albertyn et al. 1994). To further explore the role of gene expression in
osmoadaptation, we measured the response of cells stimulated with periodic square
wave pulses of 0.1 M, 0.2 M, 0.35 M, and 0.5 M NaCI (Figure 3.1.19). In each of these
cases, cells are stimulated either in the absence (Figure 3.1.20A-D) or presence (Figure
3.1.19E-H) of cycloheximide, a small molecule that inhibits translational elongation and,
therefore, protein synthesis. As predicted by the initial data, we find that cells adapt very
similarly to an initial pulse of osmolyte regardless of their ability to synthesize new
proteins (Figure 3.1.20, black lines). Nevertheless, we find that a longer time-scale
component appears in these experiments that was absent from our earlier data. In
particular, cells that are stimulated multiple times adapt to each subsequent pulse faster
in the absence of cycloheximide and slower in the presence of cycloheximide.

+chx

12

0 50 100
Minutes

1

1

1

1

LT 1

1

1

1

D 0.5M -chx

1 2
0 50 100 150 200 250

1 18

+chx

Minutes Minutes

Figure 3.1.19 Raw R(t) data for square wave pulses of (A) 0.1 M NaCI with 16 min period (B) 0.2
M NaCI with 30 min period (C) 0.35 M NaCI with 45 min period and (D) 0.5 M NaCI with 60 min
period. Cells were stimulated at each concentration in the presence (+chx) and absence (-chx) of
100 pg/ml cycloheximide.



These results support the hypothesis that when presented with an osmotic shock

cells rapidly regulate their internal osmotic pressure through non-transcriptional

feedback mechanisms such as modified glycerol transport (Klipp et al. 2005; Gennemark

et al. 2006; Thorsen et al. 2006). Over longer time-scales and at larger osmotic shocks,

cells increase their rate of glycerol production (Figure 3.1.21), which cause cells to adapt

more rapidly to subsequent fluctuations in extracellular osmolyte. On the other hand,

when the cells are stimulated in the presence of cycloheximide the glycerol production

rate decreases slowly (Figure 3.1.21), impairing the cells' ability to rapidly increase the

intracellular osmolyte in response to subsequent salt shocks.
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Figure 3.1.20 Cells exposed multiple times to (A) 0.1 M, (B) 0.2 M, (C) 0.35 M, and (D) 0.5 M
NaCI show faster adaptation dynamics from pulse to pulse at higher osmotic shocks. (E-H) Cells
exposed to cycloheximide during the osmotic cycling display slower adaptation rates to each
subsequent pulse of osmolyte.



3.1.9 Glycerol Production Experiments

We measured the rate of glycerol production in wild-type cells when stimulated response

to multiple pulses of 0.5 M NaCI (Similar to Figure 3.1.19D). These experiments were

conducted either in the absence or presence of 100 ýlg/ml cycloheximide (Sigma). Cells

were grown overnight to log phase (OD600 between 0.5 and 1.0), and at 0, 60, 120, and

180 min cells were washed and resuspended in fresh minimal media containing no

NaCl. Similarly, at 30, 90, and 150 minutes cells were washed and resuspended in fresh

minimal media containing 0.5 M NaCI. While suspended in 0 M NaCI media, aliquots

were taken every ten-minutes, immediately boiled for ten minutes and then spun at

13,000rpm for 3 min. 201pL of this supernatant was added to 0.8mL of free glycerol

reagent (Sigma). The absorbance at 540 nm was measured and normalized by the

OD600 of the culture in order to obtain a total glycerol level relative to the number of cells

present (Figure 3.1.21A-B). In this case the OD6oo should be a good measure of relative

cell numbers because cells were always measured after pulses when NaCI was not

present in the media to change the size of cells. The change in total glycerol levels over

20 minutes were then used to calculate the relative glycerol production rates (Figure

3.1.21C). Cells stimulated in the absence of cycloheximide show an increase in glycerol

production rate after each pulse, while cells stimulated in the presence of cycloheximide

show the opposite trend.
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Figure 3.1.21 (A) Glycerol levels measured in a population of wild-type cells after they haveexperienced zero, one, two, or three 30 minute long pulses of 0.5 M NaCl. (B) Glycerol levels ina population of wild-type cells stimulated by 30 minute pulses of 0.5 M NaCI in the presence ofcycloheximide. (C) Change in total glycerol levels over a 20 min observation window was used tomeasure the rate of glycerol production in the population for both wild-type (blue) and wild-type +cycloheximide (red). The wild-type displays an increasing rate of glycerol production after eachpulse, while the cells stimulated in the presence of cycloheximide display a slowly decreasing rateof glycerol production.
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3.1.10 Discussion

We used oscillatory inputs to identify the relationship between the structure and the

dynamics of the yeast osmoadaptation network. This work provides further evidence for

a possible role of Hog1 in rapidly and non-transcriptionally mediating the osmotic

response, possibly through an interaction between Hog1 and trans-membrane channels

(Proft et al. 2004; Thorsen et al. 2006). We demonstrate that cells adapt independently

of new protein production over a wide range of osmotic shock strengths; however, for

strong shocks, cells do produce new proteins that allow them to adapt more rapidly to

subsequent osmotic changes.

By implementing a network architecture where glycerol transport is rapidly

modified to adjust the intracellular osmotic pressure, cells likely gain several advantages

over an architecture that relies exclusively on gene expression. First, a response

mediated by extant proteins can occur more quickly than one that requires de novo

protein synthesis. Second, negative feedback through protein production could lead to

overshooting of the ideal intracellular osmolyte concentration, and such increased

pressure could be dangerous for cells by causing rupturing of the cell wall. To avoid this

potential danger, cells would have to rapidly degrade any new proteins produced which

would waste resources by leading to a high turnover of glycerol producing proteins.

Finally, upregulation of glycerol producing proteins could lead to a fundamental shift in

glucose metabolism causing a possible decrease in metabolic efficiency.



3.1.11 Methods

Strain

To construct DMY007, which we refer to as "wild type", the endogenous copy of Hog1 in
the haploid BY4741 background strain was C-terminally tagged with yECitrine (YFP)

using standard PCR integration (Sheff et al. 2004). Colony PCR was used to confirm this

and all subsequent integrations. A C-terminal GFP fusion to Hog1 was previously shown

to be functional (Ferrigno et al. 1998), and the response of Hogl-YFP matches that of

Hog1-GFP (data not shown). To visualize the nucleus, PCR integration was used again

to fuse mRFP1.3 (kind gift from E. O'Shea and R. Tsien) to the C-terminus of Nrdl, a

nuclear protein involved in transcriptional termination and mRNA processing. Finally, a

plasmid bearing the tet-inducible transcriptional activator rtTA under control of the Myo2

promoter was integrated at the Leu2 locus, and PCR was used to confirm a single

integration. DMY008, the pbs2 mutant strain used in this study, is identical to DMY007,

except DMY008 expresses Pbs2 under the control of a TetO7 promoter. Specifically, we

constructed a plasmid bearing two TetO7 promoters, one that drives CFP expression

and the other that drives any gene of interest based on the primers used for PCR

integration. For DMY008, this second TetO7 promoter drives Pbs2 expression.

DMY028, the Ypdl mutant strain used in this study, is constructed in an identical way to

express Ypdl under the control of a TetO7 promoter. DMY017 is identical to DMY007

except that the Shol protein is not expressed in this strain.

Time-series Data Acquisition

The flow chamber is constructed as shown in Figure 3.1.2. A channel is cut into an

adhesive gasket with a thickness of 0.17 um (Grace Biolabs), which is then sandwiched

between a microscope slide and glass coverslip. Cells in log-phase growth from an

overnight low-osmolarity culture are spun down and immobilized on the coverslip with

Concanavalin A. Cells are then visualized with an inverted microscope (Nikon TE2000)

and 100x objective. Media is constantly removed from the flow cell with a peristaltic

pump (Pharmacia) coupled to a 125mL media reservoir which dampens sudden

changes in pressure. A computer-controlled valve selects the source of replacement

media.
To measure the time the flow chamber takes to equilibrate, a small concentration

of Rhodamine (Sigma) is added to the first media source. The average fluorescence of



a region in the middle of the chamber visualized with a 4x objective is shown in Figure

3.1.2. The rapid equilibration of the fluorescent signal indicates that the concentration of
NaCl should also equilibrate in the chamber within 3-5 seconds.

In the experiments where new protein synthesis was inhibited, 100 jig/ml

cycloheximide (Sigma) was added to both the low and high salt media sources of the

flow chambers. After cells were attached to the coverslip, the 0 M NaCI media was

allowed to flow over the cells for 5-10 minutes after which we began to apply the square

wave pulses of NaCI.

Data and Image Analysis

Fluorescence image analysis for determining R(t) is performed with a custom Matlab

(Mathworks) script. First, cell nuclei are found by thresholding the RFP images. The
phase and YFP images are then used to find the cell boundary and cytoplasm which

correspond to each nuclei found in the RFP image. Finally, cells whose cytoplasmic or
nuclear volume suggested incorrect segmentation were rejected. The reported R(t) is

the population average taken over the approximately 50-300 cells observed in the
microscopes field of view. Data fitting to obtain poles and other parameters is performed

in Matlab by using an optimization algorithm to minimize the ,2 error. The parameters

and error bars for parameters in Table 1 are calculated by propagating experimental
error bars through the fitting procedure.



3.2 Gene Expression in Fluctuating Environments

3.2.1 Introduction

In order to cope with extracellular changes, cells often increase the expression level of
key genes that function to either mitigate the effects of potential environmental stresses
or to utilize new resources that have recently become available. For example, cells can
produce heat shock proteins (Burdon 1986) in response to temperature increases that
would otherwise adversely affect the cells ability to function. Given a particular
environmental signal, cells must determine exactly how to modulate the level of key
proteins responsible for enacting the cellular response. To behave in an optimal fashion,
cells cannot produce too much or too little of the desired proteins, a fact further
compounded by environmental fluctuations (noise) and delays associated with protein
production. While much work has been done to understand the key players involved in
the signal transduction and downstream gene expression in these systems, there is
relatively little known about how the pathways process dynamic environmental cues in
order to assure a rapid and robust response to environmental perturbations.

To address these questions, the osmotic response pathway in Saccharomyces

Cerevisiae studied in Chapter 3.1 is used as a model system (Hohmann 2002). The

network is probed under a variety of changing environmental conditions, while

downstream gene expression is used as a metric instead of Hog1 localization. First,
cells are analyzed in environments where extracellular osmotic pressure increases

slowly. To capture the signal processing properties of the system over a wide range of

timescales, the time for this increase is varied from minutes to hours. It is worth noting

that this is a physiologically relevant environmental condition. It is likely that yeast cells

are often present in droplets of water that slowly evaporate, leaving higher and higher

concentrations of osmolytes to which the cells must continuously acclimate. By applying

these slow and fast 'ramping' inputs it may be possible to learn how and why signals are

processed the way that they are. Finally, by applying pulses of osmolyte that persist for

various durations, some quantitative aspects of the timing of gene expression can begin

to be explored. For example, it is not known whether it is the duration or the magnitude

of a signal that determines gene expression levels, and these experiments begin to

address this question directly.
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3.2.2 Network Architecture

Gene expression in fluctuating environments is tested in the osmoadaptation system
presented in Chapter 3.1, which has the advantage of being well studied (Hohmann
2002). The network diagram is shown in Figure 3.2.1, which has been modified from the
previously studied strain, DMY007, by placement of a copy of GFP downstream of the
StIl promoter. Hog1 activates the Stll promoter through the transcription factor Hot1
(Alepuz et al. 2003), and Stll is a glycerol transporting protein that is strongly but
transiently induced upon osmotic shock (Ferreira, et al. Mol. Biol. Cell. 2005).
Nevertheless, the expression of this gene (assayed by GFP levels) will provide a
quantitative measure of the cell's transcriptional response to extracellular osmotic
perturbations.

NacI #Osmotic Pressure Difference
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Figure 3.2.1 Network structure used for gene expression experiments in fluctuating
environments. Gene expression is measured by way of GFP expressed under the control of the
Stil promoter, which is controlled by Hog1 and Hot1 similar to Gpdl and Gpp2 expression.

I Ak

// 0



3.2.3 Experimental Setup
To measure changes in gene expression levels from cells when exposed to osmotic
perturbations, it is reasonable to start with a time-series of fluorescence levels. To this

end, cells were exposed to 0.5 M of NaCI at t = 0. Small aliquots of this culture were
removed every 30 minutes over the course of five hours and immediately placed on ice.

After 5 hours, the cellular fluorescence of each sample was assayed using flow

cytometetry. Cooling the cells should prevent production of new proteins, allowing a

time series of gene expression to be created (Figure 3.2.2). Here the GFP fluorescence

starts around 55 units at t = 0 due to a combination of basal GFP production combined

with crosstalk between the YFP and GFP channels. Note that YFP is already present in

the cell as a fusion protein with Hog1. Nevertheless, YFP expression should remain
constant during the experiment, and therefore any changes measured in this

fluorescence level will be due to changes in GFP expression alone. The GFP
fluorescence immediately begins to increase and continues to increase through the 30
minute and 60 minute time points. At 60 minutes, the GFP fluorescence peaks and then

begins to decrease slowly, which is due to loss of GFP through degradation and dilution.

Previous studies suggest that loss of GFP in yeast is mostly due to dilution, and the fact

that the expression level is roughly 70% of the peak value after 2 hours suggests that it

is being diluted since the doubling time of these cells is roughly 4 hours. The delay
between induction and peak fluorescence is due to a large number of processes. First,
cells must overcome the osmotic shock to a great enough degree that synthesis of new

proteins can begin, the proteins must then be transcribed to mRNA, mRNA must be

exported from the nucleus and transcribed in the cytoplasm. Finally, the newly

transcribed proteins must correctly fold before the proteins will begin to fluoresce.

Because Hog1 is only active for about 30 minutes in response to a 0.5 M NaCI shock

(Klipp et al. 2005), the time dependent gene expression data suggests that it takes about

30 minutes before these processes are complete.
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Figure 3.2.2 Gene expression measured over time. Cells were induced with 0.5M NaCl at t=O,
and aliquots were put on ice every 30 minutes. After 5 hours the fluorescence of the iced
samples was measured on the flow cytometer.
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3.2.4 Ramping Gene Expression Data

While gene expression behaves as expected when cells are exposed to a step increase
of osmolyte, it is still unknown how they will respond to more complex time varying input
signals. To this end, cells are exposed to slowly increasing levels of extracellular
osmotic pressure instead of simple step increases. To produce this input signal, a
syringe pump was programmed to slowly add a predefined amount of NaCI to a cell
culture over a long period of time (Tramp) such that the final concentration was NaClMax.
This setup is diagrammed in Figure 3.2.3.

SI.; I
z

Syringe Pump time

Figure 3.2.3 Experimental setup for ramping experiments. A syringe pump is programmed to
add a predetermined amount of NaCI to a cell culture at a constant rate over a predefined period
of time. A stir plate keeps the NaCI concentration homogeneous.

Cells are exposed to these ramping concentrations of NaCI for two different

values of NaCIMax, 0.25 M and 0.5 M. The parameter Tramp is varied between 1 and 64

minutes, and aliquots of cells are taken and put on ice approximately 1, 2 and 3 hours

after the beginning of the ramp. After 3 hours, the cells are taken to the flow cytometer

at which point average fluorescence levels are measured from the data. These results

are shown in Figure 3.2.4. As expected from the time series data presented in Figure

3.2.2, there is little change in fluorescence between the 1, 2 and 3 hour data points. The

small fluctuations between comparable data points are expected as some of the data

points were taken from different samples on different days. Two major features are

shared by both sets of experiments. First, the expression level is relatively constant up

to Tramp = 10 min for NaClMax = 0.25 M and Tramp = 30 min for NaClaax = 0.5 M. After this

point, the expression levels begin to drop off and rapidly approach the basal GFP
fluorescence measured for cells maintained in 0 M NaCI. The maximum level of

time



expression for NaClMax = 0.25 M is about 20 units above background, while the

maximum level of expression for NaClMax = 0.5 M is about 50 units above background.
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Figure 3.2.4 Gene expression in ramping environments. Cells were exposed to a linearly
increasing osmotic pressure for Tramp = 1, 2, 4, 8, 16, 32, and 64 minutes with a final
concentration of 0.25 M and 0.5 M NaCI. At 1, 2, and 3 hours after t=0, samples of the culture
were placed on ice and taken to the flow cytometer. The dashed black lines represent a control
where cells remained in 0 M NaCI for the duration of the experiment indicating background
fluorescence.

As a test of the flow cytometry technique used in the previous pair of

experiments, cells were also measured on the microscope in order to determine if the

fluorescence levels are being accurately assessed. Some of the data for cells

stimulated with 0.5 M NaCI presented in Figure 3.2.4 are compared with their

corresponding microscope obtained data and presented in Figure 3.2.5. The almost
perfect linear correlation suggests that both measurement techniques are accurately
reflecting the intracellular GFP fluorescence.
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Figure 3.2.5 Flow cytometry fluorescence versus fluorescence measured on microscope shows
almost perfect linear correlation between the two measures of gene expression.



3.2.5 Pulsing Gene Expression Data

To study the timing of gene expression, a second series of temporal inputs were
presented to cells. Here cells were subjected to pulses of NaCI, which had variable
duration (Tstep) and variable heights. The pulses were generated by adding concentrated
NaCI to cultures at t=0, and subsequently spinning down, washing, and resuspending
cells in media without NaCI at time Tstep. After two hours, cells were placed on ice and
taken to the flow cytometer. The experimental method and the resulting data are

presented in Figure 3.2.6. The GFP expression for all three experiments (0.1 M, 0.25 M,
and 0.5 M NaCI) remain low for pulses with duration less than about 4 minutes, and then

begin to increase linearly. This suggests that there is a minimum time for which the cell
must be activated in order to produce new proteins. This could be due to a 1-2 min
delay in propagating the signal down the MAPK cascade (Chapter 3.1) combined with
delays resulting from activation of Hot1 by Hog1 and recruitment of RNA polymerase to
the promoter site. When the GFP expression begins to increase linearly, all three pulse
heights (0.1 M, 0.25 M, 0.5 M NaCI) seem to increase at approximately the same rate
before saturating at different levels of GFP fluorescence. This suggests that in all three

cases, once the production of proteins begins about 4 min after the beginning of the
pulse, the production rate is roughly saturated. The difference between the different
pulse heights is how long this saturated protein production lasts.

The bottom panel of Figure 3.2.6 demonstrates the average rate of GFP
production over each window of observance. By taking the difference between data
points in the middle panel of this figure, it is possible to ascertain how much GFP was
produced due to the extra duration of the longer pulse, and therefore understand how
much GFP was produced in that window of time. Here there is a striking similarity to the
Hog1 phosphorylation (Hohmann, NBT) and nuclear concentration profiles (Chapter
3.1). The rate of GFP production in the early windows of time are all relatively similar for
the three NaCI concentrations, however, the 0.1 M NaCI decays back to zero production
after only a few minutes, while 0.2 M NaCI decays after 20 minutes, and 0.5 M NaCI
decays after 30 minutes. This supports the saturated protein production hypothesis
given above. By directly comparing these data with phosphorylation data, it may be
possible to gain information about the signal processing properties of the transcription
factor activation in addition to the MAPK activation pathway.
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Figure 3.2.6 Gene expression resulting from pulses of NaCI of variable length. The top panel
shows the input waveform with pulses of 0.1 M, 0.25 M, and 0.5 M NaCI for lengths of time 1, 2,
4, 8, 16, 32, and 64 minutes. Middle panel shows the increase in GFP expression as measured
through flow cytometry two hours after the beginning of the NaCI pulse. Bottom panel
demonstrates the average rate of change in GFP expression for each interval measured.
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3.2.6 Processing the Signal

To understand how the signal transduction cascade processes the information in these

ramping experiments one can begin by analyzing the theoretical model produced in

Chapter 3.1. The basic equation for the dynamics of Hog1 translocation is given by:

ji+ (p1 + 2)y + (p1 p2)Y = AOaL

For slowly ramping signals, the Hog1 activity, y, will be in a quasi-steady state and

therefore the equation can be approximated as:

A0
PIP2

This means that the activity of Hogl will be approximately equal to the slope for slowly

varying input signals. If the production of GFP proteins were to depend linearly on the

activity of Hogl, then the number of proteins produced over the duration of the signal, P,
would be proportional to:

T.V TT NaCI
P c Ju(t)dt = ` dt= NaCIM0 0 ramp

While protein levels do seem to vary with the value of NaClMax in the ramping

experiments, this model predicts that the amount of protein produced is independent of

Tramp for slow ramp times, clearly in contrast with experimental evidence. This suggests

that perhaps non-linear effects are coming into play. To see how non-linearities might

affect gene expression, the rate of protein production is next assumed to be proportional
to the square of the Hog1 activity:

Tra T." NaCI C/ M2
P c ((t))2 dt = MBx dt = ax

a ramp Tmp

Such an assumption would therefore explain both the dependence on NaCI, as well as
the decrease in gene expression as Tramp becomes very long. Because of the quasi-
steady state assumption made earlier, this analysis cannot be used to study the



saturation observed in gene expression when Tramp becomes small (Figure 3.2.4).

Rather, to put this phenomenon in the context of the previously defined model, the entire

dynamic model must be considered. Figure 3.2.7 shows the predicted Hog1 activity in

response to sloping input signals, as well as the relative protein levels (in arbitrary units)

produced by assuming protein production rates scale with the square of Hog1 activity.

Without any fit parameters, this model reproduces the saturated protein expression for

small Tramp, as well as the sharp decline in protein levels for Tramp > 10 minutes. The

panel showing Hog1 activity suggests that this is occurring at short ramp times, because

the Hog1 signaling pathway is filtering out the high frequency components of the signal.

In other words, Hog1 activity levels cannot tell the difference between the input signal

and a simple step response when Tramp is less than 10 min.
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Figure 3.2.7 Calculated Hog1 activity from the model in Chapter 3.1 as well as the relative
protein levels expected by assuming that gene expression is proportional to the square of Hog1
activity.

These analyses are simple theoretical explanations of what could be happening

in the signal transduction pathway, and it is likely that other possible explanations also

exist. Nevertheless, it may be possible to elucidate the exact role of the MAPK cascade

and the transcription factors with further experiments that provide more accurate data

combined with detailed measurements of the Hog1 activity in response to sloped inputs.

