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ABSTRACT

Magnetic Resonance Imaging (MRI) is one of the most powerful noninvasive
tools for diagnosing human disease, but its utility is limited because current contrast
agents are ineffective when imaging air-tissue interfaces, in regions with low signal-to-
noise ratios, or in areas that undergo motion, like the heart and bowel. A technique called
dynamic nuclear polarization can be used to hyperpolarize nuclei and achieve dramatic
MRI signal enhancement with minimal background noise. It has been shown that ball-
milled silicon nanoparticles have the advantageous properties of hyperpolarizability and
biodegradability, but in vivo utilization requires the modification of the particle surface to
prevent aggregation that leads to very fast removal from circulation through phagocytosis
by the liver, spleen, and lymph nodes. This thesis describes a method to functionalize
hyperpolarizable silicon nanoparticles using silane chemistry and coating by
poly(ethylene glycol). The particles were characterized using dynamic light scattering,
scanning electron microscopy, and laser Doppler electrophoresis. The extent of amination
was quantified using a fluorescamine assay, and stability was assessed by visualizing
flocculation and measuring aggregation in different solvents. The functionalized particles
were stable in solutions that resemble physiological conditions. These silicon
nanoparticles can potentially be used for in vivo cancer imaging to enable early diagnoses
and assist with clinical decision-making through disease monitoring.

Thesis Supervisor: Sangeeta N. Bhatia
Title: Professor of Health Sciences and Technology/ Electrical Engineering & Computer
Science, M.I.T., Department of Medicine, Brigham & Women's Hospital
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1 Introduction

Nanoparticle-based contrast agents have the potential to revolutionize Magnetic

Resonance Imaging (MRI) and cancer detection. The most commonly used MRI contrast

agents are gadolinium chelates, which provide positive contrast through an enhancement

in Ti-weighting. An alternative to gadolinium-based agents is superparamagnetic iron

oxide nanoparticles (SPIO), which have an iron oxide core surrounded by a layer of bio-

compatible polymers. SPIO can be multifunctional [1] and indicate physiological and

molecular changes in addition to anatomical changes [2]. The shortcoming of SPIO is

that they provide negative contrast on T2-weighed images, which makes them less

sensitive than TI-type agents [3]. SPIO cannot be used effectively when imaging at air-

tissue interfaces, in regions with low signal-to-noise ratios, or in areas that undergo

motion, like the heart and bowel. A new contrast agent is needed for imaging certain

regions of the body, including the lungs, bowel, liver, pancreas, and lymph nodes. Silicon

nanoparticles are a promising solution because they can be detected with MRI after

hyperpolarization [4] and are thought to be biodegradable [5].

The focus of this thesis was to functionalize silicon nanoparticles for the targeted

imaging of tumors by hyperpolarization. This was done by determining the key properties

of silicon nanoparticles including size and charge, modifying their surface characteristics

by attaching biocompatible polymers, and evaluating their stability in solution.



2 Background

2.1 MRI

Medical MRI uses a strong magnetic field to align the magnetic moment of nuclei

that have an odd number of nucleons like 1H, 13C, and 31P. Then, a radio frequency pulse

that targets a single type of atom is administered, and one out of every few million atoms

are induced to change their spin from the low energy state to the high energy state [6].

When the pulse is over, the atoms relax back to their natural spin state while releasing

energy, which can be detected by the MRI machine and converted into a picture. By

simply changing the frequency of the pulse, doctors can specifically examine different

parts of the body, like bones, tumors, organs, and blood.

MRI is already one of the most powerful noninvasive tools for diagnosing human

disease, but its utility is limited because it distinguishes healthy from abnormal tissue

using nonspecific macroscopic physical differences, like inherent energy and density.

This nonspecific imaging technique makes it extremely hard to discriminate a tumor from

a fluid-filled cavity by simply examining an MR image. To overcome this obstacle,

certain anatomical structures are routinely visualized by injecting the patient with a

contrast agent, such as Gadolinium, Iron, and Magnesium [7]. Gadolinium in particular is

very commonly used-millions of doses are administered annually-but some patients have

been found to develop adverse reactions like nephrogenic systemic fibrosis [8].



2.2 Nanoparticle-based contrast agents

Superparamagnetic iron oxide nanoparticles (SPIO) can be used for MRI imaging

because of the effects of the large dipolar magnetic field gradient that they create on

neighboring protons. SPIOs consist of a

magnetite (Fe 30 4) core and a hydrophilic

coating, such as dextran or siloxanes[2]. Their

surfaces can be modified to allow cell-specific

binding and they have been studied extensively

for drug delivery, diagnostics, and cell-tracking

applications. Depending on their application, Figure 1: MR detection of cells labeled
with micron-sized iron oxide particles in

SPIO range from tens of nanometers to over the brain of a mouse. The arrow
indicates signal voids from the presence

several microns, when the cores contain of IO particles 121.

multiple iron oxide crystals (Figure 1).

