
Development of a Windows NT Real-Time Operating
System for NC Machine Control

by

Sokwoo Rhee

B.S., Mechanical Engineering
Seoul National University, 1995

Submitted to the Department of Mechanical Engineering
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Mechanical Engineering

at the

Massachusetts Institute of Technology

February 1997

@ 1997 Massachusetts Institute of Technology
All rights reserved

Signature of Author

Certified by

Department of Mechanical Engineering
January 16, 1997

Haruhiko H. Asada
Professor of Mechanical Engineering

Thesis Supervisor

Accepted by
Ain A. Sonin

Chairman, Department Committee on Graduate Students

APR 1 61997

Development of a Windows NT Real-Time Operating System

for NC Machine Control

by

Sokwoo Rhee

Submitted to the Department of Mechanical Engineering
on January 16, 1997 in Partial Fulfillment of the

Requirements for the Degree of Master of Science
in Mechanical Engineering

Abstract

A Windows NT real-time operating system for controlling multi-axis servo drives is
presented in this thesis. It is guaranteed that the system can access I/0 devices within a
fixed latency, i.e. 6 jls on a Pentium Pro 200MHz PC. While performing real-time motion
control, the computer can access disk drives and perform GUI (Graphic User Interface)
operation. To guarantee real-time operation, most time-critical computations and I/O
operations are embedded in the kernel of the Windows operating system as a device
driver, and processed at the level of Interrupt Service Routine. This real-time operating
system allows us to eliminate the need for a dedicated coprocessor hardware board, often
termed a Motion Control Card, that is designed to off-load the burden of real-time
computation.

First the interrupt procedure in the Windows NT operating system is briefly described,
and a way for guaranteeing real-time operations is presented. The time budget for
interrupt services, data input and output, and control computations is analyzed. Based on
the proposed interrupt handling technique and time budget analysis, a multi-axis AC servo
motor control system is designed, built and tested. Not only velocity and position feedback
but also current feedback, commutation, and PWM computations for multiple axes are
performed all by software with a sampling interval of 100 ps. Experiments demonstrate
that performing the real-time control does not significantly slow down the system in
accessing disk drives and performing GUI operation. In addition, concept of network-
based distributed control system was introduced and diskless PC based controller was
examined as an promising component of the distributed system.

Thesis Supervisor: Haruhiko H. Asada

Title : Professor of Mechanical Engineering

To My Parents and Lovely Sister...

Acknowledgments

Most of all, I would like to express my best and sincere thanks to my thesis

supervisor, Professor Haruhiko H. Asada, for his constant encouragement and guidance.

His profound insight and splendid wide vision gave me a great chance to get into the

world of new research directions. His valuable support and advice were the greatest factor

that I could write this thesis. I also would like to express deep gratitude to my wonderful

advisor, Booho Yang. He guided and helped me a lot in carrying out the project, and gave

a great contribution to my research and thesis.

I also would like to express thanks to two visiting engineers, Keesang Lee and

Youngjae Hur. Keesang gave me lots of valuable advice in experiments, and Youngjae

helped me a lot with his affluent knowledge of electronics. He also helped me a lot with

the drawings on this thesis.

I would like to thank to all my lab-mates in d'Arbeloff Laboratory who showed me

sincere friendship and care. Also I would like to express deep thanks to my roommates,

Chun Ho Kang and Sangjun Han, who made my life more energetic and enjoyable. I also

would like to say thanks to all my friends in MIT.

Finally, I would like to express my best appreciation to my parents and my sister,

Eun-jung Rhee, who have been watching me with great love. Their love and care have

been the main source of energy that encouraged me through my life.

Contents
1. Introduction 9

2. Basic Structure of PC-based Controller using Windows NT Real Time Operating

System 11

3. Windows NT Real Time Operating System 13

3.1 Windows NT as a Real Time Operating System 13

3.1.1 Pentium Pro CPU 13

3.1.2 Advantages of adopting Windows NT as a base of real time operating system (Comparison

with Windows 95) 14

3.1.2.1 Similar Points 14

3.1.2.2 Different Points 15

3.1.2.2.1 Windows NT 15

3.1.2.2.2 Windows 95 16

3.1.2.3 Which is better for our purpose? 17

3.2 Basic Concept 18

3.2.1 Use of Interrupt for Real Time Operation on Windows NT 18

3.2.2 What is the problem in implementing real time control in Windows NT? 20

3.3 Implementation 22

3.3.1 Device Driver on Windows NT 22

3.3.2 Interrupt Handling 24

3.4 Evaluation of Windows NT as a Real Time Operating System 26

3.4.1 Determinism 26

3.4.2 Responsiveness (Interrupt latency measurement) 26

3.4.3 User Control 28

3.4.4 Reliability 29

3.4.5 Fail-Soft Operation 29

4. Networking 31

5. NC Machine control using Windows NT Real Time Operating System 33

5.1 Virtual Motion Control Card (VMC) 33

5.1.1 Current Feedback and PWM Computation (Interrupt Service Routines with Priority Level 3) 34

5.1.2 position and Velocity Feedback Feedforward Compensation, Trajectory Interpolation, and

Commutation : (Interrupt Service Routine with Priority Level 4 (or 5)) 35

5.1.3 Parameter Tuning, Adaptive and Learning Control (Deferred Procedure Calls and User Mode

Application Program Level) 36

5.1.4 Trajectory Data Update (User Mode Application Program Level) 36

5.2 Concept of Digital AC Servo 38

5.2.1 Traditional Method - Structure of AC Servo Control by Hardware 38

5.2.1.1 Sine wave generation circuit 38

5.2.1.2 DC-SIN conversion circuit 39

5.2.1.3 PWM Generation Circuit 39

5.2.2 New Method - PWM Generation by Software 40

5.3 Experimental Setup and Evaluation 42

5.3.1 Experimental setup 42

5.3.2 Influence of keyboard and mouse 46

5.3.3 Sample Time Budget 48

5.3.4 Performance 50

5.3.4.1 Feedback Performance Evaluation 52

5.4 Advanced Full-Digital AC Servo 54

5.4.1 Commutation and Current Feedback by Software 54

5.4.2 I/O0 Interface for Advanced Full-Digital AC Servo 55

5.4.3 Select of Power Block for Full Digital AC Servo System 56

5.4.3.1 Dead Time Generation 58

5.4.3.2 No velocity or position loops, and not expensive 59

5.5 Use of network on NC machines 59

5.5.1 Need for Network on NC Machines 59

5.5.2 Network-based, Distributed NC Machine System 60

5.5.3 Diskless PC-based NC Machines for Factory Automation 60

6. Conclusion and Future Work 63

7. References 64

List of Figures and Tables

Figure 1. Diagram of Basic PC-based Controller 11

Figure 2. Layered Operating System Structure of Windows NT 16

Figure 3. Relations of DOS and Windows 17

Figure 4. Use of Interrupt in Real Time Control 21

Figure 5. Structure Diagram of Simple NT Driver 23

Figure 6. Basic Structure of Interrupt Handling on Windows NT 25

Figure 7. Interrupt Latency Measurement 27

Figure 8. Distributed Control System based on Network 32

Figure 9. Traditional Motion Control Card 33

Figure 10. Basic Structure of Windows NT based Real Time Control System 34

Figure 11. Conceptual Timing Chart 37

Figure 12. Block Diagram of Brushless Servomotor Control System 39

Figure 13. Pulse Width Modulation 40

Figure 14. Brushless Servomotor Control System Diagram with PWM by Counter 41

Figure 15. Overview of Experimental Setup 42

Figure 16. A Closer View of Amplifier Unit 43

Figure 17. Structure Diagram of Windows NT based Motion Control System 43

Figure 18. Graphic Interface for the Real Time Control Operation 44

Figure 19. Control Main Panel 45

Figure 20. Trajectory Generation/Selection Panel with a Dialog Box for Online Trajectory Selection 45

Figure 21. Influence of Keyboard on Position Error 46

Figure 22. Influence of Serial Mouse on Position Error 47

Figure 23. Influence of PS/2 Mouse on Position Error 48

Figure 24. Reference Input and Actual Position of XY Table Movement 50

Figure 25. Velocity and Current Value of XY Table Movement 51

Figure 26. Overall Control Algorithm of Experimental XY-Table Setup 51

Figure 27. Response to Step Velocity Input (Velocity and Current) 52

Figure 28. Response to Step Position Input (Reference Input and Actual Position) 53

Figure 29. Response to Step Position Input (Velocity and Current) 53

Figure 30. Advanced Full-Digital AC Servo 54

Figure 31. Block Diagram of I/O Interface Board for Advanced Full-Digital AC Servo 56

Figure 32. A/D Converter Board designed for Advanced Full-Digital AC Servo 57

Figure 33. Dead Time Generation 58

Figure 34. Remoteboot, Distributed Control System 61

Table 1. Interrupt Priority Levels of PC 25

Table 2. Interrupt Latency Measurement Results 27

1. Introduction

There is an increasing need for PC based numerical control in the machine tool and

robotics industries. PC's have potentials to provide low-cost, user-friendly, open

architecture controllers, which would replace the traditional dedicated controllers

exclusively provided by a few venders of NC controllers. Advanced PC operating systems

provide a powerful graphic user interface and allow users to easily incorporate isolated

machines into a network based system. Moreover, a variety of application software

developed for PC's can be used as well. The problem with GUI operating systems,

however, is that real-time control and time-critical operations can hardly be performed

under the advanced GUI operating systems. The current practice is to use dedicated

motion control cards with DSP chips to off-load the burden of real-time computation and

interrupt handling. Dedicated motion control cards not only limit the flexibility of the

system but also increase the cost : the total cost of a PC and motion control cards is often

more expensive or comparable to that of the traditional NC controllers.

The rapid progress of CPU's computing power may eliminate the need for

dedicated motion control cards and replace them by software alone. Real-time operating

systems, especially, are playing more important roles for complex real-time control

applications. A real-time operating system in the feedback loop of such a control system

must respond to periodic external interrupts consistently within a certain time limit called

"hard deadline"[1]. If the delay in the operating system exceeds the hard deadline, the

system behaves unexpectedly and may cause instability. A similar phenomenon also can be

observed if the interrupt sampling in the feedback loop is fluctuated. To meet the deadline

and the temporal consistency requirements for time-critical applications, the real-time

operating system must have a microscopic, consistent interrupt latency.