Future work will hopefully address these questions from an experimental perspective.
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3.2.7 Discussion

Although the preceding sections address how the GFP protein levels depend on
temporally varying input signals, they say little if nothing about why the cell would
choose to process the signals in this way. Nevertheless, there may be simple
explanations that can assist in understanding the data presented in Figure 3.2.4 and
Figure 3.2.6. First, a clue about the decay in protein levels with ramp times (Figure
3.2.4) may come from the time dependence of gene expression shown in Figure 3.2.2.
This data suggests that some proteins may take at least 15-60 minutes following
initiation of transcription to become fully functional. Although these data are for GFP
fluorescence, similar delays may exist for the osmotic shock proteins. This means that
the cell may constantly try to predict how many proteins will be needed at some time in
the future, with this time being set by the delay between transcription initiation and
protein functionality. Figure 3.2.8 illustrates this "prediction" process schematically. The
cells do not know that the NaCI concentration will stop increasing as soon at it hits
NaCIMax, and therefore may assume that the concentration will keep rising. This means
that they would be prone to producing higher concentrations of proteins when the
concentration of NaCI rises rapidly than when it rises slowly.
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Figure 3.2.8 Cells may be projecting the amount of NaCI to expect at some time in the future.
Because the cells do not know that the NaCI concentration does not increase beyond NaClMax,the network may be calculating what concentration to expect by the time the proteins which are
begun to be produced at t = 0 become functional.



The delay in producing proteins demonstrated in Figure 3.2.6 may serve an
alternate purpose. It is crucial that cells need to respond to large short-lived

perturbations and long-lived but small perturbations, but ignore short-lived and small

stimuli. If there are short-lived fluctuations in the environmental conditions, these should

be dealt with by mechanisms other than protein production. This is because if a cell

produced extra proteins every time the external environment produced a short-lived

perturbation, there would be no way to remove these proteins when the perturbation

ceased. Many of these perturbations in series would drive the protein levels higher than

necessary for a given environment. The four-minute thresholding seen in this data may

act as a type of low pass filter, ensuring that proteins are only produced when a

perturbation persists for longer than a set amount of time.



3.2.8 Methods

For all experiments cells were grown in synthetic media for all experiments (CSM-his-
ura-leu) containing 2% glucose. Cells were grown overnight at 30 degrees Celsius and
harvested while still in early log phase growth (OD600<1.0). The gene expression

experiments were performed in 1 to 20mL volumes at room temperature (25 degrees
Celsius). The GNY009 strain was constructed by inserting a copy of YFP driven by the
StIl promoter into the genome. Cells were measured using flow cytometetry (FACScan;
Becton Dickinson). Measurements were collected on populations of approximately
10,000 cells and population mean fluorescence was calculated on a population of about
1,000 of these cells at the peak of the forward scattering and side scattering distributions
with a gate drawn by hand. Microscope measurements were performed using a Nikon
TE2000 inverted microscope with 100x objective and X-Cite (Series 120; Exfo)
illumination source.



4 Stochastic Effects on Cellular Decision Making



4.1 Discrete Decisions and Stochastic Transitions'

4.1.1 Introduction

Often biological systems do not exhibit a continuum response, but rather choose from a
set of discrete pre-programmed responses to an environmental change. For example in
a metabolic network the cell may need to activate a whole set of genes in order to
metabolize a new molecule in the environment. Given a variety of potential metabolites
in the environment, cells must choose which metabolic networks to activate in order to
effectively utilize the most efficient sources of energy available. A classic example of
this phenomenon occurs in the diauxic metabolism of the sugars lactose and glucose by
the bacterium Escherichia coli, with the latter sugar being the more efficient of the two

metabolites. When cells are grown in an environment containing both of these sugars,
cells first metabolize only glucose until it is almost completely depleted, then they enter a
lag phase at which point they 'turn on' genes responsible for lactose metabolism before
finally beginning to digesting lactose. Even in the absence of glucose in the
environment, cells can enter into an all-or-nothing response to lactose metabolism,
producing high levels of lactose metabolizing genes in high levels of extracellular lactose
or extremely low levels when lactose is absent in the environment.

In this work we study this decision making from a dynamic perspective in single
cells allowing us to study the timing of activation as well as the microscopic processes
responsible for driving transitions between the states. There are three main topics which
we address using these experiments. First, we examine how cells change from one
state to another during the decision process. Second, we measure the dominant
sources of variability in a population, and assess these effects on the rates and nature of
state-to-state transitions. Finally, we assess which biologically relevant parameters are
necessary in order to effectively understand and quantify the decision making process.

One of the central goals of systems biology is to predict the dynamic behavior of
a cell's genetic and metabolic networks. These predictions traditionally stem from
models in which discrete molecular events, such as transcription and translation, are
represented by continuous and deterministic differential equations. Such equations are
valid when behavior of individual cells is very similar to the average behavior of the

1 The work in this chapter can also be found in Mettetal, J. T., D. Muzzey, J. M. Pedraza, E. M.
Ozbudak and A. van Oudenaarden (2006). "Predicting stochastic gene expression dynamics in
single cells." Proc Natl Acad Sci U S A 103(19): 7304-9.



population. However, in many cases the inherently stochastic nature of biological

systems leads to a significant cell-to-cell variability (Rao et al. 2002; Kaern et al. 2005;

Raser et al. 2005), and previous studies indicate that individual cells often behave very

differently from the population average in response to external stimuli. For example,
studies of bacterial persistence indicate that the population survival rate can be

fundamentally different from the average cell's survival rate in response to an

environmental stress (Balaban et al. 2004; Kussell et al. 2005). The impact of noise-

induced population heterogeneity is also relevant when studying cellular memory, where

fluctuations in protein numbers can cause the stability of epigenetic memory to degrade

by effectively causing cells to forget their original states (Hasty et al. 2000; Acar et al.

2005). In these cases, stochastic modeling techniques must be used to describe the

large cell-to-cell variability.

Although deterministic models can describe dynamic network behavior and

analytical stochastic models can faithfully predict steady-state population distributions

(Pedraza et al. 2005), little work has been done to connect dynamic cellular behavior

with noise models. It is important that stochastic models of biological systems correctly

capture system dynamics since few biological systems ever reach steady state. Prior

pioneering studies, aimed at predicting stochastic dynamics, have modeled stochastic

effects by including high levels of microscopic detail (Arkin et al. 1998). Although this

approach is correct in principle, it is often too complicated to have general applicability

because the parameters required are usually unmeasured or difficult to acquire. Since

these microscopic-based approaches, much has been learned about sources and

propagation of noise in gene networks (Kepler et al. 2001; Thattai et al. 2001; Elowitz et

al. 2002; Ozbudak et al. 2002; Swain et al. 2002; Blake et al. 2003; Paulsson 2004;

Raser et al. 2004; Becskei et al. 2005; Colman-Lerner et al. 2005; Hooshangi et al.

2005; Pedraza et al. 2005; Rosenfeld et al. 2005), leading to comprehensive models of

stochastic behavior. However, these previous models have lacked a sufficiently detailed

set of dynamic data on which to test predictions of dynamic population distributions

(Isaacs et al. 2003; Simpson et al. 2003; Vilar et al. 2003). Thus, it has still not been

demonstrated that the current understanding of noise, which accurately describes

distributions of protein concentrations in steady state, can be applied to predict dynamic

distributions reflecting noise-induced behavior.

In this work we investigate the predictive power of stochastic dynamics by using

an integrated experimental and computational approach in which we construct a



stochastic model of cellular dynamics. To test the model's predictions, we experimentally

measure population distributions of protein levels over time in the lactose uptake

network of Escherichia coli and then compare these data to the predicted population

distributions. To construct our predictive model, we first build a deterministic model that

incorporates relevant network components. Next, we use steady state measurements of
this network to characterize the magnitude of the relevant noise sources. Finally, by
combining these noise sources with the deterministic model we create a dynamic

stochastic model, which is able to predict the dynamic behavior of distributions. Using

this technique, we show that once macroscopic rates are known, we only need two

additional parameters that characterize the noise in each gene to faithfully predict

experimental dynamic population distributions without any fit parameters.



4.1.2 Network Structure

At the systems level, the lactose uptake network in a single E. coli cell displays an "all-

or-nothing" response depending on the extracellular concentration of inducer (Novick et

al. 1957). This ability to display different phenotypes at a single extracellular inducer

concentration has been attributed to a positive feedback loop shown in Figure 4.1.1.

LacY (purple) is a transmembrane protein involved in uptake of the inducer

thiomethylgalactoside (TMG, orange). The synthesis of LacY is under the control of the

lac promoter, which is repressed by the lac repressor, Lacl (blue), in the absence of

TMG. However, intracellular TMG molecules bind to Lacl tetramers, causing their

dissociation from DNA and an increase in lacY transcription. lacY transcription can be

further activated by the cAMP receptor protein (CRP, gray), which upon association with

cAMP binds to an activator site in the lac promoter and increases the probability of

transcription. In summary, this positive feedback loop is composed of two negative and

one positive connection: TMG inhibits Lacl, Lacl represses lacY transcription, and LacY

increases the intracellular TMG concentration. In addition to this natural endogenous

network, we constructed two fluorescent reporter systems to monitor the state of the

network in single cells. The gene encoding for green fluorescent protein (gfp, green)

under control of the lac promoter was integrated into the genome and reports the

concentration of LacY. Additionally, we placed a red fluorescent protein gene (rfp, red)

under the control of the gat promoter on a plasmid, which contains a CRP activation

region and a gat repressor binding site. Because wild type K12 E. coli strains lack a

functional gat repressor protein, GatR (Nobelmann et al. 1996), RFP is a faithful reporter

for the activity of CRP (Ozbudak et al. 2004).
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Figure 4.1.1 Diagram of the lactose utilization network. Blue arrows indicate positive
interactions, red bars indicate negative interactions, and black arrows denote protein production.
A positive feedback loop from LacY to TMG to Lacl back to LacY creates the potential for
multistability (high and low steady states). The fluorescent reporter GFP integrated in the genome
is expressed in parallel with LacY under control of the lac promoter and reports the induction level
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4.1.3 Steady State Behavior

To model the stochastic dynamics of the lactose uptake network, it is first necessary to
understand single-cell behavior. At steady state the positive feedback loop causes cells
to be either in an ON (induced) state, where they maximally produce LacY and GFP, or
in an OFF (uninduced) state where LacY and GFP are produced at a minimal, basal
rate. In ON cells, LacY imports enough extracellular TMG to maximally produce LacY,
while OFF cells do not have enough LacY or extracellular TMG to produce LacY
molecules faster than they are lost. This means that cells do not generally contain

intermediate concentrations of LacY and GFP when in steady state.

To observe this behavior, we prepare cells in either the ON or OFF state by

growing them for 24 hours in media with 100 .M TMG or 0 iM TMG, respectively. We

then remove the cells from this preparation media and subsequently grow them in fresh

media containing an intermediate concentration of extracellular TMG. Cells are grown for

20 hours (about 7 cell generations), at which point the population distributions are no

longer changing quickly. For cultures resuspended in very high or low concentrations of

TMG, cells occupy either the ON or OFF state, respectively, independent of their

induction history (Figure 4.1.2a and c). However, resuspension in intermediate

concentrations of TMG maintains an ON or OFF population for extended periods of time

in either the higher or lower peak, respectively (Figure 4.1.2b), indicative of hysteresis.
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Figure 4.1.2 Demonstration of hysteresis. Histograms of mean GFP fluorescence are shown for
cells with a fully induced (red) and fully uninduced (blue) history resuspended and grown for 20
hours in (a) 0 pM TMG (b) 9 pM TMG and (c) 30 IpM TMG. Induced cells grown in 0 PIM TMG for
20 hours still contain slightly higher quantities of GFP than uninduced cells, and this difference is
roughly equivalent to that expected from exponential decay of fluorescence due to dilution of GFP
during cell division.



4.1.4 Population Dynamics

Although we find that individual cells are either in the OFF or ON states after 20 hours,

measurements at shorter time intervals must reveal transient, intermediate distributions

that reflect the population morphing from its initial state (Figure 4.1.2a, blue curve) to its

final state (Figure 4.1.2c, blue curve). To characterize the dynamics of these population

distributions in response to changes in inducer concentration, we sample the population

at various times and measure GFP levels in single cells. Fully induced or uninduced

cells are washed and subsequently resuspended in media with an intermediate

concentration of TMG. Next, the mean GFP fluorescence levels of individual cells are

measured. Histograms are generated every one or two hours for several hours after

resuspension in media with intermediate TMG concentration.

Two types of dynamic responses are observed: ballistic and stochastic. An

example of a ballistic transition is shown in Figure 4.1.3a, where ON cells resuspended

in OpM TMG collectively switch OFF, drifting toward the new stable state. By contrast,
Figure 4.1.3b illustrates stochastic transitions, where some initially OFF cells remain

OFF while a subpopulation switches to the ON state. Characteristic of a stochastic

response, the OFF peak decreases in magnitude exponentially with time.
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Figure 4.1.3 Transitions between OFF and ON steady states. Gray boxes are histograms of
single cell GFP fluorescence for populations of 2,000-6,000 cells. (a) ON cells grown in 50 PtM
TMG and then placed in 0 pM TMG transition as a uniform population to the uninduced state with
a single 'ballistic' peak. (b-d) OFF cells grown at 0 pIM TMG are transferred to 15 pM TMG, 35
pM TMG, and 50 pM TMG. These three populations display stochastic switching behavior wherecells randomly leave the uninduced state and move toward the induced state. Simulations predict
the ballistic behavior associated with cells turning OFF and the stochastic behavior associated
with cells turning ON.
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4.1.5 Deterministic Model and Parameter Estimation

Several deterministic models have been used to explain the bistable behavior observed
in the lactose utilization network (Chung et al. 1996; Wong et al. 1997; Yildirim et al.

2003; Ozbudak et al. 2004). We augment a model that has been employed to describe
the strains analyzed in this study (Ozbudak et al. 2004):

R 1
RT- X[1]

dY NLCYIv Y [2]
dt - R -

RO
dG NG/ G [3]
dt - -R g

Ro
dX Xdt B Y + A TMGextemai - [4]

The fraction of active Lacl tetramers (R) as a function of internal TMG (X) is modeled by
a Hill function with a Hill coefficient of two. RT is the total concentration of Lacl tetramers,
and Xo represents the half-saturation point. The rate of production of LacY molecules (Y)
and GFP molecules (G) in the presence of Lacl (R) is also a Hill function with Hill
coefficient of one. Here Ro is the half-saturation concentration of active Lacl (R) while
NLacY and NGFP are the equilibrium number of LacY and GFP molecules, respectively, in
fully induced cells. B represents the active uptake of TMG per LacY molecule, while A
represents the passive, LacY-independent uptake of external TMG. Y, G, and X are all
assumed to undergo first-order decay with time constants ry, g and Tx, respectively. To
derive a simplified version of these equations, the following new parameters are defined:

a
9= NGFP G [5]

a
S= NLac Y [6]



X
=Xo [7]

P= o + 1 [8]

NLCYf•X
- a Xo B [9]

A = -o A [10]

Using these definitions and substituting for R, we rewrite our model with these three
equations:

dr, (TMG)y +X(TMG)- x [11]

dy 1+x 2  [12(X -a y [1 2]
dt p +x2

dg 1+x 2
'Cg C-• a+x2 g [13]dt p +x2

Here x, y, and g represent intracellular concentrations of TMG, LacY, and GFP,
respectively. TMG denotes the extracellular concentration of TMG. 1/rx represents the
rate of loss of intracellular TMG due to export, degradation, or dilution from cell division

and growth. 11/, and l/r represent the combined loss from dilution and degradation of

LacY and GFP, respectively. The rate constant of active intake of TMG per LacY

molecule is proportional to jP and is a function of extracellular TMG, whereas A

represents passive uptake of TMG independent of LacY. We assume that GFP is

transcribed at a rate identical to that of LacY because both are expressed under control

of the lac promoter. Therefore, we set a as the maximal production rate of both LacY

and GFP. p is the repression factor representing the ratio of transcription rates at the lac

promoter between induced and uninduced cells. This factor accounts for the effect of

fully activating all present Lacl tetramers in the absence of intracellular TMG.



Using these equations, it has been shown that the system can have either a

single stable steady state (monostable) or two stable steady states separated by an

unstable steady state (bistable), depending on the concentration of extracellular TMG

(Figure 4.1.4). Previously, the parameters a, fP, and p have been determined by fitting

the theoretical monostable-bistable boundaries (vertical arrows in Figure 4.1.4) to those

measured experimentally (Ozbudak et al. 2004). Since the network used in our study is

identical, we will use the parameters a, /P, and p as determined in this previous study

(Table 3). We set ry and ,g equal to the dilution timescale due to cell growth,

1/2 = division /ln2, because we assume that the active degradation rate of GFP and

LacY is much smaller than the dilution rate due to cell growth; here Tdivision is the

estimated average time between cell divisions. This leaves zx and A as the only

undetermined parameters in the deterministic model. It has been suggested that in

order to model stochastic transitions in the lactose uptake network, one must include
effects of TMG induction on doubling time (Vilar et al. 2003). We find that induction with
TMG has no statistically significant change on growth rate; therefore, we ignore this
effect in our model.

100
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Figure 4.1.4 Steady state solutions of the deterministic model. The induced state is shown as the
top dark line while the uninduced state is shown as the bottom dark line. The intermediate
unstable steady state is shown as a dashed line in the shaded bistable region. Cells remain in
either the induced or uninduced states until they are moved to a concentration of inducer where
the previous state is unstable (vertical arrows).

We estimate the decay time of intracellular TMG, zx, by measuring how quickly
the average GFP levels of a fully induced population decrease when placed in media
without TMG (Figure 4.1.5a). In this scenario, LacY no longer affects the dynamics of the
cells because there is no extracellular TMG to complete the feedback loop. To calculate



rx, the time constant of internal TMG decay, we examine a population of cells that has
been grown for 24 hours in media containing 50 pM TMG, which is sufficient to force all
cells into the fully induced state of high GFP expression. These cells were then
transferred into media lacking TMG at t = 0. GFP measurements were made at t = 4, 6,
8 and 10 hours (Figure 4.1.5), and the average concentration of GFP was measured at
each time point with an error estimated from the population standard deviation. Because
there is no external TMG in the media, the cells will cease production of GFP when the
internal concentration of TMG becomes sufficiently dilute. Since GFP is not actively
degraded, its level should fall exponentially based on the doubling time. Therefore, we fit
an exponential curve to the mean GFP concentration at each time point, using the least-

squares method. The resulting best-fit curve was extrapolated to t = 0 and used to
determine the approximate time at which GFP production ceased. Our extrapolation

indicates that GFP production in induced cells begins to decay within 10-20 minutes

following removal of external TMG, suggesting that x << 11/2. Thus, we assume equation

[11] is in equilibrium when compared to equations [12] and [13].

TMG 50.tM - 0itM

0.5

0.0
0.5

o)-i

0 0.0
S0.5.oos

0.0
0.5

nn

a t=4hrs
100

t=6hrs c 75

I, IIL 50
t=8hrs V

25

t=10hrs

L 0

mean GFP
fluorescence time [min]
[scaled units]

Figure 4.1.5 Estimation of zx through population average dynamics. (a) Cells in a fully induced
state are placed in media without TMG and the population distribution is measured at t = 4, 6, 8
and 10 hours. (b) Population average of cells grown without TMG fit with an exponential.
Because the intersection of the exponential (solid) with the fully induced mean (dashed) occurs
within 10-20 minutes of TMG removal, -x is assumed to be much smaller than T1/2.
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Uninduced cells switched into media with a high TMG concentration are

expected to transition quickly to the induced state, minimizing stochastic effects. In this

situation the deterministic model should provide a reasonable estimate of this behavior

at the population level. Therefore, we arrive at an estimate of 2, the rate of TMG

leakage, by fitting the deterministic model to experimental data in which we observed

cells transitioning from an uninduced state to a fully induced state. Cells initially grown in

absence of TMG were switched into media containing 55 iM of TMG, and

measurements were taken at t = 1, 2, 3 and 4 hours (Figure 4.1.6). The population

average GFP level was determined from this distribution with error bars set by the

standard deviation. The parameter A was then varied from 0 to 1.0 in 0.0025 intervals,

and the X2 between the predictions of the deterministic model and the population

average was calculated at each point (Figure 4.1.6). The best-fit value was found to be A

= 0.06, with an 80% confidence range of (0.03, 0.12). Since a, fl, and pwere determined

with A = 0, a non-zero value of A will change the position of the monostable-bistable

transition and in principle require the refitting of all other parameters. However, we find

that the lower monostable-bistable boundary shifts only from 3.5 to 3.4 jiM TMG, which

is smaller than the precision at which the boundary was originally determined. The

position of the upper monostable-bistable boundary is changed as well, but the behavior

of the stochastic model still matches the experiments in this region indicating that

refitting is unnecessary.
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Figure 4.1.6 Estimation of A through average population dynamics. (a) Cells in an uninduced
state are place in media with a high concentration of TMG and measured at t = 1, 2, 3 and 4
hours. (b) The leakage rate A is estimated by fitting the deterministic model to the population
average of cells rapidly turning on.

We assume the parameter 'x to be much smaller than rl, because cells cease
GFP production within 10-20 minutes after removal of extracellular TMG, and a fit of the

deterministic model to the decreasing GFP levels yields zx = 0 min. This could be due to
rapid loss of intracellular TMG through efflux, which is known to occur for other inducers
(Liu et al. 1999; Le et al. 2005). Thus we equilibrate the equation describing intracellular

dxTMG in relation to the equations for LacY and GFP by setting: z, -" = 0.
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4.1.6 Measurement of Intrinsic and Extrinsic Noise

In order to make predictions about switching transitions and dynamic population

distributions, we must include the effect of stochastic fluctuations in our model. It has

been shown (Elowitz et al. 2002; Ozbudak et al. 2002; Blake et al. 2003; Raser et al.
2004; Becskei et al. 2005; Colman-Lerner et al. 2005; Pedraza et al. 2005; Rosenfeld et

al. 2005) that noise in protein levels comes mainly from discreteness of mRNA and
protein numbers (intrinsic noise), as well as from global changes in intracellular

environment that affect decay and production rates (global noise). To model intrinsic

noise we must estimate two parameters for each gene: the average number of proteins

produced from a single mRNA (burst size), and the conversion factor between absolute

protein numbers and fluorescence counts.

Figure 4.1.7 contains a diagram indicating the generation and propagation of
noise in the network. First, LacY, Lacl, and GFP are sensitive to their corresponding

intrinsic noise terms qry-nt, 77i-int, and 17g-int , respectively. These terms are due to the

random creation and destruction events of lacY, lacl, and gfp mRNA and the

corresponding proteins. The RFP reporter generates an intrinsic noise term, 17r-int (Figure

4.1.1), which contains fluctuations due to RFP mRNA and RFP proteins as well as
fluctuations in plasmid number. Noise generated by CRP and other factors such as RNA

polymerase and ribosomes is combined into the term rglobal, which we treat as a

multiplicative factor on the production rates of LacY, GFP, and RFP.