Cells labeled with as little as 1.4 picrograms of SPIO can be detected using a 4.7T

MRI scanner [9]. Their sensitivity has enabled them to be used for many applications,

like tracking stem cells in the brain [10] and labeling immune T cells [11], which

provides insight into biological processes like stem-cell differentiation and cell-

trafficking [12]. In addition to the reasons above, SPIO are gaining popularity because

several compounds have been FDA approved and are commercially available, like Bayer

Pharmaceutical's Feridex IV®.

However, the main limitation of iron oxide nanoparticles is that they are negative

contrast agents and are consequently imaged indirectly by the absence of signal (Figure

1) [13]. When the MRI scanner imposes an external magnetic field, the SPIO magnetic
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dipoles align and change the local magnetic field, which causes nearby rotating protons to

dephase. It is this proton dephasing that is detected by a T2-weighted MR image, not the

SPIO themselves [2]. Thus, SPIO are difficult to detect in regions with low native signal-

to-noise ratio, cannot be used to image areas that move, like the heart, and are difficult to

use for reliably tracking cells in vivo. Given these limitations, it is beneficial to examine

other nanoparticle-based contrast agents.

2.3 General hyperpolarization MRI

Normal MRI is limited by the fact that the magnetic energy of nuclear spins is

low compared to the thermal energy at room temperature [4]. Researchers currently work

around this limitation by imaging with very powerful magnetic fields of 9 Teslas and

above, which can increase the polarization of 1H from 5 ppm to 70 ppm [4]. These

magnets are large, expensive, and potentially dangerous. There is still much room for

improvement, especially when imaging nuclei with lower magnetic moments, like 13C

and 15N.

A novel technique for achieving dramatic MRI signal enhancement with minimal

background noise is called hyperpolarization. Hyperpolarization can be achieved in

several ways including dynamic nuclear polarization (DNP), which transfers polarization

from unpaired electrons to nuclei using microwave irradiation. There are three well-

studied methods of DNP: the Overhauser effect, the solid effect, and the thermal mixing

effect. The DNP set-up that will be used to hyperpolarize the silicon crystals

characterized in this thesis will primarily utilize the thermal mixing effect. Thermal

mixing is the most efficient existing irradiation mechanism, and basically involves the

transfer of energy from electron spin packets to nuclear spins [14]. The main components
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of the apparatus are the cryostat fitted with a 6 T superconducting magnet, a Gunn diode

to supply the microwaves, and a coil to measure NMR signal.

DNP has been used extensively on 3He 129Xe, and '3 C. The drawback to these

particular contrast agents is that they can only be detected for a very short time after

hyperpolarization due to their very short relaxation periods. The in vivo TI relaxation

time is 7-9 minutes for 3He [15], 14.1±1.6 seconds for 129Xe [16], and 20+2 seconds for

13C [17]. Thus, their applications are limited to observing phenomena that occur on

comparable timescales, like imaging the lungs with inhalable 3He and 129Xe gas, and

tracing metabolites with 13C [18]. Figure 2 shows the potential for using hyperpolarized

13C for in vivo imaging of the kidneys and heart.

Figure 2: In vivo angiographic images before (a) and after (b) injecting 13C hyperpolarized urea intoa rat [17].

2.4 Hyperpolarization of silicon for contrast imaging

Unlike the noble gases or 13C currently used for hyperpolarization and MR

imaging, silicon has been shown to have very long relaxation times-up to five hours

[19]-and can consequently can be injected into the bloodstream and tracked throughout



the body. Multi-hour relaxation times enable particle imaging after allowing sufficient

time for tumor localization [20] and enabling long-term cell tracking for the elucidation

of disease mechanisms [21].

The solid state of Si provides a useful platform for a wide variety of

functionalization strategies, and applications for drug delivery. Moreover, silicon is

known to be non-toxic [22] and it is metabolized and secreted by the body [5, 23]. In

addition to long detection times, the MRI signal-to-noise ratio from these 29Si particles

can be theoretically be boosted by several orders of magnitude [4] through DNP. These

properties-long relaxation times, DNP signal enhancement, and ease of functionalization

compared to nobel gases-make hyperpolarized silicon nanoparticles a very appealing

MRI contrast agent.