In the past years, many algorithms have been developed to handle the external

interrupts and the computation under the above timing-related constraints. To name a few,

the worst case execution time estimate approach [2, 3, 4], the queuing spin lock

algorithm [5, 6], and the integrated inter-process communication and scheduling scheme

[7] are recent results. These approaches have already been implemented and tested on the

high-end platforms such as UNIX workstations. However, in spite of the recent explosive

improvement of performance and reliability of PC's, available real-time operating systems

for PC's are not fast nor reliable enough for time-critical control applications. Also, the

lack of GUI and the inconsistency with PC's de facto OS such as Windows prevent these

real-time operating systems from being widely used in the control industries. If the high-

performance real-time functionality is appended to a general-purpose OS such as

Windows, the current practice of the real-time control industries would be changed.

The goal of this thesis is to develop software for handling interrupts and

performing time-critical computations for NC machine control under the Windows NT

(version 4.0) operating system, and to combine it with strong networking capability of

Windows NT to maximize the performance of NC machines. The comparison of Windows

NT and Windows 95 is done to show that Windows NT is the better solution for real time

operation on PC. Windows NT has the capability to provide fast response time, but is not

deterministic under the preemptive multi-tasking architecture [8], and, therefore, is not

suited for time-critical real-time operations such as the current feedback of AC servo

motors with 50 gs to 100 gs sampling rate. But yet Windows NT is a stable 32-bit

operating system with powerful networking and graphic user interface capabilities. It is

expected that adding the real-time OS feature to Windows NT will provide quite a useful

tool for the robotics and NC machines community and beyond. In addition to that, the

implementation of the fully software-based digital AC servo for motion control is

discussed. With this AC servo control system, it is expected that we can replace lots of

dedicated hardware with simple and inexpensive software for AC motor driving. Finally,

Influence of networking capability on our system for NC machines is observed. The

networking of many individual NC machines is critical in a large-scaled FA system. Many

NC machines (or industrial robots) can be tied up through networking and controlled by a

single central server with small number of men. Also, a factory composed of a huge

number of independent machines can be effectively synchronized and integrated through

networking, which will make the factory automation more efficient and faster.

2. Basic Structure of PC-based Controller using Windows NT Real Time

Operating System

One of the principle directions of this research is to reduce the cost of the motion

controller. This is also the main reason that we have to use PC for motion control. To

accomplish this policy, it is natural that we should minimize the number of additional

hardware attached on PC. In this sense, we have to design our controller so that we don't

have to use any DSP board which is quite expensive. Sometimes the costs of some DSP

boards are almost close to the cost of PC itself. To remove DSP board, we should control

almost everything by PC using only the really basic additional hardware such as D/A

converters, A/D converters, and counter / timers. This means that the CPU has to do

almost everything related to real time control, including sampling in a specified rate.

Actually, this is where the CPU interrupt is used for. To do sampling in an accurate

interval, external counter / timer board is necessary as a signal generator. The diagram for

the basic structure of PC-based controller is shown on Figure 1.

The control algorithm is Application
embedded in the device driver. Pr•onam CPU / GUI Operating System

ice
ier

ut

Figure 1. Diagram of Basic PC-based Controller

Timer is used here as a clock generator. This timer generates pulses or square

waves by accurate interval. The signal output of the timer is connected to the IRQ

(Interrupt ReQuest) line of PC. When the CPU receives the interrupt request signal, it

jumps to the interrupt service program which is already built in. In this interrupt routine,

CPU takes sampled data from the A/D converter connected to the sensor, (In case of

position and velocity control, this "sensor" should be encoder which is connected to

motor, and an encoder counter should be used in place of A/D converter.) Based on this

sampled data, control algorithm calculates the next control input value what should be

sent to D/A converter, which is also connected to amplifier (motor driver) and ultimately

drives the servo motor.

In our system, the very first task to be done is to decide what kind of operating

system and CPU we should use. In terms of CPU, Intel has the Pentium Pro (code name

P6) on the market. This is the advanced version of Pentium processor, and it employed

several more advanced technologies that were not shown in Pentium processor. About

operating system, we have two candidates. One is Windows NT and the other is Windows

95. (Windows 3.1 was ruled out because it is basically old-fashioned version among the

Windows families.) Now we will go through the new features of Pentium Pro first, and

after that, we will look into the features of Windows 95 and Windows NT, and decide

which operating system is better for our purpose.

3. Windows NT Real Time Operating System

3.1 Windows NT as a Real Time Operating System

3.1.1 Pentium Pro CPU

N Superscalar Structure

Traditional processors used in computers have been all CISC (Complex Instruction

Set Computer) chips. This kind of chips basically execute one command at a time. But

RISC (Restricted Instruction Set Computer) chips are different. They are basically

designed so that they can execute multiple command simultaneously. This technique is

called "Superscalar." Though this technique was originally used in RISC chips, Pentium

Pro adopted this technology in it. (This is one of the reasons that some people say that

Pentium Pro is located between RISC chips and CISC chips.) As the result, Pentium Pro

can execute multiple commands at once, which makes its performance much better than

previous chips based on the traditional CISC technology.

* Multiple Branch Prediction and Data Flow Analysis

Simultaneous execution of multiple commands leaves a big problem. The

commands in a program is basically designed to be executed sequentially. The problem

occurs when a command should be executed based on the data generated by previous

commands. To reduce this kind of data dependency as much as possible, a few techniques

are used in Pentium Pro, for example, multiple branch prediction and data flow analysis.

"Multiple branch prediction" is the function that predicts branching of a program

beforehand based on the previous experiences stored in branch target buffer in CPU. If a

CPU can predict the branching of the commands flow, it is possible to execute a certain

command together with the following commands at once. In other words, this helps

remove the problems that can occur when using superscalar technique.

"Data flow analysis" is the term that describes the operation that rearranges the

sequence of commands, so that the commands can be executed as independently as

possible. This function also helps superscalar engine in Pentium Pro run without any

bubble.

0 Internal L2 Cache

The Pentium Pro is actually composed of two chips in a package. One is the chip

that really does the computation work, and the other is the cache memory chip. Of course,

most of the previous chips already have had internal cache in it. (This is called L1 cache,

or internal cache.) But as this internal cache is not enough to get satisfactory performance,

almost all the computers have another cache memory built on outside of CPU. (This is

called L2 cache, or external cache.) In Pentium Pro, this L2 cache is already built in itself.

This makes the cache system work much faster, removing what is called "bottle neck

phenomenon."

a Best Performance with 32-bit Operating System

When executing 32-bit commands, Pentium Pro does it in a fast and optimized

way. But with 16-bit commands, this CPU changes them into 32-bit commands first, and

then execute them, and this process takes quite a long time. So if we run 16-bit commands

on Pentium Pro, it is sometimes slower than that of Pentium processor. So, basically

Pentium Pro goes well with 32-bit operating system.

3.1.2 Advantages of adopting Windows NT as a base of real time operating
system (Comparison with Windows 95)

As was mentioned above, the first candidates for our base operating system are

Windows NT and Windows 95. Although these two operating systems seem to be almost

similar to each other at the first glance, there are quite a few different points inside. To

choose the best operating system for our purpose, it is inevitable to compare their good

points and bad points. After that, we can make a smart decision about which one is better.

3.1.2.1 Similar Points

" Basically 32 bit operating system.

a None of them needs MS-DOS before the booting (which was the case of Windows

3.1).

" Support preemptive multitasking.

" Support multi-threading

3.1.2.2 Different Points

3.1.2.2.1 Windows NT

[Windows NT was originally built focusing on robustness in multi-tasking, rather than

compatibility with previous versions of Windows.

* Windows NT also focuses on portability, which makes it easy to port Windows NT to

many different CPU's including RISC chips, due to the fact that major parts of

Windows NT were written in C or C++, and the amount of the parts written in

assembly language wasminimized.

" Windows NT allows us to use multi-processors, which can increase the speed and

efficiency with same amount of given tasks if properly programmed.

" Windows NT is a true 32 bit operating system, with almost all the kernels and user

modules built in 32 bit commands. This point is important that it can reduce the time

delay because Windows NT does not do "flat thunking (especially "thunking down")

in the programs originally built for 32 bit operation.

* Windows NT supports more affluent Win32 API's than Windows 95, which helps the

full 32 bit programming.

" Windows NT supports many different types of file systems including NTFS, which

was designed with consideration of recoverabilityand security.

* Windows NT does not work with real-mode device drivers, which means that it does

not allow direct access to hardware. Though sometimes this makes programmers who

deals with hardware control feel difficult, it can be said to be a good point in view of

robustness.

" Windows NT cannot run DOS device drivers, which also makes the programmers who

are already accustomed to DOS environment feel hard.

" Windows NT has the apparent tendency to run faster with more memory. Although

Windows NT seems slow compared with Windows 95 with a small memory, its speed

goes up dramatically with additional memory.

* The memory occupied by each program is strictly independent to each other. This is a

very good aspect for system stability in multi-tasking or multi-processing.

" Windows NT has a layered operating system structure shown on Figure 2. (Actually,

this kind of structure is possessed by almost all kinds of operating systems except the

simplest ones. Actually, Windows 95 can be said to be a combination of DOS and

advanced version of Windows 3.1. So Windows 95 still has somewhat primitive

structure in it. But as Windows NT was designed very differently from Windows 3.1

or before, it has a complete layered structure like UNIX. It is also important that

Windows NT is originally built considering netweking from the beginning.

* More user-friendly interface of Windows 95 was also adopted in Windows NT version

4.0.

Mode

Mode

Figure 2. Layered Operating System Structure of Windows NT

3.1.2.2.2 Windows 95

* Windows 95 was originally designed focusing on compatibility, rather than reliability.

" Windows 95 requires smaller PC resource requirements than Windows NT even

though its difference is not significant.

* Windows 95 adopted a new and more friendly user interface.

" Windows 95 is basically designed to be perfectly compatible with Windows 3.1. So,

almost all the software previously built under Windows 3.1 environment runs also

well under Windows 95.

" The structure of device drivers for communicating with external hardware is similar to

that of Windows 3.1. This is actually the main point that attracts the programmers who

are already used to Windows 3.1 hardware control programs to choose Windows 95

rather than Windows NT.

" Windows 95 does not support multi-processors.

" Windows 95 uses lots of down-thunking, especially in USER.DLL module, which

makes some time delay in running the programs built with 32 bit commands.

* DOS is embedded in Windows 95. Windows does not lie on DOS any more, but they

are in parallel relation, as shown onFigure 3.

<IX38+IS+ bw3.1> <Windows95>

Wnch%

Figure 3. Relations of DOS and Windows

3.1.2.3 Which is better for our purpose?

Windows NT is thought to be better, considering the following aspects.