Fluctuations in Lacl numbers are propagated directly into LacY and GFP, and the
strength of this transmission depends greatly on the intracellular TMG concentration
since TMG binding decouples Lacl from the production of LacY and GFP (Elowitz et al.
2002; Pedraza et al. 2005). Finally, noise in LacY will cause fluctuations in intracellular
TMG concentration that affect the binding of Lacl to the lac promoter. This effect causes
LacY fluctuations to be transmitted into both LacY and GFP noise with a magnitude
dependent on TMG concentration.
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Figure 4.1.7 The noise network for the lactose utilization network. (a) Intrinsic noise is fed into
each protein level and is propagated through the network. The square above Lacl represents the
combination and propagation of noise from total Lacl and TMG through the active fraction of Lacl
tetramers, which is dependent on the concentration of intracellular TMG. (b) The effective noise
network for induced cells with high levels of intracellular TMG, where Lacl tetramers are highly
inactivated. The crossed square represents the effective inactivation of this feedback by
increased levels of intracellular TMG.

Extrinsic noise can be determined by examining correlations between levels of

proteins influenced by the same upstream regulators. To extract the noise parameter,

77global, from the distribution of GFP concentrations, it would generally be necessary to
solve a set of equations describing the propagation of noise through the entire network

(Pedraza et al. 2005). However, the network can be simplified greatly by considering

only fully induced cells, where TMG-bound and inactivated Lacl no longer affect GFP
and LacY production. In this case, fluctuations in LacY, GFP, and RFP expression levels

are dependent only on extrinsic noise levels, 77global, as well as each protein's intrinsic

noise level qy-int, t7g-int, and qr,nt (Figure 4.1.7). Since the term 7lglobal is shared by GFP and

RFP, it is possible to separate the total GFP noise into intrinsic and extrinsic
components.

Each gene has a source of intrinsic noise, which is related to mRNA burst size, b,

b+1
and protein number, N, by the relation 77•t  . Because GFP expression and RFP

<N>

expression share one source of noise, the correlation between the levels of these
molecules will depend on this noise source and no others. To derive the relation
between correlations and noise strengths, we can use the Langevin formalism in the
same manner in which Pedraza et al. have applied it to noise propagation in a synthetic



gene cascade (Pedraza et al. 2005). Here we treat the rate of change of each molecule

as having two components: continuous terms due to rates in the deterministic model and

stochastic terms due to intrinsic noise. This is made more precise by writing the

corresponding Langevin equations for the two extrinsic sources and the two reporters in

induced cells, where Lacl and LacY noise is not transmitted.

r = 1- E + pE

zG = EaG -G +pG

TR = EaR -R +PR + P [14]

Here E represents the collective effect of global noise factors (for example, CRP,
ribosome and RNA polymerase concentrations) and is scaled to an equilibrium value of

one. G and R are the number of GFP and RFP molecules, while aG and aR represent the

equilibrium amount of GFP and RFP in induced cells. We assume that removal of these

molecules results from cell division, so r is the characteristic decay time due to dilution.

The following relations define the noise terms accounting for intrinsic fluctuations of

proteins.

< PG,R >= 0

< PG,R (t)PG,R (t + At) >= 2aG,R (bGFP,~RP + 1)S(At) [15]

We include a term pp to account for noise introduced by fluctuations in plasmid number,
which we assume is uncorrelated with other sources of noise. Fluctuations of the global

factors may be defined similarly to intrinsic protein noise, but we do not a priori know the
magnitude of these fluctuations:

< E >= 0

< PE (t)UE (t + At) >=< 2E > S(At) [16]

We want to use Eqn. [14] to derive the noise properties of our fluorescent reporters from
the sources of intrinsic noise. This can be accomplished by calculating deviations from
steady state values, Fourier transforming to relate fluctuations in molecules to sources of



intrinsic noise, squaring, and inverse Fourier transforming to give the relevant moments.

First we subtract equilibrium values from the parameters yielding deviations from steady

state: SE - E-1, 8G =-G-aG, SR - R - a R . Then we relate fluctuations in molecules

to their intrinsic and extrinsic sources by Fourier transforming. Now, inverse Fourier

transforming through the Wiener-Khintchine theorem yields the following result for the

second moment of 6G and the correlation between SG and 6R:

< 6 >= aG(bGFP +1)+ G < SGR > [17]
aR

Eqn. [17] relates the total fluctuations around steady state in GFP to a contribution from
intrinsic fluctuations and a contribution from global fluctuations. This means that we can

separate the total noise in GFP (lg-,totai) into intrinsic (T,_igt) and global (lglobal)

components by the relation:

2 2 2 [18
7g-total = 7g-int + 7global

Here the individual noise contributions are related to the reporter fluctuations:

2 < 2 > <G 2 >-<G> 2

2
7 g-total a 2 < G > 2

2 < 8G8R > < GR > - < G >< R > [19]
flglobal = c7 R[ 9]CgGC R  < G >< R >

The biochemical parameters aG and bGFP can be obtained from:

2 bGFP +1 2 2 [20]
Sg-int -g-total I global

C
G

By assuming the mean fluorescence in a single cell is proportional to the

concentration of molecules in that cell, we can measure total and extrinsic noise for a

population using Eqn. [19], and the intrinsic noise is given by Eqn. [20]. We find that in

fully induced cells the fluctuations in GFP are coming almost entirely from intrinsic noise.

In this case, we could simplify our model by eliminating the extrinsic fluctuations without
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greatly compromising accuracy. However, we leave this component in our model

because extrinsic and global effects can often be quite large (Elowitz et al. 2002; Raser

et al. 2004; Pedraza et al. 2005), and we want our model to be generally applicable

without compromising ease of implementation.

GFP and RFP fluorescence levels are measured in individual cells on several

populations induced with different concentrations of extracellular TMG. For 30 gIM TMG

this distribution is shown in Figure 4.1.8, indicating a weak correlation between GFP and

RFP levels. For GFP, the total noise, qg-totah, and extrinsic noise, rgl1obal, are measured

directly from the GFP and RFP distributions in the induced population using the

relations:

2 (G2 (G2 )(G) 2

72g-total - 2(G)2  (G)2

2 (86GR)_ (GR)-(G)(R) [21]
global G)(R) (G)(R)

Again, the brackets (...) represent the population average of fluorescent levels of single
cells in the ON state only. The intrinsic GFP noise, 12 _,_ = 211-tar -2lob, is calculated

for extracellular TMG ranging from 9 gIM to 30 giM (Figure 4.1.8), and mean values of the

noise measurements are qg-total = (0.25 ± 0.04), 7g.-int = (0.21 ± 0.03) and r7global = (0.14 ±

0.02). Error bars represent standard deviations over the eight measurements. These

values remain constant over the range of measurement, indicating that the ON cells

have similar noise characteristics regardless of the concentration of extracellular TMG.
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Figure 4.1.8 Measurement of intrinsic and extrinsic (global) noise is accomplished by comparing
RFP and GFP concentrations in individual cells. (a) RFP and GFP concentrations for individual
cells grown in media containing 30 pIM TMG for 24 hours. A slight correlation between the two
concentrations is present, indicating that the two share a weak source of global noise. (b)
Measurement of this correlation allows division of total noise in GFP into intrinsic and extrinsic
components, each of which are calculated from 9 pM to 30 pM TMG.

102

b - s 1-t otar

- Iglobal
o Ig-int

-IL Ir -- - -rL --- -- 13-

Q-- --- -- 0

A%
I

"

I I = I I I U.0



4.1.7 Measurement of Molecule Numbers

Decomposing the noise in a gene into intrinsic and extrinsic components still
does not characterize fluctuations with sufficient detail to build a microscopic simulation;

the numbers of relevant proteins in each cell is still needed. We estimate this number

using a method where GFP fluorescence is compared between dividing cells. To

calibrate between fluorescence and the absolute number of molecules it is sufficient to

determine the number of GFP molecules in an induced cell, N (Rosenfeld et al. 2005).
Rosenfeld et al showed that intensity fluctuations introduced by cell division vary with the
number of fluorescent molecules in the cell. Upon cell division, each molecule will be

independently and randomly partitioned into one of the two daughter cells. This process

can be described by a binomial distribution, where the difference between the numbers

of molecules in each daughter cell will, on average, be proportional to N1/2. This means

that as the number of molecules decreases (increases) the fractional asymmetry

introduced by division, N1/21N = 1r /2, will increase (decrease).

We arrive at this result by assuming each molecule of GFP is randomly and
independently assigned to one of the two daughter cells. Letting N, and N2 be the

number of molecules in the first and second daughter, respectively, we assume that the

following relations fully determine the statistics of this process: NPr =N, +N 2 ,

N N (1 + N )<N 1 >= P•r, and <N,2 >= i(I ) , where averages are taken over the cell
2 4

population. Further we assume that the mean fluorescence values, gfpl and gfp2, in both
daughter cells are directly proportional to the number of GFP molecules. Based on these
assumptions, NGFP can be estimated as shown below from the fluctuations of intensity
between dividing cells without requiring details of photon flux or quantum efficiency.

< (g, - gf) 2 > _ <(NI -N 2)
2 > _ 4 < N2 > - 4 Np < N, > +Npr 4

< 9pf, >< gP2 > < N >< N2 > NPair /4 NPa, [22]

This equation relates the distribution of cellular fluorescence values in the daughter cells
to the total number of molecules present in the mother. Because the fluorescence of an
average cell is somewhere between the undivided cell (Npair) and the daughter cells
(Npai,/ 2), we assume that NGFP = 3/4Np,r. Finally we measure gfpl and gfp2 for a
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population of 70 pairs of fully induced cells in 30 gIM TMG and find that NGFp= 7 9 0+210

molecules with error bars estimated by bootstrapping.
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Figure 4.1.9 Procedure used to estimate the average number of GFP molecules per cell. Large
amounts of proteins are more evenly divided than small numbers of proteins. In this way a high
correlation between gfp, and gfp2 indicates Ngf is large. Using bootstrap analysis we calculate
that NGFP is approximately 790 ± 210 (stdev) molecules.
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4.1.8 Estimation of Noise Parameters

At this point in the analysis we have measured the noise in GFP, split it between intrinsic

and extrinsic noise, and measured the number of molecules in a cell using fluorescent

division analysis. We next estimate the second missing noise parameter, burst size,
which can be determined from the intrinsic noise, qg-int, by using the relation

<gn2> = <n> (b+l) (Thattai et al. 2001; Ozbudak et al. 2002) where n is the number of

protein molecules and b is the average number of proteins produced from a single

mRNA. This relation stems from the fact that translation effectively amplifies the noise
associated with low levels of mRNA. We find that the burst size for GFP is

bGFP = 35.3±9.7, consistent with burst size estimates of other genes in E. coli (Pedraza

et al. 2005). Because the same promoter is regulating GFP and LacY expression, we

assume that the production rate of mRNA should be similar for the two proteins. Thus

we set NLcY , where NLacY is the number of LacY molecules in a fully induced cell,
bLacY - bGFP '

and bLacY is the burst size of a LacY mRNA. We could reduce the ratio NLacy/bLacY to a

single parameter analytically since the mRNA production rate for LacY is proportional to

NLacy/bLacy and the burst size in units of fluorescence is proportional to (NLacy/bLacy)1.
However, in order to proceed later with simulations that model explicit molecular events,
we need to assign values for both NLacY and bLacY. Therefore, without loss of generality,
we choose values for these parameters that maintain the required ratio by setting them
equal to those measured for GFP: NLacY = NGFP and bLacY = bGFP -

In principle one can also measure the noise from other extrinsic sources such as
Lacl, which propagates its total noise into the GFP and LacY protein levels. A similar
measurement been performed in two previous studies (Elowitz et al., 2002; Pedraza and
van Oudenaarden 2005) in which there was no positive feedback loop from LacY.
These works find that the amount of noise transmitted is dependent on the concentration
of internal TMG. As the Lacl level changes, the rate of change of LacY production
determines how much noise is transmitted. A slope of zero will transmit no noise
because small fluctuations in Lacl level do not change the LacY production rate. As the
slope increases the amount of fluctuations transmitted increases proportionately.

In our network the fully induced cells block noise from Lacl, which means that
transmitted noise from Lacl is only observable in uninduced cells. However, at zero
induction the noise in auto-fluorescence becomes comparable to the noise in the gene
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and the measurement cannot be made. To get around this we use published estimates

of the intrinsic noise determining parameters for Lacl (Muller-Hill et al., 1968). We

assume the burst size in this estimate is not changed in our strain, and scale the mean

number of molecules by the division time of the cell. We thus interpret these parameters

as Nlal = 50 and bLacl = 5.
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4.1.9 Stochastic Model

We now have a full set of parameters for the dynamic deterministic model, as well as all

parameters necessary to describe the steady state noise properties of the lactose

uptake network. In order to determine if these parameters can be used to predict the full
dynamic distributions measured in the experimental section, we construct a dynamic

stochastic model. In principle we have already fully defined the model, but for simulation

purposes, we use a reduced model that contains only essential events. The model

consists of three processes: (1) mRNA production followed immediately by a burst of

protein production and mRNA degradation, (2) protein degradation, and (3) extrinsic or

global noise. We therefore ignore specific events such as binding of Lacl or CRP to

operator sites and timing between productions of individual protein molecules.

Repeat translation - b times

(1) Burst: mRNA mRNA + proteins proteins

Transcription mRNA degradation

At - minutes << division time

(2) Protein Degradation:

protein -- > 0

(3) Extrinsic Noise

Extrinsic 'factor' --- 0 and 0 -- Extrinsic 'factor'

Figure 4.1.10 Diagram depicting the three processes involved in the stochastic model.

We assume the number of proteins produced from an individual mRNA to be
chosen from an exponential distribution by treating the decay of mRNA as a random
Poisson process and assuming that the number of proteins translated is proportional to
the lifetime. Because the lifetime of an mRNA is very short in relation to the timescales
associated with fluctuations in protein level (z-n) we condense the three events
(production, translation and degradation) into a single 'burst' event. We model this
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process by production and immediate decay of an mRNA whose net effect was the

addition of a random number of new proteins to the system. We quantify the rate at

which these bursts occur by dividing the rate of protein production by the mean number

of proteins produced from an mRNA.

We model the loss of protein levels by random Poisson decay of individual

proteins at a rate commensurate with that caused by dilution. This adds noise to the

system that is not inherent in cell growth and ignores noise due to the partitioning

process. However, the noise difference between the decay and dilution processes

should not be important because the noise from mRNA bursts is dominant in our

experiments. This could become relevant for dynamics that are heavily influenced by
decay processes when there are few if any mRNA burst events.

Global noise is included as a multiplicative term on the production of GFP and

LacY. To include this effect, the random walk process E(t), described in Eqns. [14] and

[16], is simulated and included in the relevant mRNA production rates. Here the value

<pW2> is chosen so that the simulated value of qrglobal matches that measured

experimentally. The statistics on the process are thus given by (E) = and

(8E(t)8E(t+At))= 2lobal2 exp(-At/t 1 /2). This is then numerically simulated by a

discrete random walk, and the mRNA production rates of relevant proteins are multiplied

by the resultant factor E(t).

Table 2. Stochastic Model

Protein Event Reaction Rate

GFP Burst G - G+ B(bGFP) f(x(Y), I) NGFF(bGFP T11/2 )

Decay G G - 1 G/i1/

LacY Burst Y-+ Y+ B(bLacY) f(x(Y), I) NLacY/(bLacY "1/2) E

Decay Y-, Y- 1 Y/r12

Lacl Burst I I + B(bLacl) NLacY/(bLacY M1/2)

Decay I-- 1 V/

Where the following functions model the effect of Lacl repression based on

instantaneous values of Y and I:

108



[23]

(r-1)1l
f(x, I) = LacI(l + 1

ab
x(Y) = (Y ac + X TMGexternal)

Here s represents a correlated extrinsic noise factor with:

<s> = 1

<88(t) 8E(t+Dt)> = 2T2 extrinsic e-Dt/  [24]

B(b) is an exponentially distributed random integer with mean equal to b. Capital

variables are defined to be absolute molecule numbers of the respective lower case

concentrations scaled to the deterministic model for example:

G g NGFP/a

Y y NGFP/a [25]

Final parameter values are listed in (1) -Ozbudak et al., 2004; (2) - Muller-Hill et al.,
1968
Table 3:

Parameter Value Error Reference

a 100 16 (1)

P 0.123(TMG) 06 15% (1)

p 170 34 (1)
0.06 0.04

x 0 min 20

Tra 216 min 43

NLacY 790 proteins 210

NGFP 790 proteins 210

NLaci 50 proteins (2)

bLacY 34.8 proteins 10.1

bGFP 34.8 proteins 10.1

bLacl 5 proteins (2)

(1) -Ozbudak et al., 2004; (2) - Muller-Hill et al., 1968
Table 3: Table of parameters used in the deterministic and stochastic models

To justify modeling mRNA production and decay as a single event, we compare
simulations of two similar models. The first 'microscopic' model describes for the
individual mRNA and protein production and decay events. The second 'bursting'
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model, as described above, simulates mRNA bursts and protein decays only. Figure

4.1.11 shows the schematic for each model and the corresponding rates used, and the
results of the simulations are shown in Figure 4.1.12. We see that although many of the
processes are ignored in the 'burst' model, it still reproduces the equilibrium statistics of

the 'microscopic' model. This agreement between the two models should still hold when

multiple species are simulated. However, the approximation would break down if the

lifetime of mRNA becomes nearly as long as the division time of the cell, but this is an
unlikely scenario in our system.

(1) Microscopic Model:

kR1  0.0026 mRI
kp 0.0208

[rp 7.7x10-5

R 10.0069 Dl

(2) Burst Model:

kR1  0.0026
7P 7.7x10 -5

b 30

kp 7P

NA • protein (

kR
A mRNA -- 0

kR 7P
DNA B- burst-->protein -- , 0

Each burst event produces on
average b = kPyR proteins with
an exponential distribution

Figure 4.1.11 Comparison of detailed DNA to mRNA to protein model with bursting model where
protein is produced in exponentially distributed bursts
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mean = 1.0x10 b
4 .- 70b

mean = 0.99x103
stdev = 171

Proteins

Microscopic
Model

Burst Model

2000

Figure 4.1.12 The 'microscopic' protein production model is relatively indistinguishable from the
'bursting' protein production model.
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Stochastic Model Results

The full stochastic model can now be simulated using Gillespie's Monte-Carlo

algorithm (Gillespie, 1977). This method treats each production or degradation event as

an independent and random process (Poisson process), which gives an exponential

waiting time until the next event. This time is estimated and the number of molecules

and current time are updating according to whatever event (i.e. LacY burst, GFP
degradation, etc.) occurs first. Between events the cell remains in exactly the same

state with all molecule numbers preserved. Once the number of molecules is updated,

the rates are changed to reflect the new state and another event is simulated. To

initialize the system, cells are put into either the on or off state and simulated for 12

hours to allow the population to equilibrate.

Several simulation time series for this model are shown in Figure 4.1.13; here

five single cells have been simulated in each of two external conditions. Panels a and b

represent induced cells placed in 0 ýIM TMG, and panels c and d show uninduced cells

in 35g1M TMG. This figure shows that GFP is a good reporter for LacY level as both

molecules show similar behavior in both circumstances. Both GFP and Lacy show

similar levels of noise as their noise parameters were chosen identically, however there

is a striking difference between the two transitions. Transitions from induced to

uninduced (Figure 4.1.13a and b) show smooth curves with exponentially decaying

protein levels. Also, most of the trajectories are very similar, differing only by about 100

molecules through the time series. The transitions from uninduced to induced, however,

do not display this smooth behavior, and each cell acts very different from the other cells

and the population mean. The differences in 'smoothness' can be attributed to the

difference between noise in protein production and noise in protein decay. This can

occur, for example, when the production of proteins ceases and the decay and dilution

processes dominate the concentration kinetics. Because there is no protein production

and therefore burst events, the noise in the induced to uninduced transition is largely

controlled by the number of molecules rather than burst size.
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Figure 4.1.13 Examples of (a) GFP and (b) LacY trajectories from the ON to OFF states as well
as (c) GFP and (d) LacY trajectories from the OFF to ON states. These trajectories serve to
illustrate that protein production, which relies on mRNA production, is a highly noisy process. On
the other hand, protein degradation, is a low noise process because of the large number of
events involved.

Because it is not obvious that the stochastic model will preserve the relevant
behaviors of the deterministic model, it is important to examine it in the steady-state
regime where the deterministic model was originally compared to experimental data. To
verify that the model is functioning properly, growth of cells from both ON and OFF
histories is simulated for the equivalent of 20 hours in a range of external concentrations
of TMG. As can be seen in Figure 4.1.14 the cells largely remain in their original states
through the shaded region, while transitions between the two states occur more
frequently past the edges of this region. The hysteretic effect is similar to published
measurements of single cells (Ozbudak et al. 2004), indicating that the model is
capturing many of the essential properties of the biological network. The greater than
expected transition rate from OFF-to-ON in the deterministically bistable region could be
due to increased sensitivity to parameter error in this region, or an overestimation of
LacY noise.
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Figure 4.1.14 Hysteretic behavior of the stochastic model similar to that observed in experiments.
(a) Simulated uninduced cells growing in various concentrations of external TMG for the
equivalent of 20 hours. (b) Simulated induced cells growing for 20 hours in the same
concentrations of TMG as in (a). Each point represents a single cell in a population of 100 cells.
Y-values represent GFP concentration, and x-values represent external TMG with a small spread
introduced to reflect each cell's RFP concentration. The shaded region indicates the region of
bistability as determined from the deterministic rate equations.
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In Figure 4.1.15 we compare the model's steady state distributions to experimental data

for cells of both an ON and OFF history grown in 6 AM and 9 AIM TMG, which are both in

the deterministically bistable region, and we find reasonable agreement between these

data.

6 ýiM TMG

a

0.5

9 pM TMG

0 100

1E-3

GFP [scaled units]
0 100 200

GFP [scaled units]

Figure 4.1.15 Comparison between model and experiments in bistable region. The gray boxes
are experimental results from initially (a,b) OFF and (c,d) ON cells grown for 20 hours in (a,c) 6
pM TMG and (b,d) 9 pM TMG. The red lines are the result of simulating 104 cells in conditions
equivalent to those used experimentally.

