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Abstract

Graphene, a one-atom-thick form of carbon, has emerged in the last few years as a
fertile electron system, highly promising for both fundamental research and appli-
cations. In this thesis we consider several topics in electronic and spin properties
of graphene, with a particular emphasis on the quantum Hall effect (QHE) regime,
where this material exhibits most interesting behavior.

We shall start with analyzing general properties of the two-terminal conductance
for graphene mono- and bilayer samples. Using conformal invariance and the theory
of conformal mappings, we characterize the dependence of conductance on the sam-
ple shape. We identify the features which distinguish monolayers and bilayers and
illustrate the use of the two-terminal conductance as a tool for sample diagnostic.

Next, we present a microscopic study of the edge states in the QHE regime. This
analysis provides a simple and general explanation of the half-integer Hall quantiza-
tion in graphene. We discuss the edge states dispersion for different orientations of
the boundary, and propose a way to image the edge states using STM spectroscopy.

Then, we extend the picture of edge states to describe QHE in spatially nonuniform
systems, recently demonstrated p-n and p-n-p devices. We show that the bipolar p-n
and p-n-p junctions can host counter-circulating QHE edge states, which mix at the
p-n interfaces, giving rise to fractional and integer quantization of the two-terminal
conductance, observed in this structures.

Graphene exhibits interesting spin- and valley-polarized QH ferromagnetic (FM)
states. We show that spin-polarized QH state at zero doping hosts counter-circulating
edge states carrying opposite spins, and propose to use this regime as a vehicle to
study spin transport.

We study ordering in the valley-polarized QH state. Coupling of valley QHFM
order parameter to random strain-induced vector potential yields an easy-plane-type
ordering of the valley QHFM, giving rise to Berezinskii-Kosterlitz-Thouless transition,
with fractionally charged vortices (merons) in the ordered state.

Thesis Supervisor: Leonid S. Levitov
Title: Professor of Physics
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Chapter 1

Introduction

Two-dimensional electronic systems (2DES) have been a major source of remark-

able discoveries in quantum physics over the past 30 years [13]. In these systems,

by varying the amount of disorder and the strength of electron-electron interactions,

a nearly endless variety of new phases and physical effects can be realized [14]. A

prominent example of a new quantum phenomenon arising in 2DES is the integer

quantum Hall effect (QHE) [2]. The basic observation there is that the Hall conduc-

tivity of a 2DES subject to a strong magnetic field is quantized in units of e2/h, while

the longitudinal conductivity vanishes. Furthermore, experiments with 2DES in high

magnetic fields revealed a fractional quantum Hall effect [15], where quantization of

the Hall conductivity occurs at fractional values of e2 /h. Although transport proper-

ties in the fractional QHE and integer QHE are quite similar, the underlying physical

mechanisms are completely different. While the integer QHE is essentially due to

single-particle localization, the fractional QHE states are strongly correlated electron

liquids, with the quantization of the Hall conductivity resulting from localization of

collective electronic excitations [16].

In addition, the studies of 2DES in high magnetic fields have led to the dis-

covery of phases with spontaneously broken symmetries [17], exotic excitations (so

called anyons, which are neither bosons nor fermions but rather something in be-

tween [16, 18]) in correlated electron states, and stripe and bubble phases where an

initially uniform electron liquid develops a periodic inhomogeneity [19] due to the spe-



cial form of effective electron-electron interactions [20, 21]. Also, 2DES can exhibit

interesting phenomena in the absence of magnetic fields such as the collective behav-

ior of excitons [22], which are bound electron-hole pairs. Reading this list (which is

far from complete!), it is hard to believe that such a broad range of phenomena would

be found in just one kind of electronic gas restricted to move in two dimensions.

These discoveries of spectacular many-body effects in 2DES are directly related to

the progress in the fabrication techniques. Improving fabrication has enabled better

control of disorder, producing samples clean enough for observing subtle interaction

effects. For instance, the invention in 1960 of (relatively) clean Si-SiO 2 metal-oxide-

semiconductor field-effect transistor (MOSFET) with tunable carrier density [23] led

to the discovery of the integer QHE in 1980 [2]. In 1978 another breakthrough in

semiconductor physics was made when a new crystal growth technique, molecular

beam epitaxy (MBE), was used to create a high-mobility 2DES embedded in a three-

dimensional GaAs-based structure [24]. Just a few years later, this 2DES, studied

in ultrahigh magnetic fields by Tsui, Stormer and Gossard, revealed the fractional

QHE [15]. Subsequent improvements of the MBE technique have led to discoveries

of new fractional QHE states and other correlated electron phases [14].

In 2004, a fundamentally new type of 2DES was discovered [25] in graphene, a

one-atom-thick sheet of carbon. The carrier density in graphene can be tuned over

a range of positive and negative values using the field-effect [25]. Because graphene

lattice is quite robust and therefore nearly free of structural defects, an advantage

similar to that provided by carbon nanotubes, the 2DES in graphene has a high

mobility. The mobility of carriers in graphene, although high enough for observation

of certain correlated phases [5], is still several orders of magnitude lower than the

mobility in the cleanest GaAs-based 2DES, which exhibit the broadest variety of

correlated states. It has been conjectured that the mobility of graphene in current

experiments is limited by the presence of a three-dimensional substrate which hosts

charged impurities acting as scatterers for electrons in graphene [26]. Therefore,

one possible route to increasing graphene mobility would be to fabricate suspended

graphene samples, free of the three-dimensional substrate. A first step in this direction



has already been made [27], and conductivity measurements in suspended graphene

revealed a tenfold mobility increase compared to samples on a substrate. Once the

fabrication methods of suspended graphene are further improved to enable better

control of intrinsic disorder, the mobility could be increased even further. The high

electronic mobility, as well as the tunability of carrier density via the field-effect, make

graphene an attractive platform for studying fundamental physics.

In addition to high mobility, the 2DES in graphene exhibits new electronic phe-

nomena because of its unusual band structure, in which the low-energy excitations are

described by the massless Dirac Hamiltonian rather than non-relativistic Schroedinger

Hamiltonian, as in GaAs- or Si-based structures. There are two types of Dirac ex-

citations in graphene, referred to as two valleys. The Dirac character of excitations

modifies, and in some cases completely changes the nature of various physical prop-

erties and phenomena, from quantum tunneling [28] to localization by disorder [29].

Perhaps the most dramatic signature of the Dirac spectrum is the anomalous QHE,

which is half-integer rather than integer [4, 30]. Remarkably, the characteristic energy

scales of the electron states in graphene subject to magnetic field are quite large, with

Landau level spacings reaching 1500 K at the magnetic field strength of 10 T. Because

of that, the half-integer QHE can be observed at room temperatures [31]. Spin and

valley-polarized QH states [17] resulting from interaction-induced splitting of other-

wise degenerate Landau levels, which in some sense are prerequisite for fractional

QH states, have already been observed in graphene [5]. Although the basic mecha-

nism responsible for the formation of the spin- and valley-polarized QHE states in

graphene is the same as that in the previously studied 2DES [17], some of those states

in graphene exhibit transport properties which are quite different from the conven-

tional QHE states [6]. Four years of studying graphene have already revealed a large

number of interesting electronic phenomena [32], some of which are described in this

thesis; however, this is surely just the very beginning, and graphene will yield many

more interesting findings in the future.

In this thesis we consider several new phenomena which occur in graphene in the

QHE regime. We shall develop a microscopic picture of the half-integer QHE in terms



of so-called QHE edge states, which are one-dimensional conducting channels at the

boundary of QHE systems responsible for the QHE [33, 34]. While in conventional

QHE systems the edge states are always chiral, all propagating in the same direc-

tion [33, 34], in graphene the edge states can have chirality of either sign, resulting

from the fact that carriers can be electron-like or hole-like. As we shall see below,

the counter-circulating character of the edge states gives rise to interesting transport

phenomena in locally gated graphene devices, in particular, the fractional and inte-

ger two-terminal conductance quantization of these devices. Furthermore, we shall

study QH states in graphene which result from interaction-induced lifting of spin and

valley degeneracy. The spin-polarized QHE state at the Dirac point features counter-

circulating edge states carrying opposite spins, which leads to unique behavior of the

charge transport coefficients, as well as interesting spin transport effects, including

a quantum spin Hall effect and spin filtering. Finally, we shall consider ordering of

the valley graphene QH ferromagnet (QHFM), finding, somewhat surprisingly, that

coupling of the order parameter to a peculiar type of disorder present in graphene

stabilizes an easy-plane ordered state.

The rest of this introduction is organized as follows. In Section 1.1 we discuss the

atomic structure of graphene, its place among other carbon materials, and describe

the fabrication of graphene samples. Furthermore, we explain why graphene, being a

two-dimensional crystal, is stable with respect to thermal fluctuations. In Section 1.2

we consider the electronic properties of graphene. We derive the Dirac-like low energy

spectrum from the nearest-neighbor tight-binding model, and discuss the implications

of the Dirac character of excitation for quantum tunneling and localization. We also

point out that the truly two-dimensional character of the graphene lattice gives rise to

new phenomena and opens up new possibilities to study electronic properties. Section

1.3 in an introduction to the conventional QHE. We discuss the edge states picture of

the quantum Hall effect, and the physical mechanism of QH ferromagnetism. Section

1.4 is a review of the QHE in graphene, with an emphasis on differences from the con-

ventional QHE systems. We discuss the half-integer QHE, experimental observations

of the QHFM states, and their possible theoretical interpretation. Finally, Section



1.5 is an overview of the main results presented in the thesis.

1.1 Graphene: structural properties

The property of carbon which distinguishes it from all other elements is its unique

chemical bonding flexibility. Carbon can bond with oxygen, hydrogen, nitrogen and

other chemical elements, forming over ten million so-called organic compounds [35],

many of which serve as a basis for all known life forms. There is also a large number

of compounds consisting purely of carbon, which exhibit very diverse physical proper-

ties. Two well-known examples are three-dimensional carbon materials, diamond and

graphite. The different arrangements of carbon atoms in these two materials gives rise

to nearly opposite physical properties: diamond is very hard, and graphite is easy to

break, diamond is transparent, and graphite is black, diamond is an insulator, while

graphite is a conductor.

Carbon can also form low-dimensional compounds, so-called fullerenes, which have

interesting physical properties resulting from both band structure and reduced di-

mensionality. Some common fullerenes are shown in Fig. 1-1. Zero-dimensional

fullerenes [36], or buckyballs, have a discrete energy spectrum, very much like atoms or

smaller molecules. One-dimensional fullerenes, called carbon nanotubes [37], host [38]

a so-called Luttinger electronic liquid [39], which, owing to the enhanced role of

electron-electron interactions in 1D exhibits unique transport properties very differ-

ent from those of electronic liquids in two- and three-dimensional metals. In addition,

similarly to the Dirac fermions in graphene, electrons in nanotubes have an internal

degree of freedom, pseudospin, in many ways reminiscent of the fundamental elec-

tron's spin. This gives rise to interesting phenomena such as the SU(4) symmetric

Kondo effect [40]. Both nanotubes and buckyballs exhibit remarkable mechanical and

chemical stability, which results from the strength of the carbon's chemical bonds.

The two-dimensional fullerene, called graphene, is a single-atom-thick sheet of

carbon with atoms arranged in a honeycomb lattice, and can be viewed as the mother

of the carbon materials. As illustrated in Fig. 1-1, graphite consists of weakly coupled



Figure 1-1: Graphene (upper left) as a mother of carbon allotropes. Graphite (upper
right) is obtained by stacking graphene planes on top of each other. Carbon nanotubes
(lower left) are rolled-up graphene sheets, and buckyballs (lower right) are obtained
by substituting some hexagons in graphene lattice by pentagons, which gives rise to
a curvature and results in graphene curling into a sphere. From Ref. [1].

layers of graphene, nanotubes are rolled-up sheets of graphene, and buckyballs are

obtained by substituting some sixfold rings by fivefold ones, which results in curling

the graphene sheet into a sphere or an ellipsoid. While buckyballs were discovered

in 1985 [36], and carbon nanotubes in 1991 [37], graphene in a free form was only

obtained in 2004 [25] by Andre Geim's group in Manchester. This discovery came

as a big surprise, because the classical results of Landau and Peierls state that two-

dimensional crystals cannot exist, as they are unstable with respect to thermal phonon

fluctuations at arbitrarily low temperatures [41, 42]. Later in this section we shall

discuss a physical mechanism of out-of plane fluctuations [43] that stabilizes the

graphene sheet and resolves the seeming contradiction with the result of Landau and

Peierls.

The fabrication method used to obtain graphene relies on the fact that adja-

cent atomic layers in graphite are very weakly coupled, and therefore thin stacks of

graphene planes can be easily peeled from graphite. Interestingly, it is this prop-

erty of graphite that allows us to use it as a writing tool. It was known and widely



utilized since 1564, when the graphite pencil was first introduced [44]. The method

employed to make graphene essentially involves taking a piece of clean graphite and

peeling it with an adhesive tape [25] (remarkably, usual Scotch tape was used in the

original experiment) many times until a monolayer sample is obtained. Seemingly

very simple, this experiment is in fact quite challenging: along with monolayers many

thicker flakes are produced, and it is difficult to find extremely thin monolayers among

multi-layers, which are the first ones to be noticed in the microscope. In fact, very

special conditions are required to even be able to see monolayers in the microscope.

The finding of graphene was made possible by an interference-like effect produced by

graphene placed on top of a 300 nm thick SiO2 substrate. The optical effect disap-

pears, making graphene invisible, if the substrate width is changed by as little as five

percent [32]! Therefore, the main challenge of fabrication is not making graphene,

but finding it. There have been earlier attempts [45] to make thin stacks of graphene

planes, which used techniques similar to the so called micro-mechanical cleavage in-

troduced by the Manchester group. However, the thinnest samples found in those

experiments consisted of at least 20 layers.

The optical effect is still used by most experimental groups to identify samples

which may be monolayers, however, more reliable methods are needed to prove that

a particular sample is indeed a monolayer. At present, there are two such methods:

the first one is the Raman spectroscopy [46], and the second one is based on the

half-integer quantum Hall effect [4, 30] (see below). The latter method, although not

as reliable as the Raman spectroscopy, is widely used in transport experiments. In

fact, it was the half-integer QHE that was used in the original works by the groups of

Andre Geim [4] and Philip Kim [30] to unambiguously prove that the studied samples

were indeed monolayers.

Before we proceed to discussing the electronic properties of graphene, we shall

briefly address the stability of graphene membranes with respect to thermal fluctua-

tions [32]. Graphene can crumple in the direction perpendicular to its plane, which,
owing to the coupling of the out-of-plane fluctuations to the in-plane phonons, lim-

its in-plane displacement fluctuations. From the energetic point of view, crumpling



is favorable below a certain temperature, because, although it increases the elastic

energy, it restricts the in-plane fluctuations, thus minimizing the free energy. This

scenario, considered prior to the discovery of graphene in statistical mechanics of

membranes [43], is supported by the direct experimental observation of ripples in

graphene membranes [47]. As we shall discuss below, the crumpling generates an

unusual type of disorder specific to graphene that leads to interesting phenomena; in

particular, this type of disorder causes a suppression of the weak localization correc-

tion to conductivity [29], and ordering of the QHFM [48].

1.2 Electronic properties of graphene

Since 2004 graphene has attracted enormous interest, quickly becoming one of the

most actively studied materials. The motivation for studying graphene lies in its

fascinating physical properties, as well as the great promise it offers to applications:

owing to graphene's two-dimensional character, graphene devices potentially can be

made much smaller than traditional silicon counterparts. Some prototype devices,

such as transistors made of graphene nanoribbons, have already been realized [49].

However, electronics applications require that a reliable growth process, capable of

producing large samples of clean graphene, is developed. There have been attempts to

grow graphene epitaxially by thermal decomposition of silicon carbide [50]. Samples

grown by this method were found to exhibit rather high electron mobilities [50],

however, further improvement of this fabrication process is needed.

Another intriguing direction is pointed out by proposals to employ graphene in

solid-state-based quantum computing [51]. The main challenge in this field is to

find systems where it is possible to realize the basic building blocks of quantum

computer, qubits, with long coherence times. Most solid-state qubits considered so

far had relatively short coherence times because of coupling to some external degrees

of freedom. For example, the spin qubits [52], which can be controlled electrically [53],

suffer from coupling to nulcear spins as well as the spin-orbit interaction, both of

which cause decoherence [52]. Graphene spin qubits may help to solve this problem:



in principle, they can be made nearly free of decoherence, owing to the very weak

spin-orbit coupling and the absence of hyperfine interaction in 12C carbon atoms.

First and foremost, however, studying graphene is of interest from the fundamental

physics standpoint, owing to its unique band structure, as well as its truly two-

dimensional nature. The band structure of graphene is such that the low-energy

excitations are two species of Weyl fermions [54] with opposite chiralities. Combined,

the two Weyl spinors form a Dirac spinor, which is why we often refer to graphene

excitations as Dirac fermions. As we discuss below, the Dirac-like band structure

gives rise to a variety of new phenomena.

The origin of the Dirac spectrum of low-energy excitations can be understood

using a nearest-neighbor tight-binding model on a hexagonal lattice, which is known

to provide an adequate description of the graphene band structure. The honeycomb

graphene lattice, illustrated in Fig.1-2a, has two non-equivalent sublattices, A and

B. Fig 1-2a also illustrates the two most common graphene edge types, zigzag and

armchair, which will be used in our analysis of quantum Hall edge states in Chapter 4.

In the framework of the tight-binding model, which includes only nearest-neighbour

hopping, the energy gap vanishes at the two non-equivalent Brillouin zone corners,

K and K' (see Fig.1-2b). There are two linearly independent zero-energy Bloch

functions for each of the points K, K'. One of these functions resides on sublattice

A and vanishes on sublattice B, while the other resides on sublattice B and vanishes

on sublattice A. Our choice of these Bloch functions for the K valley is shown in

Fig.1-2c, where T = e2r i /3. The Bloch functions for the K' valley can be obtained

from those for the K valley by complex conjugation.

To describe low-lying excitations near the K, K' points, we write the wave func-

tions as linear combinations of products of slowly varying enevelope functions UK, VK, -UK', -VK'

and the four zero-energy Bloch functions [55], defined as in Fig.1-2c. (Our choice of

the envelope function signs is convenient for our analysis of the edge spectrum for

an armchair boundary, as we shall see below.) Here the u and v components are

wave function amplitudes on A and B lattice sites. The envelope functions UK, VK,

and UK', VK, describe excitations near the points K, K', and the effective low-energy
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Figure 1-2: (a) Graphene lattice with armchair and zigzag edges. (b) Graphene
hexagonal Brillouin zone. K and K' are the two non-equivalent Brillouin zone corners,
where energy gap vanishes. (c) Our choice of two linearly independent zero-energy
Bloch functions for the K point. Here T = e2 ~i /3 . The zero-energy Bloch functions
for the K' point are obtained from those for the K point by complex conjugation.

Hamiltonian, obtained by keeping only lowest-order gradients of u, v, has the following

form [55],

HK = ivo , HK, = ivo , (1.1)
-p- 0 -P+ 0

where vo a 108 cm/s is the Fermi velocity, P± = IP ± iPy, p = p, - (e/c)A,1, with A,

being the vector potential.

Therefore, the effective low-energy excitations in graphene are two species of

massless Weyl-like fermions, associated with the points K and K', which are usu-

ally referred to as valleys or pseudospins. The psedo-relativistic character of charge

excitations in graphene leads to a wealth of new phenomena.

In particular, relativistic Dirac particles are capable of penetrating an arbitrarily

high potential barrier at normal incidence [54]. This phenomenon, known as Klein

tunneling [54], was theoretically predicted long ago in high energy physics [54]. Klein

tunneling has never been observed for the Dirac electrons in vacuum, and remained a

purely theoretical concept until about a month ago, when its observation in graphene

was reported [56]. A potential step in graphene can be created using a local top

gate [57, 9, 10] in addition to the global back gate. When the potential step is

t"'ý

I -



steep enough such that transmission across the step is ballistic, the Klein tunneling

manifests itself in the resistance across the barrier [56].

Furthermore, graphene provides an ideal setting to explore the behavior of disor-

dered Dirac fermions, which can be quite different from that of massive electrons [26].

This problem has attracted significant interest previously due to its importance for

understanding quantum Hall plateau transitions [58], as well as thermal transport

in high-temperature superconductors [59]. By now it is realized, both theoreti-

cally [60, 61] and experimentally [29], that transport in graphene is strongly affected

by the symmetry of disorder. In particular, disorder with certain symmetries does not

localize Dirac electrons and the system remains metallic down to the lowest temper-

atures [60], in contrast to known systems with massive spectra. However, changing

the symmetry of disorder may restore localization [26]. Other disorder types can give

rise to anti-localization behavior [60], which, however, have not been observed yet.

Despite recent advances [60, 29, 61] in studying disorder effects, the role of various

disorder types present in the graphene samples is still a largely unexplored question.

The truly two-dimensional character of the graphene lattice also leads to inter-

esting effects. For instance, recently there have been theoretical studies indicating

the importance of electron scattering on flexural phonons [62], which cannot hap-

pen in GaAs-based and Si-based 2DES, where the two-dimensional gas is a part of

a three-dimensional material. Another new feature is an atomically sharp edge of

graphene, with different crystallographic edge orientations corresponding to different

boundary conditions for the Dirac equation. Because of that, the electronic proper-

ties of graphene nanoribbons are strongly dependent on the sample's edge type [63].

The edge type also manifests itself in the dispersion of quantum Hall edge states [64],

as we shall discuss in detail below in Chapter 4. Furthermore, random scattering of

Dirac fermions on a disordered edge gives rise to a new symmetry class of a chaotic

billiard in graphene quantum dots [65].

Interestingly, one of the common graphene edge types, the zigzag edge, supports a

band of surface states [66]. There have been studies indicating that the surface states

are rather robust with respect to some degree of edge disorder [67]. Owing to their



large density of states, the surface states may also exhibit a Stoner ferromagnetic

instability [68]. Theoretically, the possibility of edge transport due to surface states

has also been considered [69]. Experimentally, the relevance of these ideas remains

to be explored.

The two-dimensional graphene lattice also supports an unusual disorder type,

strain-induced random vector potential [12], which may have important implica-

tions for various phenomena including suppression of localization [29] and ordering of

graphene quantum Hall ferromagnet [6], which we shall discuss in detail below. Es-

sentially, strain shifts the positions of the Dirac nodes in momentum space due to (i)

a purely geometrical effect, corresponding to the Brillouin zone deformation induced

by the real space lattice deformation and (ii) a change of the local hopping amplitude

due to bond stretching. Shifting the nodal points can be described in terms of an

effective vector potential, which explains the origin of this disorder type. The random

vector potential will be discussed in greater detail in Chapter 7, where we address

the ordering of the QH ferromagnet.

One more interesting characteristic of graphene is that its surface is fully exposed.

This opens up new possibilities for probing electronic properties, for example, using

scanning tunneling microscope (STM) spectroscopy [70, 71, 72, 73]. In that regard

graphene provides a distinct advantage compared to other two-dimensional systems

where using the STM technique is made complicated by the fact that electrons are

situated under a rather thick layer of dielectric. The STM technique was recently

used to study the crumpling of graphene on a SiO2 substrate [74]. Current STM

techniques are capable of resolving individual graphene atoms, and therefore can be

applied to image individual localized states in graphene [71], which may help elucidate

the nature of impurities. Another interesting direction is using STM to explore the

properties of the surface states near zigzag edges [73, 72].

In addition to the phenomena mentioned above, the Dirac spectrum and the two-

dimensional graphene lattice have several interesting implications for the QHE in

graphene. However, before we start discussing QHE in graphene, in the next section

we give a brief introduction to the conventional QHE.



1.3 Introduction to the Quantum Hall Effect

This section is a brief introduction to the quantum Hall effect, providing the necessary

background for the subsequent discussion of QHE-related phenomena in graphene.

We start with the quantum Hall edge states picture, which helps to understand the

quantization of the Hall resistivity. The chirality of the edge states is responsible

for the absence of dissipation and the remarkable precision of the Hall conductivity

quantization. Then we discuss QH systems where electrons have an intrinsic degree of

freedom (spin, pseudospin) and a phenomenon of ferromagnetic ordering of this degree

of freedom, which gives rise to new QH states. The discussion in this section applies

to two-dimensional systems with a quadratic dispersion relation (Si, GaAs); systems

with linear dispersion (graphene) will be the subject of the rest of the dissertation.

1.3.1 Edge states and the QHE.

In 1980 a German physicist Klaus von Klitzing studied [2] the Hall (P.,) and longi-

tudinal (p,,) resistivity of two-dimensional Si MOSFET samples in strong magnetic

fields and at low temperatures. He found that at low densities p,, exhibits remark-

able deviations from the classical formula p., = B/enc (nK is the carrier density),

featuring quantized plateaus at values

h
Px Y = ne 2  

(1.2)

with n an integer. The quantization (1.2) is commonly referred to as the quan-

tum Hall effect; however, often 'QHE' is used as a general name for the phenomena

arising in two-dimensional electronic systems subject to high magnetic fields at low

temperatures. The quantization (1.2) is illustrated in Fig. 1-3, showing pxy at a fixed

magnetic field as a function of gate voltage, which translates into carrier density. The

longitudinal resistivity pxx vanishes at the plateaus, implying that the transport is
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Figure 1-3: The Hall (P,y) and longitudinal (p,,) resistivity of a two-dimenional
electron gas as a function of gate voltage, plotted in units of the voltage on Hall
probes (UH) and potential probes (Up). Resistivity py exhibits a series of quantized
plateaus with values p' = h/ne2 - a remarkable phenomenon known as quantum
Hall effect. Inset: schematic of the device. From the paper by von Klitzing [2]

non-dissipative; because pxx vanishes, the Hall conductivity is also quantized,

(1.3)
e2

aXy = n h

To understand the quantum Hall effect, we examine the electronic spectrum of a

sample having the shape of a strip situated in the region 0 < x < W in a magnetic
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field. The spectrum can be found by solving the Shroedinger equation,

1
EO = -(p - eA/c)2 , (1.4)

2m

where A is the vector potential. Choosing the coordinate system in such a way that

the y-axis is parallel to the strip and fixing the gauge, A, = -Bx, A, = 0, allows

us to classify states according to the values of momentum py. The motion in the x

direction is described by the following equation,

E() = +2 - 2= B C= e-, (1.5)
2m 2 h mc

with eB is the magnetic length defined by Eq. (1.16). Eq. (1.5) describes an oscillator

with a spectrum

En= chw(n + 1/2), (1.6)

which corresponds to Landau levels (LLs).