The silicon nanoparticles must meet

specific requirements for hyperpolarization 10

and functionalization. This study uses

particles ground from P-type, <1-1-1>, 0.1
0.1 Si

Boron-doped silicon wafers with a
0.01

resistivity of 30-100 kfl-cm, diameter of o s500 1000 100
Particle radius (nm)

4", and thickness of 1016 pm. Crystalline Figure 3: Simulation of relaxation time as a
function of silicon particle radius [24].

silicon has a face-centered diamond cubic

crystal structure, with nuclei that can be polarized by nuclear spin diffusion. These same

wafers are used in the semiconductor industry and contain an initial, intrinsic defect

density of 1-5x1011 defects/cm 3. This indicates that ball-milled particles less than a

micron should not have any electron defects. However, electron spin resonance (ESR)



data indicates a significant number of defects from "dangling bonds," or broken covalent

bonds, in these particles, which affects their hyperpolarizability and relaxation times.

Simulations have recently shown that the relaxation time is also a function of the silicon

particle size, where large particles have longer T1 relaxation times, as shown in Figure 3

[24]. Since silicon can be hyperpolarized, detected by MRI, modified using well-

characterized surface chemistry, and biodegraded, it is a very promising nanoparticle

material.

2.5 Imaging and therapeutic applications

Cancer is the leading cause of death for adults in the United States due to many

factors including the inherent complexity of the disease, inadequate detection methods

leading to late diagnoses, and the lack of specificity of anticancer agents [25]. But the

early identification of tumors can significantly improve clinical outcomes, especially for

colorectal and lung cancers which have usually metastasized by the time of diagnosis

[26].

Nanoparticles have tremendous applications for cancer detection and treatment

because they can be designed to home to tumors [1], be detected by MRI and

fluorescence [25], deliver chemotherapeutics [27], track cells (Section 1.2.1), and destroy

tumors by localized heating [28]. Tumor localization can occurs mainly through the

enhanced permeability and retention (EPR) phenomenon, which exploits the natural

"leakiness" of tumor vessels that enables cancer cells to access the nutrients that they

need to proliferate [29]. Through EPR, nanoparticles injected into the bloodstream

passively accumulate more in tumors than the bloodstream and healthy organs [30].

Active targeting, where particles are attached to nucleic acids or protein fragments that
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enable them to specifically recognize and bind to receptors residing on cancer cells, could

theoretically be used for molecular recognition and enhanced drug delivery to poorly

vascularized regions [1]. Such tumor-homing peptides have been identified, such as the

peptide sequence of Arginine-Glycine-Aspartate (RGD) that binds to the surface of

angiogenic blood vessels [31, 32].

Once the nanoparticles home to the tumor, they can be imaged in vivo using

different modes of detection depending on the nanoparticle material. For example, SPIO

are detected using MRI, quantum dots with fluorescence, and bismuth sulfide

nanoparticles with computed tomography (CT) imaging. In addition to being imaged,

some particles can even be designed to directly deliver therapeutic payloads [33].

2.6 Silicon nanoparticle design criteria

The nanoparticles' size and shape are important design criteria [34, 35]. The ball

milling process can be used to make particles of varying sizes-from less than 100 nm to

greater than a micron. The grinding conditions must be optimized to ensure that the

particles are the proper size for in vivo tumor imaging applications. The particles must be

large enough to have long relaxation times in order to be detected with MRI. But, if the

particles are to circulate in the bloodstream, extravasate near the tumor, and accumulate

in the tumor interstitium at high enough concentrations to be imaged, then they must have

long in vivo circulation times by avoiding capture by the reticuloendothelial system

(RES).

It is difficult to quantify the minimum circulation time needed for the detection of

a tumor using hyperpolarized silicon, but therapeutic drugs take at least six hours in

circulation for EPR to take effect [20]. If the nanoparticle can be detected with high
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sensitivity, as is theoretically the case with hyperpolarized particles, then the circulation

time could be much shorter. The minimum circulation time necessary for tumor

localization and visualization by EPR affects the nanoparticle diameter. For example, if

the particles must be detected after thirty minutes or more then they must have a radius

greater than 100 nm.

In addition to affecting relaxation times, size is a very important determinant for

how long the particles can circulate in the bloodstream before being extracted by the

reticuloendothelial system, which is comprised of the spleen, liver, and bone marrow.