To further test our model in the bistable region, we calculate the OFF-to-ON

transition rate when cells are switching stochastically. This can be done by fitting the

equation foeIt to the fraction of cells remaining in the OFF state at time t, foFF(t). The

results for the switching rate XTMG) from this fitting are shown in Figure 4.1.16 for both

experimental data and simulations in the range of 3 ALM - 60 AM TMG. The transition

rate for both curves is near or equal to zero until approximately 9 iM TMG, which

coincides with the upper boundary of the deterministically bistable region. Above 9jiM

TMG, the model and experimental transition rates rise together as extracellular TMG
increases.
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Figure 4.1.16 Comparison between switching rates for the experiments and model. The gray
boxes represent the rate at which initially OFF cells are observed to transition to the ON state as
a function of extracellular TMG concentration. The red line is the result of simulating 200 cells
that were initialized in the OFF state.

The stochastic model reproduces both the ballistic and stochastic switching,
whereas the deterministic model does not distinguish between these types of behavior.
For the case shown in Figure 4.1.17a, the experiments and simulations both show that
every cell moves like the average obtained from the deterministic model. In addition to
demonstrating average behavior, the stochastic model also correctly predicts the width
of the distributions. For the data shown in Figure 4.1.1 b, the individual cells behave very
differently from the average, and the stochastic simulation captures this behavior. In this
case the peak at uninduced GFP levels slowly decays as a subpopulation of cells begins

to transition to the induced state. In addition to demonstrating the general behavior, the

model matches the rate of transitions out of the uninduced peak and predicts the shape

of the population distribution over a wide range of TMG and time.

It is noteworthy that ballistic switching does not always occur when the initial

state becomes unstable. For instance, even though the OFF state is no longer stable in

media with 50 pM TMG, the timing of an OFF-to-ON switching event depends on a cell's

rare production of LacY mRNA and subsequent protein creation. It is this rare, stochastic

burst of LacY that ultimately triggers the positive feedback loop and drives the OFF-to-

ON transition. Conversely, the ON-to-OFF transition is ballistic because it requires the

dilution of intracellular TMG and GFP, both low-noise events involving high molecule

numbers.
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Figure 4.1.17 Comparison between model (red lines) and experimental data (gray boxes) when
cells are transitioning from the (a) ON to OFF and (b) OFF to ON states. Model represents the
results of 10,000 independently simulated cell trajectories.
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Parameter Robustness

In order to quantify the sensitivity of the model's output to variations in the deterministic
and noise parameters, we construct a cost function that compares two population
distributions. The cost function should return small values for nearly identical
distributions and large values for very different distributions. We set H(G, T, t) to be the
fraction of initially uninduced cells in the bin centered at G units of GFP fluorescence

after t hours of growth in T gM TMG. This is similar to the curves shown in Figure 4.1.17.

We define a cost function, X, similar to a j error, and evaluate it on the logarithmic-

normalized histograms:

X = ,T Lt -G IO2(Hexperiment(G, T,t)l Hmodel(G, T,t)) [26]

The sums are confined to the histograms shown in Figure 4.1.17, and any terms with
H = 0 were ignored in the sum. To estimate the sensitivity of the model to parameter

error, each parameter was individually varied, and the cost between the model

predictions and experimental measurements was calculated. We vary a, p, 2, NGFP

and bGFP by the calculated errors shown in Table 4, while NLacY, bLacY, NLacl and bLac, are

each varied by a factor of two because these parameter values were not measured

directly. The results of these robustness calculations, X(Value+Error) and X(Value-Error)

. are shown in Table S1. When all parameters are given by the values indicated in Table

2 the cost is found to be X(Value) = 67.02, which is close to the cost between two

histograms generated from replicates of the same experiment: XExpeimental = 45.50.

Error on the parameters a, A, and z1/2 has the greatest impact on the model's

predictions when compared to experiments. Even though the highest value of X is more

than twice as large as the lowest, the qualitative predictions remain similar throughout

the range of parameters. Variations in each parameter slightly change the shape of the

simulated histograms. For example, increased (decreased) values of A created a higher

(lower) rate of OFF to ON transitions (Figure 4.1.18). While the shapes of each peak in

the bimodal histogram of transitioning cells remains similar, the relative magnitudes of

the peaks are changed. For changes in a, however, the peak of OFF cells decays with a

rate similar to experiments, but the simulated transitioning cells either produce GFP too

quickly or too slowly for the histogram to closely match experiments (Figure 4.1.19). The

noise parameters N and b seem to affect prediction accuracy the least. Decreasing bLacY
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even causes better agreement than the value estimated through GFP noise, suggesting

that noise in the LacY levels might have been over-estimated.

Parameter X(Value + Error) X(Value - Error)

a 141.96 120.15

,8

p

NLacY

NGFP

NLacl

bLacY

bGFP

bLaci

82.95

85.78

177.18

73.62

82.42

75.12

83.29

90.80

70.27

95.61

81.22

94.37

120.88

91.61

94.70

89.13

63.02

71.45

74.07

119.71

Table 4: Results of parameter robustness simulations where fractional error (X) is reported for
changes in each individual parameter. For comparison: XExperimenta = 45.50 and
X(Value) = 67.02
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Figure 4.1.18 Model predictions for changes in A both above and below measured value. The
shapes of the curves are maintained while the escape rates are increased or decreased.
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Figure 4.1.19 Model predictions for changes in a both above and below measured value. The
escape rates are similar while the rate of GFP production is changed.
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4.1.12 Discussion

We introduced a method that should have general applicability for the prediction of

stochastic cellular dynamics. The first step includes characterization of a deterministic

model that matches known steady-state behavior. Rate constants in this model can be

estimated from published values, by fitting to steady state measurements, or through

direct biochemical assays. Next, the magnitudes of noise sources are extracted from

distributions of fluorescent counts and correlations between different expression

reporters measured in steady state. The sources of intrinsic noise are then characterized

by the discrete molecule numbers (N) and mRNA burst sizes (b). By combining these

reaction rates and noise sources, a stochastic model is produced containing three

important stochastic factors: mRNA production, protein degradation, and global noise.

The model is in good agreement with experimental data and can predict the type

of response (ballistic versus stochastic), the escape rates from a state, and the

distribution of reporter fluorescence values without any fit parameters. Furthermore, the

predicted distributions proved to be robust against parameter variation in both magnitude

and general behavior. The precision of our model's predictions could be improved by

careful measurement of individual model parameters; however, we have shown that

previously obtained parameter estimates are sufficient to provide interesting quantitative

information about network behavior not available from deterministic equations alone.
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Experimental Materials and Methods

Growth conditions and Media

Cells were grown at 37*C in M9 minimal media with succinate as the main carbon

source. Overnight cultures were prepared in the absence of TMG or in the presence of

100 pM TMG to yield populations of cells uninduced or fully induced for lac expression,
respectively. Cells from the overnight cultures were diluted into fresh media containing

intermediate TMG levels and maintained at low density (0.001<ODe60 <0.005) to prevent

TMG depletion throughout the experiment. At specified time points, a portion of each
culture was removed and prepared for imaging; fresh, pre-warmed media with the
appropriate TMG level was added to dilute the remaining culture so that the cell density

of each imaged sample was the same (OD600 = 0.005) for all time points. Samples were

concentrated and prepared for imaging by filtration, centrifugation, resuspension in 1.25
pl of the appropriate growth media, and placement on a microscope slide.

Bacterial Strains

Dynamic population distributions of lac promoter activity were gathered using E. coli

MUK21 (Ozbudak et al. 2004), in which the gfp gene is placed under the control of a

wild-type lac promoter and chromosomally inserted. Published steady-state distributions

from the ERT113 strain (Ozbudak et al. 2004) are further analyzed here for both noise

measurements and partitioning analysis. Strain ERT113 was constructed by
transforming MUK21 cells with a plasmid containing the red-fluorescent protein HcRed

under the control of the gat promoter.

Fluorescence Microscopy

Measurements of GFP fluorescence in dynamic (pre-steady-state) cell populations were

obtained using a Nikon TE300 microscope equipped with automatic stage and focus,
and a Micromax 1024B CCD camera (Roper Scientific), all controlled by MetaMorph

software (Universal Imaging). Steady-state measurements were gathered as previously

described (Ozbudak et al. 2004). Fluorescence values for cells are corrected by

subtracting background fluorescence measured in a region of the field of view devoid of

cells. Cell boundaries were determined by auto-thresholding phase contrast images, and

GFP intensity was averaged over this area. Mean fluorescence levels are assumed to be

representative of reporter concentration and are calculated by dividing the total intensity
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of the cell by the area in pixels of the cell in the phase contrast image. These numbers

are then normalized so the induced population average of the mean fluorescence is 100
for both GFP and RFP.
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4.2 Correlations in Switching Dynamics 2

4.2.1 Introduction

Inheritance is more than the faithful copying and partitioning of genomic information.

When cells divide, the mother passes numerous other cellular components to the newly

born daughter, including nucleosomes, transcription factors, mitochondria, and

substantial fractions of her proteome and transcriptome. In this way, an entire pattern of

gene expression can be passed from mother to daughter, a phenomenon known as

epigenetic or non-Mendelian inheritance. Classic examples abound in the literature and

include the sex-ratio disorder in drosophila (Colaianne et al. 1970), the yellow-tip

phenotype in melons (Ray et al. 1996), the telomere position effect in yeast (Gottschling

et al. 1990) and mouse (Pedram et al. 2006), and prions such as Psi+ in yeast (Patino et

al. 1996).

The timescale over which epigenetic phenotypes may persist spans many orders

of magnitude and depends strongly on the physical mechanism employed by the cell

(Rando et al. 2007). In general, however, epigenetic phenotypes are significantly less

stable than chromosomally inherited ones (Rando et al. 2007), and can change

reversibly in single cells (Gottschling et al. 1990; Halme et al. 2004; Ozbudak et al.

2004), during development (Muller 1930; Lyon 1961), or even in mature organisms

(Tosh et al. 2002).

Beginning with landmark studies on the lac operon in the 1950s, positive

transcriptional feedback loops have emerged as a means to store cellular memory

(Novick et al. 1957; Maloney et al. 1973; Rao et al. 2002). Such epigenetic inheritance

systems are frequently described as 'bistable', meaning that transcriptional activity of

genes in the network tends to become fixed in single cells around one of two stable

levels (ON and OFF), each of which is able to stably persist for many generations

(Ozbudak et al. 2004; Acar et al. 2005; Suel et al. 2006). Stochastic fluctuations in the

synthesis or decay of the proteins involved (Thattai et al. 2001; Elowitz et al. 2002;

Ozbudak et al. 2002; Blake et al. 2003; Paulsson 2004; Raser et al. 2004; Becskei et al.

2005; Golding et al. 2005; Kaern et al. 2005; Pedraza et al. 2005; Raser et al. 2005;

Rosenfeld et al. 2005; Bar-Even et al. 2006; Cai et al. 2006; Newman et al. 2006;

2 The results in this chapter can be found in Kaufmann, B. B., Q. Yang, J. T. Mettetal and A. van
Oudenaarden (2007). "Heritable stochastic switching revealed by single-cell genealogy." PLoS
Biol 5(9): e239.
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Volfson et al. 2006; Kaufmann et al. 2007), or changes in external cues (e.g., a changing

environment), are responsible for causing transitions between the two states (Novick et
al. 1957; Ozbudak et al. 2004; Acar et al. 2005; Suel et al. 2006).

This flexible strategy, present in both prokaryotes and eukaryotes, allows

genetically identical cells to diversify their population, possibly allowing them to exploit

new environmental niches or survive in a fluctuating external environment. Feedback-

based cellular memories show an exceptional range of stability; depending on the

strength of the loops, cells may display memory of a previous expression state as short

as a single generation to many thousands of generations (Acar et al. 2005). However,

quantitative measurements of phenotype stability, switching, and heritability are rare,
both because detailed genealogical relationships are challenging to produce in single

cells (Axelrod et al. 1993) and because reporters indicating degree of inheritance are not

always available.

To measure how a dynamic gene expression state is inherited, we focused on an

engineered version of the galactose utilization (GAL) pathway in the yeast

Saccharomyces cerevisiae. We disrupted the pathway's major negative feedback loop,

and grew cells in conditions where only a single positive feedback loop was operational

(see Methods). Under these conditions, cells stochastically transition between two

distinct expression states even in the absence of an extracellular trigger. These

infrequent switching events therefore likely arise from fluctuations in concentrations of

regulatory proteins within the individual cells (Ramsey et al. 2006). We are able to

monitor transitions between ON and OFF using a fluorescent reporter (see Methods).

Because of these quantifiable stochastic transitions, our network is an ideal model

system well suited to study the heritability of an entire dynamic gene expression state.
In this work, we find that not only is the epigenetic phenotype itself heritable, but that the
stability of this phenotype is likewise a heritable quantity. In other words, when cells
divide, the nascent daughter cell assumes both the expression state of the mother cell
as well as her tendency to switch epigenetic states at a similar time in the future. This is
surprising, especially considering that individual cells viewed outside their genealogical
context appear to switch at random, consistent with simply a constant rate stochastic
process. We resolve this apparent contradiction using a simple stochastic model.
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4.2.2 Network Structure

Elaborate regulatory machinery has evolved to help cells focus on the carbon sources

that maximize their growth rate in a particular environment. The much studied galactose

utilization network (GAL) is a model for such decision/metabolic pathways. The network,
comprising roughly a dozen genes, contains two positive and one negative

transcriptionally-mediated feedback loops nested one within the next. The positive loops

make possible a two-state 'all-or-nothing' arrangement, while the negative loop is

thought to stabilize cells in one of these two states, called ON and OFF.

The ON state's defining characteristic is high activity of Gal4p, a transcriptional

activator constitutively bound to the promoter of many GAL genes (Keegan et al. 1986).

Gal4p activity occurs only in the absence of a dominant repressor Gal80p, which

becomes sequestered to the cytoplasm in the presence of active Gal3p(Peng et al.

2002). GAL3, in turn, is positively regulated by the level of active Gal4p, closing the first

positive feedback. Thus Gal3 presents something of a chicken-or-the-egg situation: high

expression of Gal3p leads to the activation of the GAL network, and activation of the

GAL network leads to high expression of Gal3p.

A membrane protein Gal2p, whose expression is also regulated by Gal4p, forms

a second positive feedback loop by importing galactose into the cell and consequently

activating Gal3p. Finally, GAL80 negatively regulates its own production, again by

suppressing the activity of Gal4p. For cells in the OFF state, the situation is reversed

with low Gal4p activity, presence of repressor Gal80p at the GAL promoters, and a

depletion of (active) Gal3p and Gal2p in the cytoplasm.

In wild-type cells, transitions between the OFF and ON states can be forced by

changing levels of inducers (e.g., galactose) or repressors (e.g., glucose) in the

surrounding environment. At intermediate levels of inducer, the OFF or ON status of the

cell depends on the history of the media in which their ancestors grew, indicating

significant hysteresis. This hysteretic behavior buffers against switching too rapidly

between states, perhaps to avoid the metabolic cost incurred.
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4.2.3 Experimental Setup and Network Behavior

We first set out to quantify the infrequent switching events that occur at random times

using fluorescence microscopy. All experiments began with a single cell confined

between a cover slip and a thick agar pad. Over a period of about 920 minutes (>15
hours) each cell grows and divides to form a small colony of between 50-100 cells.

Throughout the measurement period, these cells diverge in behavior with some

increasing in fluorescence and others decreasing. We repeated this process with more

than 100 progenitor cells, so in sum our data represent many thousand single-cell

trajectories.

We present two examples of the experimental procedure in Figure 4.2.1. In the

top panels, an initially bright cell develops into a small colony with distinct

subpopulations. The dim cells in the lower subpopulation continue to diminish in

fluorescence with each successive cell division as the remaining molecules of GFP
dilute. In the bottom panels, an initially faint cell likewise gives rise to a variegated colony

with cells both dim and bright. Together, these two processes generate a broad bimodal

steady-state distribution.
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Figure 4.2.1 Cells switch between expressing and non-expressing states. Images are phase
contrast micrographs (black and white) overlaid with background-subtracted fluorescent signal
(purple). (A) Over 750 minutes, or between 4 and 5 generations, an initially ON cell of strain
MA0188 develops into a small variegated colony with subpopulations of ON and OFF cells. (B)
An initially OFF cell likewise grows into a mixed colony with both ON and OFF cells. The sharp
interface between ON and OFF cells in both (A,B) indicates that cell-cell communication does not
play a major role in defining cell expression state.
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4.2.4 Individuals Switch in a Poisson Manner

Narrowing our focus to initially OFF progenitor cells, we allowed each to grow, divide,
and give birth to other initially OFF cells. We then recorded instances when cells
switched into the ON state (Figure 4.2.2). Because cellular auto-fluorescence is
uniformly small throughout the population of OFF cells, these fluorescing events were
generally distinguished unambiguously from background. Using these data we
generated, for each colony, a family tree where the detailed genealogical relationships
and gene-expression histories of corresponding family members are shown (Figure
4.2.2B).
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Figure 4.2.2 A genealogical switching history. We designate the first cell in each movie cell 1 and
sequential daughters of that cell 1-1, 1-2, 1-3. These daughter cells bud in turn, giving rise to cells1-1-1, 1-1-2, 1-2-1, etc. (A) As in Figure 4.2.1, an initially OFF cell grows into a variegated microcolony. Beginning at 600 minutes, or 4 generations, several cells fluoresce almostsimultaneously. This includes the mother-daughter pairs (1,1-2) and (1-1-1,1-1-1-1).
Conspicuously, cell 1-1 does not switch for the duration of our observation, even though itsmother, daughter, and closest sibling all do. (B) The family tree for colony in (A). Black linesindicate cells in the OFF state, while pink lines represent cells after they have switched to the ONstate. (C) Fluorescent time courses for mother cell 1 and her daughter 1-2, showing each as they
switch into the ON state. The marginal switch times r1 and 11-2, run from cell birth until thebeginning of the increase in fluorescence and do not depend on any other cells. The period
labeled T|11-2 runs between the birth of cell 1-2 and the fluorescence of cell 1 and is an example ofa conditional switch time.

129

B
r

(o

c-a

ICell
bum Mother

I (1)
ii- *'------

cel
i1-2 Daughter
born (1-2)

1t Z1

750 900

*,. I



Because cells are continuously born throughout the experiment, we aligned them in

silico so that their birth times were identical. In this context, it is natural to define the

marginal switch time, rx, a parameter that describes the interval between the birth of a

cell X and the moment it eventually becomes fluorescent (Figure 4.2.2). We normalized

each measurement according to its expected likelihood of being observed to account for

any biases caused by the cells' exponentially dividing throughout our measurement

period. The resulting data fit well to an exponential curve with an effective transition rate

of 0.12 switches per generation (Figure 4.2.3A, cyan line). The slight discrepancy

between data and exponential fit is likely the result of some cells growing out of the focal

plane. The reverse switching distribution, comprising ON cells switching into the OFF

state, could not be obtained in this simple way due to the long life of the fluorescent

proteins.
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4.2.5 Heritability of Switching from Mother to Daughter

This exponentially distributed switching pattern applies to cells chosen at random without
regard to genealogy. However, measuring cells instead on the basis of their family

history paints a very different picture. To demonstrate this, we selected all daughter cells
with marginal switch times below some value T. Out of this subset, we then asked what
percent of their mothers had also switched at or before that time. The results,
summarized in Figure 4.2.3B (open circles), show that when a daughter switches shortly

after cell division, its mother cell is overwhelmingly likely to do the same. For example, of
the daughters who switch within 400 minutes of cell division (about two generations),
their mothers have approximately a 50 percent chance of switching in that same period.

This represents a two-fold increase in the switching rate for a typical unrelated cell. As T
grows to encompass an ever larger fraction of all daughter cells, the corresponding

percent of switching mother cells asymptotically approaches the marginal switch
distribution of Figure 4.2.3A (reproduced in black), which represents the limit of no
genealogical information. As in the marginal switch case above, we are careful to weigh
each of these mother-daughter pairs according to how likely we were to experimentally
observe them.

To measure the underlying rates governing this process, we examined the
possible switching events diagrammed in Figure 4.2.3A. In this simplified view, we

assume cell pairs can either switch together into the ON state together at a rate c(t), or

independently of one another at a rate r - c(t). In this way the total switch rate for any

given cell sums to r at all times, as required by the marginal switch distribution. We
max(t-20,0)

assume that the correlations decay with a rate c(t) - r e Tc , which is reminiscent

of an Ornstein-Uhlenbeck process (Rosenfeld et al. 2005; Suel et al. 2006) (see Figure
4.2.3A). The fixed delay of 20 minutes is included to account for slow chromophore
(YFP) maturation as observed in our data (daughters that switch within the first 20
minutes after cell division have mothers that always switch). This model includes two
free parameters: r, the overall switch rate, and Tc, the characteristic time for the
correlation to decay. A global least-squares fit to both curves (Figure 4.2.3B red and blue

curves) simultaneously yields (r = [7.0 ± 0.5]. 10-4

min-' = 0.12± 0.01 gen1-) and (Tc = 197 + 54 min). This decorrelation rate is quite similar
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to the average cell doubling time of 177 min, and similar connections between doubling

time and decorrelation have been found in other protein regulatory networks (Rosenfeld

et al. 2005).
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Figure 4.2.3 Single cell fate. (A) The cumulative percent of cells that have switched is plotted
against their marginal switch time. The black squares represent 251 switching cells, and the blue
line is an exponential fit. The cyan dashed line is a result of our stochastic simulation. Error bars
are derived from a bootstrap analysis. The fits are consistent with the idea that a constant-rate
process may underlie the network. The inset shows ways mother-daughter pairs may switch,
either dependently via the center route or independently of one another via the outer routes. (B)
Gray circles describe the likelihood that a mother cell has switched given that its daughter cell is
known to have switched before this time. The solid red line describes a two-parameter least
squares fit simultaneously to both curves with parameters described in the inset and main text.
The dashed dark red line shows the fit resulting from the stochastic simulation. Black squares and
blue lines are reproduced from (A) for comparison.
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4.2.6 Correlations of Switch Times

The above analysis suggests that when cell pairs do switch they will do so in synchrony.

To demonstrate that this is indeed the case, we turned our focus to the further subset of
cell pairs where both cells are observed to switch during the experiment (and therefore
ignoring cases where only one cell in a pair switches). More specifically, we
concentrated on three cell relationships: mothers with daughters (henceforth M-D),
grandmothers with granddaughters (GM-GD), and older siblings with younger siblings

(S1-S2). Instead of marginal switching times, which are measured relative to each
individual cell's time of birth, we chose instead to compute the switch times of both cells

relative to the moment when their two respective branches of the family tree first broke

apart. Put another way, this quantifies the amount of time between a switching event and
the last moment that these cell lines shared cytoplasm. The purpose of this approach is

to allow us to compare cells that were born at very different times on equal footing,
ensuring that switching events are measured relative to the same point for both cells.

