MotorMouth: A Generic Engine for Large-
Scale, Real-Time Automated Collaborative
Filtering

by
Max Edward Metral

B.S., Computer Science
Massachusetts Institute of Technology
June 1994

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,
In Partial Fulfillment for the degree of
MASTER OF SCIENCE IN MEDIA ARTS AND SCIENCES
at the
Massachusetts Institute of Technology
June 1995

© Massachusetts Institute of Technology, 1995
All Rights Reserved

Signature redacted
Prggrdm in Media Arts and Sciences

. i A 15 May 1995
Signature redacted "
""" Pattie Maes

Assistant Professor in Media Arts and Sciences
Prograﬁt in Megia Arts and Sgiences

Signature redacted

c YWy " Stephen A. Benton

Chairperson
Departmental Committee on Graduate Students
Program in Media Arts and Sciences

ee ARCHWESerruTe

OF TECHNOLOGY

MAY 07 1996

Signature of Author

Certified By

Accepted By

MotorMouth: A Generic Engine for Large-
Scale, Real-Time Automated Collaborative

Filtering
by

Max Edward Metral

The following people served as readers for this thesis:

Reader

Signature redacted

Reader

Mitchell Kapor
Adjunct Professor
Program in Media Arts and Sciences

Signature redacted

Reader

Walter Bender
Associate Director for Information Technology
MIT Media Laboratoy

Signature redacted

Rosalind Picard
NEC Development Professor of Computers & Communications
Assistant Professor, Program in Media Arts and Sciences

Table of Contents

The Problem.......ccccnivenircnennnns
Overview of This Document.

Acknowledgements 11

Introduction 13

PIEVAOUS WOIK.ociusiissssmimnmsimmsisestois oot spssimeni 17
HOMR: An Interactive Music Adyvisor 21
THE B inSsnsimssnimssi it it 22
The INELFACES oivuseiivivessimmmisinssssmisismsmasiiisssssmtsovmmsestsn 26
Additional FEAMUIES.....ucverenesssrresesssssassssesssssassmssssnsssssssassesesnsn 29
Algorithms and Results 37
Data CharacteriStics w..iasinsssssssssiassmmsirsssssnssnssossn 37
Evaluation Crteria......ccoceeerssecrsssmrsesssnsassnsssensssesssssrssssnensaoss 41
Summation TeCHNIQUES.....ccesismsismssesesasisserssnssssasessessnsnsansasens 44
The Base AIZOTithm: AVETAZES ...vcveresesirnmessmssssmsssssnsssssesassases 46
Mean Squared DISLANCEc.ovceererseresesestassismmsssmsssssssssmssssssssad 48
Overlap MSD....... A R e R R 52
Povieied MSDiveuaasmsmssiismsasmiiiimesmissmisimasing 55
Constrained PEarsONuuesissinsissssisissassrsnssssssossvissssssisais 56
Metral-HACK ..o smsisamirisimms smsmssssssisssauinssmsssbiismmio 58
Popularity-Scaled MSD.......cccccimminssiscrisss s ssssessas 59
CIUSIEMNG....coevrerrrrererrrssrssssnasssssasssssassassene ...00
Genre-Based CIUSIETScvevveeiseisrssssssesrasssanssssressensnesnosssens 61
GenErated CIUSIETS .. .cuurerreerressemsressssassssmasessesnssnssesnasassarsessssnes 61
Key ReSult SUMMATY ciuueiscis ssiossissesisnsinsisssussssinsssascnsasassisonsesd 65
Discussion/System Statistics 67
SYStem SHBHES wuciucmmmismssimsssoeiims i 67
Vulnerability To SPOOfINZ....cossninisinisissmnsmisesssssarsssesasssnssanns 69
Conclusions 73
FULUTE WOTK ..o vereessensseenssssssnssnessesssnessssnssssessasssssspsnsussones 73

O SIOMS . s cxr sasenrarssasmnease SiliEE SR G R s s 73

TABLE 1.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.

FIGURE 8.
TABLE 2.

FIGURE 9.

FIGURE 10.
FIGURE 11.
FIGURE 12.
FIGURE 13.
FIGURE 14.
FIGURE 15.
FIGURE 16.
FIGURE 17.
FIGURE 18.
FIGURE 19.
FIGURE 20.
FIGURE 21.

TABLE 3.

FIGURE 22.
FIGURE 23.

List of Figures and Tables

It’s a big, biguniversecooven.n. 14
HOMR Home Page and Subscriber Page......... 27
Typical ArtistPage ...t 28
Sample “Zephyr” MesSSape .. cvoevvessncsasans 32
Distribution of Ratingscovn... 39
Number of Ratingsv.ItemId.................. 39
User Profile AVerages . .« covsvwssnesssmmmnnsns 40
Item Profile Averagescoovvnivecvnncanss 41
Frequency Count of Number of Ratings. 41
Differences Between Ringo and HOMR Data Sets . 42
Base Averages: Error Distribution 47
Base Averages: Error vs. # Ratings. 47
Distribution of Interuser Distances (MSD). 49
Effect of Varying LwithMSD 50
Error Distribution: MSD.o tht 50
Error vs. Number of Ratings (MSD). 51
Error vs. Number of Neighbors (MSD) 51
Effect of Threshold (L) on OSD Performance 53
Error vs. Number of Ratings (OSD)............. 54
Error vs. Number of Neighbors (OSD)........... 54
Interuser Correlations (Pearson)................ 57
Error vs. Number of Ratings (Pearson)........... 57
Error vs. Number of Neighbors (Pearson) 58
Summary of Results for all tested algorithms 66
HOMR User Demographics 67

Web Server Usage by Function. 68

HOAMR

T g ety Kow 8 BSER

Acknowledgements

If you look at the theses that come out of our group, almost all of them list our advisor, Pattie Maes, first.
There's a reason for this: she’s absolutely instrumental in making us all successful. She knows just the
right questions to ask to push us in the right direction, she knows how to motivate us when demos swamp
our schedules (keep those lunches!), and she gives us all the room we need to be individually creative and
to work in our own style. 1 couldn’t ask for anything more, and | can truly say that my life has changed
100% since the day | walked into her office and said “I think agents are cool.”

Likewise the other members of our group: Bruce “The Plane” Blumberg, Christie “Big Hard Drive* David-
son, Lenny “Invert” Foner, Michael “Wavelet” Johnson, Akira “305 Annex” Kotani, Henry “Watch What |
Do” Lieberman, David “Where Is He” Maulsby, Brad “de Jesus” Rhodes, Upendra “The Disc” Shardanand,
and Alan “Laugh a Minute” Wexelblat have made this crazy three years fun. And to my office mate, sum-
mer-job mate, and former roommate Yezdi Lashkari: | never had a brother, but from what people tell me,
this is what it's like. Thank god | never had a brother. ;-) | look forward to working with you, Nick, Andy,
Wax, Upe, and Pattie for a long time to come. Here's to Agents!

| could never have made it without the support of my parents, obviously. | remember applying to MIT and
thinking, “There’s no way I'll go there, but it will sure be great to have turned them down.” Thanks Mom
and Dad for giving me the opportunity, and hopefully you know how much its meant to me and how much
you mean to me. And stay young, because the older you get, the older | get.

Thanks to my readers for providing key insights throughout this process, and thanks for putting up with
my slacking off and not getting a draft to you until last week... A special thanks to Roz who saved my the-
sis. | walked in her office with no clue about how clustering was going to get done, and 10 minutes later |
knew it cold. | wish | would have gotten a chance to take a class from you, because you're one of the best
teachers I've met at MIT.

A special thanks to the people on the other side of my life: the club kids. It's amazing to have a totally sep-
arate life that you can escape to when work gets to be too much. Thank you Bruno, Evans, Fran, Teddy,
Cila, Jimmy, Terri, Jacob, Priscilla, Jose, and all the Loft children for supporting me and screaming for the
music. Hopefully you will all read this thesis someday; and E, | hope we work together in dj’ing and com-
puters someday.

Whew, if | had more pages, | could go on forever. Forgive me if | forgot someone.

© Massachusetts Institute of Technology -- 16 May 1995

Max Metral - MotorMouth

Page 12

Introduction

In the past year, research has begun on agents which make recommenda-
tions for music, videos, and other traditionally subjective domains using
automated collaborative filtering techniques. Automated collaborative fil-
tering (ACF), strictly defined, is a technique which uses a corpus of user rec-
ommendations to suggest items to individual users. Furthermore, by our
definition, SIF is independent of the items that it contains and recommends.
We have developed a generic automated collaborative filtering engine
based loosely on Ringo[1] which addresses the real world application of the
technologies that have been developed to date and improves upon their
performance. The system has been extensively tested and examined in the
context of music recommendation, but the engine has also been used to
recommend Web documents[2]. The system has been designed with speed
and size in mind, and provides a real time, scalable architecture for auto-
mated collaborative filtering. Lastly, we have developed methods to ana-
lyze the usage of the system and gathered data to examine the way in which
users interact with the system.

The Problem

There are more goods and information available to users than ever before
(Table 1, “It’s a big, big universe,” on page 14). For users and content pro-
ducers alike, the marketplace is cluttered, disorganized, and confusing.
Users need help with the selection and distillation of items; producers of
goods and information need better means of reaching interested users.

© Massachusetts Institute of Technology - 16 May 1995

Max Metral - MotorMouth

Automated Collaborative Filtering addresses both users and produc-
ers needs.

In certain domains such as music and movies, users have learned to
accept the information overload and navigate it as best as possible.
In almost all cases, some form of referrals are used to select items
from the range of possibilities. In music we have Billboard, CM/J,
radio, and other review sources. In movies, we have Siskel and
Ebert, the New York Times, and a host of other sources. Furthermore,
users often ask personal friends for recommendations. Automate
collaborative filtering automates and personalizes this review pro-
cess. There are two phrases which may make its methods clear:

« Automate collaborative filtering automates “word of mouth” on a
global scale.

Recommendations can be obtained from virtual friends across the
world, who you've never met.

o |t's just like asking your friends, except we tell you who your
friends are.

SIF attempts to match people with similar interests (friends) on
the users behalf.

TABLE 1. /t's a big, big universe

Domain Number of Items | Recommendation Source

Music Titles 140,000 Billboard, CM}, Radio
Videos 15,000 Siskel and Ebert, NY Times
Restaurants (US) 400,000 Zagat’s, Local Newspapers
Books 15,700,905 Best-seller lists

Overview of This Document

The next chapter introduces Automated Collaborative Filtering and
describes research to date. Chapter 3 presents HOMR, an automated
collaborative filtering system for music recommendation available
via the World Wide Web. Chapter 4 provides results for many differ-
ent algorithms and discusses high-level analysis of overall data (clus-

Page 14

Overview of This Document

tering). Finally, we discuss the HOMR community and attempt to
draw conclusions about ACF technology and its future.