The spleen is a major obstacle for nanoparticles because it is essentially a biological

sieve. It contains two types of tissue, one with macrophage immune cells that recognize

and degrade encapsulated foreign bodies in the bloodstream, and another that filters out

worn-out red blood cells and other rigid and abnormally-shaped objects. The width of the

interendothelial slits in the spleen is between 200 nm-1 gm [36]. Minor blockages of

these slits are tolerable, but spherical particles over a micron in diameter are likely to get

trapped in the spleen and consequently have very short circulation times of a few minutes

[37]. The liver has a slightly lower blood perfusion rate than the spleen. The liver

endothelial cells contain fenestrations with a mean diameter of 175 nm that redirect

nanoparticles from the bloodstream into the lymphatic drainage; nanoparticles with two

dimensions greater than 300 nm are likely to bypass the fenestrated epithelium [37]. In

addition to the fenestrations, the liver also contains macrophages that actively remove

nanoparticles from the bloodstream. The nanoparticle surface must be modified to avoid

recognition by macrophages; this can be achieved through coating with polymers or by

mimicking the red blood cells' oligosaccharide coating, since they are able to stay in



circulation for 110-120 days [36]. Finally, the lung and kidneys are not part of the

reticuloendothelial system but they have the highest blood perfusion rates of any organ.

Their vasculature can be easily passed by particles between from 15 nm-7 pm [37] In

summary, long-circulating particles would ideally be designed with one or two

dimensions between 200 nm and a micron in order to bypass filtration by the major

organs of the body.

When nanoparticle-mediated tumor imaging relies on passive targeting through

EPR, the particles must be able to permeate the tumor microcirculation. The tumor pore

cut-off size is highly variable and depends on both the microenvironment of the tumor

and the tumor type. Pore cut-off sizes can vary from 7-2,000 nm [38]. Other barriers to

the transport of molecules into tumors are the high tumor interstitial pressures that have a

tendency to push everything out, and the abnormal architecture that makes extravasation

slow [39].

Nanoparticle surface characteristics can affect uptake as well. Neutral particles

are phagocytosed at a slower rate than highly cationic or anionic particles. They are also

less toxic to immune cells and less likely to bind to plasma proteins [40, 53].

Poly(ethylene glycol) (PEG) is a non-toxic and non-immunogenic polymer that is used to

coat nanoparticles and proteins to increase the compounds' circulation time and water

solubility, while reducing toxicity and renal clearance. In aqueous solutions, each

ethylene glycol unit in PEG associates with a water molecule and the nanoparticle

becomes encapsulated in a protective hydration sphere. This prevents proteins from

adsorbing to the nanoparticle surface, which would otherwise make the particle a clear



target for phagocytosis by the reticuloendothelial system [41]. For these reasons, PEG

polymers are conjugated to the silicon nanoparticles in this study.

2.7 General procedure for functionalization

One of the most common methods of functionalizing oxidized metals is through a

reaction with a silane, which has a general formula of X3Si(CH2)nY. For silica particles

grown by the St6ber process, coating is often performed with an alkoxysilane like

tetraethoxysilane (TEOS) in solution [42]. The surface properties of silanated particles

can cause them to aggregate, but coating the particles with PEG polymers reduces inter-

particle interactions and improves biocompatibility [43]. The general schematic of

nanoparticle functionalization used in this paper is outlined in Figure 4; the silane has an

amine functional group that reacts with an NHS-group on the PEG chain to form a

covalent bond.

Figure 4: Schematic of silicon nanoparticle functionalization.



3 Experimental Procedures

3.1 Particle preparation

Silicon nanoparticles were prepared by grinding a silicon wafer (4" Sql, Silicon

Quest International and Silicon DSP) in a ball mill (400 rpm, Retsch PM 100). The

grinding proceeded in three stages: a ten-minute dry grind using 1 cm diameter balls,

followed by a four-hour grind in 20 mL of ethanol, and ending with a sixteen-hour grind

using 3 mm diameter balls.

After grinding, the nanoparticle surface was cleaned by hydrofluoric acid (HF)

etching, which selectively removes the silicon dioxide film that naturally grows on

silicon surfaces exposed to air. HF is poisonous and must be handled with extreme

caution. The particles were immersed in an HF solution for 10-30 minutes. The HF was

removed through six washes; each time, the particles were spun at 12,000xg for five

minutes, the supernatant was replaced with 100% ethanol, and the solution was sonicated

(1 minute, 20% amplitude, Branson Digital Sonifier.)

The mean particle size, size distribution, and polydispersity were determined

using dynamic light scattering (DLS, Nano ZS90, Malvern) at room temperature in water.

A typical size distribution is illustrated in Figure 5. In this example, the particles in the

first peak comprise 33.3% of the volume of the sample, with a mean diameter of 328 nm

and width (polydispersity index) of 124 nm. The second peak was filtered out in

subsequent steps, but consisted of particles above 5 ptm. Scanning electron microscopy

was also used to visualize the particle size distribution and shape.
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Figure 5: Size distribution (a) determined by the relative intensity of light scattered by particles and
(b) imaged with a scanning electron microscope.