To find how the spectrum is modified near the edge, we assume a hard-wall bound-

ary condition, O(x = 0, W) = 0; we shall consider the spectrum near the edge x = 0,

the spectrum near the opposite edge x = W can be found similarly. The problem is

to find the oscillator spectrum with a hard wall situated at the distance x0 away from

the parabolic potential minimum. The hard wall pushes the levels (1.6) up when Sx

becomes comparable to gB, their energies monotonically increasing as the edge is ap-

proached. This is illustrated in Fig. 1-4, depicting the numerically obtained oscillator

energy levels depending on the momentum along the edge py, which is proportional

to x0 (see Eq. (1.5)). The dispersion of the LLs implies the existence of conducting

one-dimensional channels propagating along the edge, with a group velocity of the

channel originating from the nth LL being v = &e,/8py.

The edge states allow us to understand the quantum Hall effect as follows. When

the filling factor v is an integer, v = n, there are n conducting edge channels, as

illustrated in Fig. 1-4. A current I flows along one of the edges, which corresponds

to a Hall voltage VH = Ih/ne2 . Thus the Hall resistivity is quantized, py = VH/I =
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Figure 1-4: Spectrum of the Landau levels in a strip (in units of es = hwc), obtained by
numerically solving the Schroedinger equation with a hard-wall boundary condition.
Momentum py, equivalent to the magnetic oscillator position, is used to classify the
energy levels. Landau levels, which are flat in the bulk, acquire dispersion near the
edge. This corresponds to one-dimensional channels (one per LL) localized near the
edge and propagating with velocity v = d,,/dpy. At integer fillings, v = n, there are
n conducting edge channels, which give rise to quantized Hall conductivity of ne2/h.



h/ne2

The characteristic feature of these edge states is that they all propagate in the same

direction. It is this property that is responsible for the non-dissipative nature of the

QHE transport and the remarkable precision of the Hall conductivity quantization.

Indeed, backscattering is necessary to generate a voltage drop along an edge and

destroy the Hall conductivity quantization. However, because all edge channels at

one sample edge propagate in the same direction, an electron has to tunnel to the

opposite edge of the sample in order to backscatter. The transitions between opposite

edges require passing through a wide classically forbidden region, and their probability

is therefore suppressed by a factor of e- cw feB, where C is a constant of order one,

which is determined by the chemical potential position relative to the LLs. Thus in

wide samples, W >> B, backscattering can be neglected and there is no dissipation

on the quantum Hall plateau.

The dissipation on quantum Hall plateaus is absent when the transport is entirely

due to the edge channels. However, when temperature is increased, thermally acti-

vated carriers in the bulk appear, introducing dissipation, which is described by a

non-zero value of the longitudinal resistivity p... Therefore one could say that the

edge transport determines the value of the Hall resistivity, while the bulk transport

is responsible for the longitudinal resistivity. As we shall see in the subsequent chap-

ters, near the Dirac point in graphene the situation is exactly the opposite: the edge

transport is dissipative and determines the value of p.., while introducing transport

through the bulk changes the behavior of p,,.

1.3.2 Quantum Hall ferromagnetism

In this subsection we discuss a specific kind of QH system, in which electrons have an

internal degree of freedom. The nature of this degree of freedom may vary; in some

cases it is the electron spin, in other cases it is valley index [75], and in double-well

systems it is the well number [76]. The Coulomb interaction in such systems favors

polarization of the intrinsic degree of freedom at certain filling factors, which gives

rise to so called ferromagnetic QH states.



To simplify the discussion, we shall restrict our consideration to the lowest LL. For

the purposes of this subsection, it is convenient to choose the radial gauge, A(r) =

- [r, B]. The wave functions in the lowest LL are given by

= 1 zme zl (1.7)
/27wex 22mm!

where we have introduced a complex dimensionless coordinate z = (x + iy)/eB. We

shall use T, I to denote the two intrinsic electron states, and refer to them as spins,

keeping in mind that in fact our discussion is not limited to the case of the fundamental

spin.

We will focus on the case when the spin-degenerate lowest LL is half-filled, that is,

its filling factor (number of filled LLs) is v = 1. In general, the Coulomb interaction

should favor polarizing all electron spins. This would make the spatial many-body

wave function completely anti-symmetric, helping electrons to stay away from each

other, and thereby minimizing the Coulomb energy. Motivated by this simple quali-

tative argument, we consider the following variational wave function, which describes

filling all spin-up states,

10) = exp - j zj (- z) TT T) (1.8)

The Coulomb energy of such a state is given by [17]

( VIO) =Nn e2 (e2 B
(? ) z [g (z)- 1], (1.9)

where n is the dielectric constant, n = 1/27re2 is the density of a filled LL, N is the

total particle number, and g(r) is the density-density correlation function,

N(N- 1) d2 d3 . 2  ,NI(, Z Z .. . , ZN) , (1.10)
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which can be computed exactly [17] for the wave function (1.8),

g(z) = 1 - e-½IZ1 2 . (1.11)

This expression has a transparent physical meaning: g(z) vanishes when two particles

approach each other, Izi -+ 0, which corresponds to an exchange hole surrounding

each electron. Substituting Eq. (1.11) into Eq. (1.9), we obtain the energy gain (per

particle) due to the spin polarization,

(V> =() e2
N = N Bf". (1.12)

Adding an electron with spin down requires an energy A, and therefore the system

is gapped. Because of that, the transport in the bulk is suppressed, and the current

is carried by the edge channels, leading to the quantum Hall effect. We emphasize

that, although the transport properties of the ferromagnetic and integer QH states

are similar, their nature is completely different: ferromagnetic QH states are due

to the electron-electron interactions, while integer QH states would occur even in a

non-interacting 2DES.

In the majority of studied systems [14] the Coulomb energy (1.12) is much larger

that the spin-dependent energies, such as the Zeeman energy or spin-orbit interac-

tions. For example, in GaAs the exchange energy (1.12) is two orders of magnitude

larger than the Zeeman energy, which is especially small in GaAs due to the re-

duced value of the g-factor, JgI e 0.4. Thus to leading order the QH ferromagnet

Hamiltonian is rotationally symmetric in the spin space.

What determines the orientation of the QH ferromagnetic order parameter? For

any system, inevitably there are terms in the Hamiltonian (possibly small) that break

the rotational symmetry in spin space, and thus fix the direction of the order param-

eter. Certain spin-dependent terms in the Hamiltonian act as symmetry-breaking

fields, while the others induce an anisotropy, which can be of an easy-plane or an

easy-axis type. For example, in the case of fundamental electron spin, the symmetry

breaking field is provided by the Zeeman interaction. In the case of quantum Hall



bilayers [77, 14] the z component of pseudospin describes density imbalance between

the two layers. The Coulomb energy is minimized when the two layers are equally

charged, thus favoring the easy-plane-type state, corresponding to the U(1) symmetric

order parameter situated in the xy plane. The U(1) symmetry of the order parameter

gives rise to interesting phenomena, such as Berezinskii-Kosterlitz-Thouless transition

and fractionally charged vortices [77, 76].

1.4 QHE in graphene

Owing to the unusual nature of the underlying material, the 2DES in graphene ex-

hibits interesting phenomena in the QHE regime [4, 30, 5, 78], which are not encoun-

tered in the conventional QHE systems discussed above. The goal of this section is

to review experimental and theoretical advances in understanding QHE properties

arising due to the Dirac spectrum of excitations. We begin by discussing the half-

integer QHE [4, 30], and provide a simple theoretical argument for the half-integer

quantization based on the LL spectrum of Dirac fermions. Furthermore, we discuss

experiments [5, 6, 79, 80] which observe interaction induced LL splitting in high mag-

netic fields, and theories [11, 81, 82, 83, 84, 48, 6] suggested to explain this splitting.

Finally, we briefly address other reseach directions, such as experiments on trans-

port in locally gated graphene devices [9, 10] and (theoretical) studies of correlated

electron phases [85, 86, 87].

1.4.1 Half-integer QHE

In this Section we discuss the anomalous QHE in graphene. Figure 1-5 illustrates

experimentally measured [4] transport coefficients, Hall conductivity aoU and longi-

tudinal resistivity pxx of graphene subject to a magnetic field of 14 T. The transport

coefficients are shown as a function of the carrier density. The Hall conductivity ex-

hibits a set of quantized plateaus situated symmetrically with respect to the Dirac



point, v = 0, with quantized values

a• = 4 x n + . (1.13)

The factor of 4 in this expression is due to the twofold spin and valley degeneracies.

Remarkably, the quantized values (1.13) are half-integer (up to the fourfold degen-

eracy) rather than integer (1.3), as in systems with Schroedinger spectrum of low

energy excitations. The behavior of the longitudinal resistivity in graphene is quite

similar to that observed in GaAs- and Si-based systems [88]: resistivity vanishes at

the quantized plateaus of a., and exhibits broadened peaks between the plateaus.

The half-integer QHE is a hallmark of the Dirac-like spectrum. For instance,

bilayer of graphene [78], which has a band structure different from that of monolayer

(electron-like and hole-like parabolic bands touching at zero energy), exhibits an

integer QHE, as illustrated by the inset in Fig. 1-5. Thus the QHE signature provides

a tool to distinguish QHE bilayers from monolayers [4, 78].

In experiments it is often more convenient to use two-terminal conductance mea-

surements for sample characterization [89, 9], than to use the six-terminal measure-

ments that allow one to find the full conductivity tensor [90]. Although the two-

terminal conductance is quantized at the same values as azy, in general it depends

on both a,, and ua,, as well as on sample geometry; this often masks the quantiza-

tion. In Chapter 2 we shall study the shape dependence of the conductance in the

QHE regime, demonstrating that even when the quantization is completely washed

out, local extrema of conductance still provide a way to distinguish monolayers from

bilayers [7].

To understand the origin of the half-integer QHE, we study the LL spectrum in

graphene. LLs in an external magnetic field B can be analyzed using the following

gauge,

AX = -By, A, = 0. (1.14)
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Figure 1-5: Quantum Hall effect in graphene at B = 14 T. Transport coefficients, Hall
conductivity a,,y (red) and longitudinal resistivity P,, (green), are shown as a function
of the carrier density. The Hall conductivity exhibits half-integer quantization in
units of 4e2/h, resulting from the Dirac spectrum of excitations in graphene. Inset:
axy as a function of carrier density in bilayer graphene. The massive electron-hole
symmetric band structure of bilayer graphene gives rise to the quantization of the
Hall conductivity at integer values [3]. From Ref. [4]



Then the low-energy Hamiltonians (1.1) take the following form,

HKoK' [ (Y -Yo), E = hvo 2eB/hc, (1.15)
HK,K' = %72La ± - (y - yo) 0

where yo = -Ps. Here y is measured in the units of the magnetic length

LB = (hc/eB)1/2, (1.16)

and p. is measured in the units of h/lB. The spectrum of the Hamiltonian (1.15) is

given by the following equation [91],

E,= -±eov , o = vo /2eB/hc (1.17)

with the sign plus (minus) for positive (negative) n, respectively. The structure of

the LLs (1.17) allows one to understand the anomalous QHE. Since the levels (1.17)

are spin- and valley-degenerate (we shall discuss the role of Zeeman splitting below),

each of them gives rise to a step of 4e2/h in the quantized Hall conductivity. The

particle-hole symmetry e -+ -e of the spectrum (1.17), with the n = 0 level positioned

exactly at the neutrality point, suggests that the QHE plateaus must occur at filling

factors v = ±2(2n + 1) = ±2, ±6, ±10, ..., with conductivity given by Eq. (1.13), in

agreement with the experiment [4, 30].

There are two other ways to understand the half-integer QHE in graphene. The

most intuitive explanation is provided by the edge states picture [8, 11], which will

be the subject of Chapter 4. The half-integer QHE can also be understood in a more

fundamental way in terms of a quantum anomaly of the Dirac fermions [92, 91].

1.4.2 Spin- and valley-split QHE states

In this subsection we review experiments [5, 6] studying the splitting of LLs in

graphene in high magnetic fields, as well as theories [11, 81, 82, 83, 84, 93, 48, 6]

of the splitting mechanism.



Experimentally, it was found [5] that in magnetic fields above 15 T new quantized

plateaus appear. This is illustrated in Fig. 1-6 which shows evolution of the Hall

conductivity as the magnetic field is being increased from 9 T to 45 T. While at fields

B < 15 T the quantized values are given by the half-integer sequence, Eq. (1.13), at

higher fields new quantized plateaus at ay, = 0, ±1, ±4 e2/h develop. This signals

lifting of the valley and spin degeneracy of the n = 0 LL, and the lifting of valley

or spin degeneracy of n = ±1 LLs, schematically illustrated in the lower left inset in

Fig. 1-6.

The behaviors of the longitudinal and Hall resistivities are displayed in the upper

left inset of Fig. 1-6. The v = 0 state, despite exhibiting a clear plateau in u,,, has

a non-vanishing longitudinal resistivity p,,, while p,. smoothly changes sign at the

Dirac point, showing a fluctuating feature, but no distinct plateau. This is to be con-

trasted with the conventional QHE systems, where a plateau in the Hall conductivity

is accompanied by vanishing of the longitudinal resistivity and a plateau in the Hall

resistivity.

A more detailed study of transport coefficients near v = 0 was performed in

Ref. [6]. The authors of Ref. [6] found, in particular, a metallic temperature depen-

dence of p:z at the Dirac point v = 0 (illustrated in the lower left inset of Fig. 1-7),

and showed that p, (0) was a monotonically increasing function of the magnetic field

at B > 10 T. The behavior of the transport coefficients at low temperatures (T = 4 K)

and high fields (B = 30 T) presented in Ref. [6], is shown in Fig. 1-7. Near v = 0 it

qualitatively agrees with that found in Ref. [5], however, the plateaus at v = ±1, ±4,

observed in [5], were absent in the experiment [6].

More recently, the longitudinal resistivity of the v = 0 state was investigated at

even lower temperatures, T . 0.3 K [801. Interestingly, in this experiment it was

found that above some critical magnetic field B, - 10T the behavior of pxX(T) at

the Dirac point changes from metallic to insulating.

The longitudinal resistivity at the v = +1, ±4 plateaus vanishes, similarly to the

conventional QHE states. It exhibits activated temperature dependence [79], from

which gaps between split LLs can be extracted. The gaps at v = ±1 have a square



root magnetic field dependence [79], and by far exceed the bare Zeeman splitting,

thus indicating the interacting nature of the split QH states. Furthermore, sensitivity

of the gaps at v = +4 to the in-plane magnetic field suggests that they are spin split

rather than valley split.

Several scenarios which may be responsible for the observed LL splitting have

been proposed [11, 81, 82, 83, 84, 93, 48]. Authors of Refs. [11, 81, 83, 84] consid-

ered ferromagnetic LL splitting, similar to that discussed in Section 1.4 above. An

alternative mechanism of dynamically generated exciton-like gap was proposed in

Refs. [93, 94, 95, 96]. Finally, a possibility of the Peierls-like spontaneous sublattice-

symmetry breaking leading to LL splitting was considered in Ref. [82].

An important difference between the QHFM theories and dynamic mass genera-

tion as well as spontaneous Peierls-like sublattice instability is that QHFM predicts

lifting of both valley and spin degeneracy for all LLs, while the two other theories

predict that the valley degeneracy is only lifted for the n = 0 LL. So far only plateaus

corresponding to valley degeneracy lifting of the n = 0 LL have been observed, which

does not contradict any of the three theories. In QHFM theories the lifting of the val-

ley degeneracy is suppressed by disorder [81], with higher LLs being more sensitive to

the disorder amount [81]. Therefore it is highly desirable to explore whether samples

with increased mobility (for example, suspended graphene samples [27]) would exhibit

valley splitting of higher LLs. If found, such splitting would lend strong support to

the QHFM scenario.

The theories of the interaction-induced LL splitting can be classified into two

groups: those which predict a valley-polarized and spin-unpolarized v = 0 state [93,

82] and those where the v = 0 state is spin-polarized [11, 81, 83, 97]. The two

states are predicted to exhibit very different transport properties: while the valley-

polarized state is insulating, the spin-polarized state features counter-propagating

edge states [11, 98], which give rise to a conducting behavior. The properties of the

spin-polarized state will be considered in detail in Chapter 6 below. Experimental

observations [5, 6], indicating the metallic character of the v = 0 state, favor the

spin-polarized v = 0 state scenario.
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Figure 1-6: Evolution of the Hall conductivity x,, as a function of gate voltage Vg
with increasing magnetic field: 9 T (circle), 25 T (square), 30 T (diamond), 37 T (up
triangle), 42 T (down triangle), and 45 T (star). Right inset: detailed behavior of x,,
near the Dirac point for B = 9T (circle), 11.5 T (pentagon) and 17.5 T(hexagon).
Left upper inset: longitudinal and Hall resistivity measured at B = 25 T. Left lower
inset: a schematic drawing of the LL splitting in high magnetic fields. From Ref. [5].



.19 ANow

2 ,•

0 ®

-610

-10

-80 -40 0 40 80
V (V)

Figure 1-7: Longitudinal and Hall conductivities a,, and a,, (a) calculated from
Px, and Pxy measured at 4 K and B = 30 T (b). The upper inset shows one of the
measured devices. Temperature and magnetic field dependence of p,, at v = 0 are
shown in the insets below. Note the metallic temperature dependence of p,,. From
Ref. [6].



The authors of Ref. [80], on the other hand, claimed that the insulating tempera-

ture dependence of Pxx at the Dirac point observed in their experiment implies that

the v = 0 is valley-, rather than spin-polarized. However, very recently it was ar-

gued [99] that such behavior could also result from the localization of the edge states

in the spin-polarized v = 0 state. Thus at this point the character of the v = 0 state

remains a subject of debate, and further studies are needed to elucidate its nature.

1.4.3 Other directions

In this subsection we briefly discuss two other directions in graphene QHE research,

experiments on QHE in locally gated graphene devices [9, 10, 100], and theoretical

studies of correlated electron phases in the QHE regime [85, 87, 86].

Interesting phenomena in the QHE regime occur in locally gated graphene devices,

p-n and p-n-p junctions, where the carrier densities in the p and n parts of the device

can be varied independently. In particular, owing to the electron-hole symmetry

of the Dirac Hamiltonian, bipolar QH transport can be studied in these junctions.

Experimentally, it was found [9, 10] that two-terminal conductance of p-n and p-

n-p junctions in the bipolar regime exhibits a series of quantized plateaus, where,

in addition to the half-integer quantized values (1.13), new fractional and integer

quantized values appear. This quantization was explained [101, 10] in terms of the

QH edge states mixing at the p-n interfaces. The detailed theoretical study of the

QHE in the locally gated devices is presented below in Chapter 5.

Another interesting direction is the studies of the correlated electron phases in

graphene. Owing to graphene's peculiar LL wave functions, the effective form of the

electron-electron interaction in a LL is different [81, 84] from that in systems with

quadratic dispersion relation. This leads to a new behavior of fractional QH states

energies and gaps [87]. Furthermore, the approximate spin and valley symmetry of

the Coulomb interaction in graphene may result in new SU(4)-symmetric fractional

QH states [102, 86], not encountered in GaAs-based structures. Finally, a possibility

of bubble and stripe phases [20] in higher LLs in graphene has also been considered

in Ref. [85]. The fractional QHE, bubble and stripe phases in graphene have not been



observed experimentally yet, most likely due to disorder effects. However, there is

a chance that correlated electron states will be found in recently demonstrated [27)

suspended graphene samples, which have a much higher mobility than samples with

substrate studied previously.

1.5 Main results of this thesis

This section is an overview of main results presented in the thesis, along with a

discussion of their relation to the experimental and theoretical work described in the

previous section.

1.5.1 Conformal invariance, shape-dependent conductance and

graphene sample characterization

In Chapter 2, motivated by applications of two-terminal conductance measurements

for sample characterization [89], we study general properties of two-terminal conduc-

tance depending on the sample's shape. We employ conformal invariance to show

that the conduction problem in a sample of arbitrary shape can be reduced to that in

an equivalent rectangle. Thus, the effect of sample geometry on the conductance is

described by a single parameter, which is the aspect ratio of the equivalent rectangle.

We solve the conduction problem in a rectangular sample by a conformal map-

ping method [103]. This approach, supplemented by the semicircle law describing

the behavior of the QHE conductivity tensor [104], allows us to analyze the conduc-

tance properties in the quantum Hall regime as a function of carrier density and LL

broadening. We compare the conductance for monolayer and bilayer of graphene,

identifying features which help to distinguish monolayers from bilayers. Interestingly,

even for very asymmetric sample shapes with broadened LLs, where conductance

quantization is completely washed out, the position and size of the conductance local

extrema still allow us to determine the number of layers.

In Chapter 3, we apply our results for the conductance to graphene sample diag-



nostics. We first present experimentally measured conductance curves for samples of

various shapes, including rectangular samples of various aspect ratios and a strongly

asymmetric non-rectangular sample. The conductance maxima and minima positions

and their sizes allow us to identify bilayer and monolayer samples, even in the cases

where conductance quantization is poor or absent.

We fit the data for all studied samples, including the non-rectangular sample,

with the help of our model for rectangular samples with a suitably chosen aspect

ratio, finding a good qualitative agreement. For the non-rectangular sample, we

explicitly construct a conformal mapping transforming the sample into a rectangle.

The equivalent rectangle's aspect ratio agrees with that found phenomenologically

from the fit to the conductance curve. This confirms that all shapes are classified

by just one parameter. Interestingly, for several rectangular samples the aspect ratio

found from the conductance differs from the actual sample's geometrical aspect ratio.

We attribute this to the fact that only parts of the contacts may be active; another

possible explanation is sample inhomogeneity.

1.5.2 Edge states and the half-integer QHE

In Chapter 4, we develop the microscopic edge states picture of the half-integer QHE

in graphene. For that, we study the edge states spectrum for armchair and zigzag edge

orientations, solving the Dirac equation with proper boundary conditions for each.

For the zigzag edge, we analyze an interesting interplay between the zeroth LL and the

band of zero-energy surface states [66]. We find that, although the edge orientation

affects the details of the spectrum, the number of conducting edge channels is odd

independent of the edge type, which implies the universality of the half-integer QHE.

Furthermore, we propose that the properties of the edge states can be probed

by STM spectroscopy. In particular, owing to the momentum-space duality, the real

space map of the local density of states near the edge can be used to analyze the

dispersion of the edge states.



1.5.3 QHE in locally gated graphene devices

In Chapter 5, we explore transport in locally gated graphene devices, p-n and p-n-p

junctions in the QHE regime. The edge states in graphene at positive and negative

energies are of electron and hole types and because of that they propagate in opposite

directions. We argue that this enables the realization of interesting edge states trans-

port regimes in bipolar p-n and p-n-p junctions, where both electrons and holes are

present in different parts of the device. When QHE states are formed in the p and n

parts, the edge states in p and n regions propagate in the opposite directions, bringing

electrons from both regions to the p-n interface, where they can scatter and inter-

act, as in chaotic quantum dots [105]. We show that full electron mixing at the p-n

interfaces gives rise to the experimentally observed quantization of the two-terminal

conducatnce at fractional and integer values [9, 10] mentioned in Section 1.4. We

point out that mixing can be due to several mechanisms, including coupling of the

edge states to the bulk localized states, self-averaging, and electron thermalization.

All three mechanisms give rise to quantized shot noise Fano factors. However, the

quantized Fano factor values are different in the three cases, and therefore shot noise

can be used as a tool to study transport mechanisms at the p-n interfaces.

The agreement between our theory and experiment [10] is not complete: while

most quantized conductance plateaus predicted by our model for p-n-p junctions are

indeed observed experimentally [10], others are either absent or their values deviate

significantly from the theoretical ones. In an attempt to explain this observation,

we study the sensitivity of the conductance quantization to the edge states backscat-

tering in the locally gated n region. In the experiment, the backscattering could

result from the density inhomogeneities induced by the local gate. We employ a bulk

conductivity approach, modeling the p-n-p junction by a conductor with a spatially

non-uniform conductivity tensor, where the edge state backscattering is taken into

account by introducing a non-zero longitudinal conductivity component. Solving this

model exactly by a conformal mapping method [103], we find that the sensitivity of

quantization to backscattering strongly depends on the central region's geometry. We



determine which plateaus are most stable depending on the central region's aspect ra-

tio. Our findings allow us to understand the discrepancy between the experiment [101

and the simple edge states theory without backscattering.

1.5.4 Spin and charge transport at the graphene edge

In Chapter 6 we analyze spin and charge transport phenomena which occur in the

spin-polarized ferromagnetic QHE state at the Dirac point. Based on the results

obtained in Chapter 4, we argue that the spin-polarized QH state at the Dirac point

exhibits unusual counter-propagating edge states, which carry opposite spins. We

show that these spin-filtered edge states give rise to a quantized spin Hall effect [11],

and propose that they can be used to explore interesting spin transport phenomena,

including spin filtering and the detection of spin polarized currents.

Despite the counter-circulating character of the edge states at the Dirac point,

their backscattering is strongly suppressed, because in order to backscatter electrons

at the edge have to flip their spin. We estimate the mean free path at the edge,

considering scattering due to spin-orbit and potential disorder, and find the mean

free path to be comparable to the typical samples size. Based on this result, we

argue that the spin-filtered edge states dominate the charge transport properties of

the spin-polarized v = 0 state, in particular, giving rise to the metallic behavior of

conductivity.

We formulate and solve a model [6, 64], where edge state transport near v = 0 is

accompanied by shunting of the opposite edges by a weakly conducting bulk. This

allows us to obtain density dependence of transport coefficients, which is strikingly

similar to that observed experimentally (a plateau in ory, a broadened peak in p,,

and p,y smoothly changing sign; see discussion in Section 1.4). Agreement of our

model with the experiment lends strong support to the theory of a spin-polarized

ferromagnetic state at the Dirac point.



1.5.5 Disorder-induced anisotropy in valley QH ferromagnet

Finally, in Chapter 7 we study ordering of the valley degree of freedom in the graphene

QH ferromagnet. In the leading order the Coulomb energy is isotropic with respect

to rotations in the valley space, which gives rise to rotationally symmetric QHE fer-

romagnetic states. To understand the ordering of the valley QHFM, we first study

anisotropic terms in the Hamiltonian resulting from the lattice effects. They, however,

turn out to be negligible [48]. Thus we look for other possible sources of anisotropy

in the valley space, finding that coupling to random strain-induced vector poten-

tial (see Section 1.2 above) may introduce a rather large easy-plane anisotropy [48].

The XY-ordered valley ferromagnetic state features a Berezinskii-Kosterlitz-Thouless

(BKT) phase tranistion at low, but experimentally accessible temperatures, as well

as fractionally charged quantum vortices [76] (merons) below the BKT transition

temperature.





Chapter 2

Conformal Invariance and

Shape-Dependent Conductance of

Graphene Samples

2.1 Abstract

For a sample of an arbitrary shape, the dependence of its conductance on the lon-

gitudinal and Hall conductivity is identical to that of a rectangle. We use analytic

results for a conducting rectangle, combined with the semicircle model for transport

coefficients, to study properties of the monolayer and bilayer graphene. A conduc-

tance plateau centered at the neutrality point, predicted for square geometry, is in

agreement with recent experiments. For rectangular geometry, the conductance ex-

hibits maxima at the densities of compressible quantum Hall states for wide samples,

and minima for narrow samples. The positions and relative sizes of these features

are different in the monolayer and bilayer cases, indicating that the conductance can

be used as a tool for sample diagnostic. The results presented in this Chapter are

published in Ref. [7].



