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ABSTRACT

In order to carry a load, a multi recess hydrostatic bearing supplied with a single pressure
source requires compensation devices. These devices are also known as restrictors and
they allow the recess pressures to differ from each other. These devices, when properly
selected and tuned, can deliver excellent bearing performance. However, these devices
add to the complexity of the bearing and they are sensitive to manufacturing errors. These
devices must often be tuned specifically for each bearing and are therefore expensive to
install and maintain.

Self-regulating or self-compensating bearings do not need any external devices to achieve
load-carrying capability and they do not add to the total degrees of freedom of the system.
However, in many cases the proposed designs require multiple precision manufacturing
steps such as EDM and grinding in addition to precision shrink fit.

In this work a self-compensating design, which eliminates all but one precision-manufac-
turing step, was manufactured and tested. Novel manufacturing methods for different sizes
were introduced. The test results were compared with theoretical results and satisfactory
agreement was achieved. The bearing sensitivity to manufacturing errors was analyzed
computationally using statistical methods. These results were used to show that the intro-
duced manufacturing methods are more cost effective than the applicable precision or
semi precision manufacturing methods even when the performance variation is taken into
account.

When hydrostatic journal bearing is rotated hydrodynamic effects are introduced. Often,
these effects are ignored by assuming them to be insignificant. Two non-dimensional
parameters were derived to estimate the significance of the hydrodynamic effects and lim-
its to these parameters were searched numerically. Design theory, along with first order
equations to estimate bearing performance was developed.

Thesis Supervisor:
Professor Alexander H. Slocum
Department of Mechanical Engineering
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Chapter 1

INTRODUCTION

This chapter includes an introduction to this thesis. It is also intended to serve as an short

introduction to bearing technology in general and specifically to non-contact fluid film

bearings.

1.1 Scope of the Thesis

The purpose of this research is to create a fundamental new machine element: a modular

hydrostatic bushing. In this research, a design theory for conformable surface self-com-

pensating hydrostatic bushing bearings is be developed and then be to design and manu-

facture surface self-compensating hydrostatic bushing bearings. The design is divided into

three distinct sections: low-speed design, high-speed design and conformability. Two dif-

ferent designs and sizes are manufactured and tested and compared to calculated values.

Analytical, lumped parameter and finite difference approaches are used to model the bear-

ing behavior. The validity of different models are discussed. Different manufacturing

methods are compared by means of statistical model which models the effect of manufac-

turing errors on the bearing performance. A cost-function approach [Taguchi, 1989] is

used to derive a single measure which is then used to compare the different methods. Dif-

ferent applications such as a very small machine tool, high speed milling spindle and lin-

ear-rotary axis are discussed.
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This thesis will attempt to make the following fundamental contributions:

-Incorporate surface self-compensation technology into a bushing bearing

Surface self-compensating bearings offer great advantages over traditional hydrostatic

bearings. They utilize surface geometry for metering the fluid flow (compensation), col-

lecting the fluid and channeling the fluid to the opposite side of the bearing to a pocket

region. This design does not use capillaries or diaphragms to achieve load compensation.

Everything needed is included in the surface geometry of the bearing. This research will

incorporate this technology into a cast or molded bushing bearing to create a versatile and

robust hydrostatic bearing. [Slocum, 1992,Wasson, 1996].

-Find economically viable manufacturing methods for the bearing

Manufacturing the bushings is by no means a trivial task because of the fluid circuitry

required by the self-compensation.

- Model the bearing performance in the presence of manufacturing and other errors

Different manufacturing methods have different natural variations associated with the

accuracy they can produce. These manufacturing errors can be best described in statistical

terms because of their inherent randomness. Monte-Carlo and cost function approach is

used to derive a single numeric value which can be used to determine the total expected

cost of the bearing. By using this measure to perform the comparison between different

manufacturing methods, the comparison becomes more analytic.

- Design adjustable-gap hydrostatic bushing bearing

Self-compensation allows the bearing gap to be changed without changing the designed

properties of the bearing. The possibility to adjust the bearing gap is attractive because it

allows the adjusting of the flow rate and pumping power and also introduces a possibility

to use larger manufacturing tolerances.
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Complement the design theory of surface self-compensated bushings by studying the

effect of hydrostatics on journal bearing stability.

Hydrostatic bearing stability is investigated using computational methods at high speed.

The possibility to use hydrostatics to enhance the stability of a journal bearing is

researched. Different high speed designs are proposed. The shape of the bushing surface

can also be designed to enhance the stability [Frene, 1990]. The possibility to conform the

bushing to enhance stability will be discussed.

1.2 Background

This section discusses shortly different types of bearings and their applications. First a

very general look into bearing technology is taken and then a little more detailed look is

taken into fluid film bearings in general and more specific introduction to hydrostatic

bearing follows.

1.2.1 Bearing Technology

Bearings are among the most important mechanical machine elements. Their main func-

tion is to guide motion and carry load. Other requirements are be speed-, acceleration-,

range of motion, stiffness, damping, accuracy, friction, thermal requirements, environ-

mental requirements, size, life time and cost. As broad as are the requirements is the selec-

tion from which a designer can select a device to fulfill them. Bearings can be categorized

in many ways, the broadest maybe being the division into contact and non-contact bear-

ings. Contact bearings can be further divided into sliding contact, rolling element and flex-

ural bearings. Non-contact bearings include hydrostatic, hydrodynamic, aerostatic and

magnetic bearings. All of the above mentioned general types include multiple sub-types or

variations. Already it is obvious that the selection is enormous and very specific set of

requirements must be formed to end up with an optimum type for a certain application.

Comparison in general terms is not possible or fair, since the performance characteristics

are so varied. The requirements of the specific application determines the weight of the
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different desired qualities and only then the best possible solution for those weights can be

found. For example, in machine tool spindles rolling element-, hydrodynamic-, air-, mag-

netic- and hydrostatic bearings are used. This example proves that even for fairly specific

application, machine tool spindle, the choice is far from obvious. In this thesis some com-

parisons are made and it must be noted that comparison always refers to a certain subset of

requirements and should not be generalized.

Next a bit more detailed look is taken into two types of non-contact bearings, namely the

hydrodynamic and hydrostatic bearings.

1.2.2 Hydrodynamic Bearings

Hydrodynamic bearings form their load carrying capacity by the pressure rise in a con-

verging oil film. This requires relative motion between the surfaces and the surfaces not

being parallel. The reason why hydrodynamic bearings are introduced in this thesis is that

the hydrodynamic effect also exists in hydrostatic bearings with varying magnitude and

importance. Chapter 4 formulates analytical solutions to the hydrodynamic bearing to

demonstrate and approximate its effect on hydrostatic bearing performance.

