
Knowledge Representation for Constructed Facilities

by
Robert Cushman Field III

B.S., Civil Engineering (1986)
United States Military Academy

Submitted to the Department of Civil and Environmental Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Civil and Environmental Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 9, 1997

© Robert Cushman Field III, 1997. All Rights Reserved.

The author hereby grants to MIT permission to reproduce and
to distribute publicly paper and electronic copies of

this thesis document in whole or in part.

A uthor ............................ ; .. . e .... .. ...... r........ .... ....
Department of Civil and Environmental Engineering

May 9, 1997

Certified by.......
6/

Professor of Civil and
Jerome J. Connor

Environmental Engineering
Thesis Supervisor

- i

Accepted by ................... ~..... \ ................ ...........
Joseph M. Sussman

Chairman, Departmental Committee on Graduate Students

JUN 2 41997



Knowledge Representation for Constructed Facilities

by

Robert Cushman Field III

Submitted to the Department of Civil and Environmental Engineering on
May 9, 1997, in partial fulfillment of the requirements for the degree of

Master of Science in Civil and Environmental Engineering

Abstract

The current state of information representation in the AEC community leaves much to be
desired, yet much can be learned from it. It is important not to lose the accumulated
knowledge of many years in the construction industry; however, a new representation is
needed, to take advantage of the myriad of computer applications which are being used in
the industry today. By examining the semantic net and its application with object oriented
techniques, one can see some of the concepts that will no doubt be what carries the industry
into a new phase of interoperability. There are a number of current efforts in this direction,
and in this thesis, one major effort, the Industry Foundation Classes will be examined. I
have also proposed another representation as an alternative, a geometrically based model
which will allow use of current object oriented CAD applications to build a representation
allowing automation of such tasks as computation of connectivity through the topology of
the network. This is a fairly simple example of a representation that could be implemented
with the technology available today, allowing organizations in the AEC industry to use
information exchange immediately to add value to their software.

Thesis Supervisor: Jerome J. Connor
Title: Professor of Civil and Environmental Engineering



Table of Contents

List of Figures ................... ...... .......................... 5

1. Introduction ..................................................... 6

1.1 Current information exchange within the AEC community .................... 6

1.2 Scope .............. .......................................... 7

1.3 Presentation .............. ... ........ . ........................... .7

2. Representing information in the AEC community .................... 9

2.1 Why knowledge representation? . . . . . . .. . .. . . . .... . . . . . . . . . . . . . . . . ... . . 9

2.2 The state of knowledge representation in the AEC community ................ 9

2.3 The criteria for a new representation ................................. 12

2.4 Knowledge representation as a tool ............... .................. 14

2.5 The building model and the design process ............................... 16

3. Semantic networks and modeling ............ . ................ 18

3.1 Why semantic nets? . . . . . . . . . .. . . . . . . . . .. . . . . .. . . . . . .. . . . . . . ..... 18

3.2 Semantic nets as knowledge representation ............................... 20

3.3 The lexicon and structure of semantic nets ............................ . .20

3.4 Object-oriented modeling .................. ...... ................... 21

3.5 Perspectives ........................ ........................ 23

3.6 Using the semantic net to model a structure ............................... 25

4. Implementing interoperability ............... ..................... 27

4.1 High level interoperability ..................... ........... ........... 28

4.2 Low level interoperability ...................... .................. 29

4.3 Current approaches to interoperability .................................. 29

4.4 Setting standards for interoperability: STEP .............................. 30

4.5 Implementing interoperability with COM and CORBA ...................... . 31

5. The Industry Foundation Classes ........... ................ 33

5.1 Introduction to Industry Foundation Classes .............................. 33



5.1.1 The IAI and its goals ....................................... ... 34

5.1.2 Developing the IFC specification with data modeling .................. 34

5.1.3 The current state of IFC specifications ............................. 35

5.2 The architecture of the IFC model ................. ................... 37

5.2.1 The Independent Resources Layer .................. ............... 38

5.2.2 The Core Layer ................... ....................... 39

5.2.3 The Domain Extension Layer ................. .................... 40

5.2.4 Relationships .................................. . ........... 41

5.2.5 Building in extensibility .......................................................... 42

5.3 Applying the IFC model ............................................ 42

6. A geometrically-based alternative .................. ................ 44

6.1 The geometric core ................................................. 44

6.2 Levels of Abstraction ............ ..... ............... .. ........ . 45

6.3 Domain-based modules ........................................ 46

6.4 Model state ................... ................................... 48

6.5 Graphic views ... . .. ... ............................... ....... 49

6.6 Communication between objects ..................................... 50

6.7 Implementing the geometrically-based model ............................. 51

6.7.1 The architectural and structural domain representations ................. 52

6.7.2 A specific class implementation .................... ........... 53

6.7.3 Implementing a class method ................ .................. 56

7. Conclusions ...................... ............... ................ 58

Appendix A: The IFC Model ............... ................. 59

Bibliography ............. .................................. 61



List of Figures

3-1 A hierarchical semantic net used for taxonomic classification ................... 18

3-2 Girder-column system represented with a semantic net ........................ 20

3-3 A frame system with two types of relationships .............................. 25

3-4 A simple slab and beam-column system .................................... 26

3-5 Topological semantic net showing the supported by relationships ................ 26

5-1 IFC Layered Model Architecture ........................... .... 38

6-1 Level One in the abstraction hierarchy of the object model ..................... 45

6-2 The top of the inheritance hierarchy in the class model ........................ 46

6-3 The architectural model ................................................. 52

6-4 The structural model ................................................... 53

6-5 Class diagram for Building Object class and selected sub-classes ................ 55

6-6 Class instances from structural example in Section 3 .......................... 56

6-7 The method "Calculate loading" for the general structural member ............... 58

A-1 Part of the IFC Core Class Specification ............. .. ......... ....... . 60

A-2 Part of the IFC Core Object Model ....................................... 61



Chapter 1

Introduction

In the Architecture, Engineering and Construction (AEC) industry, there is a growing

problem between many of the sub-disciplines. Involved in the construction of almost any

building is an architect, structural engineer, geotechnical engineer, mechanical engineer,

electrical engineer, and a construction manager [1]. Each professional is part of a discipline

that is developing faster ways to automate its information-related tasks. However, a gap

exists between the disciplines, preventing effective sharing of information.

1.1 Current information exchange between applications

There are currently a number of means of exchanging information between

applications in the AEC community. Software standards do exist which allow low level data

to be transmitted between applications. In addition to standardized information exchange,

there are numerous customized systems, known as translators, for interpreting information

between specific applications.

For graphical information exchange, there are a number of standards being used

today. The Initial Graphics Exchange Specification (IGES) has been an evolving standard

that allows the exchange of information between CAD systems through a neutral file format.

It was subsequently adopted in the U.S. by ANSI. In the 1980s, development began on the

second generation of data exchange standards within the U.S.: the Product Data Exchange

Specification. Now it has evolved into the "Product Data Exchange using STEP" (PDES); it

will be discussed further in Chapter Four.

The varied standards and formats for exchanging information allow only the most

basic geometric information to remain attached to objects constructed in the CAD

environment. There is no capability for attaching more useful information to objects such as



material properties and cost. This constraint prevents these data exchange formats from

providing a powerful solution to the problems faced by the AEC community.

Translator packages are available which allow transfer of higher level information

between applications, with a significant amount of customization. There are, however, no

packages that do all things for everyone. In general, they are useful only between the

specific applications for which they have been developed. Presently, they lack the flexibility

to provide an industry-wide solution.

The industry, then, is in need of some new approach to solving the information

exchange problem. The solution will not lie simply in a better CAD package or in making

more translators available, because they can only solve particular problems, and are not

general enough to be powerful across the industry, or throughout the design process. In fact,

the solution must address different platforms, different operating systems, and different

models. Specifically, both syntax of information and the semantics of the representation

must be resolved when exchanging information. Only then can the use of computers start to

succeed in increasing the value added to companies using CAD and other applications.

They will then achieve some synergy, resulting in a greater overall power through

interoperability.

1.2 Scope

In this thesis, I will not attempt to thoroughly define a new model. Rather, I will

look at how to use knowledge representation in general, and the semantic net, specifically, as

a tool that can help examine interoperability solutions for the AEC community. This will

enable us to examine one currently proposed solution, as well as proposing an alternative

means to solve some of the interoperability problems facing the industry. The semantic net

is a representation that can provide a framework with which to examine the different

approaches.

1.3 Presentation

I will first discuss the current state of knowledge representation in the AEC

community, how the information about a building is currently being created, exchanged,



used, and stored. This will make clear some of the constraints that are keeping the industry

from reaching its full potential today. In addition, it is important to look at the strengths of

the current state of representation in order not to lose them. That will enable us to establish a

set of criteria by which proposed representations can be evaluated. With this, one will be

able to look at semantic nets as a simple example of knowledge representation. Examples

will show how the semantic net can be used to capture the necessary information about the

building and to build an effective model. In Chapter Four, I will examine the issues of

implementing interoperable systems. This discussion will provide the background for

examining the Industry Foundation Classes (IFC), a wide-sweeping proposal for

representing knowledge in the AEC community. The previously developed criteria should

allow a clear evaluation of its ability to meet the needs of the AEC community. Lastly, I

will look at an alternative approach to modeling the building, one which is less sweeping,

because it is based on existing and evolving geometric object models that are found in the

latest generation of CAD packages. This alternative would provide a more gradual

evolution towards a representation that allows the industry to take advantage of the

information technology available.



Chapter 2

Representing information in the AEC community

2.1 Why knowledge representation?

What does the theory of knowledge representation have to do with the AEC

community? How does it relate to the current growing pains associated with increased

availability of information about a building? Actually, one can use knowledge

representation as a framework with which to look at the AEC industry, and more precisely, a

building being constructed. What follows is a brief examination of how knowledge about

such a building is currently being represented.

2.2 The state of knowledge representation in the AEC community

The information about (or knowledge of) a typical building is made up of the

information which is used by each domain. Among others, the architect has elevations and

plan views, portraying the concept and form of the building. The structural engineer has

construction plans and detail drawings with corresponding specifications; the estimator has

the cost data based on a material take-off; the project manager has the construction schedule.

These documents are commonly stored electronically, and even transmitted that way, but

they are primarily used in their 'hard-copy' form, for presentations, legal contracts, etc. [31 ].

In aggregate, these documents represent the sum of knowledge about a building.

From the point of view of knowledge representation, they form the de facto model of the

building, in that they are graphics and figures and dates and specifications and documents

which model the actual building or the concept of the building before it has been built.

Although information can be exchanged between domains, it is in effect a completely

decentralized model, its greatest strength being its ability to represent the information

important to each domain, because that domain generates it.



This is a model of the building as a whole: conceptually, in the list of functional

requirements, visually in the architect's elevations. It defines the concept of the building as

an entity that serves a purpose. This model also contains the detailed engineering

specifications, the cost data, the schedule dates of all activities, the fabrication

specifications, etc. This is information about a building at the lowest level, the greatest

amount of detail. These details about the building are generally hidden except to those who

need it. For the most part, it is only available to those whom it directly affects, in the form

of some document or electronic file that is distributed. But that detailed information is the

part of the building model that enables it to be built. The building model is the aggregation

of this detailed documentation as well as the myriad of other documents that describe it,

both in concept and in detail, from start to finish, and from the perspective of all the

disciplines involved.