" Windows NT provides a good robust environment for multi-tasking, since it was

designed focusing on robustness in multi-tasking.

* As Windows NT allows us to use multiprocessors, for example dual Pentium Pro, it is

better from the viewpoint of expandability in the future.

DC6

* Considering the trend that is going to the 32 bit programming, Windows NT is better

in that it was fully developed for 32 bit programs. We can also reduce the time delay

caused by down-thunking in case that we use Windows 95 with the 32 bit programs.

* Windows NT is originally built on client-server model, which means that Windows NT

is basically designed in consideration of networking. As we may use networking in the

future development, networking capability is an important factor.

* In terms of users interface, it was true that Windows 95 was better than Windows NT

(version 3.51). But as Windows NT version 4.0 also adopted the user interface of

Windows 95, which is new and more user-friendly, it is not a problem any more.

It is thought to be better to use Windows NT, rather than Windows 95, in many

aspects mentioned above. Windows NT has many good points that are necessary for our

purpose, and the combination of Windows NT and Pentium Pro is expected to give out

the best performance we need. Programming should also be done on the base of full

consideration of the typical features of these CPU and operating system to get the best

performance and accuracy in robot control.

Unlike DOS, Windows NT basically prohibits any direct access to the external

hardware attached to PC, and this is what makes interrupt handling on Windows NT

difficult. In the next chapter, the process and technique of interrupt handling in Windows

NT will be explained.

3.2 Basic Concept

3.2.1 Use of Interrupt for Real Time Operation on Windows NT

In real time control, using the interrupt operation is essential. It is inevitable to

guarantee accurate sampling rate in PC based control. Actually most of the control

algorithm is coded in the interrupt routine, no matter its operating system is DOS or

Windows NT. So, what the main program does is confined to very simple and relatively

trivial job - displaying the results or variables on the screen, for example, drawing graphs

for easy understanding of the users.

The problem is, as was stated before, it is not so easy to deal with interrupts on

Windows NT as that on DOS or other real time control oriented operating system. It is

basically due to the fact that Windows NT is designed to be independent of the hardware.

In DOS, hardware is almost directly open to the programmer so that it is very simple to

access hardware directly, and as the result, it is not so difficult to build a interrupt handling

routine if a programmer knows a little about the hardware. The interrupt of PC is

controlled by 8259A Programmable Interrupt Controller. Thus, in DOS, there is no

problem in handling interrupts if we just know how this interrupt controller chip works

and how to program it. But in Windows NT, the registers of this chip is not reachable to

programmer. So we have to handle interrupt using the standard way that Microsoft

provides.

In principle, giving the right to directly control interrupt to the programmers is

against the basic policy of Windows NT. Windows NT is a preemptive multi-tasking

system, which implies that all of the running applications should be under the control of

operating system. If any application is free to use CPU interrupt, it is already not a perfect

preemptive multi-tasking system. But, as no computer can do without minimum external

hardware, such as keyboard, mouse or printer, there should be some ways to handle

interrupts open to the programmers. (Keyboard and mouse cannot be realized without

interrupts.)

In Windows NT, or in any other Windows systems, the contact with peripherals is

done by device drivers. Of course, interrupt handling is done as a part of device driver.

There are two kinds of device drivers in Windows NT. One is kernel mode device driver,

and the other is user mode device driver. To obtain the full control of hardware, we should

use kernel mode drivers. "Kernel" can be thought of as the base of the operating systems,

which means its distance to hardware is closer than that of user mode which the

application software runs in. The problem is that, in kernel mode programming, we cannot

use the standard C run time libraries which is familiar to application programmers. This is

the main factor that makes programmers hesitate to get into the Windows system

programming.

The most standard and safe method of developing device drivers is using DDK

(Device Driver Development Kits) produced by Microsoft. This kit provides lots of

functions which can be used for programming device driver in kernel mode. It is not

impossible to make device drivers in standard C or C++ compilers such as Visual C++ 4.0,

as long as they generate fully 32 bit code. But using DDK has lots of benefits that cannot

be obtained from standard compilers.

We will go through the basic structures of device drivers of Windows NT, and we

will show how interrupt can be handled in device drivers. We will also show some

essential things that should be considered in developing real time control software on

Windows NT device drivers, which is very important.

3.2.2 What is the problem in implementing real time control in Windows

NT?

Besides the difficulty of coding external hardware control program, there is a very

critical issue in using Windows family as an operating system for real time control. This

problem is shown on Figure 4.

When an interrupt request comes in from the external hardware such as counter or

signal generator, there is always some time delay before the specified interrupt routine

starts running. This is because it takes some time for the processor to carry out some

preparing works before the interrupt routine runs. For example, all the values of registers

in CPU must be stored in a safe place such as stack. These values are returned to their

original position when the interrupts routine finishes its work, so that CPU can resume the

previous work without any problem. There are also several more tasks that CPU has to do

beforehand. In addition to this, the same amount of time as interrupt latency is needed for

CPU to finish the interrupt routine and to go back to original work. In this delay, works

such as carrying back the original values of registers stored in a safe place are done. So

actual loss of time caused by interrupt latency is 2 times of Td.

To guarantee stable accomplishment of recurrent interrupts, the interrupt running

periods must not overlap each other. For this, the following inequality should be satisfied.

Control Input

Interrupt Delay by PC

Figure 4. Use of Interrupt in Real Time Control

Ts : Sampling interval.

Ti : Total time necessary for interrupt routine to be executed once.

Td : Interrupt latency (Interrupt delay : Time from the point when interrupt

is requested by external counter to the point when interrupt routine starts running.)

Tc : Time required for control algorithm to do its work.

Ti (= Tc + 2 * Td) < Ts

In traditional cases, the problem on this inequality is always Tc. As the control

algorithm becomes more complicated, it takes more time in computing and Tc becomes

larger naturally. But also as control algorithm becomes more complicated and

sophisticated, it is also true that it's better to achieve small Ts, which means high sampling

rate. Therefore, optimization of Tc and Ts always becomes critical issue in real time

control using interrupts. But as Ts and Tc has been relatively much larger than Td in

San

Col

r4 Td

traditional simple feedback, Td has seldom been any problem and has been almost

neglected. But in our approach, Td also becomes critical. There are two factors which

changes the "normal" situation here.

E As we are planning to achieve higher sampling rate than before, Ts should become

smaller than ever. If Ts becomes small to a certain point, Td cannot be neglected,

because the order of magnitude of Ts can become close to that of Td.

* The interrupt latency under Windows family is known to be much longer than that

under DOS. This is because the interrupt routine calling process under Windows is not

so simple as that under DOS. Some books say the former takes more than 10 times

longer than the latter. If this turns out to be true, it can even be a major problem in

satisfying the above inequality.

So, we have to measure the Td first. If we can verify that it is still far much smaller

than required Ti, then it's OK. But if it turns out to be too large to satisfy the above

inequality, then we have to consider adopting some other operating systems. So the first

critical issue is measuring Td, and to do this, we have to know how to use interrupts on

our desired operating system, Windows NT.

3.3 Implementation

3.3.1 Device Driver on Windows NT

In Windows NT and any other Windows system, interactions with peripheral

devices are handled by so-called Device Drivers. Our objective is to develop a special

device driver to be involved in the "Kernerl" of Windows NT operating system so that a

group of I/O devices necessary for motion control can be accessed and run in real time.

The basic structure of NT drivers is shown on Figure 5. As the I/O Manager and

I/O Stack Location are already embedded in Windows NT kernel, the things we actually

should build are DriverEntry routine, Unload routine, Dispatch routine, Startlo routine,

Interrupt Service Routine (ISR), and Deferred Procedure Call (DPC) routine for a

simplest NT driver.

Device Driver for Real Time Control

Driver Unloading...

Figure 5. Structure Diagram of Simple NT Driver

" DriverEntry : When an NT driver is loaded, its DriverEntry routine is called with a

pointer to the driver object. The DriverEntry routine sets one or more Dispatch entry

points in the I/O Stack Location in IRP (I/O Request Packet). When any I/0 request

comes in, the I/O Manager refers to I/O Stack Location and routes the IRP to the

appropriate Dispatch routine that supplies the specified drive. The DriverEntry routine

sets the entry points of Startlo and Unload routine. This routine also connects the

device driver to IRQ (Interrupt ReQuest) line.

" Unload : When an NT driver is unloaded, its Unload routine is called, and this routine

does what is required in unloading the driver.

* Dispatch routine : Every driver should have at least one Dispatch routine to do desired

I/O operation. When an I/O request for a driver comes in, CPU jumps to the

appropriate Dispatch routine. This routine usually calls I/O support routine to pass on

each IRP with valid arguments to the Startlo routine.

[Startlo routine : This is the routine that actually starts the requested I/O operation on

a particular device.

" Interrupt Service Routine (ISR) : When an interrupt is requested, CPU jumps to a

specified Interrupt Service Routine. In principle, this routine should execute as quickly

as possible, doing only what is necessary at the point. It is because of the fact that ISR

runs at DIRQL (Device Interrupt ReQuest Level) which prevents other threads from

running, and totally occupies CPU. It is basically against the fundamental policy of

Windows NT - preemptive multitasking. Usually, the ISR does as little I/O operation

as it can, and queue a Deferred Procedure Call (DPC) to complete the interrupt-driven

I/O operation at a lower interrupt request level.

* Deferred Procedure Call (DPC) : This routine is primarily used when an ISR needs to

perform more work, but should do so at a lower IRQL than one in which ISR runs.

The main reason this routine is needed is that it is better to finish ISR as soon as

possible to keep the overall system response timefast enough.

3.3.2 Interrupt Handling

Figure 6 shows the procedure for handling interrupts under the Windows NT

environment. When an interrupt request comes in, the CPU jumps to special routines,

called Interrupt Service Routine (ISR) and Deferred Procedure Call (DPC). In ISR, all

interrupt requests coming from other devices having lower priority levels are masked off,

whereas in DPC no interrupt is masked off. Namely, any other interrupt can be accepted

during the DPC execution, even though the interrupt requested has a lower priority level

than that of the one currently being processed. The preemptive multitasking policy of

Windows NT requests that only the time-critical tasks must be performed in ISR so that

the CPU may not be occupied by a particular device for a long time. After leaving the ISR

soon, most of the tasks that are not time-critical are performed in DPC.

Table I shows the interrupt priority levels assigned to each device in the Windows

NT system. Levels 3 and 4 are assigned to a user's devices. Note that a keyboard and a

certain type of mouse have higher priority levels than the user devices.