Page 15

Max Metral - MotorMouth

Page 16

Automated Collaborative Filtering

HOAMR

Definitions

Automated collaborative filtering attempts to automate the “word of
mouth” process for a given user by leveraging information provided by
other “similar” users. Automated collaborative filtering is especially appli-
cable in domains which have traditionally aesthetic qualities, such as
music, books and movies,

Previous Work

Automated Collaborative Filtering, as we define it, is a fairly new field. Work
begun only several years ago, and was made possible by the wide prolifera-
tion of networks such as the Internet. Many of the underlying algorithms,
however, have been around for quite a long time. The algorithms used
attempt to measure the subjective “similarity” of users based on user rat-
ings. This problem is a fairly straightforward statistical or pattern matching
problem, and algorithms from pattern recognition or information retrieval
can he examined for ideas.

For many years, direct marketers and others have been attempting to
achieve the type of “molecular” demographic capabilities that HOMR pro-
vides. Many use complicated statistical analyses to try and find patterns in
survey data. Unfortunately, many have not been asking the right questions.
While demographers attempt to ask questions such as “What age group will
drink Snapple?”, ACF can do these tasks in a new way, such as “What 5,000
people are most likely to like Snapple based on their past preferences?”

@© Massachusetts Institute of Technology -— 16 May 1995

Max Metral - MotorMouth

Ringo

Grouplens

Essentially, we reduce the audience to “an audience of one” which
empowers users as well as content producers. A second problem
with the directed marketing approach is that direct marketers do not
provide their “recommendation” capabilities to their end-users. A
very powerful feature of this ACF system is the win-win situation it
creates for users and producers.

On the other side of the cain, researchers have been focusing on the
user side of automated collaborative technology. Previous develop-
ments include:

Ringo[1] was a system for music recommendation offered via email.
It was developed at the MIT Media Lab by Upendra Shardanand and
based upon ideas from Carl Feynman. The work in this thesis is
heavily based on the Ringo system, and is essentially an extension
and improvement upon it. Ringo gathered approximately 4,000 users
before it was taken down in December and replaced with HOMR, the
system developed in this thesis. Ringo was an excellent proof of con-
cept and performed quite well; nonetheless there was quite a bit of
room for improvement to the basic ACF algorithm used.

Grouplens[3] was an early example of automated collaborative filter-
ing technology. The system allows users to give ratings to Usenet
news articles. Custom news browsers can then interpret the data,
compute correlation coefficients (Using the Pearson r formula), and
provide recommendations for users.

There are two interesting comparisons of GroupLens and HOMR/
Ringo. First, Grouplens is a distributed approach. Custom clients are
used to interpret special news articles containing ratings. The advan-
tage, of course, is that no central server must be maintained (other
than the Usenet news server). The disadvantage is that any user
wishing to use the system must download a custom client, which
may not exist for all platforms, or may be difficult to compile. Sec-
ondly, users can view other users’ ratings. Since ratings are merely
special news articles, a user can browse those articles manually; the
advantage, of course, being accessibility by those without the client
and by those interested in specific user’s feedback. The disadvan-

Page 18

tage is the lack of privacy provided to users; if a user rates alt.sex.*
highly, all other users can see that fact.

Movie Select Movie Select is a software package for the Macintash. Movie Select
claims to recommend movies to people based on what a pre-sur-
veyed set of users enjoyed. There are two major shortcomings of this
system: its information is static, and doesn’t learn from user pat-
temns; and there is no sense of community. Across multiple Movie
Select sessions, no ratings are stored. Therefore, there is no notion
of “building a profile” of the user or any sort of improvement over
time. Since the product is not network based, and since users do not
contribute content, there is no sense of community building, bond-
ing, or loyalty. The product’s automated collaborative filtering tech-
niques are not disclosed.

videos@bellcore.com The videos system from Bellcore is very similar to the original Ringo
system, right down to the fact that it's an email-only system. Users
rate movies and receive recommendations for new movies. Until
recently, no information was available about the workings of the vid-
eos system.

A paper will be published at CHI ‘g5[13], which gives some details
about the general concept. While not specific, it mentions multiple
regression analysis as the similarity metric. It does not mention
many error statistics, so it is very hard to compare performance of the
two systems in detail. Furthermore, they have only 291 users and
55,000 ratings, less than one-tenth of HOMR’s size,

The Bellcore paper mentions one very interesting measure of error,
They surveyed a subset of their users and asked them to re-rate
items they had previously rated. The Pearson r correlation between
both sets of ratings was .83, putting an upper bound of .91 on the
possible accuracy of the system.!

1. Statistical theory states that the best that can be done in this situation is the
square root of the observed test-retest correlation, which is .91 in this case.

Page 19

Max Metral - MotorMouth

The I-Station

The |-Station is a commercial system featured in several record store
chains, including HMV and Strawberries. While the I-Station does not
employ automated collaborative filtering techniques, it does collect
rating information and provides non-personalized reviews. The |-Sta-
tion provides a hint at the application on automated collaborative
techniques to aid users in selecting products. For example, the user
can walk around the record store, choose a CD, and bring it to the I-
Station kiosk. By simply passing the bar code over the scanner, the
user can hear samples, get concert information, etc. By augmenting
this system with ACF, the user could get a prediction of their rating,
get more directed reviews from nearest neighbors, and find other art-
ists similar to the one given.

There are several other systems like the |-Station which are “so
close” to the HOMR concept, such as Cardiff's Movie Database.
These systems have content, have rating data on a per user basis,
but merely lack the automated collaborative technology to reduce
their demographically-segmented recommendation to truly personal-
ized recommendations.

Page 20

'HOMR: An Interactive Music Advisor

The original Ringo system was offered via email. Users sent ratings and
other requests to Ringo and waited several hours for a reply. The Ringo sys-
tem came on-line in July, 1994 with 575 artists and 10 users (the members of
our research group). When the system came to a screeching halt in early
December, there were 4,000 users and 12,000 items in the database. The
system took well over an hour to produce a set of recommendations and
consumed over 400 Megabytes of local storage. While the original system
was a fantastic success and proof of concept, it had several problems:

* Size of stored data

« Speed of prediction and recalculation

* No true interactivity

¢ No multimedia content

= No “people in the interface”, poor sense of community

While the interface and its features do not directly relate to the algorithms
used for predictions, they are an important part of the overall system. Ifour
system is easy to use and enjoyable, users will enter more ratings, and
interact with the system more often. In turn, as we learn more about the
user, our algorithms can improve their predictions and recommendations.

In designing HOMR, we addressed each ofthese problems in depth, and the
solutions are described fully in this chapter. In addition, we improved on
the performance of the basic algorithm, and detailed results can be found in
“Algorithms and Results” on page 37. Briefly, speed and size were vastly
improved by rewriting the code in C++ and making realizations about data

© Massachusetts Institute of Technology -- 16 May 1995

Max Metral - MotorMouth

access and usage; interactivity was accomplished by providing a real-
time interface to predictions and other information via the World
Wide Web; along with the Web came the ability to add sound samples
for artists and albums. Finally, much effort was devoted to develop-
ing a sense of community among all users and among users with
common interests. While HOMR aims to automate word of mouth,
there is no reason it shouldn’t also facilitate manual word of mouth
(a.k-a. good old conversations with real people).

Speed Improvements

The Engine

The original Ringo[1] system was written in PERL! and ran on a DEC
Alpha. Since it was a non-interactive (email) interface, it processed
input once every hour. Unfortunately, as the number of users and
artists grew, the system became unmanageable. The system stored
an 0(n? matrix of user-user correlation coefficients used to make
predictions. With 4,000 users, this had grown to a monstrous 300
megabyte file. With 10,000 users, as we have today, it would have
taken approximately 2 gigabytes of storage just for this matrix. Fur-
thermore, the amount of email coming in began to take more than an
hour to process. Therefore, since new input was processed every
hour, a seemingly never-ending queue was beginning to build.

HOMR improves upon Ringo in several ways. First of all, HOMR was
written in C++ using a fast freeware database package[14] as the
underlying storage system. PERL had been great for testing and pro-
totyping, but it could no longer handle the job. Second, there was no
need to store the entire n? correlation matrix, since only a subset of
users were used to calculate a given user’s prediction. After the first
implementation of these schemes, the entire data set (neighbors
matrix, item storage, user storage) took less than 20 megabytes. As
of this writing, the data, including backup and recovery information,
occupies 100 megabytes.

1. Practical Extraction and Report Language, an interpreted language

Page 22

A detailed analysis of the usage characteristics of Ringo was per-
formed to come up with the appropriate database model for the sys-
tem. For example, it was clear that the most popular activity was
entering ratings, and that these ratings were entered in batches.
Therefore, rather than storing each rating as a record, a single user's
profile was stored as one large data chunk. Many optimizations such
as these sped up the system by a factor of 10. Furthermore, we sepa-
rated the task of generating recommendations from the task of recal-
culating the nearest neighbor set. At the cost of fully up-to-the-
minute neighbors, we shed incredible amounts of computation time.

These programmatic improvements were adequate for quite some

Ratings time, and to some degree could scale indefinitely.
53 The most time intensive task, by far, was the recalculation of neigh-
E — bors. With 8,000 users, it took approximately 2 minutes to recalcu-
il late the neighbor set. Other functions such as generating

recommendations and entering a batch of ratings took approximately
3 seconds. The reason, of course, that neighbor recalculation took so
long was that the system must compare a user against all other users
in the database. This comparison entails retrieving all profile records
from the database. Traditionally, full sequential access is expensive.
In our case, it was even more exp'ensive since the database pack-
age[14] used a recently used cache strategy rather than pre-fetch.
Even with a different, smarter database package, further improve-
ments would be necessary. There were two passible approaches to
solving our problem: incremental recalculation, or a distributed
approach.

Incremental Recalculation. Instead of recalculating the neigh-
bors from the whole set, we could make sure that all neighbor infor-
mation was updated whenever new ratings data was entered. In the
current engine implementation, there are “hooks” which allow algo-
rithms to maintain such incremental information. We did not imple-
ment such an incremental scheme for several reasons:

Page 23

Max Metral - MotorMouth

Major Improvements

» When using incremental recalculation, you pay the computational
price when setting ratings (since you must update all potential
neighbors for each new rating). Since setting ratings was the
most popular activity, we did not feel the payoff would be ade-
quate for our relatively small user base.