This current decentralized knowledge representation did not evolve from any

planned abstraction of the building being modeled. Rather, it has been driven directly by the

needs of the domains involved in constructing the building. As stated before, legal

requirements have given the documents the strength of a contract, and they are used in

presenting, selling, discussing, etc. But this haphazard evolution has some inherent

weaknesses that are overwhelming.

First, before discussing the problems with the current system, I would like to point

out what is arguably the strongest point of this decentralized model. With this

representation, there is a straightforward evolution from a simple concept to a very detailed

model. Early in the design process, a concept of the building is defined, as the customer

determines the functional requirements as well as constraints. This early concept forms a

framework upon which each sub-discipline can successively add its detail. As prescribed by

the design process, each domain accesses just the information it needs from the model,

whether it be a certain architectural elevation, a plan for adding structural details, or a

structural detail for doing the material take-off. Then, each adds its specific information, in

the form of some document such as a structural detail, a HVAC load take-off, a construction

schedule. Hence, the information corresponding to the building, its level of detail is

increased, and the model is built. And thus, through the methodology of the traditional



design process, each discipline has access, in the form of documents such as these, to the

specific information it needs. The model then can quickly evolve from the conceptual level

to a detailed level useful for bidding, construction, and design review, corresponding to the

state in the design process.

However useful this current "model" is to the players involved, it has a number of

serious shortcomings. These shortcomings should at least be addressed by any new

approach. First of all, and at the most basic level, this decentralized model does not provide

for straightforward exchange of information between disciplines. True, it is possible for the

structural engineer to get information from the architect, transmitting the drawing by file,

which can then be used for the structural detailing and specifications, then transmitted by

file to the fabricator or the HVAC engineer, etc. However, there are many tasks, such as

material take-off, and scheduling, which require, for example, the estimator to manually take

information from the correct drawing for his estimate. It is not that the dimensions needed

for the estimate are not available, it is just that they are not easily transferred to a format

which allows automation of the quantity take-off. Thus, measurements must be taken and

converted into useful quantities for the take-off, and this means that the information is being

manually re-entered, in one way or another, creating duplication of effort. This duplication

of effort is a weak point in the decentralized model, one which opens the door to errors

which are difficult to detect and laborious to correct.

Arguably the most serious drawback of the current information model of a building

is its inability to efficiently incorporate changes without errors. Because the knowledge

about a building is contained in the sum of the documents corresponding to it, a simple

change in dimensions will affect structural members, requiring redesign, thus affecting

fabrication, cost estimates, possibly construction sequence and schedules, and so forth. And

these changes can come from any area, whether the customer's needs changing, or HVAC

engineers needing more clearance for ductwork, or cost cutting measures, among others. So

the problem is how to deal with the changes, and how to disseminate the information from

them to all the affected parties. Standard procedures have been established to disseminate

this information, and those procedures are largely administrative, with an approval process,

and routing such that each party can be notified as necessary. Between certain domains,



files can be electronically transmitted, with changes being disseminated in that manner, but

as mentioned before, there are a number of domains in which making manual changes is the

only way to make updates. This, then, is an important weak link in the decentralized model

of the building, the point where discrepancies can arise, causing problems later. It makes the

design process heavily reliant on meetings and coordination to ensure that solutions of each

discipline do not diverge too greatly before being corrected.

Lastly, in this current decentralized model, there is an inherent weakness in detecting

conflicts in design or in details between domains, as well as an inability to efficiently resolve

conflicts that have been detected. Each domain takes the design at a given state, and begins

to perform its designs independently of one another. For example, the structural and HVAC

design personnel each start their planning with the building at a certain state. A beam may

be added then, or a truss dimension changed, which conflicts directly with a duct being

designed. This conflict will not be detected immediately; not until the individual designs are

completed and brought together is there the potential for detection. It is only through the

externally imposed design protocol that such conflicts between disciplines or even within a

discipline can be detected and corrected. There is a built-in inefficiency which cannot be

overcome without having, in the model, a more efficient, automated means for information

exchange.

This current method of knowledge representation reflects a process that has been

developed and refined throughout the thousands of years that man has been constructing.

The disciplines each have their domains, made up of a vocabulary, and a particular design

methodology. In addition, the working relationships between domains have been developed

over years of working side by side. While this link to the past brings with it significant

hindrances to the transition to automation, it also brings lessons which cannot be lost in the

transition to new technologies and methodologies.

2.3 The criteria for a new representation

The previous examination of strengths and weaknesses in the current method of

knowledge representation is critically important. From it, one can draw a list of criteria

necessary for success. No representation will meet all the criteria with equal success, but



any proposal for an industry-wide model should at least address each of these criteria in

some way. Each of the following features is critical to the development of a knowledge

representation trying to improve interoperability within the AEC community.

1. Ability to transfer information between domains. The benefit here is in minimizing

manual reentering of project data for different domains. For example, geometric data

should be linked in a straightforward manner to objects within the building, so once

created by the architect, for example, a beam will have dimensions that can be

understood by the structural engineer. When he adds material properties and member

specifications, it will be ready for analysis by the appropriate analysis application. The

list of objects created when the architect (and structural, mechanical, electrical

engineers) adds particular components to the building should be easily accessible to the

project manager in planning the construction schedule, as well as by the estimator for the

material take-off.

2. Ability to incorporate changes. The data must be stored or accessed in such a manner

that when a change is made in a certain discipline, the change is reflected in all areas

affected. A dimension change by an architect should be reflected in data belonging to

the estimator, possible redimensioning of structural members, even rescheduling of

construction. How these changes are done, whether completely automated, or whether

as notifications to each domain that recalculations are necessary, some connection

between disciplines is essential.

3. Ability to detect conflicts. Again, some type of interconnection is essential. The piping

design of the mechanical engineer must not conflict with structural members. When

they do, some resolution process should be enabled. The detection (and corresponding

resolution) can be done either by the use of design milestones, at which time a

coordination (automated or otherwise) takes place, enabling conflicts to be resolved, or it

can be done at unspecified times, determined by the specific designers. If the design for

one discipline has been completed, it is possible for another discipline to initiate conflict

detection between his ongoing work and the completed work of another discipline.



4. Ability to represent the model in terms of documents. This present ability must not

be lost. From sales pitches to legal documentation to drawings used by the construction

supervisor, use of hardcopies is an essential part of the industry today. Almost certainly,

paper documents will be replaced by databases for bidding, liability, etc., but for the

present, profit making dictates that current practices be left intact.

5. Generality. Ideally, a representation could be general enough to encompass all varieties

of construction, from simple wood frame buildings to multi-building complexes to

skyscrapers to parks, yet able to be specific enough to provide precise cost and

fabrication data.

6. Computability. The data must be configured in such a way that it is easily accessed,

and so that calculations can be made easily when needed, such as during structural

analysis, or material takeoff.

7. Flexibility. The representation should not limit the particular project model from

changing as the scope changes, as functional requirements are revised, or as the design

is modified significantly. It is important that it allow the building to change in concept

from a warehouse to an office building if necessary.

2.4 Knowledge representation as a tool to finding a better solution

The more structured representation, that is being sought as an alternative to the

decentralized information model now in existence, could have a number of manifestations.

In general, a good knowledge representation should be an effective abstraction of the thing

being modeled, but what makes it effective? Of course, to the user implementing the

system, its effectiveness ultimately comes down to the bottom line: can time and money be

saved with its implementation? In trying to achieve that end, it can be supposed that

companies in the AEC industry will not radically change the way they conduct day to day

business. Organizations rely in many ways on the documents they base their contracts on,

etc., and they need to continue to operate in a profitable manner. Theory should help us to

build a framework, determine a logical representation that encompasses all the details

necessary, while allowing each domain to see the project from its perspective. And there are

numerous organizational dynamics that are served by the exchange of documents. But other



than the need to insure that implementation will not disrupt too much of the current

practices, what makes one method of knowledge representation more effective than another?

By examining the theory of knowledge representation, we can get an idea of how to

approach the problem, since computer scientists, and before them, theoreticians, have been

working on this problem for quite some time.

What makes the theory of knowledge representation useful for proposing a new

model for the building? What is needed to better represent the knowledge of the building is

some type of structure for logically storing the data that corresponds to the building. The

field of knowledge representation has been used for some years to build methodologies for

structuring information in a logical and useful manner. Winston has proposed in Artificial

Intelligence [43], a set of criteria for an effective representation:

1. Good representations make the important objects and relations explicit: You can

see what is going on at a glance.

2. They expose natural constraints: You can express the way one object or relation

influences another.

3. They bring objects and relations together: You can see all you need to see at one

time, as if through a straw.

4. They suppress irrelevant detail: You can keep rarely used details out of sight, but still

get to them when necessary.

5. They are transparent: You can understand what is being said.

6. They are complete: You can say all that needs to be said.

7. They are concise: You can say what you need to say efficiently.

8. They are fast: You can store and retrieve information rapidly.

9. They are computable: You can create them with an existing procedure.

These criteria are general enough to apply to any representation, and can clearly be

useful as a tool for evaluating a representation, such as I will be doing, within the context of

the AEC industry. Let us use Winston's criteria, along with the industry-specific criteria

developed in Section 2.3 as guidelines in developing a representation.



2.5 The building model and the design process

While the building is a stand-alone artifact, something made up of a number of

products such as bricks, glass, concrete, rebar, I-beams and doorknobs, it is difficult to

thoroughly model the products separately from the processes that put it together. Or,

inversely, when one thoroughly models the products that make up a building, as a byproduct

of that model, one can determine the process by which the building was constructed. For

example, the beam has, as an attribute, a means of support, something to which it is

connected in a certain manner. Therefore logically, one could extrapolate that it was placed

onto or attached to the supports as some step in the construction process. Similarly, other

items in the building have a built-in construction process, which is valuable information to

have contained in any model.

This linking of the products in the building and the processes by which they are put

together is an important part of representing all the knowledge about a building. It is, in

fact, the key element that will allow for simulation of the construction process. However, in

order to structure the model, traditionally one will separate the model into two parts, a

process model, and a product model. Though they are inextricably linked, one must, at

some level, be able to separate the products from the processes, whether by extrapolating the

processes from the products, or vice versa.

This is one of the core issues that many of the current proposed representations

address, how to link the product with the process model, and at what level. In this thesis, I

am limiting my examination to that of the product model, with an emphasis on gaining the

information that is particular to each domain from the model as a whole. The process by

which the building is constructed can be represented more through a functionality-driven

model. The product of the building itself is represented more efficiently with a data-driven

model [35]. The reason for looking at the data-driven model, the product model of the

building, is that with a data-oriented representation one can most directly answer the

question of how to represent the information of a building in such a manner that all

disciplines can access the information they need about the building. The process of

constructing the building is vitally important, and modeling it is an important part of



modeling the entire building; however, it is the artifact of the building that needs to be

broken down into the different perspectives necessary for each discipline to get from the

representation the particular view of the building it needs.