2.2 Introduction

One of the challenges in graphene experiments is finding reliable methods for sample

characterization, allowing to distinguish graphene monolayer from graphene bilayer

or multilayer systems. Quite often, the means for that are provided by Raman spec-

troscopy [46]. However, in a number of experiments it is more convenient to perform

sample characterization using transport measurements [90].

The simplest transport characteristic of a graphene device is its two-terminal con-

ductance. This quantity exhibits plateau-like structure in the QHE regime, occurring

at different electron densities in the monolayer and bilayer systems, which in principle

makes it suitable for sample diagnostic. However, the observed conductance plateaus

are often distorted, which is not surprising, because the two-terminal conductance,

unlike the resistivity obtained from a four-probe measurement, in general depends on

the sample aspect ratio and other geometric characteristics. This dependence must be

taken into account, in as much as possible, in interpreting the measurement results.

The effect of sample shape on the conductance can be illustrated by the well

known formula for a conducting square with the longitudinal and Hall conductivities

azz and x,, and ideal contacts on opposite sides [106, 107]:

GL=W = a + , (2.1)

which follows from a duality relation for 2d transport (see [107, 108] and discussion

below). The result (2.1) gives the macroscopic conductance in terms of microscopic

transport coefficients. As we shall see, the dependence on axx and ao, in Eq.(2.1)

is such that it can make the conductance GL=W density-independent in the QHE

regime near the graphene charge neutrality point (CNP), where both auz and ao,

have strong density dependence. Thus the effect of sample geometry on conductance

may be nonintuitive and should be accounted for carefully.

Is it possible to extend the result (2.1), valid for a perfect square, to other sam-

ple geometries? The next simplest shape to a square is a rectangle, for which the

two-terminal conductance was found in Ref.[106] using conformal mappings of the



Schwartz-Christoffel form. For all other shapes, luckily, the conduction problem can

be reduced, via a conformal mapping, to that of a rectangle (see below). The aspect

ratio of such an equivalent rectangle, which depends on the size of the contacts and

on their separation, can serve as a parameter that classifies all conduction problems.

In Ref.[106] a closed-form expression for the conductance of a rectangle was ob-

tained via an integral representation. However, as discussed below, the integrals of

Ref.[106] are convergent very slowly, especially in the interesting limit of large Hall

angles. Because of that, for our purpose it will be more convenient to employ the ap-

proach of Rendell and Girvin [103], which describes spatial distribution of the electric

field and current in terms of a suitably chosen analytic function, allowing for direct

numerical evaluation of the conductance.

Below we use the method of Ref. [103] combined with the effective medium ap-

proach of Dykhne and Ruzin [104] that yields a semicircle relation between a,, and

aY,. We analyze conductance as a function of carrier density, focusing on the features

that distinguish between transport in the monolayer and bilayer graphene. We con-

clude that the dependence of conductance on the sample shape, which may be quite

strong, does not mask the difference between the monolayer and bilayer systems even

in the absence of clear conductance plateaus.

For the effective medium approach [104] to be applicable, the sample size must

be large compared to the typical charge inhomogeneity length scale ý, otherwise

strong mesoscopic sample-to-sample fluctuations are to be expected. In most of the

paper we focus on the case of large samples, which can be described by a spatially

uniform conductivity tensor obeying the semicircle relation. We shall briefly discuss

the situation in mesoscopic samples of size comparable to ý at the end of the paper.

2.3 Duality relation for conductance

Here we shall focus on the rectangular geometry illustrated in Fig.2-1 inset (later, in

Section , it will be shown that for any conductor shape the problem can be mapped on

that of an equivalent rectangle). To describe electric transport, we employ the bulk



conduction approach, in which the sample bulk is characterized by the longitudinal

and Hall conductivities ua, aoy. The transport equation is j = &E where & is a 2 x 2

conductivity tensor, with the current and electric field obeying

V .j = 0, Vx E = O (2.2)

These equations must be solved with the boundary conditions j± = 0 at x = 0, W

(current continuity) and Ell = 0 at y = ±L/2 (ideal ohmic contacts).

It is instructive to apply duality transformation [108, 107] to this problem, rotating

current j and electric field E by 900 and interchanging them: j' = Rr/2E, E' = Rx/2j.

Upon such a transformation the transport equations (2.2), as well as the boundary

conditions, preserve their form, whereby the conductivity tensor is replaced by a&' =

&-1 and the dimensions of the rotated rectangle interchange: L' = W, W' = L.

Since resistance for the transformed problem R = V'/I' = 1/G' is identical to the

conductance of the initial problem G = I/V, where V is source/drain voltage and I

is net current, we obtain a duality relation

G(L, W, &) = G-I(L', W', W ') (2.3)

We note that, since &' = &-1 is the resistivity tensor, the quantity G(L', W', &')

has dimension of resistivity, and so the right hand side of (2.3) has dimension of

conductance. To simplify the relation (2.3), we take into account that G scales with

&, i.e. that G(L, W, r7&) = 71G(L, W, &), and that it is invariant upon sign reversal

of uy. Writing c4' = a ý+/(ao2 + a ), a' = u- y/(.2 + or,), and using the scaling

property of G, we obtain a relation

G(L, W, &) = (4a2 + ax)/G(W, L, &), (2.4)

which connects the rectangles L x W and W x L having the same bulk transport

coefficients. Setting L = W, we obtain the conductance of a square, Eq.(2.1).
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Figure 2-1: Longitudinal and Hall conductivity for (a) graphene monolayer and (b)
graphene bilayer, obtained from the semicircle model, Eqs.(2.9),(2.7),(2.8), for two
values of the Landau level width parameter A = 1.7 (solid lines), A = 0.5 (dashed
lines). Inset: Schematic of a conducting sample of dimensions L and W, of a rectan-
gular shape, with source and drain at opposite sides.

2.4 The semicircle model

The effective medium approach [104] provides a convenient framework for understand-

ing the density dependence of a., and a,, in QHE systems. It predicts a semicircle

relation between a,, and uay, derived from a two-phase model, in which the system

at the QHE transition is treated as a mixture of incompressible puddles with local

Hall conductivities a',, a",, given by the quantized values at the neighboring QHE

plateaus.

The semicircle relation is a statement about properties of the macroscopic con-

ductivity tensor on the length scales much greater than the size of individual puddles.

Although the validity of this relation, strictly speaking, is limited to the regime domi-

nated by large-scale fluctuations of electron density, it is empirically known to provide

a good description of the integer QHE plateau transitions observed in various semi-

conducting systems [109]. Recently, the semicircle relation was employed to describe

transport coefficients in graphene [6, 64, 110].

We stress that, while the semicircle model is realistic, and also quite convenient

to use, its specifics are almost certainly not essential for our conclusions. We believe

that slight departure in behavior of transport coefficients from the semicircle model



will have little effect on the properties of conductance.

Prior to turning to the semicircle model, we recall that the conductivity aU, in

graphene monolayer exhibits steps of size 4e 2/h between adjacent integer quantum

Hall plateaus, where the factor of four describes combined spin and valley degeneracy

of Landau levels. The incompressible densities corresponding to the QHE plateaus in

graphene monolayer are [4, 30]

un =4(n + 1/2)IBI|/o, n = 0, +l, +2..., (2.5)

where IBI/%o is electron density for a single Landau level. In graphene bilayer QHE,

due to accidental degeneracy of the Landau level positioned at the neutrality point

V = 0, there is an 8e2 /h Hall conductance step between the plateaus with x,, =

+4e 2/h, whereas other conductance steps are of normal 4e2 /h size. Accordingly, in

the bilayer the incompressible QHE densities are [78]

v = 4nIBI/%o, n = ±1, +2... (2.6)

In both cases (2.5) and (2.6) the density values vn are arranged symmetrically around

the neutrality point. Hall conductivity on the plateaus takes the values a(Uin

vne 2/h, where vn are densities (2.5) and (2.6).

In the semicircle model [104], the contributions of each Landau level to the longi-

tudinal and Hall conductivities 6nax (v), 6nuy(v) are related by the semicircle law:

) + (0)) (0) 0 (2.7)

where ax, and a.,, are the quantized Hall conductivities on adjacent plateaus. Here

n and n' are neighboring integers in the sequence ...- 2, -1, 0, 1, 2... for the monolayer,

and ... - 2, -1, 1, 2... for the bilayer: n' = n + 1 except the double-degenerate v = 0

Landau level for the bilayer, in which case n = -1, n' = 1.

The longitudinal conductivity 6~na(v) exhibits a peak centered at the Landau



level. We model it by a gaussian

I= C Xe A (V"2"'))2 (2.8)
2

where the parameter A describes broadening of the Landau level (large values of A

correspond to a narrow Landau level).

In the semicircular model, the peak value of 6,,ax must equal to ,(a2 X, - ayn).

This is ensured by the prefactor C, value in Eq.(2.8) chosen to coincide with the nth

Landau level degeneracy. For graphene monolayer we set C, = 4 (spin and valley

degeneracy) for all n, while for the bilayer C2 = 8 for n = -1 (spin, valley and

accidental degeneracy) and C, = 4 for all other n's.

The total conductivity tensor is given by the sum of the contributions of all Landau

levels,

Z•(V)= 5na=JUx(V), aU,(v) = E,nUxy(V). (2.9)
n n

For simplicity, here we choose the same value of the parameter A for all Landau levels.

The resulting conductivity density dependence is illustrated in Fig.2-la,b.

We point out that an interesting prediction can be drawn, specific to the graphene

zeroth Landau level (v = 0), by combining the semicircle model (2.7) with Eq.(2.1).

In a square sample with a negligible overlap between Landau levels, the two-terminal

conductance (2.1) would be completely density-independent across the zeroth Landau

level, because in this case Va• + a2 would equal 2 -• for the monolayer and 4'- forh h

the bilayer. This happens because the density dependence of transport coefficients,

the peak in uxx and the step in axy, centered at v = 0, cancel each other in the

expression (2.1). For weakly overlapping Landau levels, the contributions of the

levels adjacent to v = 0 would lead to slight deviations from a flat plateau.

The conductance measured in graphene indeed often exhibits a plateau across the

entire v = 0 region. Two examples of such behavior in recent literature are Ref.[89],

Fig. id, and Ref.[9], Fig. 3B. In both cases, the measured conductance is nearly flat in a

wide density interval centered at v = 0, with a small peak in the middle. Interestingly,

the sample geometry in both cases was quite different from a square. In Ref.[89] the
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Figure 2-2: Two-terminal conductance (2.15) of a rectangular graphene sample: (a)
monolayer, (b) bilayer, for aspect ratios L/W = 0.25, 0.5, 1, 2, 4 (top to bottom) with
the Landau level width parameter A = 1.7 (corresponding to solid lines in Fig.2-1).
Arrows mark the incompressible densities (2.5), (2.6). Note the plateau at v = 0
for the square case, L = W (red curve), which is in agreement with the behavior
predicted by Eq.(2.1).

AFM image indicated that the sample was approximately rectangular with contacts

at opposite sides, similar to the schematic in Fig.2-1 inset. However, its width was

quite large, W % 5L, in which case a fairly large peak at v = 0 is to be expected (see

below). To understand the discrepancy, it would be useful to known how spatially

uniform the conduction was, in particular near contacts (poor contact along part of

the sample edge could reduce the effective sample width, bringing W closer to L).

As for the device in Ref.[9], its contact geometry was quite far from rectangular, yet

giving rise to a fairly good plateau around v = 0.

Such a behavior can be understood in the context of universality of the conduc-

tance problem that results from its conformal invariance. As we discuss in Appendix,

for an arbitrary geometry of a conductor with two contacts of arbitrary sizes the con-

ductance is identical to that of an equivalent rectangle. In other words, all possible

conduction problems are classified by the values of a single parameter, the aspect

ratio L/W of an equivalent rectangle. Then, as long as L/W F 1, the conductance

would behave in the same way as for a square shape, even if the actual geometry is

very different from a square.



.,'
4)

0
4)

U

04)C.
C.)

0
U

-10 -6 -2 2 6 10
Electron density v (B/D 0 ) Electron density v (B/l o )

Figure 2-3: Same as in Fig.2-2 for broader Landau levels, described by (2.8) with
A = 0.5 (dashed lines in Fig.2-1); the sample aspect ratios are L/W = 0.25, 0.5, 1, 2, 4
(top to bottom). Note that the qualitative features, such as the positions of the
conductance minima at the QHE plateau centers for L < W (maxima for L > W), as
well as the conductance values at these densities, are similar to those seen in Fig.2-2
despite increased Landau level broadening. Note also the relative size of the v = 0
peak in the monolayer and bilayer cases, compared to the size of neighboring peaks at
other compressible densities, which is also insensitive to the Landau level broadening.

2.5 Conformal mapping approach

Now we proceed to describe the distribution of current and electric field in a rectan-

gular sample with an arbitrary aspect ratio LIW and spatially uniform conductivities

aX, ay (see Fig.2-1 inset). This problem, with zero boundary condition for normal

current component at the sample boundary and for tangential field component at

the sample/contact interface, has been treated in Refs. [106, 103] using conformal

mapping technique.

In Ref. [106] the Schwartz-Christoffel mapping was employed, leading to the fol-

lowing integral representation for the conductance:

G = V/ +2Y I(1 -1)
G= + 7x' I(1/k, 1)' (2.10)

where

I(U, V U d (2.11)
Here ± = 1/2 ± ( - 1)(/k + ) is the Hall ang)( le/k - The parameter k

Here 5b- = 1/2 - 0/Tr, and 0 = tan-l(a,,/a,,) is the Hall angle. The parameter k



above is the elliptic modulus, 0 < k < 1, related to the sample aspect ratio via

L K(k) k' = k 2 ,  (2.12)
W 2K(k')'

where K(k) is the complete elliptic integral of the first kind.

In principle, Eqs.(2.10),(2.11),(2.12) give a complete solution of our problem.

However, the integrals in Eq.(2.10) contain power-law singularities with the exponents

6• = 1/2 + 0/-r that can approach unity for 0 +1ir/2. This makes the integrals in

Eq.(2.11) difficult to evaluate numerically, especially for large Hall angles, when the

singularities are the strongest and the integrals are converging fairly slowly.

Instead, we use a different approach, developed in Ref. [103], which provides an

expression of the electric field and current in the sample in terms of the exponentials

of infinite but rapidly convergent sums. This method is more convenient for our

purposes, because it allows to choose the integration contour for numerical evaluation

of the conductance so that it bypasses the singularities.

In Ref. [103], the electric field components E, and Ey at a point z = x + iy are

obtained as the real and imaginary parts of a suitable analytic function. The latter

function is found to be of the form

E, + iEx = -ef(z), (2.13)

where
f( - 40 sinh(niriz/W) (2.14)

n(z) = cosh(nwrL/2W)(
n>O (odd)

Current distribution can be obtained by combining (2.13) with the relation j. + ijy =

(axx + iuo,)(Ex + iE,).

Once the current distribution is found, it can be used to obtain the two-terminal

conductance

G = I/V, (2.15)

where I is the total current and V is the source-drain bias voltage. To evaluate



the net current I by integrating current density, one has to choose a cross-section

through the sample that does not pass through its corners, where the function f(z)

has singularities. It is particularly convenient to perform this integration along a

straight line that cuts through the middle of the rectangle at y = 0 (along the x-axis

in Fig.2-1 inset):

I = jy(x, 0)dx. (2.16)

Since jy = aEy + auyEx, the current is given by

I= 1 u~(Ey(x, 0) + tanOEx(x,0))dx. (2.17)

For similar reasons, we calculate the voltage drop between the upper and lower con-

tacts (y = +L/2) as an integral of the electric field along a straight line connecting

the points (W/2, -L/2) and (W/2, L/2) of the contacts:

_L/2

Evaluating the integrals (2.17) and (2.18) numerically, we obtain the conductance

(2.15) as a function of transport coefficients, which defines its dependence on electron

density. The results for different aspect ratios L/W for the monolayer and the bilayer

case are displayed in Fig.2-2 and Fig.2-3 for two different values of the Landau level

width parameters in (2.8), A = 1.7, 0.5.

As evident from Fig.2-2, the conductance behavior depends strongly on the sample

aspect ratio L/W. For a square sample, L = W, the conductance is a monotonic

function of density at positive and negative v, rising in steps associated with QHE

plateaus. In this case, the behavior of G is found to be completely flat near v = 0 in

agreement with the above discussion based on Eq.(2.1).

For L # W, the conductance turns into a nonmonotonic function of density,

with the QHE plateaus being less pronounced than for L = W. For L < W the

conductance has minima near QHE plateau centers, Eq.(2.5) for the monolayer, and

Eq.(2.6) for the bilayer case (marked by arrows in Figs.2-2,2-3), while for L > W
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Figure 2-4: Examples of possible p-type and n-type puddle configurations near
graphene charge neutrality point for mesoscopic samples with at least one of the
dimensions comparable to the typical puddle size ý. In (a) and (b) two possible
configurations are shown for a square sample with L, W e ý. The corresponding
conductance values, G = 4e2/h for (a) and G = e2/h for (b), are different from the
value G* = 2e 2/h predicted by the effective medium (semicircle) model. Puddle ar-
rangement in a short and wide sample (L < ( < W) and in a narrow and long sample
(W < ( < L) is illustrated in (c) and (d).

the conductance has maxima at these densities. Overall, the conductance behavior

for L < W is "inverted" compared to that for L > W, as expected from the duality

relation (2.4) which implies

GL<W > GL=W > GL>W

for all v. Recently, the conductance as a function of carrier density was studied for

samples of several aspect ratios [111], with the results being in qualitative agreement

with ours. We shall discuss the data and compare it to out theory in the next Chapter.

With these results at hand we are now in position to ask which differences be-

tween the monolayer and bilayer systems are robust with respect to Landau levels'

broadening and variation in sample geometry. First, we note that the centers of the

QHE plateaus (arrows in Figs.2-2,2-3) remain close to the positions of the minima

in G for L < W, and its maxima for L > W. The corresponding incompressible

values of the density, Eqs.(2.5),(2.6), which are marked by arrows in Figs.2-2, 2-3, are

n \p\n yJ )n



equally spaced in the monolayer case, but are not equally spaced in the bilayer case

due to the eight-fold Landau level degeneracy at v = 0. It can be seen by comparing

Fig.2-2 and Fig.2-3 that this difference between the monolayer and bilayer systems is

not masked by Landau levels' broadening or by the aspect ratio variation.

Next, the conductance values at the minima for L < W and at the maxima for

L > W remain close to the associated QHE values G 0 vue 2/h, which are different

in the monolayer and bilayer cases. This difference is clear in Figs.2-2,2-3 even for

large aspect ratios and broadened Landau levels. In practice, however, these values

may change as a result of added contact resistance. If this is the case, the relative

positions of the plateaus in density, inferred from the arrangement of maxima and

minima of G, are more robust than the conductance values at these densities.

Finally, we note the difference in the size of the peak at v = 0 as compared to the

sizes of neighboring peaks at other compressible densities, found for the monolayer

and bilayer at L < W. (The same is true for the dip at v = 0 for L > W.) In

the monolayer case, the size of the v = 0 peak/dip is comparable to the sizes of

neighboring peaks/dips, whereas in the bilayer case the v = 0 peak/dip is almost two

times larger than its neighbors. This difference reflects the higher density of states in

the v = 0 Landau level of a bilayer.

It is also interesting to note that the heights of all peaks and dips in G are

completely independent of the Landau level broadening, as can be seen by comparing

the curves in Fig.2-2 and Fig.2-3. This behavior is specific to the semicircle model, in

which the peak values of axx and corresponding values of ax, are universal. Indeed,

as evident from Fig.2-1, peaks of a,, line up with steps in ay, and the values of ac, in

the middle of each step are independent of the Landau level broadening. As a result,

although broadened Landau levels change the overall behavior of the conductance G,

the peak values remain intact.



2.6 Conductance fluctuations in small samples

So far we have described the system by a spatially uniform conductivity, assuming this

effective medium model to be valid at all filling factors. This assumption, adequate

for large samples, breaks down for smaller samples when the sample dimensions L or

W become comparable to the typical charge inhomogeneity length scale (. Conduc-

tance of such small samples at QHE transitions can exhibit strong sample-to-sample

fluctuations and significant deviations from the prediction of the semicircle model.

The effect of charge inhomogeneity is expected to be especially strong near the

charge-neutrality point (CNP), where the density of free carriers is low and screening

of the disorder potential is poor, for both the monolayer and bilayer graphene. For

simplicity, below we shall focus on the monolayer graphene in the vicinity of the CNP,

v P 0. To qualitatively understand the effect of charge inhomogeneities, we employ

the two-phase model [104] treating the sample as a mixture of incompressible puddles

of types n and p of typical size (. The filling factors in the puddles are v = +2,
corresponding to the QHE plateaus adjacent to CNP.

To illustrate the effect of strong fluctuations near the CNP, we first inspect the case

of a small square sample, with both dimensions L and W comparable to (. Suppose

that the carriers in such a sample form just two puddles, of type p and n (v = +2).

There are two topologically distinct puddle configurations giving the net conductance

different from the value G* = 2e 2/h expected from the semicircle relation: (i) the p-n

boundary connecting the source and the drain (see Fig.2-4a) (ii) the p-n boundary

connecting the opposite free edges of the sample (see Fig.2-4b).

In the case (i) the p and n regions are connected in parallel, and thus the net

conductance is the sum of the conductances Go = 2e 2/h, giving G = 2G* = 4e2 /h.

In the case (ii) the p and n regions are connected in series, with the net conductance

equal G = 1/2G* = e2/h (see Ref. [101]). Thus for mesoscopic square samples with

L, W - ( the conductance strongly depends on the puddle configuration and can

exhibit either a peak or a dip at v = 0, whereas the semicircle model predicts a

plateau.



Now let us consider a sample which is short but wide: L 5 ý < W (see Fig.2-

4c). Such a sample consists of about N -, W/1 alternating p and n regions of

width - 6. The total conductance is given by the sum of the conductances of the

individual regions, the conductance of each region being Go = 2e2 /h. This yields the

net conductance of G - NGo = (2W/6)-. This is about L/1 smaller than the value

G* = (2W/L) • predicted by the semicircle relation for the effective medium model.

Similarly, for the case of a narrow but long sample, W $< < L (see Fig.2-

4d) the conductance is given by the series conductance of N , W/6 puddles: G ~

(26/L) . This is 6/W times larger than than the prediction of the effective medium

model. These estimates show that near CNP the semicircle model overestimates

the conductance of very short samples, and underestimates the conductance of very

narrow samples, when at least one of the sample dimensions is comparable to the

puddle size.

2.7 Rectangle as the mother of all shapes; confor-

mal invariance and universality

There is a profound relation between the two-terminal conductance and conformal

invariance of the 2d transport problem. It arises because for 2d conductors of arbi-

trary shapes with spatially uniform a,, and a,y the conductance is invariant under

conformal transformations, and because all single-connected domains in the plane

can be conformally mapped to one another. As a result, a conducting domain of any

shape has the same conductance as a particular domain of some simple shape with an

appropriate arrangement of contacts. The simple shape can be chosen in a number

of ways, in particular it can be chosen to be a rectangle. We show in this section that

for a conductor of any shape with any configuration of two contacts the conductance

is equal to that of a rectangle with some aspect ratio L/W.

Because the correspondence between conductors of arbitrary shapes and equivalent

rectangles is purely geometric (it is defined by a conformal mapping), the aspect ratio



(a) (b) (c)

3 3 4 3
4

2 4 2

1

Figure 2-5: Conformal invariance illustrated by several conducting domains with
contacts. If two domains can be conformally mapped on each other so that the
contact regions are mapped on the corresponding contact regions, their conductances
are the same. The Riemann mapping theorem guarantees existence of a mapping
between an arbitrary domain (a) and a unit disk (b) such that three points on the
boundary of (a), marked 1, 2 and 3, are mapped on any three points (1, 2 and 3)
on the circle (b). The position of the fourth point, which is not specified, defines
a one-parameter family of possible conduction problems. All such problems can be
parameterized by rectangles (c) with different aspect ratios.

L/W of an equivalent rectangle depends on the sample shape but does not depend on

the values of transport coefficients axx and ax,. As a result, one can use the rectangle

problem with a fixed aspect ratio to describe conductance as a function of the carrier

density, via the au and ax, density dependence.

To formulate the constraints due to conformal invariance, we recall that conformal

mappings in 2d are realized as analytic functions of the complex variable z = x + iy.

Thus we consider mappings between two complex planes z and w defined by analytic

functions w = f(z), which map the sample domain (hereafter denoted D) in the plane

z onto a domain D' in the plane w.

The relations (2.2) as well as the boundary conditions Ell = 0 on the contacts

and jI = 0 on the open boundary are invariant under such conformal mappings. The

easiest way to verify this is to note that the current continuity condition V -j = 0

can be solved by j = V x (zcp(x, y)), where z is the unit vector normal to the plane.

Then the relation V x E = 0 combined with jx + ijy = (axx + iay,)(Ex + iEy) means

that the function W is harmonic, i.e. it satisfies the Laplace's equation

(a2 + ,2 ) c(x, y) = 0. (2.19)



Because a harmonic function remains harmonic under a conformal mapping, and

because the angles between the gradient VV(z) and the boundary of D are the same as

the angles between V(p(w) and the boundary of D' at corresponding points, Eqs.(2.2)

as well the relations Ell = 0 and j± = 0 are indeed conformally invariant.

This simple mathematical fact can serve as a platform for the following interesting

observation. Suppose an analytic function w = f(z) maps the conducting domain

D in the plane z to a domain D' in the plane w so that a pair of contacts to V is

mapped on a pair of contacts to D'. More precisely, let four points 1, 2, 3, 4 on the

boundary of 'D be mapped onto four points 1', 2', 3' , 4' on the boundary of 7D'. Let the

arcs 1 - 2, 3 - 4 and 1' - 2', 3' - 4' be ohmic contacts for the problems in the z and w

planes, respectively (see Fig.2-5). Then the two-terminal conductance of D is exactly

the same as that of 7D', i.e the conductance is invariant under all conformal mappings

that map to one another the corresponding conducting domains and contacts.

On the other hand, as is well known from the theory of complex variables (the

Riemann mapping theorem), any two single-connected domains D and D' can be

mapped onto each other. This mapping can be fixed so that any three points on the

boundary of D are mapped to any three points on the boundary of 9D' (under these

conditions the mapping is unique). This allows to reduce the conductance problem

of an arbitrary domain D to that of some simple domain, e.g. a circular disk Iw I 1.