To guarantee the exact sampling interval for real time control, a counter/timer board is

used to request interrupts to the CPU. We generate two square waves with different

intervals for two separate interrupt procedures. The ISRs in the device driver are

programmed to carry out the feedback loops according to the specified control algorithm.

Interrupt ISR (Interrupt
Request Service Routine)

Runs at DIRQL R
(Device Interrupt ReQuest Level) I

The most time-critical
parts of the control algorithm

DPC (Deferred
Procedure Call)
routine

uns at
RQL Dispatch Level

Relatively non-time-critical
parts of the control algorithm

Figure 6. Basic Structure of Interrupt Handling on Windows NT

Interrupt Priority Level Device Name
0 (highest) System Timer
1 Keyboard
2 cascaded from slave PIC
3 COM 2 *
4 COM 1*
5 LPT 2 *
6 Floppy Disk Controller
7 LPT 1 *
8 Real Time Clock
9 Redirection to IRQ 2
10 Reserved *
11 Reserved *
12 PS/2 Mouse
13 Reserved (Co-processor) *
14 Hard Disk Controller
15 (lowest) Hard Disk Controller

*: IRQ lines that are used by non-critical devices for basic operation of PC. Thus, this lines are
usually available to the users.

Table 1. Interrupt Priority Levels of PC

I

3.4 Evaluation of Windows NT as a Real Time Operating System

3.4.1 Determinism

An operating system is deterministic to the extent that it performs operations at

fixed, predetermined times or within predetermined time intervals. When multiple

processes are competing for resources and processor time, no system will be fully

deterministic. In a real-time operating system, process requests for service are dictated by

external events and timings. The extent to which an operating system can deterministically

satisfy requests depends, first, on the speed with which it can respond to interrupts and,

second, on whether the system has sufficient capacity to handle all requests within the

required time. One useful measurement of the ability of an operating system to function

deterministically is the maximum delay from the point of the arrival of a high-priority

device interrupt request to when servicing begins. In nonreal-time operating systems, this

delay may be in the range of tens to hundreds of milliseconds, whereas in real time

operating systems that delay may be of a few microseconds or milliseconds [9].

The Windows NT is basically not a real time operating system. Naturally it is not

so deterministic under preemptive multitasking environment, on which most of user level

application programs run. Therefore it is obvious that we can't use application programs as

a base for real time purpose. But as we are running real time tasks with the help of

interrupt, the deterministic character of Windows NT is not so bad, even though it cannot

be said to be excellent. This property can be also proved with the experiment described on

the following section, as it proves of good responsiveness of Windows NT operating

system.

3.4.2 Responsiveness (Interrupt latency measurement)

Interrupt latency can be one of the most reliable criteria at determining the

responsiveness of an operating system. (As was stated above, it is also a good criteria to

see whether an operating system is deterministic or not.) To measure the interrupt latency

on Windows NT, a simple circuit was designed. Its structural diagram is shown on Figure

7.

IBM-PC

Device Driver

IRQ line

i~-h~hi-h
Counter/Timer
(Signal Generator)
(Intel i8253-5)

Oscilloscope

Output from PC
(Generated by Device Driver)

Latch

(74LS373)

S Interrupt Latency

Figure 7. Interrupt Latency Measurement

As a signal generator, a counter/timer chip was used, and the ISR in the device

driver is programmed to give out an output signal from PC. We can measure the time

difference between these two signals, which is the interrupt latency, Tdon Figure 4.

The interrupt latency experiment results obtained are shown onTable 2.

Type of CPU \ OS DOS Windows NT

386DX - 33 MHz 30 Is ± 15 Is N/A

Pentium 133 MHz 6 gs ± 1 is 9 ts

Pentium Pro 200 MHz 5 is 6 ts

Table 2. Interrupt Latency Measurement Results

As is shown, in DOS environment, there are quite much fluctuations on interrupt

latency, which doesn't seem to be good for periodical sampling. But in Windows NT,

fluctuation almost disappears. It seems that it is because Windows NT is scheduling all the

threads already, so that CPU is always ready to accept interrupt request without any

confusion.

Interrupt latency in Windows NT is longer than that in DOS, as expected. But it is

I A

not like 10 times or 20 times which we have been worried about. As the fastest sampling

rate which will be used in current feedback is expected to be around 10 kHz (Ts on Figure

4 equals 100 gs.), interrupt latency of 6 gs in Windows NT with Pentium Pro 200 MHz

will not be a significant problem. So, it is verified that using Windows NT as an operating

system for real time control seems to be all right in terms of the interrupt latency problem.

3.4.3 User Control

User control is generally much broader in a real time operating system than in

ordinary operating systems. In a typical nonreal time operating system, the user either has

no control over the scheduling function of the operating system or can only provide broad

guidance such as grouping users into more than one priority class. In a real time operating

system, however, it is essential to allow the user fine-grained control over task priority.

The user should be able to distinguish between hard and soft tasks and to specify relative

priorities within each class. A real time system will also allow the user to specify such

characteristics as the use of paging or process swapping, what processes must always be

resident in main memory, what disk transfer algorithms are to be used, what rights the

processes in various priority bands have, and so on [9].

Windows NT basically does not allow the user to specify the priorities of

individual user level application tasks. Even if there are several tricky ways for the

programmers to do this, on the contrary, Windows NT strongly defend itself from any

effort of users to get into its own scheduling jobs. So if we only think about the user level

applications, the user controllability of Windows NT is far behind the need for real time

performance. But as our system carries out the most of its time-critical works in the

interrupt service routines, we can specify the priorities of the tasks according to the

predefined interrupt request priority levels of the CPU. In addition, Windows NT supports

multitasking with inter-process communication tools such as semaphores and events. But

it is still impossible for the user to specify use of paging, process swapping, and so on. As

the consequence, the user controllability of Windows NT cannot be said to be satisfactory,

but still enough for general real time tasks if we use the interrupt capacity.

3.4.4 Reliability

As real time operating system usually controls heavy and dangerous machines,

reliability is typically far more important for real time operating system than nonreal time

operating system. The Windows NT was designed to run each application in their own

processes and cannot read or write outside of their own address space. The operating

system data is isolated from applications. Applications interact with the kernel indirectly

using well-defined user-mode APIs. Thus it is almost impossible that Windows NT stops

due to the errors caused by user level applications, and this fact shows the good reliability

of this operating system. But still, kernel mode drivers might cause Windows NT to stop

during critical operations. So the machine that is controlled by the Windows NT operating

system should be equipped with some emergency shutdown devices to prevent any

disastrous accidents. Instead, Windows NT has a good functionality for failure analysis,

which will eventually reduce the unexpected shutdown of the operating system.

3.4.5 Fail-Soft Operation

Fail-soft operation is a characteristic that refers to the ability of a system to fail in

such a way as to preserve as much capability and data as possible. For example, a typical

UNIX system, when it detects a corruption of data within kernel, issues a failure message

on the system console, dumps the memory contents to disk for later failure analysis, and

terminates execution of the system. In contrast, a real time system will attempts to either

correct the problem or minimize its effects while continuing to run. Typically, the system

will notify a user or user process that it should attempt corrective action and then continue

operation perhaps at a reduced level of service. In the event a shutdown is necessary, an

attempt is made to maintain file and data consistency [9].

Windows NT is basically a kind of UNIX in its architecture. As the result it

behaves similar to UNIX when it detects any problem or corruption - dumping the

memory into a file in hard disk, and terminate the system or restart the whole system.

From the viewpoint of later failure analysis, this feature is good for system maintenance,

even if it doesn't have such functionality as continuing the process in spite of error

detection of kernel, which is one of the necessary functions of real time operating system.

(Windows NT never stops with any failure of user level application. Only kernel level

failure can stop Windows NT.) For recovery options, Windows NT performs four jobs

before shutdown in emergency. - Writing an event to the system log, sending an

administrative alert, writing an debugging information to a file, and automatic rebooting.

The user can enable or disable these functions selectively.

4. Networking

Windows NT has a great capability on networking. This feature is very important

in building a network-based factory automation system. As Windows NT was designed

based on the server-client model, it is naturally easy to build a distributed control system

with it.

The advantage of networking power becomes obvious when we think of the fact

that data exchange functionality is essential in distributed control. On distributed system,

the operation commands and data should be sent through network. The system monitoring

also should be done through network. So it is better for the server to have an almost

complete control over the client machines. Under Windows NT (or Windows 95), this

kinds of works can be done pretty without any major difficulty.

One of the most important functions that should be implemented on network for

distributed control system for robotics or NC machines is trajectory update. The individual

controller follows the trajectory given by central main controller residing in server

computer. The main server receives data from individual machines, analyzes them, and

sends the commands or updated data to the individual machines again. Under Windows

NT, this kinds of operations can be done by using "NetDDE (Network Dynamic Data

Exchange)" function. Originally the concept of DDE was developed as a mean for

communication between two processes on multitasking environment. At the time when

networking was not so popular and most of the works were done in only one computer,

DDE was just a tool for breaking the barrier of the separate processes. But as the

networking became one of the main features of the computer systems, its function has

been expanded so that data exchange can be done between the processes running on

different machines. For out purpose, this function can be used for the communication

between the central control software and individual control software. The individual

machines will be more dedicated to traditional machine control works, and the central

machine will be more oriented to adjusting and optimizing of the whole manufacturing

network consisting of individual machines. This concept is shown onFigure 8.

Data
:hange
ttDDE)

Figure 8. Distributed Control System based on Network

5. NC Machine control using Windows NT Real Time Operating System

5.1 Virtual Motion Control Card (VMC)

Based on the interrupt handling procedure described above, a software-oriented

motion control system that runs on Windows NT is designed in this section. Figure 9

shows the schematic of a traditional motion control card with a dedicated co-processor

and/or a DSP chip. Our objective is to replace this dedicated hardware board by software

and simple, I/O interface boards, as shown in Figure 10. Although the basic technique of

our software-only motion control applies to various actuators, the following description

will be in the context of AC servo motors, the most prevailing drives for robots and

machine tools.

CPU
RAM

Flash

2nd Machine

Memory RAM & Interrupts

Dual IInterace
Ported Bus Interface DSP Gate
SPorted

Figure 9. Traditional Motion Control Card

Most of the dedicated motion control cards perform a variety of real-time

computations ranging from position and velocity feedback, feedforward compensation,

and trajectory interpolation to high sampling-rate current feedback and parameter auto

tuning. In addition, AC servo drives entail electronic commutation or software

I

I

commutation. Most electro-mechanical actuators are driven by PWM amplifiers which

require the conversion of an analogue output to pulse width modulated signals that drive

switching power transistors. Our objective is to perform all these tasks by software.