Similar to the way that modeling the building artifact is inextricable from modeling

the construction process, creating or instantiating a model of a building (to include product

and process) is difficult to separate from the design process. In practice, one must consider

the process by which a building is designed in order to successfully structure a complete data

model. It is necessary to know when different parts of the building will be added, how

information will flow between disciplines, and the manner in which disciplines will add

their information to the model, in order to structure the model to work successfully as a part

of the design process.

In actuality, there must be a rational method for instantiating a building model from

the generic core model. That rational method is built into the design process, since that

process is what dictates the sequence of performing design tasks. Hence, it dictates the

order in which the model is constructed and modified [41]. In light of this, a detailed model

cannot really be constructed independent of the design process. A model of the design

process is then necessarily tied to the model of the building. Since I will not endeavor to

construct a detailed product model, I will not expend a lot of energy examining the design

process in itself. However, it is clear that objects and processes that are a part of the

building model must be linked in some way with the objects and processes of the design

process.



Chapter 3

Semantic networks and modeling

3.1 Why semantic nets?

The semantic net has been used to represent knowledge for centuries, but has been

further developed as a useful tool in several fields in the last 30 years [26]. Currently, it is

used in fields from linguistics to computer language-recognition to vision studies. The most

significant advances in the use of the semantic net in itself have been in the attempt to

translate natural language to machine language, in the field of artificial intelligence. What

these fields have in common is a need to represent a large amount of information in a

structured manner.

A common example of the use of semantic nets is in taxonomic classification, such

as seen in classification of organisms: kingdom, family, species, genus, etc.

Figure 3.1 A hierarchical semantic net used for taxonomic classification.



In this figure, a simple example of the semantic net is used to show how it can be

used for classification. It is easily implemented in this hierarchical structure. In fact, there

are few restrictions on using a semantic net, so it can be structured as needed for a particular

application, by a particular user. The use of the net to classify these two types of hunting

clogs as domesticated animals could have been done any number of ways. The classification

could have been given a more technical orientation by using the genus and species of dog,

still using a semantic net. Structurally, in this example, the circles signify a thing (organism,

coon dog), while all the arrows signify a relationship that can be given the name, "type of."

Why the semantic net as a representation? Why not leave the selection of a

representation tool until after the detailed examination of representations in general?

Discussing knowledge representations can be a very abstract undertaking, without any

structure around which to form the argument. The problem at hand is to determine an

effective knowledge representation to be used with computer applications in the AEC

community. I have chosen the semantic net as the representation framework, because with

it, representations can be shown in a quickly understandable format. It graphically displays

complex relationships in a way that can be rapidly assessed visually [4]. The semantic net is

flexible; it is easily manipulated to change the way things are organized or constructed. It

establishes relatively few constraints of its own. It is defined very loosely by a simple

lexicon and structure that is inherently open to interpretation. It can be abstract or concrete,

and is easily constructed from different perspectives. Once different perspectives have been

represented with the semantic net, a visual comparison can be made to determine common

ground, surely a useful ability. Therefore, I propose that it will be a useful mechanism with

which to study the knowledge about the construction industry. In addition, with the

popularity of object-oriented modeling and programming, the semantic net has been

discussed more and more frequently as of late. It is the precursor to object oriented

modeling; most object oriented approaches are a specialization of the semantic net. As such,

it lends itself to the structures used in computer applications today. This is yet another

reason that it can be a useful framework. I believe it will not hinder with its preconceptions,

but rather enable, as a tool with which to express and order the knowledge.



3.2 Semantic nets as knowledge representation

Semantic nets are one way of representing either a single class of "things" or a group

of classes. As a representation, the semantic net establishes a convention to be used in

creating a description about something specific, in the context of that representation.

Representations are meaningful only in the context of a certain perspective. It is not

generally possible or even desirable to represent everything about something. Rather, the

representation should thoroughly describe the aspects of that thing from the perspective of a

certain user. The semantic net is a type of representation that uses a network structure to

describe something through the objects that make it up and the relationships between those

objects. The semantics are in picking meaningful objects and corresponding relationships to

describe the real-life thing.

3.3 The lexicon and structure of a semantic net

The semantic net is a construct made up of a lexicon of nodes, links, and link-labels.

The structure of a semantic net consists of nodes connected to one another with links. These

links are directed, connecting a head node with a tail node. Link labels are used to define the

link as representing a certain type of relationship between nodes. These nodes, links, and

link-labels have specific implementations in different representations, and can represent

concrete artifacts or abstract concepts. A node, for example, could represent a tangible item

like a beam, a window, a car, flower or person, or it could represent an idea like cost, time,

or labor. It is the non-restrictive nature of the semantic net, along with the simple but

powerful structure and lexicon discussed, which makes it a widely used representation tool.

Left Right
column column

Figure 3-2: Girder-column system represented with a semantic net



In Figure 3-2, a system consisting of two columns supporting a beam is represented

both graphically and with a semantic net. The style of semantic net shown is typical, with

nodes shown as circles and links shown as arrows pointing from a tail node to a head node.

This simple example makes sense physically, since the representation signifies with its

structure the idea of the three objects, which are also physical objects, and the relationship

between the one supported object and the two which are supporting it, as shown by the links

between these objects (nodes).

An important subset of the semantic net is the topological net. It represents the

topology of a system in using the semantic net formalisms. The relationships in the

topological net capture the topological relationships between the objects in the system. In

this way, one can extract the connectivity of the objects, which is, arguably the most

important thing a knowledge representation can add to our already existing representation of

the knowledge about a building. This will have immediate effects at a basic level, such as

reflecting changes throughout a structure, since it will be easy to see what objects are

affected by a change in dimensions (i.e., length) of a certain member. It will also allow a

structure to convey important information at a higher conceptual level, since one can then

extrapolate the load path by looking at the supported by relationships between structural

elements in the building.

One of Winston's criteria for an effective representation is that it suppress irrelevant

detail. This representation of a simple arch seems to be effective in that it shows only a

limited amount of information about the system being represented. It does not cloud the

simple relationship between the girder and columns by including, for example, the material

properties of the objects, or their shape, or the manner in which they are supported. These

could obscure or even unintentionally limit the relationships shown so simply in the figure.

3.4 Object oriented modeling

The semantic net is, as stated before, a very basic representation upon which the

object oriented structure is based [28]. The object (node) and the relationships (links)

between objects correspond to the class and interface structure of object oriented models



(and programming languages). This is one reason it is a useful representation for use in

developing computer applications. By developing a semantic net which represents the

information in a building project, or building projects in general, it can be implemented

naturally in an object oriented data model.

A purely object oriented model will represent relationships between objects as

objects themselves. In this way, a relationship between two objects can have its own

attributes. When two objects touch one another, this contact can be defined as supporting or

merely flush contact, depending on the structural relationship between the two objects. This

would allow the relationship between the two objects to be defined more explicitly without

having to express it as a different type of relationship. This would make it easier to

generalize the model.

Here are some of the characteristics of the object oriented model, as it relates to the

semantic net [5].

* Class: The class is an abstraction for a group of similarly structured objects. The class

is not a specific object, but rather a classification. The class model shows the class

structure through the relationships that exist between classes. There is a hierarchical

structure defined with kind of relationships. These link a class (the superclass) with the

various types of classes (the subclass) which can be instantiated as objects. Inheritance

is the relationship among classes wherein one class shares structure or behavior defined

in one (in the case of single inheritance) or more (in the case of multiple inheritance)

classes.

* Object: The object is a specific instance of a class. It is something that has attributes,

behaviors, etc., as dictated by the class to which it belongs. The object model is that

model showing the structure of objects with respect to one another, the hierarchy of part

of relationships that exist to form the levels of abstraction in that hierarchy. The object

model is comprised of four major elements: abstraction, encapsulation, modularity, and

hierarchy.

* Relationship: The relationship is the link between objects and classes. Some of the

relationships already discussed are part of from the object model, and kind of from the

class model.



* Method: A method represents the behavior, with respect to the external world,

belonging to a specific class. When a class is instantiated as an object, that object can be

acted upon by other objects with its methods. They form the interface that allows other

objects to either ask for information from an object or act on the object.

What is needed is to build a framework that can be used to construct a specific

model. In other words, an object model, which is made up of a structure of classes found in

the building.

I have discussed establishing a semantic net as a representation of a real system or

object or "thing." But to be broadly applicable, a model is generally not developed for a

specific object, but rather for a class of objects, a family, and then it can be applied to any

general object which falls in that class. So we are looking to model the class of objects

which make up a building, and that class model should (with some limits) be general enough

to use in representing most kinds of buildings that could be constructed. It should be a

representation system that captures the general objects and relationships that are possible. By

doing this, one can make a general representation system (object model) which is useful in

modeling any specific building or building project (an instance of the object model).

As mentioned before, attempting to build in too much generality brings its own

difficulties. The representation must, however, be somewhat general, or in other words, be

applicable to some family of problems that are to be solved, in order to be useful at all.

Determining the generality of the representation, limiting its scope, is a significant problem

in developing an effective representation.

3.5 Perspectives

Being a "good" representation means nothing, when separated from some context,

since it must be good for something or to someone. It should represent something that is

important from a certain perspective. In Figure 3-2, there was a need to capture the

"supported-by" relationship between the three objects in this particular way. To another

discipline, though, it may not be a useful representation or perspective. From the structural

engineer's perspective, for example, it does not contain enough information about the



objects themselves, material properties, the structural members that are represented by the

names "column" or "girder". From the architect's perspective, it should include information

such as the finish on these objects and the space that they define, and from the fabrication

engineer's perspective, it should include connection details and exact measurements and

tolerances, etc. Each discipline could easily develop a unique representation with a semantic

net, representing the system in a way that is likely to look quite different from the

representations useful to other disciplines. This is another effect of the lack of

restrictiveness inherent to the semantic net. There is any number of ways of representing a

system, given that there are any number of perspectives, and a semantic net merely captures

the knowledge relevant to that perspective. This parallels the distinct representations of the

building which currently exist in the AEC community, as discussed in Chapter Two.

So one of the key issues, common to all of our industry-specific criteria for success,

is that from every perspective, from the view of each domain, the information must be

instantly accessible, and yet in a transparent way inseparable from the information of each

other domain. How to make a model that holds all the details needed by each domain, but

make it available only as needed, depending on "who" is viewing or accessing the model?

By structuring the data in an object-oriented manner, a given object, a wall, for

example, contains all the information available that pertains to that wall. The wall, as an

object is a concept (a functional requirement) as space boundary, but more powerfully, it is

an aggregation of its components, the objects that have a part of relationship with it. It

contains within its boundaries objects belonging to various domains, such as wiring,

ductwork, and is made up of structural elements. Given that an engineer would like to view

the particular elements of that wall corresponding to his domain, the object oriented

structure of the data should allow viewing of only the elements which are a part of that

particular domain, or having direct relevance to that domain.

This important aspect of the object-oriented structure makes it perfect for addressing

the problem of different perspectives.



3.6 Using the semantic net to model a structure

To apply the semantic net to develop a model, one must make a number of decisions

involving the particular semantics that will be used, the perspective, and the use of the

model. Here, I will be show a simple static model, not involving processes, but rather, the

physical products that make up the building. However, from this simple model, one can see

where the added value of a semantic net comes from, in adding the ability to compute

information from the net. Namely, in this case, it makes explicit the connectivity which can

be used directly to calculate the effect of loading on the members of the structure.