Thus the only reason the conductors of different shapes do not all have the same

conductance is the additional freedom in choosing the contacts, defined by the points

1, 2, 3, 4. Furthermore, because any conduction problem is equivalent, via a conformal

mapping, to a disk with contacts defined by four points on the boundary zl, ..., z4 =

eiel, ..., eio4, and because three of those points can be fixed by the Riemann mapping

theorem, the only freedom left is in the position of the fourth point. Therefore,

all conductance problems form a one-parameter family. For the points zl, ..., z4 this

parameter can be expressed, e.g., as the so-called cross ratio

(Z1 - z4)(z3 -2)
1 234 = - Z2)(Z3 - Z2) (2.20)

(z1 - z2) (Z3 - Z4)
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Figure 2-6: Complex halfplane and conduction problem in it, which can be mapped
on that in a rectangle using the Schwartz-Christoffel mapping, Eq.(2.23). The aspect
ratio L/W of the equivalent rectangle depends on the relative size of the contacts,
shown in blue, and the distance between them. The end points of the contacts are
61,2 = T1, 3,4 = +l/k.

which takes real values for any four points that lie on a circle. Applied to the problem

of a rectangle, this procedure would give a one-to-one relation between the parameters

L/W and A 1234, proving that indeed any conductance problem is isomorphic to that

of a rectangle.

To obtain such a relation between L/W and A1234, let us consider a complex

halfplane Im ( > 0 with four points on the real axis

,2 = T1, 3,4 = +l/k, (2.21)

with the parameter 0 < k < 1 (see Fig.2-6). Under a fractional-linear mapping

that maps the unit disk to the halfplane, the points zl, ..., z4 can be mapped onto

corresponding points (2.21) if and only if the cross ratios are the same:

A 1234 = (1 - k2)/4k (2.22)

(the cross ratio is an invariant of fractional linear mappings). On the other hand,

using the Schwartz-Christoffel formula, the halfplane Im > 0 can be mapped on a



rectangular domain by the function

z = F((, k) =_ , (2.23)
o V(1 - (,2) (1 - k2V2)

where F(ý, k) is the elliptic integral of the first kind. This function maps (1,2 = T1

to zl,2 = TK(k), where

K(k) = (2.24)Jo (1 - 62)(1 -

is the complete elliptic integral of the first kind. The points 63,4 = l/k are mapped

to z3,4 = +K(k) + iK(k'), where k' = v 1i -7k2. Thus the sides of the rectangle have

lengths W = 2K(k) and L = K(k'), which gives the relation between LIW and k of

the form (2.12). Combining this with (2.22), we can relate L/W to the cross ratio

A1234-

In the halfplane of Fig.2-6 the distribution of the electric field and current can

be found by noting that the function E(6) = E, + iE, is analytic at Im6 > 0

and at the boundary its argument takes fixed values between the points 61,...,64:

arg E-1<5<1 = 0, arg El<(<l/k = I + 9, arg E-1/k<(<- 1 = -2 + 0, arg Ejj>lk = -7 r

These requirements are sufficient to reconstruct the function:

E(ý) = (2.25)
(1 - ()6+ (1 + ()6-(1 - kg)6-(1 + kC)6+'

where 6± = _+ with 0 = tan-1 a./a. the Hall angle, as in (2.11), and the unknown

prefactor A depends on the source-drain voltage. Current distribution is then found

as J(() = jy + ij = (axx + iaoy)E((). The total current and voltage can be expressed

by integrating J(ý) over the contour CI, and E(ý) over the contour Cv (see Fig.2-6).

The ratio of these integrals gives the result (2.10).

To summarize our discussion, because the conductor of an arbitrary shape can be

conformally mapped on a rectangle which has the same conductance, the rectangle

problem is "universal." For a sample of any shape with a pair of contacts of arbi-

trary size and form, an equivalent rectangle can be found such that it has the same



conductance. Crucially, the aspect ratio L/W of this rectangle is independent of the

values of transport coefficients, which means that its conductance will have the same

density dependence as that of the physical sample.

We note that, although the results of this section apply to conductors of com-

pletely arbitrary shapes, and in that sense they are far reaching, there are several

limitations. First, we have assumed that the electron system is spatially uniform and

homogeneous, i.e. the transport coefficients uxx and axy are position-independent.

Our second assumption was that transport is fully described by the 2d current-field

relation j = &E, where & is the conductivity tensor. In particular, the above model

does not allow for the edge current states, which could, in principle, alter the shape

dependence of the conductance. Still, since the bulk transport model agrees with the

edge transport model in the limit of a large Hall angle, it can probably provide a

good guidance even when the quantum Hall effect is fully developed.

2.8 Conclusions

The above results for the two-terminal conductance of rectangular samples, and in

particular, the conductance dependence on the sample aspect ratio, can serve as

a benchmark for understanding properties of graphene samples. We found that G

exhibits peaks (dips) at the compressible densities for L < W (L > W), which

completely disappear at L = W. We could identify several specific features that

may help to distinguish between transport in graphene monolayer and bilayer. Those

include positions of the incompressible densities, inferred from minima (maxima)

in G at L < W (L > W), the values of G at these densities, and the relative

size of the central peak (dip) in G as compared to the neighboring peaks. These

features, which are shown to be insensitive to the sample aspect ratio and to Landau

levels' broadening within our model, can be used for sample diagnostic in transport

measurements.



Chapter 3

Two-Terminal Conductance of

Graphene Devices in the Quantum

Hall Regime

3.1 Abstract

We report measurements of the two-terminal conductance of single-layer and bilayer

graphene in the quantum Hall regime. Conductance values at the Hall plateaus and

at charge neutrality, as well as the positions of the local conductance extrema, are

found to be layer-number and device-geometry dependent. Qualitative agreement is

found with the theory of two-terminal graphene conductance presented in the previous

Chapter, and it is found experimentally that the geometric dependence of conductance

can be described by a single parameter &. Possible origins for discrepancies found

between & and the actual device aspect ratio are discussed.

3.2 Introduction

In contrast to graphene monolayer, graphene bilayer has a quadratic elecron-hole

symmetric excitation spectrum, leading to QH conductance values g, = 4n e2/h, n =

±1, ±2, ... that are distinct from the half-integer QH values 1.13 of the single-layer



graphene [78, 32]. These QH signatures have served to elucidate the band structure of

these carbon materials, and as an experimental tool for identifying number of layers

and for characterizing sample quality [32].

Experimentally, two-terminal conductance measurements in the QHE regime are

often used for sample diagnostic [89, 9]. Interpretation of the two-terminal conduc-

tance data, however, is typically not as straightforward as the conductance measured

by the multi-terminal methods [112]. The two-terminal conductance is of interest

because the conventional resistance measurement schemes, while having a number of

advantages over the two-probe method, can be difficult to implemented in a nanoscale

conductor. The two-terminal quantized conductance plateaus in single-layer graphene

have been previously reported [9, 10, 89] mainly to identify the device as a single layer.

However, often the conductance quantization is poor and/or the values of conductance

on the Hall plateaus can differ greatly from the quantized values for both the single-

and bilayer graphene. This is especially common for the samples with a two-terminal

device geometry other than a square, suggesting that the geometric dependence must

be taken into account when interpreting two-terminal conductance measurements.

We investigate the QH conductance of two-terminal graphene devices, focusing on

the dependence on layer number and device geometry. We demonstrate experimen-

tally how two-terminal conductance features can be used to discern monolayers and

bilayers even when conductance quantization is poor, in agreement with theory [7]

presented in the previous Chapter. Specifically, we use the positions of the conduc-

tance minima and maxima as well as conductance behavior near the charge-neutrality

point (CNP). Below we study five two-terminal samples of different geometry, four

rectangular devices with aspect ratio ' = L/W ranging from 0.15 to 2.5, and one

with asymmetric contacts (see Table 1).

In our discussion of the geometric dependence of two-terminal conductance of QH

graphene samples in the previous Chapter we have shown that the conduction prob-

lem for a sample of an arbitrary geometry can be reduced to that for an equivalent

rectangular sample. Here we test that prediction experimentally and find that the ge-

ometric dependence can be reasonably described by a single parameter, the equivalent



Table 3.1: Measured two-terminal graphene devices
Sample Number of Layers (L, W) (pm) 6s (e

Al Monolayer (1.3, 1.8) 0.72 1.67
A2 Monolayer (0.35, 2) 0.18 0.2
B1 Bilayer (2.5, 1) 2.5 0.8
B2 Bilayer (0.3, 2) 0.15 0.29
C Monolayer Asym. contacts 0.91 0.83

rectangle's aspect ratio ýe, even when the device geometry is not rectangular.

Transport in the QH regime is sensitive to the band structure of the material. For

both single-layer and bilayer graphene, the unique gapless energy dispersion results

in the existence of a fully formed Landau level (LL) at zero energy [91, 60], which

is absent in the gapped bilayer system [113, 114]. The behavior of the two-terminal

conductance for three cases [Fig. 3-la - gapless Dirac fermions, Fig. 3-1b - gapless

bilayer graphene, and Fig. 3-1c - gapped bilayer graphene] is shown schematically

in Fig. 3-1. The eight-fold degeneracy of the zero-energy Landau level in bilayer

graphene [60] leads to conductance value near the CNP that is larger than for a

monolayer. A non-zero value of conductance at zero density for single and bilayer

graphene is in contrast to what is expected for a gapped graphene bilayer, where the

LL at zero energy splits up, producing a vanishing conductance at v = 0.

Device geometry can also alter the behavior of the two-terminal conductance in

the QH regime, giving rise to additional conductance maxima or minima that replace

the QH plateaus. Traces, shown in Fig. 3-1, illustrate phenomenologically the possible

conductance behavior for two different device aspect ratios (ýe = 2 and 0.5) for all

three band structures. Conductance features observed in our samples are qualitatively

similar to those in Fig. 3-la and 3-1b, indicating that the studied samples are of

monolayer and gapless bilayer type.

3.3 Conductance of single-layer graphene samples

Graphene devices were fabricated by mechanically exfoliating highly oriented py-

rolytic graphite [25] onto a n++ Si wafer capped with - 300 nm of SiO 2 . Potential
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Figure 3-1: Theoretical density-dependent two-terminal QH conductance g as a func-
tion of carrier density obtained using Ref. [7] (see text for details) shown for (a) single-
layer graphene; (b) gapless bilayer graphene, and (c) gapped bilayer graphene. Black
and red curves correspond to aspect ratios ýe = L/W = 2 and 0.5. Local extrema
of g at filling factors v = ±2, ±6, ±10.. for single layers and at v = ±4, ±8, ±12.. for
bilayers are either all maxima (&e < 1) or all minima (e, > 1). In (a) and (b), the local
extremum at v = 0 is of opposite character (i.e., mimimum for ýe < 1 and maximum
for e > 1). In (c), due to the gap, g vanishes at v = 0 regardless of geometry.

single and bilayer graphene flakes were identified by optical microscopy. Source and

drain contacts, defined by electron beam lithography, were deposited by thermally

evaporating 5/40 nm of Ti/Au. Two-terminal conductance measurements were per-

formed on five samples. The (a for each sample was determined by either optical or

scanning electron microscopy.

Devices were measured in a 3He refrigerator allowing dc transport measurements

in a magnetic field IBI < 8 T perpendicular to the graphene plane. Unless otherwise

noted, all measurements were taken at base temperature, T - 250mK. Differential



conductance g = dI/dV, where I is the current and V the source-drain voltage,

measure using a current-bias configuration (I chosen to keep eV < kBT) was obtained

using a standard lock-in technique at a frequency of 93Hz. All samples show B =

0 characteristics of high-quality single-layer and bilayer graphene [4, 30]: a CNP

positioned at back-gate voltage Vbg ~ 0 and a large change in g (in excess of 20 e2/h)

over the Vbg range of ±40 V.

Figure 3-2a (black trace) shows measured g(Vbg) for sample Al (C8=0.72) at B=

8 T. Plateaus in conductance are observed at filling factors v = ±2 near, but not

equal to 2 e2/h, with values of -- 2.7 e2/h and , 2.3 e2/h on the hole and electron

side of the CNP, respectively. At v = 0 (Vbg ~ 2.3V), g departs from the quantized

values, dropping to a minimum of , 1.4e 2/h. At higher densities, the conductance

exhibits a series of maxima with values slightly above 6, 10, 14e 2/h. Maxima on

the hole side consistantly have slightly higher values, a feature observed in all the

samples measured. The inset of Fig. 3-2a shows g in the QH regime as a function

of Vbg and B. Dashed black lines indicate the filling factors v = nh/eB (where n,

is the carrier density) of -6, -10, and -14 and lines align with the local maxima of

g(Vbg). Vbg was converted to n, using a parallel plate capacitance model[25], giving

n, = a(Vbg + Voffset) with a = 6.7 x 1010cm- 2V- 1 and Voffet = 2V.

Measured g(Vbg) [black curve in Fig. 3-2b] for sample A2 (ý = 0.18) shows dis-

tinctive differences from the measured g(Vbg) in sample Al. In particular, at the CNP

(Vbg = -1.5V), g exhibits a sharp peak with a maximal value of -- 8.8 e2/h. Away

from the CNP, the conductance has maxima which are much stronger than those

in sample Al. The inset of Fig. 2(b) shows g(Vbg, B). For this sample, the dashed

lines representing the incompressible filling factors ±6, ±10, ±14 now align with the

minima in g. Here we used the Vbg to n, conversion factors of a = 6.7 x 1010cm- 2V- 1

(the same as for sample Al) and Voffet = -1.1V.

The observed features in g for samples Al and A2 can be compared to theory

for two-terminal quantum Hall conductance developed in the previous Chapter. The

filling factor dependence of the conductivity tensor is obtained using the semicircle

relation [104] and the current density distribution for a rectangular sample with an
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Figure 3-2: (a) Inset: Conductance g in the quantum Hall regime as a function of B
and Vbg at T=250mK for sample Al. Black dashed lines correspond to filling factors
of -6, -10, -14, -18 and align with the local maxima of conductance. Main: (black)
Horizontal cut of inset giving g(Vbg) at B=8T and (red) calculated g (ýe = 1.67 and
A = 1.2). (b) Inset: Conductance g in the quantum Hall regime as a function of B
and Vbg at T=250mK for sample A2. Black dashed lines correspond to filling factors
of -6, -10, -14, -18 and align with the local minima of conductance. Main: (black)
Horizontal cut of inset giving g(Vbg) at B=8T and (red) calculated g (Je = 0.2 and
A = 1.2).

arbitrary aspect ratio is found analytically by conformal mapping [103]. The current

density is then integrated numerically along suitably chosen contours to evaluate total

current and voltage drop, from which g is obtained by g = I/V. The rectangular

geometry was found to be universal in the sense that the conductance of an arbitrary



non-rectangular sample is equal to that of a rectangle with a effective aspect ratio 5e,

which depends only on the sample geometry and not on the conductivity tensor.

The red curves in Figs. 3-2a and 3-2b show the best-fit calculated conductance

obtained following Ref. [7]. The aspect ratio parameter value, found from best fit,

is ,e = 1.67 for sample Al. The Landau level broadening is described by a gaussian

e - A("- 
"

)2 and is quatified through the parameter A, with A=1.2 for sample Al. This

theoretical curve reproduces the essential features of the data: local maxima align

with the filling factors +2, ±6, +10, ..., and g exhibits a dip at the CNP.

The alignment of conductance minima with the incompressible densities, as well

as a peak at the CNP, observed for sample A2, are also in agreement with theoretical

predictions for wide samples. As illustrated in Fig. 3-2b (red curve), the data is

well described by the effective aspect ratio ýe = 0.2 and is close to the actual value

S = 0.18.

The size of peaks and dips in Fig. 3-2a and Fig. 3-2b grows for higher LL. This is

a general trend, which is observed in all our monolayer samples except for sample C.

The model, on the contrary, predicts that peaks and dips at Ivl > 0 LLs have similar

size. This discrepancy may be attributed to inapplicability of the two-phase picture

of Ref. [104], from which the semicircle law is derived, in higher LLs. Indeed, because

for Dirac particles the spacing between LLs decreases at higher energies as an inverse

square root of the level number, one may expect mixing between non-nearest LLs

to increase at high energies. Such mixing can lead to the longitudinal conductivity

values in excess of those obtained in Ref. [104] by accounting only for mixing between

nearest levels (see also discussion in Ref. [110]).

To take these effects into account, we have extended the model of of the pre-

vious Chapter phenomenologically, assuming that the contribution of the nth LL

((6nax, Snay) to the conductivity tensor in monolayer graphene is described by a

modified semicircle, or an elliptic law,

",aU + A (Snoy -_~ ,U ) (jay - , = 0, (3.1)
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Figure 3-3: Inset: Measured g of sample B1 as a function of B and Vbg at T = 4K.
Black dashed lines, corresponding to v= -12, -16, -20, align with local minima of g.
No minima are observed at v = 8 for 5T < B < 8T. Main: Horizontal cut of inset
at B = 8T (black), and calculated g (red) using A = 0.7 and effective aspect ratio
Ce = 0.8 (solid) and Je = 2.5 (dashed).

where a,n , xy,n, are the quantized Hall conductivities at the neighboring plateaus,

and An is a factor which equals unity for 'usual' semicircle law. To explain the data

for samples Al and A2, we take values An O 1 for n = 0, +1, and An % 2 for other

LLs, consistent with the previous experiment[4] (see Ref. [110]).

3.4 Conductance of bilayer graphene samples

The black curve in Fig. 3-3 shows measured g(Vbg) for sample B1 ((ý = 2.5) at

B= 8 T and T=4K. This sample has two features which indicates that it is bilayer

graphene: plateaus in conductance appearing near 4, 8, 12 and 16 e2/h and a conduc-

tance maxima at the CNP that is much larger that then extrema at higher density.

The conductance values at the plateaus v = ±4 here are lower than the expected

4 e2 /h for a bilayer sample, falling to 3.1(2.7) e2/h on the hole(electron) side of the

CNP. The peak value in conductance at v = 0 is at 5 e2/h at a Vbg = 0.5 V. At

higher filling factors, the plateaus exhibit two different behaviors, showing a very flat
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Figure 3-4: Measured g(Vbg) for sample B2 (black) and the calculated conductance
for ýe = 0.29 and A = 0.25 (red). Two key features in the curve suggest this sample
is a gapless bilayer, namely, a pronounced peak in g near the CNP, and the larger
spacing between the two minima straddling the CNP compared to the spacing A . 9.5
between other consecutive minima.

plateau at v = 8 and a flat plateau followed by a dip at v = 12. The small dips

align with the filling factors v = 12, 16 for 5 T < B < 8 T (see inset of Fig. 3), using

a = 7.2 x 1010 cm- 2V- 1 and Voffset = 0.5V.

Theoretical g curves for aspect ratios ýe = 2.5 (actual geometry - dashed line) and

e = 0.8 (best fit - solid line) are shown in red in Fig. 3-3. The predicted dependence

g as a function of Vbg for the two aspect ratios are similar in structure at high density,

but differ dramatically at v = 0, exhibiting a dip in conductance for ~ = 2.5 and

a peak near the experimental value for 'e = 0.8. The curve for e = 0.8 is also

in a better agreement with the data at higher densities: it reproduces the observed

values of the conductance at the incompressible densities, while the curve for ~e = 2.5

underestimates the conductance.

In some other cases the quantized conductance values are found to be much further

from the expected values than what is observed in samples Al, A2 and B1. Sample

B2 (((ý = 0.15) demonstrates this behavior. At the CNP, g reaches a maximum value

of 13.5 e2/h, followed by a minimum to the left and right of the CNP of 5 e2/h (see



black trace in Fig. 3-4). Away from the CNP, two conductance plateaus appear at

values of - 16 e2/h and 23 e2/h, neither of which are near the known values for single

nor bilayer graphene. Since there are no strong peaks or dips in g away from charge

neutrality, as is expected for a device with a & of 0.15, it is difficult to determine

the number of layers from the location of the conductance extrema. There are two

features, however, which allow for the identification of the underlying band structure

of the device. First, the peak at v = 0 is much more pronounced than any other

peak in the conductance. Second, the spacing in Vbg between the two lowest LL is

twice as large as the spacing between any other two LL (in Fig. 4, A - 9.5 V). Both

of these features arise in bilayer graphene as a result of the zero-energy LL being

eight-fold degenerate, twice as much as all other bilayer LLs and the zero-energy LL

in single layer graphene[60]. The theoretical prediction, using a ýe of 0.29, for the

bilayer sample B2 is shown in red in Fig. 3-4.

3.5 Non-rectangular samples

So far we have considered rectangular samples. What happens if the sample is

non-rectangular, or the contacts are positioned asymmetrically? Sample C, shown

schematically in the inset of Fig. 3-5, has these features. Surprisingly, the measured

conductance of sample C (black curve in Fig. 3-5) has properties very similar to those

expected for a square monolayer sample: around the CNP the conductance is nearly

flat with value close to 2 e2/h, monotonically increasing on the electron and hole sides

at filling factors IvI > 2.

The data in Fig. 3-5 are reasonably accurately modeled by the red theoretical

curve, obtained for the best-fit effective aspect ratio & = 0.83. Here we assume the

LLs to be relatively broad (A = 0.7), which somewhat masks the maxima at the LLs

with InI > 1. This choice of parameters yields a good agreement with the data for

the range of filling factors IvIl < 6. At higher fillings, the plateaus are washed out,

suggesting that the LL broadening is stronger for LLs Inj > 2.

Due to sample C's relatively simple polygonal geometry, its effective aspect ratio
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Figure 3-5: g(Vbg) for sample C (black) and the calculated conductance (red) for
the best-fit value of ýe = 0.83 (A = 0.7). The observed conductance (black) can
be reproduced by conformally mapping the asymmetric contact configuration into a
rectangular shape (see inset), which for this device results in an equivalent rectangle
of = 0.9.

can be estimated analytically. For that, we construct a conformal mapping trans-

forming sample C into, the upper half-plane, which, in turn, can be mapped onto

a rectangle. This yields the effective aspect ratio of 6 e 0.9, which is in a good

agrement with the best-fit value e = 0.83 found above. In principle, the poly-

gon pictured in Fig. 3-6 could be mapped onto the upper half-plane by inverting a

Schwarz-Christoffel mapping. However, since this mapping is defined by a contour

integral, the difficult inversion can only be done numerically. In order to circum-

vent this difficulty, we replace the rectangle by a semi-infinite strip [Fig. 3-7a)]. This

approximation should not significantly affect the conductance, as the current flows

mostly in the region between contacts 1-2 and 3-4.

The desired mapping can be constructed from two simple mappings, as illustrated

in Fig. 3-7. Without loss of generality we set the length scale a = 1. Our first step is

to straighten out the contact 3-5-6-4. We notice that the following mapping,

iA = - d1 , (3.2)
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A = 2 dI 0.60, (3.3)0 6-2)
maps the upper fv plane onto the upper i plane with a removed rectangle having

vortices

i3,4 = +A, z5,6 = ±A + iA. (3.4)

These points correspond to the points bw3,4 = ±V/2, wV5 ,6 = ±1 in the wv plane. The

value of A ensures that the edge of the sample situated on x axis remains on the axis

under the mapping (3.2). The distance between points z3 and z5 plane equals A, as

follows from Eq. (3.2) and equality [115]

6-112 d6 = A. (3.5)

The removed recangle's aspect ratio is 2, the same as that for the contact 3-5-6-4,

however, the two rectangle's dimensions differ by a factor of A. Scaling and shifting

both i in z,

i = A(z - 5), Cv = A(w - 5), (3.6)

we obtain the required mapping which straightens out the contact 3-5-6-4.

The mapping (3.2), (3.6), while straightening the segments 3-5-6-4, distorts the

rest of the boundary. However, we notice that far from the contact 3-5-6-4, Iz-51 > 1,

the mapping (3.2), (3.6) is an identity,

z(w > 1) = w + O(1/w). (3.7)

Owing to this property and the relatively small size of the segments 3-5-6-4 compared

to the strip width, the distortion is small. This is shown schematically in Fig. 3-7),

where the yellow polygon portrays the image of the sample, with the deviation of its

boundary from the original one (shown in red) exaggerated for clarity. The deviation

is indeed small: by investigating the mapping (3.2), (3.6) numerically we found that

the boundary is displaced the most at the point 2 which is shifted by approximately

0.3 away from its original position 2' along the real axis. This is small compared
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Figure 3-6: A polygon representing sample C
to contacts, length scale a = 200 nm.

(see Fig. 3-5). Blue regions correspond
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Figure 3-7: Mapping of the polygon in Fig. 3-6 (sample C) onto the upper half-
plane (shown not to scale). Blue lines correspond to contacts. First, we replace the
rectangle in Fig. 3-6 by a half-infinite strip, extending indefinitely to the right. Next,
we map the domain shown in (a) onto a rectangle with contact 3-5-6-4 straightened
out (b). Under this mapping, the sample is slightly distorted, as indicated by the
yellow polygon in (b). Because the deviation of the yellow polygon's boundary from
the original sample's boundary (red line in (b)) is fairly small, it can be neglected,
giving a half-infinite strip (c). Finally, the domain (c) is mapped onto the upper
half-plane (d), which allows to find the cross ratio A 1234 and evaluate the effective
aspect ratio (see text).

to the sample's width, which allows us to neglect the displacement of the boundary

and assume that the mapping (3.2), (3.6) transforms the original geometry into the

semi-infinite strip shown in Fig. 3-7b in red color.

After making this approximation, we transform the semi-infinite strip in Fig. 3-7c

into the upper half-plane by the following mapping,

( = cosh~ w
6 (3.8)



In the ( plane, the contacts are mapped on the real axis, with the end points 1, 2,

3 and 4 mapped to (1 = -1, (2 = 1, (3 . 2.11, (4 M 23.57. From these values,

following the procedure in the Appendix of Ref. [7], we compute the cross ratio

A123 4 = (1-(4)(03-) -0.64, and then obtain the aspect ratio Je = 0.9 from the

relations
L K(k').

8 =W - 2K(k) 1234 = (1 - k2)/2k, (3.9)W 2K(k)
where K(k) is the complete elliptic integral of the first kind, and k' = (1 - k2)1/ 2 .

3.6 Summary and discussion

We have studied the effect of geometry on the conductance of two-terminal graphene

devices in the QH regime. The quantized QH plateaus typically exhibit conductance

extrema, with the observed extrema being stronger for the samples which are wide-

and-short and narrow-and-long. Comparison with the theoretical model[7] discussed

in Chapter 2 shows that these distortions can be accounted for by the effect of ge-

ometry. We find that the equivalent-rectangle model works reasonably well even for

non-rectangular samples.

Furthermore, we find that for the short-and-wide samples ((e < 1, samples A2, B1,

B2) the local conductance minima occur at the incompressible filling factors, while

for the effectively long-and-narrow samples (,e > 1, sample Al) it is the conductance

maxima. This, along with the behavior at the CNP, provides a clear way to identify

the sample's number of layers even when the quantization is weak or absent (sample

B2). These observations are all in qualitative agreement with theory.