+ Incremental schemes increase the complexity immensely, since
we must manage possibly asymmetric neighbor relationships
across the entire database whenever a new rating is entered. In
other words, if a new rating is entered for user A, all neighbor rela-
tionships both for neighbors of A and for users whose neighbor
sets contain A must be updated.

A Distributed Approach. A second possibility was a distributed
approach which would allow us to add more machines or processors
as the number of users grow. A simple strategy seemed promising:
divide the user base among the machines. All data would be accessi-
ble to each server, and recommendations and rating information -
could be entered into the global database by any server (i.e. requests
would be rotated among all servers or handed to the server that was
least busy). When neighbors were recalculated, however, each
machine would take a subset of the database (for example, user
1,000 to user 2,000), calculate the closest n neighbors from that sub-
set, and report its results back to the “coordinating server” (another
rotating responsibility). The coordinating server would then choose
the n “nearest nearest neighbors” and store those for the userin
question. Each server could also store all the ratings for its subset of
users in memory, further speeding up the calculation. This approach
still seems viable, and while there are many possible improvements,
it would have been an effective first cut. There were two main rea-
sons we did not take this approach:

+ We didn’t wish to dedicate many machines to the problem, and
also wished to further explore optimal single-machine perfor-
mance.

= Database consistency problems have been the basis of many
research projects and many successful commercial ventures, and
we had no desire to delve into those problems at this time.

As the number of users approached 10,000, the server began to slow
down, and the single machine approach was clearly becoming inade-
quate. Shortly before we began to implement a distributed solution,

Page 24

we began thinking about the problem in a different light. It was use-
ful to state the process explicitly. “To recalculate the neighbors, we
iterate through all users. For each rating that our user has in com-
mon with another user, we compare them and update the similarity
for that pair of users.” The key is that only those items which both
users have in common figure in the distance measurement. We have
an upper bound on these artists, it is the set of items that our user
hasrated. Instead of iterating over all users, then, we should iterate
over all users who have rated at least one of the artists that our user
has rated. Unless this set is the set of all artists, the resulting calcu-
lation will involve strictly less comparisons than the “each-user”
approach.

To implement our scheme, instead of simply storing rating profiles for
users, we also store them for items. Now, when we recalculate
neighbors, we retrieve the profiles of all the items our user has
rated, and iterate through each rating in this set to find the distance
to all users who have at least one of these ratings in common with
our user. Mathematically, our order of growth has not changed, since
in the worst case we still have O(Usersl*litemsl) comparisons; how-
ever, the constants have changed, and our new method is never more
computationally intensive. In practice, we've reduced the order of
our calculation to

+ O(Ave. Number of Ratings per ltem * Ave. Number of Ratings Per User)

as opposed to:

o O(Number of Users*Ave, Number of Ratings Per User).

Structural Changes The generic engine is easily customizable to any domain. The engine
itself has no knowledge of its contents, it merely stores ratings for
and makes recommendations for “items.” Furthermore, different
algorithms can be plugged in by writing small bits of code and slot-
ting them into the engine. This modular design allowed great free-
dom in exploring new and untested algorithms without large code
rewrites.

The engine also provides storage for meta-information about items
and users, and a host of other informational services. The engine

Page 25

Max Metral - MotorMouth

also defines the concept of “containment” which allows a set of
objects to be contained by a parent object. In HOMR, this relation-
ship is manifested in the artist-album concept. In other domains, dif-
ferent relationships may hold. For example, in a server brought up to
deal specifically with house music, singles (12" records) were con-
tained by multiple parents: producers, artists, record labels, and
compilations. Users could receive recommendations for and enter
ratings for any of the parents and any of the children. In addition to
“multiple containment,” the containment hierarchy could be more
than one level deep. In HOMR, we could have artists containing
albums containing actual songs. in a research system, this was more
complex than we wanted to deal with, and the informational ramifica-
tions of entering song titles were simply not worth the added capabil-
ities. While the possibilities for use of the containment features are
many, they have not been fully tested, and there may be algorithmic
issues when designing particular containment schemes.

The Interfaces

Email

The email interface to the system remains largely unchanged from
Ringo. The scripts which parsed email simply make calls to HOMR's
engine instead of making calculations themselves. This is desirable
for many reasons; for example, former email users would never have
noticed a change. To summarize the description of Ringo’s email
interface in [1]):

« Users rate items by submitting email with any number of { “Artist
Name”, “Rating” } pairs.

» Users can ask for a set of artists to rate, which is generated quasi-
randomly. The new interface also allows users to get a list of
“most likely” artists to rate (See “Most Rated By Neighbors” on
page 31).

« Users can obtain suggestions/recommendations.

+ Users can view the Top 30 and Bottom 30 artists.

Page 26

The Interfaces!

Unfortunately, users can no longer submit reviews via the email inter-
face, and can no longer obtain dossiers on artists. There is no partic-
ular reason for the loss of these capabilities, other than that we did
not have time to re-implement them using the new engine.

World Wide Web

HOMR’s World Wide Web interface was put on-line officially on
December 15, 1995. To date (April 30, 1995), the server has pro-
cessed over 400,000 requests. For more information about server
statistics, see “Discussion/System Statistics” on page 67.

FIGURE 1. HOMR Home Page and Subscriber Page

i

:
%.
:
?-

e

S

fyou 5, 300 i fid o fafommaton
 service b filng aut s bnef guestonnats . Ther 44 ¥
 Jreviows yymion of :

g

oy g

The beauty of the Web is the ability to view large amounts of informa-
tion in a point-and-click fashion. The HOMR system contains many

Page 27

Max Metral - MotorMouth '

artists, many albums, and much other information. Through the use
of scripting and forms, HOMR creates an environment in which users
can browse detailed information about artists and even contribute
their own information. For example, the page for Peter Gabriel shown
in Figure 2 contains a user-supplied irﬁage as well as genre informa-
tion, a brief synopsis, album information, and even some related
hyperlinks to other web pages dealing with Peter Gabriel,

FIGURE 2. Typical Artist Page

‘e The image presented here was entered by a
user. It doesn’t reside on our server, it's
merely linked into the document.

e The useris presented with information
about the overall rating information for this
artist, as well as their rating for him and a
menu to change that rating.

'» The user can enter a personal review,

“i%e Alist of known albums is presented (which
users can add to via the “New Artist/Album”
interface.

=2e Genre information can be entered by users
for posterity. itis NOT used for recommen-
dations.

» Users can enter brief synopses about each
artist or album.

 Alist of known links related to this artist is
presented. These can be samples, info
pages, or anything. Users can add arbitrary
numbers of links here, and errors are cor-
rected by the system administrator.

» Finally, a user can get “similarity metrics”
for this artist to find related artists.

Additional Features

Of course, user contributed information is not always reliable. For
example, Beethoven was classified as “Industrial” for quite some
time by a mischievous user. Since we do not want to make it easy to
destroy others’ contributions, users must submit errors and correc-
tions by sending “feedback” (via the buttonbar shown at the bottom
of Figure 2) and the system administrator will correct the problems.

Additional Features

Improving the Survey Stage

A significant difficulty with automated collaborative filtering is the
initial survey stage. Since the system must build up rating data for
each particular user in order to recommend items for them, the sys-
tem must solicit ratings from the user. How can the system deter-
mine which items to choose? How can the user most easily and
effectively express which items they would like to rate? Itis clear
that there are many ways to approach this problem. Rather than
deciding on a single approach, we provide users many ways to enter
new ratings. Users can ask for new items to rate in the following
ways:

« [nitial Survey: Cluster Based

« Manual Entry / Search

* ByGenre

« By Date of Entry into the system (i.e. “Newest Artists”)
« Most Often Rated Artists

« Most Often Rated Artists By Nearest Neighbors

¢ Items Similar to a Given Artist

Initial Survey When users subscribe to the system, they can request an initial sur-
vey based on “clusters” of artists. For details on artist clustering, see
“Clustering” on page 60; the basic idea is that we attempt to learn
which “sets” of artists are most similar to each other, Based on that
information, we provide several often rated artists from each of those
clusters, in an attempt to roughly place the user in the “user-rating”
space.

Page 29

Max Metral - MotorMouth

Manual Entry/Search

Genre

Date

The simplest way (conceptually) for a user to input ratings would be
to allow free form entries and ratings. Unfortunately, there are sev-
eral practical problems with this approach. First, users often spell or
arrange artist's names differently. Secondly, some users cannot type
quickly and view manual entry as a true chore. We have attempted to
solve both problems by using a form of Soundex matching which
allows users to enter partial names or names that “sound like” the
desired artist. There are several other existing solutions which could
be adopted. For example, the |-Station allows users to type the first
letters of the artists names (e.g. “Sonic Youth” could be referenced
as “So Yo").

In the interface, there are two items that allow manual rating entry. A
user may search for a single artist, and then rate that artist on the
resulting page (the standard artist page as shown in Figure 2 on
page 28). A user may also enter a set of artists and have HOMR
search for all of them. HOMR then attempts an exact match for each
of them. If an exact match cannot be made, HOMR presents a choice
box of options from which the user can select and rate the appropri-
ate artist.

Since users can enter genre information about each artist and album,
we would like to make use of this information in helping users navi-
gate the database. Users can select any genre and receive a list of 50
(or any number) artists to rate (which they haven’t rated before).

A significant problem in a commercial system would be gathering a
“critical mass” of ratings for a new or otherwise obscure artist. In
this prototype, active users can get a list of new items to rate, in an
attempt to kick-start the process. A similar method would be “bill-
board notification” of new artist that may be of interest to a user. For
example, if a new band only has a few ratings, but those ratings are
by a user’s neighbors and are high, it may be appropriate to put a
message on the top of the users recommendation screen saying
“Have you checked out Band X?” which would allow them to look at
general information and perhaps provide a rating. Unfortunately this
was not implemented due to time constraints.

Page 30

Additional Features

Most Rated Users can get a list of the most popular items which they haven't yet
rated. For quite some time, this method was the only way to get a list
of artists to rate. Consequently, popularity was a feedback system
and almost all users have rated the most popular artists.

Most Rated By The first of the “intelligent” selection schemes, “Most Rated by

Neighbors Neighbors” is exactly equivalent to a recommendation run, but irre-
spective of what rating a neighbor gave to an artist. In other words, it
answered the guestion “What items have my nearest neighbors rated
most often?” rather than “What items have my nearest neighbors
given the highest ratings?”

Similar Items Users can ask for a list of items which are similar to a given item. This
similarity is measured in terms of “exposure.” In other words, “If a
user rated artist A, what other artists are they most likely to have
rated?” Far more details, see “Exposure Similarity” on page 33.