There are an infinite number of ways to structure a building model, and the first step

is decomposing the building system into a set of entities [28]. In doing this, one can capture

the hierarchy, the part of relationships that exist, such as when decomposing a frame object

into beam objects and column objects which have a part of relationship with the frame

object, as in Figure 3-3.

R I '

incklude moment

resisting as
appropriate to the
bearn-colu•in

Figure 3-3 A frame system with two types of relationships.

Next, we capture the relationship between objects in a structure (shown in Figure 3-

4) by showing the connectivity through a topological net (shown in Figure 3-5). This type of

network could be built from the information provided in the network shown in Figure 3-3,

through querying the objects for the supported by relationships they possess.

Jy



Figure 3-4 A simple slab & beam-column system

By using the connectivity information, the topological network in Figure 3-5 is

developed quite simply. It reflects the objects and what they are supported by, and can be

traversed like any net when calculating information such as loading. It is not necessarily

easy to traverse when displayed graphically like in Figure 3-5, but the information it

contains is informative by examination. Most of all, though, it is useful as a representation

for computer applications. It is the basis for the connectivity matrix used in structural

analysis, and can be used for such rote work as doing load takeoffs, hence is an important

part in automating the process of checking for stresses during the design process.

Figure 3-5 Topological semantic net showing the supported by relationships
in the simple structure



Chapter 4

Implementing Interoperability

The practicality of making applications work together to share project data is the

driving force behind developing a common knowledge representation for the AEC industry.

Not only are there a number of diverse domains encompassed in the industry, but there are

also a number of levels at which the exchange of information can take place. Any

knowledge representation must take into account something of the nuts and bolts of

implementing it, or it will not be structured in a feasible manner. Actually, how it will be

implemented can be considered to be central to the development of this knowledge

representation, since its implementation should be driving its structure. Any representation

that does not consider the practicalities of building both the general model and the specific

building project model, in addition to how the various disciplines will access it, would have

to be so general as to be ineffectual as a useable structure, resulting in nothing more than a

weak and difficult-to-apply guideline. The architecture of the model, how to access the

information from each discipline's applications, and the manner in which it will be

developed and modified for a specific project are all driven by the implementation means.

So let us now look at these implementation concerns by examining interoperability.

Interoperability can be defined as the ability of two components to work together at

some level through some defined commonality. This can be at any level, from the binary

exchange of data to the exchange of higher level conceptual models. What follows is a look

at some of the implications of attempting to establish some type of interoperability between

software applications. Much of this information was adapted from IFC Model Software

Interfaces [21], in which interoperability is defined as the ability of two components to

interact based on some degree of mutual understanding.



4.1 High level interoperability

At the highest level, the user is interested in interoperability as it relates to services

provided by different applications. Immediately, CAD applications, need to be able to give

the graphical information about all the objects in the building to the estimating package to

develop an accurate and precise estimate of the cost of the building as designed. The CAD

packages need to give their graphical information about the structural objects in the building

to the structural analysis package so it can perform a structural analysis to determine

sufficiency. In each of these cases, the second package will first need to add some

information which is independent of the architectural information or more precisely, the

geometric information, and particular to that discipline. This is where the domain expertise

and design information comes in. The estimator knows what material packages will give the

specified fire resistance or soundproofing quality required. The structural engineer will

know the connection types or the steel strengths required to design the structure. A more

advanced AEC-related example is the ability to bring together an information retrieval

package with a conceptual design of a building to propose different design options. There is

a vast amount of information which has the potential for being coupled with sophisticated

Artificial Intelligence tools to add to the ability of engineers to propose alternatives as well

as to quickly compare alternatives at either a conceptual level or a detailed analysis level.

4.2 Low level interoperability

A continual problem is the exchange of information at the lowest level, the difficulty

of taking advantage of the multiplicity of information systems in existence. At the

communication or transport layer, protocol interoperability has been, and continues to be a

problem [21]. This can be described as a problem of translating syntax. Several of the

standards and formats that are currently in use are [38]:

* IGES: Established by the International Organization for Standardization (ISO), it has

been in use as an evolving standard for exchanging specific CAD related

information, independent of system or software. It was adopted in 1981, and in its

current release, can be used for exchanging product data models in the form of wire



frame or solid representations as well as surface representations. [36]. It is designed

to be phased out as PDES is adopted by ANSI.

* DWG: A common standard for the exchange of CAD drawings. Similar in scope to

IGES.

* DXF: A proprietary exchange format belonging to Autodesk, and made common

thanks to the popularity of AutoCADT M . Similar in scope to IGES.

* ACIS: A recently developed 3-D graphical exchange standard which uses higher

order graphical entities such as spheres, cubes, polygons, etc. for exchanging

information. This enables more information to be stored and exchanged in less

space. More importantly, the lowest common denominator, which is usually the

exchange format, has been raised to a higher level.

* OpenGL is a solid modeling graphical standard used throughout industry for various

applications.

As mentioned previously, these standards do not allow for attaching information to objects

beyond the most primitive of geometric information. They provide no structure for anything

beyond geometric data for graphical purposes.

4.3 Current approaches to interoperability

Abdalla discusses three approaches to integration of systems, with respect to

information exchange [1]. The first is the direct translator approach, in which information

from one application is translated to another application by a third (the translator). This

method is a common approach by many custom software developers. Some organizations

have the resources to develop these unique software solutions today, and more and more

applications are being made to work together with these custom-made translators [9]. The

second method is to define a standard exchange format, sometimes called a neutral file

format. STEP is the most concerted effort in this arena, operating on the premise that

interoperability will be realized by simply raising the common denominator by which

information is exchanged. It is most likely to be implemented as a standard for the exchange

of files. Lastly, there is a central database approach, which would use an agreed upon data

structure, a shared building model, for storing the information about a building or building



project. Each application could access the database, under the construct of the design

process, adding to and modifying the information as appropriate. The database is easy to

keep updated, and with distributed computing, can be made available to ever more dispersed

actors. The Industry Foundation Classes, which will be discussed in Chapter 5, is a type of

standard that could eventually be implemented in this manner.

There is a third possibility developing as object oriented programming improves, that

of smart objects created by applications. Objects would act as clients and servers, [6]

exchanging information with one another, searching with parameters such as precise

location, for other objects that are affected by it. This way, within the same application (and

data model), or between applications and models, an object itself could check for

constructability or for direct conflicts by querying other relevant objects for needed

information.

4.4 Setting standards for interoperability: STEP

The ISO has been for some years developing an international standard for

interoperability that ranges from the lowest level of syntax to the highest semantic standards

in exchanging data between applications. Attempting to cover all areas of manufacturing

and production, from printed circuit assemblies to ship structures, it is the Standard for the

Exchange of Product Model Data (STEP). Formally known as ISO 10303, it is the most

current attempt to develop standards for interoperability, and one of its evolving components

is that part corresponding to modeling building projects within the AEC community. In the

U.S., STEP is being adopted as PDES (Product Data Exchange using STEP) which will,

over the course of several years, replace the IGES standard. Currently PDES has been

accepted as ANSI standard in several fields, such as drafting and mechanical engineering

[36].

Already defined, its foundations are a set of descriptive methods, one of which is the

modeling language called EXPRESS (STEP Part 11) which has syntactical rules and a

graphical implementation. It is not a programming language, but can easily be mapped to

implementation in languages such as C++. EXPRESS and the other descriptive methods



make up the simple elements and techniques that are used in constructing the actual STEP

product data models [36].

At the next level is a set of "integrated information resources" which contains the

blocks that are used for constructing the actual models [36]. These include both generic

blocks useable across industry, and industry-specific models such as the Building

Construction Core Model (BCCM), also known as STEP Part 106. BCCM is the core

framework that includes the object types used in building-oriented applications, and includes

standard models for the products, processes, resources, controls (constraints), and actors

common to the AEC industry [14].

At the highest level are the Application Protocols (APs), or models that describe

specific implementations in terms of applications. AP225, Structural Building Elements

using Explicit Shape Representation, is one example central to the AEC community, of an

Application Protocol that builds a data representation useful for solving a specific problem,

or for a particular data model.

When it comes to the practicality of formatting data, the Implementation Methods

offer the practical solutions, in the form of specifications such as STEP Part 21, the data

exchange file specification, which deals with the implementation of exchanging data or

information between applications, at its most basic level.

4.5 Implementing interoperability with COM and CORBA

Microsoft's Common Object Model (COM) represents a developing trend toward

smart components, essentially objects which are written to standards which allow them to

query one another and work together. This is currently being implemented with

interoperable components of software packages. The Object Management Group (OMG)

has developed CORBA (the Common Object Request Broker Architecture) which builds the

same capability. Both COM and CORBA can be implemented with any programming

language, and they explicitly define the standards to which objects must conform in object-

oriented applications in order for the applications to communicate with one another. They

use similar approaches to solving the problem of making applications able to communicate

information back and forth [21].



Take, for example, Microsoft's COM. It builds interoperability by giving the

application developers the freedom to implement their objects in any language and with any

structure desired, as long as they provide interfaces that meet certain specifications. These

interfaces are the handles by which users can get information or services from the service

providing object (or application) known as the server. The initial server interface must be

able to answer certain basic questions about itself, letting the asking object (or application),

known as the client, know what to expect, and how to get it. This gives the client the ability

to establish links to exactly the part of the server that provides the needed service or

information. The client and server can be either objects within an application, objects in

separate applications, or simply two applications. And the terms client and server are not

static; they change as the interchange between the objects or applications changes. Thus, the

user can be a CAD application, accessing the data in a spreadsheet or database, or an

application using a second as a tool, such as a structural design application that uses a finite

element analysis package.



Chapter 5

The Industry Foundation Classes

5.1 An Introduction to the Industry Foundation Classes

The IFC is a proposed software standard for the AEC community being developed by

the Industry Alliance for Interoperability (IAI). It is a specification that revolves around a

common definition of the "shared building model." Its success hinges upon an effective

representation of the building as a whole, and as such is inevitably very complex. As a

model, it is dependent upon a definitive library of structural, architectural, mechanical,

electrical, etc. components that can be used to make up a building. It is an object-oriented

approach that depends heavily on successfully modeling not only the components that make

up a building, but also the relationships between these components.

When working with a building project model, each discipline will be able to define

the elements for which it is responsible, and thus successively add information to the shared

building model, increasing its level of detail from conceptual design to useable construction

details. As objects are created by each discipline and added to the building model, conflicts

should identify themselves due to the interrelated nature of all objects in the building. In

addition, the process of constructing the building can be simulated using the model, once

information about the logical and physical relationships between objects is entered, making

IFC not only a product model, but a process model as well. Objects will also contain, of

course, the information to make them useful in the applications particular to each discipline,

such as structural analysis and cost estimating. In this way, the objects defined in one

application (e.g. CAD) can be linked to information added by other applications (e.g.,

structural analysis, construction scheduling), making a model which is useful and common

to all. In this way, they will be able to exchange information in the form of files that contain

data built onto a common model.