Hydrodynamic bearings are used as both thrust and journal bearings and in combination.

There exists many variations and shapes such as partial arc, full arc, lobed, herring bone

and tilting pad hydrodynamic bearings. Different geometrical features or pressurized oil

supply can be implemented to make sure load carrying oil film exists everywhere.

Hydrodynamic bearings have many desirable properties. They are self-acting and do not

need external sources to operate, they have long life when used properly, they are robust,

have high stiffness, damping and load capacity. In some cases they have undesirable prop-

erties such as the relative motion required between the surfaces (stop and go applications),

instability at high speeds (half frequency whirl), relatively large eccentricities required to

achieve load capacity, high viscous drag at high speeds and high temperature rise due to

that. Many of these features can be diminished or eliminated by using certain designs, for
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example tilting pad bearings are stable (against whirl) at all operating speeds. Naturally

there are trade offs between different desired properties and implemented design features.

To learn more about hydrodynamic bearings the reader is referred to Chapter 4 or [Frene,

1990].

1.2.3 Hydrostatic Bearings

Hydrostatic bearings are non-contact bearings which use an external pressure source

(pump) to create the load carrying capacity. They form the separating lubricant film as

soon as the pump is turned on and therefore do not require relative motion between the

separated surfaces. Hydrostatic bearings are characterized by infinite life (without cata-

strophic event), low friction (laminar speeds), zero static friction (no stick slip), high load

capacity, stiffness and damping. Also the thermal characteristics are controllable to a cer-

tain degree by adjustment of flow rate and lubricant type. The main disadvantage com-

pared to most other type bearings is the complicated (expensive) lubricant supply system.

Also, at high speeds, the viscous drag can become relatively high.

Typical Applications of Hydrostatic Bearings

Typical applications for hydrostatic bearings are [Bassani, 1992, Slocum, 1992]

- Telescopes, radio telescopes, large radar antennas. For example the Mount
Palomar telescope where hydrostatic bearings support 500 ton mass that
makes a one revolution in a day

- Air preheaters for boilers in power plants

- Rotating mills for ores or slags

- Stamping presses

- Machine tool slides and spindles

- Hydrostatic steady rests for large lathes

" Vibration attenuators for measuring instruments

0 Dynamometers
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Principle of Operation

Figure 1.1 shows the operation of a simple hydrostatic bearing. As a pump is turned on,

the pressure in the recess increases until lifting pressure is reached and oil film separates

the members. Different loads W lead to different pressures in the recess and different film

thicknesses h. In order for the bearing to sustain load in the reverse direction another pad

W

tQ =0
Pump tur

W

Q >0

Pr

W W

Q=0 Q=0
ned on

Pr Pr

W+dW

Q>0 h

Pr

W-dW

Q>Q

Pr

Figure 1.1 Simple hydrostatic bearing. Principle of operation and pressure diagrams

must be added on top as shown in Figure 1.2. Now the bearing is preloaded, since even for

zero load the recess pressures are greater than zero. Now as load is applied the pressure

increases on the opposite side of the load and equilibrium is achieved. When two or more

recesses are used all the recesses must be supplied with their own pressure source, other-

wise the recess pressures will always be equal and the bearing is unable to carry any load.

This is, in most cases, inconvenient and expensive. Alternatively single pressure source

(pump) can be used if each recess is fed through adequate compensating device, which

usually is called flow restrictor. The simplest way to demonstrate the need for the compen-
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Figure 1.2 Hydrostatic double- or opposed pad bearing and pressure diagrams.

sating device is to use a electrical network analogy. The bearing system can be though of

as a simple voltage divider as seen in Figure 1.3.

Flow Restrictor Ru Rv R
Recess -- P-l-d

Bearing land

RuPFR L PL R"

PP

RL

Figure 1.3 Hydrostatic bearing electric circuit analogy

The flow resistances are the pressure difference over that particular part of the bearing

divided by the corresponding flow rate. These values can be, in most cases, calculated

from fully developed, one dimensional Navier-Stokes equations. The derivation of formu-

las for these resistances is described in detail in Chapter 3. Here they are treated as given

quantities in illustrative purposes. The recess pressures become
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. R
P =P (1.1p S R+ Ri

r p

where the subscript r refers to restrictor, p to recess (pocket) and the superscript i either to

upper or lower recess. The pressure difference and therefore the load carrying force

between the upper and lower recess becomes

SR I R"U
AP = PS R R P (1.2)

R, + R, R, + Ru(r p r

It is obvious from Equation 1.2 that if the restrictor resistance becomes zero the pressure

difference becomes zero also and the bearing is unable to carry any load; thus each bearing

recess need is own compensating device or restrictor.

Compensating Devices

Compensating devices can be divided into fixed and variable resistance devices. Constant

resistance devices include flat edge pins and capillary tubes. Flat edge pins are devices

where a standard round pin is ground to have one flat surface. When this device is pressed

into a hole it creates small enough opening to create necessary resistance to the flow. Both

of these devices operate in the laminar flow regime and therefore the opening is small

compared to the length of the device. The resistance is a function of the device geometry

only and is independent of the bearing geometry or supply pressure. The bearing perfor-

mance is very sensitive to the dimensions of these devices and therefore they must be

manufactured with great care. Capillary tubes are difficult to manufacture accurately

enough and therefore the resistance must be adjusted by adjusting the length of the capil-

lary tubes. This can be done in a separate test rig or preferably in the actual bearing itself

by measuring the bearing pocket pressures and adjusting the capillaries to achieve desired

recess pressure [Slocum, 1992]. This can be a tedious process and makes the bearing rela-

tively expensive. Also with these devices the careful filtering of the fluid is necessary due
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to the small openings. If one of the capillaries or pins is clogged this will severely impact

the bearing performance and in most cases lead to complete failure.

Another compensating device is the orifice restrictor. An orifice is a hole with a sharp

edge with a diameter to length ratio that is much larger than in a case of a capillary. The

flow resistance is based on the turbulence introduced by the restrictor. In this case the

resistance is no longer independent of the recess pressure. The flow rate of these devices

changes as a square root of the pressure difference across it. The use of orifices instead of

laminar fixed resistance compensating devices yields better stiffness performance but the

fluid temperature control becomes more important. This is due to the fact that the recess

resistance is a function of the viscosity, but the orifice resistance is not. Therefore if the

viscosity varies from the design value so does the load capacity. In fact, if the lubricant

temperature is not controlled, but is allowed to grow, will eventually lead to bearing fail-

ure. As the temperature increases the load capacity becomes lower causing the film thick-

ness to decrease which introduces more friction, which in turn increases the temperature

again. Also the analysis becomes more complicated since the orifice resistance is a func-

tion of recess pressure. Turbulence introduced by the orifices also introduces noise and

can lead to erosion. [Slocum, 1992, Kurtin, 1993, Bassani, 1992]

Another class of compensating devices are the variable resistance restrictors. With these

devices very high stiffness can be obtained, even infinite for a certain load ranges, if prop-

erly designed. All of these devices are based on the same principle, which is to increase

the flow into the recess where the pressure is increasing therefore increasing the pressure

faster and creating equilibrium conditions with less displacement. This results in a higher

stiffness. These devices include elastic restrictors, spool-controlled restrictors, dia-

phragms, constant flow valves, infinite stiffness valves and electronic compensators.