Bells and Whistles

Several other feature were incorporated into the World Wide Web

interface which did not necessarily directly impact the algorithms,
but provided a better interface and improved the sense of commu-
nity.

Messaging Users can send each other messages. Since users must login to use
the system, and since we have anonymous user id's, messaging was
fairly straightforward, and allowed a host of possibilities. There are
two types of messages: standard and zephyr. Standard messages
are placed in a “mailbox” which the user must check. The useris
alerted via the top page (Figure 1 on page 27) when new mail is in
their box. Zephyr messages are intended for rapid, casual conversa-
tion. Users send a message and it is displayed at the top of the next
page the user receives from our server (Figure 3). After the user
leaves that page, the message is deleted. This allows users to guide
each other through the system, share a common experience, or just
plain chat. Unfortunately, we weren’t able to implement a means to
find out who's “on the system” at any given point, so zephyrs were
not all that popular.

Page 31

Max Metral - MotorMouth -

FIGURE 3. Sample “Zephyr” Message

The Dating Service As a result of messaging, it was a fairly simple extension to allow
“neighbor messaging.” Users can get a list of their nearest neigh-
bor's anonymous id’s, and send any or all of them a message. This
allows users with common interests to engage in un-automated
word-of-mouth, an ancient but effective means of communication.

Unfortunately, messages were not delivered to users true email
addresses, but to their mailboxes on the system (to avoid being too
intrusive). Therefore, many users either did not log on to the system
often or did not check their messages often. The messaging feature
was not used as often as one might expect, with only 1,000 messages
being sent in a four month span (See Figure 23, “Web Server Usage
by Function,” on page 68).

Taste Summary Using genre information provided by users, HOMR can attempt to
make generalizations about your musical interests. At this point,
HOMR merely calculates an average rating per genre and reports
those that you rate highly or those you seem to dislike. Detailed
summaries of per genre information are also provided.

Bulletin Boards A global bulletin board for users and system administrators to dis-
cuss all issues is provided.

System Charts System-wide data in the form of charts is available for:

e Most Rated Items (Most “Popular”)
e Most Liked and Disliked Items (Highest and Lowest Average Rat-
ings)

Page 32

- Additional Features

Exposure Similarity

Preference Similarity,
Method 1

Similarity Metrics

By examining overall system data, we can draw conclusions about
what artists are similar to each other. On each individual artist page
(See Figure 2 on page 28), users can ask, “Which items are similar to
this one?” HOMR measures similarity in several ways:

Exposure similarity answers the question, “If I've rated this artist
before, what other artists am | most likely to have rated?” This metric
is without regard for the actual ratings given to the artists, it only
checks whether or not there is a rating. The exposure metric can be
very useful for guessing which artists a user will be able to rate, given
that they have rated certain other artists.

Mathematically, exposure similarity between artist A and B is mea-
sured as follows:

Z cnacnb

E,, = —=asl (EQ1)
cha'l' Z Cap
nelU nel

where:
. H;,- is user i's rating for artist j.

[1 H #0
* na = 0 Hm, =0

e Uis the set of all users.

The value is thresholded to avoid suggesting items that have been
rated by over 50% of the database, since those items have been
exposed to such a large percentage of the population. Strictly, these
items are similar to everything else, but users would quickly tire of
seeing “The Beatles” on every list. If users wish to see these “glo-
bally similar” items, they can merely view the “Most Rated” system-
wide chart.

Preference similarity gets at a more understandable concept, namely
which items do users consider aesthetically similar? It answers the

Page 33

Max Metral - MotorMouth

Preference Similarity,
Method 2

mathematical question, for all users who have rated a and b, how
often do they rate them on the same side of the average? Initially,
this was expressed as a percentage. Unfortunately, without weight-
ing, a pair of items which were both rated 7 by a user would be given
the same amount of credit as a pair of artists which were both given a
5 (for example).

Instead, we adopt a method which takes into account the number of
standard deviations above or below the average for each rating. The
preference similarity, using method 1, is then defined as:

. Tab = Set of all users who have rated artists a and b

¢ int(x) = Integer component of x
* U, = Average rating for user x
* o, = Standard Dev of ratings for user x

1 If user x rated a and b on the same side of their average
-1 If user x rated a and b on different sides of their average

I————H""“U—;I}-;—l

* W= inr(=

a.k.a. the number of standard deviations away from the average
(+1, since we still want to count items within 1 deviation).

é _ o+ I"'Juu-l) 1
men - (2 (1+ "I'J:m"p‘xn)

a.k.a. the average deviations scaled by the difference in the devia-
tions.

My (aby = {

x

Z M, (ab) nab

_neT,

Pap = IT

(EQ2)
abl

Method 2 employs a similar technique, but without regard for user
averages. Inother words, we attempt to minimize the average dis-
tance between ratings for artist A and B for each user. Method 2is
defined as:

* T,, = Setofall users who haverated artists aand b

Page 34

Additional Features

¢ dopy = |H pa=H,y)

Z dn (ab)

neT,
Q,=""e _ (EQ3)
ab !Tabl
Preference Similarity, The combined metric runs both method 1 and 2 and calculates the
Combined average position (rank) of a given artist in both generated similarity

lists. The items with the highest average position in the combined
list are reported.

Preference Dis- Preference dis-similarity merely turns preference similarity (method
similarity 1) on its head (D=-P). The results of this metric are hard to interpret,
as the concept of musical dis-similarity is not a familiar one.

Clustering

Users can browse clusters of artists generated by HOMR. (See “Clus-
tering” on page 60.) While viewing a cluster, users can ask for a rec-
ommendation of items within that cluster. HOMR then recalculates a
user's neighbors based on ratings in common within that cluster, and
generates a prediction for items in that cluster.

Users have varied tastes; for example, a user may like rock and new
age music. General ACF attempts to match users with similar tastes.
Cluster-based ACF attempts to match users with similar tastes ina
particular subset of artists, a.ka., a cluster. Results of cluster-based
ACF are presented in “Clustering” on page 60.

Page 35

Max Metral - MotorMouth

Page 36

Algorithms and Results

In addition to improving the interface, we would also like to improve the
accuracy of the system’s recommendations. To do so, we must select met-
rics by which to measure its performance, develop automated test proce-
dures to gather these metrics, and explore different algorithms. Nine
different algorithms are examined here, and detailed results presented for
each. In our particular domain, namely music recommendations, certain
algorithms perform best; in different domains, other algorithms may be
optimal. The development of standard metrics and testing procedures will
aid in the selection of optimal algorithms in many domains.

Data Characteristics

The HOMR data is a set of user profiles. A user profile is a list of artists and
ratings for that user for that artist. So, overall, the data is a matrix H of
dimensions |Users| x IArtists| where Hy; is user j's rating for artist i. Auto-
mated collaborative filtering attempts to predict values for a given user for
artists that they have not rated (H;; = 0). To make these predictions, the rest
of the data in the matrix can be used. Individual ratings for artists are
based on the following scale, as used in Ringo[1]):

7: BOOM! One of my FAVORITE few! Can't live without it.
6: Solid. They are up there.

5: Good Stuff.

4: Doesn't turn me on, doesn't bother me.

© Massachusetts Institute of Technology - 16 May 1995

Max Metral - MotorMouth

The Basic Idea

3: Eh. Not really my thing.
2: Barely tolerable.
1: Pass the earplugs.

From a completely top-level view, given:

* Hjy, the existing user-artist rating space, and
* Gjj, the completely filled user-artist rating space (where the empty

elements of H;; would be filled with what the user would have
rated artist j).

Of course, we do not know Gj;. We must then attempt to find an algo-
rithm that approximates it as closely as possible. Our approximation
may change over time, and is likely different for each user.

In practice, all our algorithms use a similar procedure:

e To make a prediction for user A for artist j,
1. Calculate the set of users most “similar” to user A. Call this set N.

2, Calculate the prediction for artist j from N by calculating a
weighted sum of user's ratings for j in N.

Our algorithm will succeed or fail on two main factors: definition of
similarity between users, and the specifics of the weighted sum. Fur-
thermore, we may improve the algorithm by tweaking the size of N,
either by using a threshold on similarity or on sheer number of neigh-
bors. We have tried many similarity metrics and several summation
techniques, which are outlined later in this chapter.

The HOMR data set was frozen on April 1, 1995 for analysis purposes.
All tests were performed on the same data set. At that point, there
were 8,506 users, and 925,752 ratings. The distribution of ratingsis
shown in Figure 4. Note that there are almost four times as many rat-
ings of 1 as ratings of 7. In general, users are much more able to
identify things they dislike than things they like. This phenomenon
may be due to several causes, among them:

« People only like a small set of artists, and hate a much larger set.

« The Internet culture is moderately elitist, and this reflects itself in
dislike of “pop” music. Since these users know pop music, but
dislike it, we amass many low ratings from this factor.

Page 38

Data Characteristics

FIGURE 4. Distribution of Ratings

200000

160000

120000

8oooo

Number of Ratings

40000

It is also very interesting to look at the distribution of ratings versus
the “id” of items. Each item in the system was assigned an id that
approximately corresponds to their date of entry in the system.
Figure 5 shows that almost one third of the overall ratings are con-
centrated in ids 0-100. The first hundred artists are the core of the
initial artists entered into the Ringo system, and include artists such
as the Beatles, Rolling Stones, etc. Of course, these artists may have
most of the ratings since they've been around the longest, but the
huge disparity suggests more complex factors, such as popularity.

FIGURE 5. Number of Ratings v. Item Id

300000

250000

ings

200000

150000

100000

Number of Rat

50000 -8

o]

o 1000 2000 3000 |
item Id

User averages, shown in Figure 6a, are distributed normally with a
slight bias towards the low end. Standard deviation (Figure 6b) of
user ratings peak at 1.75, with almost 4,000 users having a standard
deviation between 1.5 and 2.0.

Page 39

Max Metral - MotorMouth

FIGURE 6. User Profile Averages

2000

1500

1000

500

4000
3000
2000
1000
o
3 4 s o 1 2
User Average Standard Deviation

Conversely, we can examine ratings for artists (Figure 7 on page 41).
Top line statistics are: ‘

* Average of 253.3 ratings per item, with a standard deviation of
799.
* Median: 18 ratings per item

We would expect to see similar distributions when compared to user
averages, which we do. There is a slight spike at around 6.5, which is
mainly the “garage bands” entered by users, rated highly by a few
people, and never seen again. When we restrict the sampling to only
those items with over 2o ratings, our spike quickly disappears. The
standard deviation in ratings is very similar to that of the users,
although slightly more spread out. The greater spread proves that
users tastes truly do vary; there are few artists loved by everyone or
hated by everyone.