For M-D pairs, the time we use is simply the birth of the daughter, but for GM-GD pairs it

is the birth of the intervening daughter, and for S1-S2 pairs, it is the older sibling's birth.

Formally we define the conditional switch time, rxlv, as the time elapsed between the

fluorescing of cell X and the birth of cell Y. When X and Y both refer to the same cell, we

recover the marginal switch time (i.e., 1xlx = Tx).

Comparing M-D conditional switch times (Figure 4.2.4A), we observe nearly

synchronous switching that extends at least 300 minutes and yields a correlation

coefficient of PMD=0. 87 (p<10-45 ). GM-GD and S1-S2 pairs (Figure 4.2.4B and C) show

somewhat lower correlation coefficients of PGMGD = 0.74 (p<10 -9 ) and Pss = 0.60 (p<10 -7)

respectively, although the overall coefficient for all data combined remains a robust PTOT
= 0.8 (p<10-62). The strength and duration of these correlations are surprising, and were

not found in bacterial (Golding et al. 2005; Suel et al. 2006) and mammalian (Geva-

Zatorsky et al. 2006) studies, except in context of morphological traits (Wakamoto et al.

2005). Like the marginal switch data, these scatter plots should be viewed in the context

of finite experimental viewing times, giving weights to points that are inversely

proportional to the number of experimental opportunities to have seen them.
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Figure 4.2.4 Cell pair behavior. The conditional switch times for closely related cells are
compared. (A) The daughter switch time is compared to the mother switch times for 141 cell
pairs. For times extending past 350 minutes (about two cell divisions), a strong correlation in
times is observed. The other cell pair relationships, shown again in (b,c), are shadowed in grey.
(B and C) The more distant relationships of grandmother-granddaughter (N=55) continue to show
significant correlation, while the sibling-sibling relationships (N=74) shows somewhat less. The
notable asymmetry of the sibling-sibling distribution reflects the tendency for older siblings to
sometimes switch before the younger sibling is even born.
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4.2.7 Persistence of Correlation in Switching Times

One dynamic measure for the randomness associated with the distribution is the

average square difference of switch times for pairs of cells with comparable mean switch

times (Figure 4.2.5D, blue curve). This curve rises rapidly at first, but at longer times it

flattens out. This flattening is likely due at least in part to the limited duration of our

experiments (on average 920 minutes), which constrains the scatter distribution to reside

in the box shown in Figure 4.2.4A-C.

To generate the mean squared deviation in Figure 4.2.5D, we first combined all

observed MD, GMGD, and SS switch pairs (Figure 4.2.5A-C) into a single data set. This

was done to increase statistical power. These data sets consisted of two columns,

t1 and t2 , representing the older and younger cell switch times for 274 cell pairs. From

this data set we used the bootstrap technique (draw with replacement) to generate 1000
alternate samples. Then, using each of these generated samples in turn, we

transformed the data in the following way:

S - ( + t2)
2

D =1 ti -t 2 12

We next binned the transformed data according to S, using bins of sizes 25, 50, 100,

and 150 min, with centers staggered by 75 min. At each center point, we calculated for

all bootstrap samples and all bin sizes the average of the quantity D. Thus for each bin

center we had four thousand estimates for the mean squared deviation (4 bin sizes

times 1000 bootstraps). The mean and standard deviation of these four thousand

estimates gives the mean and error shown in Figure 4.2.5D.

To understand what this means, it is helpful to compare our results to those

obtained using a stochastic Poisson model (Gillespie 1977) where closely related cells

are assumed to switch independently of one another and with constant probability in

time. If cells in this Poisson model were given an infinite time to switch and only mother-

daughter pairs were considered, the mean squared deviation would simply scale linearly

with the mean. To compare directly with our data, however, we run the simulation for the

same duration as our experiment and include all cell pair relationships, giving the more

complicated curve shown in Figure 4.2.5D (red curve).
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The ratio of the data's mean square variation to that of the Poisson simulation (Figure

4.2.5E, green curve) is a measure for how correlated cells remain after a given period of

time has passed. Points below the dashed line at unity would represent correlated

switching behavior, whereas points above it would signify anti-correlated behavior. For

over 600 minutes, the distribution remains distinctly sub-Poissonian. Only for the longest

measured times are there indications that the cells become independent of their history,
and even this is with large uncertainty. Put another way, pairs of cells often remain on

approximately the same trajectory for several cell divisions, even though cell growth has

diluted many of the relevant proteins to a fraction of their original level.
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Figure 4.2.5 Cell pair behavior. The conditional switch times for closely related cells are
compared. (A) The daughter switch time is compared to the mother switch times for 141 cell
pairs. For times extending past 350 minutes (about two cell divisions), a strong correlation in
times is observed. The other cell pair relationships, shown again in (B,C), are shadowed in grey.
(B and C) The more distant relationships of grandmother-granddaughter (N=55) continue to show
significant correlation, while the sibling-sibling relationships (N=74) shows somewhat less. The
notable asymmetry of the sibling-sibling distribution reflects the tendency for older siblings to
sometimes switch before the younger sibling is even born. (D) In blue, the mean squared
difference of the switch times from the combined relationships in (A-C), binned according to their
average switch time. In red, a computer-generated Poisson simulation sets a bound for switching
correlation in the limit of correlation tends to zero. The mean cell doubling time is labeled tdoub. (E)
Dark green squares show the ratio of the two curves in (D), demonstrating the persistence of a
correlation for at least hundreds of minutes after cell division. In purple, the predicted fit from our
stochastic simulation after fitting to the curves in Figure 4.2.3.
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4.2.8 Stochastic Model

To examine our results at a microscopic level, we constructed a simple model that

allows us to probe how the rich correlated switching dynamics arise from a simple

regulatory network. Specifically, we asked whether the stochastic fluctuations of a single

regulatory protein in our system could simultaneously explain the observed Poisson

switching behavior expected for randomly selected individuals and subsequent long-

timescale correlations. One key protein, Gal80p, functions to regulate the expression of

all other genes in the network. When present in the nucleus, Gal80p binds in a highly

cooperative manner to the transcription factor Gal4p and represses the expression of
Gal2p, Gal3p, and YFP (Volfson et al, for example, assume a Hill number of 8 between

Gal4p and transcription at the GAL1 promoter (Volfson et al. 2006)).

Such high levels of cooperativity frequently give rise to steep transfer functions,

which can result in switch-like behavior. This means that even a small decrease in the

concentration of Gal80p can cause the transcription rate of downstream genes to

increase dramatically from a very small basal rate to a large maximal rate. Once the

downstream protein, Gal3p, begins to be produced, it will lead to sequestering of Gal80p

to the cytoplasm, completing the feedback loop and causing the cell to completely switch

from the OFF to the ON state.

We constructed a simple model that captures the essential properties of this

process. In our cells, Gal80p is present in very low numbers, and we therefore account

for the effects of stochastic production and degradation for this protein. Protein bursting

invariably increases noise levels by amplifying rare events such as changes in promoter

activation or mRNA creation and destruction (Thattai et al. 2001; Paulsson 2004) (Blake

et al. 2006). We assumed that the burst-size distribution was exponential in shape with a

mean consistent with the results of Bar-Even et al., who found an average of 1200

proteins per burst (Bar-Even et al. 2006). We further assumed that the decay rate of the

protein is dominated by dilution and therefore set by the division time of the cell. Finally,

we included in our model a nonzero chromophore maturation time of 20 minutes, as

observed in our data. To account for cooperativity between Gal80p and Gal4p, we

assume that when Gal80p levels drop below a threshold value a cell rapidly activates

gene expression and enters the ON fluorescent state.

In total, the model has only three parameters: 1) mean number of Gal80p

molecules present per cell, 2) the switching threshold, and 3) the Gal80p burst size
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estimated from literature. We estimated the first two of these parameters by fitting the

model to the marginal and conditional switching distributions shown in Figure 4.2.3B.

Once the theoretical switching rates were fit to the experimental data, we asked if the

model explained the highly correlated switching times observed between related cells.

Without any additional fitting parameters, we predicted the mother-daughter, TMID, and

daughter-daughter, TDID, conditional switching times (Figure 4.2.7F, brown squares) as

well as their mean squared deviation (t, -t2)2) (Figure 4.2.4E, purple diamonds). These

predictions matched remarkably well with the experimental data (Figure 4.2.4E, green

boxes; Figure 4.2.7F, grey circles). The model therefore predicts that related cells will

remain highly correlated in their switching times even though switching events seem to

occur in a Poisson manner. A robustness analysis (Figure 4.2.6) suggested a narrow

range of possible values with an optimum centered around (average, threshold) - (2400

proteins, 670 proteins).
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Figure 4.2.6 Monte-Carlo model confidence intervals. Chi-squared is shown in a heat map as a
function of the two free parameters in our model, the average level of proteins and the switching
threshold. Colorbar at right indicates chi-squared value on a logarithmic axis. Burst size is fixed
to 1,200 proteins/mRNA, consistent with Newman et al (Newman et al. 2006). Yellow diamond
indicates the best fit of all tested values and occurs at (average, threshold) - (2400 proteins, 670
proteins). Orange and red contours represent 68% and 95% confidence intervals, respectively.
Points where the threshold exceeds the average have been excluded.

Bursting events in protein production are often associated with increases of noise
in protein levels (Thattai et al. 2001; Paulsson 2004). A counter-intuitive aspect of our
model is that the correlation observed in cell pairs comes as a consequence of
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stochastic bursting. As the burst size is ratcheted up from 12 to the experimentally
observed value of 1200, for example, keeping average protein level and switch rate

constant, correlations begin to emerge in the cell-cell scatter plots (see Figure 4.2.7).

The reason for this effect is that the periods between bursting events are dominated by
dilution of proteins, a relatively low noise process. As the burst size is increased, the
time between bursts must increase commensurately, leading to long periods of

correlated behavior between cells. Two cells that start with the same amount of protein

will therefore dilute that protein at a similar rate and switch ON (Figure 4.2.7C, black
arrows) at similar times. Decorrelations can arise when one of the cells experiences a
burst of new protein during this decay period. However, the cell experiencing the burst
has a greatly reduced probability of switching ON in a short period of time. In this event,
the cell will generally not be observed to switch at all over the duration of the experiment
and consequently does not appear as a significantly decorrelated time-point in the

UMM/TMD scatter plot.
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Figure 4.2.7 Burst-induced correlations. Results of our stochastic simulation. (A-C) Fluctuations
of protein concentration as a function of time are shown (grey lines). Several selected realizations
are highlighted for emphasis. Proteins are created in bursts of size <b> = 12, 120, and 1,200
respectively for the three panels, with the average protein level held fixed. Thresholds (solid black
lines) are chosen to result in an average switching rate equal to our experimentally measured
value. When protein levels drop below a threshold, that cell is considered to have switched. (D-F)
The resulting mother-daughter scatter plots. As the burst size increases, the pattern becomes
markedly more correlated. Gray circles in (F) are the experimental data reproduced from Figure
4.2.4A.
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4.2.9 Discussion

In recent years, cells within isogenic populations have become increasingly scrutinized

as individuals, each with its own original behaviors and gene expression patterns. What

make single cells distinctive, however, are not only the stochastic chemical reactions

taking place within them, but also their unique family histories. Here we have shown that

a cell's decision to dramatically change expression states can hinge directly on this

familial background. In doing so, we have separated what on its face appears to be an

exponentially distributed random process into stochastic and genealogically-determined

subcomponents. In addition, we show that protein or transcriptional bursting, processes

which increase total noise across a population, can unexpectedly create correlated

behavior between cells, a phenomenon hard to imagine occurring in deterministic

descriptions.

In the engineered network we have used in this study, there is no reason to

suppose that the correlations we observe provide an evolutionary advantage. However,
we can speculate that cells might employ the mechanisms described as a simpler way to

coordinate behavior between cells without relying on complex sensory machinery or

physical proximity. In addition, cells might exploit these architectures to ensure that

when a switching event does occur, that several other cells will do the same, thus

achieving strength in numbers. For example, a group of infectious disease cells seeking

to confront a host immune system might hypothetically choose to switch together from a

slowly growing latent phenotype into an active virulent phenotype in a coordinated but

randomly timed attack, thus enhancing their likelihood of sustaining an infection. It will

be interesting to see how far such analyses can be taken in the future, with perhaps

important features of a cell's future dynamical behavior being confidently predicted

knowing only the fate of its immediate family.
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4.2.10 Methods

Engineered Destabilization of the GAL Network
We used the well-characterized galactose utilization (GAL) network as our model genetic
network. In wild-type cells, transitions between the ON (galactose metabolizing) and
OFF (unable to metabolize galactose) states is largely determined levels of inducers

(e.g., galactose) or repressors (e.g., glucose) in the surrounding environment. To

generate a switching phenotype with large dynamic range, we destabilize this in two
ways. First, we remove the negative feedback loop altogether by replacing the
endogenous GAL80 promoter with a weakly-expressing, tetracycline inducible one,

PTETO2. Second, we grow the cells in the absence of galactose, which fully eliminates the
GAL2 mediated positive feedback and weakens the GAL3 feedback. Even in the
absence of galactose, Gal3p has constitutive activity and in sufficient quantities can
activate the network (Bhat et al. 1992). Considering the lower levels of Gal80p in our

construct, this constitutive activity is likely a significant factor. Finally, the state of the
network is read with PGAL1-YFP, with fluorescing cells considered ON.

Cells engineered in this way transition between ON and OFF states in a seemingly
stochastic fashion. Cells with this genotype exhibit an extremely broad steady-state
expression histogram with fluorescence values that span more than two orders of
magnitude and has peaks on both the high and low expression limits, suggesting a
bistable system with relatively infrequent transitions between the two states.

GROWTH CONDITIONS

Prior to imaging, cells were grown at low optical density overnight in a 30'C shaker in
synthetic dropout media with 2% raffinose as the sole carbon source. This neutral sugar
is thought to neither actively repress nor induce the GAL genes (Johnston et al. 1994).
We grew our cells in the absence of tetracycline so levels of Gal80p were determined by
the basal expression level of PTETO2. Approximately 12 hours later cells were harvested
while still in exponential phase, spun down, and resuspended in SD media. Next cells
were transferred to a chamber consisting of a thick agar pad (composed of the
appropriate dropout media and 4% agarose) sandwiched between a cover glass and
slide. The high agarose density constrains cells to grow largely in a two-dimensional
plane.

MICROSCOPY

143



Fluorescent and phase contrast images of growing cells were taken at intervals of 20-35
minutes on 10 different days for over 100 initial progenitor cells. Image collection was

performed at room temperature (22"C) using a Nikon TE-2000E inverted microscope

with an automated stage (Prior) and a cooled back-thinned CCD camera (Micromax,
Roper Scientific). Acquisition was performed with Metamorph (Universal Imaging).
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4.3 Transduction and Fidelity of Spatial Signals3

4.3.1 Introduction

The low number of molecules involved in biological systems can lead to large

stochastic effects and population heterogeneity even within a genetically identical
population (Rao et al. 2002; Kaern et al. 2005; Raser et al. 2005). For example, the

swimming behavior of Escherichia coli cells varies greatly from cell-to-cell (Spudich et al.

1976), and recent studies have begun to link this variability in swimming behavior to

concentration fluctuations in regulatory proteins (Levin et al. 1998; Levin 2003;
Korobkova et al. 2004). It is an open question whether a similar variability can be

observed in eukaryotic chemotactic cells, such as the slime mold Dictyostelium

discoideum, which has the exquisite ability to sense and respond to shallow gradients of

chemoattracants. In these spatially sensitive systems, signaling errors might be
introduced in two different ways. First, the concentrations of intracellular signaling

components might vary from cell-to-cell, and second, spatial inhomogeneities or
asymmetries in the cellular distributions of molecules might influence the ability of cells
to sense slight spatial differences in the extracellular environment.

To explore this question, we employ a quantitative approach to systematically
study directional sensing in single Dictyostelium cells. Recent experiments have
demonstrated that an extracellular signal induces spatial localization of several signaling
proteins along the plasma membrane (Kimmel et al. 2003; Meili et al. 2003; Manahan et
al. 2004; Van Haastert et al. 2004). The localization of these molecules at the membrane
allows a cell to polarize and move in the direction of the external signal. We
quantitatively monitored the spatial and temporal localization of one of the key signaling
proteins fused to green fluorescent protein (GFP), which provides a convenient reporter
of directional sensing at the single cell level.

Upon exposure to the same extracellular signal, the GFP localization varies
greatly from cell-to-cell whereas a single cell will repeatedly give the same response. We
find that the difference in response between the single cell and population is due to
asymmetries internal to each cell. Furthermore, this asymmetry varies in magnitude from
cell-to-cell causing some cells to accurately follow a moving stimulus while others do not.

3 The results presented in this chapter can be found in Samadani, A., J. Mettetal and A. van
Oudenaarden (2006). "Cellular asymmetry and individuality in directional sensing." Proc Natl
Acad Sci U S A 103(31): 11549-54.

145



Although we find that most cells are strongly asymmetric in their response, previous
experimental and modeling studies have focused mainly on explaining the response of

symmetric cells. Because the asymmetry can have a significant impact on the ability of

cells to sense external gradients, we develop a model that combines intracellular

asymmetries with extracellular signals. When combined with measured parameters, the

model is able to accurately predict the observed population response.
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4.3.2 Experimental Setup

Starved Dictyostelium cells were immobilized and seeded into an observation chamber

containing a known concentration of caged cAMP. The response of cells to a short pulse

of cAMP was quantified by monitoring the spatial and temporal localization of the

cytosolic regulator of adenylyl cyclase (CRAC) fused to green fluorescent protein (GFP)

(Kimmel et al. 2003; Meili et al. 2003; Van Haastert et al. 2004). The CRAC-GFP fusion

retains the wild type activity. During stimulation, the pleckstrin homology (PH) domain of

CRAC binds to the phospholipid phosphatidylinositol 3,4,5-triphosphate (PI(3,4,5)P3)
causing CRAC-GFP to translocate to the leading edge of the cell. The GFP fluorescence

along the cell membrane therefore provides a reporter of directional sensing at the single

cell level (Insall et al. 1994; Lilly et al. 1995; Parent et al. 1998; Meili et al. 1999;
Funamoto et al. 2001). A spatio-temporal cAMP gradient was formed by uncaging a

known concentration of cAMP using a circularly shaped UV beam (Figure 4.3.1). A major

advantage of using a caged compound is the ability to reproduce exactly the same

spatio-temporal gradient repeatedly. This allows us to measure the variability of the

response of a single cell to multiple identical cAMP pulses.
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4.3.3 Quantification of the cAMP pulse

We have quantified the spatial and temporal variation of the cAMP concentration by

numerically solving the two dimensional diffusion equation. The diffusion in the

observation chamber which is a semi-infinite reservoir is given by:

C(x, t) = -Pin(tpu,, ,t) dT C(x, t - ),]

C(x, t) = Co exp(-r 2 / 4(Dt + o)), [2]
47t(Dt + oY)

where r is the distance from the illumination region, D the diffusion coefficient, -o the

initial Gaussian width of the UV beam, Co the concentration of photoactivated molecules

and tpulse =2 s. C is the concentration obtained from a delta function (infinitely short and

infinitely bright) pulse of light. To justify the validity of our calculations, we visualize a

similar gradient forming by photoactivation of caged fluorescein and fit the solution of the

diffusion equation to the fluorescein gradient. The inset of Figure 4.3.1 shows the

gradient formed by diffusion of photoactivated fluorescein from the illumination area, 6
seconds after the start of the pulse.

U

0

0.
0.

0 5 10 15 20 25

Time (sec)

Figure 4.3.1 Quantitative measurement of the spatio-temporal variation of cAMP concentration
as a function of time and distance from the UV spot. cAMP concentration is calculated by solving
the diffusion equation and averaging the concentration over the area enclosed between r ± 1 pm.
The average cAMP concentration as a function of time is plotted for r = 10, 31, 52, 73, 94, 115,
136 ± 1 pm, which correspond to the regions 1-7 in the inset respectively. Inset: Image of the
gradient forming by photoactivation of caged fluorescein after 2 seconds of UV illumination in a
15 pjm circular region in the upper left hand corner of the image.
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cAMP diffusion was estimated based on the Stokes-Einstein equation for

spherical molecules, D=kBTI6n7la where kB is the Boltzmann constant, T the

temperature, 91 the viscosity, and a the radius of the molecule. Based on the molecular

weight of cAMP, the equivalent spherical radius is about 0.516 nm. Therefore the

Stokes-Einstein equation predicts a diffusion coefficient of D = 4.3x10-6 cm 2/s at 24 OC,
consistent with previously measured value for cAMP diffusion constant (Dworkin et al.
1977).

While the diffusion equation gives us a relative measure of the cAMP

concentration in the chamber, we must also estimate the uncaging efficiency 7 in order

to obtain an absolute measure. This efficiency is the number of photoactivated

molecules divided by the total number of molecules. The quantum yield of uncaging 0 is

defined as the number of photoactivated molecules divided by the number of absorbed

photons nabs. Following the Lambert-Beer law, the number of absorbed photons nabs

equals no(1-exp(-Ecl)), in which no is the photon flux, E is the molar extinction

coefficient, I the length of the light path and c the concentration of caged molecules. For

small Ecl, one can approximate the above formula by nabs = noEcl. The total number of

molecules in the irradiation volume is the product of Avogadro's number NA, c and V the

volume of the exposed region. Therefore x is given by:

cn Ecl

SAcV [3]
A

When irradiated with full intensity the photon flux density nolAt is 4x1018 photons

cm-2-1 as measured at the plane of focus, in which A is the area and t the time of

exposure. Considering the extinction coefficient of E = 1500 cm-'M -1 , at 400 nm and a
quantum yield of 0.39 (Nerbonne et al. 1984; Corrie et al. 1993). It can be estimated that
a 2 second pulse of light with full intensity will cleave about 1% of the NPE-caged cAMP
molecules. The photon flux density will be slightly higher for the maximum wavelength of
390 nm that we use in this set up. Therefore we estimate 7 to be slightly above 1%.
Small X is an advantage in our experiment, because caged compounds do not deplete
during the 2 second illumination.
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4.3.4 Quantifying the Cell's Response

Figure 4.3.2 panel b illustrates the dynamic translocation of CRAC-GFP to the

membrane after stimulation with a 2 second UV pulse for a cell with a depolymerized

actin cytoskeleton. Directional sensing does not require cell motility, morphological

changes, or an intact cytoskeleton (Parent et al. 1998; Janetopoulos et al. 2004; Xu et

al. 2005). Immobilized cells provide the advantage of studying directional sensing in the

absence of the complex downstream responses such as changes in cell shape. The

relative CRAC-GFP concentration in the membrane with respect to the pre-stimulus level

was measured by subtracting the images taken after the release of the stimulus from the

image taken just before the release of the stimulus (Figure 4.3.2c). We defined a

response function R(O,t), in order to quantify the relative CRAC-GFP concentration in the

membrane. To determine R(O,t), first the cell membrane was segmented in 20 sub-

regions. Second, the difference between GFP intensity at time t and at t = 0 (just before

uncaging) is computed for each of the 20 sub-regions. Finally we correct for the cell-to-

cell variability in GFP levels by normalizing R(O,t) by the average cytoplasmic GFP

fluorescence at t = 0 available to each sub-region (1/2 0th of the total cytoplasmic GFP

fluorescence). This ratio defines the response function R(O,t). For example when R(O,t)

is 100% for all 20 segments this implies that every available CRAC-GFP molecule has

been recruited uniformly to the membrane. However, if 10 adjacent sub-regions have

R(O,t) = 100% and the remaining 10 sub-regions have R(O,t) = 0%, this implies that 50%

of the total cytoplasmic CRAC-molecules have been recruited to 10 sub-regions.