An elastic capillary is a capillary tube that is able expand as the recess pressure increases

i.e. capillary made out of low modulus material such as rubber. Another type of elastic

restrictor is a ring type restrictor which expands to allow higher flow into pocket where
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the pressure is higher. An example of this type of restrictor is described in [Miyasaki,

1974]

Two different variations of a spool valve are shown in Figure 1.4. Device consists of spool

which is balanced by a spring and recess pressure. The resistance depends on the length x.

As the recess pressure varies the length x varies thus changing the resistance. By making

the piston or the spool tapered the change in resistance as x is varies can be made larger

thus enhancing the performance.

PS PS

xx

yPp Pp

Figure 1.4 Spool valve compensators

A diaphragm restrictor is shown in Figure 1.5. The fluid flow is restricted by means of

elastic diaphragm. The preload can be adjusted by means of adjustable spring. In this case

the device can be tuned in such way that the flow rate becomes almost proportional to

recess pressure. This bearing will work as a infinite stiffness bearing for a certain range of

load conditions. Part b) in Figure 1.5 shows a diaphragm used as a flow divider. Flow

dividers can be used when fluid is supplied for two opposing pads. Also spool valves can

be used as flow dividers.

T!!M
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a) b)

Figure 1.5 a) Diaphragm restrictor b) Diaphragm as a flow divider

Constant flow valves are devices that are able to produce a constant flow. Spool valves in

Figure 1.4 can deliver constant flow if properly tuned. To enhance the performance a ref-

erence restrictor, such as orifice, can be added downstream. Bearings with constant flow

devices are prone to pressure saturation i.e., they do not work if the difference between the

recess pressure and the supply pressure becomes too small.

All above mentioned devices operate by means of the recess pressure. This could also be

done by means of servo-controlled valves. A displacement probe would measure the dis-

placement of the bearing and a control system would operate the valves accordingly. This

system would greatly add to the complexity of the system and has the potential to become

unstable unless careful modeling and design is performed.

All of the variable resistance compensating devices add to the complexity of the system

and add to the degrees of freedom in the system. All external restrictor devices must be

tuned to a certain bearing geometry and are sensitive to manufacturing errors. Many of

them also have very small opening which can cause clogging problems unless the fluid is

filtered carefully. Hydrostatic bearings which eliminate totally or partially these problems

are inherently compensated bearings and self-compensated bearings. More thorough dis-

cussion of the typical problems encountered with the external restrictor bearings can be

found in Chapter 5.
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Inherently compensated bearings are based on principle that the pressure variation in a

recess due to load is due to a particular recess shape or the presence of an elastic element,

such as a layer of elastomer or a flexible plate. The recess shape utilized is either shallow

recess or tapered recess. If the recess depth is initially of the same order as the clearance,

the pressure drop in the recess is no longer insignificant. As the load is applied and the

clearance reduced the recess clearance becomes less significant and more of the pressure

drop happens across the lands thus increasing the load. Figure 1.6 shows the schematic

operation of a shallow recess bearing. These bearings are very difficult to manufacture

because of the difficulty of making a very shallow recess. In order to overcome this manu-

facturing problem, bearings made out of elastomers have been proposed [Dowson, 1967].

This bearing consists of an elastomer layer attached to a rigid frame. Since pressure is

higher in the middle of the pad and varies toward the edge the elastic material forms a

recess. Also some inherent compensating bearings have been proposed that simple inte-

grate either diaphragm or spool valve type behavior into the bearing structure itself [Brz-

eski, 1979, Tully, 1977].

W W +dW

Pr Pr

Figure 1.6 Shallow recess hydrostatic bearing

Also reference bearings can be used to adjust the restrictor resistance into a main load car-

rying bearing. Simplified form of this idea lead us to self-compensated or surface self-
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compensated bearings. In these bearings the bearing clearance is used to provide the com-

pensation. This type of bearing is discussed in more detail in Chapter 2.
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Chapter 2

SURFACE SELF-COMPENSATION

In this chapter the basic principle of surface self-compensation is explained and several

proposed designs are shown.

2.1 Surface Self-Compensating Hydrostatic Bearings

The idea of surface self-compensation is very simple. In most general form the bearing is

surface self-compensating if the bearing surface itself is used to provide the necessary

hydraulic resistance. By this definition the shallow recess bearings in the last section could

be included, but this section is about slightly different designs.

In surface self-compensating bearings, the fluid is first supplied to a compensation pocket

and after it flows over compensation pocket lands it is collected and supplied to the oppo-

site side of the bearing into load bearing pocket from where it again flows over lands into

atmosphere. The first pocket acts as a compensator, where resistance is not fixed but

changes as the supported structure is displaced. Figure 2.1 illustrates the principle of oper-

ation.
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Fluid paths .- ..

R.. . . . . ..

pad

Load bearing pad 
Baigri

Figure 2.1 Surface self-compensating linear bearing [Slocum, 1992].

The compensator resistance is not constant in this case but varies favorably to enhance the

bearing operation. If the supported structure in Figure 2.1 is displaced downwards, the

clearance on the upper side increases, causing more fluid to flow trough upper compensa-

tion pocket (hydraulic resistance decreases). At the same time the clearance on the oppo-

site side decreases causing the hydraulic resistance out of the pocket to increase. The

opposite will happen to the other compensator-load recess pair. This will cause the pres-

sure difference to increase more rapidly, resulting in greater stiffness. The major advan-

tage of this type of compensation is the avoidance of matching the restrictor resistances to

pocket resistances (they are a function of the same dimension) and the decreased risk of

clogging. The clogging risk is decreased because no very small area openings (capillaries)

are eliminated. This idea of cross feeding was first introduced in patents by [Hoffer 1948;

Gerard 1950 Geary, 1962]. The principle of surface self-compensation is best illustrated

by Equation 1.2. When the supported structure is given a displacement 6 Equation 1.2 for

self-compensated bearings becomes

tY :zxZ
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AP = P- (2.1)

s (h -8)3 + (h + 8)3

(h + S)3 (h - 6)3

where ( is the initial resistance ratio of the compensator and the pocket. The load capacity

is the product of AP and the effective are of the bearing pads. The stiffness is obtained by

differentiating Equation 2.1 with respect to 6. The stiffness becomes

K = A P) = PAfI 1 2 3(h+ -) +3 } + ... (2.2)