Requirements for these computations differ in sampling rate and allowable time delay.

According to the interrupt handling procedure in the previous section, all time-critical

computations must be performed in Interrupt Service Routine (ISR), while non-time

critical computations must be shifted to the Deferred Procedure Calls (DPC), as well as to

user mode application programs. Also, high sampling-rate computations must have a

higher priority level than that of low sampling-rate computations. The interrupt handling

mode and priority level assigned to each computation task are as follows.

Current Fee'
Position / V
Reference 1i

Figure 10. Basic Structure of Windows NT based Real Time Control System

5.1.1 Current Feedback and PWM Computation (Interrupt Service Routines

with Priority Level 3)

Current feedback is the inner most feedback loop, hence the highest sampling rate

is required. Both current feedback and PWM computation are governed by the electric

characteristics of the drive system, which is much faster than mechanical motion. The

majority of PWM power amplifiers use MOS-FET switching power transistors whose

switching frequency is around 20 kHz. Therefore, the sampling rate of the current

feedback loop, is bounded by the switching speed of the power transistors. The current

standard in industry is a sampling interval of 50 gs to 100 jis (In our system, Tsc on

Figure 11). This current feedback and the associated PWM computation are most time-

critical and the shortest in sampling interval. Therefore, these are processed in the ISR

with the highest priority level available for users' devices.

5.1.2 position and Velocity Feedback Feedforward Compensation,

Trajectory Interpolation, and Commutation : (Interrupt Service Routine with

Priority Level 4 (or 5))

The sampling rate required for mechanical motion control, i.e. position and

velocity feedback, feedforward, and trajectory interpolation, is an order-of-magnitude

slower than that of current feedback. The industrial standard is 0.5 ms to 5 ms (Tsp on

Figure 11) in the sampling interval. Time delay longer than this sampling interval is not

allowed for these computations, but this level of computation can be interrupted by the

current feedback computation. As long as the computation is completed within the 0.5 ms

to 5 ms sampling interval, the computation delay may not deteriorate the system control

performance. Therefore, these computations are performed in ISR with a lower priority

than that of the current feedback. This level of operations typically include data input from

encoder counters, numerical differentiation of the encoder readings, digital filtering and

observer computations, the read out of trajectory coordinates, and trajectory interpolation

as well as the computation of feedback and feedforward control laws. For synchronous

AC servo motors, three-phase currents flowing into the winding must be commuted by

computing trigonometric functions. This commutation must be performed at the sampling

rate comparable to that of position and velocity feedback, since it is associated with

mechanical motion rather than electric.

5.1.3 Parameter Tuning, Adaptive and Learning Control (Deferred

Procedure Calls and User Mode Application Program Level)

Today's advanced servo drive systems are capable of estimating load

characteristics and adapting themselves to the unknown load. Automatic tuning of control

parameters as well as adaptive and learning controls have been used in high performance

drive systems. Computations for parameter tuning and adaptive and learning controls are

not as time-critical as that of feedback and feedforward. Although those computations

must be completed in real-time during the tracking control process, the adaptation and

learning processes are much slower. Therefore those computations should be performed at

Deferred Procedure Calls, which accepts interrupts from other devices. If the computation

algorithms are complex, they should be processed at user-mode application programs

rather than at the device driver.

5.1.4 Trajectory Data Update (User Mode Application Program Level)

The trajectory data should be updated periodically. Typical NC machines store

trajectory data in the form of two kinds of information. One of them is the distance to

move, and the other is the velocity. For the machine to trace the desired trajectory without

stopping, the next trajectory data should be loaded in the memory before it reaches the

current target point. Basically this job is not as time critical as that of position or velocity

feedback, as long as the speed of data flow catches up the mechanical movement of

machine. Sometimes the trajectory data are stored in hard disk, but sometimes they should

be loaded from network in the case of distributed systems. Thus, it is better to design the

system to carry out the trajectory data update at the application program level, rather than

device driver level. The application program continuously monitors current position of

machine, and sends out the next trajectory data to the device driver before the machine

reaches the target point of trajectory data at the point in the device driver, so that the

motion goes smoothly without fail.

Figure 11 shows a conceptual timing chart illustrating the three levels of real-time

control procedures described above. The current feedback and PWM computation to be

performed in ISR Level 3 may be interrupted by keyboard and mouse alone : all the other

devices have lower priorities than this level. The current feedback operation will be

delayed for a short time due to the interruption from a mouse or a keyboard, but its effect

is totally negligible. The interrupt frequency of mouse and keyboard is more than 1000

times lower than the current loop sampling rate, and the current feedback computation is

completed within its sampling interval, Tsc on Figure 11. Therefore, the current feedback

operation would never be skipped. The position and velocity feedbacks to be performed in

ISR Level 4 and/or 5 along with other computations including feedforward and trajectory

interpolation may be interrupted by current feedback computation, as shown in the Figure

11. Since the position and velocity feedback have and order-of-magnitude slower sampling

rate, the frequent interrupts may be no adverse effects on the control performance, as long

as the CPU has an enough computing power and an appropriate I/O interface devices are

used. To guarantee the performance we must investigate the time budget of the whole

system. The time budget and requirements for I/O interface boards will be discussed in the

later sections of this thesis.

Keyborad/Mo

ISR Level 3

ISR Level 4
and/or 5

DPC or
Application
Programs

I

use

! ! II I I
I I I I Il I I
II I I 1 1 II
!I I I I I I
SI I I I
! I I I I I I

SI I Il I

I I I lI I

Tsc 1 1I
SI I II I 1
SI I II 11 1 I
SI I II 11 1 I

SI I I

Figure 11. Conceptual Timing Chart

5.2 Concept of Digital AC Servo

5.2.1 Traditional Method - Structure of AC Servo Control by Hardware

In order to control a brushless servo motor, the control device has to generate the

magnetic flux perpendicular to the current. This should be done by electronic circuit in

addition to the task of basic feedbacks for velocity and position. To control the current

that flows into the motor, the method of PWM (Pulse Width Modulation) is generally

used. Naturally there should be a circuit for generating PWM signal, and that for all three

phases. To control the current more accurately, and to eventually enhance the

performance of the motor, there also should be the circuit for current feedback. The

overall block diagram of the control system for brushless servomotor is shown on Figure

12. The velocity control signal goes into DC-SIN conversion circuit. This circuit generates

three-phase sine waves for commutation of the brushless servomotor. These three sine

wave signals have phase difference of 120 degrees to each other. These analog signals go

into PWM generation circuit and converted into corresponding digital signals, which are

pulse width modulated. These TTL signals turns on and off the switching devices and the

power inputs to motor are also turned on and off concurrently. The functions of these

circuits are explained in detail in the following sections.

5.2.1.1 Sine wave generation circuit

This circuit is for generating sine waves with the rotor position serving as their

phase. It is basically composed of ROM with sine value data in it. When the position

information comes into the ROM as a form of address, the ROM gives out the

corresponding sine value according to the position of the rotor. As the brushless

servomotor is a three-phase motor, there should be three sine waves with phase difference

of 120 degree. In practice phase V can be estimated by a simple analog operation through

the equation V = - (U + W). Therefore, only phases U and W have to be generated by

ROM [10].

Figure 12. Block Diagram of Brushless Servomotor Control System

5.2.1.2 DC-SIN conversion circuit

By means of the sine wave generation circuit, two-phase wine waves synchronized

with rotor position are made. These values are multiplied by the reference input to

increase or decrease the amplitude. In this way, the torque of the motor is controlled.

5.2.1.3 PWM Generation Circuit

The sine wave current should flow into the motor. To accomplish this, we can

directly give the continuously-varying current using the analog feature of the switching

devices. But this will cause enormous power loss and eventually result in motor failure due

to the high temperature. So we have to make the current flow by on-off basis to reduce

the power loss. This method is called PWM (Pulse Width Modulation).

In PWM method, the generated sine wave is compared with triangular wave with a

fixed frequency. (The frequency of triangular wave is around 10 - 20 kHz when FETs are

used as switching devices.) During the time when triangular wave has higher value than

the sine-shaped current signal value (denoted TL on Figure 13), the switching device is

turned off. On the contrary, during the duration that the current signal value is larger than

triangular wave (denoted TH On Figure 13), the switching device is turned on, so that the

current flows into the motor. By changing the duty ratio, the overall current that flows

into the motor can be controlled.

Triangular wave
Generation Circuit

Output

Current Amplifier
Output

PWM Signal -

A\ A

I\An

TH

I /

TL

/\ /I ^ AlA
Nr

V
/,, \

Figure 13. Pulse Width Modulation

5.2.2 New Method - PWM Generation by Software

The traditional method uses electrical circuit including comparator to generate the

PWM signal. As analog signal is needed as the input to comparator, the circuit before the

comparator on Figure 12 is composed of all analog components. Supposing that we use

digital computer as a controller, this means we have to carry out DA conversion when we

send out the reference value to the motor driving circuit. After this, analog signal goes

through PWM circuit, and converted into PWM signal which is digital. (Actually this

process can be seen as a kind of AD conversion.) As the result, the signal which was

originally digital is converted to analog signal first, and converted to digital signal again to

make the PWM generation circuit work. It is a kind of "loss" from the standpoint of

efficiency.

The whole reason that we have to go through this tedious process is the

comparator used for PWM signal generation. If we can generate PWM signal directly

from original control reference input from computer (which is digital) without using the

dedicated hardware such as comparator, it would be much better in terms of efficiency.

A 9

1

| I •

Y
., ,

i "11<

The current industrial practice is to replace the whole system shown on Figure 12 except

transistor bridge (which is called "Power Block.") by a dedicated hardware. However, if

we can replace most of the above hardware by software, it is certain that we can

dramatically reduce the cost and that we can also get unlimited flexibility in motor control

even at the current feedback level.

In our system, we are already using a counter/timer board to generate interrupt

request signal generation as shown on Figure 10. This Am9513 timer/counter chip is good

for our purpose in that it has a mode that can be used for generating PWM signal by

programmably setting the high duration (TH on Figure 13) and low duration (TL on Figure

13) on the chip. By adopting this method, we can control and manipulate everything on

the Figure 12 by software. Though, on our current experimental setup, only one PWM

signal is generated per a motor, and three-phase PWM signals are generated by a logic

circuit in the amplifier. (Block diagram is shown on Figure 14.) Eventually, this

commutation job also should be done by software and the CPU of the computer. This will

be explained in section5.4 more in detail.