Once it is fully defined, IFC will provide application developers a standard by which

they can define their software interfaces, thus allowing easy, reliable exchange of

information between different compliant software packages. Existing software applications

will continue to model and process data in their proprietary manner, only requiring the

additional ability to translate their data to the IFC standard model. A structural analysis

package, for example, can take an instance of an IFC beam class, instantiated in the common

model, accessing the specific geometric and material attributes needed for its finite element

calculations to determine stress levels. Subsequent changes made to the building, affecting

possibly the length the beam spans, would be noticed by the analysis software, alerting it to

perform its analysis again.

5.1.1 The IAI and its goals

The IAI is a consortium of firms with an interest in developing the shared building

model by which all applications in the AEC community can communicate. The IAI is

comprised of several hundred corporations, ranging from architectural to structural and

mechanical engineering, project scheduling to project estimating. There are chapters in

North America, France, Germany, Japan, Singapore, the United Kingdom, as well as a

Nordic chapter. Industry leaders from all areas of the AEC/FM community are currently

involved in developing the core definitions that will form the heart of IFC.

The mission of the IAI is to define and publish specifications for the IFC. They will

not develop software, but rather a software standard by which vendors can implement their

products. Autodesk is a major player in the IFC development; they are developing Release

14 of AutoCAD in compliance with IFC. For some years, Autodesk has been undergoing a

transition to an object-based architecture, and they in fact, started the work that the IAI is

now undertaking with IFC.

5.1.2 Developing the IFC specification with data modeling

This top-down method of developing the data model lends itself to an organized

structure. Within each discipline, experts take a similar approach, applying the data

modeling process to their unique design tasks.



This data modeling process starts with domain experts delineating a number of

"scenarios" which depict the design processes for their discipline [18]. Each process is then

diagrammed in general terms but with specific requirements tied to that general process.

Detail is added to the model with supporting classes that correspond to the specific

requirements of that design process. A class can represent a physical object such as a

window, or an abstract idea such as a resource for adding labor to a construction process.

An interface is a description of how a certain discipline thinks about a class. An architect

may view a "wall" class with interfaces such as space containment, sound penetration

behavior, and fire protection. Attributes are simply the information that is particular to

either the class itself, or an interface of the class. For example, a window class may have

interface attributes such as glazing, height and width. Lastly, relationships link classes

together logically or physically the way they physically exist in a building: a wall can

contain a door or a window. Relationships can exist between classes, or class interfaces.

These components are assembled to form the object oriented IFC data model, which can be

instantiated in the model of a specific building.

5.1.3 The current state of IFC specifications

The IAI is actively developing the IFC specifications, with domain committees

currently involved in data modeling. It is designed for incremental implementation, and as

such, includes a limited functionality at this time. Release 1.0 includes the Architectural,

HVAC, Facilities Management, and Cost Estimating models, which have been identified as

either critical to the overall development of the building model, or as defined early on in the

project life-cycle. They will be used as templates in the development of the other models as

the data modeling process continues.

Currently, the IFC model supports the following processes [18]. By discipline, they

are:

Architectural Design:
* Bubble diagramming for space layout
* Wall layout
* Door and window insertion into walls
* Scheduling of doors and windows



HVAC Engineering Design:
* Elimination of manual area takeoffs for HVAC load calculations
* Equipment selection and automated generation of equipment schedule sheets

Construction Management
* Quantity takeoff and cost estimation
* Construction scheduling

Facilities Management
* Equipment schedule generation
* Furniture schedule generation
* Space occupancy schedule generation

Release 1.5 will be finalized in June of 1997. It will contain several data models and

specifications upon which vendors can begin to base their products. Also included will be a

conformance certification program for application developers.

Release 2.0 is scheduled for completion in October 1997. It and Release 3.0 are

under development at this time. They will bring with them more complex processes and

behaviors. Possibly the most significant improvement is the inclusion of network

representations of structures, building systems and distribution systems (e.g. air, water, and

electrical). This will allow for computability to be built into the model. Specifications will

be included for standard behaviors, as opposed to the data- and relationship-centered

objectives of Release 1.0. Lastly, it will continue to improve the links between the shared

building model and project document management, and other external libraries and

databases, such as manufacturers' product data. In this way, it should make IFC more

immediately accessible to users, most of whom depend heavily on their document-based

design process. The access to external libraries and databases of objects which are used in

the building process will add significant value to using IFC compliant applications, since

objects will have predefined attributes making them useful across numerous applications.

Further releases will continue to develop the object definitions that make up the IFC.

In addition to increasing the library of building objects, subsequent releases will contain

more process objects, resource objects, and behaviors. Clearly, attempting to build a

universal building model, one that encompasses both product and process modeling, entails

a scope that is both huge and ever changing.



5.2 The architecture of the IFC model

As we have shown, solving the problem of modeling the building is more than just

naming the pieces and describing how they fit together. In order to make it an effective

model, it must be structured in order for all disciplines to do the work they need with the

information contained in the model. In order to accomplish this, the IFC model is, at its

heart, domain-neutral; once information has been added by specific domains (and

corresponding applications), it can be accessed as appropriate by any domain's application,

whenever that application has need for the information. To make it domain-neutral, the

elements of the model are defined separately from functional roles and systems, so that once

defined, elements can have the flexibility of being assigned multiple roles, or of being

assigned into more than one system.

The IFC has been built in a layered structure with three levels of abstraction, as

shown in Figure 5-1. Each layer contains objects that represent a certain level of abstraction,

and as such, only have meaning in relation to the same or higher levels. Inversely, each

model is composed only of objects from the same or lower levels. Note that in the figure,

the boxes outlined with solid lines indicate parts of the model defined with Release 1.0, and

the boxes with dashed lines indicate modules under development.



Figure 5-1 IFC Layered Model Architecture [19]

5.2.1 The Independent Resources Layer

This is the elemental level, comprised of basic objects that express such concepts as

meters, pounds, currency, and including geometric concepts such as surfaces, lines, and

vectors. Not beams or building stories, but lines, polylines, shells, surfaces, etc. are defined

at this level. More powerfully still, using parametric geometry, one can define different

geometric elements by extrusion, aggregation, etc. At this lowest layer, objects cannot

access information from any of the higher layers. This is the level of least abstraction; it

contains the resources used by the rest of the model. The entities within the Independent

Resources Layer are:

IFC Measure Resource, which defines the units of measure and the data types,

(either defined or enumerated), used on a project.

IFC Geometry Resource, which defines curves, points, orientation, placement,

surfaces, and the bounding box associated with each physical element.



IFC Explicit Geometry Resource, which defines explicitly defined element, site, or

space shapes and components, and allows enumerated types to represent specific geometries.

IFC Utilities Resource, which defines objects such as actors (persons,

manufacturers, etc.), costs, classifications, materials, schedules, and perhaps most

powerfully, attribute sets.

Attribute sets are worthy of further comment here. One of the problems associated

with modeling a building is limiting the number of individual classes that must be contained

within the model. There are many elements which are similar, but different enough so that if

different classes were required for each, one could build a tremendously deep hierarchy of

classes to define the inheritances and characteristics involved. In the IFC specification, one

can instead use a more general class, specialized with associated attributes. However, this

only captures unique attributes, and in order to allow for unique relationships characteristic

to that element, a new class would be required.

The most powerful use of attribute sets will be by a domain-specific application that

adds a set of unique attributes to an element. That attribute set can represent most of the

things about the element which are meaningful to that domain, from specific geometric

representations for the architects to costs for the estimator.

5.2.2 The Core Layer

What we generally think of as "the model" is contained in the Core Layer, as the

Core Object Model. It is defined without respect to domain. It is here that one finds the

elements most commonly recognized as the "objects" of a building model, i.e., the building

itself, the doors, windows, HVAC ducts, beams, slabs, etc. Also in this level are modeled

the processes of constructing as well as of designing and managing the building project. The

objects of this core model are made up of, and can only access, objects from either the core

layer or the lower Independent Resources Layer. Contained in the Core Layer are the

following five modules:

The Kernel is the root module. All objects are built into this module at their most

elemental level. Control objects, process objects, product objects, projects (the highest level

object), project objects, and resource objects.



The Product module contains elements that are physically part of the building

project. Assembled Element, beam, column, building, building complex, building object,

building story, zone, wall, window, ceiling, and so forth, are all considered products, within

the core layer. Presently, this comprises the bulk of the classes that are defined in the IFC

model.

The Process module contains elements such as work groups and work tasks, which

are general terms that can contain either aggregate or individual tasks, respectively. It is

here that the process of constructing the building, or of designing it, is captured in classes

and relationships.

The Control module contains two powerful concepts. First, there is a design grid

system, which is a tool to be used for aligning elements of the project, whatever the domain

may be. The second concept is connection, which encompasses either logical connection or

physical connection of two objects at either a point, an edge, or a face. This is a critically

important concept to any representation of a building, because it captures the designer's

intent in placing two objects adjacent to one another. It allows the all-important distinction

between being merely adjacent, or rather being two connected objects, or even one object

supporting another. Without connectivity, the model is merely a jumble of ordered or

aligned objects rather than a set of supporting and connected structures. When a design

change is made, the connectivity allows applications to reflect those changes as appropriate

in all the connected elements, automatically stretching or moving as necessary.

The Aids module is designed for future use in capturing resources that are consumed

in carrying out respective processes.

5.2.3 The Domain Extension Layer

And at the highest level of abstraction, the Domain Extension Layer, objects are

composed of those from all the lower levels, and as such, one can access information from

the entire model. Likewise, one can exclude information here, and rather than including the

entire detail of the structural joint or the HVAC piping details, one can use only the

bounding box (a simple geometric characteristic which is defined for any geometric object)

to show the space occupied and idealized shape of them.



This Domain Extension Layer is perhaps where the most powerful feature of the IFC

model is built. This layer is what allows the core model to expose just the needed

information to each using application. The unimportant information is filtered out, ordering

the information in a useful format or as a needed document. This is done, in actuality, by

building a different model for each extension module. In Release 1.0, those extension

modules are limited to Architectural Design, HVAC Engineering, and Facilities

Management; later releases will add Structural Analysis and Construction Management

modules. Each model is structured to fit the needs of the particular discipline. As one could

imagine, the Facilities Management model would be structured quite differently from the

HVAC Engineering model, although there might be similarities with the Architectural

Design Model. In any case, every model will share some information with another model,

however different the models may be. Each model accesses this identical information, or as

much as is desired, by referencing the core model, which contains the objects with the

information (contained within the attribute sets) needed to instantiate the domain extension

model.

5.2.4 Relationships

Built into the model are several key relationships which are of limited use in Release

1.0, but which allow for increased use with subsequent releases. The five types of

relationships are [19]:

* Containment represents either membership in a group or system, or actual

physical containment, as an object that is contained by another, hierarchically

speaking. For example, several stories are contained in a building, and there may

be several buildings on a given site. An example of containment as membership

in a group or system, could be a set of walls that are all members of a space

separation system associated with a suite of rooms. They could all be selected, as

members of that system, for a certain fire rating.

* Connectivity relationships have been discussed in the Control module of the

Core Layer.

* Constraint relationships are not used presently.



* Objectified relationships have been provided for the future addition of intelligent

behavior by applications.

* General relationships allow some special semantic meaning to be attached as

needed.