We find that in all five samples the geometric dependence of the conductance

is approximately described by a single parameter, the effective aspect ratio 6, of an

equivalent rectangle. Surprisingly, the effective ratio , of several rectangular samples

obtained from the conductance measurements differs significantly from their actual

aspect ratio 6,: , > 6, for Al and B2, while ~ < , for B1, whereas e ~ ( for A2

and C.

What can possibly change the effective aspect ratio of rectangular samples? The



increase of the effective aspect ratio e, of samples Al and B2 may be due to the fact

that only parts of the contacts are injecting current. The more surprising decrease

of 6e for B1 could arise from doping from the contacts. This scenario would require

the doping to penetrate some - 500 nm per contact, 1-2 orders of magnitude larger

than expected [116]. Another, more interesting possibility could be that the picture

of an effective medium characterized by local conduction, on which the argument

leading up to the semi-circle model [104] is based may not hold. Microscopically, this

arise from large-scale density fluctuations, creating a mesh of intertwined electron

and hole puddles with conducting states propagating along the interfaces [117]. The

nonlocal transport mediated by such states may, under certain conditions, completely

alter the conventional picture of local conduction. For this to happen, however, the

typical spatial length scale of density fluctuations must be comparable to the sample

size. However, because this scale was found to be just a few hundred nanometers in

the scanning probe experiments [118], it seems rather unlikely that such a situation

occurs in sample B1. Further studies are required to clarify the physical mechanism

responsible for the observed behavior.

Leaving this puzzle aside, we note that the comparison of the data with the

theoretical picture. [7] discussed in the previous Chapter shows overall qualitative

agreement. This is remarkable, as the theoretical curves, describing the conductance

dependence on density across several Landau levels are controlled solely by the effec-

tive aspect ratio 6. This parameter depends on the sample geometry, but may take

the same values for very different geometries. Most importantly, however, geometry-

dependent variations in the two-terminal conductance of graphene samples do not

mask the key differences in g(Vbg) that allow single-layer and bilayer samples to be

distinguished, as demonstrated experimentally in this work.





Chapter 4

Edge States and the Half-Integer

Quantum Hall Effect

4.1 Abstract

We employ the framework of massless Dirac model [55] to analyze Landau level energy

spectrum near zigzag and armchair edges, the two most common graphene edge types.

We formulate the boundary conditions for the Dirac spinor and solve resulting ld

eigenvalue equations, finding that the number of conducting edge modes is odd for

both zigzag and armchair edge types, which explains the half-integer QHE and its

universality. We study the local density of states near the boundary, and suggest that

the properties of the edge states, e.g. their dispersion, which is different for the two

edge types, can be studied with the help of STM. Results presented in this Chapter

are published in Refs. [11, 64].

4.2 Introduction and Outline

In this Chapter we analyze the edge states spectrum of a graphene sample in a

magnetic field. We consider two common edge types, armchair and zigzag, illustrated

in Fig. 1-2a, and solve the Dirac equation with boundary conditions appropriate for

these two edge types. As we shall see below, the zigzag edge is peculiar: it supports



a band of states near zero energy which are very tightly localized at the boundary (in

fact, these so called surface states occur even when the magnetic field is absent). The

quantum Hall edge states near the Dirac point result from the mixing of the zeroth

LL and the surface mode (this was first demonstrated numerically, see Ref. [8]). In

the framework of the Dirac model, the surface mode is dispersionless and does not

contribute to the transport. Thus the total number of conducting channels does not

depend on the edge type, which explains the universality of the anomalous quantum

Hall quantization.

The predictions of the Dirac model for the zigzag edge case are in agreement with

the numerical studies [8], based on the tight-binding model. Interestingly, including

next-nearest neighbor hopping into the model [8] gives rise to a dispersing surface

mode. However, the surface states are counter-propagating, and, therefore, they

inevitably localize due to the edge imperfections. QH edge states, on the contrary,

are chiral, and therefore cannot localize. The surface mode localization restores the

universal anomalous QHE.

The details of the edge states spectrum, such as their dispersion and the corre-

sponding local densities of states are different for the armchair and zigzag boundaries.

As we argue below, these differences can be investigated using STM spectroscopy.

We start with analyzing the edge states spectrum in Section 4.3; in Section 4.4 we

consider the local density of states and demonstrate that the edge states properties,

including their dispersion, can be studied using STM.

4.3 Edge states spectrum.

4.3.1 Armchair edge.

We start with considering the edge states near an armchair boundary. For our analysis

below, it is convenient to choose the Landau gauge,

As = -By, AY = 0. (4.1)



Then the low-energy Hamiltonians (1.1) take the following form,

.Eo [ 0 0y + (y - yo)
HK,K' = - -- y (4.2)

where Eo = hvo (2eB/hc)1/ 2 and yo = -Px. Here y and p, are measured in the units

of the magnetic length LB = (hc/eB)1/2 and h/lB. The spectrum of the Hamiltonian

(4.2) is given by Eq.(1.17).

Eigenfunctions of the Hamiltonian (4.2) for the two valleys K(K') are given by

UK,n = A(1 - 5n,o)(Pn-1(y - Yo), VK,n = APon(y - Yo), (4.3)

UK',n = APO,(y - Yo), VK',0 = A(1 - 6n,o) 'n-1(y - yo), (4.4)

where on(z) is the n-th eigenfunction of the magnetic oscillator, and A is normaliza-

tion factor, which equals 1 for n = 0 and v/ for n Z 0. Note that zeroth LL states

in the valley K(K') reside solely on B(A) sublattices 1.

We now analyze how LL spectrum (1.17) is modified near the armchair edge. Let

us start by considering graphene situated at y < 0 with an armchair edge parallel to

the x axis (see Fig.1-2a).

Energy levels of the Dirac fermions near the edge are determined from the eigen-

value equation Eb = HO, where i = (u, v), H is given by Eq.(4.2), and we omitted

K, K' indices for simplicity. To analyze this eigenvalue problem, it is convenient to

exclude v components of the wave function, and to consider eigenvalue equations for

u components:

1 (-a + (y - yo)2 + 1) UK = UK, (4.5)

1 (-2 + (Y - yo) 2 _ 1) UK' =UK', (4.6)

A = (E/e 0 )2. (4.7)

'This property is specific for the n = 0 LL, and it makes the splitting of the zeroth LL due to
Coulomb interaction distinctly different from that of other LLs (see [48, 84]).
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Figure 4-1: Graphene energy spectrum near the armchair boundary obtained from
Dirac model, Eq.(1.1). The boundary condition, Eq.(4.8), lifts the K, K' degeneracy.
The odd integer numbers of edge modes lead to the half-integer QHE.

The boundary conditions for Eqs.(4.5,4.6) can be obtained by assuming that the tight-

binding model is valid up to the very last row near the boundary, and by setting the

wave function amplitude to be zero at the boundary. Since the armchair edge has

lattice sites of both A and B type (see Fig.1-2a), the wave function amplitude on

both sublattices should vanish at the edge. In terms of the envelope functions UK,KI,

VK,KI, taken at y = 0, this condition translates into

UK = UK', VK = VK'. (4.8)

Thus we obtain a pair of differential equations (4.5),(4.6) on the half-axis y <

0, coupled at the boundary via Eq.(4.8). To analyze this problem, let us consider

Eq.(4.5) for uK on the negative half-axis y < 0, and Eq.(4.6) on the positive half-axis

y > 0, and reformulate the boundary conditions accordingly. The first boundary

condition in Eq.(4.8) then means that the wave function at y = 0 is continuous, and

the second condition implies continuity of the derivative Ou/Oy (this can be seen by

expressing v components in terms of u components using Eqs.(4.2)). Thus we obtain

a 1D Schroedinger problem in the potential

1 1
V(y) = (ly + yo)2 sgn(y), (4.9)2 2
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defined on the entire y axis. We find the energy levels in the potential (4.9) numer-

ically. Then, the energy levels of the Dirac fermions are related to the eigenenergies

in the potential (4.9) via Eq.(4.7),

E(p,) = ±EoA , (4.10)

whereby the particle-hole symmetry is restored due to the two possible signs of E(p,).

The energy spectrum (4.10) is illustrated in Fig.4-1. Notice that the double valley

degeneracy of the Landau levels in the bulk is lifted at the boundary.

The particle-hole symmetric edge states spectrum in Fig. 4-1 instantly explains

the half-integer Hall quantization in graphene. Indeed, for any electron density with

integer filling factor v in the bulk there is an odd number of the edge modes crossing

the Fermi level, which means that the Hall conductivity is quantized at au, = 2(2n +

1)e2/h, with the factor two introduced to account for the spin degeneracy.

Interestingly, for positive (negative) LLs one edge state first bends down (up), and

then goes up (down), see Fig. 4-1. This can lead to a pair of counter-propagating

edge states when the Fermi level is just below (above) a positive (negative) LL. Due

to the fact that these counter-propagating states are spatially separated, scattering

between them may be suppressed, and, in principle, they could contribute to the

transport. This however have not been observed in the experiment, possibly because

such counter-propagating states are supported only by the armchair edges, and in the

experiment graphene boundaries have both zigzag and armchair parts.

4.3.2 Zigzag edge.

We now analyze the zigzag edge, which even at B = 0 hosts a a band of dispersionless

zero-energy states bound to the edge [66]. We shall refer to these states as surface

states, to distinguish them from the dispersing QH edge states. As we shall see below,

surface states contribute to the splitting of n = 0 LL near the zigzag edge.

We consider graphene sheet in the half-plane x > 0, with its first row consisting
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of B sublattice atoms (see Fig.1-2(a)). We choose a gauge

AX = 0, AY = Bx.

Then the Hamiltonian (1.1) transforms into

HK,K' = - +
-Lax ± (x - xo)

a, ± (z - xo)

0
(4.12)

where xo = py. Similarly to the armchair case, the spectrum can be found from the

eigenvalue equation, E4 = HK,K',, where V = (u, v), and HK,K' is given by (4.12).

This should be supplemented by the boundary condition, which for our zigzag edge

is that the wave function vanishes at all A sites at x = 0. For that both envelope

functions uK, UK' have to vanish at the boundary,

uK = 0, UK' = O. (4.13)

Excluding v components

problems for the spectral

of the wave

parameter A

1

1 (- _ + (x
1
2 (-_ + (x

functions, we obtain two separate eigenvalue

= (E/eo)2,

- x0)2 + 1) UK = AUK,

- xo)2 - 1) UK' AUK',

(4.14)

(4.15)

where both UK and UK' satisfy the hard wall boundary conditions (4.13). The

amplitudes VK,K' on the B sublattice can be expressed via ampliudes UK,K' on the A

sublattice and eigenenergy E,

VK = (eo/vIE) (-a, + (x - Xo)) UK,

VK' = (Eo/V2E) (-ax - (x - Xo)) UK'.

(4.16)

(4.17)

The eigenvalue problems (4.14,4.15) with the hard-wall boundary conditions (4.13)

are familiar from the study of the edge states in the conventional QHE (see Ref.[34]),
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Figure 4-2: Graphene energy spectrum near the zigzag boundary obtained from Dirac
model, Eq.(4.12), with boundary condition (4.13). (a) Spectrum for the K valley. The
zeroth LL transforms into dispersionless surface mode near the edge. (b) Spectrum
for the K' valley. The zeroth LL mixes with the surface mode at the edge, giving rise
to two branches of dispersing QH edge states.

and their spectrum A(xo) can be found numerically. The Dirac fermions energy levels,

given by E(py) = ±eo V(xO), are illustrated in Fig.4-2.

The behavior of n = 0 LLs is similar to the armchair case: there are two branches

of the edge states, one for each valley, degenerate in the bulk, xo > 1, which split

near the edge. The zeroth LL, however, coexists with the surface state, which makes

its behavior rather peculiar and different for the two valleys.

In the K valley, which we discuss first, the zeroth LL states reside solely on the B

sublattice, see Eq.(4.3), and therefore automatically satisfy the boundary condition

UK = 0. Thus there are K-valley zero-energy states for arbitrary values of xo, of

the form <po(x - xo) cx e- (X-x0)/2. Let us consider the states with xo far outside the

graphene half-plane, xo < -1. Not too far from the boundary, such states can be

approximated by an exponential

VK(0 < x Ixol) oc e-IXolIX UK(x) = 0, (4.18)

which is identical to the surface state wave function [66]. Thus the K-valley zeroth LL

state in the bulk transforms into the surface mode at the edge. Since the surface mode
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Figure 4-3: Landau levels spectrum of a graphene strip with zigzag edges, obtained
numerically in the framework of the tight-binding model [8]. The interplay between
the zeroth LL and surface state near the edges is illustrated. The zeroth LL in
the K valley (left) transforms into a surface state near the right strip edge; the
surface state traverses through the whole Brillouin zone, and mixes with the K'
zeroth LL, generating a pair of quantum Hall edge states. The surface states, despite
being dispersive owing to the next-nearest neighbor hopping introduced in the model,
localize due to the coupling to strong edge disorder and do not contribute to the
transport properties. Thus the half-integer quantization is preserved for the zigzag
case. Adopted from Ref. [8]

is dispersionless, it does not contribute to the edge transport. The edge spectrum for

the K valley is displayed in Fig.4-2a.

Now let us consider the splitting of the zeroth LL for the K' valley. For xo > 1,

we approximate the ground state of the oscillator (4.15) with the hard-wall boundary

condition as,

UK'(X) = 0Po(X) ý0 (x - x 0) - (0O(x + Xo). (4.19)

The ground state energy Ao(xo) is then approximated by,

Ao(xo) e (h), (4.20)

where h = _(-&_ + (x - x0 )2 - 1) is the effective Hamiltonian for UK/ component,

Eq.(4.15), and (...) denotes averaging over the normalized wave function (4.19).

Evaluating (h) analytically for xo > 1 (in this limit the wave function (4.19) is

normalized to unity with exponential accuracy), we obtain

Ao(xo) owX/2e -x2 . (4.21)
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From the relation E = ±EvA, we find the energies for the two branches of dispersing

edge states,

E(xo) r 4(2xo)1/2 7r-1/4e-0 /2o.  (4.22)

Plugging this expression in Eq.(4.17), we obtain the wave function on B sublattice

for these two branches,

vK' = /2 -zXox (4.23)

which is again the surface state wave function (compare to Eq.(4.18)). We therefore

conclude that for the K' valley the zeroth Landau level and the surface state mix at

the edge, giving rise to two dispersing edge modes. This is illustrated in Fig.4-2(b).

Interestingly, the A and B sites contribute equally to the splitting of the zeroth

LL,

I ,UK2I dx =d > IVK2 dx. (4.24)

This is somewhat counterintuitive, since this LL resides solely on the sublattice A

in the bulk, while the surface mode resides solely on the sublattice B. This equal

participation property can be understood as follows. The spinor states (uK', ±VK')

with uK', vK, given by Eqs. (4.19),(4.23) are eigenstates of the Dirac Hamiltonian

with the boundary condition (4.13), with the energies ±E. Thus these states are

orthogonal, which implies that the integrals of IUK 12 and vK 112 are equal. We further

note that the integral of the square of the B component of our edge state wave

function (4.23) over x > 0 indeed equals one, in agreement with our choice of the A

component normalization (4.19).

To summarize, for the zigzag case the zeroth LL edge states are due to the mixing

of the zeroth LL in one of the valleys and the surface state. The zeroth LL in

the other valley transforms into the surface mode, which, being dispersionless, does

not contribute to the transport. The bending of the non-zero LLs is similar to the

armchair case. When an integer number of LLs is filled, there is a half-integer number

of dispersing edge states at the Fermi level (see Fig. 4-2), leading to the anomalous

QHE.

One may ask whether the surface mode remains non-dispersing and therefore non-
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conducting when one goes beyond the Dirac model. This was explored in Ref. [8],

where the numerical tight-binding model approach was used; the tight-binding model

provides a more complete picture compared to the Dirac model which is applica-

ble near K, K' points. The authors of Ref. [8] found that in the presence of the

next-nearest neighbor hopping the surface mode becomes dispersing, as illustrated in

Fig. 4-3, which shows the spectrum of a graphene strip in the whole Brillouin zone.

However, at each strip edge the surface states are counter-propagating, and therefore

would quickly localize due to the backscattering induced by the edge imperfections.

That such imperfections are present is known from the STM studies of the graphite

surface [73, 72]. In contrast, the QH edge states cannot localize due to their chi-

rality. Thus we conclude that even when the surface mode acquires dispersion, the

anomalous Hall quantization is not changed.

4.4 STM spectroscopy of edge states.

In this Section we briefly discuss how the edge states in graphene can be investigated

using the STM technique [73, 72]. Due to the Landau level momentum-position du-

ality relation, p, = (h/J2)x 0o, the edge state momentum dispersion shown in Figs. 4-

1, 4-2 translates into the excitation energy dependence on the distance from the edge.

The characteristic scale for the latter is set by the magnetic length fB, which for typi-

cal fields is about 50-80 times greater than the spatial resolution of STM instruments

on graphite surface. This makes the STM technique particularly convenient for the

edge states studies.

A link between the edge states dispersion and the position-dependent tunneling

spectroscopy can be established as follows. We shall use the solutions for the edge

state wave function given above to calculate the local density of state (LDOS) near the

zigzag edge (other edge types can be dealt with similarly). For each of the graphene

sublattices LDOS is given by

pA(E, x) = j uo(x)126(E - Ea), (4.25)
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Figure 4-4: STM spectrum of graphene near the zigzag edge for sublattice A (a) and
B (b). x is the distance to the edge. Due to the momentum-position duality, analysis
of the STM spectrum allows extraction of the edge states dispersion.

ps(E, x) = Z Iv,(x)126(E - Ea), (4.26)

where x is the distance from the edge, and a denotes the set of eigenstates of the K

and K' Hamiltonians (4.12) with the hard-wall boundary condition (4.13).

Using the eigenfunctions u a(), va (x) and the energies E. found from Eqs. (4.14),(4.16)

as discussed above, we obtain LDOS for the A and B sublattices which is displayed

in Fig. 4-4. We see that the position-independent Landau level bands, dominating

LDOS far from the edge, bend away from e = 0 near the edge. This bending mimics

the edge states momentum dispersion shown in Fig. 4-2. Note, however, that LDOS

is nonzero only for x > 0, whereas the edge states momentum p, can be both positive

and negative. The spatial width of the bending bands is determined by the width of

the eigenfunctions ua (x), v (x), which is of the magnetic length scale.

The behavior of the LDOS at x --+ 0 is very different for the two sublattices: it

remains finite for the sublattice B, and vanishes for the sublattice A. This agrees

with the boundary condition (4.13), which requires A amplitudes to vanish at the

boundary.

The peculiar nature of the zeroth LL splitting, discussed in the previous section,

also manifests itself in the STM spectrum. While the position of A-sublattice LDOS
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maximum closest to the edge (see Fig. 4-4(a)) mimics the dispersion of the zeroth

LL edge states, the B-sublattice LDOS (Fig. 4-4(b)) has a local maximum right at

the edge, x = 0. This behavior can be understood in the limit of low energies as

follows. Limit of the low energies corresponds to the large distance from the edge,

x > 1, which allows to make us of the approximate expressions (4.19),(4.23) obtained

in the previous section. The edge state amplitude on the sublattice A (4.19) has a

maximum at x B zo = p42B/i, while the amplitude on the sublattice B (4.23), which

explains the LDOS behavior. The difference of the A and B spectra suggests that

in the experiment the zeroth edge states dispersion should be extracted from the A-

sublattice spectrum. The edge states dispersion for the non-zero LLs can be extracted

using either A or B spectra, as each of them mimic the momentum dependence of

the edge state energies, see Figs. 4-2,4-4.

For the armchair case, the LDOS is equal for the two sublattices, as follows from

the symmetry of the armchair boundary condition (4.8) with respect to the two

sublattices. The spectrum of either sublattice mimics the dispersion of the armchair

edge states, Fig. 4-1.

108



Chapter 5

Quantum Hall Effect in Locally

Gated Graphene Devices

5.1 Abstract

We study two-terminal conductance of locally gated graphene devices, p-n and p-n-p

junctions. In p-n junctions, the edge states mixing at the p-n interface and propa-

gation across the interface give rise to conductance quantization, which is integer in

the unipolar regime, and fractional and integer in the bipolar regime. Our results ex-

plain the recently observed conductance quantization [9] discussed in Section 1.4. We

propose several possible mechanisms leading to mixing at the p-n interface, including

dephasing by localized states, electron thermalization and self-averaging. We suggest

that shot noise measurements can be used to distinguish between different transport

regimes.

In p-n-p junctions, in addition to the analogues of the bipolar and unipolar

regimes, a new intermediate partial equilibration regime is realized, where modes cir-

culating in the n region can transfer electrons between opposite edges of the sample.

We find quantized conductance values in all three regimes, which are in agreement

with the experiment [10]. Finally, we explore robustness of the QHE in p-n-p junctions

with respect to disorder, finding that the sensitivity of various plateaus strongly de-

pends on the filling factors as well as sample geometry. Some of the results presented
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in this Section are published in Refs. [101, 10].

5.2 Introduction

So far we have discussed quantum Hall transport in graphene samples with uniform

density of carriers controlled by a global back gate. In this Chapter we consider

transport properties of locally gated quantum Hall graphene devices, p-n and p-n-p

junctions, where the density is spatially non-uniform. Experimentally, the problem

of fabricating graphene p-n and p-n-p junctions attracted large interest since the

very discovery of graphene for two reasons. First, junctions provide the basis for

possible device applications; second, graphene junctions were predicted to exhibit

interesting transport effects reflecting the Dirac character of excitations, such as Klein

tunneling through p-n interfaces and Veselago lensing in p-n-p junctions [1191 (both

effects occur in the absence of the magnetic field). However, due to high sensitivity

to disorder, neither effect was observed in the experiments with the first graphene

junctions [57, 9, 10]. Somewhat surprisingly, the most interesting transport effect

in the first graphene junctions was observed in a magnetic field, when Williams et

al. [9] and Ozyilmaz et al. [10] found that two-terminal conductance of junctions is

quantized at fractional and integer values.

The experimental results of Williams et al. [9] are illustrated in Fig. 5-1. Fig. 5-

lb shows two-terminal conductance g of a p-n junction (Fig. 5-1a) as a function of

top (Vt) and back gate voltages (Vb), which are used to independently control filling

factors vi and v2 in the p and n regions. To understand the rhombi pattern of the

conductance in Fig. 5-1b we consider g as a function of the top gate voltage fixing

the filling factor in the non-gated region. Fig. 5-1c shows g(Vt) at vi = 6, and

(d) corresponds to v2 = 2. Interestingly, g exhibits quantized plateaus with values

1,3/2, 2, 6 ... e2/h.

In this Chapter, we explain the observed conductance quantization. We employ

the edge states framework to study the two-terminal transport,finding that the con-

ductance is quantized when incompressible QHE states are formed in the p and n

110



2 6 10 14

a

-2 -1 0  1 2 -1.0 0.0
VV M VTG ]

Figure 5-1: Conductance of a graphene p-n junction in the QHE regime, from Ref. [9].
(a) schematic of the device, with a local top gate used to create a p-n junction. (b)
Conductance map as a function of top and bottom gate voltages. (c), (d) conductance
as a function of top gate voltage at fixed filling factors (6 and 2, respectively) in the
non-gated region. Conductance exhibits a series of quantized plateaus with fractional
and integer values.
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parts of the device. The edge states transport in p-n junctions is quite different in

the unipolar and bipolar cases, which leads to different quantized conductance val-

ues : in the unipolar regime, the edge states cannot backscatter, and therefore the

quantized sequence of uniform graphene, ±2, ±6... e2/h, is reproduced. In the bipo-

lar regime, the edge states can mix at the p-n interface, which effectively leads to

edge states scattering between the opposite sample edges. Such scattering is usually

non-universal and should lead, by analogy with quantum dots, to mesoscopic con-

ductance fluctuations. However, as will be explained below, there are several effects

which wash out the mesoscopic fluctuations, leading to the fractional and integer

conductance quantization in the bipolar regime.

In p-n-p junctions, the situation is slightly more complicated [10]: there are three

possible edge states structures depending on the densities in the p and n parts of the

device. These three cases give rise to a sequence of quantized conductance values

which is different from that in p-n junctions. The quantized values that we find using

the edge states picture mostly agree with the experimental observations [9, 10].

It turns out that the agreement between the simple edge states theory [101, 10]

and the experiment in the p-n-p junctions [10] is not perfect. While most conductance

plateaus predicted by the theory are observed experimentally, others are either absent

or their values deviate significantly from the theoretical ones [10]. We attribute this

behavior to backscattering of the edge states in the locally gated n region. Such

backscattering can result from the density inhomogeneities induced by the local gate,

which is only several tens of nanometers away from the sample, or from the coupling of

the edge states to localized states in the gated region. To analyze the backscattering

effects, it is convenient to switch to the bulk conductivity framework. Solving the

conduction problem in an inhomogeneous conductor which models the p-n-p junction,

we find that the robustness of the quantization strongly depends on the filling factors

in the p and n regions, and on the geometry of the central n region.

Our work complements previous studies of gated quantum Hall devices with

backscattering [120]. Theory developed there employed Landauer transport approach

and considered backscattering due to the coupling of the edge states to the localized
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states. Our phenomenological approach treats unipolar regime, considered previ-

ously [120] and bipolar regime, which is specific to graphene [101, 9, 10], on equal

footing. For the unipolar regime our conclusions are similar to those of Ref. [120].

The rest of this Chapter is organized as follows. In Section 5.3 we discuss the edge

states structure in p-n junctions and show that, when mesoscopic conductance fluc-

tuations are suppressed, the conductance is quantized. In Section 5.4 we demonstrate

that there are several different mechanisms suppressing the mesoscopic fluctuations;

we suggest that shot noise measurements can be used to distinguish between those

mechanisms. In Section 5.5 we consider the edge states in p-n-p junctions and the

corresponding quantized values of conductance. Finally, in Section 5.6 we employ

bulk conductivity approach to describe the sensitivity of the quantization to the edge

states backscattering in the central region.

5.3 Conductance quantization in p-n junctions

We start with analyzing the edge states structure in p-n junctions; there are two

regimes, bipolar, when densities in the two part of the device are of the opposite

signs, and unipolar, when the densities are of the same sign. As we saw in the

previous Chapter, an incompressible quantum Hall state with a filling factor v has

juI edge channels, propagating in the opposite direction for v > 0 and v < 0 [8, 11].

For the bipolar case, assuming QHE at densities vl > 0 and v2 < 0 on either side of

the boundary, this gives |vij and Jv21 edge modes circulating in opposite directions

that merge to form a multi-mode edge states at the p-n interface, see Fig. 5-2a.

These modes supply particles from both p and n reservoirs to the p-n interface. After

propagating together along the interface these particles arrive at the sample boundary

where they are ejected into the edge modes which split up and return to the reservoirs.