.1

Figure 14. Brushless Servomotor Control System Diagram with PWM by Counter

5.3 Experimental Setup and Evaluation

5.3.1 Experimental setup

We developed a PC-based XY table motion control system, and conducted

experiments to demonstrate the effectiveness and usefulness of the Windows NT real-time

operating system. Figure 15 shows an overview of the experimental setup. The motion

control system consists of a pair of XY tables, a power amplifier unit, a PC with 200 MHz

Pentium Pro CPU, connected to the XY table through I/O boards. The two axes of the

XY table are mounted in parallel for convenience. The PC is equipped with 32MB RAM,

2 GB EIDE Hard Disk Drive. The power amplifier unit, as shown in Figure 16, consists of

amplifiers, power supply for the amplifiers, a screw terminal including analog and digital

isolators, an I/O interface terminal, and a power supply for the isolators. A network

function is also developed so that another PC on a LAN can monitor, supervise and

control the operation of the XY table. The overall system structure is shown inFigure 17.

Pentium Pro PC with Power Amplifier Unit
Windows NT Real-time OS

I

----- XY Table

Figure 15. Overview of Experimental Setup

Screw Terminal
with Analog and
Digital Isolators

Power Supply for
the Amplifier

I

Power Supply
for Analog Isolator

/

Screw Terminal
for IO0 Interface

Figure 16. A Closer View of Amplifier Unit

Figure 17. Structure Diagram of Windows NT based Motion Control System

For the I/O interface, an A/D converter board is used for current monitoring. This

board contains 16 channels of single-ended AD converters and 4 channels of digital

input/out units with 3 channels of counter/timers. An encoder counter board is also used

Amplifier
I

yDnlý

for encoder signals. To generate PWM pulses, a counter/timer board was employed. The

board also generates sampling interrupt request signals to the CPU. The XY table is

equipped with two AC servo motors with 1000 count resolution encoders, and simple

power devices are used to amplify the PWM signals. In addition, 6 opto-coupler circuits

were designed to isolate the power amplifier and the PC. The whole control programs

were written in Visual C++ version 4.0.

Control Main Panel
Trajectory Generation/Selection Panel

/

Windows NT
Desktop

K Dialog Box for Online
Trajectory Selection

Figure 18. Graphic Interface for the Real Time Control Operation

A graphic user interface was also developed for quick and easy operations of the

XY table operations. Figure 18 shows an example on the PC monitor. This graphic user

interface consists of two panels: Control Main Panel and Trajectory Generation/Selection

Panel. The Control Main Panel, as shown in Figure 19, allows to install/uninstall the real-

time control device driver, start/stop the interrupt requests, move the XY table back to the

origin, select between open loop and close loop operations, and start/stop a trajectory

tracking control. This panel also exhibits the variations of the system's states in real time.

On the other hand, the Trajectory Generation/Selection Panel, as shown in Figure 20,

allows to generate, store and choose desired trajectories. If the system is operated over the

LAN, this Trajectory Generation/Selection Panel is opened on the remote PC so that the

remote PC can choose the trajectories on line during the operation.

MFSContrl Mi inlb.SP..h . IflinSIauflt

Real Time Control on Windows NT

XYCL Device Driver Uninstalled............
ADinDataX : 0.....
extension->PrevOutDAValueX: 0.....
extension-> PrevOutCounterLowValueX: 0.....
extension->PrevCurrentOutCounterLowValueX: 0.....
extension->PrevEncoderValueX: 0.....
extension-> ReferencelnputX: 0.....

extension->TrajectoryCountX: 0.....
extension->TrajectoryLengthX: 0.....

ADinDataY : 0.....
extension-> PrevOutDAValueY: 0.....
extension->PrevOutCounterLowVaIueY: 0.....
extenslon-> PrevCurrentOutCounterLowValueY: 0.....
extenslon-> PrevEncoderValueY: 0.....
extenslon->ReferencelnputY: 0.....

extension->TrajectoryCountY: 0.....
extension->TrajectoryLengthY: 0

extension->MotionState: 0.....
extension-)XUimitSW: I
extension->YLimitSW: I

0swin conmto MainmPenl PaPainntj £0 2IMUPM

Figure 19. Control Main Panel

Real Time Control on Windows NT - Send Trajectory

ActualscrollX: 0.....
Actual scrollY: 0.....

TrajSaveX[0]: 0.....
TrajSaveY[0]: 0.....

A e SIMi soh DP -I1Trfoectofy Geem... ZN ZOO PM

Figure 20. Trajectory Generation/Selection Panel with a
Dialog Box for Online Trajectory Selection

5.3.2 Influence of keyboard and mouse

As was mentioned above, our operating system uses two interrupt request lines,

which are levels 3 and 4 (or 3 and 5). From the definition of interrupt level, it follows that

an interrupt service routine can be "interrupted" by another interrupt request with higher

priority. In this section, we will evaluate the influence of the interrupts with higher priority

levels.

Position Error of the X-table (Without Key Strokes)

5o_

-5 i • ••

S 5)0 1000 1__ 0 2(00 2_00 3_

Time : millisecond

Position Error of the X-table (With Key Strokes)

-0

a_
0 I I I I 20
500 1000 1500 2000 2500 3000

Time : millisecond

Figure 21. Influence of Keyboard on Position Error

Level 0, the highest level, is used by the system timer, and there is very little we

can do to manipulate this one, while level 2 is used for the control of a slave PIC

(Programmable Interrupt Controller) and most of external devices do not occupy this

level. The remaining highest interrupt levels are level 1 used for a keyboard and level 4 for

a serial mouse. Keyboard strokes have the highest priority among all the interrupts open to

the programmers. In order to guarantee control performance of servo motors, we have to

evaluate the influence of keyboard strokes. Note that, since keys are pressed occasionally

by the operator, it is expected that this factor would not cause any serious problem. Even

when the fast keyboard strokes occur in case of automatic repeat operation, it still does

not exceed 30 times per second. This is a much lower rate compared with 10 kHz of

current loop and 1 kHz of velocity / position loop. Therefore, virtually we can ignore the

influence of keyboard on other interrupts used for control loops. Figure 21 shows the

experimental comparison of tracking control error : (a) shows the error without key

(1.

strokes and (b) shows the one with key strokes, in the task where the position table

follows a trajectory, back and forth at a constant speed. As shown in the figures, it is clear

that there is no significant difference in the tracking accuracy.

In the case of mouse, if we use a serial type mouse, it occupies interrupts level 4,

which is the lower level than that of current loop but still higher than that of velocity loop.

As was stated above, the most time-critical job is performed in the current loop at

interrupt level 3. As is shown on Figure 22, the movement of the serial mouse does not

make any significant influence on the control performance. If a PS/2 mouse is used, it

occupies interrupt level 12 of Windows NT. It is expected that this device with interrupt

level 12 cannot deteriorate the control performance of the real-time system which uses

interrupt level 3 and 5. The expectation was verified by an experiment, as shown on Figure

23. The time measurements of the data shown on the figures were done using system timer

function of Windows NT ("SetTimero"). This system clock has the resolution of up to 10

millisecond, which is not enough for the control purpose.

However, for the simple data acquisition for graph, this internal system timer

provides us enough sampling rate.

Mouse Position (Serial Mouse) Mouse Position (Serial Mouse)
1 0o 1 I0 -r

300

300

00

uJ u Zuuu
0000

Time : millisecond

Position Error (Mouse Stopped)

__ _ _ ____ I ____

IUUU zUUu duoU

S800

6 600
o 400

0 200

01 1000 2000 3N
.+

0
Time: millisecond

Position Error (With Mouse Moving)

1000 2000 3000
Time : millisecond Time: millisecond

Figure 22. Influence of Serial Mouse on Position Error

u)
- (

0oa

E

E

rC

0
n

1C
,,, AA ~1

5

0
A_

17- ý0--st-

2C

--

0 800

600O

o 400

0 200
a-

0.

Mouse Position (PS/2 Mouse)
01 0'' £

U IL 100 2100 31

0

o

00
Time: millisecond

Position Error (With Mouse Stopped)

Mouse Position (PS/2 Mouse)4 A/'fl
I UUV

600

400
9nn

0.
U II 100 2L'00 3(00

Time: millisecond

Position Error (With Mouse Moving)

5

0

-1-

-J
U IUUU VVUU 3UUU U IU0UU 0 UUU 2 UUU0

Time : millisecond Time : millisecond

Figure 23. Influence of PS/2 Mouse on Position Error

5.3.3 Sample Time Budget

For the general I/O interface boards, we will analyze the time required for the

current feedback and PWM computation. The proposed real-time controller inevitably

occupies the CPU time to a certain extent. One critical question is how much CPU time is

occupied by the real-time controller, embedded in the kernel of the Windows NT

operating system, and whether the CPU still has enough time for other operations such as

disk drive access and GUI operations. Since the current feedback and PWM computations

are the most time consuming, we will focus on the time budget for these computation at

the highest sampling rate.

One complete cycle of current feedback and PWM computations includes :

tw : Time required for one writing to I/O address

tr: Time required for one reading from I/0 address

tm : Time required for one multiplication

td : Time required for one division

t, : Time required for other algebraic computation

N: Number of axes

0-

~I

7-
7:

| I | I-

..

1

n n~n~ nn~n - · ·--

[1] Total Interrupt Latency : Ti

Ti=tix2 (latency for getting into interrupt routine + latency for returning to the

original program)

[2] A/D Conversion: Tv

(i) Initialization : 3 writes + 3 reads

(ii) Conversion of N analog inputs (for N axes) : (1 write + 4 reads) x N

(iii) Disabling A/D Converter : 2 writes + 2 reads

Tv = (3tw+3tr) + (tw +4 tr) x N + (2 tw +2 tr) = (5+N) tw+ (5+4N) tr

[3] Generating PWM signal : T :

8 writes x N are necessary. (Maximum, worst case)

T, = 8xNxtw

[4] Control Computation (PI Control, N axes) : Tc

3 multiplications (tn) + 3 divisions (d)) x N

Other computations including addition and subtraction: Nx tc

TC = 3xNxtm + 3xNxtd + Nxt,

Total time required for 1 current feedback of N axes : Tto

Ttoai= Ti + Tv + Tp + Tc + Te= 2 ti+(5+9N)tw+(5+4N)tr+3Ntm+3Ntd+Ntc+Te (3)

where Te is time required for jumping, variable definition and others. In the case of

Pentium Pro 200 MHz CPU, with 32MB RAM, 2GB Hard Disk, 256K Cache, we got the

following results:

" ti = 6.0 s, tw = 1.4 9s, tr= 0.5 gS, tm = 0.2 gs

* td= 0.4 s, tc = 0.5 s, Te= 2.0 Js

Substituting these values into (3) yields,

otao = 23.5 + 16.9 N gs

When two axes are controlled simultaneously, it occupies 57.3 % of the CPU time.