Figure 8 shows the frequency count of the number of ratings for
items. From it we see that over 1500 items have less than 10 ratings,
and over 1000 items have more than 100 ratings. Few items lie
between these two rating spikes, showing that things are usually
well-known or unknown, but not often in between.

Page 40

Evaluation Criteria

FIGURE 7. Item Profile Averages

1000

8oo

600

200

B > 20 Ratings
@ All ltems

2 3

4

2000

1500

| 1000

500

5 6 o 2

1
Item Average Standard Deviation

FIGURE 8. Frequency Count of Number of Ratings

1600
1400
1200
1000 Maximum: 6,843
Boo Minimum: 1
600 > 1000: 257

Number of items

<10 40 70 >100
Number of Ratings

Previous Results

Evaluation Criteria

There are numerous tests which can be applied to judge the fitness of
a given prediction algorithm fn various circumstances. The initial
Ringo[1] tests identified several metrics by which automated coliabo-
rative filtering systems can be measured. This thesis advances these
metrics and analyzes many second order effects that were not ana-
lyzed in Ringo. Furthermore, we compare the results of the larger
data set in HOMR to the Ringo results to find out if the algorithm has
improved over time.

Many of the algorithms mentioned here were originally tested in the
Ringo system. When possible, results are compared for both the

Page 41

Max Metral - MotorMouth

original Ringo system and HOMR. There are however a few differ-
ences in the generation of the results:

« The Ringo tests were based on 1,000 users with 1,876 artists, and
approximately 130,000 ratings.

« The Ringo tests dropped 20% of the entire system’s ratings, and
then attempted to predict that subset using the remaining 80%.

+ The HOMR tests drop 20% of each user's ratings and attempt to
predict that subset using the remaining, fully intact, user base.
For users with few ratings, this test is quite difficult, more so than
the Ringo test.

By using this new metric, our tests focus on the user experience
rather than the system experience. In other words, it is much more
relevant to ask “How weill does the system perform for user X?”
rather than “How well did the system do when it had only 80% of its
total ratings?”

Fora summary of other differences, see Table 2. Also, when possible,
correlations between predicted ratings and actual ratings are givenin
the form of Pearson r correlations. The Bellcore[13] system mentions
maximum correlations of .62 using its algorithms. The correlation in
the Bellcore system is based on a 90%/10% split rather than 80%/
20%. Our algorithms performed slightly better with a 90%/10% split
than with an 80%/20% (as would be expected). For purposes of
comparison with the Ringo system, 80%/20% results are presented.

TABLE 2. Differences Between Ringo and HOMR Data Sets

Ringo

HOMR

Performance data for both Ringo and HOMR was gathered for the fol-
lowing features:

Page 42

Evaluation Criteria

e Average Error

We would like to minimize the error between the predicted value
for a given item and the known value.

» Extreme Average Error

While it is important in general to reduce the average error, it is
even more important to reduce error in the cases where the user
would have given an artist an “extreme” rating. In other words, if
a user would have rated Madonna with a 7 and HOMR predicts a
5, this is a much more costly error than if the user would have
given her a 5 and Ringo predicted 3.

+ Standard Deviation

The standard deviation of the error tells us how wildly HOMR
behaves. We can decide what behavior is acceptable for this fea-
ture, as simple minimization may not be desirable. Forexample, if
Algorithm X has an average error of .3 but a standard deviation of
1, and'Algorithm Y has a standard deviation of .1 but an average
error of 1, we may choose Algorithm Y.

« Predictive Power

To test the system, we remove 20% of the data and attempt to
predict those ratings from remaining data. In some cases, there
may not be enough information to make a prediction for an artist
in the target set. We would like to maximize the “predictive
power” of the algorithm, minimizing the number of artists for
which we can make no prediction.

« Optimal threshold

For some of the algorithms in Ringo, a threshold was applied to all
nearest neighbors. That is, all nearest neighbors within distance L
from the user were consulted to make a prediction. We would like
to understand how the choice of threshold affects the aforemen-
tioned metrics.

The HOMR tests additionally gathered the following data:

+ Optimal Number of Neighbors

In addition to the distance threshold from Ringo, HOMR also uses
a numerical threshold on the maximum number of neighbors con-
sidered to make a prediction. We would like to address two
issues in regards to this numerical threshold. First, does it
improve performance relative to non-numerically thresholded
algorithms? Second, what is the relationship of this threshold to
the performance of the system?

« Optimal Number of Ratings

Page 43

Max Metral - MotorMouth

What is the relationship between the number of ratings a user
provides and the average error? Furthermore, for a given user,
does the error improve or worsen as ratings are added? We would
expect the performance to improve as the system gathers more
data about a user, but we could also imagine a cut-off, after which
HOMR can find no new items to recommend.

+ Minimizing Impact of Errors

If we make an error, we would like the error to be on the correct
side of a users average. We would rather exaggerate a user’s rat-
ing than simply be incorrect.

« Pearsonr correlation

Taking a cue from the Bellcore[13] team, we've measured the cor-
relation between the target rating set and the predicted ratings.
The Bellcore tests showed that a maximum correlation of .91 can
be reliably achieved in practice, since the correlation between a
user's ratings over time is on average .83. (See “vid-
eos@bellcore.com” on page 19.) Note that maximizing Pearson
correlation does not directly correspond to algorithm perfor-
mance. For example, an algorithm with .1 average error and a low
Pearson correlation would always be preferable over an algorithm
with high average error and high correlation. From a user per-
spective, average error is much more noticeable than correlation.

Weight

Summation Techniques

As mentioned in “The Basic Idea” on page 38, part of the recommen-
dation process involves calculating a weighted sum of nearest neigh-
bors ratings. There are two primary techniques we have tested for
calcutating recommendations:

+ Weighted average of all neighbors ratings, and
+ Weighted average of distance from each user's average.

We must first arrive at a weighting scheme for nearest neighbors.
Clearly, we would like to have users with higher similarity (lower dis-
tance values) weighted more heavily. Currently, all our algorithms
employ a threshold L above which neighbors are not considered for
ratings. Effectively, this provides an upper bound on similarity, which
allows us to calculate the weight for user x in relation to usery as:

Page 44

Summation Techniques

Method 1: Weighted
Average

Method 2: Weighted
Deviation

0, = —=2 (EQ 4)

Where D, is the “distance”, or dis-similarity, between two users cal-
culated by the ACF algorithm.

The weighted average of ratings for artist j for user x is then:

Z mnH nj

G o= nelNy (EQ5)

xj
2 ©

Given:

* N, The subset of the neighbors of x who have rated artist

Our second method of calculation postulates that different users
conceive the 1-7 rating space differently, and attempts to scale each
users space differently (i.e. a 5 for user A may correspond to a 6 for
user B):

Y ©,(H,-0,
Gy = 25 M +0, (EQ 6)

> .

ne N,

Remembering:

» U, The set of all ratings by usern.

Both methods were tested with each of the algorithms mentioned
below. in almost all cases, straight averages performed better. In
one case however, extreme rating error was minimized with method
2. In general, it is a simple test to decide which method performs
better. Rather than attempting to draw a general conclusion for all
algorithms which would be tenuous at best, one must simply try both
methods and determine which performs best for the given algorithm
and parameter settings. However, computationally, method 1is
always less expensive, and thus may be preferable for speed rea-
sons.

Page 45

flax Metral - MotorMouth

Plain English

The Algorithm

The Results

The Base Algorithm: Averages

We mentioned earlier that users today use “unpersonalized” recom-
mendation as one way to navigate information spaces. For example,
Billboard presents a global average of dj’s opinions about music art-
ists. We argue that personalized recommendations provided by an
automated collaborative filtering system such as HOMR generate
“better” recommendations, where better is defined by the host of
metrics outlined above.

Straight averages then provide a basis for comparison for our more
sophisticated algorithms.

To calculate the predicted rating for user i for artist j, simply average
all the ratings for artist j in the whole database.

Given:

* Hj: The set of all user ratings
* Hj: The set of all ratings for item j

Gy = H; (EQ7)

The algorithm performed much better than expected, and perhaps is
a testament to the fact that many users have “average” taste, or that
our user group is fairly homogeneous.

Metric HOMR Ringo
Average Error 1.25 (18%) 1.3 (19%)
Extreme Ratings Average Error 1.74 (25%) 1.8 (26%)
Standard Deviation of Error .86 1.6
Pearson Correlation .54 n/a
Predictive Power 100% 90%
Correct Side of Average 65% n/a

We can also examine the distribution of errors (Figure 8). The error
when considering all items is relatively good, with a normal distribu-
tion arcund o. However, in extreme cases, the distribution breaks
down, with large spikes on the negative side (when the predicted rat-

Page 46

The Base Algorithm: Averages

ing is higher than the actual rating). This spike is explained by the
fact that item averages tend towards 4, and there are many low rat-
ings in the system.

FIGURE 9. Base Averages: Error Distribution

4000
] HENER
" | Al
- AR B2 Extreme ||
8 r
]]
S 2000
g p
O -
* ;
1000
o] .

4 3 =2 1 o0 1 2 3 4 5
Error

Finally, we also examine average error vs. number of ratings in
Figure 10. When examining all ratings, we see a desired down trend
in the error as users enter more ratings. When examining only
extreme ratings, we see an upward trend as the number of ratings
increase. It is believed that this trend is due to two factors. First,
since these ratings are “extreme”, there is more room for error, since
averages tend towards 4. Second, since there are more ratings, there
are correspondingly more extreme ratings, yielding more chances for
these more serious errors.

FIGURE 10. Base Averages: Error vs. # Ratings

3

Extremes

Error
-
Wi

J4

0 R

™ ™ T

o] 200 400 6oo B8oo 1000
Ratings

Page 47

Max Metral - MotorMouth

Plain English

The Algorithm

Mean Squared Distance

For each pair of users, calculate their similarity based on the average
squared distance between their ratings. Calculate a prediction based
on a weighted sum of the ratings of the nearest N neighbors below a
given threshold (L).