In the unipolar case, edge modes in both regions circulate in the same direction.

As a result, some modes are coupled to both reservoirs, while the others are connected

to only one of the reservoirs. This is illustrated in Fig. 5-2b.

The observed conductance quantization in the bipolar case can be readily ex-
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(a) (b)

Figure 5-2: Schematic of QHE edge states for (a) bipolar regime of pn junction, and
(b) unipolar regime of nn and pp junctions. In case (a) the edge states counter-
circulate in the n and p regions, bringing to the pn interface electrons and holes
from different reservoirs. Mode mixing at the interface leads to the two-terminal
conductance (5.1). In case (b), since the edge states circulate in the same direction
without mixing at the interface, conductance is determined by the modes permeating
the whole system, g = min(Ivll, vu21).

np

E
0

-1.5 pp-1 -0.5 0 0.5 1 1.5
Top gate Vt ()

Figure 5-3: Two-terminal conductance vs. gate voltage, given by Eq. 5.2 in the
unipolar case (v 1,2 of equal sign), and by Eq. 5.1 in the bipolar case v, > 0, v2 < 0.
The boundaries of QHE regions are specified by v1,2 = 0, ±4, ±8..., with the gate
voltage dependence of v 1,2 given by Eq. 5.3. Parameters used: distances to the top
and back gates h = 30 nm, d = 300 nm, magnetic length LB = 10 nm, dielectric
constant r, = 3.
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plained by assuming full mixing of the modes propagating along the p-n interface,

such that for each particle the probability to be ejected into any of the N = Ivi1 + Iv2l

modes equals PN = 1/N irrespective of its origin. The two-terminal conductance

is then obtained by multiplying PN by the numbers of the modes connected to the

reservoirs, giving

vi '1Iv21 3 5
gpn I- v +v2  2' (5.1)

V1,2 = ±2, ±6, ±10.... This agrees with the observed quantized values [9].

The transport in the unipolar regime is very different. With backscattering sup-

pressed by the QHE, the conductance across the boundary is solely due to those edge

modes that permeate the entire system, making contact with both reservoirs. This

gives the observed nonclassical conductance values

gnn = 9pp = min(llV, 1v21) = 2, 6, 10..., (5.2)

where V1,2 = ±2, ±6, ±10..., in agreement with the known results for quantized con-

ductance of constrictions between different QHE states [121, 122, 123].

The conductance values given by Eqns. 5.2 and 5.1 occur in a particular pattern [9]

that can be described as follows (see Fig.5-3). Electron density in graphene induced

by the back gate is nl = (K/47e)Vb/d, where d is the distance to the gate, Vb is

voltage on it, and % is dielectric constant. Similarly, in the region gated from both

the top and the bottom, we have n 2 = (r/47re)(Vb/d + Vt/h), where h and Vt are

the distance to the top gate and voltage on it. For the Landau level filling factors

V1,2 = (hc/eB)n1,2 we find

vl = (t2 S/2e)Vb/d, v2 = (f2B /2e)(Vb/d + Vt/h), (5.3)

with B = hc/=eB the magnetic length. The values Vb, Vt corresponding to integer

QHE states are inside parallelograms with the boundaries approximately given by

V1,2 = 0, ±4, ±8..., as appropriate for the four-fold degenerate graphene Landau lev-

els [4, 30]. The resulting conductance pattern, shown in Fig.5-3 for realistic parameter
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values, strikingly resembles the experimental results illustrated in Fig. 5-1b.

5.4 Mixing mechanisms and shot noise.

In this section we address the nature of the edge states mixing at the p-n interface

in the bipolar regime, which we have assumed in the previous Section to explain the

observed conductance quantization. For that, an analogy of the edge states system

to a chaotic quantum dot proves very helpful. In this analogy the QHE states at the

sample boundary play the role of perfect lead channels of chaotic quantum dots [105,

124], bringing charge to the p-n interface and carrying it away into the reservoirs. The

p-n interface plays the role of the quantum dot itself, with the intermode scattering

corresponding to the scattering inside the dot. An important difference is that several

physical mechanisms causing conductance fluctuations in chaotic dots are absent in

our case, leading to quantization of two-terminal conductance not known for the dots.

In particular, the effective lead channels are quantized much more perfectly than in the

dots, owing to the backscattering suppression in the QHE transport. In addition, the

quantum-mechanical interference effects which lead to sample-specific conductance

fluctuations, can be suppressed in our case due to self-averaging, as well as dephasing

and electron-electron scattering. Other effects that can affect the edge state transport

at the p-n interface are intermode relaxation and coupling to electronic localized

states in the QHE bulk, causing dephasing in a manner similar to the voltage probe

model [125]. While these regimes yields equivalent results for the conductance, they

will manifest themselves differently in other transport characteristics, in particular, in

electron shot noise [126], which can be used for detailed characterization of transport

mechanisms.

How is conductance in Eq. 5.1 affected by interference effects? Random matrix

theory (RMT) predicts [105, 124] ensemble-averaged conductance g = nln2/(nl+n2+

1 - 2/,3), where nl,2 is the open channel number, and 3 = 1, 2, 4 for the three random

matrix universality classes. In our QHE case, with the channel numbers nl,2 = 1 1,21

and p = 2, RMT predicts P identical to Eq. 5.1. Similarly, semiclassical description
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of transport chaotic cavities [126], where mixing is due to the dynamics in the cavity,

yields conductance values close to the classical result for two conductors connected

in series.

To understand the origin of chiral QHE mode mixing at the pn interface we studied

electron density distribution for the gate geometry used in Ref. [9]. Numerical solution

of Laplace problem for the electrostatic potential in between the gates revealed that

the pn density step is about 40 nm wide, a few times larger than the magnetic length

at B = 10 T. Comparison to the known results [127] for intertwining compressible

and incompressible QHE regions then suggests the presence at the pn interface of

QHE modes having opposite chiralities, N + m propagating in one direction and

m in the other direction, m > 0. In that, N = Ivil + jv 21 modes are coupled to

reservoirs, while 2m counter-propagating modes are confined to the interface region.

Such counter-propagating modes, if present, will facilitate inter-channel scattering

leading to dynamical mixing.

In the fully coherent regime conductance would exhibit sample-specific fluctua-

tions, UCF. The magnitude of UCF predicted for chaotic transport (see Ref.[128]) in

our case depends on the channel numbers as follows:

V 12 2var(g) = 2 (5.4)
(Ivil + 1v21)2((lI + 1V21)2 - J)'

Applied to the observed plateaus with (v1, v2) = (2, -2), (2, -6), (6, -2), Eq. (5.4)

indicates that these plateaus would not have been discernible in a system with fully

developed UCF. We therefore conclude that the observed quantization of g depends on

some mechanism that suppresses UCF. For example, the suppression could easily be

understood if Thouless energy for the states at the pn interface was small compared

to ksBT. The reduced UCF would then result from averaging over the kBT energy

interval. However, the plateaus in [9] remain unchanged when temperature is reduced

from 4K to 250 mK, making such a scenario unlikely.

The UCF suppression may signal a fundamental departure of chiral QHE dynamics

from that of the earlier studied systems. However, at this point we cannot exclude
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other, more mundane explanations. In particular, time-dependent fluctuations of

system parameters can supercede mesoscopic fluctuations, turning the observed time-

averaged quantities into ensemble-averaged quantities. This could arise naturally

due to fluctuating electric field at the pn interface induced by voltage noise on the

gates. Another, more interesting explanation could be that UCF suppression indicates

presence of dephasing due to the coupling of the chiral modes to the localized states

in the bulk.

Current partition due to mode mixing at the pn interface will manifest itself in

the finite shot noise intensity. To evaluate noise, we note that mixing of the reservoir

distributions, no matter of what origin, results in particle energy distribution of the

form
n a I IV21n(e)= lnl(e) + -n2(e) (5.5)N N

which at small kBT is a double step. In analogy with diffusive systems [129], and

chaotic cavities [126, 130], this distribution serves as a Kogan-Shulman-like extraneous

source of current fluctuations,

J = Jn(e)(1 - n(j))de = Vsd. (5.6)

We relate the noise source J to the fluctuations of the two-terminal current by noting

that, since fluctuating current of intensity J is injected into each open channel, the

current fluctuations flowing into the n and p regions will be J1 = Ivl J and J2 = IV2 IJ.
Converting these fluctuations into voltage fluctuations and adding the contributions

of the n and p regions, we find the voltage fluctuations induced between the reservoirs:

jV2 = - +1 2  = 2 + ) J = Ysd (5.7)

Current noise can now be obtained as S = g2 6V 2, where g is the conductance (5.1).

It is convenient to characterize noise by the Fano factor F = S/I, describing noise
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Noiseless regime, F=0

Noiseless regime, F=O
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-1.5 pp -1 -0.5 0
Top gate Vt (I)

0.5 1 1.5

Figure 5-4: Shot noise Fano factor, Eq. (5.8), plotted vs. gate voltages for the same
parameter values as in Fig.5-3. Noise is zero in the unipolar regime (pp or nn) due
the absence of current partition at the junction interface, but finite in the bipolar
regime due to edge mode mixing at the pn interface.
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suppression relative to Poisson noise. We find

I viIv 21 1 3 5F (5.8)
(IviI + |v21)2  4' 16' 36"'"

where vl,2 = 2,6, 10.... The result (5.8) is identical in form to the shot noise Fano

factors predicted for chaotic cavities [126], which were tested and confirmed experi-

mentally [130]. The Fano factors in Eq. (5.8) are to be contrasted with the Fano factor

F ~ 0.29 in the absence of magnetic field [131].

Another regime for noise is possible if electrons, while traveling along the p-n

interface, have enough time to transfer energy to each other via inelastic processes.

This will occur if Tel < L/v, where Tel is the characteristic electron energy relaxation

time, v is drift velocity and L is the p-n interface length. (A similar regime was ana-

lyzed for diffusive [129] and chaotic [130] transport.) In this case, the electron energy

distribution is characterized by an effective temperature Teff which is determined by

the balance of the energy supplied from reservoirs and electron thermal energy flowing

out:

1 I vv v2 V2 = ((2)(Juvl + JIu2)kTef (5.9)2 Iv1 + jv2
The extraneous fluctuations, Eq. (5.6), evaluated for the Fermi distribution with

T = Teff, give J = kBTeff. Repeating the reasoning that has led to Eq. (5.8) we

find the noise intensity S = gkBTeff. This expression resembles the Nyquist formula,

except for the factor of two missing because the fluctuations (5.6) occur only in the

p-n region but not in the leads. Since Teff cc Vsd, this noise is linear in VT d. Similar

to the T = 0 shot noise, we characterized it by Fano factor F = (3F)1 /2/[r, with F

given by Eq.5.8.

We finally note that noise can be used to test which of the UCF suppression

mechanisms discussed above, self-averaging or dephasing, occur in experiment [9].

For coherent transport noise exhibits mesoscopic fluctuations similar to UCF which

can be analyzed within RMT framework. In the absence of time reversal symmetry,
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RMT yields ensemble-averaged Fano factor

IV12= (5.10)
( vii + IV21 + 1)(Ii + IV2- 1)

(see Eq. 11 in Ref. [128]). For v1,2 = 2,4,6... this gives F = 4/15, 12/63, 36/143....

These values, expected when transport is coherent but self-averaged, are different

from Eq. (5.8) obtained from incoherent mixing model.

5.5 Conductance quantization in p-n-p junctions

In this Section we consider edge states in p-n-p junctions, demonstrating that there

are three different edge states transport regimes, depending on the relation between

the filling factors in the locally gated central region (LGR) (v) and ungated parts,

referred to as graphene leads (GLs) (v'). The edge states mixing gives rise to the con-

ductance quantization, similarly to the p-n junctions considered above. We compare

the theoretical conductance pattern to the experimental observations [10], finding a

good qualitative agreement, but also some important differences, which are studied

in the subsequent Section.

From the point of view of the edge states structure, there are three possibilities.

The simplest possibility is when the polarity of GLs and LGR is the same (either p-

p'-p or n-n'-n), and the LGR density is lower that the GLs density: Iv'I < lvi. In this

case, as shown in Fig. 5-5a, the number of QH edge modes is larger in the GLs than

in the LGR. THe modes existing only in the GLs are fully reflected at the GLs-LGR

interfaces, while those present in both regions exhibit full transmission, giving rise to

the net conductance

e2  e 2

g = Iv' - = 2, 6, 10,... - (Iv' < Iv| and vv' > 0). (5.11)

This regime is similar to the unipolar regime in p-n junctions.

A more interesting situation occurs when the LGR density is higher than the GLs

density, with the LGR and GLs polarities still the same. In this case the number
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Figure 5-5: Edge states (a) to (c) and the quantized conductance values in a p-n-p
junction (d). (a) to (c): different edge states diagrams representing possible equi-
libration processes taking place at different charge densities in the GLs and LGR.
The purple region indicates the LGR, yellow boxes indicate contact electrodes. (d)
Simulated color map of the theoretical conductance plateaus expected from the mech-
anisms shown in (a)-(c) for different filling factors in the GLs and LGR. The numbers
in the rhombi indicate the conductance at the plateau.
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of the edge states is smaller in the GLs than in the LGR (see Fig. 5-5b). Crucially,

the states circulating in LGR can produce partial equilibration among the different

channels, because they couple modes with different electrochemical potentials. To

analyze this regime, we suppose that current I is injected from the left lead, while

no current is injected from the right lead. Then the conservation of current yields

I + 14 = I1, 12 = 13 (the LGR edges are labeled by 1, 2, 3,4 as shown in Fig. 5-5b).

Assuming that the current at the upper and lower LGR edges is partitioned equally

among available edge modes, we obtain the relations for the current flowing out of

these edges: 12 = rI1, 14 = rI 3, (r = 1 - Iv'I/jul). Solving these equations for 11...4 ,

we determine the current flowing in the drain lead as It = II - 12 and find the net

conductance

IV'Iv| e2 6 10 30 e2

9g ' (v'I > Ivl and vu' > 0), (5.12)
21v'I- Iv h 5' 9' 7 h

where v, v' = +2, 6,.... We emphasize that this partial equilibration regime can

only occur in the presence of two n-n' or p-p' interfaces and would not occur in a

single n-n' or p-p' junction [9, 101].

The last, but most unique case is when the GLs and LGR have opposite carrier

polarity. In this case, the edge states counter-circulate in the p and n areas, propa-

gating together along the p-n interface (see Fig. 5-5c). Such propagation, leading to

mixing among edge states, results in full equilibration at the p-n interfaces: I, = rI2 ,

13 = r14 , (r = Iv'I/(IvI + l|v')). Combining this with the current conservation, in this

case written as I + I = 14, 12 = 13, we find the currents and obtain the conductance

I| |v| e2 2 6 6 e2
g V 6 ... (v'I < 0), (5.13)

2v'l + [v h 3' 5' 7' h '

where v, v' = +2, ±6, .... The net conductance in this full equilibration regime is

described by three quantum resistors in series.

The summary of all possible conductance values for the three regimes discussed

above is shown as a color map in Fig. 5-5d. This color map corresponds to Fig. 5-2

for p-n junction case, the only difference being that in Fig. 5-5d the axes show filling
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Figure 5-6: (a) Color map of conductance as a function of top and back gate voltages
at magnetic field B = 13 T and T = 4.2 K. The black cross indicates the location of
filling factor zero in LGR and GLs. Inset: Conductance at zero B in the same range of
gate voltages and the same color map as the main figure (white denotes g > 10.5e2/h).
(b) g(Vt) extracted from (a), red trace, showing fractional values of the conductance.
Numbers on the right indicate expected fractions for the various filling factors (red
numbers indicate the filling factor, v', in LGR). (c) g(Vt) (projection of orange trace
from (a) onto Vt axis). Orange numbers indicate filling factor, v, in the GLs. From
Ref. [10].

factors in the GLs and LGR, and not the top and back gate voltages, as in Fig. 5-2.

Comparing the two color maps, we see that the sequence of quantized values is very

different in the p-n-p and p-n junctions.

How do our predictions, Eqs. (5.11),(5.12),(5.13), compare to the experiment?

Fig. 5-6a shows the experimentally observed conductance g as a function of local

and back gate voltages. Qualitatively, the structure of the experimental pattern

qualitatively resembles the theoretical one, see Fig. 5-5d. For a quantitative analysis,
we choose two cuts extracted from Fig. 5-6(a), showing conductance for fixed v = -2

(Fig. 5-6(b)) and v' = -2 (Fig. 5-6(c)). We notice reasonably good plateaus at
g = (2/3)e2/h, g = (10/9)e2/h as well as other fractions discussed above, with the
only exception of a considerably more poor plateau with g = 2e 2/h (see below).

Of particular interest is the non-monotonic conductance behavior in Fig. 5-6(b) for
v' = 2, -2, -6, -10 (with v = -2), which reflects the the full equilibration -* edge
states transmission -+ partial equilibration sequence. This is in contrast with the
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monotonic behavior of g in Fig. 5-6(c) for v = -2 -+ 2 --, 6 (with v' = 2), where only

the full equilibration and full transmission regimes are expected.

To sum up, we have studied three possible edge states transport regimes which

take place at different carrier densities in the GLs and LGR. Assuming edge states

equilibration, we obtained a sequence of fractional and integer quantized conductance

values, most of which are observed in the experiment [10]. However, at v = v' = +2

instead of the theoretically predicted plateau with g = 2e2/h experiment finds a

broadened peak with the maximal value of about 1.7e2/h. In the next Section we

present a possible explanation of this discrepancy.

5.6 Stability of the QHE in p-n-p junctions

In this Section, in an attempt to explain the absence of the v = v' = ±2 plateaus in

the experiment, we study the sensitivity of the conductance quantization to the edge

states backscattering in the locally gated region. The enhanced backscattering in the

central region may be caused by density inhomogeneities introduced by the top gate,

which is just 30 nm away from the sample. We analyze the effect of backscattering

in the bulk conduction framework, finding that the robustness of quantization at

different filling factors strongly depends on the LGR geometry. For the experimental

geometry [10] our model predicts that the plateaus with v = v' should be most

sensitive to the backscattering, thus explaining the observations [10].

We employ bulk conductivity approach and model the p-n-p junction as a conduc-

tor with a spatially inhomogeneous conductivity tensor, as illustrated in Fig.5-7. Left

and right regions correspond to ungated regions in the experiment and are assumed

to be incompressible, with quantized Hall conductivity U~', = vie2 /h and vanishing

diagonal conductivity. The gated central region is dissipative, with a,. -~ 0, which

accounts for the edge states backscattering. Below we reduce the conduction problem

in the inhomogeneous conductor to that in a homogeneous conductor [103] with a

modified conductivity tensor, which allows us to find the two-terminal conductance

of p-n-p device as a function of aux and the central region's aspect ratio e = L/W
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Figure 5-7: The schematic of our model: left and right regions are incompressible with
the Hall conductivity a'., the central region of width W and length L is compressible
and has a conductivity tensor (axx, ay,).

(see Fig.5-7).

In the limit of vanishing a,, our model predicts quantized values which coincide

with the results of the edge states model described in the previous Section. The

sensitivity of the quantized conductance values to non-zero oaU strongly depends on

the aspect ratio £ = L/W: (i) for small aspect ratio f < 1, the quantization at

equal densities in p and n regions is most robust, while the quantization at nonequal

densities is extremely sensitive to non-zero a,,; (ii) for aspect ratio £ > 1, the quan-

tization at large densities in the central region is more robust than the quantization

at small densities in the central region; (iii) for a square central region, £ = 1, we

evaluate the conductance analytically using the duality argument [108] and find the

quantization at v - V' is especially robust, because, the first order in aUz correction

to the quantized conductance value vanishes.

Below we also analyze the conductance as a function of carrier density in the

central region, which can be directly compared to the experimental data [10]. To

model the filling factor dependence of the conductivity tensor (axx, ao,), we employ

the semicircle law [109, 104], describing the transition between neighboring integer

QHE plateuas. The semicircle law is known to be sufficiently general and it was

recently noticed to hold in graphene [110, 48].

The conductivity tensor (aUX, ax,) obtained from the semicircle model was defined

in Chapter 2, see Eqs. (2.7),(2.8),(2.9), and below we will use those expressions. For
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simplicity sake, throughout this Chapter we shall assume that the LL broadening

parameter A is the same for all LL. Then it follows from Eqs. (2.7),(2.8),(2.9) that

the value of ax, at the center of the k-th plateau is given by

ax, = uke2/h (5.14)

The current distribution in the central region can be found from the continuity

equation for the current density j = (jx, j,) and zero-curl condition for the in-plane

electric field component E = (E., Ey),

V j=0, VxE=0, (5.15)

supplemented by proper boundary conditions and a relation between the current

density and the electric field,

j = azuE - axyz• x E, (5.16)

where ^ is a unit vector normal to the xy plane. Following Ref. [132], we introduce a

stream function i via

j = x V, (5.17)

which ensures the current continuity requirement (5.15). From Eqs.(5.15),(5.16) it

follows that the stream function in the central region satisfies the Laplace equation,

V2¢ = 0. (5.18)

Boundary conditions for the stream function at the interfaces x = 0, L can be

obtained from the requirement that the current component j. perperdicular to the

interface and the electric field component E, parallel to the interface are continuous.

This gives a relation between j, and j, current components in the central region,

J Px x - x= 0, L, (5.19)
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where Pxx, Pxy are the longitudinal and Hall resistivities in the central region, and

p'y is the Hall resistivity in the left and right regions. At the edges of the sample

y = 0, W the boundary condition is that no current flows out of the sample,

jy= 0, y = 0, W. (5.20)

To make further progress, we notice that the limit of vanishing p'• corresponds to

a perfectly conducting p regions, which then play a role of ideal contacts. Therefore,

the problem of current flow in the n region, Eqs.(5.17),(5.18),(5.19),(5.20) is formally

equivalent to that in a rectangle with spatially uniform resistivity tensor (p&X, p5y) =

(Pxx, PXy - P'y) and contacts situated at x = 0, L. Such problem was solved in

Refs. [106, 103]. This observation allows us to express the conductance of the p-n-

p junction in terms of the resistance of a homogeneous rectangle with dimensions

(L, W).

Without loss of generality, below we assume the filling factor v' to be positive,

which corresponds to the edge states circulating clockwise. The source-drain bias VSD

can then be evaluated between any point at the upper edge of the left region and any

point at the lower edge of the right region. Because there is no voltage drop along the

edges of the incompressible regions, VSD equals the voltage drop between the corners

of the central regions, a and d (see Fig. 5-7). Therefore VSD can be written in terms

of current components integrated along the contour abcd, illustrated in Fig. 5-7,

VSD = lbcd pjx dx- -(p - xyj)dy. (5.21)

Writing pxy in the above expression as p•y + pxy, we express VSD via the source-drain

bias in the equivalent conduction problem for a homogeneous rectangle,

VSD = VSD '+ jPjxyjdy = VSD + P'I, (5.22)

where I is the total current. From this we can obtain the relation between the

conductance G = I/VsD of the p-n-p junction and resistance R = VsD/I of the

128



homogeneous rectangle,
1

G = (5.23)

When the central region is incompressible, which corresponds to no backscattering,

Pr, = h/ve2 is quantized and R? = IP~x - p'yl, independent of the aspect ratio t.

Therefore the conductance is quantized,

1
G = 1 (5.24)

P'Y + 1PXY - pXYl"

Using relations p~, = h/ve2 , p', = h/v'e2 , we express G in terms of filling factors,

VV' e2

Go = , (5.25)V' + Iv' - v| h

This is in agreement with the predictions of the edge states model discussed in the

previous Section.

When p,, Z 0, the quantization is destroyed, and below we study the sensitivity

of the quantization to pxx as a function of filling factors v, vJ and aspect ratio £. An

analytical result for arbitrary pxx can be obtained for a square central region, e = 1.

In this case the resistance Rq = P~x + (p, - py) 2 , as follows from the duality

argument [108]. Therefore, the p-n-p conductance is given by,

1
Gsq = (5.26)

An interesting implication of this results is that the linear term in the expansion of

G,q in powers of px: vanishes, and therefore the conductance quantization it this case

should be especially robust, at least at weak backscattering.

For an arbitrary aspect ratio, k cannot be found analytically, and we evaluate

it numerically using the approach of Ref. [103]. The detailed description of our

numerical procedure can be found in Chapter 2. We start with evaluating conductance

G as a function of aou at the centers of the plateaus, where the filling factor v is

quantized and the Hall conductivity is given by ox = ve2/h, see Eq.(5.14). The
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Figure 5-8: Conductance at the centers of various plateaus as a function of the lon-
gitudinal conductivity a,, in the central region, (a) plateaus with p', > p,y and
(b) plateaus with p'y < p-,. Red curves correspond to central region's aspect ratio
t = 0.25, blue curves to e = 0.5.

resulting behavior for several plateaus (characterized by two numbers v, v' from the

sequence (1.13)) and aspect ratios f = 0.25,0.5 is illustrated in Fig.5-8. In Fig.5-

8a we show the conductance for filling factors v' = 2, v = -6,-2,2,6, 10, which

corresponds to the case p',y p,,y, and in Fig.5-8b we show the conductance for

filling factors v = 2, v' = 6, 10, 14, corresponding to the case p'., < py,.

Examining Fig.5-8 we find that the behavior of the conductance G(ao,,) is quite

different in the two cases, v' = v = -2 and v' 7 v. For v' = v = 2 the conductance

is less sensitive to a,, for the smaller aspect ratio £ = 0.25. For v' 7 v the situation

is opposite: the conductance is more sensitive to a, for the smaller aspect ratio

£ = 0.25. Another interesting feature is that for large v > 1 the conductance is

almost insensitive to qa,, and remains very close to its value at a,, = 0 even at

a,, e2/h.

Combining the numerical procedure with the semicircle law (2.9),(2.7),(2.8) we

now analyze the conductance as a function of the filling factor in the central region.

The function G(v) for the aspect ratio £ = 5/7 from the experiment [10], and v' = -2

is pictured in Fig.5-9. The two curves in Fig.5-9 correspond to narrow LLs (solid

curve, parameter A = 1.7) and broadened LLs (dashed curve, A = 0.5). For the narrow
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Figure 5-9: Conductance G as a function of the filling factor v in the central region.
The filling factor in the left and right regions is v' = -2, the aspect ratio L/W = 5/7
is taken from the experiment [10]. For narrow LLs (A = 1.7, top curve) all the
plateaus are well developed, while for broadened LLs (A = 0.5, bottom curve) the
plateau with v = -2 is destroyed, while all the others are still preserved. The bottom
curve models experimental data displayed of Ref. [10] displayed in Fig. 5-6b.

LLs, all the plateaus are well developed. For the broadened LLs, the quantization

is destroyed only at v = v' = -2, while all the other plateaus persist despite the

relatively large value of ax, ; 0.5e2/h at the plateaus centers.