The time required for the position and velocity feedback, trajectory interpolation, and so

forth can be evaluated in the same way. They occupies approximately 8 % of the CPU

time. The total CPU time taken by interrupts is therefore 65.3 %. This allows the CPU to

perform the GUI operation, disk drive access and other application program execution

without seriously slowing down the operations.

5.3.4 Performance

The performance of current XY-table system is shown on Figure 24 and Figure 25.

They show the reference inputs (given trajectory) and the encoder value (actual movement

of the XY table) on Figure 24. Velocity data and current data (here, specified as

"ADinData") are also shown on Figure 25.

ReferencelnputX

500 1000 1500 2000
Time : millisecond

2500 3000

x 10' ReferencelnputY

1.4 -

1.2 -/-\

0.6

0.4_ LLL
0 500 1000 1500 2000 2500 30(

Time : millisecond

x 10 EncoderValueY

1.6

1.2

0 500 1000 1500 2000
Time : millisecond

)0

2500 3000

Figure 24. Reference Input and Actual Position of XY Table Movement

x 10s

1.

1.

1.
x

>1

6
4
2 I 1J

.64#,/IAI'7LI/I\
1 kth-tI--/--

1 kI-I-Ill--
0.8

041
0 500 1000 1500 2000 2500 3000

Time : millisecond

^ /A

VelocityX

-50
0 500 1000 1500 2000 2500 30(

Time : millisecond

ADinDataX
20O

50 -Y0o , 1
-50-

-100

-150
0 500 1000 1500 2000 2500 3000

Time : millisecond

3500 L 4' AD0 500 1000 1500 2000 2500 30(
Time : millisecond

ADinDataY
300

200
100- -

-100

-200 -

_0nn
0 500 1000 1500 2000

Time : millisecond
2500 3000

Figure 25. Velocity and Current Value of XY Table Movement

Control Algorithm Diagram

Reference Input

Figure 26. Overall Control Algorithm of Experimental XY-Table Setup

17 f7K
I I I I 1 I

o0- N
I n KT·I i

VelocityY

5.3.4.1 Feedback Performance Evaluation

The overall feedback control algorithm of experimental XY table setup is shown

on Figure 26. As shown on the figure, this system is composed of three P-control loops.

Actually outer two loops compose one PD controller, and the inner-most loop is a P-

controller for current feedback.

VelocityX
120

100 - -- - - -

80 -

60

40

20

0 500 1000 1500 2000 2500 3000
Time : millisecond

ADinDataX
4UU

200

0 500 1000 1500 2000
Time : millisecond

- I

VelocityY

100

80

60

40

on

4UU

300

200

1nn

2500 3000

0 500 1000 1500 2000
Time : millisecond

ADinDataY

2500 3000

0 500 1000 1500 2000 2500
Time : millisecond

Figure 27. Response to Step Velocity Input (Velocity and Current)

Figure 27 shows the performance of experimental system when Gp = 1 and Gpc =

0 on the control algorithm diagram of Figure 26, which corresponds to the case when the

input is velocity command. It is seen that the actual velocity is following the given

constant step input. Also Figure 28 and Figure 29 shows the step response when Gp and

Gpc are not zero. In this case the step input becomes reference position command. Figure

28 shows that this system does not have any overshoot due to the enormous friction of

XY table.

x
a

K I
I

3000

-
~s;x;l

I -.

-

-

-

-

II

--I
Zj!

Ir+~
U·LL. ·

;rl
~1

I

i nn

n u··

(10
s ReferencelnputX

SI

x10
5

0O 10 10 1520 2C
Time : millisecond

EncoderValueX

00 25

5o

3
5

2

2.

>1.

0.

00 3000

500 1000 1500 2000 2500 3000
Time : millisecond

0 500 1000 1500 2000 2500 3000
Time: millisecond

3.5x 10 EncoderValueY

3
2.5/

1.5

1

0.5

0
500 1000 1500 2000 2500 3000

Time : millisecond

Figure 28. Response to Step Position Input (Reference Input and Actual Position)

VelocityX

500 1000 1500 2000 2500 3000
Time : millisecond

0 500

ADinDataX

1000 1500 2000 2500 3000
Time : millisecond

VelocityY
20

00 - - - - -

80

60

40
20

0
0 500 1000 1500 2000 2500 3000

Time : millisecond

ADinDataY

Time : millisecond
00

Figure 29. Response to Step Position Input (Velocity and Current)

2.5

3.

2.

x

>1.

0.

.5

3--

5

5 -

0

L
-

-

-

12u

100

80
x

S

Pu

0

0

t0

x
120

10

K

A - -

-

- i

-

-

-

-

-

- 7 7 ~n n
n

-

-
-
-

-

-
-

·kr-

-An

-
~it

room=

x105
3.

ReferencehnputY

1.5

1

5

Software
(PC with Windows NT)

Counter/Timer
N/D Converter

Encoder Counter
(Add-in Boards in PC)

Sine Wave
PWM

Generation

Figure 30. Advanced Full-Digital AC Servo

5.4 Advanced Full-Digital AC Servo

5.4.1 Commutation and Current Feedback by Software

As was shown on Figure 12 before, three-phase inputs should be generated to run

a brushless servo motor. Each of these three signals are generated by separate PWM

circuit, in the shape of sine waves shifted by 120 degree to one another. In addition, to

control the motor performance accurately, current feedback circuit is also necessary, with

periodical feedback by every 50 - 100Ls.

Current practice on PC based control is to use the dedicated control board with

DSP to off-load the burden those kind of jobs, including commutation and current

feedback. If the computer CPU can do commutation and current feedback by software, we

Control
Input

Power Block,
Motor,

Encoder
(Hardware)

Bridge

Bridge

Motor

Encoder

Feedback Algorithm

don't have to use the expensive dedicated board. In addition, as there is no analog signal

involved in the whole control process (except current monitoring signal), it would be

strongly resistant to noise even in the harsh field environment. The PWM signal is

generated by simple standard counter/timer board, and the A/D converters are used for

current monitoring. Sine wave generation circuit is replaced by a sine table in the software,

and the current feedback is also done by the software. After current feedback, the

computed values are sent out directly to the counter to generate proper PWM signals to

drive the motor. Consequently, all hardware was replaced by software except those two

add-in boards and power block. (Power block is composed of switching devices for

driving the current to the windings of motor. The power block cannot be replaced with

software because it deals with high voltage.) The block diagram of this advanced full-

digital AC servo structure is shown on Figure 30.

5.4.2 1/O Interface for Advanced Full-Digital AC Servo

The proposed real-time control and advanced full-digital AC servo method applies

to all standard I/O interface boards. To fully exploit its potentials, however, special I/O

boards tailored to specific applications are desired. Compared with the rapid progress in

the CPU speed, the I/0 devices are rather slow, being a bottleneck of the proposed

method. For example, the current feedback control of AC servo motors entails the A/D

conversion of current signals, which is the most time consuming of all the procedures

required for the current feedback. Traditional, general purpose A/D converters consisting

of one A/D converter and a multiplexer for selecting and switching many input channels

are too slow to control multiple AC servo motors.

Figure 31 shows the schematic of a special I/O interface board designed for the full

digital AC servo. For the current feedback described above, 2 A/D converters are used for

each servo motor in parallel for converting 2 current signals concurrently. These data are

stored in local registers, and read by a CPU all at once in every sampling period. This

minimizes not only the time required for conversion but also the one for selecting the

multiplexer and handshaking operations. The full circuit diagram of exemplary A/D

converter board which is especially designed in this manner is shown onFigure 32.

As for outputs, D/A conversion is eliminated. The output provided by a CPU is the

pulse width information for directly activating the switching transistors of power

amplifiers. The counter shown on Figure 31 receives the pulse width data from the CPU

and convert them to actual pulses with the specified widths. As described in the following

section on time budget, the sampling period of current feedback is 50 jls to 100 gs. This

sampling rate is approximately comparable to the PWM frequency, which is bounded by

the speed of switching power transistors. Therefore, the CPU updates the counter setting

of PWM pulse widths at every PWM cycle or every other cycle.

I/O

Analog
Input

Data
Line

on Slot
Conversion Conversion
Trigger Pin End Signal

Pin

DhNL
Duration ot
High State : ----

Dh

Duration of
Low State : D1

Dl

Figure 31. Block Diagram of I/O Interface Board for Advanced Full-Digital AC Servo

5.4.3 Select of Power Block for Full Digital AC Servo System

As current feedback and commutation circuits were considered to be a part of

servo amplifier in traditional AC servo control, everything on Figure 12 is packaged in a

box, and sold altogether under the name of "Servo controller." But according to current

trend of separating the controller part and switching devices (i.e. power block), a couple

of companies began to sell the power block separately. Basically it is most desirable that

the controller manufacturing company should produce their own power block that

matches with their controller, as the functionality of power block should be determined by

the requests of the controller connected to it.

Timer
(Industrial Standard
9513 Timer Chip)

""

/C
O

N
V

ST
/E

O
C

/
C
S

/
R
D

M
O

D
E

/ST
A

N
H

B
Y

R
EF

O
U

T
/JN

A
G

N
O

DQWD

V
IN

2
V

IN
I

,C
O

N
V

ST
'
/
E
O
C

/
C
S

M
O

D
E

/S
A

N
O

D
S

Y

R
E

F
O

U
T

/IN

0
8
0

D
B
2

D
B
3
/
R
F
S

D
34/C

S
C

L
K

D
B
S
/
S
D
A
T
A

D
B
4

D
B
?

D
b
e

D
b
O

D
B
1
0

0
3
1
1

0
D
0

DI1
D
0
2

D
B
3
/
R
F
S

0
3
4
/C

S
C

L
K

D
B
S
/
D
A
T
A

D
0
3

0
D
B
7

0
3
n

0
o
9

D
B
l
l

D
o
3

0DB9

0
8
1
1

D
B

13
D

914
D

B
15

D
B
0
8

D
O
S

D
0

1
0

D
011

D
0112

0
8

1
3

0D
14

D
015

V
IN

2
V

IN
1
I

/
C
O
N
V
S
T

/
t
O
C

/C
S

/
R
D

M
O

D
E

/S
T

A
N

D
B

Y

R
E

F
O

U
T

/IN

A
G
N
O

O
C

t40

V
IN

2
V

IN
I

/C
O

N
V

ST
/E

O
C

/C
S

/
R
D

"O
D

E
/S

T
 A

N
D

BY

R
E

F
O

U
T

/IN

A
G

N
O

D
C

N
O

D
B
O

D
B
I

D
03/R

F
S

D
B
4
/
C
S
C
L
K

D
B

5/SD
A

T
A

D
B
G

D
B
7

010
0
8
3

D
l
B
1
1

D
0
0

D
B
O

031)
0D

2
D

I3
/R

F
S

D
9
4
/
C
S
C
L
K

D
B

S/SD
A

T
A

D
9
6

D
o
?