We follow the plan in “The Basic Idea” on page 38, and define the
“dis-similarity” between two users as ny:

Zcixciy (Hix"Hiy)z
D = i€l (EQ 8)

xy
E Ci‘xciy

iel

Given:
. Hi“F = Rating of item i by user j (1-7)
s [:The set of allitems in the database

' {1 H, =0
%o H =0

ha

We can then set the following parameters:

» L: Athreshold on D such that if D, is below L, xwill be iny’s
neighbor set, (and vice versa).

e maxINl: A maximum number of users that can be in a users neigh-
bor set. Obviously, max IN| and L interact to determine the neigh-
bor set. If there are soo users whose distance to a given user is
under L, and max IN! is 100, only the top 100 users from the set of
500 will be chosen. In theory, we can remove this threshold
entirely by setting it to be the number of users in the system. In
practice, however, this would be quite a painful solution in terms
of storage, since we must keep the neighbor set in storage.

e C: Aminimum number of ratings which two users must have in
common to be considered for inclusion in N.

« P: A percentage of ratings users must have in common (which
interacts with C). Note that the percentage is taken relative to the
user whose neighbor set is being constructed. For example, if cal-
culating neighbors for user A, who has 10 ratings, any user with

Page 48

; Mean Squared Distance

(P*10) ratings in common with user A would be considered for
inclusion. Inclusion would not necessarily be symmetric, as this
other user may have many more ratings. This allows “newbies"” to
receive recommendations quickly without hurting the recommen-
dations given to users with many ratings.

The Results The distribution of distance values between users is shown below:

FIGURE 11. Distribution of Interuser Distances (MSD)
8E+5

6E+5

Qccurences
o
m
+
v

|)

[
o] wvi
Leig el g g

1 1

-

o
Distance

o

The distribution shows that a threshold between o and 15 would be
possible, and more practically between 3 and 10. Further testing
(Figure 12) shows that a threshold of 3 works best, with a standard
setting of other parameters. Clearly these parameters interact with
each other, and performance of one must be linked to the perfor-
mance of others. In the time frame of this thesis however, we wish to
examine each parameter independently. A genetic algorithm could
be used to optimize the overall parameter set.

Page 49

Max Metral - MotorMouth

FIGURE 12. Effect of Varying L with MSD

1.2
14
™ _@w-'ww%-&-
0 L T RE Ny -
" E ﬁ_‘.—-—h-i—-i—d
: -
® 097
= = ~fi— Average Error
0.8 i
- wif~w Extreme Error
0.7] x N :redlctive 2
2 ower
062 —
3 45 6 7 8 9 10
Threshold (L)
Varying Pand C No appreciable difference was seen when varying P (percentage

threshold) between 80% and 100%. Performance quickly dropped off
however, when P was below 80%. Likewise, varying C (common
threshold) slightly didn’t affect error performance greatly, but
impacted predictive power. When C dropped below 10, error quickly
approaches the Base Average algorithm.

As in Base Averages, we can examine the distribution of the error,
and the error vs. the number of ratings a user has provided. We see
the same upward trend in the extreme errors as we did with the Base
Averages algorithm.

FIGURE 13. Error Distribution: MSD

5000

4000

8
[¢]

Litrlranefasnnlagpalatng

N
o
Q
Q

Occurences

R

.]
5 4 3 21 0 1 2 3 4
Error

Page 50

Mean Squared Distance

FIGURE 14. Error vs. Number of Ratings (MSD)

3.00 - T
m Al | |

2.50

e Extremes

=1

TV 170 Tr7r

o 200 400 600 8oo 1000
Ratings

Finally, we can also examine the error versus the number of neigh-
bors used to make the decision. Recall that from a given users neigh-
bor set, all users that have rated a given artist are used to calculate
the predicted rating for that artist. If we have chosen the optimal
neighbor set size, we would think that the more users used to make
this prediction, the better it becomes. In the extreme case, if we con-
sult all users in the database, we arrive at the Base Average case. If
we consult only several neighbors, single errors will have a large
impact on predictions. We see in Figure 15 that there is little rela-
tionship between the number of neighbors and error for the MSD
algorithm. There is a slight upward trend, but no obvious correlation.

FIGURE 15. Error vs. Number of Neighbors (MSD)

Error

0-6 1 LB L] LN I B | LN B L] L L l
o 50 100 150 200
Number of Neighbors

Page 51

Max Metral - MotorMouth

Motivations

Plain English

The Algorithm

Metric HOMR Ringo
Average Error .96 (14%) 1.0 (14%)
Extreme Ratings Average Error 1.23 (18%) 1.2 (17%)
Standard Deviation of Error 77 1.3
Pearson Correlation .65 n/a
Predictive Power 95% 70%
Correct Side of Average 65% nfa
Overlap MSD

General MSD has shown much promise. Unfortunately, it gives no
preference or credit to users who have many ratings in common. For
example, if two users have 20 ratings in common with an MSD of 1,
they will be considered more similar than two users who have 5o rat-
ings in common with an MSD of 1.001. In essence, we would like to
give more credit to users who have more ratings in common, since we
can be more “confident” in our measurement of similarity.

The algorithm proceeds exactly the same as standard MSD except
that we scale the distance by the percentage of ratings the users
have in common.

For simplification, let's define the set C,, which is the set of all items
that both user x and user y have rated. Mathematically:

C,y = (VI (c,,ciy=1)} (EQ9)

ix“iy

Define the “similarity” between two users as Dyy:

2
(H;— H,)
D ="GZC’" - X | (EQ 10)
¢ |nyl Zci.t + Zciy - lcxyl
iel iel

Which of course simplifies by cancellation to become:

Page 52

Overlap MSD

2 (Hi:-Hiy)z

_ |6Cﬂ

D, =
Zci.t + Zciy - chyl

iel iel

(EQ 11)

We can then change the same parameters available for MSD.

Results Figure 16 shows that varying L does not greatly affect performance of
error parameters, but can improve predictive power drastically. It
would seem that 4 would be a good choice for this parameter.

FIGURE 16. Effect of Threshold (L) on 0SD Performance

12
1.4 ; &_@”,@#%ﬁ’"&“‘“ﬁ'
il TEN WEFNE FYET NE R
1

o
)

™

~J— Average Error

0
©

... Extreme Error

Predictive .
—dh— power

| I
|]] I

3 4 5 6 7 8 9 10

Threshold (L)

0
N

Revisiting Error vs. Number of Ratings (Figure 17), we see the desired
down trend in both all ratings and extreme ratings. In Mean Squared
Distance, no further credit was given to users with more ratings in
common. As users gather more ratings, they are more likely to have
more ratings in common with other users (obviously). Therefore, our
neighbor set does get more “confident” as the number of ratings
goes up. The improved performance proves the theory that users
with more items in comman should be preferred.

Page 53

Max Metral - MotorMouth *

FIGURE 17. Error vs. Number of Ratings (0SD)

#0O E—
| |
2.50 All -
Extreme
2.00
#
1.50
& w. -
1.00 ; @ o &
] " =
0.50 -
o-OC).IIIII LI LILIL B LELBLILY LELELE]

(o] 200 400 600 800 1000

Examining error vs. number of neighbors (Figure 18) also shows a
down trend as the neighbors go up. The distribution of error (shown
previously in Figure 13) is a narmal distribution much as in MSD, so it
is not shown again.

FIGURE 18. Error vs. Number of Neighbors (OSD)

1.2

1.1;..
1=,
3 u

0_9;__';1&

0.8 E

o.7f

0.6 f -
3

0-5 LB L LIE IR B FTTTprind LB
o 20 40 6o 8o 100

Overall results show that Overlap MSD performs significantly better
than MSD, especially in the case of extreme ratings. We sacrifice a bit
in predictive power which can be regained at a small cost in error by
raising the threshold L (Figure 16).

Page 54

s Powered MSD

Motivations

Plain English

The Algorithm

Results

Metric HOMR
Average Error 1.02 (15%)
Extreme Ratings Average Error 107 (15%)
Standard Devlation of Error .8
Pearson Correlation .62
Predictive Power 88%
Correct Side of Average 76%
Powered MSD

Powered MSD addresses the same issues as Overlap MSD, butina
slightly different mathematical way.

Follow the same procedure as MSD, except instead of dividing by the
number of ratings in common, divide by the number of ratings in
common raised to a power greater than 1 (call this power k).

2 (Hix“Hl'y)z

= €Cq (EQ 12)

3
IC-U'I

xy

Given k> 1. Inthe case k=1, obviously, we have the normal MSD dis-
tance metric.

Powered Squared Distance (PSD), does not provide better results
than OSD, which attempts to get at the same concept. Therefore, lim-
ited tests were conducted, and only top line statistics are presented
here. Optimal k seemed to be 1.5, with several values between 1.1
and 2 tested.

Metric HOMR
Average Error .96 (14%)
Extreme Ratings Average Error 1.24 (18%)
Standard Deviation of Error 77
Pearson Correlation .62

Page 55

Max Metral - MotorMouth

Metric HOMR
Predictive Power 90%
Correct Side of Average 75%

Plain English

The Algorithm

Results

Constrained Pearson

Calculate the Pearson correlation between two users, assuming each
user's average is 4. This additional constraint (assumed averagé)
provided significantly improved resuits over standard Pearson corre-
lations. Derivation of this formula and evidence of its performance
can be found in[1].

Define the distance between two users as:

Y, (Hy—4) (Hy-4)
D, = —<5 (EQ13)

xy 2(”.‘;‘4)22 (Hiy_4)2

ie U, :'c-U,

Remembering that:

» U,: The set of all ratings by user n.

Initial testing showed very poor results. However, we must remem-
ber that the above formula expresses a correlation between two
users rather than a distance. Therefore, we need not generate
weights for each user by the weight equation on page 45, we can use
the D value directly. More reasonable results were then achieved.
The distribution of interuser similarities (correlations in this case) is
shown in Figure 19. In the graph, lower value represents lower simi-
larity. We see a spike at 1, which means a pair of users has equivalent
ratings for all items in common. If we only examine users who have
at least 10 ratings in common (C=10), we remove that spike entirely.
The other line on the graph represents C=25, and is also without a
spike near 1.

Page 56

Constrained Pearson

FIGURE 19. Interuser Correlations (Pearson)

3x103

2x103

2x103

1X103

Occurences

5x10?

ox10°
o 0.25 0.5 0.75 1

Distance
FIGURE 20. Error vs. Number of Ratings (Pearson)

§

2.5

2

15

o] LRI] LIS LS S LRI LA

o} 200 400 600 800 1000

Page 57

Max Metral - MotorMouth

FIGURE 21. Errar vs. Number of Neighbors (Pearson)

2
1.5
14
0.5
n
o LI L L S B B LI B B LI !
o 50 100 150 200
Metric HOMR Ringo
Average Error 1.15 (16%) 1.1 (16%)
Extreme Ratings Average Error 1.15 (16%) 1.3 (19%)
Standard Deviation of Error .97 1.3
Pearson Correlation .56 n/a
Predictive Power 98% 97%
Correct Side of Average 70% nfa
Metral-Hack
Motivations We would like to capture not only the average difference in users rat-

ings, but also the standard deviation of this difference.