3.2 Amination

Amination was performed using either (3-Aminopropyl)triethoxysilane (APTES,

Sigma, 99%) alone or as a 1:2 mixture by volume of APTES with bis-

(triethoxysilyl)ethane (BTEOSE, Aldrich, 96%) or (3-trihydroxysilyl)propyl

methylphosphonate (THPMP, Aldrich, 42 wt% in H20). Approximately 100 mg of

silicon nanoparticles were added to 45 mL of acidified 70% ethanol (0.04% v/v, adjusted

to pH 3.5) or methanol buffer (0.1 mM NaHCO 3 in methanol) and the solution was

placed in an ultrasonic bath (Bransonic, 2210) for five minutes. To the nanoparticle

solution, 0.10-0.15 M of silane was added and the solution was shaken for 18-24 hours.

In some cases, the solution was then heated in a 65oC water bath for two hours. Excess

silanes were removed from the nanoparticle solution by washing and resuspending three

times in methanol buffer, with the final resuspension performed with 10 mL of ethanol or

methanol buffer.

Amination was assessed using fluorescamine and ninhydrin colorimetric assays.

The fluorescamine assay detects only primary aliphatic amines, while the ninhydrin assay
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detects both primary and secondary amines. Before performing the assays, the

concentrations of all of the particles were equalized by adjusting their absorption at 420

nm to 1.50 + 0.05 (for 40 ýtL of sample in a clear 96-well plate). The fluoresamine

reagent was prepared by dissolving 3.5 mg of fluorescamine (Sigma) in 1 mL of dimethyl

sulfoxide (DMSO). Within a 96-well standard opaque tray, 10 lpL of the fluorescamine

solution were added simultaneously to each well containing 40 gL of nanoparticles and

mixed thoroughly for one minute. Fluorescence was measured using an excitation at 390

nm and emission at 465 nm (SpectraMax Gemini XPS, Molecular Devices).

To perform the ninhydrin assay, ninhydrin solution (2% in DMSO and pH 5.2

acetate buffer, Sigma) was mixed with samples in a 2:1 ratio (20 gL sample: 10 gL

ninhydrin), boiled for 10 minutes, cooled to room temperature, and diluted three-fold

with ethanol. The absorbance was read at max= 570 nm.

Additionally, the particle surface charge was measured using laser Doppler

electrophoresis (Nano ZS90, Malvem) by adding 25-100 gL of nanoparticle solution to 1

mL of water or 0.1 M 2-(N-morpholino)ethanesulfonic acid buffer (MES, pH 6).

3.3 PEGylation

Aminated particles were coated with polyethylene glycol (PEG) polymers to

confer stability and biocompatibility. Three types of polymers were used. The first has a

terminal methoxy cap at one end and an amine-reactive succimidyl a-methylbutanoate

(mPEG-SMB, Nektar) at the other, and a total molecular weight of 10,000 g/mol or

20,000 g/mol. The second is capped with an amine-reactive N-Hydroxysuccinimide and a

maleimide, which couples to thiol groups (NHS-PEG-MAL, Nektar, 5000 g/mol). The

third polymer served as a negative control because it was capped by a methoxy group and

22



an amine group (mPEG-Amine, Nektar, 20000 g/mol), neither of which reacts with

amines on the nanoparticle surface.

In the PEGylation reaction, 10 mg PEG was mixed in 500 gL of methanol buffer

and heated briefly at 500 C to dissolve. Approximately 0.1 mg of aminated particles (100

gL in solution) were added to this solution and it was placed in an ultrasonic bath for 1-3

hours. To remove the unreacted PEG, samples were centrifuged (13,000xg for 10

minutes) and resuspended twice in methanol and finally in a phosphate-buffered saline

buffer solution (PBS, 0.1 M Na2 PO 4, 0.015 M NaCl buffer).

3.4 Stability

Stability was assessed by visualizing flocculation and measuring particle size and

aggregation using dynamic light scattering. Previous studies have demonstrated that bare

silica and aminated particles flocculate in 5% NaCl aqueous solutions [43], PBS, and

10% fetal bovine serum (FBS). If particles remained homogenous when added to 1 mL of

these solutions, or could easily be redispersed by gentle flicking, they were considered to

be stable and successfully PEGylated.

3.5 Cytotoxicity

The toxicity of unmodified silicon nanoparticles was assessed using a Calcein

AM Viability Assay. Calcein AM is a membrane permeable nonfluorescent molecule that

is taken-up by cells via incubation and hydrolyzed by endogenous esterases into green

fluorescent calcein. It is used to quantify the number of live cells, since healthy cells

retain and process calcein after uptake but dead cells do not [44].