Fig.5-9 can be directly compared to the experiment. The dashed curve in Fig.5-9

models the experimental data shown from Ref. [10] shown in Fig. 5-6b. We chose the

value of the parameter A = 0.5 in such a way that the peak value of the conductance

at v = -2 matches the experimentally observed value G - 1.7 (see Fig. 5-6b). This

allows us to achieve a good qualitative agreement with the experiment [10] in the

whole range of filling factors -12 < v < 12.

To gain further insight into the sensitivity of various plateaus to arx, we now

analyze the conductance at the center of each plateau in the limit of small am < e2/h,

corresponding to weak backscattering. We shall be interested in the first in aox
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correction to the quantized values given by Eq.(5.25) at the center of the plateau.

This correction, SG, can be expressed via the first-order term in the expansion of R,

SG = -G SR. (5.27)

The behavior of bR is different in the two cases, (i) v = v', and (ii) v V v'. In

the first case, due to the fact that at the center of the plateau a,, = a, = ve2/h,

effective Hall resistivity i, - O(a2x) (to see this, one needs to express Jy in terms

of Uay, UXo). Therefore, the current flow in the central region is that for a conductor

with zero Hall angle and resistivity p,,x , /x/a2 , which gives b• = a,/Ul , This

allows us to obtain CG,

SG = -axx. (5.28)

The second case, v / v', corresponds to the limit of large effective Hall angles,

191 = Iarctan(py/,3ix)l . 7r/2. The behavior of SR for large Hall angles was analyzed

in Ref. [106],

6R = -pXX(e), (5.29)

where n(e) is defined as follows,

S(f) = In 1 - k f K(V/1 -- k2)
2(K)= In 2 (5.30)2 '.k 2K(k)

with K being the complete elliptic integral of the first kind. Combining Eqs.(5.29)

and (5.27), we obtain the correction SG,

6G = (- + ,) XX(). (5.31)

The dependence (#e) is illustrated in Fig. 5-10. Notice that cn(t) vanishes for the

square case, f = 1, in agreement with the analytic formula (5.26).

The limiting behavior of the function #(£) at 1 > 1 is approximately linear, n(£) .

e > 1, which is due to the fact that a homogeneous current flow sets in the central

region with large aspect ratio. In the opposite limit of small £ < 1 the function n(£)
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Aspect ratio I=L/W

Figure 5-10: Quantity r,, defined in Eq. (5.30), as a function of the aspect ratio f.

has a divergence, which can be qualitatively understood as follows. Since the central

region is very narrow, it becomes well conducting at relatively small axx . x a> = fe2/h

and essentially behaves as an ohmic contact. Therefore for ao > u x the resistance of

the p-n-p junction can be obtained as a series resistance of the left and right regions,

which gives the conductance G, = v'e 2/2h. Then the derivative of the conductance

with respect to axx can be estimated as dG/dazx - (G, - Go)/aol c 1/1. Since

r oc dG/daxx, we obtain i oc l/1, which explains the divergence of r at £ -+ 0.

Examining Eqs.(5.28),(5.31), we find that at small aspect ratios e < 1 the quan-

tization for v = v' is very robust, while the quantization at v # v' is destroyed even

by weak backscattering. For aspect ratios fe > 1 the quantization is most robust at

large filling factors in the central region, v > v'.

In conclusion, in this Section we have found that the relative sensitivity of various

plateaus in p-n-p junctions with respect to the edge states backscattering in the LGR

strongly depends on the LGR geometry. For narrow LGR (f < 1), plateaus with

v = v' are most robust, while for wide LGR (f > 1) plateaus with v > v' are most

robust. Our results agree the experimental observations of Ozyilmaz et al. [10] where

samples with e - 1 were studied. Samples with narrow LGR, e < 0.5, were studied

recently by J. Lau group, see Ref. [100]. Lau et al. found that in such samples the

plateau at G = 2e2 /h is recovered, as we would expect from our model. However,
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the observation of Lau et al. is most likely due to the fact that in their experiment

the LGR was less disordered than LGR in the experiment of Ozyilmaz et al. [10] (the

two experiments used different procedures to fabricate top gates). Because of that,

we cannot attribute the observation of the G = 2e2/h plateau to the LGR geometry

effect. Thus we conclude that although predictions of our model agree with both

experiments, a more detailed experimental study of the quantization in samples with

different LGR geometries is required.
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Chapter 6

Spin and Charge Transport near

the Dirac Point

6.1 Abstract

In this Chapter we exlplore spin and charge transport phenomena at the quantum

Hall edge of v = 0 state. First, we compare valley- and spin-polarized v = 0 states,

finding that, while the former is insulating, the latter features a pair of spin-filtered

counter-circulating edge states, which give rise to a metallic behavior of transport

coefficients.

The spin-filtered edge state lead to a rich variety of spin transport effects, including

quantized spin Hall effect, spin filtering and injection, and detection of spin-polarized

currents. The estimated Zeeman gap, enhanced by exchange, of a few hundred Kelvin,

makes v = 0 state in graphene an attractive candidate for spintronics.

Furthermore, by introducing and solving a model, where transport along the edge

is accompanied by weak transport through the bulk, we study density dependence of

the transport coefficients for the spin-polarized v = 0 state. We find, in agreement

with the experiment (see Section 1.4), that the Hall conductivity exhibits a smeared

plateau, while the longitudinal resistivity exhibits a broadened peak with a maximal

value of a few h/e 2; depending on the model parameters, the Hall resistivity may

either smoothly change sign at v = 0, or have a smeared plateau. Most of the results

135



presented in this Chapter are published in Refs. [11, 6, 64].

6.2 Introduction and outline

As we have already discussed above in Section 1.4, QHE state at the Dirac point

exhibits unusual behavior of transport coefficients [5, 6]. While the Hall conductivity

has a plateau at the Dirac point, similarly to other QHE states, the Hall resistivity

often does not exhibit any features. Furthermore, the longitudinal resistivity at the

Dirac point has a metallic temperature dependence, and at low temperatures saturates

at a value of the order of a few h/e 2

Theoretically, several possible v = 0 QH state have been proposed [11, 81, 93, 82,

5]. Refs. [11, 81] considered a QHFM scenario, where the v = 0 state is spin-polarized,

in Refs. [5, 80] valley-polarized QHFM state was suggested. An alternative scenario

of dynamically generated Dirac fermion mass was proposed in Ref. [?], while Ref. [82]

put forward a possibility of a spontaneous sublattice symmetry breaking due to the

interaction with substrate.

The primary goal of this Section is to theoretically compare transport properties

of different v = 0 states. We argue that the spin-polarized state [11, 81] has a peculiar

edge state structure, which makes its transport characteristics distinctly different from

those of the valley-polarized state [5],and states proposed in Refs. [93, 82].

More specifically, the spin-polarized state features a pair of edge states of op-

posite chirality and opposite spin polarization [11]. The unique property of these

spin-filtered edge states is that they carry spin-up and spin-down excitations in the

opposite directions, and therefore backscattering cannot happen without a spin flip.

In graphene, as we discuss below, spin flips are strongly suppressed due to the small-

ness of the spin-orbit interaction. Thus the spin-filtered edge states do not localize

down to low temperatures, in contrast to the counter-propagating surface states dis-

cussed in Chapter 4. Conducting spin-filtered edge states lead to a metallic behavior

of the resistivity for the spin-polarized v = 0 state.

Below we provide a general argument, showing that gapless edge states can only
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occur in the spin-polarized v = 0 state, and are absent in other proposed states.

Therefore, spin-unpolarized states [5, 93, 82] are gapped both in the bulk and at

the edge, and thus exhibit an insulating behavior, with an activated temperature

dependence of resistivity. Therefore, experimentally observed metallic behavior [6]

(see Section 1.4) suggests that the v = 0 state is spin-polarized.

Can edge states explain the intriguing behavior of the Hall resistivity observed

in the experiment? To answer this question, we consider a model, where transport

at opposite edges is shunted by a weakly conducting bulk. Remarkably, we find,

in agreement with the experiment, that for a wide range of model parameters py

smoothly changes sign at the Dirac point; for other parameter values it exhibits a

smeared feature at v = 0. Our analysis lends further support to the picture of spin-

polarized v = 0 state.

Furthermore, we address spin transport properties of the v = 0 state. The spin-

filtered character of the edge states gives rise to a quantum spin Hall effect; further-

more, these edge states can be employed to realize and explore interesting new spin

transport phenomena, such as spin filtering and spin injection, whereas the spin Hall

effect provides a natural tool for the detection of spin current.

The rest of this Chapter is organized as follows. In Section 6.3 we demonstrate

that the gapless edge states at v = 0 are specific to the spin-polarized v = 0 state; if

the v = 0 state is valley-polarized, the edge states are inevitably gapped. We point

out that the difference in the edge states leads to very different transport properties

of the two states . In Section 6.4 we study the spin transport properties of the spin

filtered edge states, suggesting that they may be used for spin filtering and spin-

polarized current detection. Section 6.5 is a detailed study of the charge transport

properties near v = 0. We start it with the estimate of the mean free path at the

edge, finding it to be comparable to the typical sample size. To explore the density

dependence of the transport coefficients in detail, we introduce and solve a model

where edge and bulk transports are coupled. Our model is capable of reproducing all

the qualitative features observed in the experiment [6].
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6.3 Spin polarization versus valley polarization

In this Section we compare the edge states spectra for the spin-polarized and valley-

polarized states at v = 0. We find that while the spin-polarized state supports

a pair of counterpropagating gapless edge modes, for the valley-polarized state the

valley mixing at the edge opens up a gap in the edge states spectrum. Therefore,

the two states should exhibit very different transport properties, most notably, at

low temperatures the spin-polarized state should remain metallic, while the valley-

polarized states is insulating. In the high-filed experiments [5, 61 a,, is of the order

of e2/h down to 4 K, which suggests that the spin-polarized state is realized in the

experiment.

We start with the spin-polarized case. The Zeeman splitting modifies the edge

states spectrum illustrated in Fig. 4-1 by shifting spin-up LLs upwards, and spin-

down LLs downwards. The spin-split spectrum shown in Fig. 6-1 features a pair

of counter-propagating edge states in the vicinity of the zero energy. Remarkably,

these edge states carry opposite spins, which makes them fundamentally different, for

example, from the counter-propagating surface states discussed in Chapter 4.

Fig. 6-1 illustrates the single-particle spectrum of excitations. However, taking

the Coulomb interaction into account does not change the main feature of the spec-

trum, the presence of the gapless modes propagating in both directions along the

edge [98]. There is also an important modification: the edge states become inter-

acting and form a Luttinger liquid. This, in principle, should affect their transport

properties compared to the non-interacting model. However, at relatively high tem-

peratures the Luttinger-type effects, such as backscattering amplitude enhancement

are rather small and can be safely neglected. Therefore, below we shall treat the

edge modes as non-interacting; this assumption, although it inevitably breaks down

at very low temperatures, should provide a qualitatively correct picture of transport

at the experimental temperatures ranging between 4 K and hundreds of Kelvin [5, 6].

Can gapless edge states occur in a valley-polarized v = 0 state? To answer this

question, we notice that for gapless edge states to occur, at least one of the zeroth
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Landau sub-levels should be empty in the bulk, giving rise to a hole-like edge mode.

(This is the case for the spin-polarized case, see Fig. 6-1: two spin-up Landau sub-

levels are empty in the bulk, and they split near the edge into one hole and one

electron mode.) To explore the valley-polarized case, we recall the valley structure of

the edge modes found in Chapter 4: for an armchair edge, the edge modes consist of

an equal-weight superposition of the two valleys, while for the zigzag edge the edge

states come from one of the valleys. In the bulk, one valley state determined by

the order parameter is empty. Because the edge of graphene has zigzag as well as

armchair parts, the hole edge mode will be different from the empty Landau sub-level

at least in some regions along the boundary. Therefore, the valley-polarized v = 0

state does not support gapless edge modes.

From a general symmetry viewpoint advanced by Kane and Mele [133] the ex-

istence of counter-circulating gapless excitations is controlled by Z 2 invariants, pro-

tecting the spectrum for gap opening at the branch crossing.In the spin-polarized

state [11] such invariant is provided by the z spin projection, az. Thus when the a.

conservation is violated (this can occur, for example, when spin-orbit of the Rashba

type is present), a gap should open up at the branch crossing.

We point out that Z 2 invariant cannot be an operator in the valley space, because

the two valleys are mixed by the edge disorder, which breaks any valley symmetry.

This consideration confirms our argument above explaining the absence of gapless

excitations in the valley-polarized state.

Thus the possible states near v = 0 can be broadly classified in two groups, as

illustrated in Fig.6-2. The transport properties in these two situations are quite dif-

ferent. A pair of gapless edge excitations (Fig. 6-2a) provides dominant contribution

to .ax when transport in the bulk is suppressed by an energy gap. Such systems will

have a- ,, e2/h > a,,, i.e. nominally small Hall angle and apparently no QHE; no

strong temperature dependence of the transport coefficients is expected. In addition,

the longitudinal transport should have a one-dimensional character. Paradoxically,

in such dissipative QHE state the roles of bulk and edge in transport interchange: the

longitudinal response is due to edge states, while the transverse response is determined
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0 2Momentum px

Figure 6-1: The spin-split graphene edge states, propagating in opposite directions
at zero energy: the blue (red) curves represent the spin up (spin down) states.

Figure 6-2: Excitation dispersion in v = 0 graphene QH state in a system with gapless
chiral edge modes (a) and in the situation when gapless edge modes are not protected
by symmetry or do not exist (b). Case (a) is realized in spin-polarized v = 0 state,
described in Ref.[11], while case (b), for example, occurs in valley-polarized v = 0
state conjectured in Ref.[5]. In the latter a gap opens up at branch crossing due to
valley mixing at the sample boundary.
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mainly by the bulk properties.

In contrast, when there is a gap at the edge (Fig. 6-2(b)), longitudinal conductivity,

being due to the bulk contribution, has a two-dimensional character. Since the bulk

is gapped, o,, exhibits strong activated temperature dependence, vanishing in the

limit of zero temperature. Naively, one expects the Hall conductivity ax, to behave

similarly in both cases, exhibiting a flat plateau near v = 0. However, as we shall see

below, in the gapless case this is not necessarily correct: the coupling between edge

and bulk transport can change the flat plateau to a tilted feature.

To sum up, the two possible v = 0 QH states, spin-polarized and valley-polarized,

exhibit very different edge states spectra. The spin-polarized state supports a pair

of gapless counter-propagating edge states, which are absent in the valley-polarized

state. This leads to a drastic difference in the behavior of ax, which provides a tool

to study the nature of the v = 0 state.

6.4 Spin transport properties

As we noted above, at the neutrality point, v = 0, graphene hosts gapless spin-

polarized edge states (see Fig.6-1). In this Section we discuss interesting spin trans-

port properties which arise due to the unusual edge states structure.

The Zeeman energy gap in the bulk,

Ez = gPBB . 45 K at B = 30 T, (6.1)

is enhanced by the Coulomb interaction. A Hartree-Fock estimate of this enhance-

ment [11] is very similar to that in the QH bilayer systems (1.12), and gives a gap

7-1/2e2A = 4hv (1 - a)eo P 0.456. (1 - a)EO, (6.2)

where I = 1+ re2/2hvo , 5.24 is RPA screening function, and the parameter 0 < a <

1 describes relative strength of Coulomb and exchange correlations (In our discussion

of QH bilayers we took a = 0). Assuming a = 0, i.e. ignoring correlations of
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Figure 6-3: A Hall bar at v = 0 can be used to generate and detect spin currents.
Blue and red lines represent edge currents with up and down spins. Contacts 1 and
4 are source and drain, which may be used to inject spin polarized current. Contacts
2, 3 are voltage probes with full spin mixing. The measured Hall voltage is directly
related to spin current flowing in the system. An asymmetry between the upper and
lower edges, e.g., introduced by removing voltage probe 3 or by gating, creates spin
filtering effect: an unpolarized current injected from source 1 induces a spin-polarized
current flowing into drain 4. Hall probes 5 and 6 downstream can serve as detectors
of spin currents.

electrons with opposite spin, we obtain a spin gap A - 400 K for B = 30 T. Taking

into account the substrate dielectric constant, e2 _ -2-e 2 , changes the result only

slightly (2 = 0.36 for SiO 2). This approximation, while pointing at a correct order

of magnitude of a few hundred Kelvin, probably somewhat overestimates the spin

gap since it ignores correlations and disorder effects.

The chiral spin-polarized edge states offer a unique setting to study spin transport.

In particular, the spin-split state v = 0 may be used to generate and detect spin-

polarized currents. This spin transport regime seems attractive due to the large bulk

gap (6.2) and high stability of the edge states. Moreover, increased quality of samples

should allow existence of spin polarized edge states even at relatively low magnetic

fields.

The purpose of this section is mostly illustrative, and we will keep our discussion

as simple as possible. In particular, we shall ignore transport in the bulk, leaving

the discussion of its role for Sec. 6.5. We also first neglect spin flip backscattering

between edge states within one edge. Estimates of the spin flip rate wil be given below,

Eq.(6.4). A general approach, based on the Landauer-Biittiker formalism [125], which

can be used to calculate spin and charge currents at the edge for any configuration
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of current and voltage leads, was presented in Ref. [11].

In this approach, transport is described by a scattering matrix [125], with the

edge states playing the role of scattering channels, and the reservoirs supplying in-

states and absorbing out-states. Current in each mode is described by the relation
f
2

IT(l) = -h T(l) , where pT(1) is the reservoir chemical potential for given spin projection.

We consider the Hall bar geometry with four contacts 1-4 (see Fig.6-3), where the

contacts 1 and 4 serve as current source and drain. For these two contacts we do not

assume spin mixing, so that the injected and drained current may be spin polarized.

The contacts 2, 3 are voltage probes, which means that they do not drain current

from the system. Furthermore, we assume that the probes provide full spin mixing,

i.e. chemical potentials of outgoing spin-up and spin-down electrons are equal.

The simplest situation arises when unpolarized current is injected through contact

1. Then the up- and down-spins spatially separate in a symmetric way, flowing along

the opposite edges of the bar. This can be interpreted as circulating spin current,

and described as spin-Hall effect with quantized spin conductance aspin) = e2 /h. No

electric voltage will be induced between the voltage probes 2, 3 in this case (zero

charge-Hall effect).

This device can be used as a detector of spin polarized current, made possible

by the reciprocal of the spin Hall effect, in which the electric Hall voltage is directly

related to spin rather than charge current. Suppose the up-spin and down-spin elec-

trons, injected through contact 1, have unequal chemical potentials, ýoT - v. Then

the currents flowing into the probes 2 and 3, It(1) = -T(4), after equilibration and

spin mixing in the probes, induce voltages V2(3) = ~(1)/2 . The resulting Hall voltage

VXY = (WP - W)/2 is directly proportional to spin current. At the same time, an

unpolarized current (for which p~ = WT) flows symmetrically in the upper and lower

edges without generating Hall voltage.

Spin transport at v = 0 also allows to realize spin filter. Suppose that the upper

and lower edges of the device in Fig.6-3 are made asymmetric, which can be achieved,

for example, simply by removing probe 3. Then we inject unpolarized current 21

through contact 1. The injected current will be distributed equally between the
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upper and lower edges in cross section A. In cross section B, however, the net current

will be spin polarized due to spin mixing in probe 2. The down-spin current reaching

the drain in the upper edge equals 1/2 while the up-spin current in the lower edge is

I. Therefore, the total drained current becomes spin polarized. The spin polarized

current can be fed into another system (see Fig.6-3), where it can be detected using

Hall probes 5 and 6 as discussed above.

More complicated circuits can be assembled which generate spin currents and

detect them elsewhere. Note that the important principle is that as long as backscat-

tering is not allowed, the edge current can travel long distances and the circuit is

nonlocal, just as in the integer QHE [125]. In this case the current-voltage relation-

ship is obtained by solving the circuit equations as described in Ref.[11]. The spatial

scale of nonlocality is controlled by spin relaxation which can be due to spin-orbit

interaction or due to magnetic impurities near graphene edge.

Since the system is in strong magnetic field, the magnetic impurities will likely be

polarized; this suggests that the primary source of spin relaxation is the spin-orbit

interaction. There are two main spin-orbit terms in the graphene Hamiltonian [134,

135], the so called intrinsic and Rashba interaction, given by

Hso = ASOUzTzSz, HR = AR(UxTzSy - aySX), (6.3)

where Pauli matrices ai act in the sublattice space (two components of the Weyl

spinor), while 7i act in the valley space, and si represent physical spin. Estimates

from band calculations [135] give AR _ 0.1 K and a negligibly small Aso . 6 mK.

To estimate the backscattering rate due to the spin-orbit interaction, we note that

for an ideal atomically sharp edge the spin-orbit would couple the left and right states

with the same momentum, opening a minigap at branch crossing: g = ± E2 + AR 2.

However, this momentum-conserving interaction alone cannot backscatter edge states,

and we need to take disorder into account. Edges of graphite monolayers have been

imaged using STM probes [73, 72], where it was found that typically edge disorder

can be viewed as patches of missing atoms of characteristic size d 1 inm. Taking
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into account the left-right branch mixing by spin-orbit HR, characterized by small

mixing ratio of AR/Jle < 1 away from branch crossing, we obtain an estimate of the

backscattering mean free path:

f(E) - (E/AR) 2 (eB/d)2 d, le6 r? AR, (6.4)

which gives e ~ 10 pm for typical e - 10 K. The factor (eB/d)2 > 1 accounts for the

magnetic field dependence of disorder matrix elements.

The quadratic energy dependence in (6.4), with spin flip rate having a sharp peak

near branch crossing, suggests [11] the possibility to control backscattering using local

gate. By tuning local chemical potential to and from the branch crossing, where the

spin flip rate has a sharp peak, Eq.(6.4), we can induce or suppress backscattering

in a controlled way. Spin filtering is achieved by controlling local gates on opposite

sides of the Hall bar asymmetrically.

6.5 Dissipative QHE

We start this Section with briefly reminding the basic experimental observations near

v = 0, which were already discussed in Section 1.4. Fig. 1-7 shows typical behavior

of monolayer graphene samples [6] at 30 T where, besides the standard half-integer

QHE sequence, the v = 0 plateau becomes clearly visible as an additional step in a,,.

We note, however, that the step is not completely flat, and is not accompanied by

a corresponding zero-resistance plateau in PRy. Instead, Ry, exhibits a fluctuating

feature away from zero (see Fig. 1-7). (In some devices R,, can pass through zero in a

smooth way without additional fluctuating features.) Moreover, R,, does not exhibit

a zero-resistance state either. Instead, it has a pronounced peak near the neutrality

point which does not split at zero v in any field. The value at the peak grows from

R•, - h/4e2 in zero B (7.5 kO for the shown devices) [1] to Rx. > 45 kQ at 30 T (see

inset of Fig. 1-7).

Spin flip backscattering (6.4) can be incorporated in the edge transport model,
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described by coupled equations for particle density in the two spin-polarized modes:

Otnl + dl = (p2 - 1) (6.5)

ttn2 - &xWp2 = '(1- V2), ni = vPi,

where 7- 1 = £ is the backscattering mean free path (6.4) taken for e at the Fermi

level, and v1 ,2 are compressibilities of the modes. (For brevity, we use 1 and 2 instead

of T and 1.) In writing Eqs.(6.5) we implicitly assume that fast energy relaxation

maintains local equilibrium of each of the modes, which is consistent with metallic

temperature dependence of transport coefficients [6].

In a stationary state, Eqs.(6.5) have an integral I = 1 - 2 which expresses

current conservation at the edge. [In this section we use the units of e2/h = 1.] The

general solution in the stationary current-carrying state is

1,2() = ,2 - EX, E = •I (6.6)

Taking into account that I is the current in one edge, we calculate the total current

as
2

I = 21 = 2 (6.7)

To describe the longitudinal resistance in the four-terminal geometry, one must add

potential drop on voltage probes [6], which gives R = -(yL + 1), where L is the

distance between the probes. Comparing to the data for pxx at v = 0 we estimate [61

f 0 0.5 pm. This mean free path value, which is relatively small on the scale predicted

by Eq.(6.4), can be explained if spin flip processes are dominated by nonintrinsic

effects, such as magnetic impurities localized near the edge.

It is crucial that the edge transport model (6.5) treats both edges of a Hall bar in

an identical way, thus predicting zero Hall effect. In order to understand the observed

density dependence of Hall coefficient [5, 6], which changes sign smoothly at v = 0

without exhibiting a plateau, and of pxx which has a sharp peak at v = 0, we need

to incorporate transport in the bulk in our model. In the full edge+bulk model, the
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density dependence of transport coefficients arises from bulk currents short-circuiting

edge currents away from v = 0. This explains, as we shall now see, the Hall effect,

the peak of P,,, the resistance fluctuations near v = 0, as well as the behavior of a.,

and oay.

We describe the transport problem in the bulk by the current-field relation, sep-

arately for each spin projection:

= -&iV'Vi, 8i = (o{a3(i) - (i)o(i), i = 1,2,

where ¢1,2 are electrochemical potentials for two spin states. We assume that the bulk

conductivities a~.,2), as a function of density v, are peaked at the spin-split Landau

levels. For simplicity, here we ignore possible valley splitting, in which case the spin

up and down Landau levels occur at v = ±1 around the Dirac point. As a simplest

model, below we use Gaussians

) = eA(v- (2) ( = e1)2  (6.8)

with the parameter A describing the width of the levels. The Hall conductivities (1,2)

exhibit plateaus on either side of the peak in -(,2). The dependence of a 2) on v

can be modeled with the help of the semicircle relation o(2) (a Y 2)= 2) + (aO~2))2 = 0

which often provides a good description of conventional QHE systems [104], and more

recently has been demonstrated to hold in graphene [110].

The condition of charge continuity, Vji = 0, gives a 2d Laplace's equation for

the potentials, V2 i0 = 0. This equation must be solved together with the boundary

conditions phenomenologically describing bulk-edge coupling:

n.ji = g(Oi - pi) (6.9)

where n is a normal vector to the boundary, and g(Oi - pi) represents the edge-bulk

leakage current density.

Although a general solution of this problem can be given with the help of Fourier

147



method, here we consider only the case when the potentials Oi(x) are varying slowly

on the scale of the bar width w, which will suffice for our analysis of a homogeneous

current flow. In this case, linearizing i (x) in the direction transverse to the bar, we

can write Eqs.(6.9) for both edges of the bar as

-aXg09•¢Vi + '(X , - V•)/W = g(¢oi - (6.10)
(6.10)

OU09X•i' + U.*(bi - 00/w = g(Xi, - ,),

i = 1, 2, where the primed and unprimed quantities denote variables at opposite edges

of the bar.

Equations for the edge variables cpi are obtained by adding the bulk-edge leakage

term to Eqs.(6.5), giving

(9~PI = 7Y(-2 - cP) + 1g(1  - 1), (611)

-&x~P2 = -Y((P1 - W2) + g(0 2 - (P2),

along with a similar pair of equations for (pl,, W2' at the opposite edge.