Plain English Multiply the standard MSD calculation by the standard deviation in
the error.
The Algorithm 2
€ Y (H,-Hy)
D, =0, x < 5n (EQ 14)
R |Cf
Given:

Page 58

Popularity-Scaled MSD

Z (Hix-Hs'y)]
(- H,) ===
¢ |Csl
G, = 2 oM (EQ 15)

ie C,,
Once again, we can modify the same parameters as MSD,

Results Initial results using this algorithm were not promising. While stan-
dard deviation is an important component of similarity measure-
ment, it seems that more subtle measurements such as Pearson are
more effective in factoring in deviation of errar.

Metric HOMR
Average Error 1.22 (17%)
Extreme Ratings Average Error 1.55 (22%)
Standard Deviation of Error .97
Pearson Correlation 49
Predictive Power 84%
Correct Side of Average 67%
Popularity-Scaled MSD
Motivations In all of the above algorithms, we've been focusing on user profiles,

without regard to the actual items contained in those profiles. in
other words, until now it has been “worth” the same amount if we've
both rated “The Beatles” highly or if we've rated “The Garage Band
Down The Street” (i.e. an unknown band) highly. Perhaps this equal-
ity is artificial. If very few users have rated a particular artist, yet two
users have this rating in common, their opinions may tell us much
more about their correlation. Since our number of ratings per item
are so varied (standard deviation of 799), using the number of stan-
dard deviations away from the average (number of ratings) will not
help. Our problem is that the distribution of ratings per item isnot a
normal distribution. Instead we choose a percentage of the maxi-
mum number of ratings. We chose 1% initially, which corresponds to

Page 59

Max Metral - MotorMouth

Plain English

The Algorithm

Results

60 ratings. Ourinitial choice was fairly random, but tests of otherval-
ues showed it to be optimal.

If two users have a rating in common for an item which has less than
1% of the maximum number of ratings for an item, multiply the differ-
ence in their ratings by a factor q (g>1).

Define:

 Tj: Setof all ratings for item j
* S:1% of the maximum number of ratings for any item (max T)

g |Tf<S
° Qx = { .
1 Otherwise
ZQicixc.'y(Hix‘"Hiy)z
D, =iel (EQ16)

xy
Ecixciy

iel

Popularity scaled mean squared distance performs almost exactly as
well as standard MSD, with a slightly higher standard deviationand a
lower predictive power. However, it does predict on the right side of

Metric ' HOMR
Average Error .97 (14%)
Extreme Ratings Average Error 1.22 (17%)
Standard Deviation of Error .85
Pearson Correlation -59
Predictive Power 85%
Correct Side of Average 74%

the average more often (74% rather than 65%).

Clustering

Many users have expressed the fact that they have “multi-genre”
interests. In other words, some users like country and pop, some like
pop and rock. With general ACF as implemented in HOMR, two such

Page 60

2 Genre-Based Clusters

users would likely not correlate overall. However, if we were to
merely analyze similarity in terms of pop, we may be able to make a
better prediction for another pop artist. This is our motivation for
attempting cluster-based predictions using the above algorithms.
There are two phases to testing the effect of clustering on the predic-
tion algorithm:

1. Selecting clusters
2. Generating recommendations based on selected clusters

Selecting Clusters There are many ways to choose clusters of artists. Traditionally, art-
ists are clustered by their “industry-given” genre. All folk artists are
placed together in the stores, etc. HOMR collects such genre infor-
mation from users, but it is sparse and not always correct. However,
users can ask fora recommendation in a given genre. Test results are
presented below.

Genre-Based Clusters

Initially, clusters were based on user-supplied genre categoriza-
tions. Top line statistics show worse performance than generalized
MSD in most features. However, genre-clusters perform slightly bet-
ter in extreme cases.

Metric ’ Cluster Non-Cluster
Average Error 1.08 (15%) .96 (14%)
Extreme Ratings Average Error 1.1 (16%) 1.23 (18%)
Standard Deviation of Error .95 77

Pearson Correlation 49 .65
Predictive Power 73% 95%

Correct Side of Average 71% 65%

Generated Clusters

It is much more interesting to glean the clusters from the data itself.
We have almost 1 million ratings to analyze, and 10,000 different

Page 61

Max Metral - MotorMouth

tastes. We should be able to find reasonable clusters in this data. In
practice, it turns out we have too much data, and many packages
were used to try and generate clusters from the raw data. Inthe end,
a data reduction technique known in pattern recognition as eigenan-
alysis was used to reduce the space before clustering was run.
“Eigenfaces”[5]is a specialized application of eigenanalysis that has
been used for face recognition. The technique attempts to reduce
the dimensionality of a space by finding a set of basis vectors which
minimizes the squared-error distance between the original data and
the dimensionally-reduced data. The general process to cluster art-
ists is as follows:

1. Select a set of S “test artists” randomly from the set of all artists.
The size of this set S should be around 100, or can be calculated
based on what your computer can handle. This limit is based
mainly on available memory, since you must store a large matrix.
If custom packages were used, incremental approaches could be
employed to raise this limit. In this thesis, off the shelf packages
were used.

2. Generate the matrix A which contains all user (size=b) ratings for
the artists in S. The dimensions of this matrix arethenb xs. bhis
the entire user base, and is therefore approximately 10,000.

3. Convert each rating point to a “distance from the average” for that
artist; i.e. if artist A has an average rating of 4, convert all 7's for
that artist to 3's, and 3's to -1.

4. We wish to find a matrix E such that (AE) gives us a reduced
dimension approximation to A. Each column of E is an element in
a set of orthonormal vectors e, such that:

I8
1 2
M= g Y (s, (EQ17)
n=1
is a maximum.
5. The vectors e, and scalars A, are the eigenvectors and eigenval-

ues of the covariance matrix C, where by definition C = s—i——AAT .

The eigenvectors and eigenvalues of this matrix satisfy:

Ce, = My (EQ 18)

Page 62

" Generated Clusters

6. Unfartunately, Cis b xb. Most computers cannot yet handle
matrix problems of this size in the time it takes to complete a mas-
ter's thesis; moreover, C is not of full rank, so the problem is ill-
conditioned. Fortunately, we can solve a smaller, better-condi-
tioned problem and get e,.

Take a deep breath, and let's solve the simpler problem.

1. Formthe matrix & = A" 4 , Which is of dimensions x s.

2. Solve the eigenvector problem for €, finding eigenvectors v;and
eigenvalues y, .

T
(EQ 19)
3. Left-multiply both sides of the previous equation by A:
T
AA (Av)) = p;(Av) (EQ 20)

From which we see the eigenvectors of the original problem (C),
are e= Av,.

4, To calculate each item’s position in the new space, we take its rat-
ings vector A, (which consists of all ratings for item n) and multi-
ply by our transformation matrix E.

o =AE (EQ 21)

We can then cluster on this new space in reasonable amounts of
time. The clustering algorithm chosen was k-means clustering[16]
which is quite simple:

1. Randomly assign all items to a cluster (the number of desired
clusters was predetermined).

2. Calculate the centroid of each cluster.

3. Foreach item, find out which cluster centroid it is closest to, and
move it to that cutesier. Recalculate the centroids whenever you
move an item.

4. Measure the intracluster distance.

5. Repeat steps 3 and 4 until the intracluster distance is undera
given value, or until you've completed a certain number of itera-
tions.

Page 63

Max Metral - MotorMouth

Results

The initial run through this algorithm generated 50 clusters. While
this number was not heavily justified, other sizes were tested and 50
produced the smallest intracluster distance with a reasonable num-
ber of items per cluster. Further testing would be conducted if more
time was available. There were an average of 80.4 elements per clus-
ter, and the median was 53, the minimum and maximum were 19 and
475, respectively. The standard deviation, unfortunately, was go.2.

For each user, we separated the ratings into clusters, and dropped
20% of each clusters ratings if there were more than 5 ratings in that
cluster. If there were less than 5 ratings in a given cluster, we didn’t
attempt to predict ratings for the cluster. We then recalculated the
user's nearest neighbors based only on items in a particular cluster.
Based on that neighbor set, we attempt to predict the missing values
for that cluster. We repeat this for each cluster and each user, and
arrive at the same performance statistics we measured for other
algorithms. We chose to calculate cluster neighbors based on mean
squared distance, since it was computationally simplest. What we
wish to learn is whether or not cluster predictions improve upon the
basic algorithm.

Using the 5o cluster set described previously, the same tests were
applied. The generated clusters performed better, in the extreme rat-
ing case, than both the genre-based clusters and standard MSD.
With further refinement of cluster selection, this technique is quite
promising.

Metric Cluster Non-Cluster
Average Error .97 (14%) .96 (14%)
Extreme Ratings Average Error 1.04 (15%) 1.23 (18%)
Standard Deviation of Error 84 77

Pearson Correlation .61 .65
Predictive Power 86% 95%

Correct Side of Average 76% 65%

Page 64

Key Result Summar

Key Result Summary

Table 3 on page 66 shows results for the best parameter settings of
each of the tested algorithms. The best scores in each metric are
highlighted. Depending on the desired application, different algo-
rithms are optimal based on which features are most important in
that domain. In the music domain, the average and extreme error are
quite important. Therefore, the best algorithm would likely be Over-
lap Mean Squared Distance, or the dynamically generated cluster-
based approach previously described.

Page 65

Max Metral - MotorMou

TABLE 3. Summary of Results for all tested algorithms

e

Predi

Pearson
Correlation

Base
MSD
osD
PSD
Pearson
MHack
Pop MSD
ClustermsD
GenrepMsD

Best 2 scores in each category highlighted. MSD = Mean Squared
Distance. OSD = Overlap MSD. PSD = Powered MSD. PopMSD =
Popularity Scaled MSD.

Page 66

Discussion/System Statistics

HOAAR

10 o em ferviart; Knows 4s RIED

Section Summary. The HOMR World Wide Web server provided perhaps the first
truly interactive social information filtering system. System usage statistics pro-
vide us with pointers to desired features and under-used features. Furthermore,
this section analyzes a very important issue with social information filtering: vul-
nerability to attack. How can the data and recommendations be comprised, and if
they can, how can this be avoided?