HeLA cells were placed in a 96-well tissue culture plate and incubated for 24

hours. Bare nanoparticles suspended in 10% FBS were added in triplicates with serial

dilutions from a stock solution of 1 mg/ml, and caffeine was used as a control. The cells

were incubated with the particles at 370 C with gentle rocking, and after three hours 100

gLL of 2 giM Calcein AM in PBS was added to each well. After 30 minutes of incubation

at 370 C, the fluorescence was measured on a fluorescence plate reader with the excitation

wavelength at 485 nm and the emission wavelength of 530 nm.

4 Results and Discussion

The goal of this experiment was to functionalize silicon nanoparticles using silane

chemistry and PEG polymers, and then demonstrate their stability. Functionalization is a

critical prerequisite for the in vivo utilization of these nanoparticles.

4.1 Optimal amination conditions

Ball-milled silicon particles were successfully aminated using organofunctional

silanes. The optimal amination conditions were determined by varying the pH of the

solution, solvent composition, temperature of reaction, and type of organosilane.

Amination was most successful when the nanoparticles were HF-etched and suspended in

a 70% ethanol solution adjusted to a pH of about 3.
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Hydrolysis occurs in a stepwise manner when the three ethoxysilyl groups of

APTES come into contact with water [46] (for APTES: R = ethoxy group, R' =

aminopropyl group):

Step 1: R'Si(OR)3 + H20 +- R'Si(OR)20H + ROH

Step 2: R'Si(OR)20H + H20 -* R'Si(OR)(OH) 2 + ROH

Step 3: R'Si(OR)(OH)2 + H20 +- R'Si(OH) 3 + ROH

The removal of the first ethoxy group is the rate-determining step of hydrolysis

and occurs with first-order kinetics with respect to the silane [46]. Since the Si-OH

moiety is very reactive, the trihydroxsilyl group that results from hydrolysis is much

more likely to react with the surface of the nanoparticle. This modification of APTES

occurs in the presence of water and may explain why amination is more successful in a

70% ethanol solution than pure ethanol.

In addition to hydrolyzing, the APTES monomers can react either with the silicon

nanoparticle surface or with other APTES monomers, in a process called

homocondensation. It has been shown that performing the amination reaction under pH

conditions less than 4.5 minimizes homocondensation and thus promotes grafting onto

the oxide surface [47]. Figures 6a and 6b illustrate that decreasing the pH from 9.5 to 3.7

promotes a five-fold increase in amination. Another explanation for the advantage of a

low pH environment is that it prevents "upside-down" silane absorption, where the

inverted silane's amino terminus electrostatically interacts with the metal oxide [48].

Despite the safety hazards, HF etching was used in order to maintain some control

over the oxide layer thickness. The schematic of HF etching is shown in Figure 6c, in

which the hydrofluoric acid selectively removes the silicon oxide layer that grows



naturally on the silicon particle surface. More uniform oxide layers may lead to better

contact with APTES, since Figure 6 demonstrates the slight increase in amination that

resulted after etching. Additionally, the particles were aminated within a few hours of HF

etching and sonicated for the same amount of time, ensuring that the oxide layer

thickness was comparable between experiments and particle batches.

Previous studies have demonstrated that amination reaction kinetics are

influenced by temperature; for example, smooth APTES films were grown on silicon

wafers by maintaining solution temperatures at 750 C [49]. However, Figures 6a and 6b

demonstrate that higher reaction temperatures do not promote amination for these

particles. This difference may be attributed to differences in the silicon form. Thin

APTES layers may be easier to form on flat, motionless silicon wafers, than on small

particles being shaken in solution.

Initially, amination was measured using both fluorescamine and ninhydrin assays.

There was consistent disagreement between the two tests; the ninhydrin assay was not

sensitive enough to detect the amines on the particles treated with both APTES and

APTES with THPMP, but it showed above-background amination for the particles with

APTES and BTEOSE. This would indicate that the APTES and BTEOSE treated

particles contained secondary amines that only the ninhydrin assay was able to detect.

However, an additional control with particles treated with BTEOSE alone showed a

similarly elevated absorbance level, though there should not have been any amines in the

sample. It is possible that the BTEOSE stock was contaminated with a compound

containing amines like bis-aminosilane. Given the results of the control, the

fluorescamine assay was used as the primary amine detection method.