Conversely, if R(O,t) is 0% for a specific segment this means the CRAC-GFP

concentration in the membrane is identical before and after cAMP uncaging. Figure

4.3.2d displays R(O,t) for the cell depicted in Figure 4.3.2c. R(O,t) shows a clear

polarized response which is most pronounced about 8 seconds after uncaging. We

have characterized R(O,t) with three parameters: localization L, polarization P, and

polarization angle ý. These three parameters are determined by fitting the experimentally

obtained response function R(O,t) with Rft(O,t) = L(t) + P(t)cos[O --(t)].
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Figure 4.3.2 Dynamic translocation of CRAC-GFP at the plasma membrane after stimulation with
a 2 second pulse of cAMP (a) The UV uncaging location is positioned a distance r away from the
cell center. The angle 0 defines the coordinate along the cell's periphery, where e = 0 defines the
position at the membrane that is closest to the uncaging location. (b) Unprocessed epi-
fluorescence images displaying CRAC-GFP as a function of time. The scale bar denotes 10 lam
and r = 70 Lam. (c) Subtracted images illustrates the relative change of CRAC-GFP concentration
in the membrane with respect to the pre-stimulus level (t = -2 s). (d) Response function, R(O,t) as
a function of time for images in c.

The localization L(t) is defined as the average value of R(O,t), L(t) = (R(O,t)) e,

and therefore reflects the average recruitment of CRAC-GFP molecules to the

membrane a time t after cAMP was uncaged. The brackets (...)edenote that the

response function is averaged over the coordinate 0. The polarization P(t) is a measure

of the amplitude of the response function and therefore reflects half the difference

between the maximum and minimum value of Rmt(O,t) of a single cell at a time t after

cAMP uncaging. Finally, the polarization angle ((t) is defined as the angle for which the

fit function Rft(O,t) reaches its maximum value, relative to the direction of the uncaging.

Therefore, a value of ) = 0 implies that the cell has recruited most of the CRAC-GFP

molecules to the position at the membrane that is closest to the uncaging spot (4 = 0,

Figure 4.3.2a). Conversely, a value of 0 = 1800 means that the cell has polarized in the

opposite direction and recruits most of the CRAC-GFP molecules to the position in the

membrane that is furthest away from the uncaging spot.
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4.3.5 Response Dynamics

Figure 4.3.3 displays the dynamics of L, P and ý for a single cell (Figure 4.3.3 panels b,

d, and f) and a population of 40 cells (Figure 4.3.3 panels c, e, and g). After stimulation

with a pulse of cAMP, both L and P increase reaching a maximum value followed by a

return to their prestimulus level in about 30 seconds. The time at which L reaches its

maximum is defined as T,,ax. For a single cell, p remains more or less constant during

the response time (Figure 4.3.3f). The error bars on the single cell data reflect the

variability from pulse-to-pulse, which is significantly smaller than the variability from cell-

to-cell, denoted by the error bars on the population data. Taken together these data

suggest that when a single cell is repeatedly stimulated with identical pulses, it responds

in a highly reproducible manner. From pulse-to-pulse it recruits a very similar average

CRAC-GFP concentration to the membrane (reflected in L(t)); it creates a very similar

CRAC-GFP gradient at the membrane (reflected in P(t)); and this gradient is oriented in

the same direction from pulse-to-pulse (reflected in *(t)). However from cell-to-cell a

large variability is observed in these three parameters.
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Figure 4.3.3 Definition of localization L, polarization P and polarization angle 4 and comparison
between the time dependence of these parameters for a single cell (which is stimulated 10 times)
and a population of 40 cells (which are stimulated once). (a) The response function R(, Tmax)
(circles), and the fitting function Rrt(6, Tmax) (red line). (b) Time dependence of L for a single cell.(c) Time dependence of the average L for a population. (d) Time dependence of P for a single
cell. (e) Time dependence of the average P for a population. (f) Time dependence of 4 for a
single cell. The two dashed red lines indicate the dynamics of 4 for two other single cells. 4 is very
reproducible from pulse-to-pulse, even when 4 • 0. (g) Time dependence of the average 4 for apopulation of 40 cells, which averages to zero. Error bars denote standard deviations.
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4.3.6 Response Direction

In Figure 4.3.4, we further quantify the cell-to-cell, versus pulse-to-pulse variability of

R(0,Tmax). R(0,Tmax) is highly reproducible from pulse-to-pulse, when a single cell is

stimulated with 10 identical pulses of cAMP (Figure 4.3.4a). In contrast, R(0,Tmax) for a

population shows a large variability from cell-to-cell even though cells are stimulated with

the same identical pulse (Figure 4.3.4b), consistent with the data presented in Figure

4.3.3 panels b-g.

Since the cell-to-cell variability is most pronounced for the polarization P and

polarization angle 4 it is convenient to present the data in a polar plot as shown in Figure

4.3.4c and Figure 4.3.4d. In these figures one data point represents data from a single

cell at Tmax. The distance from a data point to the origin of the polar plot equals the

polarization P(Tmax). The angle between the x-axis and the line which connects the data

point to the origin of the polar plot is the polarization angle ý(Tmax). The x-axis is along

the line which connects the center of each cell to the center of the uncaging spot (0 = 0,

Figure 4.3.2a) and the y-axis is perpendicular to that line (0 = 900). In this representation

the polarization component along the x-axis Px equals P(Tma)cos[b(Tmax)]. The

polarization component along the y-axis, Py equals P(Tma )sin[j(Tma )]. For example,

cells responding along the 'right' direction ( = 0) are characterized by Px > 0 and

P,= 0, whereas cells that respond in the 'wrong' direction (4= 1800) are characterized

by Px <0 and Py=O0.
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Figure 4.3.4 Cell-to-Cell versus pulse to pulse variability. (a) Comparison between R(O, Tmax) for a
single cell, which is stimulated 10 times and (b) a population of 40 cells, which are stimulated
once. (c) Polar plot of the polarization at Tmax for three single cells and (d) a population of 100
cells. In this representation one data point represents data from a single cell at Tmax. The distance
from a data point to the origin of the polar plot equals the polarization P(Tmax). The angle between
the x-axis and the line which connects the data point to the origin of the polar plot is the
polarization angle 4(Tmax). (e) Population probability distribution of I (Tmax)l illustrating the fraction
of cells displaying a particular polarization angle at Tm,,x. f, Average of L(Tmax) and P(Tm,,ax) (left
ordinate) and the ratio of P(Tmax)/L(Tax) (right ordinate) as a function of I|(Tax)l. Solid lines in
panels e and f are predictions of the geometric model.

In Figure 4.3.4c and Figure 4.3.4d we present P and 4 in a polar plot. For a single
cell, 4 is observed not to vary significantly from pulse-to-pulse (red dots in Figure 4.3.4c),
even when j ; 900 (green dots in Figure 4.3.4c). In contrast, a pronounced cell-to-cell
variability of the polarization angle 4 is observed in the population even though the cells
are stimulated with the same pulse of cAMP (Figure 4.3.4d). The distribution of |I(Tmax)l
is plotted in Figure 4.3.4e, and shows a peak near 4 ; 0. These experiments
demonstrate that although there is a significant variability in 4(Tmax) from cell-to-cell, the
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population faithfully detects the direction of the cAMP pulse. In contrast, the distribution

of I((Tmax)I for uniformly stimulated cells is flat (Figure 4.3.5a). Here the uniform

stimulation was created by uniformly uncaging cAMP by illuminating the entire field of

view with UV light.

S0.

U 0.

"L 0.•

10

8
46
4

0 90 180 0 90 180
¢(Tmax) (degrees) ý( Tmax)l(degrees)

8

644

0 90 180
(Trnax) l(degrees)

Figure 4.3.5 Comparison between cells that are stimulated with a directed pulse of cAMP (black)
and a uniform pulse of cAMP (red). (a) Probability distribution of 4(Tmax). The distribution of the
polarization angles * is symmetric around 6 = 0 and therefore, to increase the statistics, the
histogram of the I¢(Tmax) was calculated. The histogram of I4(Tmax)I then is normalized by the
total number of cells. (b) The average polarization P as a function of polarization angle 4. (c) The
average localization L as a function of polarization angle 4.

We find that both the localization and polarization show a strong correlation with

the polarization angle as displayed in Figure 4.3.4f. Cells that correctly detect the

direction of the pulse (( = 0) have, on average, a two-fold larger localization and

polarization than cells that polarize in the opposite direction (4 = 1800). We will discuss

this correlation after introduction of the geometric model. Note that this correlation is

absent when cells are stimulated with a uniform cAMP pulse (Figure 4.3.5b and Figure

4.3.5c), and the ratio of polarization and localization PIL does not show a significant

correlation with the polarization angle (Figure 4.3.4f).
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4.3.7 Directional Variability is Internal to Cell
In order to verify whether the noise at the level cAMP-receptor binding is significant, we
varied the extracellular concentration of cAMP over two orders of magnitude (Berg et al.

1977; Tranquillo et al. 1988; Bialek et al. 2005). Psin(ý) versus Pcos(4) at Tmax for a
population of 100 cells, which are stimulated with cAMP concentrations of 1 nM to 0.1
ýM are plotted in Figure 4.3.6a. Probability distributions of 1I(Tmax)|, when the

extracellular concentration of cAMP is varied from 1 nM to 0.1 jiM are plotted in Figure

4.3.6b. The standard deviations for the probability distributions are approximately 1000
for all cAMP concentrations used. We observed that by increasing the extracellular

concentration over two orders of magnitude, the probability of finding a cell with j in the

direction of the extracellular gradient (0 = 0) does not significantly increase. This
indicates that an intracellular mechanism is responsible for the observed variability in P
and f. The same angular distribution is obtained over a wide concentration range of
caged cAMP (Figure 4.3.6). This excludes the possibility that the variability is introduced
at the level of the cAMP-receptor binding (Berg et al. 1977; Bialek et al. 2005).

I, 30- 0. 3 - --a
%- 0 "0.2
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Pcos ( T ax i(Pma)l(degrees)

Figure 4.3.6 Dependence of the variability observed in P and j on the extracellular concentration
(a) Polar plots of Py versus Px at Tmax for three different cAMP concentrations and for a population
of 100 cells. cAMP concentration varied between10 -9 M to 10-7M. Similar to Figure 4.3.4d, the
polarization components are Px equals P(Tmax)Cos[((Tax)] along the x-axis and Py
equals P(Tmax )si n [) (Tma )] along the y-axis. Each dot represents data from a single cell. (b)
Normalized histogram of ( as a function of 0 when the extracellular concentration is increasedover two orders of magnitude. By increasing the extracellular concentration, the probability offinding a cell with a smaller polarization angle does not increase significantly.
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4.3.8 Geometric Model

A few stochastic models have been developed to describe random cell motility

(Dallon et al. 1997; Arrieumerlou et al. 2005), however existing models of eukaryotic

directional sensing are commonly constructed from spatially symmetric and deterministic

systems of partial differential equations (Meinhardt 1999; Narang et al. 2001; Postma et

al. 2001; Levchenko et al. 2002; Rappel et al. 2002; Janetopoulos et al. 2004; Gamba et

al. 2005). Although the existence of an extracellular gradient can break the symmetry,
the polarization by default will always occur along the direction of the extracellular

gradient, yielding 4 = 0 for all cells. Therefore in order for a cell to polarize in a direction

other than the direction of the extracellular gradient, an additional source of symmetry

breaking must be present in the cell's gradient sensing network.

Rather than modifying existing models designed to capture the full dynamics of

directional sensing, we introduce a simple linear model that allows for symmetry

breaking and focuses on the cell-to-cell variability. To introduce a simple and general

form of asymmetry, we assume that a cell has a static intracellular signal, Sint(O). The

intracellular signal might be caused, for example, by spatial inhomogenities in any of the

signaling molecules in the gradient sensing pathway, or might include an

inhomogeneous distribution of cortical factors that remain bound to the membrane after

actin depolymerization. It is unlikely that the symmetry is broken by an inhomogeneous

distribution of cAMP receptors since the receptors are essentially uniformly distributed

along the membrane (Xiao et al. 1997). Our model accounts phenomenologically for this

randomly oriented intracellular asymmetry without making statements regarding the

molecular origins of the asymmetry.

This intracellular signal, in general could be a very complicated function of the

angle 0. Because we observe that polarization is well approximated by the lowest

frequency cosine term, the lowest frequency components of the intracellular signal are

also assumed to be the most dominant terms in producing polarization. Similarly, the

extracellular signal in our experiment can be approximated by a single cosine function,

which describes how the extracellular cAMP concentration varies along cell membrane.

The main assertion of the model is that the extracellular cAMP signal Sext(0) is

combined multiplicatively with the intracellular signal Sint(0) to produce an effective signal

Sef,(). The following equations can be used to describe the geometric model:
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Set = So + S, cosO [4]
Sit = 1+ Ecos(O9- 0) [5]

S = S x Sint So + S1 cos + (s, + 650 cos(&))cos9 + (9o sin( 6))sin9 [6]

The first of these equations characterizes the extracellular cAMP gradient around the

cell periphery by an average concentration So and an amplitude S1. The coordinate 0

defines the position along the membrane as defined in Figure 4.3.2a. Similarly, in the

second equation the intracellular signal is characterized by a magnitude of the

intracellular asymmetry 6 and an angle ,, which is the polar coordinate for which the

intracellular signal is largest (Figure 4.3.7d). The final equation defines a total signal S

as a multiplicative function of the extracellular and the intracellular signals, which can be

approximated as:

S = L + Px cos(O)+ PY sin(O), where [7]

L = So + (/2)S 1 cos [8]

Px = S1 + ~50 cos [9]
P, = •S 0sino [10]

= arctaP, / PX [11]

This set of equations gives us a way to read out the localization (L) and polarization (Px,

Py) when given the magnitude (e) and direction (0) of the intracellular signal and the

magnitude of the extracellular signal (So, S1)

When cells are stimulated with a uniform extracellular stimulation, the effective

signal retains the direction of the intracellular signal and the direction of the effective

polarization simply matches the direction of the intracellular signal 4, (Figure 4.3.7a).

Figure 4.3.7b illustrates the case where a cell is stimulated with a directed pulse of

cAMP. In this case, an effective signal, whose polarization is biased by the direction of

an intracellular asymmetry causes a cell to polarize in a direction different from either the
intracellular or extracellular signal.

Equations [7]-[11] can be geometrically represented in a polar plot when Px and
P, are used as the x and y coordinates of the polar plot, respectively (Figure 4.3.7c-d).
The polarization vector of the cell (black arrow, Figure 4.3.7d) is proportional to the sum
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of a vector with length S1 (red arrow, Figure 4.3.7d) and a vector with length CSo and

angle (, (blue arrow, Figure 4.3.7d). The extracellular cAMP signal is parameterized by

Sext(O) = SO + S1 cosO, and the intracellular signal by Sint(O) = 1 + Ecos(6 - (), where

the parameters So and S1 reflect the average cAMP concentration and cAMP gradient,
respectively. The parameters jI, and E define the orientation and relative strength of the

intracellular signal, respectively. This model predicts that for a uniform stimulation (SI =

0), the polarization angle ( equals j, (Figure 4.3.7c). Experimentally we find that, when a

population is exposed to a uniform stimulation, the polarization angles 4 are uniformly

distributed from cell-to-cell (Figure 4.3.7e). This implies that the orientation of the

intracellular signal I, follows the same distribution. For a directed pulse (S1 # 0)

( generally not does equal ),. In this case one would expect a non-uniform I-distribution

with a maximum at 0 = 0 as was experimentally observed (Figure 4.3.4e, Figure 4.3.7f).

These results demonstrate that not only the direction of the intracellular asymmetry 4,,

but also the magnitude 6 varies from cell-to-cell.

160



C
v

(,o

S3.0 Sb m So

S2.0 0

" 1.01,f

-90 0 90
O(degrees) O(degrees)

Ju . • 30-

Iwo,30- -0-
C -

-30 -30-

f
I 

%
- -·4.* IV~r
Th -

-30 0 30 -30 0 30
Pcos (T )% Pcos (T )%

max max

Figure 4.3.7 (a) Schematic illustration of the effective signal (black), which is a combination of the
intracellular signal (blue) and the extracellular signal (red) for a uniform cAMP stimulus and (b) a
directed pulse of cAMP. (c) Graphical representation of the geometric model and the polarization
angle (, when cells are stimulated with a uniform pulse of cAMP and (d) a directed pulse of
cAMP. The effective polarization angle strongly depends on the direction of the intracellular signal
k. (e) Experimentally measured polar plots for a uniform pulse of cAMP and (f) a directed pulse
of cAMP.

The model also qualitatively explains the experimental correlation between the

polarization P and polarization angle I (Figure 4.3.4f). Because (4, is uniformly distributed

(Figure 4.3.4e) the strongest polarization is expected for cells in which the intracellular

and extracellular signal line up (Figure 4.3.4d, I) = 0). In contrast, for cells in which the

intracellular and extracellular signal are oriented in opposite directions (), = 1800) the

polarization P is expected to be the smallest possible. A similar argument can be made

to explain the correlation between localization L and polarization angle ). Equation 8 of

the geometric model predicts that the localization L is the strongest, when the

intracellular and extracellular signals line up (•, = 0) and smallest when the intracellular
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and extracellular signals are oriented in opposite directions (0, = 1800). While the model

predicts that the j distribution will change as a function of the extracellular signal

strength, it is possible that the greater cAMP concentrations tested experimentally in

Figure 4.3.6 are saturating the signaling pathway upstream of the point at which the

intracellular and extracellular signals mix. That would means that in these experiments

cells are seeing effectively the same strength extracellular signal even though the cAMP

concentration has increased 100 fold, and would be consistent with the constant 1
distribution observed there.

Each data point in Figure 4.3.7e (up to a constant So) contains the information

about the magnitude and the direction of the intracellular signal for each cell. The mean

of the sSo-distribution for a population of 137 cells is (6.3 ± 0.4) with a standard

deviation of (4.4 ± 0.3) leading to a coefficient of variation of (0.70 ± 0.04) indicating that

the strength of intracellular signal is highly variable from cell-to-cell.
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Figure 4.3.8 Normalized histogram of the magnitude of the internal signal (6). The histogram of s
is calculated from data in Figure 4.3.7e, where cells are stimulated with a uniform cAMP
concentration. The mean of the e-distribution for a population of 137 cells is (6.3 ± 0.4) with a
standard deviation of (4.4 ± 0.3) leading to a coefficient of variation of (0.70 ± 0.04) indicating that
the strength of intracellular signal is highly variable from cell-to-cell.
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4.3.9 Moving Source Experiment

To test the model more directly, we stimulated a single cell from multiple directions. We

varied the stimulation angle Os, such that a cell is stimulated from 8 different locations

separated by 450, while the orientation of the cell and the direction of the intracellular
signal remain fixed (Figure 4.3.9). Figure 4.3.10a schematically illustrates the geometric
model in the frame of reference of a single cell, where the angle of the intracellular signal

is fixed at j, and the angle of the extracellular signal 0, is rotated around the cell.

o o UV spots
5 3 o
5", 7

8 6
o 4 0

o[

Figure 4.3.9 Schematic illustration of the setup for rotating pulse experiments. The location of the
UV spot was kept at a distance r away from the cell's center. However the angle of stimulation, Os
varied every 45 degrees, stimulating the cell from 8 different locations around the cells. Locations
of the UV spots with respect to the cell are indicated by hollow circles. To avoid any effect of
spatial or temporal memory of the previous pulse, the pulses were separated by 2 minutes and
were given in the numerical order illustrated.

For a cell with small 6 (<< S 11So), we expect the contribution of the intracellular
signal to the effective signal to be minimal causing the effective signal to follow the
extracellular signal exactly (ý - Os, Figure 4.3.10 panels b and c). In contrast, for a cell
with large E (>> S11So), the contribution of the extracellular signal to effective signal is
minimal and therefore the effective signal will be predominately in the direction of the
intracellular signal (ý z ,,Figure 4.3.10e). For a cell with E c S1/So, the intracellular and
extracellular signals have equal strengths resulting in an effective signal which is neither
in the direction of the intracellular nor extracellular signal (Figure 4.3.1 Od).

The plots of j as a function of O, in Figure 4.3.10 panels c, d and e were fitted to
the geometric model described by the following function:
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= arctana asin(,) + sin(8,)Sarctan cos()+cos( , where

Scos(E) +

S,

[12]

[13]

with a and 4, as the fitting parameters. The ratio of S11So was independently calculated

to be 0.38 by integrating the extracellular gradient from t = 0 to Tmax using Eq. [1] and Eq.

[2]. Our calculation for S11So, in addition was experimentally verified by using a caged

fluorescent marker. The fits to the geometric model using the two parameters (a=SdS,

and 4, are in good agreement with our experiments (red lines in Figure 4.3.10 panels c,

d, and e).

(j)a)

a)

Os(degrees)

Figure 4.3.10 Experimentally measured relation between the polarization angle ((Tmax) and the
extracellular signal es, when the direction of the extracellular signal is varied relative to the
intracellular signal (, and comparison to the geometric model (a) Schematic illustration of the
geometric model in the frame of reference of a cell with a fixed 4,. (b) The difference image for a
cell with a small a << 1. Red dots on the images indicate the direction of extracellular stimulation.
(c) 4(Tmax) versus Os for a cell with small a << 1. The triangles and circles denote two independent
experiments demonstrating the reproducibility of this assay. (d) 4(Tmax) versus Os for a cell with an
intermediate a 1 and (e) a large a >>1. The red lines represent fits to the geometric model with
fitting parameters aand (,.
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4.3.10 Model Predicts Angular Dependence

To further challenge the predictive power of the geometric model, we tested if the model

combined with the single cell data in Figure 4.3.10, could predict the population

experiments summarized in Figure 4.3.4e-f. We experimentally find a for 20 cells (using

the method outlined in Figure 4.3.10) and find an average value of a( = 3.6. Using this

experimental value for ca the model successfully predicts the k-distribution and the ratio

PIL without any fit parameters (Figure 4.3.4e-f, blue lines).