The solution of these eight equations, describing uniform current, is of the form

ýi = W! - Ex, Oi = Oi* - Ex, etc., with the same linear part -Ex for all quantities.

Using the algebraic structure of this linear system and the symmetry between the

edges, we reduce the number of equations from eight to two. First, it is convenient

to express the parameters W* through y'ý using Eqs.(6.11), which gives

* = +g g'* + -f * E(P1 -- 2t+g 21+g 2 27+g (6.12)
*- =-Y+9g+ ,* 2+,* E
*(P2 = *+g 2 2+g 12 2 27+g

Writing similar equations for the variables at the opposite edge to express cpl,, (2'

through t1,, '2,, and substituting the result in Eqs.(6.10), we obtain four equations
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for ¢i and 0i, which have the form

-(1) a (1) *- A(*,- 1,) (6.13)U'zy WE XX ( 1' 2 1

- = -x 2'

where the coefficients in this linear system are defined as

(1,2) =(1,2) g A = (6.14)
~ ' 2Y 27 + g(' 27 + g

The quantities (1 '2) represent the sum of the bulk and edge contributions to Hall

conductivity for each spin.

Symmetry between the edges allows to further reduce the number of independent

variables. For that we add the first two equations to obtain ?( + 0, = (Y + ',/. Also

we note that all potentials can be changed by the same constant that can be chosen

so that the new quantities #* and 4i, satisfy 4• = -*,. After that Eqs.(6.13) yield

-(1) E 2= X(0),, 21¢- (6-1)
-iy WEW --- V)(- -(V51 2(6.15)

These two equations can be solved to find as,2.

Now we can find the current as a sum of the edge and bulk contributions, I =

ledge + Ibulk, where

ledge = 1 - 2P2 2' - (1' = 2(PT - P* )

and

'bulk 1 1'2 2') + 2 )w

After expressing Wpi through 4i with the help of Eqs.(6.12) and using the solution of
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Figure 6-4: Density dependence of transport coefficients pxx = 'w/2, Pxy=jy/2 and
Gm = Pxy/(Pxy2 + pxx 2), Gxy = pxy/(pxy 2 + pzX2), obtained from the edge transport
model (6.11) augmented with bulk conductivity, Eqs.(6.10) (see Eqs.(6.16),(6.17) and
text). Parameter values: A = 6, -w = 5. Note the peak in Pz, the smooth behavior
of pxy near v = 0, a quasi-plateau in Gxy, and a double-peak structure in Gx.

Eqs.(6.15), we obtain a relation I = 2M/ý, where

M/a(1) (1) _ (2) / ( 2 ) 2

2 _ 4 w w Aw , l - (2xy / ()61
- - + g ()+ - (6.16)
S 2+g p p 2 2+ A/ai) + A la(6.16)

The quantities px2 ) are defined as p• = i~/(&• + 2). The quantity ., Eq.(6.16),

replaces -y in Eq.(6.7). In the absence of bulk conductivity, a( 2) --+ 0, we recover the

result for pure edge transport, - = y.

The Hall voltage can be calculated from this solution as VH = ½'(l 1+02--1' - 02')7

where cp, ýoi, are variables at opposite edges. We obtain VH = (ý, where

)(A ) (
= 2w 2a(1) (2) Aa2 + A(1 (6.17)

, (1) VZ ,(2) O.(1) (2) at this point dueThis quantity vanishes at v = 0, since Uiy = -ag and ao =al at this point due

to particle-hole symmetry.

Transport coefficients, obtained from this model for typical parameter values, are

displayed in Fig.6-4 which reproduces many of the key features of the data (see Fig.1
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in Ref.[6]). In particular, the peak in P,, is due to edge transport near v = 0. The

suppression of p,, at finite v is due to the bulk conductivity short-circuiting the edge

transport. The bulk and edge contributions to transport can be discerned from the

double peak structure in GQ, in Fig.6-4. The peaks correspond to the bulk Landau

level contributions, Eq.(6.8), whereas the part of Gxx between the peaks, exceeding the

superposition of two Gaussians, Eq.(6.8), is the edge contribution. The Hall resistance

p~, is nonzero due to imbalance in oa(12) for opposite spin polarizations away from

v = 0. Interestingly, p~y in Fig.6-4 exhibits no plateau, while G.y calculated from

py and pxx displays an under-developed plateau-like feature. Overall, this behavior

resembles that of the experimentally measured transport coefficients [5, 6].

Another notable feature of the measured p~y and pxx is enhanced fluctuations near

zero v. These fluctuations are found to be strong in Ref.[5], where px, changes sign

several times near v = 0. They are also present, although are not as dramatic, in

Ref.[6]. In the latter case, both py and pxx exhibit noisy behavior in the interval

near v = 0 comparable to the p,, peak width. As Ref.[6] points out, this behavior

is consistent with the edge transport model. In the absence of bulk transport, the

distribution of potential along the edge depends on the local backscattering rate -y(x),

whereby Eq.(6.6) is replaced by

01,2(X) = P1,2(0) - I -(x')dx'.

Fluctuations of y arise due to its sensitivity to the local value of Fermi energy in

the spin-orbit scattering model, Eq.(6.4), and, similarly, for the magnetic impurity

scattering mechanism. Assuming that the random part of - is of a white noise char-

acter, we obtain strong fluctuations c51,2 (x) along the edge of magnitude that scales

as a square root of the edge length. These fluctuations will contribute equally to the

longitudinal and transverse voltage, since they are uncorrelated on the opposite sides

of the Hall bar. The absence of fluctuations away from v = 0 can be understood as

a result of bulk conductivity short-circuiting the edge current, which will equilibrate

potentials on the opposite sides of the Hall bar.
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The above discussion summarizes the results drawn from an attempt to model

quantum Hall transport in graphene at v = 0 by counter-circulating edge states.

By taking into account backscattering within one edge as well as conduction in the

bulk which short-circuits edge transport away from the neutrality point, this model

accounts for the observed behavior of transport coefficients. Still, since no direct

evidence for spin polarization has yet been found, more experimental and theoretical

work will be needed to confirm the chiral spin-polarized edge picture of the v = 0

state. If proven to exist in graphene, these states will provide a unique setting to

study spin transport as well as other interesting phenomena.
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Chapter 7

Order from Disorder in Graphene

Quantum Hall Ferromagnet

7.1 Abstract

Valley-polarized quantum Hall states in graphene are described by a Heisenberg 0(3)

ferromagnet model, with the ordering type controlled by the strength and sign of

valley anisotropy. A mechanism resulting from electron coupling to strain-induced

gauge field, giving leading contribution to the anisotropy, is described in terms of

an effective random magnetic field aligned with the ferromagnet z axis. We ar-

gue that such random field stabilizes the XY ferromagnet state, which is a coherent

equal-weight mixture of the K and K' valley states. The implications such as the

Berezinskii-Kosterlitz-Thouless ordering transition and topological defects with half-

integer charge are discussed. The results presented in this Chapter are published in

Ref. [48].

7.2 Introduction

As we have discussed in Section 1.4, the Landau levels (LL) in graphene split [5] in

strong magnetic fields of about 15 T, with the n = +1 and n = 0 levels forming two

and four sub-levels, respectively, as illustrated in Fig.7-1a. The observed splittings
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were attributed to spin and valley degeneracy lifted by the Zeeman and exchange

interactions.

The physics of the interaction-induced gapped quantum Hall state is best un-

derstood by analogy with the well-studied quantum Hall bilayers realized in double

quantum well systems [17]. In the latter, the interaction is nearly degenerate with

respect to rotations of pseudospin describing the two wells. The states with odd fill-

ing factors exhibit pseudospin 0(3) ordering, the so-called quantum Hall ferromagnet

(QHFM) [17]. The pseudospin z component describes density imbalance between

the wells, while the x and y components describe the inter-well coherence of elec-

tron states. Several different phases [77, 76] are possible in QHFM depending on the

strength of the anisotropic part of Coulomb interaction, controlled by well separation.

In the case of graphene, with all electrons moving in a single plane, the valleys

K and K' play the role of the two wells in the pseudospin representation with the

lattice constant replacing the inter-well separation. To assess the possibility of QHFM

ordering, we note that the magnetic length at the 10 - 30 T field is much greater than

the lattice constant. Thus graphene QHFM can be associated with the double-well

systems with nearly perfect pseudospin symmetry of Coulomb interaction [81, 84, 83].

Our estimate [136] (see below) yields anisotropy magnitude of about 10 IK at B ~

30 T, which is very small compared to other energy scales in the system.

What else can break pseudospin symmetry? Coupling to disorder seems an un-

likely candidate at first glance. However, there is an interesting effect that received

relatively little attention, which is strain-induced random gauge field introduced by

Iordanskii and Koshelev [12]. To clarify its origin, let us consider the tight-binding

model with spatially varying hopping amplitudes. Physically, such variation can be

due to local strain, curvature [137, 138] or chemical disorder. With hopping ampli-

tudes ti for three bond orientations varying independently, we write

U ( )=[U 7Tg (u) tieiq.ei, (7.1)
V wa 0 V i=1,2,3

where ei are vectors connecting a lattice site to its nearest neighbors, and u and v
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Figure 7-1: a) Graphene Landau level splitting, Ref.[5], attributed to spin and valley
polarization. When the Zeeman energy exceeds valley anisotropy, all n = 0 states
are spin-polarized, with the v = ±1 states valley-polarized and the v = 0 state
valley-unpolarized. b) The effect of uniform strain on electron spectrum, Ref.[12],
described by Dirac cones shift in opposite directions from the points K and K'.
Position-dependent strain is described as a random gauge field, Eq.(7.2).

are wavefunction amplitudes on the two non-equivalent sublattices, A and B. The

low-energy Hamiltonian for the valleys K and K' is obtained at q - ±qo, the non-

equivalent Brillouin zone corners:

0 ip F Py + a(7.2)
H± = v C (7.2)-ip. F Py + 'a* 0

with a = E i=1,2,3 ti e ± iq o.ei, where the subscript +(-) corresponds to K(K') val-

ley. In writing Eq.(7.2) we use Cartesian coordinates with the x axis in the armchair

direction. Decomposing a± = ay T iax, we see that the effective vector potential in

the two valleys is given by ±(ax, ay). Notably, the gauge field a/ is of opposite sign

for the two valleys, thus preserving time-reversal symmetry (see Fig.7-1b).

Here we assume that the gauge field has white noise correlations with a correlation

length ý,

(ai(k)aj(k))k<<1 = a 2, ai(k) = e-ikr ai(r)d2r, (7.3)

as appropriate for white noise fluctuations of bti. The fluctuating effective magnetic
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field can be estimated as

5h(x) = &zax - oya., - a/J2,  (7.4)

whereby the correlator of Fourier harmonics (6hk6hk) behaves as k2 at k <« 1.

Recently, strain-induced effective magnetic field was employed to explain anoma-

lously small weak localization in graphene [29]. A direct observation of graphene

ripples [29] yields typical corrugation length scale C of a few tens of nanometers. Esti-

mates from the first principles [29] gave Sh - 0.1 - 1 T, consistent with the observed

degree of weak localization suppression.

Valley anisotropy of coupling to the gauge field, Eq.(7.2), generates a uniaxial

random Zeeman-like interaction 5ho3 for the K-K' pseudospin order parameter. We

shall see that, somewhat counterintuitively, weak bh induces ordering in the system,

acting as an easy plane anisotropy which favors the XY state. This behavior can be

understood by noting that the transverse fluctuations in a ferromagnet are softer than

the longitudinal fluctuations, making it beneficial for the spins to be polarized, on

average, transversely to the field, as illustrated in Fig.7-2. This random field-induced

ordering maximizes the energy gain of the spin system coupled to Jh.

For magnets with uniaxial random field this behavior has been established [139,

140] in high space dimension. The situation in dimension two is considerably more

delicate [141, 1421 due to competition with the Larkin-Imry-Ma (LIM) [143, 144] dis-

ordered state. We shall see that the anisotropy induced by random gauge field is more

robust than that due to random magnetic field. (This scenario of randomness-induced

order is also relevant for the two-valley QH in AlAs system [75].)

The field-induced easy-plane anisotropy completely changes thermodynamics, trans-

forming an 0(3) ferromagnet, which does not order in 2d, to the XY model which

exhibits a Berezinskii-Kosterlitz-Thouless transition to an ordered XY state. The

transition temperature TBKT is logarithmically renormalized by the out-of-plane fluc-

tuations [145],

TBKT " J/ln(xY/B), B = (hcleB)1/2 , (7.5)
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a) AE = x bn(x)bh(x) < 0

b) AE = x bn(x)bh(x) = 0

Figure 7-2: Random field-induced order in a ferromagnet. The energy gained from
the order parameter tilting opposite to the field is maximal when the spins and the
field are perpendicular (a), and minimal when they are parallel (b). Uniaxial random
field induces XY ordering in the transverse plane.

where Ixy is the correlation length. For fields B -, 30 T, with lxy given by Eq.(7.16)

below, we obtain TBKT in the experimentally accessible range of a few Kelvin.

The XY-ordered QHFM state hosts fractional fe/2 charge excitations, so-called

merons [76]. Merons are vortices such that in the vortex core the order parameter

smoothly rotates out of the xy plane. There are four types of merons [76], since a

meron can have positive or negative vorticity and the order parameter inside the core

can tilt either in +z or -z direction. A pair of merons with the same charge and

opposite vorticity is topologically equivalent to a skyrmion of charge 2(e/2) = e [76].

7.3 Random vector potential and valley anisotropy

In graphene QHFM, the hierarchy of the spin- and valley-polarized states is de-

termined by relative strength of the Zeeman energy and the randomness-induced

anisotropy. Our estimate below obtains the anisotropy of a few Kelvin at B - 30 T.

This is smaller than the Zeeman energy in graphene, A z = gl-BB , 50 K at B - 30 T.

Therefore we expect that v = 0 state is spin-polarized, with both valley states filled.

(This was assumed in our previous analysis [11] of edge states in v = 0 state.) In con-

trast, in highly corrugated samples, when the anisotropy exceeds the Zeeman energy,
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an easy-plane valley-polarized v = 0 state can be favored.

While the character of v = 0 state is sensitive to the anisotropy strength, the

v = +1 states (see Fig.7-la) are always both spin- and valley-polarized. Below we

focus on v = ±1 states, keeping in mind that for strong randomness our discussion

also applies to v = 0 state.

Zeeman-split free Dirac fermion LL are given by

E, = sgn(n) s[-2n- ± Az, (7.6)
LB

with n integer and v ; 8 x 107 cm/s. Each LL is doubly valley-degenerate. Random

field (7.4) couples to electron orbital motion in the same way as the external field

B, producing a local change in cyclotron energy and in the LL density. While the

random field splits the n Z 0 LL, for n = 0, it does not affect the the single-particle

energy (7.6) and couples to electron dynamics via exchange effects only. To estimate

this coupling, we note that the field (7.4) leads to valley imbalance in exchange energy

per particle:
Ae 2  f7r 1/2

EK(K') = Eexch(B ± Sh) = A e  A = (7.7)
KLteB~b 8

where i is the dielectric constant of graphene.

Let us analyze the graphene QHFM energy dependence on the gauge field. We

consider a fully spin- and valley-polarized v = -1 state, described by a ferromagnetic

order parameter n = (n1 , n 2, n 3) in the K, K' valley space. The valley-isotropic

exchange interaction gives rise to a sigma model, with the gradient term only [77]:

Eo(n) = 1 J(Vn)2d2X' j = 64(.8Eo(n)- -. J f Xv'2 d2  (7.8)2 64 rvt

The valley-asymmetric coupling to 5h in Eq.(7.7) generates a Zeeman-like Hamilto-

nian with a uniaxial random field.

El(n) = g6h(x)n(x) dE2X, g = n 2B (7.9)

158



where n = 1/27rA is the electron density.

We estimate the energy gain from the order parameter n(x) correlations with

the random field, treating the anisotropy (7.9) perturbatively in bh. Decomposing

n(x) = ii + Sn(x) and taking variation in Sn, we obtain

JV 26n = gSh±, Sh± = (z - fi(ii- z))bh.

Substituting the solution for Sn into the energy functional (7.8), (7.9), we find an

energy gain for fi of the form

-2Jk (7.10)
k

where averaging over spatial fluctuations of Sh is performed. This anisotropy favors

the XY state, ih3 = 0. As illustrated in Fig.7-2, the fluctuations due to Sn tilting

towards the z-axis minimize the energy of coupling to the uniaxial field when ii is

transverse to it.

Now, let us compare the energies of the XY and the Larkin-Imry-Ma state [143,

144]. In LIM state the energy is lowered by domain formation such that the order

parameter in each domain is aligned with the average field in this domain. Polariza-

tion varies smoothly between domains, and the typical domain size L is determined

by the balance between domain wall and magnetic field energies. In our system, the

LIM energy per unit area is

g(D(L) J
LIM ~ L 2  L2' (7.11)

where (D(L) is typical flux value through a region of size L. To estimate 1I(L) we write

the magnetic flux through a region of size L as an integral of the vector potential over

the boundary, which gives

(L) ai((x) dxi -. V -. (7.12)

159



Minimizing the LIM energy (7.11), we find

g4 4

ELIM 32" (7.13)

Comparison to the XY anisotropy A , -g 2a2/J~2 gives

A J2 _ 2
\6LIM g2J2 O)) 2 (o = hc/e, (7.14)

where (4(ý) -, a is the flux through a region of size (. Interestingly, the ratio (7.14)

does not depend on the external magnetic field. Therefore, at weak randomness,

when the random field flux through an area (2 is much smaller than o)0, the ordered

XY state has lower energy than the disordered LIM state.

In the opposite limit of strong randomness spins align with the local Sh, forming a

disordered state. It is instructive to note that for a model with white noise correlations

of magnetic field, rather than of vector potential, the ratio (7.14) is of order one. In

this case the competition of the LIM and the ordered states is more delicate.

A different perspective on the random-field-induced ordering is provided by anal-

ogy with the classical dynamics of a pendulum driven at suspension [146]. The latter,

when driven at sufficiently high frequency, acquires a steady state with the pendulum

pointing along the driving force axis. As discussed in Ref. [147], this phenomenon can

be described by an effective potential Ueff obtained by averaging the kinetic energy

over fast oscillations, with the minima of Ueff on the driving axis and maxima in the

equatorial plane perpendicular to it. This behavior is robust upon replacement of

periodic driving by noise [148]. Our statistical-mechanical problem differs from the

pendulum problem merely in that the id time axis is replaced by 2d position space,

which is inessential for the validity of the argument. The resulting effective potential

is thus identical to that for the pendulum, with the only caveate related to the sign

change Uff - -Ueff in the effective action, as appropriate for transition from clas-

sical to statistical mechanics. Thus in our case the minima of Ueff are found in the

equatorial plane, in agreement with the above discussion.
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The easy-plane anisotropy (7.10) can be estimated as

bh 2  C2 e2
A/n ' 2 • 2 X 0.1- 10 K/particle, (7.15)

where 6h - 0.1 - 1 T, ~ 30 nm and B ~ 30 T was used. Since this is smaller than

the Zeeman energy, we expect that the easy-plane ferromagnet in the valley space is

realized at v = +1, while v = 0 state is spin polarized with both valley states filled.

The out-of-plane fluctuations of the order parameter are characterized by the

correlation length

lxy r i/A 1 - 104B (7.16)

for the above parameter values. The length lxy sets a typical scale for order parameter

change in the core of vortices (merons) as well as near edges of the sample and defects

which induce non-zero z-component.

To measure the correlation length ixy one may use the spatial structure of v = 0

wavefunction. Since the K(K') electrons reside solely on either B or A sublattice,

the order parameter z-component is equal to the density imbalance between the two

sublattices. The latter can be directly measured by STM imaging technique. For the

temperature of XY ordering, Eq.(7.5), with J estimated from (7.8), we obtain TBKT

on a few Kelvin scale.

This should be compared to the intrinsic QHFM valley anisotropy of a pure

graphene sheet. In the zeroth LL, the K-K' superposition states have a somewhat

different density distribution than the valley-polarized states, since for each valley

the zeroth LL occupies just one sublattice (A for K', B for K). In particular, elec-

trons occupy both sublattices equally in the state with the order parameter in the

xy plane. This leads to a dependence of the QHFM Coulomb energy on the orien-

tation of the order parameter. This anisotropy, estimated using the Hartree-Fock

approximation [136], was found to be

27 a e2
AE 3 x - x - 10 l K (7.17)512·•r t 1B
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indicating that the anisotropy is negligible.

We note that the situation is completely different for higher LL. Goerbig et al. [84]

pointed out that the Coulomb interaction can backscatter electrons of K and K' type

at LL with n 4 0, which leads to a much stronger lattice anisotropy of the order a/lB.

This effect is absent for the zeroth LL due to the fact that K and K' states occupy

different sublattices

7.4 Summary

In summary, we studied the valley symmetry breaking of graphene QHFM. We consid-

ered the coupling of the strain-induced random magnetic field and found that it gen-

erates an easy-plane anisotropy, which is much stronger than the symmetry-breaking

terms due to lattice. The estimates of the field-induced anisotropy suggest that the

random field may be a principal mechanism of K-K' QHFM symmetry breaking.

The easy-plane ordered state is expected to exhibit BKT transition at experimentally

accessible temperatures and half-integer charge excitations.
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Chapter 8

Summary and outlook

8.1 Summary

In conclusion, we have considered new effects arising in graphene due to the Dirac

spectrum of its low-energy excitations. We have focused on the QHE regime, where

many interesting phenomena occur. First in Chapter 2 we have studied the general

properties of the two-terminal conductance as a function of sample shape. Employing

conformal invariance of the conductance, we were able to classify all possible shapes by

a single parameter, the aspect ratio of an equivalent rectangular sample. Solving the

conduction problem for the rectangular case, we have identified conductance features

in the QHE regime which can be used as a tool for sample diagnostics. Furthermore,

in Chapter 3 we have illustrated the use of our model for the characterization of

experimental devices.

A microscopic picture of edge states in the anomalous QHE in graphene has been

presented in Chapter 4. There we have also discussed how STM can be used to probe

properties of the edge states. In Chapter 5, we have found that the electron-hole

symmetry of the Dirac spectrum gives rise to new edge states transport regimes in

the locally gated graphene devices, p-n and p-n-p, junctions resulting in fractional

and integer conductance quantization.

In Chapter 6, we pointed out a possibility of counter-circulating spin-polarized

edge states near the Dirac point, which exhibit unusual charge transport properties
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and may allow realization of interesting spin transport phenomena. Finally, in Chap-

ter 7 we studied graphene valley QHFM, arguing that coupling of the ferromagnetic

order parameter to the strain-induced random vector potential, an interesting disor-

der type present in graphene, leads to an easy-plane ordering of the QHFM. This gives

rise to a BKT transition at low, but experimentally accessible temperatures, and to

fractionally charged vortices appearing below the BKT transition temperature.

8.2 Outlook

Because the very productive and promising is still at its infancy, many interesting

phenomena are still yet to be understood. This applies to some of the phenom-

ena in the QHE regime which we have studied in this thesis as well. While most

of our findings presented in Chapters 2-5 have been confirmed by experiments, the

ferromagnetic states described in Chapters 6 and 7 are still under investigation and

debate [6, 80, 99]. In particular, the nature of the v = 0 state which we have consid-

ered in Chapter 6 remains a subject of controversy [11, 81, 93, 82, 80], and further

theoretical and experimental efforts are needed to elucidate its character. Further-

more, very few experimental facts regarding the QH states at fillings v = +1 are

available. While it is clear that those states have an interacting nature and are of

QHFM type [79], their order parameter has not been studied experimentally yet.

Therefore, the relevance of the order-from-disorder mechanism proposed in Chapter

7 for the valley QHFM ordering remains unclear. The results presented in Chapters

6 and 7 thus should be viewed as a basis for more detailed studies.

Our analysis in Chapters 6 and 7 also poses several interesting questions and

suggests several directions for future work. In particular, to better understand the

transport properties at v = 0, we have to extend the spin-filtered edge model to

include the effects of interactions. This will give rise to an unusual type of Luttinger

liquid at the edge [98], which at low temperatures may have transport properties

quite different from those obtained in Chapter 6 in the framework of non-interacting

model. It would be especially interesting to explore the possibility of localization of
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the edge Luttinger liquid by various disorder types.

The characteristic feature of the v = 0 state is non-local transport [149]. In

principle, the non-local transport is consistent with the picture of the spin-polarized

v = 0 state, where non-locality occurs naturally as a result of the counter-circulating

edge states. However, the non-local transport can also arise due to an increased

density of carriers at the edge, which may have a purely electrostatic origin [150].

Understanding the nature of the non-local signal may help to elucidate the character

of the v = 0 state. Theoretically, it would be helpful to analyze the non-local transport

effects for the spin-polarized v = 0, which can probably be done in the framework of

the bulk-edge model considered in Section 6.5.

One of the main challenges in the study of the valley QHFM is to find tools

to explore the nature of the valley order parameter. While the transport measure-

ments [79] signal the opening of a gap, they do not provide any information regarding

the order in the QHFM. In other QHFM systems the means to study order param-

eter orientation are provided by the possibility to independently couple to the two

pseudospin or spin species. For instance, in QH bilayers [14] the two pseudospins cor-

respond to the spatially separated quantum wells; one can attach separate contacts

to the two wells [14], and measure the inter-layer current, which gives an insight into

the properties of the pseudospin order parameter [76]. In graphene, however, such a

measurement would be nearly impossible, because the two valley species reside in the

same layer. Therefore, completely new ways to probe the valley order parameter are

needed.

A whole new research direction is the study of the QHE in bilayer graphene.

The LLs there [60], as well as the form of effective electron-electron interactions,

are very different from those in monolayers. This may give rise to an interesting

hierarchy of ferromagnetic QH states in bilayers, which are likely to exhibit multiple

phase transitions as a function of external magnetic field and other parameters (e.g.,

electric field perpendicular to the bilayer plane, which is known to induce a gap in

the spectrum [114]).

Looking beyond the QHE regime, one of the most important problems in the field
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of graphene is understanding transport of disordered Dirac electrons. Theoretically,

several models of disorder have been considered, which provided an explanation of

certain experimentally observed transport characteristics [26]. However, the trans-

port mechanism near the Dirac point, as well as the temperature dependence of the

transport coefficients, remain a mystery, and further experimental and theoretical

efforts are necessary.

Yet another interesting direction is to study the role of electron-electron inter-

actions in transport phenomena. This topic remains largely unexplored, partially

because of its complexity; another reason is the wealth of new single-particle phe-

nomena in graphene, which needed to be understood before attacking the problem of

interacting electrons.

Evidently, what we don't know about graphene by far exceeds what we have

learned in the past four years. Only the future will tell us what other surprises

electrons in graphene hold; however, there is little doubt that there will be many.
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