5.2.5 Building in extensibility

In order that developers are not hindered by the structure of the IFC specifications, it

has a certain amount of extensibility built into it. Developers may define their own

extension attribute sets to support their information exchange needs, attaching to instances

of objects, so that even when exchanged with other applications, the attributes remain with

the element. In addition, unlimited type definitions allow developers to support their own

unique operations of exchanging the information with others. Once fully documented, these

can become standard to the IFC.

5.3 Applying the IFC model

A pair of applications in the AEC industry can communicate information about a

common project by being compliant with IFC. To be interoperable, however, they must also

have compatible objectives that give them a reason to work together. In other words, IFC is

merely the mechanism by which two applications can implement objectives involving

interoperability or exchange of information. Throughout the design process, each application

can add domain-specific information, building onto (and modifying) what exists in order to

create the evolving building project model. Presently, the IFC standard as a project model is

limited to use as a file exchange standard for applications. So to implement this model-

building process, applications can only create or modify files that must then be exchanged

with interoperable applications.

The model is structured such that with subsequent releases, it can be implemented

with database oriented file servers. This way, the information can be accessed in realtime,

using model servers with Application Protocol Interface. Eventually, objects will become

interoperable in runtime as well, using distributed object technology (DCOM and Active-X

or CORBA).



Appendix A contains an example of how the IFC model classifies the information in

a building. It shows the organization using the STEP-developed EXPRESS modeling

language and format. The classes are shown along with their interfaces, attributes, and

relationships, as well as a semantic definition and the values that correspond to the various

attributes of the class. This class model classifies some of the objects possible in the

building. The nature of the model requires that every possible object be classified in the

model.



Chapter 6

A geometrically based alternative model

6.1 The geometric core

The proposed model is designed for implementation in conjunction with the new

generation of object based CAD applications. This data model uses basic geometric classes

as the foundation on which the material and other features can be added. The topological

attributes, namely connectivity, become the most important feature, allowing the

relationships to be extrapolated from the objects. This will build in the ability to compute

load flow paths. Thus it is the topological relationships between objects that make this a

powerful model. First of all, it builds in connectivity between objects, making dimensional

compatibility inherent in each object's definition; this omits some of the error-checking

which is currently part of the design process, but it is much more critical in the error-prone

process of incorporating changes. Secondly, it establishes the relationships of connectivity

between objects, which allows the computability of load flow paths.

Another alternative would be to make objects of the connectivity relationships

between the physical components of the building object. "Objectifying" these relationships

would build in an explicit definition of the attributes of the connection in and of itself. It

would more clearly define attributes such as strength, moment resisting versus shear

resisting, as well as idealizations such as roller versus pinned. In so defining connections, it

would make more consistent the object-oriented nature of the model, since the connectivity

relationship would be a class in itself. It meets the criteria for its own class, since it

represents a set of objects that share a common structure and a common behavior [5], and

represents an abstraction of the details of implementation. However, in creating this new

class, we would be breaking from the rule of using those classes available in current CAD



packages. Thus, it would require the construction of another class, and thus another class

structure, which is outside the scope of this model.

6.2 Levels of abstraction

An important element in keeping the model manageable, especially in the eyes of the

users, is establishing a clear hierarchy of abstractions. Currently, in the set of drawings

corresponding to a given building project, one will find construction details for specific

beam-column connections, and these will be categorized in a hierarchical method,

corresponding to the part of the building they occur in, the floor they are on, etc. One should

be able to look at a graphical representation of a building on the screen, or an object model

of a building, and in effect, zoom in on a specific part of the building, to view more and

more detail, until reaching the specific detail of interest. Likewise, and more practically, one

should be able to easily generate the drawings which correspond to the various levels of

detail required for contracts and for the exchange of information. In order to do that, there

has been a hierarchy of abstraction built into this model. Figure 6-1 shows the level of detail

corresponding to Level One for a typical building project's object model. At this level, there

are not a large number of objects in the model. A project may comprise a building a site and

a parking lot, for example. This list is not supposed to be exhaustive, but merely illustrative

of the objects that will be found at this level.

Figure 6-1 Level One in the abstraction hierarchy of the

object model

As with all object-based models, the relationships shown between the three lower

objects (Building, Site, and Parking Lot) and the Building Project are part of relationships,

showing that the three sub-objects are part of the project object. There are three buildings



corresponding to the building project, one site, and two parking lots. In Section 6.7 is a

discussion of the lower levels of abstraction in a typical object model.

The level of abstraction indicated in the object model corresponds to an actual

project, which has a set of objects instantiated. This should not be confused with the

hierarchy that exists in the class model. In Figure 6-2, the highest level in the class model is

shown, indicating the class of project object, which is an aggregation of building object(s), a

site object, and parking lot object(s). In this class, these three objects have an is a (or kind

of) relationship with the Project Object. The attributes of the Project Object, such as the

project name, project ID, owner, etc. belong, by inheritance, to the subclasses of the project

object as well [24]. Note the unspecified relationships between the site object and the

building object and parking lot object. This should be defined further on in the model, to

determine how they are linked, since there should be some standard for storing the

topological relationship between these classes [42]. Most probably, the site object will have

some geographic reference point, and then the other object classes will have a reference

tying them to a point with respect to the site [24].

Figure 6-2 The top of the inheritance hierarchy in the class model

6.3 Domain-based modules

Modularity is another key element in keeping the model manageable in size.

However, the modules must not be wholly independent. The model must reflect an entity

that is the entire building, and unless these modules can work together, they are no better

than the current system. However, if all the information in the building or project is in one

enormous model, it is tough to manage that model. Therefore, establishing modules is a

logical step. If these modules are based on domains, the ownership can be more clear, and



the model will lend itself to applications which can work together. Some of the modules,

then, will be the Architectural, the Structural, Mechanical (HVAC), Electrical, Estimating,

etc.

So the difficult decision is where should the modules be independent, and where

should they be linked. If the links can be ordered in a systematic way, it is better. Some of

the questions brought up in Chapter 4 become pertinent now. Specifically, how will the

information be exchanged and when? Additionally, the issue of the design model comes to

bear as well, since it is the design process that specified at what point information needs to

flow from one module to another.

Rather than trying to make the models transfer information through some structured

macro-linkage between the models in an object-based model, it makes sense to build in the

transfer of information with relationships between objects where needed. The procedure for

building the model as a whole, then, should be something like this:

1. Develop initial object model (Level One). The architect will build the geometric

framework of the model, taking it to a certain step in the design process, defining it to a

certain state. This model will be the framework upon which all other domains can build

their models. Thus the separate models will be dimensionally compatible with the

boundaries set forth in the base model.

2. Distribute Level One model to separate domains. Using a simple file transfer, the

domains will take this model and begin their preliminary designs. In order for the

structural engineer to begin design of the structural systems of the building, the architect

has only to define the basic layout of the floors and a concept of the structural grid [15].

The same model state will give the mechanical engineer the detail to design the HVAC

systems, which are dependent on the interstitial space between ceiling and floor, as well

as on the structural grid (Note that each domain should be using a simple CAD program

to do its design work). The key to making this model powerful in the structural design

domain is in the development of a structural analysis package that can query the objects

for their material properties and topological information. See the discussion on

communication in Section 6.6.



3. Reconcile separate designs. The design process will dictate at which point the domains

will come together to reconcile their designs. The only conflicts could be in concurrent

design, since the initial boundaries given should prevent the structural engineer from

placing columns in the middle of rooms, or the mechanical engineer from placing a duct

through a beam. Using current technology, the best way to reconcile the separate

designs is by bringing the files together and either developing an algorithm that checks

to see if objects have impinged on one another's geometric space, or by having a

precedence of objects which gives certain objects the power to check the other models

for geometric objects which are attempting to occupy the same space. In any case, it

should be somewhat straightforward, using the topological relationships between

objects, to find the locations in which conflicts have arisen.

6.4 Model and object state

Any representation of the building or building project cannot be simply a static

model. It must be able to represent the initial concept of the building, in its simplest form,

as well as the final construction or fabrication drawings for specific structural details.

Otherwise, it cannot be useful in showing the building not only as it is initially defined, but

also as it evolves and develops throughout its design life. By ensuring a dynamic nature,

the model can thus be a complete representation, with respect to a certain stage in the design

process. In its initial state, a building's space is bounded on all sides by walls, roof and

foundation (or relationship with the site). In this initial state, they are geometric objects

which convey the boundaries of the building, and as the model progresses, will provide

boundaries by which the structural systems, the architectural facade, the foundation, roofing

system, etc. can be defined. In addition, some elements, such as windows are first specified

as openings in the wall, and later, come with objects for the type of window as well as trim.

So objects have an initial state, which is usually a simple geometric definition, and as the

design process progresses, it gains more attributes such as a more detailed geometric

definition, and more relationships with other objects are established.

Another aspect of state is to capture the certainty of the object's attributes. For

example, in the structural domain, beams and other structural members first have a



preliminary design, based on simple heuristics, and with a high level of uncertainty. There

is no real analysis of allowable stresses, and deflections until the preliminary design is done

for most members, at which time the initial design can be made, with a much better idea of

loads, etc. than was available at first. The final design then, represents the state of objects

where dimensions and loads, as well as corresponding safety factors and performance are

not likely to change. Of course, at some point in this process is a reconciliation with

concurrent design taking place within other domains, which may result in changes. So the

design algorithm in the structural design process establishes three general states of each

object: preliminary, initial, and final. These must be captured as attributes of the object.

6.5 Graphic views

The ability to display graphic views and generate corresponding drawings is an

important part of any representation. As I established early on, the drawings of a building

are important parts of the design process, and regardless of how the representation is

implemented, one must be able to access the information in the form of standard drawings.

Whether architectural renderings, structural details, or mechanical drawings, views must be

generated by different domains, and at different times. Views will differ depending on:

* Model, or the domain which is requesting them

* State, or the stage in the design process

* Level, or the level of abstraction desired

Every object must have methods that enable it to draw itself differently as needed, dependent

on these variables. A view must be provided whether or not the design is complete, and it

must be viewable from each of the domain points of view, at either a macro- or micro-level.

The request for a graphical view at the Level One abstraction (the building object)

must first check the state, an attribute of the building object. This will shows at what stage

in the design process that object is, i.e., how much of the detail has been specified in the

model. If no details further down have been specified, the Basic View, without detail, for

the object will be shown. If details further down in the abstraction levels have been

specified, the building object must derive from that detail the object's Advanced View. This

ability to process the attributes of the objects that are a part of it maintains the hierarchy of



abstraction, i.e. hiding the details that are not important, yet providing some representation

of the ones which do have impact on that current higher level object.

The Basic View is one option of the display method common to all building objects.

It is a simplified representation of the geometry, similar to the bounding box concept in IFC,

a base representation used for generating a display when insufficient detail has been defined.

In this way, once an object is initialized, it has some graphical representation.

The Advanced View of a building object is appropriate if the object is at a more

advanced state than just having been initialized. Details about it have been specified, in the

form of attributes, as well as with those objects which in aggregate, make up that object, i.e.

have a part of relationship with it. A method of the object must be able to extract those

details that will have meaning at that higher level of abstraction. Certain details such

windows, wall texture, trim, defined at lower levels of abstraction, will have significance at

the higher levels, while bolts, or outlets may not. Some details of the aggregate objects are

irrelevant to the higher level of abstraction, while others are important to it; the method must

make the necessary distinctions in order to generate this advanced view.