034
D
o
s

D
B
O

0O
10

0
3

1
1

D
os

D
I
o
s

D
810

D
b

ll
0D

12
0
0
1
3

0D
14

D
015

D
B

0
0

8
1

0
0811
D

912
0D

13
0
0
1
4

0D
15

ibjrIIoI

Our advanced full-digital AC servo controller also needs a power block to drive

the high voltage brushless motor. Although the best way is to design our own power

block, it is still all right if we can get a power block from the market if it fits into our

requests. In this sense, there are a couple of conditions for selecting a power block that

would go well with our controller.

5.4.3.1 Dead Time Generation

There are three phases to be controlled to run a brushless servo motor. To flow

the current for one phase, two switching devices, which are mostly FETs, are needed.

Each of the two FETs are placed at each end of the winding as shown on Figure 33. The

direction of current is changed according to the selection of the FET that becomes on or

off. Naturally it is prohibited to make both FETs on because that causes short circuit and

might blow up the whole amplifier. On Figure 33, (a) shows the ideal state of FETs for

PWM signals. As can be seen on the figure, there is possibility of short circuit when the

FETs are turned on and off at the rising or falling edge. To prevent this danger, some

delay is intentionally added to the on-off timings (as is shown on Figure 33 (b)), which will

get rid of the chance of any simultaneous "on-state" of the two FETs.

1 FET 1

1 [FET 2 - Dead Time

(a) Ideal State

2 FET 1

)ead Time--- --
: !_

the current when the switching 4 FET 2
devices are turned on

simultaneously

(b) Actual State with Dead Time

Figure 33. Dead Time Generation

It is not impossible to generate this dead time, which is 6 - 7 ts in practice, by

counter/timer board used for PWM signal generation. But it is not a good idea to spend

precious system resources (counters in this case) on this kind of simple job. So it is better

to find a power block that has internal dead time generation function itself. With this kind

of power block, the system can work with minimum number of counters only needed for

PWM generation.

5.4.3.2 No velocity or position loops, and not expensive

It is natural that no hardware for position or velocity feedback loop should be

necessary in the power block. The power block might be composed of simple switching

devices and current sensor, and dead time generation circuit as was stated above. In this

way, the power block might be inexpensive compared to that of traditional brushless servo

motor amplifier, and it will eventually reduce the cost of whole control system.

5.5 Use of network on NC machines

5.5.1 Need for Network on NC Machines

The current trend goes to distributed control. It is because of the fact that the

amount of work which can be done with only one machine is limited. In manufacturing

processes, there are lots of different kinds of things to be done by different machines, in

serial or in parallel. As some processes should be done by more than one machine, it will

be more efficient if individual process can be controlled centrally.

In the concept of factory automation, organic cooperation of the individual

machines is inevitable. The need for networking among the multiple machines comes out

from this fact. If all the controllers attached to the machines can be under central control,

the efficiency raise and cost drop will be significant.

For example, suppose that there is a factory consisting of 100 individual NC

machines. If one of the machine has a problem, the whole production line should be

stopped. If the individual machines are not connected to any central controller, the

manager of the factory must find out which machine is out of order, and stop it. On the

contrary, if the machine can send the information of its current state to the managing

office, and accept command from it, the wrong machine can be stopped or slowed down

from a remote central controller. In addition, if the central controller can exactly perceive

the current state of the machine which is out of order, and if it is thought of as a minor

problem, the central controller can simply slow down the wrong machine and does not

have to stop all production lines, which will allow the factory to avoid major loss that can

be caused by overall shutdown.

To accomplish this, the communication between individual machines and the

central controller is essential. In addition to that, it will be great if the detailed control of

individual machines can be done by a central controller, making the whole factory just like

one machine. The need for distributed control starts here.

5.5.2 Network-based, Distributed NC Machine System

Windows NT has a splendid networking capability, as was pointed out at the

beginning of this thesis. As long as we use Windows NT based real time operating system,

we can take full advantage of its whole networking ability. We can use NetDDE (Network

Dynamic Data Exchange) function for exchanging data between machines, and we can

even manipulate the inside of the control software of individual machines from remote site

using the Windows NT embedded functions such as RPC (Remote Procedure Calls).

Consequently it is possible to build a huge network-based process line composed of many

NC machines exchanging data each other. This will allow the feedback between individual

machines and will help optimize the process actively even during the production, which

will make the whole factory look like an organic creature.

5.5.3 Diskless PC-based NC Machines for Factory Automation

There are several ways to build a network-based control system. One way is to

have individual machines running totally independently, and connect them with network

only for data exchange. In this case each controller are built separately, and just data

exchange occurs between them. On the contrary, we can think of diskless system, which is

composed of individual machines that do not have any hard disk. The real time operating

system of each controller is loaded through network from the central controller when the

power is turned on. As a result all the individual machines will share same set of operating

system and data is exchanged through shared space in central controller. This is called

diskless remote boot system (Figure 34).

Macnlne
Remoteboot

Real Time Control System
based on Windows NT

Boot operating systems
accross the network

in Windows NT
Server

Machine
Remoteboot

Real Time Control System
based on Windows NT

Figure 34. Remoteboot, Distributed Control System

This system has several advantages from the viewpoint of factory integrated automation.

* Greater control over the distribution of information and software resources.

* Ease of updating software and operating systems centrally.

* Reduced cost in buying and maintaining client computers (which are used as

individual controllers.)

Robot

Robot

Robot,

IM.:

* Greater flexibility in standardizing each controllers.

* Increased network security by using clients that do not have disk drives that

can be used to illegally copy data and to introduce viruses.

Consequently, adopting remote booting for distributed controller will be a good

direction to go for in building factory automation system with Windows NT real time

operating system..

6. Conclusion and Future Work

In this thesis, the possibility of using Windows NT as a real time operating system

for motion control was discussed. Windows NT-based real time controller was

implemented with a pair of XY table as the experimental setup, and its performance was

evaluated. It was shown that Windows NT can be satisfactorily used for real time control

purpose, without harming its original multitasking characteristics. The detailed explanation

about using Windows NT-based real time operating system on motion control was also

given in the name of VMC (Virtual Motion Controller Card). About AC servo, the

advanced method of digital AC servo was explained with brief introduction of the

traditional AC servo with hardware PWM generation. It was shown that more inexpensive

and flexible way of AC servo control can be achieved by replacing the expensive dedicated

control board by software and simple general purpose I/O boards. In addition, network-

based distributed control system with diskless PC controllers was introduced and

explained.

As there is still some limitation for the ordinary Windows NT to carry out real time

control task just by using device drivers, it is expected that modification of Windows NT

HAL (Hardware Abstraction Layer) will be necessary to build a complete real time OS

extension of Windows NT. About brushless motor control issue, the implementation and

evaluation of advanced full-digital AC servo is another future work to be done soon.

Finally, development of proper algorithms and tools for suggested distributed control

system for factory automation should be done in a near future.

7. References

[1] K. G. Shin and H. Kim, "Derivation and Application of Hard Deadlines for Real-Time

Control Systems," IEEE Trans. of Systems, Man, and Cybernetics, vol. 22, no. 6, Nov.,

1992

[2] P. Puschner and C. Koza, "Calculating the Maximum Execution Time of Real-Time

Programs," Journal of Real-Time Systems, vol. 1, no. 2, Sept. 1989

[3] M. Harmon, T. P. Baker, and D. B. Whalley, "A Retargetable Technique for

Predicting Execution Time," Proc. of IEEE Real-Time Systems Symp., 1992

[4] A. Mok, "Evaluating Tight Execution Time Bounds of Programs by Annotations,"

Proc. of IEEE Workshop on Real-Time Systems and Software, 1989

[5] T. S. Craig, "Queuing Spin Lock Algorithms to Support Timing Predictability," Proc.

of IEEE Real-time Systems Symp., Dec. 1993

[6] H. Takada and K. Sakamura, "Predictable Spin Lock Algorithms with Preemption,"

Proc. of 11th IEEE Workshop on Real-Time Operating Systems and Software, Seattle,

May, 1994

[7] K. Jeffay, "On Latency Management in Time-Shared Operating Systems," Proc. of

11 IEEE Workshop on Real-Time Operating Systems and Software, Seattle, May, 1994

[8] "Real-Time Systems and Microsoft Windows NT," MSDN Library, Microsoft

Corporation, June, 1995

[9] W. Stallings, "Operating Systems," Prentice-Hall Inc, 1995

[10] Y. Dote, S. Kinoshita, "Brushless Servomotors - Fundamentals and Applications,"

Clarendon Press. Oxford, 1990

[11] H. Custer, "Inside Windows NT," Microsoft Press, 1993

[12] J. Richter, "Advanced Windows." Microsoft Press, 1995

[13] H. Messmer, "The Indispensable Hardware Book," Addison-Wesley Publishing

Company Inc., 1995

[14] B. Brey, "The Intel 32-bit Microprocessors," Prentics-Hall Inc., 1995

[15] "Microsoft Windows NT Workstation Resource Kit," Microsoft Press, 1996

[16] "Microsoft Windows NT Device Driver Kit Documentation," Microsoft Corporation,

1996

[17] "Win32 Software Development Kit," Microsoft Corporation, 1996

[18] D. Klopfenstein, "Hardware Design Guide for Microsoft Windows NT," Microsoft

Press, 1994

[19] "PC 97 Hardware Design Guide," MSDN Library, Microsoft Corporation, 1997

[20] "Windows NT and Real Time Operating systems," Microsoft Support Knowledge

Base, MSDN Library, 1995

[21] M. Williams, D. Hamilton, "Programming Windows NT 4 Unleashed," Sams

Publishing, 1996

[22] V.Toth, "Visual C++ 4 Unleashed," Sams Publishing, 1996

[23] K. Hazzah, "Writing Windows VxDs and Device Drivers," R&D Publications Inc.,

1995

[24] D. Anderson, T. Shanley, "Pentium Processor System Architecture," Mindshare Inc.,

1995