System Statistics

The World Wide Web server came on line December 11, 1995. Since then,

s over 5,000 users have joined. The margin figure shows the rate of growth of

:;"'”2 —~ the system, with the initial Ringo system growth extrapolated from check-

2000 s pointed statistics. Over 400,000 documents have been accessed from the

i server. Users must log in to the system to access recommendations and

i] other personal functions; the server has had 29,000 such logins.
2ikssragz e

Date

We collected demographic information on users who subscribed to the Web
version, on an optional basis. The results are shown below.

FIGURE 22. HOMR User Demographics

decline

s+ <8 Age Domain

org

net
mit.edu

© Massachusetts Institute of Technology -- 16 May 1995

Max Metral - MotorMouth

Statistics on server usage were also gathered:

FIGURE 23. Web Server Usage by Function

Uses of HOMR

16000 o

B Recommendations
14000 T | O Recalculations
12000 4+ | B Inputting Information
] B New Artists
I 10000 &4
- O New Users E
. Booo L —
v B Messaging —
E 6000 4 B Logins (105) = —
4000 4 - = =
2000 + g E §
o . — — -
December ‘94 January ‘95 February 'gs March '9s April 'gs
Date
Many users submitted unsolicited comments about HOMR, and most
of them were good. Several “flames” arrived, but in almost all cases
were quickly followed by, “It’s so much better now that | entered
some more ratings,” or, “I didn’t understand the concept, but now it
makes complete sense.” Some other comments are presented here:
User Comments “HOMR IS GREAT FUN! IT'S ALREADY POINTED ME TO SEVERAL ABLUMS |

WOULDN'T HAVE KNOWN ABOUT OTHERWISE.”

DURING THE RINGO/HOMR TRANSITION: “GOOD LUCK AND PLEASE GET THIS
BABY WORKING SOON SO | CAN GET MY CHRISTMAS LIST TOGETHER IN TIME.”

“S0 FAR YOUR RECCOMENDATIONS HAVE BEEN PRETTY WELL ON! GREAT JoB.”

“WHAT A GREAT IDEAL...I'M ALWAYS SEARCHING FOR NEW STUFF TO LISTEN TO,
AND IF THE ALGORITHMS EVEN BEGIN TO WORK AT ALL, IT'LL BE A GREAT HELP.”

Page 68

- Vulnerability To Spooling

“| AM IMPRESSED. | HOPE YOU GET AN THE BEST SITE OF 1995 AWARD FOR THIS.
CONGRATULATIONS. “

“VERY COOL SERVICE. YOUR ‘RECOMMENDATIONS’ WERE DEAD-ON. SCARY!"

“THE PREFERENCE SIMILARITY MEASURE IS AWESOME! THANKS!

Vulnerability To Spoofing

A significant concern in a system such as HOMR is the integrity of the
recommendations. In a not-for-profit system such as HOMR, we
avoid many of these issues since we have nothing to gain by hacking
the recommendations. However, we still may be vulnerable to out-
side forces attempting to skew the system. For example, if a record
company wanted to push their new album, they could enter several
hundred users who all loved their album. We would like to insure
that such an attack would:

1. Be as difficult to accomplish as possible,
2. Have as little effect on “real” users as possible,
3. Be easily detectable.

Security In many ways, all user-survey systems are vulnerable to such attacks.
For example, “The Box,” a request-only video channel, allows view-
ers to call in requests. The most popular requests then get aired. It's
a well known and often utilized practice for record companies to
flood the phone lines with employees calling and requesting a certain
new release. Currently, The Box has not stopped this practice, and
may likely enjoy the extra revenue,

Luckily, in HOMR, it's a bit more difficult than a simple phone call.
The current system requires an application to be filled out, which
requests the users email address. Mailis sent to the user with a
“confirmation password” which must be used to gain access to the
system. From there, a fake user would have to enter a set of ratings,
and only when others logged on would they be “exposed to the risk”
of getting improper recommendations. Successfully executing such

Page 69

Max Metral - MotorMouth

Vulnerability

Detection

a campaign would require both large amounts of time and “know
how.”

Assuming someone was able to enter many (say 1,000) phony users
into the database, how would this affect the average person’s recom-
mendations? Overall system performance?

The HOMR system provides “System Wide Charts” which display the
most liked (and hated) items in the database. This portion of the sys-
tem is quite vulnerable to attack. Much like any chart-based system
(Billboard, CMJ), HOMR is only as good as the validity of the report-

ing.

However, each users recommendations are not based on system
wide data, and therefore are much less vulnerable to attack. In order
to make a difference in a users predictions, the fake users would
have to find their way into that users nearest neighbor set. In fact,
more than one phony user would likely need to be in the neighbor
set, since recommendations are based on weighted sums.

A more intelligent attack could be directed at particular “categories”
of users. For example, if one wanted to sell the new Beethoven
album, one could start with the fact that Mozart is similar to
Beethoven. Next, the criminal could find out what other artists are
similar to Mozart; similarly, they could find out what artists are dis-
similar from Mozart. Then by creating fake users who rated similar
items highly and dis-similar items poorly, the perpetrator would have
a much greater chance of infiltrating the neighbor set of desired con-
sumers. In a way, this violation is slightly less serious, since the
users affected would have already had a disposition for classical
music (in this case). However, we would still like to be able to detect

these types of attacks.

There are several ways to detect attacks. First, one must examine
where new accounts are being created. For example, if many
accounts are created from foo.com, we may be suspicious that they
are fake. On the algorithmic side, we can examine user similarity
with a sliding window. In other words, if the average distance

Page 70

Vulnerability To Spoofing

between the last 5o users that were created is n, and suddenly our

last 50 users are within n/2 (for example) of each other, we may be

under attack. By then examining the ratings of those users, we can
find the most highly rated artists by those users and attempt to dis-
cover the particulars of the attack.

Page 71

Max Metral - MotorMouth

Page 72

Conclusions

Genetic Algorithms

Content-Based Filtering

Future Work

Many areas of future research are outlined in[1], but two stand out as most
promising in the near term: genetic algorithms for optimization and integra-
tion with content based filtering.

Our problem is quite well suited to a genetic algorithm. We have a large
search space of possible algorithms and parameter settings, and a fairly
clear fitness function. We need to optimize fitness globally (for all users)
and locally (for each user). It may be that both optimizations are quite simi-
lar, in which case a global GA could be run. If not, improving performance
for each user while managing storage and complexity will be an interesting
area for research.

In a domain such as music, feature-based approaches are not yet readily
available. However, in a document such as World Wide Web documents|2]
or news articles there are many features available from the document itself.
What benefit, if any, can automated collaborative filtering provide to tradi-
tional content-based approaches, and conversely, how can content-based
filtering aid ACF. Many of these questions are being examined in our
research group, and will be published in [2].

Conclusions

Automated collaborative filtering successfully automates word of mouth on
a global scale. This thesis has shown that ACF is a promising and compe-
tent method of information filtering, especially in subjective domains such
as music. While the optimal algorithm and parameter settings will vary with
the domain in question, we believe that automated collaborative filtering
will perform comparably in many domains, including books, movies, restau-
rants, and even Web documents.

© Massachusetts Institute of Technology - 16 May 1995

Max Metra} - MotorMouth

Automated collaborative filtering will change the way people navi-
gate large product spaces in the future. In many ways, we are merely
aiding an age old process and moving it into the electronic world.
Hopefully, ACF will also empower consumers to build communities of
people with common interests in any of several domains or sub-
domains. ACF provides a Consumer Reports of sorts, but personal-
ized to each user. indeed, ACF can provide personalized special inter-
est magazines of all sorts.

In the coming years, we will likely see the spread of ACF into many
existing on-line services, such as Cardiff's movie database, the |-Sta-
tion, and others. While the technology is solid, the “sale” of the tech-
nology will also be critical. With any agent-like system, issues such
as privacy, integrity, and trust will always manifest themselves. Users
will not feel comfortable providing personal data if they believe it will
be sold or used for other purposes. Users will also not trust recom-
mendations from a system loaded with related advertisements.
Lastly, each service provider will need to help the system and user
build a trusting relationship. In other words, the system shouldn’t
recommend things with high confidence when it knows very little
about a user, rather its confidence should build over time as the user
enters more information.

Ringo was a first step in the right direction, and HOMR has continued
along that path. We hope to see many more systems sprout with sim-
ilar concepts and perhaps even better algorithms. We've success-
fully automated word of mouth, now we may be able to improve it,

Page 74

[1]

[2]

[3]

(4]

[5]

[6]

(7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]
[15]

Bibliography

Shardanand, Upendra. Social Information Filtering for Music Recommendation.
Master's Thesis, Department of Electrical Engineering and Computer Sci-
ence, Massachusetts Institute of Technology, June 1994.

Lashkari, Yezdi. Feature-Guided Social Information Filtering. Master's Thesis
Proposal, Department of Media Arts and Sciences, Massachusetts Institute
of Technology, October 1994.

Resnick, et al. GroupLens: An open architecture for collaborative filtering of
netnews. Sloan Working Paper, 1994.

Sheth, Beerud. A Learning Approach to Personalized Information Filtering.
Master's Thesis, Department of Electrical Engineering and Computer Sci-
ence, Massachusetts Institute of Technology, February 1994.

Turk, Matthew; Pentland, A. Eigenfaces for Recognition.. Journal of Cognitive
Neuroscience, 3(1): pp. 71-86. 1991.

Stanfill, Craig; Waltz, David. Memory Based Reasoning. Communications of
the ACM 29(12):1213-1228. 1986.

Paramount Interactive. Movie Select. Software Application. 1993
Entertainment Decisions, Inc., Evanston, IL. Claire V. Business portfolio.
Hitchings, Hamilton. Personal Communcation. 1994

Deerwester, Scott et. al. Indexing by Latent Semantic Indexing. Journal of the
American Society for Information Science 41(6):391-407. 1990

Feynman, Carl. Nearest Neighbor and Maximum Likelihood Methods for Social
Information Filtering. Massachusetts Institute of Technology, internal
memo, Fall 1993.

Salton, Gerard. Automatic Information Retrieval. Computer, September 1980.
pp. 41-56. 1980.

Hill, Will; Stead, Larry; Rosenstein, Mark; and Furnas, George. Recommending
and Evaluating Choices in a Virtual Community of Use. Proceedings of Com-
puter and Human Interaction, May 1995. Denver, Co.

Lentin, Kevin; et. al. “DiamondBase Documentation” October, 1994.

Shardanand, Upendra; Maes, Pattie. Social Information Filtering: Algorithms
for Automating “Word of Mouth.” Proceedings of Computer and Human
Interaction, May 1995. Denver, Co.

[16] Therrien, Charles. Decision Estimation and Classification. Wiley & Sons. New
York, 1989.

6362 - G4