-(h+ 8)3

1 3 (h + 8)2 + (h + 6) 3

[(h + )3 + 2 (h - )3 (h - 8)4

(h - 8)3

For a fixed laminar restrictor, the pressure difference and the stiffness become

Apfixed s (h - 6)3 ~ (h + 6)3 (2.3)
(+1 (h +31

Kfixed = PsAef{ h 3  (h - 8)2 + 3 2 (h + 8)2 (2.4)

[h3 +Qh +]

Figure 2.2 shows the load capacity and stiffness as a function of eccentricity 6/h, normal-

ized by the load capacity and the stiffness of a laminar fixed restrictor bearing. The dotted

line represents the normalized quantities with C = 1 and the solid line I = 1 for fixed

restrictor and ( = 4 for self-compensating bearing.
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Figure 2.2 Normalized load capacity and stiffness of self-compensating bearing. Normalized by fixed
restrictor bearing.

It is clear that the load capacity of a self-compensating bearing is always higher than with

a fixed restrictor. The initial stiffness of a self-compensating bearing is twice that of fixed

restrictor bearing. As the eccentricity becomes larger the stiffness of a self-compensating

bearing drops off more rapidly than that of the fixed restrictor and at higher eccentricities

becomes less than that of fixed restrictor. This can be partly effected by adjusting the ini-

tial resistance ratio. This has no significant effect in practice because hydrostatic bearings

are designed to operate at small eccentricities most of the time. However, this should be

taken into account when the bearing is designed. This analysis was for a ideal opposed pad

bearing. More detailed look into how a general bearing can be analyzed is presented in

Chapter 3.

This self-compensating technology can also be applied to hydrostatic journal bearings.

Figure 2.3 shows a cross sectional and developed view of a three pocket surface self-com-

pensating journal bearing [Geary, 1962].
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Load
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Figure 2.3 Cross sectional and developed view of surface self-compensating journal bearing

Another version of the bearing in Figure 2.3 is shown in Figure 2.4 [Stansfield, 1970] It is

advantageous to minimize the size of the compensating pockets and maximize load carry-

ing pockets. The design of Figure 2.4 is more difficult to design and analyze due to the

arrangement of the supply and collecting pockets. The middle section of compensating

pocket is at supply pressure and the collecting groove surrounding it is dependent on the

eccentricity (location of the shaft). The pressure at the collecting groove then determines

the leakage flow out into the drainage grooves. A more deterministic bearing is one where

the pressure source surrounds the collecting groove [Slocum 2, 1992]. In this case the

outer groove is always at supply pressure and the leakage flow is easier to determine. The

journal bearing version of this is shown in Figure 2.5 [Slocum, 1994]. .

Load
Pocket Supply

-tL-
Drain Compensating

Groove Pocket

Figure 2.4 Developed view of surface self-compensating bearing
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Figure 2.5 Surface self-compensating journal bearing with deterministic compensators [Slocum, 1994]

In this version the compensator pocket is removed to the side from the load carrying pock-

ets. This is advantageous since the diameter of the bearing is, in most cases, more critical

than the length of the bearing.

In [Wasson, 1997, Wasson, 1996] surface self-compensating bearings were introduced that

had all the necessary geometry integrated into the shaft. This offers few advantages over

the previous designs with geometry in the bushings. First, it makes the precision shrink fit

unnecessary and second it can make the manufacturing slightly easier and more cost effi-

cient because standard milling tools can be used. Also, in case of cluster spindles, it allows

the shafts to be placed closer together by eliminating the need for bushings. Figure 2.6

shows a design where the collector pockets are connected to load pockets by cross drilling

through the shaft.
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Figure 2.6 Surface self-compensating bearing with cross drilled collectors and load pockets on shaft

An alternative design that has all the fluid circuitry machined on the surface of the shaft

including the connecting passages is shown in Figure 2.7. This will introduce more leak-

age flows, but as is shown in later sections, very good performance can still be

achieved.The bearing design manufactured in this work is very close to that in Figure 2.7

except that the geometry is on bushing surface. The reasons to have the geometry on bush-

ing surface are explained in next section.

83A S2A SIA No 828 S3B

MA

fl)J/(4 /
MB

iT
MB

Figure 2.7 Bearing design with all the geometry on the shaft surface
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2.2 Why Bushing?

Having the bearing geometry on bushing surface is advantageous in most cases. The

advantages are that the bushing can be made out of good bearing material such as bronze

and a standard hardened ground steel shaft can be used without any special manufacturing

operations. Manufacturing bushings with geometry on the internal surface only is chal-

lenge, which is solved in this work. This makes them more cost effective and interchange-

able than the shaft design. Also the balancing becomes an issue when multiple features are

machined on the rotating member. A bushing also offers more versatility in terms of linear

motion. Having the bearing geometry on the rotary member makes the pressure field

unsteady even for fixed journal position due to the local variation of film thickness due to

rotation. This can have significant effect at larger eccentricities [Zirkelback, 1998]. This

makes the resultant force and force coefficients periodic. In short, the advantages of a

bushing are the following:

- More cost effective (with mfg. methods introduced in this work)

- More easily replaceable

- More modular

" Better material pairs (unless plain bushing is used with grooved shaft)

- Linear motion capability

- Steady pressure field
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Chapter 3

MODELING

In this chapter two different numerical ways of modeling hydrostatic bearings are

described. First, a lumped parameter model based on laminar flow between flat plates is

described. Then a finite difference solution method for the Reynold's equation is

described briefly and its application to certain features of hydrostatic bearings are dis-

cussed. The limitations of both methods are also discussed. Results from both methods are

compared.

3.1 Lumped Parameter Modeling

In the lumped parameter method the bearing is divided into regions where the flow can be

approximated by one dimensional fully developed laminar flow between two plates. If the

aforementioned conditions are met and gravity is ignored the Navier-Stokes equation for

the flow reduces to [Fay, 1994]

2
d u dp
dT - dx (3.1)

By integrating twice and taking into account the non-slip boundary conditions,

u(O) = u(h) = 0, the velocity becomes

u = y(h - y) (3.2)
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By integrating the velocity over the clearance h and multiplying by the width the flow rate

is obtained

Q = W (3.3)

By integrating the pressure gradient over the length the hydraulic resistance becomes

R - Ap _ 12pL (3.4)
Q hOw

3.1.1 Validity of the Geometric Assumption

In a general case the assumption of flow between parallel plates is not valid, for example

in the case of a journal bearing with non zero eccentricity the surfaces are at an angle.