In addition to chemical assays, the accumulation of amines could be indirectly

monitored by measuring the particles' surface charge and observing the solution's

colloidal state. The surface of the unmodified silicon nanoparticles is composed of

hydroxyl groups from the oxidized silicon. Particles treated with APTES should have

surfaces coated with propylamines, which have a Kb of 4.7-10-4 M and become

protonated and positively charged in acidic solutions (Figure 7a) [42]. The actual surface

charge can be measured by the zeta potential, since particles become ionized and

associate with charged species within an aqueous medium. The zeta potentials were

measured in water and MES buffer, and the results strongly correlate with the

hypothesized charges (see Figure 8). Unmodified particles have a very negative surface

charge of -17.0 ± 7.2 mV (see Figure 7a). Particles aminated with only APTES have a

positive charge of 12.6 ± 6.0 mV. Particles treated with APTES and THPMP are slightly

less charged than those with only APTES and have a larger standard deviation. This is

consistent with previous studies because THPMP contains a phosphonate group that is

negatively charged at physiological pH 7.4 [42]. An unexpected finding was that particles

treated with APTES and BTEOSE have a very high positive charge of 34.5 ± 6.3 mV.
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The high charge of the APTES and BTEOSE surface could be due the same

contaminant in BTEOSE that caused the false-positive in the ninhydrin assay, or because

the BTEOSE linker absorbed to the silicon surface and evenly distributing the APTES. It

has been shown that the BTEOSE layer is porous and intermixed with APTES [48]. Thus,

the BTEOSE may be preventing horizontal polymerization between two surface-bound

APTES monomers, or eliminating back-bonding of the positively charged amine on

APTES with the negatively charged silicon hydroxide surface. Both of these scenarios

would reduce the number of free primary amines on the surface. The lower concentration

of APTES may also be causing the growth of a thinner and more uniform APTES film.

4.2 Evidence of PEGylation via stability of particles

The utilization of silicon nanoparticles in vivo requires them to be stable in a

variety of media. If the nanoparticles flocculate in solution to form micron-sized

aggregates, they are much more likely to be removed from the bloodstream, thereby

decreasing their circulation time and tumor imaging abilities. But achieving colloidal

stability is not trivial; previous studies have O
0

demonstrated that bare and aminated particles mPEG-CH2 2CH2 H-O-N

CH 3
aggregate immediately when exposed to 0.15 M salt O

solutions, which are comparable to physiological O O O
0

conditions [50]. One method of simultaneously

O O
preventing aggregation and improving

Figure 9: (Top) mPEG-SMB and
biocompatibility is by coating the nanoparticles with (bottom) MAL-NHS-PEG

poly(ethylene glycol) (PEG) polymers.



The aminated particles in this experiment were PEGylated with either mPEG-

SMB or NHS-PEG-MAL (Figure 9). Both SMB and NHS are reactive with amines on the

particle surface. As a negative control, mPEG-Amine polymer was used because it does

not contain amine-reactive groups and therefore should not conjugate to the nanoparticle

surface.

The stability of nanoparticles in solution was assessed using both dynamic light

scattering (DLS) and visual determination of flocculation and sedimentation. These

criteria are valid because particles in liquid media move primarily through thermal

motion and sedimentation because of gravity. Microscopic thermal motion is equivalent

to Brownian motion, which is measured by the DLS instrument to determine particle size.

Sedimentation can also be observed by placing the nanoparticle sample in different media

and observing the sedimentation rate.

The DLS-based size measurements of aminated and PEGylated particles are

shown in Table 1. As expected, the aminated particles treated with mPEG-Amine

aggregated after centrifugation and resuspension in PBS. However, the particles treated

with mPEG-SMB and NHS-PEG-MAL were both stable in PBS.



Table 1: Results of DLS size measurements

Silane PEGa Size after PEGylation (nm),

Measured in Measured in PBS After two days in
MeOH PBS

APTES None 220 ± 88
only Amine varies, 615 -1280 Aggregated Aggregated

SMB 360 ± 127 271 ± 84 260 ± 70
NPM 240+ 95 396 ±126 371 ± 140

APTES and None 235 + 100
BTEOSE Amine varies, 255 - 5000 Aggregated Aggregated

SMB 300 ± 151 314 ± 165 520 ± 200
NPM 255 ± 100 Peaks at 190, 700, 326 ± 117

1280 (aggregation)
APTES and None 235 ± 100

THPMP Amine varies, 91 - 955 Aggregated Aggregated
SMB 490 and 2130 295 - 500 360 ± 200
NPM 295 ± 126 295 ± 139 295 ± 200

a "Amine" refers to mPEG-Amine, "SMB" refers
"NHS-PEG-MAL"

to mPEG-SMB, "NPM" refers to

Particle stability was also assessed visually, as shown

particles were PEGylated in methanol, washed, and re-suspended

treated with mPEG-Amine could not be re-suspended, as they

aggregate at the bottom of the tube. After two days in solution,

pegylated with mPEG-SMB and NHS-PEG-MAL had settled

dispersed after gentle flicking.

in Figure 10. These

in PBS. The particles

had formed a large

some of the particles

but immediately re-
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Figure 10: Stability of PEGylated particles after two days in PBS and gentle flicking, post amination
with (a) APTES, (b) APTES and BTEOSE, and (c) APTES and THPMP.