Equations [7]-[11] can be simplified to demonstrate that the only relevant

parameters in calculating the fraction of cells as a function of I¢(Tmax) (Figure 4.3.4e) are

a and ,:

r_ __sin [14]=arctanP/P J= arctad 1si[ 1

+C +os )

In order to obtain a mean value for a (and therefore e), we fitted the experimental

curves of 0 as a function of O, obtained from 20 individual cells to Eq. [12] (as described

in previous section). From these fits, the mean value of awas measured to be 3.6

(giving a mean value of 1.3 for E). The distribution of 0, was also experimentally

measured to be uniformly distributed between [0, 2n] (Figure 4.3.4). Therefore both a

and ~, (also E) are experimentally determined and therefore the red line in Figure 4.3.4e

is the prediction of the geometric model with no fitting parameters.

Similarly, we demonstrate that the correlation between L(Tmax) and P(Tmax), and

I|(Tmax)l, illustrated in Figure 4.3.4f, depend on 0,,,a and 6 (Eq. [15] and [16]). However
these also depend on an undetermined constant, which is the ratio between the cAMP

concentration and the experimentally measured response function R(e). The two red

lines in Figure 4.3.4f, are the geometric model fit to the curves L,P(Tmax) versus

I|(Tmax)l using only one fit parameter.
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2 [15]
L = So(1+ + cos p)

2a

P = 1So(( + cos)2 + Sin 2 0)1/2 [16]

( +cos( )2+s +n2i )J [17]
17L 2

(l1+ cosp )
2a

The ratio of P and L at Tmax as a function of 1k(Tmax)l illustrated in Figure 4.3.4f is a

function of 4,, aand egiven by Eq. [17]. All these three parameters are experimentally

determined and therefore the blue line in Figure 4.3.4f is the prediction of the geometric

model with no fitting parameters.

To predict how L and P vary with ý (Figure 4.3.6f), we require one undetermined

proportionality constant reflecting the ratio between the cAMP concentration and the

experimentally measured response function R(O). When this factor is used as the sole fit

parameter, the experimental data closely match the model predictions (Figure 4.3.4f, red

lines). It is encouraging that this simple linear model correctly captures the key

properties of the observed stochasticity in directional sensing.
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4.3.11 Discussion

Our results show that cellular asymmetries and cell-to-cell variability in the size of these

asymmetries can have a significant impact on the fidelity of directional sensing. Whereas
some individual cells correctly detect the extracellular cue, most cells display a
significant deviation from this direction due to an intracellular asymmetry. However, this
does not hinder a population of many cells from accurately detecting the direction of the
extracellular cue (Figure 4.3.4e). The geometric model provides an intuitive explanation

for this. The model suggests that the effective signal is the product of a randomly

oriented intracellular signal and the extracellular cue. Individual cells that, by chance,
have the intracellular signal aligned with the extracellular cue will have a large effective

signal and will therefore display a larger polarization than cells in which the intracellular
and extracellular signal are counteracting. This mechanism biases the net polarization of

the population towards the extracellular cue. This provides a heterogeneous population
with a simple, yet effective, response strategy that provides an isotropically sensitive

direction sensor even in the presence of large cell-to-cell variability.
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4.3.12 Methods

Materials. Adenosine 3',5'- cyclic Monophosphate, pl-(2-Nitrophenyl)ethyl Ester (NPE-

caged cAMP)(Calbiochem-Novabiochem, San Diego, CA) (32, 33) is used to create a

controlled release and measurable gradient of cAMP. CMNB-caged fluorescein
(fluorescein bis-(5-carboxymethoxy-2-nitrobenzyl) ether, dipotassium salt) (Molecular
Probes, Eugene, OR) is used to verify the two dimensional diffusion calculations and
visualize the gradient. Latrunculin A (Molecular Probes, Eugene, OR) is used to

depolymerize actin.

Cell culture. A Dictyostelium discodideum cell line expressing the CRAC-GFP was
constructed by electroporating plasmid pWF1 (generous gift of C. Parent) into wild type

AX3 cells. CRAC-GFP cells were cultured and selected in HL5 medium with 20 jpg/ml

G418 and grown a density of 5x106 cells/mi. Dictyostelium cells harvested by
centrifugation were suspended in development buffer (DB, 10 mM phosphate buffer, 2

mM MgSO 4, 0.2 mM CaCI2). Cells are starved for 5 hours in DB by repeated pulses of

75 nM cAMP every 6 minutes (12). Subsequently, starved cells were harvested and

diluted 103 fold in DB to reach the density of 103 cells/ml and treated with 0.5 jtM

Latrunculin A, 10 minutes prior to observation. Cells were then seeded into the

observation chamber, a round well with inner diameter of 20 mm and 1 mm depth

adhered to a microscope slide (FW20 well, Grace bio-labs, Inc.). The observation

chamber was covered with a cover slip and mounted on an inverted Nikon TE2000
microscope.

Data analysis. In our image analysis, we treat the cells as quasi two dimensional

objects. Three dimensional deconvolution analysis demonstrated that latrunculin treated

cells resemble spread-out droplets, with a maximum height of about % of the cell's

diameter. The diameter of a typical cell is about 10 [pm and therefore the height is about

2.5 pm. Cell were imaged with a 60x objective with a depth of field of about 1 pm.

Therefore a small contribution of the variability in the magnitude of the intracellular signal

may be due to the out-of-focus fluorescence. Cells and their edges were determined

using nearest neighbor cluster finding algorithm on auto-thresholded images. Abnormally

shaped cells or cells that were touching were discarded for analysis. All curve fittings are

done using the least squares method using Matlab.
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Photoactivation of cAMP and gradient formation. A cAMP gradient was formed by
photoactivation of a known concentration of NPE-caged cAMP. An inverted Nikon

TE2000 microscope equipped with a 60x oil immersion objective and a 100 W mercury

lamp was used. A UV-GFP (370-410 nm) filter was used to remove the visible

component of the mercury lamp. The filtered light was focused through an objective into

the observation chamber. To restrict the area of photoactivation, we place a 1 mm
diameter pinhole in the light path before the objective. The light passing through the

pinhole was focused by the objective to a 17 gim diameter spot on to the field of view. In

all of our experiments the UV exposure time was 2 seconds. The setup was equipped

with a CCD camera to permit time lapsed microscopy. Two types of short pulses were

used in the experiments to stimulate cells: a directed pulse, which forms a spatio-

temporal gradient of cAMP around the cell, and a pulse of spatially uniform cAMP

concentration. A spatially uniform increase of cAMP concentration around the cell

membrane was generated by illuminating the entire field of view with a low dose of UV
exposure.
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5 Populations in Fluctuating Environments
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5.1 Bet Hedging as a Strategy for Surviving Fluctuating

Environments

5.1.1 Introduction

Unlike controlled laboratory environments, cells in the wild have to face and surmount

the challenges raised by random fluctuations in extracellular conditions (Cohen 1966;

Levins 1968; Schaffer 1974; Stearns 1976). Signal transduction pathways allow cells to

actively sense and respond to particular environmental changes (for example see

Chapter 3.1). However, given the myriad of environmental conditions and the limited

number of signal transduction pathways, it is likely that cells use complementary, more

passive methods to anticipate changes in the environment. Without the need to sense

the environment, cells can 'blindly' anticipate and survive environmental changes by

randomly switching between multiple phenotypes, each fit to a particular environment.

Following this bet-hedging strategy (Schaffer 1974; Slatkin 1974; Seger 1988), a

population consisting of a variety of phenotypes enhances its fitness by ensuring that, at

any given time, at least some of its members are prepared for an unforeseen

environmental fluctuation.

This random bet-hedging is naturally employed by many microbial systems in

order to cope with environmental uncertainty (Wolf et al. 2005). One prominent example

known as phase variation (van der Woude et al. 2004) is defined by two distinct

phenotypes between which cells reversibly transition. Phase variation in the expression

of surface pili of Escherichia coli during infection of the urinary tract allows single cells to

have two phenotypes: a free-floating phenotype and a phenotype that adheres to the

urinary tract surface (Hernday et al. 2002; Wolf et al. 2002). Similarly, the methylation

state of the agn43 promoter of E. coli defines two phenotypes: a individual planktonic

life-style or community life as part of a biofilm (Danese et al. 2000). More examples

include the transition to competence in Bacillus subtilis (Grossman 1995; Suel et al.

2006), bistability in metabolic networks (Novick et al. 1957; Ozbudak et al. 2004), and
antibiotic tolerance in many prokaryotes (Dhar et al. 2007). Transitions between the two
distinct phenotypes are thought to be random and rare, meaning that the transition
frequency is much smaller than the cell division rate. Therefore an important question
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which arises in this context is how the inter-phenotype transition rates relate to the

fitness of the population.

Several recent theoretical models, developed to address this topic, have

proposed that an optimum bet-hedging strategy is achieved when the rate of stochastic

transitions between phenotypic states is tuned to match the rate of fluctuations in the

environment (Lachmann et al. 1996; Thattai et al. 2004; Kussell et al. 2005; Kussell et al.

2005; Wolf et al. 2005). Here we experimentally test this hypothesis in vivo using a re-

engineered version of the galactose utilization network of the budding yeast

Saccharomyces cerevisiae. We use this particular re-engineered network because it

allows a more quantitative control over both the inter-phenotype switching rates and

phenotypic growth rates than would be possible using one of the natural systems where

bet-hedging is thought to play an important role. Stochastic fluctuations in gene

expression (Paulsson 2004; Acar et al. 2005; Kaern et al. 2005; Raser et al. 2005;

Kaufmann et al. 2007) in the re-engineered network allow a single cell to randomly

switch back-and-forth between two distinct phenotypes. Each phenotype is designed to

confer a growth advantage over the other phenotype in a certain environment. We

experimentally demonstrate that in order to optimize population growth, cells have to

match the inter-phenotype switching rate to the frequency of environmental changes.

Our experiments demonstrate that random bet-hedging can constitute a simple, yet

effective, survival strategy to cope with fluctuating environments without the need to

actively track environmental conditions.
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5.1.2 Discrete Model

In general, cells are faced with a continuous spectrum of dynamically changing

environmental conditions, including fluctuations in temperature, pH, and concentrations

of nutrients and toxins. To cope with these diverse environmental conditions, cells could

potentially explore a multitude of phenotypes. Here we focus on a simpler, discrete

system with two environments and two phenotypic states (Figure 5.1.1) that captures the

important properties of bet-hedging strategies (Lachmann et al. 1996; Thattai et al. 2004;

Wolf et al. 2005).

Time -- -- T 2 - T1 - T 2

Environment

I!R I ~;~~~ I ~ I!,,r·--

ON:

Phenotype r.,A r:r
Ul

r

OFF:

'OFF - "OFF

Figure 5.1.1 Two environment/two state hedge betting schematic. Two states (phenotypes) exist
for each cell, ON (orange) and OFF (green). Cells randomly switch between the two states with
frequencies TON and rOFF. The first environment (El) has no uracil, while the second (E2) has both
5-FOA and uracil. A cell is either fit or unfit to its environment depending on the specific
phenotype it displays. For example in El, on-state cells are fit with a growth rate, YON, but the unfit
off-state cells proliferate with a smaller growth rate, YOFF.

If the stochastic switching between the two phenotypic states is much faster than

the switching between the two environmental states, a high level of phenotypic diversity

is expected (Figure 5.1.2, left panel). However, if the phenotypic switching rate is much

slower than the environmental switching rate, the population is more homogenous at any

given point in time (Figure 5.1.2, right panel).
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Figure 5.1.2 Cellular lineages for fast and slow switchers. Single cells with different switching
frequencies (fast and slow) grow in alternating environments. Orange and green colors represent
the first and second environments, respectively. Color change in the cellular lineage diagram
corresponds to the change in phenotypic expression for a particular cell. If a cell finds itself in the
unfit state after a switching event, it ceases to proliferate. In the case of slow switchers, reduced
cell-to-cell variability in each environment is depicted by a more dominant use of a single color.

In a constant environment, the slow switchers maintain larger growth rates than

fast switchers due to a greater fraction of cells in the fit state. However, slow switchers

suffer greater losses and take more time to recover whenever an environmental

transition occurs. In other words, a population must balance the rate at which cells

transition between the phenotypic states with the frequency of environmental changes to

maintain a reasonable number of cells in the unfit phenotype. This suggests that in order

to optimally benefit from the diversity, cells should tune their switching rates to match the

frequency of environmental changes (Lachmann et al. 1996; Thattai et al. 2004; Kussell

et al. 2005; Kussell et al. 2005; Wolf et al. 2005).
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5.1.3 Rewired Gal Network

To experimentally test this hypothesis we implemented this discrete switching system

(Figure 5.1.1) in vivo. Bistable gene networks (Hasty et al. 2002; Angeli et al. 2004;

Dubnau et al. 2006) provide promising experimental systems to implement discrete

phenotypic states. The stochastic nature of gene expression drives rare transitions

between these states (Hasty et al. 2000; Kepler et al. 2001; Kaern et al. 2005; Raser et
al. 2005; Kaufmann et al. 2007). We utilize the bistable galactose utilization pathway of
the budding yeast Saccharomyces cerevisiae (Acar et al. 2005; Hawkins et al. 2006),
because the switching rates between the two phenotypic states can be tuned
experimentally giving us precise control over the system (Acar et al. 2005). The wild

type network was re-engineered as shown in Figure 5.1.3.

Ga lactose
I

X(I)o

oxo

Figure 5.1.3 The galactose-signaling pathway. The activity of the galactose pathway is read out
by using YFP driven by the GAL1 promoter. Similarly, the endogenous URA3 expression is also
under the control of the GAL1 promoter, coupling the synthesis of the Ura3 proteins to the activity
of the GAL pathway. In environment El, ON cells will synthesize uracil and thrive, while in
environment E2 the URA3 gene product is converted in a toxic intermediate in the presence of 5-
FOA. By changing the extracellular galactose and doxycycline concentrations, the transition rates
between the ON and OFF states can be altered, providing us with the fast and slow switchers.
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The activity of the pathway was read out at the single cell level using yellow fluorescent

protein (YFP) under the control of the GAL1 promoter. For certain extracellular galactose

concentrations, cells in an isogenic population display either a basal pathway activity

(OFF) or an approximately 100-fold up-regulated activity (ON). Figure 5.1.4A and Figure

5.1.4B illustrate the stochastic transitions between these phenotypic states in single

cells. Here a single progenitor cell initially in either the ON or the OFF state gives rise to

a diverse population of both ON and OFF cells due to stochastic transitions between the

two phenotypes.

Figure 5.1.4 A single cell initially in the OFF state gives rise to both ON (green) and OFF (black)
cells due to stochastic transitions between states. Similarly an ON cell (green) gives rise to a
mixed population.

In our system, GAL2 and GAL3 remain under the control of their endogenous

promoters, while the expression of GAL80 is placed under the control of the TET

promoter, which is induced using doxycycline. Because of this modification, this strain

has externally tunable stochastic transition rates, roN and rOFF (Figure 5.1.1), between the

two phenotypic expression states. The rates are controlled by changing the extracellular

concentration of galactose and doxycycline, with low (high) amounts of galactose and

doxycyline leading to high (low) transition rates (Acar et al. 2005). This feature allows us

to create populations of cells with both fast and slow switching rates.

To provide the two phenotypic states with two distinct growth rates we placed the

endogenous URA3 expression, necessary for uracil biosynthesis, under the sole control

of the GAL1 promoter. In this scenario, the two environments (El and E2) affect the

growth rates of the two phenotypes in an antagonistic manner. Environment E1 lacks
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uracil and therefore favors the growth of ON cells to the disadvantage of the OFF cells.

In contrast, E2 contains both uracil and the small molecule 5-Fluoroorotic acid (5-FOA),
which is converted into the toxic intermediate 5-Flurouracil in the presence of Ura3

protein, conferring a growth advantage to OFF cells (Boeke et al. 1984). Therefore, this

experimental system provides us with a quantitative control over both the inter-

phenotype switching rates and the growth rates of both phenotypes in the two different
environments.
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5.1.4 Switching Rate Measurement and Characterization

We first create two distinct populations of cells: one with fast and one with slow

phenotypic transition rates, roN and rOFF, by externally controlling the concentration of

galactose and doxycycline present in the extracellular medium. Figure 5.1.5

experimentally demonstrates the behavior of these two populations in non-selective

media.

Fast Switchers Slow Switchers

A (Dox=0.00282 ljLml. Gal=0.004%) B (Dox=0.0135 pg/ml. Gal=0.03%)

U
it

0 1 2 3 40 1 2 3

Loglo( YFP ) Log10( YFP ) Logo1 ( YFP) Loglo( YFP )

Figure 5.1.5 (A) YFP fluorescence distribution of fast switching cells that have been grown in
non-selective media to obtain the t = 0 distributions (methods). After an additional 24 hours in
non-selective media (with 0.004% galactose and 0.00282 ýtg/ml doxycycline corresponding to fast
switchers), the distributions show very little history dependence indicating that cells are switching
much faster than 1/24 hours 1. (B) YFP fluorescence distribution of slow switching cells that have
been grown in non-selective media to obtain the t = 0 distributions (methods). After an additional
24 hours in non-selective media (with 0.03% galactose and 0.0135 lg/ml doxycycline
corresponding to slow switchers), the distributions show a large history dependence indicating
that the switching rates are much slower.

Doxycycline increases the concentration of Gal80 biasing cells to the OFF state,

while galactose sequesters Gal80 to the cytoplasm biasing cells to the ON state. Adding

both compounds to the media causes transition rates between the two states to

decrease accordingly. Due to these stochastic transitions between the two phenotypes,

the t=0 hours expression distributions corresponding to fast (0.004% galactose, 0.00282

ptg/ml doxycycline) or slow (0.03% galactose, 0.0135 ýpg/ml doxycycline) switching cells

change at the end of the 24 hours growth period. By measuring the fraction of cells in

each state at several points in time (Figure 5.1.6), we are able to estimate that the

transition rates are roughly ten times greater for the fast switching cells,

(ron i 0.047, rOFF 0 0.035 hr1), than for the slow switching population,

( roN 0.004, rJFF = 0.007 hr-1).
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Figure 5.1.6 Determination of switching rates for fast and slow switchers. (A) The fraction of ON
cells in a fast switching population as a function of time in non-selective media for the galactose
(orange squares) and raffinose (green squares) history cells. (B) Fraction of ON cells for the slow
switching population. To estimate the fraction at 96 hours the steady state distribution of cells
(taken from Figure 5.1.7C-D) were determined. By fitting the data with the function:

fo(t) = roN + fo n (t = 0)  r+ roN e-(ro +rO)t

rOFF +rON rOFF +rON

and minimizing the X2 cost function, we determine that the inter-phenotype switching rates for the
fast switchers are roN = (0.0474 ± 0.026) hours-' and rOFF = (0.035 ± 0.020) hours1'. The inter-
phenotype switching rates for the slow switchers are: roN = (0.0039 ± 0.0002) hours-1 and rOFF
(0.007 ± 0.0007) hours-'. Solid lines represent the best fits to the data.

Figure 5.1.7 experimentally demonstrates the selection pressures imposed by

each environment on the two phenotypes, ON and OFF. In the absence of any selection,
both OFF and ON cells grow at very similar rates. In this case, for both the fast and slow

switchers we observe steady-state bimodal distributions of network activity with roughly

equal numbers of cells in either phenotypic state (Figure 5.1.7, top panels). However,
when cells are grown for 4 days in either environment E1 or E2, the population

significantly enriches in ON or OFF cells, respectively (Figure 5.1.7, bottom panels). The

fast switchers display a more diverse distribution of expression values compared to the

slow switchers, because the fast switchers transition more frequently to the unfit

phenotype.
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Figure 5.1.7 (A) Fast switching cells grown in non-selective media display a bimodal distribution.
When cells are grown in E1 (E2), the interaction of the URA3 gene with the environment causes
ON (OFF) cells to proliferate. (B) Similar selection is observed for slow switching cells, however
fewer unfit cells are observed compared to the fast switchers.

We use a first order kinetic model to estimate the amount of time required for a
cell to transition from one state to the other once it has decided to make the switch. Here

we assume that ON cells produce YFP and Ura3 protein at a constant rate while OFF

cells produce none. We assume that removal of these proteins is dominated by the

dilution rate due to growth. Using this model we calculate that it requires approximately

1.3 hours for an average OFF cell to enter into the ON phenotype peak, while it requires

approximately 6.5 hours for an ON cell to dilute enough YFP to be indistinguishable from

an OFF cell. Both of these time-scales are smaller than the switching rates

demonstrating that our approximation of the population as two distinct phenotypes is

reasonable.
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5.1.5 Turbidostat Setup

Next, we explored how this increased diversity impacts the growth rate of the population.

To measure growth rates over long periods we utilized turbidostats (Bryson et al. 1952)

enabling accurate and automatic on-line measurements of population growth rates

(Figure 5.1.8). Cells are maintained at a constant optical density in liquid culture by

continuous measurement of the culture's relative absorption coefficient (Figure 5.1.8B,

upper panel - blue line). When the cellular density exceeds a pre-set threshold (Figure

5.1.8B, upper panel - red line) a pump is activated (Figure 5.1.8B, middle panel) which

dilutes the culture back below the threshold. By measuring the amount of media needed

to maintain the culture in this way, we can accurately calculate the population's growth

rate (Figure 5.1.8B, lower panel) over time.
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Figure 5.1.8 (A) Schematic of the custom-made turbidostat setup used for all growth rate
measurements. An infrared LED (dark gray) and photodiode (light gray) pair were used to
continuously measure the relative optical density of the culture. A peristaltic pump intermittently
provided fresh media to dilute the population while second continuously operating peristaltic
pump coupled to a pickup tube kept the culture volume fixed. (B) Whenever the photodiode
voltage (blue line) went above a pre-set threshold (red line) the pump was activated (black line) to
provide fresh media. The pumping rate was then used to calculate the dynamic population growth
rate ?t) (blue circles).