6.6 Communication between objects

Objects must communicate information between one another in a number of ways. It

is important to build in a structure by which the correct information is accumulated in a

meaningful manner, so that the design process is enhanced by the representation.

Initially, information is communicated when an object is initialized. A beam, in one

likely configuration, is initialized in a given floor and falls between two columns. When so

initialized, it immediately has location in space, vertically, defined by the floor that it falls

within, and laterally, defined by the columns that it is supported by. It also has a length,

corresponding to the distance between the columns (and possibly the connection type). In

addition, the manner it is supported is part of initialization, so its topology in the structural

grid can be interpolated by the connection relationships between it and the columns. These

connection relationships can specify a simple "supported by" relationship, or more precisely,

the specific number of degrees of freedom. For simplicity, when discussing connection

relationships here, I will use the simpler of the two options. Regardless, this allows a load



path to be extrapolated from the structure, when all its objects have been specified with

corresponding connection relationships. Thus, a lot of information is communicated to an

object from other objects immediately, simply through the initialization process.

Later in the design process, the objects must be able to communicate other

information such as loading. In the preliminary design, the design heuristic will assign a

depth to a slab, allowing calculation of self-weight. This weight must then be

communicated to the beams with which the slab has a supported by relationship. The beam

must have an internal load calculating ability, which looks to the objects which have a

supported by relationship with it. It queries those objects to determine the load that they are

transferring. This query is posed to a method of the supported objects, and that method must

be able, itself, to both calculate its self-weight, and query any objects which may have a

supported by relationship with it. Continuing with the example above, the slab may have its

preliminary self-weight, a supported live load derived from the occupancy of the space

above it, and it may also support some non-structural element, a dividing wall, for example,

for which a weight can be calculated.

The algorithm for calculating weight for a building uses inverse supported by

relationships to trace the load from the current location, upward through the building.

Somewhat recursively, each object performs the same load calculation method on itself and

the objects it supports until it reaches the highest point in the building. At that point, all the

loads have been calculated, and the load path can return the calculated load down the load

path until the original call (or ultimately the foundation) is reached.

6.7 Implementing the geometrically-based model

Let us now take a look at some of the details of applying this representation. Here,

we need to first look at a part of the object diagram from the highest level. The architectural

object model is the first in the design process, and implements many of the functional

requirements of the building. The next step in the design process is to move what has been

established in the architectural object model into the other domains; in this instance, I have

used the structural domain as an example. Each of the domains has at the heart of its

representation, objects defined in geometric terms, with the connectivity added as attributes.



Next, will be an example of the object class diagram, showing the common attributes and

methods necessary for the highest abstraction of object, as well as some of the objects lower

on the hierarchy. These lower level objects have additional defining attributes, methods,

etc., as well as specific implementations of some of the attributes and methods that are

inherited. And lastly, I have shown a general algorithm for a method which uses the

topology of the representation to calculate load flow, one of the more time consuming tasks

of structural analysis. If this task could be automated, significant timesavings could be

achieved.

6.7.1 The architectural and structural domain representations

First, at the highest level, a framework is established. In our case, it is the

architectural model, the first to be developed in the design process. It has, as its core,

geometric objects make up all the objects in the representation. Figure 6-3 shows the

architectural object model, with the aggregations occurring upward from the bottom. The

support relationships are not included explicitly in this diagram, because, as seen in Chapter

3, that can introduce unnecessary confusion.

Figure 6-3 The architectural model

The structural model is extracted from the architectural model at a predefined point

in the design process. At this point, it is possible to delineate the structural grid, and realize

52



it in terms of floor slabs, supporting beams, and columns for each floor, all the way to the

foundation, as discussed in Section 6.3. At some point in the design process, the structural

model will be complete for the entire building model, albeit in a preliminary stage. Figure

6-4 shows an example of the structural object model.

Figure 6-4 The structural object model

This object model shows how the objects aggregate within the structural model, as

well as defining a few of the many variations that will necessarily be developed as the model

is defined further.

6.7.2 A specific class implementation

It is important for any representation to be easily adapted and expanded. In this

model, building objects are all defined by geometric objects, therefore a new structural

system need only be defined with the standard attributes and methods, and it will be useable

within this geometrically based representation. Here are some of the details of an

53



implementation of this representation, starting from the top in defining the attributes and

methods common to all objects. All objects in the model will fall into a general class of

Building Object, which defines certain standard attributes that all physical objects inherit.

Figure 6-5 shows the class diagram for building objects.

Architectural
Object

fire resistance
occupancy type
finish
space relation

HVAC Object
system information
volume

provide heating load

Figure 6-5 Class diagram for the Building Object class and selected sub-classes

In Figure 6-5, only the structural object class is defined in sufficient detail, since the

example will use the characteristics of this class to calculate loading of members throughout

a building, a non-trivial application of connectivity. In this example, it will first be

necessary to show the three typical structural objects containing the information inherited as

shown above. Each specific object has the attributes and methods of a structural object, but

implemented differently, depending on the characteristics of that particular object [13]. This

is an important aspect of object oriented design. For example, the column may only need

one column to support it, while the beam, implemented as simply supported, needs two, and

the rectangular slab needs four beams. Each also has methods appropriate to that structural

member, the implementations of which are encapsulated in the object definition. A stress

analysis for a column may need only a simple algorithm if it is an axially loaded short

compression member. This implementation could be a simple function within the program.

Building Object

geometric definition
state
support characteristics

graphical display

Structural Object

material properties
connection information
idealization for analysis

provide self-weight
provide loading
provide stress analysis

I



On the other hand, some analysis may require the use of an external finite element analysis

to implement the stress analysis, and this would not be shown at the object level, it would be

merely a tool that the object has to use in order to perform its method [27].

Shown in Figure 6-6 are the object instances for several structural members taken

from the example in Section 3.6, in which a structure is composed of simple slabs supported

by beams, which in turn are supported by columns. Some of the attributes, such as

geometric definition, are shown implemented here, although it might more effectively have

been encapsulated. In addition, it could easily have been done in a more concise manner,

using solid geometry or CAD standards.

' tOuommn
ID# 1-2
state: preliminary

Geometric definition:
Reference point: (0,0,0)
Cross-section: rect.

20"(x) X 10"(y)
Length: 96" (y)

Support characteristics:
column: 0-1

Material properties:
E=29e3 ksi
f=5 ksi
y=150pcf

Connection information:

Idealization for analysis:
rcncpntric nuvnl lcvaI

UVII VIILIU U~IUI LVL I

I I Enb I!1 I

Idealization for analysis:
Ssimply supported

alS( b rectan 
ular

ID# 2-1
state: preliminary

Geometric definition:
Reference point: (0,0,106)
Cross-section: rect.

205"(x) X 10"(z)
Length: 190"

Support characteristics:
beam 1: E-1
beam 2: N-2
beam 3: E-2
beam 4: N-2

Material properties:
E=29e3 ksi
f=5 ksi
y=150pcf

Connection information:

Idealization for analysis:
Simply supported
9-way labh

Figure 6-6 Class instances from structure example in Section 3

In this figure, I have shown all attributes about an object instance in the form of text

fields. This conveys a false sense that the fields are defined manually. When created, a

beam, for example, is given two objects that support it. Optimally, it could be done

graphically. In any case, this operation would provide some user interface that would allow

\-- -,----1

ID# 2-E-1
state: preliminary

Geometric definition:
Reference point: (0,0,96)
Cross-section:

10"(x) X 10"(z)
Length: 180" (y)

Support characteristics:
left column: 1-2
right column: 1-1

Material properties
E=29e3 ksi
f=5 ksi
y=150pcf

Connection information:

2-wav slab



the object to create its own length and support conditions, based on the input. Note also that

names are shown here in the support characteristics field. In actuality, this would be a

pointer to the object. In this way, it would have access to the name of the object, as well as

its dimensions, and an internal method could be implemented which would check for

changes in the location or dimensions, and perform recalculations if necessary.

So then, some fields will be derived automatically by internal methods that use tools

(like the pointer) with which to derive the information. Other fields may be drawn directly

from the fields of other object instances, or derived. This type of data must be able to be

updated when changes are made at the source. This update can be either done on a time-

basis, or on demand, but the ideal is that it is performed automatically. The ability of data to

update itself when linked in this way in an object oriented environment is called active data,

and many object oriented languages provide for it [34]. It is not always worth the additional

overhead, but it can be very useful in this application of the topological net to the building

structure.

6.7.3 Implementing a class method

Methods can be implemented in their own ways, but I will discuss here the general

scheme of one method that is important in the topological semantic net that represents the

building structure. It should demonstrate how important it is to capture the topology of

objects in the representation.

This method gives a member (object instance) the ability to calculate its loading by

using the topology of the network, and provide that load value to a querying object. Shown

in Figure 6-7 is the method "calculate loading." This method is used in the context of a

particular member object (client) having called it, and as such, it returns the value of the

load that the server object will be transferring to the client.



Figure 6-7 The method "Calculate loading" for the general
structural member

Lastly, where does this fall in the overall scheme of things? It is important to

understand that it is just a step in the design and analysis of a building structure. In the

design process, it is just one step to build the structure, adding members by defining both

their geometry and topology in the system as a whole. After that point, it is possible to

perform the loading analysis. Then, objects will have sufficient information to calculate

their stress values, leading to the initial sizing of the members. This is just another method

that can be implemented in a manner similar to that shown in Figure 6-7.



Chapter 7

Conclusions

I have established that there is indeed a need for a new knowledge representation for

constructed facilities. The problem then, is to agree on the approach, and start implementing

it in a manner that can provide immediate benefit to the user, the construction industry

professional. Immediate benefit can be recognized if the new representation can capture a

significant part of the day-to-day work that is done on a building project, build in an

information transfer process between domains, and take over some of the more tedious of

the tasks involved in the building project.

The object of using the topological semantic net, and implementing it in the form of

object oriented modeling was to show that the structure of the representation can be used to

assist the data representation in being more useful. The topology of a representation was

seen to be one of the most useful aspects, especially within the structural domain. If it can

be exploited, then a significant amount of manual work could be eliminated from the design

process. This manual work is the most error-prone part of the process, so automating it

should demonstrate a significant value added to implementing such a representation. In

addition, the path is paved to future applications that can add significant value to the use of

computers. With network representations, not only load paths, but also logical relationships

can be derived, in order to extrapolate construction sequences, leading to construction

simulation. In addition, this will make optimizing designs much more feasible, decreasing

the high turnover time in the design process that presently prevents alternative designs from

being explored.

The next step in this process is to develop a software application using a

programming language such as C++, which works well with the object based AutoCAD

Release 13. In this way, one could apply the simple model as developed here to test its

ability to successfully calculate loading. From that point, its applicability to the broader

problem of interoperability within the AEC community could be assessed more fully.