First, the hydraulic resistance for a circumferential flow over land is derived and com-

pared to that of Equation 3.4 and then the same is done for axial flow Figure 3.1 describes

schematically the situation and the coordinates.

0C 0

Figure 3.1 Circumferential flow over land in displaced journal
bearing

The clearance as function of eccentricity and the location OC is
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h = C( I - Ecos (Oc + (3.5)

Where C is the original clearance. By inserting this into Equation 3.3 the pressure gradient

becomes

dp 12pQ 1 (3.6)
dx- W C3 I _Ecos Oc+ ]

By introducing co-ordinate = the hydraulic resistance becomes

R = 2 L 1 d (3.7)
2 C 1 1 - Ecos (Oc +

Closed form solution to this integral is long and tedious to find. Figure 3.2 shows the

hydraulic resistance of Equation 3.7 divided by the nominal resistance of Equation 3.4,

evaluated numerically, as function of eccentricity for ID ratio of 0.1, which is realistic in

most cases. Note that this ID ratio is not the same as the bearing ID ratio. It can be noted

that even for relatively high eccentricity ratios the difference in hydraulic resistance is

very small.
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Figure 3.2 Ratio between full solution and flat plate approximation in case
of circumferential flow in a journal bearing

a axial flow the pressure gradient is constant and the hydraulic resistance

R 12pL I
Ra lgj 3 1

12! [1-Ecos 0 B+ d
2

Figure 3.3 shows the hydraulic resistance of Equation 3.8 divided by the nominal resis-

tance of Equation 3.4, evaluated numerically, as function of eccentricity for ID ratio of

0.1, which is realistic in most cases. It can be noted that again, even for relatively high

eccentricity ratios the difference in hydraulic resistance is very small. It can be concluded

that geometric assumption of flow between flat parallel plates is valid for most cases.
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Figure 3.3 Ratio between full solution and flat plate approximation in case of
axial flow in a journal bearing

3.1.2 Example Lumped Parameter Model

Here an example of lumped parameter model implementation for a bearing is presented.

The relation of the lumped parameter model to the real geometry is shown in Figure 3.4.

Figure 3.4 Lumped parameter model
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The resistor symbols represent the hydraulic resistance of the particular flow path it is

placed on. The equivalent resistance network is shown in Figure 3.5.

PS"

RR(N) R,(1) RJ(2) -R2
R,(N) RI(j) R1(2)

Q(2N) - Q(N+1) Q(N+2)
R (N) R (1) :tR (2)

Pa

Figure 3.5 Equivalent circuit

The resistances R , R1 and Rg of Figure 3.5 are the equivalents of the multiple parallel

resistances

R = (3.9)

RC I c21 1

R =
1 1 1 1

R11I R12  R13  R14

R =
S 1 1 19 R I+ R I+RI

gl g2 g3

There are 3N unknown flow rates, where N is the number of pockets in a bearing. 3N

equations are needed to solve for these 3N flow rates. First, N equations are obtained by

setting the total pressure drops of the upper loops to zero.

Rc(i)Q(i)+RQ(N+i)-Rc(i+ 1)Q(i+ 1) = 0 i=1,2,..,N (3.10)
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The second set of N equations are obtained by setting the flow rates into each central node

to zero (Kirshoff's law)

Q(i) + Q(N + i - 1) - Q(2N+ i) - Q(N + i) = 0 i=1,2,..,N (3.11)

The third set of equations is obtained setting the pressure drop across the compensators

and pocket land equal to the difference between the supply and atmospheric pressure.

Rc(i)Q(i)+R (i)Q(2N+i) = P P i-1,2,..,N (3.12)

By simultaneously solving the Equations 3.10, 3.11 and 3.12 the unknown flow rates are

obtained. Once the flow rates are obtained the pocket pressures are

P(i) = P -Rc(i)Q(i) i=1,2,..,N (3.13)

Once the pressures are known the effective or average pressure on each land can be calcu-

lated. This average pressure times the area of each land is the force on each land. These

forces can then be divided into components according to whichever co-ordinate system is

chosen and then summed to obtain the resulting bearing force. The algorithm for solving

the bearing force is the following

e input bearing geometry and displacement

" calculate the hydraulic resistances for each land patch according to Equation
3.4

- Form the system of equations to solve for flow rates (Equations 3.10-3.12)

- Solve for the flow rates

* Calculate the pocket pressures according to Equation 3.13

* Form the pressure field in the bearing

- Integrate the pressure field to obtain bearing force
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3.2 Finite Difference Modeling

The Reynolds equation is the governing equation for fluid flow in thin gaps. The general-

ized form of Reynolds equation in x, z coordinate (y is in the direction of film thickness) is

[Pinkus, 1961]

ph 3 Jap+ = 6(U, - U2)+(ph) + 12pV0

where U1 and U2 are the velocities of the surfaces and Vo is the velocity at which they

approach each other. In most cases the other surface is stationary and in a case of steady

loading with incompressible lubricant Equation 3.14 reduces to

dh
dx

(3.15)

This can be divided into finite differences

h3 I(P i+ _ -J h3. (i ij 1ij + - x

Ax

h3 P+1 _( Pi - ,Piij

Az

A schematic grid is shown in Figure 3.6.

a (ph3ap)
gg,3 (3.14)

ah3 aF-(h 3X)

a{h3
az( az

(3.16)

dh
2 2

Ax
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Figure 3.6 Finite difference grid

The clearance can be computed between the pressure points by interpolating between the

clearances at the pressure points. Substituting Equations 3.16 into Equation 3.15 and solv-

ing for p the following equation is obtained

pi,j = a0 + alpi+ j + a 2pi- 1,j + a 3Pi,j+1 + a4p _ 1 (3.17)

where ao, aI, a2 , a3, a4 are given constants for each point and are

(h -
,j- ,j+ 2

a0 = 6p.U Ab (3.18)

_ 2',

0 1a, Az 2b a2

3

a3  2 , a 4 =
h3 +h a3 Ax2b

b= Ax2

h3.

2
Az 2b

h3x

2

h3
+

S2 2

_ _ _ 4 Pi,j
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The pressure at each point is a function of the above stated constants and the four sur-

rounding pressures. For n times m mesh of points this leads to nm simultaneous equations,

which can be solved iteratively by mathematical relaxation methods or by Gauss-Seidel

iteration, or by using matrix methods (for example as presented in [Lund, 1978]).

If the iterative process is used, a criteria for stopping the iteration must be determined.