Growth rates are calculated by recording the fraction of time the pump is actively

providing fresh media during each hour-long interval and converting this into a pump

flow rate by multiplying by the pump's maximal possible flow rate. This raw pump activity
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is then converted into a growth rate by normalizing with the volume of the turbidostat

culture using the formula, y(t) p(t) , where p(t) represents the measured pumpingVculture
rate in ml/hr and VcuIture represents the culture volume in ml.
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5.1.6 Growth Rate Dynamics

To quantify the relationship between population diversity and growth rate, we measured

the growth rate dynamics as the population transitions from one environment to the

other. We first prepared separate cultures of fast and slow switchers by allowing them to

reach a steady-state YFP expression distribution in environments E1 and E2 (Figure

5.1.7, bottom panels). Subsequently, cells were transferred to the other environment (at

time t = 0 as defined in Figure 5.1.9A-B) during which the population growth rate y was

monitored (Figure 5.1.9A-B). Figure 5.1.9A demonstrates the growth rate dynamics

when the environment switches from E2 to E1. The growth rates of both the fast and slow

switchers initially decreased rapidly within the first few hours since most cells were

initially in the unfit (OFF) state and were unable to produce their own uracil. After a lag

period of 3-5 hours, both fast and slow switching populations began to increase their

growth rates, and reached a steady-state growth rate after about 18 hours (Figure

5.1.9A).

'I0 04 04
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Figure 5.1.9 (A), Growth rates corresponding to cells prepared in an E2 history and transferred
to El at t = 0 show a transition period and a steady state region. Fast switching cells (red line)
recover from the effect of environment change faster than show switching cells (blue line) but
have a lower steady-state growth rate. (B), Growth rates for cells prepared in an El history and
transferred to E2 at t = 0. The red line corresponds to fast switchers and the blue line to slow
switchers.

Although the growth rates for fast and slow switchers in Figure 5.1.9A-B show

qualitatively similar dynamics, the quantitative differences between them illustrate the

effects of diversity on the transient and steady-state growth rates. First, the fast

switchers reached their steady-state about 4 hours sooner than the slow switchers. This

is because they enter the new environment with a larger population of fit (ON) cells and
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also because more members of the initially large fraction of unfit (OFF) cells can switch
to the fit (ON) state during the first few hours. During this initial phase the fast switching
strategy is more competitive than the slow switching strategy. However, once the growth
rates have reached steady-state, the slow switching strategy becomes more competitive
because the slow switchers less frequently transition to the unfit (OFF) phenotype. This
results in a systematically larger steady-state growth rate compared to the fast switching
strategy. We observe similar growth rate dynamics when cells transition from E1 to E2

(Figure 5.1.9B). The transient dynamics is overall slower in E2 possibly due to the slow
synthesis of the toxic intermediate 5-Flurouracil. After the adaptation period in E2,both
fast and slow switchers show similar growth rates to what was observed in environment
E, (Figure 5.1.9A). Taken together, this shows that after transitioning to a new
environment, fast switchers have higher growth rates during the transition to steady-
state but lower growth rates than the slow switchers during the steady-state.
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Figure 5.1.10 Dynamic measurement of cellular expression levels in the two environments. (A)
Fast switching cells growing in E2 were transferred to El at t = 0 and the fraction of ON and OFF
cells were measured at several points in time (red symbols). The increase in the dynamic growth
rate (gray line) coincides with the increase in the fraction of fit cells (ON). (B) Fast switching cells
growing in El were transferred to E2 at t = 0. The increase in growth rate coincides with a
significant increase in the fraction of fit cells.
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5.1.7 Simple Model

To further demonstrate that the observed behavior is due to the differences in switching

rates between fast and slow switchers, we built a quantitative model composed of

ordinary differential equations. The model quantifies the number of cells in each of the

two discrete phenotypes, ON and OFF, which both grow at different rates, YoN(t) and

YOFF(t) respectively (Figure 5.1.1). These growth rates reflect the fitness advantage or
disadvantage conferred by the surrounding medium by quantifying both the steady state

growth rate of each phenotype as well as the time required for each phenotype to reach
steady state. In addition, cells also transition from the OFF to ON (ON to OFF)
phenotypes at a constant rate roN (roFF) shown in Figure 5.1.6.

The model consists of two differential equations which characterize the dynamics
of the number of cells in the ON and OFF states, NoN and NOFF respectively:

ddt• N = :oNNo -rOFFNON + rONNOFF

dd NOFF = YOFFNOFF + rOFFNON - rONNOFF

The population growth rate is given by:

d dNoN +- NOFF
(t)= dt dt

NoN + NOFF

The parameter roN (roFF) characterizes the rate of transitions to the ON (OFF) state. The

values YON and YOFF are the instantaneous growth rates of the ON and OFF phenotypes
and depend on which environment the cells are in. In E1 the rates are given by

YON(t) =y(1--e-rlt) and yOFF(t) =y 1(e-dt), while in E2 the rates are given by

yOFF(t) =y2(1-e -r2') and ON(t) = y2 (e -d2t) (Figure 5.1.11). In these equations t

represents the amount of time since the last environmental transition, and the constants

y, and ny represent the steady-state growth rates achieved by the fit phenotype in each
environment. The constants ri and r2 represent the amount of time it takes for cells to
recover from a transition from their unfit to their fit environment. Similarly d, and d2

represent the time it takes for unfit cells to cease growing after a transition from their fit
environment to their unfit environment.
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Growth rate by cell type in E, as predicted by model
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Figure 5.1.11 Modeling cellular growth in fluctuating environments. (A) In environment El, OFF
cells (green) exponentially cease their growth rate due to the lack of intracellular uracil. Similarly,
ON cells (orange) are assumed to need some time to recover from the previous environment (E2
with 5-FOA) and begin growing at their maximal rate. (B) In E2, the opposite scenario occurs
where ON cells (orange) decrease their growth rate with time as the effects of 5-FOA build up in
the cell, and OFF cells (green) recover their maximal growth rate on a slightly longer timescale.

The parameters rl, r2, da, and d2 (Table 5) are separately fit to the data in Figure

5.1.9A-B by minimizing the Z' cost between the prediction and the measured growth rate

values. The model fit is depicted by the red and blue lines in Figure 5.1.12A-B. The only

difference between fast and slow switching cells in the model is the difference between

transition rates (roN, rOFF), indicating that the observed growth rate differences between

fast and slow switching cells can be accounted for by switching rates alone.
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Figure 5.1.12 Model fits to the single environment swap data. Solid lines are generated by the
model. (A) Growth rates corresponding to cells prepared in an E2 history and transferred to E, at
t = 0 show a transition period and a steady state region. Fast switching cells (red line) recover
from the effect of environment change faster than show switching cells (blue line) but have a
lower steady-state growth rate. (B) Growth rates for cells prepared in an E, history and
transferred to E2 at t = 0. The red line corresponds to fast switchers and the blue line to slow
switchers.

Table 5. Model parameters

Environment Value

0.0039 ± 0.0002 hours -1

0.007 +± 0.0007 hours-'

0.0474 ± 0.026 hours-'

0.035 ± 0.02 hours-'

0.50 ± 0.01 hours -'

0.46 ± 0.01 hours-

0.62 hours-'

0.17 hours-1

0.12 hours-

0.042 hours-

Source

Figure 5.1.6

Figure 5.1.6

Figure 5.1.6

Figure 5.1.6

Figure 5.1.9

Figure 5.1.9

Fit to Figure 5.1.9

Fit to Figure 5.1.9

Fit to Figure 5.1.9

Fit to Figure 5.1.9

IA41

Parameter

rON (slow)

rOFF (Slow)

roN (fast)

rOFF (fast)

YV
72

di

d2
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5.1.8 Prediction of Growth in Fluctuating Environments

Using this population dynamics model, we can now predict which of the two switching
strategies is more beneficial in fluctuating environments. In the model, the environment
periodically alternates between environment E1 (with a duration T1) and E2 (with a

duration T2) as depicted in Figure 5.1.1A. The fitness Fof the population is defined as the

average population growth rate over one period. The resulting fitness is calculated as a

function of T, and T2 for the fast (Frast) and slow (Fslow) switching strategies. For both

strategies short environmental periods lead to decreased fitness levels, since more time

is spent in the transient recovery stage of growth. However, the fitness difference

between slow switching and fast switching populations can either be positive or negative

depending on T1 and T2 (Figure 5.1.13A). This analysis shows that in rapidly changing

environments fast switchers would out-compete the slow switchers, whereas for slowly

varying environments the slow switchers would dominate. Figure 5.1.13B shows which

of the two strategies is more beneficial given the times T1 and T2.

A Fitness Difference B Optimum Strategy

110.03

0.02 W0,01

0 0

-001
F-:-

S40 60 80 100 " 40 60 80 100
T2 [hours] T2 [hours]

Figure 5.1.13 (A) Heat map showing the predicted fitness difference (mean growth rate)
between fast and slow switching cells as a function of the environmental period (Ti, T2). For short
periods, the fast switchers display higher mean growth rates. On the other hand, for longer
periods slow switchers show a fitness advantage over the fast switchers. (B) Phase diagram
demonstrating regions where fast or slow switchers are predicted to be more fit. Two points were
chosen in each part of the phase diagram to be further explored. The values of these points
correspond to T, = 20 hours, T2 = 37 hours (circle) and Ti = 96 hours, T2 = 96 hours (triangle).

To further demonstrate the effects of switching rate on the fitness of a population,

we theoretically examine the opposite scenario, whereby the environmental periods are

kept constant and the switching rates are modified. We examine two points in the phase
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space shown in Figure 5.1.13 noted by a circle (short period) and triangle (long period).

Both environmental periods show an optimal growth rate as noted by darkest shade of

red in the heat map (Figure 5.1.14). As mentioned in section 5.1.2 this is because very

large switching rates keep a large number of cells in an unfit state, while very slow

switching rates are heavily impacted by environmental changes since very few cells are

in the fit phenotype. The major difference between these calculations is that in short

periods, the optimal switching rates (rON and rOFF) are much faster than they are in the

long period environment. This suggests that cells need to tune their switching rates to

the rate of environmental changes with long periods requiring slow switching rates, while

short periods require fast switching rates.

a Short Period (0) b Lona Period (A)
0.32

0.283 0 10
0.28 10 -I 06 U •-

0,24 . o 10.2

0.22

02

O04

0.35

0.3

0.25

10 101 10o 10.2  10-' 10,

rON [hours-'] ro [hours-I]

Figure 5.1.14 Growth rates calculated as a function of switching rate in (A) rapidly and (B) slowly
varying environments. The optimal switching rate is faster in short period environments and
slower in long period environments.
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5.1.9 Growth in Fluctuating Environments

To experimentally test these predictions, we choose two points in the (T1, T2) space to

measure fitness: T1 = 20 hours, T2 = 37 hours (circle, Figure 5.1.13B) and T1 = 96 hours,

T2 = 96 hours (triangle, Figure 5.1.13B). As with the previous experiments, we grow the

cells to steady state (4 days) in E2 then transition them to El at t = 0. After T, hours, the

extracellular environment was changed again to E2 for an additional T2 hours. The

dynamically measured growth rates for these two fluctuating environments are shown for

both fast and slow switching populations in Figure 5.1.15A-B along with the population

growth rates predicted by the model (Figure 5.1.15A-B, solid lines). As the phase
diagram suggests, the fast switching cells out-compete the slow switchers in the rapidly

changing environment (Figure 5.1.15A), while the situation is reversed in the slowly

changing environment (Figure 5.1.15B). This is shown as a fitness difference between

the fast and slow switchers in Figure 5.1.15E-F as quantified by the average growth rate.

Here, in the rapidly changing environment the difference between growth rates is 20

percent, while in the slowly changing environment it is 6 percent. Due to exponential

growth these differences greatly magnify the relative competitiveness over even

moderate time-scales. This out-competition is made dramatically obvious when

comparing the number of cells that would have been produced in a non-limiting

environment at the end of each run (Figure 5.1.15C-D).
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Figure 5.1.15 Testing the model predictions: growth dynamics in fluctuating environments with
short and long periods. Growth rates for fast (red) and slow (blue) switchers grown for (A), short
environmental periods (20 hours in El, 37 hours in E2) and for (B), long environmental periods (96
hours in El, 96 hours in E2) are compared to the growth rates predicted by the model (solid lines).
The calculated number of cells is shown for (C), the short period and (D), the long period
environment, highlighting the relative fitness advantage of fast and slow switchers respectively.
The experimentally measured fitness (mean growth rate) (E), in the short period and (F), the long
period environment. Error bars represent a 2.8% error estimated from the standard deviation of
the growth rate measurements.
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5.1.10 Discussion

Our data suggest that bet-hedging constitutes a simple, yet effective, survival strategy to

cope with fluctuating environments. Following this strategy, an isogenic population

improves its fitness by promoting phenotypic diversity so that, at any given time, some of

its members are prepared for an unforeseen environmental fluctuation. The diversity is
introduced naturally through the stochastic nature of biochemical processes allowing

isogenic populations to mitigate risk by not putting "all of their eggs in one basket". A
familiar analogue of this concept also occurs in finance, where diversification allows one
to minimize the risk on a portfolio of investments by spreading the risk among many
diverse assets.

Recent work suggests that cell-to-cell variability can have a large impact on the

fitness of a population during times of adversity (Blake et al. 2006; Bishop et al. 2007).

Here we show that it is the frequency of the environmental fluctuations that constrains

the inter-phenotype transition rates. In particular, a population can enhance its chances

of survival in fluctuating environments by tuning the phenotypic switching rates with

respect to the durations of environmental exposures. In this 'resonant' condition bet-

hedging provides an effective survival strategy by blindly anticipating environmental

changes. This strategy could be utilized by cellular populations that are lacking

dedicated signal transduction machinery for particular extracellular signals or when it is

crucial for a population to act at a faster timescale than is possible by signal

transduction.
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5.1.11 Methods

Measurement of Inter-phenotypic Switching Rates

Cells were grown using non-selective synthetic dropout media (including 0.02 mg/ml

uracil but lacking 5-FOA) in 2% raffinose. After overnight growth, cells were grown in 5
ml cultures for 30 hours in 2% raffinose ("raffinose history") and 2% raffinose and 2%

galactose ("galactose history"). Subsequently, the raffinose and galactose history cells

were separately grown for another 24 hours in media having 0.004% galactose and

0.00282 glg/ml doxycycline (fast switchers) and 0.03% galactose and 0.0135 glg/ml

doxycycline (slow switchers). Culture volume during this period was 10 ml and the OD
did not exceed 0.315. The expression distributions displayed were determined by flow

cytometer (FACScan; Becton Dickinson).

Strain Construction and Growth Conditions

In order to couple the expression of the URA3 gene to the activity of the galactose
pathway, the diploid strain MA0188 (Acar et al. 2005) was modified. The promoter of the
URA3 gene was replaced by the GALl promoter using homologous recombination of
transformed PCR product. The Candida albicans HIS5 gene was used as a marker.
Integrations were verified by PCR.

Cultures were grown in synthetic dropout media with the appropriate amino-acid
supplement and 2% raffinose as a carbon source. Prior to their turbidostat environments,
cells were grown for 4 days in liquid culture in a shaker at 300C. The culture volume was
5 ml for the initial overnight growth and 10-15 ml afterwards. These 'pre-turbidostat'
media contained uracil (at a final concentration of 0.02 mg/ml) and 5-FOA (at a final
concentration of 0.19 mg/ml). During this period, cells were prevented from reaching
stationary growth phase by serial dilution. Next, cells were washed with their prospective
'in-turbidostat' media (lacking uracil and 5-FOA) and were transferred to the turbidostat.
The turbidostat maintains constant optical density levels (OD) corresponding to
exponential growth (0.05 < OD6oo < 0.2). When switching to environment E2, uracil (0.02
mg/ml) and 5-FOA (0.19 mg/ml) were added to the turbidostat media. The turbidostat
temperature was maintained at 30 OC. Fast and slow switching phenotypes were
obtained by supplementing the synthetic dropout media with galactose and doxycycline.
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For the fast switching phenotype, 0.004% galactose and 0.00282 rig/ml doxycycline

were used. For the slow switching phenotype, 0.03% galactose and 0.0135 Ig/ml

doxycycline were used. The expression distributions were determined by flow cytometer

(FACScan; Becton Dickinson).

Turbidostat Measurements

All growth rate measurements were made using a custom made turbidostat (Figure

5.1.8). Cells were maintained at 10-15 ml volumes in test tubes while magnetic stir bars

kept the cultures well mixed. An infrared LED/Photodiode pair (940 nm) was used to

measure the relative OD through a D/A converter and custom Labview software. A

peristaltic pump provided fresh media to dilute the population whenever the OD went

above a critical threshold value. A second continuously operating peristaltic pump

coupled to a pickup tube kept the culture volume fixed.
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6 Perspectives

As demonstrated in Chapter 3.1, we were able to obtain a wealth of information about a

simple biological system by studying how the network responded to dynamic inputs.

Using periodic stimuli, we learned how the system responds to signals over a wide range

of timescales. These frequency response data suggests that the system responds as a

band-pass filter, filtering out both very rapid and very slow fluctuations. Using some

simple analysis, a model was recovered from this data that is predictive in nature.

Although many network structures are consistent with the observed dynamics, a simple

observation of the underlying biology was enough to guide the analysis and produce a

single network topology consistent with the data and known biology.

In general, a network under study may have much more complicated dynamics

than those of the osmotic-response pathway, and it would be important for future work to

address scaling these techniques. It is important to note that in this thesis, a single

readout of the activity of the signal transduction cascade was measured. While this was

sufficient information to deduce the network topology because there were only two

dynamic variables and enough is known about the network to rule out alternative

topologies. In general, however, these dynamic transfer functions could come from any

one of an infinite number of suitable network topologies. Without further information, the

underlying topology could not be as easily determined from the dynamic transfer

function. For this reason, it would be important to further develop these techniques for

multiple inputs and multiple output systems. As the number of dynamic variables needed

to describe the system increases, the complexity of mechanistic network topologies that

are able to give rise to the observed dynamics increases dramatically. This makes it

unlikely that a few simplifying assumptions alone will be enough to inform a network

topology. Rather than using a single input single output approach as applied here, it
may be possible to simply expand these techniques using a multiple input, multiple
output approach to gain the necessary data and network topologies needed. This type
of analysis might be facilitated by multichannel microfluidics, which would allow
application of various time dependent input signals independently, while simultaneously
monitoring multiple output channels through fluorescent proteins or other techniques.

It may be a worthwhile endeavor to attempt to combine these types of dynamic
systems analysis with other network inference techniques. Many network inference
techniques have been developed to infer which nodes in a system influence other nodes
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(Margolin et al. 2007; Price et al. 2007). Typically, however, these techniques rely

heavily or entirely on steady state experimental data. While this may provide a set of

interactions with varying degrees of confidence, the magnitudes and dynamics of these

interactions may easily be lost due to the static nature of the experimental data. On the

other hand, signals and systems analysis excels at developing dynamic

phenomenological dynamic relationships between elements. Future work that

addresses the connections between the static and dynamic system identification

procedures might allow for more accurate inference of dynamic networks.

A few techniques to infer network connectivity have already been developed that

rely on observing propagation information traveling within a network (Vance et al. 2002),
usually in response to step inputs applied systematically to various nodes. Here,
information about the time of arrival of various signals indicates causal relationships

between connected components. In principle, this is similar to the dynamic systems

methodology; however, it would be interesting to extend these analytical techniques to

include period perturbations. One advantage that periodic perturbations have over step

function perturbations lies in the frequency spectrum. In principle, a step function is a

combination of low and high frequencies, and therefore contains all the different

perturbation frequencies in a single input function. Unlike a delta function input, which

has a uniform (flat) frequency spectrum, the step function input has higher amplitude in

the low frequencies and lower amplitude in the high frequencies. This means that

information about the fast responses and interactions has a tendency to be washed out

against information coming from the slower timescale reactions. By applying sine (or

square) wave pulses the amplitude of each frequency can be controlled individually, and

the high frequency dynamics can be given equal weight to the low frequency dynamics.

Biological systems are inherently non-linear; for example, in a cell there will

always be a maximum and minimum response regardless of how high or low the input

signal magnitude is. In this work, we dealt with this fact by adding in a rectification

element, but in general, non-linearities may complicate analysis of more complex

networks. More work will likely be necessary before this type of analysis has the same

amount of general applicability that it does in mechanical and electrical systems.

It is also important to note that these technique used in Chapter 3.1 will only

identify the core network topology; that is, the simplest set of interactions necessary to

accurately describe the dynamics involved. For example, this model has two internal

state variables, while a full description of the network would involve many more
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independent variables characterizing each individual intermediate in the signaling and

response pathways. This core topology does not always make itself apparent from a

very detailed set of interactions, and is often useful in that it may identify the key

interactions or pathways in the system that are central in determining the observed

dynamic behavior. Therefore, the signals and systems approach may often be the most

useful when a system is very well characterized in terms of network structure but with

relatively little known about the quantitative and temporal aspects of its function.

Further, these techniques might be useful for studying and understanding the

molecular basis for disease. In many diseases, the healthy function of signaling

pathways is modified in such a way that normal extracellular signals are misinterpreted

due to errors in the signal processing cascades. These signals are often time varying in

nature due to the desire of cells to respond to changes in the body. A standard method

to treating these diseases involves looking for misregulated proteins in the pathway, and

then applying theraputic agents that target these proteins attempting to return them to

normally functioning levels. While this approach is attractive, it is not always clear that

the protein under study is a cause of and not a response to the diseased state.

Therefore blindly changing the function of a protein or pathway that is reacting to an

error in another pathway may actually cause worsening of the disease state (Araujo et

al. 2007). In these cases, it may be interesting use dynamic signal propagation as a

metric to look for perturbations in signaling pathways that return a diseased pathway to

normal dynamic signaling behavior.

Another interesting direction for future work may lie in exploring the connections

between signal processing and signal noise discussed in this work. For example, while

the directed intracellular signals studied in Chapter 4.3 seem to "confuse cells" and

obscure the correct directionality of the extracellular signal, a recent study which builds

on the work presented in this chapter suggests that it may actually do the opposite.

(Andrews et al. 2007) has constructed an information theoretic approach to mapping

perceived extracellular cues with intracellular decision-making processes. Here they find

that in the presence of extracellular noise, it is beneficial for the cells to maintain an

internal signal that points in the direction that they have previously determined the
signal. This provides a sort of sensory inertia that buffers rapid noisy fluctuations in the
extracellular signal. Similarly, pioneering work with e. coli chemotaxis has shown that
the filtering properties of the network may have been optimized to provide the greatest
amount of directional sensitivity given an inherently noisy extracellular signal (Andrews
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et al. 2006). It might therefore be worthwhile to continue these studies into gene

regulatory and signal transduction network topology, as this might reveal previously

unknown connections between network structure, intracellular noise, signal noise and

signal fidelity.
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