Appendix A

The IFC model

Figure A-1 The IFC Core Class Model

Class Name
In terface Grouping

Attribute or Definition DataType or Related Min Max Default Units
Relation name Object

19 IfcB uilding The information relating to the building

I_Building
ContainsStoreys Set of Relationships to Set [O:n] 0O N empty seti n/a

building storeys included in Ref [IfcBuildingStorey]
this building

ContainsZones Set of Relationships to Set [O:n] Ref [IfcZone] 0 N empty set n/a
building zones included in
this building

ContainsElements Set of relationships to Set [0:N] 0 N empty set n/a
contained IfcElements Ref flfcElement]

ServicedBySystem Set of objectified Set [O:N] 0 N empty set n/a
relationships Ref [IfcRelBIdgService]
(IfcRelBIdgService) to
IfcSystems which service
this buildinq

I_,-ldgGeom
PlacementRelSite Oriented Vertex, relative to lIfcOrientedVertex see type: see type < 0,0,0 > see type

the site
BldgPartPaths List of Reference paths List[1:n] IlfcPolyCurve see type: see type Z-Axis: see type

relative to LCS



tion

Figure A-2 The IFC Core Object Model



Bibliography

[1] Abdalla, J.A. An Object-Oriented Architecture and Concept for an Integrated
Structural Engineering System, Artificial Intelligence and Structural Engineering,
B.H.V. Topping, ed., pp. 147-155, Edinburgh, Scotland: Civil-Comp Press, 1991.

[2] Abdalla, J.A., D.H.D. Phan & H.C. Howard, Form, Function and Behavior in
Structural Engineering Knowledge Representation, Artificial Intelligence and
Structural Engineering, B.H.V. Topping, ed., pp. 1-9, Edinburgh, Scotland: Civil-
Comp Press, 1991.

[3] Bakkeren, Wim & Frits P. Tolman, Integrating structural synthesis and evaluation
using product models, Computing in Civil and Building Engineering, Pahl & Werner
(eds.), pp. 291-298, Rotterdam: A.A. Balkema, 1995.

[4] Black, W.J. Intelligent Knowledge Based Systems, Chapter 3, The Thetford Press
Ltd., Norfolk: 1986.

115] Booch, Grady. Object-oriented Design with Applications, Redwood City, Calif.:
Benjamin/Cummings, 1991.

[6] Bretschneider, D. & Hartmann, D. Representing concurrency in the design process
by means of object diagrams, Computing in Civil and Building Engineering, Pahl &
Werner (eds), pp. 81-88, Rotterdam: A.A. Balkema, 1995.

[7] Chiu, Mao-Lin, OODBA: Object-oriented database for building applications,
Computing in Civil and Building Engineering, Pahl & Werner (eds.), pp. 331-336,
Rotterdam: A.A. Balkema, 1995.

[8] Damrath, Rudolf, & Andreas Laabs, Editing methods for physical visualization,
Computing in Civil and Building Engineering, Pahl & Werner (eds.), pp. 155-162,
Rotterdam: A.A. Balkema, 1995.

[9] Dharwadkar, Parmanand V., and Alton B. Cleveland, Jr. Knowledge-Based
Parametric Design Using Jspace, Computing in Civil Engineering, Proceedings of
the Third Congress held in conjunction with A/E/C Systems '96, Vanegas &
Chinowsky (eds.), pp. 70-76, New York: ASCE, 1996.

[10] El-Bibany, Hossam, Domain Modeling in Generic Parametric Architectures: Issues
in Concurrent Representation and Inference, Computing in Civil Engineering,
Proceedings of the Third Congress held in conjunction with A/E/C Systems '96,
Vanegas & Chinowsky (eds.), pp. 522-528, New York: ASCE, 1996.

[11] Enseleit, Jorg, Detlev Bitzer & Peter Jan Pahl, Experiences in using STEP for
distributed structural analysis, Computing in Civil and Building Engineering, Pahl &
Werner (eds.), pp. 337-342, Rotterdam: A.A. Balkema, 1995.



[12] Fenves, S.J. Successes and further challenges in computer-aided structural
engineering, Computing in Civil and Building Engineering, Pahl & Werner (eds), pp.
13-20, Rotterdam: A.A. Balkema, 1995.

[13] Fischer, M. Reasoning about Constructibility: Representing Construction
Knowledge and Project Data, Artificial Intelligence and Structural Engineering,
B.H.V. Topping, ed., pp. 105-112, Edinburgh, Scotland: Civil-Comp Press, 1991.

[14] Froese, Thomas, STEP and the Building Construction Core Model, Computing in
Civil Engineering, Proceedings of the Third Congress held in conjunction with
A/E/C Systems '96, Vanegas & Chinowsky (eds.), pp. 445-451, New York: ASCE,
1996.

[15] Fruchter, R., et al, Interdisciplinary Communication Medium for Collaborative
Design, Knowledge Based Systems for Civil and Structural Engineering, B.H.V.
Topping, ed., pp. 7-16, Edinburgh, Scotland: Civil-Comp Press, 1993.

[16] Hannus, Matti, Kari Karstila & Karl-Johan Seren, Generic product data model for
product data exchange - Requirements, model and implementation, Computing in
Civil and Building Engineering, Pahl & Werner (eds.), pp. 283-290, Rotterdam:
A.A. Balkema, 1995.

[117] Heck, P. & Wassermann, K. Object-oriented CAD-model for building design,
Computing in Civil and Building Engineering, Pahl & Werner (eds.), pp. 89-95,
Rotterdam: A.A. Balkema, 1995.

[18] Industry Alliance for Interoperability, Specifications Volume I: AEC Processes
Supported by IFC, IFC Release 1.0, 1996.

[19] Industry Alliance for Interoperability, Specifications Volume II. IFC Object Model
for AEC Projects, IFC Release 1.0, 1996.

[120] Industry Alliance for Interoperability, Specifications Volume III. IFC Model
Exchange, IFC Release 1.0, 1996.

[21] Industry Alliance for Interoperability, Specifications Volume IV: IFC Model
Software Interfaces, IFC Release 1.0, 1996

[22] Junge, R., T. Liebich & E. Ammermann, Product modelling for communication:
The COMBI approach, Computing in Civil and Building Engineering, Pahl &
Werner (eds.), pp. 317-322, Rotterdam: A.A. Balkema, 1995.

[23] Khedro, Taha, Charles Eastman, Richard Junge & Thomas Liebich, Translation
Methods for Integrated Building Engineering, Computing in Civil Engineering,
Proceedings of the Third Congress held in conjunction with A/E/C Systems '96,
Vanegas & Chinowsky (eds.), pp. 579-585, New York: ASCE, 1996.

[24] Kiwan, M.S. & A.K. Munns, Integration of Building Design and Construction Data:
An Object Oriented Model, Knowledge Based Systems for Civil and Structural



Engineering, B.H.V. Topping, ed., pp. 57-66, Edinburgh, Scotland: Civil-Comp
Press, 1993.

[25] Lee, Seung-Chang & Byung-Hai Lee, Developing an engineering database for an
integrated structural system, Computing in Civil and Building Engineering, Pahl &
Werner (eds.), pp. 379-384, Rotterdam: A.A. Balkema, 1995.

[26] Lehmann, Fritz, Semantic Networks, Semantic Networks in Artificial Intelligence,
Fritz Lehmann, ed., pp. 1-50, Pergamon Press, Oxford: 1992.

[27] Mackie, R.I. Object-oriented methods - Finite element programming and
engineering software design, Computing in Civil and Building Engineering, Pahl &
Werner (eds.), pp. 133-138, Rotterdam: A.A. Balkema, 1995.

[28] MacLeod, I.A. Representation Issues for Civil Engineering Design, Knowledge
Based Systems for Civil and Structural Engineering, B.H.V. Topping, ed., pp. 1-3,
Edinburgh, Scotland: Civil-Comp Press, 1993.

[29] McKinney, Kathleen, Jennifer Kim, Martin Fischer & Craig Howard, Interactive 4D-
CAD, Computing in Civil Engineering, Proceedings of the Third Congress held in
conjunction with A/E/C Systems '96, Vanegas & Chinowsky (eds.), pp. 383-389,
New York: ASCE, 1996.

[30] Meissner, Udo, Frank Peters, & Uwe Riippel. Graphically interactive, object-oriented
product modeling of structures, Computing in Civil and Building Engineering, Pahl
& Werner (eds.), pp. 113-117, Rotterdam: A.A. Balkema, 1995.

[31] Paulson, B.C., Jr. Computer-aided project planning and management, Computing in
Civil and Building Engineering, Pahl & Werner (eds), pp. 31-38, Rotterdam: A.A.
Balkema, 1995.

[132] Ranglack, Dirk, A meta-object based model view controller: Architecture for the
modeling of buildings, Computing in Civil and Building Engineering, Pahl &
Werner (eds.), pp. 371-377, Rotterdam: A.A. Balkema, 1995.

[33] Rucker, Rob & Tariq A. Aldowaisan, A Design Approach for Constructing
Engineering Scenario Maps, Semantic Networks in Artificial Intelligence, Fritz
Lehmann, ed., pp. 419-440, Pergamon Press, Oxford: 1992.

[34] Rumbaugh, James, et al. Object-Oriented Modeling and Design, Englewood Cliffs,
New Jersey: Prentice Hall, 1991.

[35] Salvaneschi, Paolo &Paolo Gambirasi, Information systems for civil engineering:
Integration through object oriented technology, Computing in Civil and Building
Engineering, Pahl & Werner (eds.), pp. 365-369, Rotterdam: A.A. Balkema, 1995.

[36] SCRA, STEP on a Page, http://www.scra.org/uspro/stds/stepage.html, 1997.

[37] Shastri, Lokendra, Structured Connectionist Models of Semantic Networks,
Semantic Networks in Artificial Intelligence, Fritz Lehmann, ed., pp. 293-328,
Pergamon Press, Oxford: 1992.



[38] Teicholz, Paul & James A. Arnold, Data Exchange: File Transfer, Transaction
Processing and Application Interoperability, Computing in Civil Engineering,
Proceedings of the Third Congress held in conjunction with A/E/C Systems '96,
Vanegas & Chinowsky (eds.), pp. 438-444, New York: ASCE, 1996.

[39] Thompson, E.T., J.H.M. Tah & R. Howes, A Hybrid Approach To Integration In
Construction, Computing in Civil Engineering, Proceedings of the Third Congress
held in conjunction with A/E/C Systems '96, Vanegas & Chinowsky (eds.), pp. 417-
423, New York: ASCE, 1996.

[40] Toms, Pat, How can a model represent a building for a computer specification
processor?, Computing in Civil and Building Engineering, Pahl & Werner (eds.), pp.
323-330, Rotterdam: A.A. Balkema, 1995.

[41] Tzanev, Dimiter, Integration of product and process models in the object-oriented
CAD-systems, Computing in Civil and Building Engineering, Pahl & Werner (eds.),
pp. 353-358, Rotterdam: A.A. Balkema, 1995.

[42] Werner, H., M. Mackert, & M. Stark. Object oriented models and tools in tunnel
design and analysis, Computing in Civil and Building Engineering, Pahl & Werner
(eds.), pp. 107-112, Rotterdam: A.A. Balkema, 1995.

[43] Winston, Patrick H. Artificial Intelligence, Chapter 2, Addison-Wesley, 3rd Edition,
Reading, Massachusetts: 1992.