[Pinkus, 1961] suggest the following criteria: iteration can be stopped when

M n

= I M = <A (3.19)

1 (p..)k

j= li= 1

where k is the number of iterations performed and it is recommended that A is on the order

of 0.0005. Other criteria could also be used such as determining the largest allowable indi-

vidual change in pressure point by point. After the pressure field is calculated it is inte-

grated to obtain load. The pressure field due to V can be obtained similarly, but in this case

Equation 3.14 must be used instead of Equation 3.15.

In order to obtain the dynamic coefficients or the stiffness and damping coefficients either

a perturbation method or numerical integration can be used. In numerical integration a

small displacement and velocity is given about the equilibrium point and the resulting

changes in force are calculated. The force obtained is then divided by the given small dis-

placement or velocity to obtain the stiffness and damping coefficients. In the perturbation

method the pressure of Equation 3.14 is given the following first order perturbation

P = P0 +pAx +pAy +pAx + p Ay (3.20)

which results in the following system of equations in a case of journal bearing [Lund,

1978]
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6w-o
PO

FP, -6w sin0+ 3 cosah h aPo a (cosO"0
a P a + a_ h3 = h O) 4 iR 2aO\ h50 }(.21

LRa:04 O) 7J P. (sin~ah /4aPoI asin.21

- - 6o cosO

sin 0

Once the all the pressures are solved they can be integrated to obtain the stiffness and

damping coefficients.

3.2.1 Bearing Geometry Generation

In order to efficiently analyze a multitude of bearings and to use finite difference solutions

as a design tool a convenient way to generate the bearing geometry was needed. A MAT-

LAB script was written which generates the bearing geometry and then writes it to a file.

This .m file is shown in Appendix B.

In order to model bearings where flow occurs also outside the bearing i.e. bearing where

the flow between pockets and restrictors is directed outside the bearing bore (back groove

designs) a special technique is needed. A approximate model can be done by assigning

each recess (both the load and the restrictor recess) a pump and capillary restrictor. Then

by calculating the resistance of the restrictor recess, a equivalent capillary restrictor can be

assigned to each load carrying recess. Each restrictor recess is assigned a large capillary

which has negligible resistance. Then a solution is calculated and the pressures in each

load carrying recess is obtained and then assigned to the respective restrictor recess. This

way a approximate and fairly accurate approximation can be obtained. Only major draw-

back is that the numerical differentiation scheme to obtain stiffness is not any longer reli-

able. The MATLAB script which creates geometry and input files for this case are shown

in appendix B.
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3.2.2 Validity of the Finite Difference Solution

Solution to basic Reynolds equation is very well known and good agreement between

experimental and calculated solutions have been obtained. The solution becomes less

accurate when turbulence and deep grooves are introduced in the solution domain. In this

section the effect of deep grooves and turbulence is determined and conclusions are drawn

on the validity of the solutions with certain parameters.

Maximum Groove Depth Test

When the solution domain (the bearing) has grooves in its geometry, a few things have to

be taken into account. First, if the clearance is interpolated between the clearance in the

pressure points the location of pressure points can become very important. Figure 3.7

illustrates this point. If the grid is not dense enough and the pressure point is located at the

groove edge, the interpolation will lead to grooves that appear too wide. This effect can be

minimized by using denser mesh and by locating points close to the groove edge as seen in

Figure 3.7 b)..

a) b)
Real geometry Pressure points

IN

Interpolated geometry

Figure 3.7 a) Too coarse mesh results in wider than real grooves, b) Points close to groove edge
result in better interpolation of real geometry
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Another issue with the grooves is the their depth. The bearing which is to be modeled has

multiple surface grooves whose depth are 10-30 times the clearance. Since the equation

and its finite difference approximation has terms proportional to h3 it is possible that the

solution will yield erroneous results if the ratio between the clearance and groove depth is

too large (as will be seen later a ratios of 10-15 can still yield relatively good results). Also

the assumptions made in deriving the Reynolds equation includes the assumption of small

lubricant film thickness. To test these effects, a simple model, seen in Figure 3.8, is con-

structed.

L2

Ps Pm Pa=O

0D -- - - - -- - - - - - - -

CL -

GD

Figure 3.8 Groove depth test case

For the fully developed laminar case the pressure drop in the large gap can be ignored. For

the plane Poiseuille flow between two flat plates (the curvature is very large compared to

the clearance and can be ignored) the flow rate is [Fay, 1994]

h3
Q = nD AP (3.22)

12ptL

By equating the flow into the large gap and out of the gap the pressure in the middle por-

tion becomes

PM = S p(3.23)
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To justify the assumption of fully developed laminar flow Table 3.1 summarizes the Rey-

nolds numbers and entrance length [Shah, 1978] of the three test cases.

TABLE 3.1 Reynold's numbers and entrance length for the test case
D (mm) Re = pVh Le = O.OI1DRe ( m)

10 0.13 14.3

30 0.39 128.7

63.5 0.83 579.8

The entrance length for the largest diameter case is about 5% of the length of the annulus.

It can be concluded that the fully developed laminar flow is a valid approximation for this

case.

Table 3.2 shows the calculated pressures in the mid section of the model for different

groove depths and diameters. The clearance value used in this test is 25 g m, which is a

typical value for a hydrostatic bearing

TABLE 3.2 Pm for different groove depths and diameters

GD/CL Pm/Ps (D=10 mm) Pm/Ps (D=30 mm) Pm/Ps (D=63.5 mm)

5 0.493 0.495 0.495

10 0.47 0.47 0.47

15 0.40 0.42 0.43

20 0.38 0.34 0.37
30 0.24 0.28 0.28

The groove depth should not exceed 15 times the clearance in any case and should prefer-

ably be about 10 times the clearance, otherwise the pressure drop across the bearing lands

becomes too large. Shallower than actual grooves introduce other types of errors, namely

too shallow grooves may result in significant pressure drop in them and also the pressure

gradient due to fluid recirculation becomes large. Therefore it is desirable to have the

computational groove depth as large as possible but not exceeding 15 times the clearance.

Obviously if the real bearing groove depth is shallower than that then the real value should
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be used. To further illustrate the point, the lumped parameter model results are compared

with finite difference model for stationary bearing.

The first measure to compare between the two models is the initial pocket pressure ratio

(Table 3.3) i.e. the pressure in the pocket region with E = 0 and zero speed (this compar-

ison is entirely for zero operating speed) divided by the supply pressure. The reason for

the slight difference is the too large pressure drop across axial lands and that the lumped

parameter model is not exact either.

TABLE 3.3 Initial pocket pressure ratios for the two models

Lumped
parameter Finite difference

model model Difference
Ps/Ps 0.36 0.32 11%

In Figure 3.9 , the bearing load for both the lumped parameter and finite difference models

are plotted against the eccentricity ratio. The reason the load is a less for the finite differ-

ence model is the one discussed earlier i.e., the pressure drop across lands is too large.