Previous studies had demonstrated a subtle stabilizing effect of BTEOSE for 126

nm silica particles [43], but the mechanism is largely unknown and additional

stabilization did not seem to occur with these particles. In fact the opposite phenomenon

appears to be true, as the APTES and BTEOSE particles show more aggregation in PBS

(Figure 10).

The behavior of functionalized nanoparticles can be better understood when

modeled as a colloid dispersion. As previously mentioned, approximate sedimentation

rates were observed to infer particle stability. Stokes Law (Eq. 1) describes the

Silane

APTES only

APTES & BTEOSE

APTES & THPMP

mPEG-Amine
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sedimentation rate of an uncharged particle of density p2 and radius a in a liquid of

density p and viscosity q:

dx 2a2 (p2 -p)-g
dt 9rj

(Eq. 1)

For an uncharged silicon particle (02 = 2.33 g/mL) with a 100 nm radius, it should

take almost 16 days to sediment from the top of an Eppendorf tube (4 cm length). In

toluene and methanol, the sedimentation times are 9.9 and 8.1 days, respectively. This is

consistent with our observations.

While Stokes' Law provides a good estimate for uncharged particles being acted

upon by gravity, Brownian motion must also be considered. Brownian motion causes

particles in colloidal solutions to interact. If they get sufficiently close to each other, the

van der Waals attractive force could cause them to aggregate and flocculate. The

tendency to flocculate is also affected by the electrolyte concentration of the solution. At

zero or low electrolyte concentrations, the potential energy of interaction is large

compared to the thermal energy of the particles, so the colloidal solution should be stable.

At higher electrolyte concentrations, the energy barrier to flocculation is lower. The

electrolyte concentration explains why the particles remain in solution longer in methanol

and water than in PBS.

The potential energy of interaction is also dependent on the surface potential of

the particles. High surface potentials increase the potential energy of interaction, thereby

preventing flocculation. Since, the Zeta potential measurements indicate that the

aminated particles are highly charged, both the electrolyte concentration and surface

potential must be considered when estimating colloid stability [51]. This phenomenon is

34
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evident when the particles are resuspended in solutions with high pHs that neutralize the

amines on the particle surface; the particles fall out of solution faster and have a tendency

to aggregate.

Overall, while the surface charge of the APTES & BTEOSE treated particles is

the highest, the fluorescamine measurements do not indicate a significant difference

between the degree of amination among three silane treatments. Amination with APTES

alone appears to be sufficient.

4.3 Cytotoxicity of unmodified particles

The cytotoxicity of unmodified silicon particles was determined using a calcein

assay. Initially, an MTT assay was used but was later abandoned because of its reported

incompatibility with silicon microparticles due to the spontaneous and simultaneous

reduction of MTT and oxidation of the Si particle surface [52]. Another obstacle was

maintaining the stability of the unmodified particles in the serum solution. To prevent

sedimentation, the segment of the protocol where particles were incubated with cells was

changed from 24-hours to 3-hours, and the plate was shaken very gently. Three hours was

not long enough to see measure toxicity by the caffeine control. However, the unmodified

particles had a TC50 of 0.3354 mg/mL, which is the concentration required to produce

toxic effects in 50% of the cells (Table 2). In comparison, caffeine's TC50 is 1.18 mg/mL

and acetaminophen's TC50 is 3.17 mg/mL. This experiment could not be repeated due to

time constraints.



Table 2: Cytotoxicity of (a) caffeine (control) and (b) bare silicon nanoparticles, as measured by a
calcein assay.
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5 Conclusion and Future Work

In this thesis, I have described a reproducible method for creating PEG-coated

ball-milled silicon particles. The particles have a mean diameter around 300 nm and can

be aminated using APTES, or a combination of APTES with BTEOSE or THPMP.

Further modification can be performed using PEG to form stable colloid solutions, as

verified by DLS size measurements and visualization of sedimentation.

The next steps of this project are to determine particle cytotoxicity after

pegylation, measure particle circulation times in mice, demonstrate hyperpolarization,

and image functionalized particles in vivo. Once the biocompatibility and

hyperpolarizability are confirmed, these particles have numerous very promising in vivo

applications. The most direct application is for early tumor detection through passive

targeting, which can provide doctors with information on the progress of the disease and

lead to markedly improved patient outcomes. Finally, these stable, hyperpolarized

nanoparticles can also be used to label and track stem cells in order to elucidate the

mechanisms behind stem cell trafficking and differentiation.
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