Also the lumped parameter model might be a little too idealized and therefore yields too

large values. The agreement is therefore entirely satisfactory.

Next, the effect of groove depth to recirculation pressure gradient is investigated. In [Was-

son, 1994, Wasson, 1996] a formulation for the pressure gradient due to recirculation in

the grooves was developed. The following system of equations can be solved for friction

factor Cf and shear stress ratio n.

ln(Rep = -n +3n2 +n n KC - In(n) (3.24)

2= C(1 -n)+ n In Re n In(n)+ (n2+ 1)(1 n) n (3.25)
Cf K 2 ) K nK 2C,
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Load vs. Eccentricity
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Figure 3.9 Bearing force as function of eccentricity ratio

where K is von Karmann's constant (=0.42), Re is the Reynolds number in the groove or

pocket, C is log-law constant (=5.43) and Cc is a constant that was empirically determined

to be equal to -0.17 in [Wasson, 1994]. These friction factors are derived for smooth sur-

faces. For a turbulent pipe flow the significant differences in friction factors start to occur

when surface roughness to pipe diameter ratio is about 0.01 and Reynolds number approx-

imately 100000 [Fay, 1994]. These conditions are rarely met in bearings. Some possible

situations and possible effects are discussed in design and future work sections. By substi-

tuting Cf and n into following equations the fully developed turbulent pressure gradient

can be found.

2 1

dp ~ U 2 Ub I~ b

dx) f =P.Eh(n +1);n I U = AIb
(3.26)

To account for the effect of the fluid turning at the leading and trailing edge of the pocket,

the following relation may be used [Wasson, 1994, Wasson, 1996].

(3.27)
-{ [(. 

13 1 P]

dp _ dP I + In I + 2.71R e-o14 35R
dx (dx) P L
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In Figure 3.10 the variation in recirculation pressure gradient as a function of groove

depth for a typical bearing is plotted. It can be concluded that for deep grooves the value

of the pressure gradient does not change significantly after about 10 times the clearance.

Also for narrow grooves the pressure rise or drop is insignificant. I

Recirculation Pressure Gradient

500

450 A

S400

2 350 A

300

250

C 200

150

100

50

0 5 10 15 20 25 30 35

GD/CL

Figure 3.10 Variation of the recirculation pressure gradient with groove depth

As a conclusion the grooves should have maximum depth of 10-15 times the clearance.

This can introduce slight errors in the results, but as long as this is realized the results can

still be used.

3.2.3 Iurbulence Modeling

Turbulence is an inherently chaotic phenomenon and can only be modeled in a statistical

or approximate sense. In lubrication problem, this is usually done by so-called friction fac-

tors. These friction factors are a function of the local Reynolds number and they are used

to modify the Reynolds equation. The derivation of these friction factors is beyond the
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scope of this thesis, but the validity of the assumptions made by the primary finite differ-

ence code used in this work is of interest. The friction factors used are based on [Constan-

tinescu, 1968, Elrod, 1967]. These friction factors approach the experimentally obtained

factor asymptotically for high and low Reynolds number. Agreement in the transitional

Reynold's number (1000-10000) is fairly poor, specially in a case of a Poiseuille (pressure

driven) flow [Elrod, 1967]. Fortunately, turbulent Poiseuille flow is not typically encoun-

tered in bearings, but it is still of interest to know how accurately the turbulent flow can be

predicted. To investigate this, the results calculated by the finite difference code are com-

pared to analytical solutions based on bulk flow friction factors developed in [Hirs, 1973].

The bulk flow friction factors have better accuracy in transitional flow.

The mean velocities can be found by solving the following system of equations.

S1+M 1 +MO
-hap t +mo 1 +n2 + 2 2 2 2

p1Uax-pnUh) + (UX - 1)[(UX - 1) +U, ] 3.28)

1 +mo +MO

-h2 ++mo = 2 2 2 [( 2 +U 2]2 (3.29)

pWay pUh) 2n UYU +UY U[U-)+,](.9

U U
where Ux = , U = are the normalized (by surface speed U) mean velocities. For

U~ UP
the case of e = 0 (shaft is centered in the bore) the = 0 and the left hand side of the

Equation 3.28 becomes zero. The equations can be further simplified by noticing that the

x-direction velocity profile is skew symmetric and therefore the mean velocity Ux = 0.5.

The constants mo = -0.25 and no = 0.066 are for smooth surfaces with Reynold's num-

bers smaller than 106 [Hirs, 1973].

The test model for this case is a simple centered annulus with pressure difference between

two sides.
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Table 3.4 gives the dimensions for the two different cases.

TABLE 3.4 Dimensions for the two different test cases

Dimension Case #1 Case #2

D 76.2 (mm) 76.2 (mm)

h 0.0762 (mm) 0.02 (mm)

AP 2.78- 106 2.78- 106

p. 0.000398 0.000398

p 977 977

L 24.6 (mm) 24.6 (mm)

Reyp @0 rpm 6400 465

In Case #1 the flow due to the pressure

Case #2 the axial flow is laminar.

gradient is turbulent or in the transitional region. In

In Table 3.5 comparison between the analytical calculations based on Equations 3.28 and

3.29 and the finite difference calculations are made for Case #1.

TABLE 3.5 Comparison of flow rates for Case #1

Finite
Analytical Difference

rpm /4/ /3/ Difference Reaxial Recircum
0 37.7 1/min 150 1/min 298% 6400 0

15000 32.6 1/min 40.4 1/min 24% 5500 11200

30000 23.9 1/min 25.2 1/min 5.4% 4000 22400

The error decreases as the Reynolds number increases as can be expected. The extremely

large error for the 0 rpm case shows that the program does not take into account the turbu-

lence generated by the pressure gradient and the 150 1/min flow rate corresponds to the

laminar case. It is also to be expected that the flow rates calculated by the program are

higher since the two Reynold's numbers are of the same order of magnitude and the other

gets ignored by the program.
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In Table 3.6 comparison between the analytical calculations based on Equations 3.28 and

3.29 and the finite difference calculations are made for Case #2.

TABLE 3.6 Comparison of flow rates for Case #2

Finite
Analytical Difference

rpm /4/ 13/ Difference Reaxial Recircum
0 2.72 1/min 2.72 1/min 0% 465 0

10000 2.63 1/min 1.82 1/min 31% 440 1960
20000 1.66 1/min 1.34 1/min 19% 280 3920
30000 1.23 1/min 1.05 1/min 15% 207 5880
100000 0.502 1/min 0.500 1/min 0.4% 84 19580

Again the results get better as the speed is increased. This time the flow calculated by the

finite difference program is lower than the flow calculated analytically.

This test case shows that the results obtained in the transitional region are not very accu-

rate and must interpreted with care. It also shows that the program ignores any turbulent

effects created by pressure driven flow and therefore if such conditions exist results

obtained can be very erroneous. Fortunately this is not usually the case. It must be noted

that the analytical solution is also just an approximation; the transitional flow is very diffi-

cult to predict accurately.

In conclusion, the finite difference code used can predict the bearing performance with

satisfactory accuracy. Care must be taken when the results are interpreted, especially in the

transitional flow region. To check some results when the bearings are designed, also other

finite difference based code was also used, which used the bulk flow friction factors. This

code was very slow and has numerical stability problems, so it was not utilized more than

just to check some results in the transitional flow region. More about this is discussed in

the high speed design section.



Chapter 4

ANALYTICAL CONSIDERATIONS

In this chapter the static and dynamic characteristics of a plain journal bearing and restric-

tor compensated hydrostatic bearings are analyzed. First, an analytical approach is used to

approximately determine the characteristics of a plain journal bearing. This is necessary to

see how accurately surface self-compensating bearings hydrodynamic characteristics can

be approximated with plain bearing theory. It can be assumed that the plain journal bear-

ing represents the upper bound of damping achieved by surface compensated bearings.

Similarly, the deep pocket hydrostatic bearings can be thought to represent the lower

bound. In addition, the approximate magnitude of the hydrodynamic effect can be deter-

mined from the static analytical solution. These results can be later used as design aids to

help guide the initial bearing design under given conditions or given requirements. Also,

the criteria for bearing stability will be derived with certain assumptions. A numerical

(finite difference) approach is then used, in Chapter 5, to determine the characteristics of a

particular design. Conclusions are drawn regarding the validity of the analytical solutions

and the extent they can be used as design aids of the bearings. These results are derived in

non-dimensional form so that they are as general as possible.
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4.1 Static characteristics of a plain journal bearing

The load capacity and the attitude angle (the angle between the load and line of centers)

describe the static characteristics of a fluid film bearing. To assess these quantities the

Reynolds equation (Equation 4.1) must be solved.

I a h3p> h33p dh
+= 6o- (4.1)

R 2 a( O 4aZ )a dO

Equation 4.1 is in 0, z coordinate system and R is the radius of the bore and 0 the rota-

tional speed. The more general form of the equation is shown in previous chapter. This

equation has closed form analytical solutions in only a few simple cases. Sommerfeld

solved this equation by neglecting axial flow, which is same as to assume an infinitely

long bearing. The other solution is to assume the opposite, namely assuming infinitely

short bearing by neglecting the circumferential term. This solution is not satisfactory ana-

lytically, but is shown to correspond well to the physical situation [Frene, 1990].

4.1.1 Infinitely long bearing

When L/D is large, the axial flow can be neglected and the Reynolds equation simplifies

into:

1 3 h3p dh- 6 d6 (4.2)
R 2~ JA o) A

In practice this is a satisfactory assumptions if L/D > 4 [Frene, 1990]. The first solution

to this equation was presented by Sommerfeld; it is very well known and will be presented

here only in broad detail.

Sommerfeld's solution

Assuming that the bearing fluid is supplied via an infinitely narrow axial groove at

abscissa (0 = 0), the boundary conditions become
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Static characteristics of a plain journal bearing

p(O) = p(27c) = Pa (4.3)

This is called the Sommerfeld's boundary conditions. The film thickness is defined by

h = C(1 + cosO) (4.4)

The first integration of Equation 4.2 gives

dp = 6 R2 h-h* (4.5)

where the h* is the film thickness at the point where the pressure gradient is zero. The next

integral becomes

p = 6[f Ad -[f- I d + X (4.6)
(1-ECOSO)2 C (I -_E COS )3

where X is a constant of integration.

These integrals were later tabulated in [Booker, 1965], but Sommerfeld solved them by

performing the following change of variables

1+EcoSO - c (4.7)

In order to calculate the load carrying capacity and the attitude angle, the resulting pres-

sure distribution must be integrated over the journal. This is most conveniently done in

perpendicular co-ordinate system where one direction is in the direction of line of centers

(Figure 4.1).

The equilibrium equations become
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0W

Figure 4.1 Co-ordinate system

2TE

Wcos + L fpcosORdO = 0 (4.8)

0
27E

-Wsin+ L fpsinORdO = 0

0

from where the load and the attitude angle can be obtained.

W =12pioR31 L _I (4.9)C2 (2 + E2 ) (1 _ 2 ) 11 2

2

The attitude angle is constant and perpendicular to the load. This leads to an unstable bear-

ing, which is discussed in more detail later.

In this solution the pressure distribution was integrated over the entire extent of the jour-

nal. This is not always satisfactory since the pressure distribution yielded by Sommer-

feld's solution has large negative pressures unless the bearing is very lightly loaded or
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Static characteristics of a plain journal bearing

supplied with high pressure. Gumbel proposed a solution where these negative pressures

are disregarded.

Gumbel's solution

In the case of long journal bearing the following load capacity and attitude angle are

obtained

W = 6ptwRL 2R2 [4g2+12( _ -2]1/2 (4.10)
(2 + E,2)1 _ F2) (C)

= atan 
j

More complicated solutions to this can also be found; for example, the Reynolds solution.

To find out more about these the reader is referred to [Frene, 1990]. These more compli-

cated solutions are unnecessary in this case since this formulation is only to represent the

limiting case and the more accurate solutions to the specific case of surface self-compen-

sated bearing is achieved numerically.

4.1.2 Short bearing

If the ratio L/D is small, the circumferential pressure gradient can be neglected compared

to axial pressure gradient and the Reynolds equation reduces to

a h3dh
- 6-- (4.11)

1
This assumption is valid if L/D = -, but it is used for ratios up to 0.5 [Frene, 1990]. This

8
has proven to be a physically very good approximation. Hence worth, the integration is

straightforward and the pressure field becomes

3p (L 2 h -3s 2 sin0
p(0, z) h 3 4 O = 4 . (4.12)
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This is symmetrical about 71 and therefore the Sommerfeld integration over the entire

journal does not make sense (the load becomes zero), so Gumbel's condition must be

used. The load and the attitude angle becomes

W = ptLRo( 2 2 2[16E 2 + 2 (1 - E2) 1/2

= atan (

(4.13)

Figure 4.2 shows the non-dimensional load as a function eccentricity for all the presented

cases and Figure 4.3 shows the attitude angle for all the presented cases.

Non-dimensional Load

10000

1000

lI

-J

Long Bearing
- hLong Gumbel

----- Short Bearing

lie,,0 - -.. Long.G-mbe
- - --

*,.'.

100 -

10 -

1

0.1

0.01

Eccentricity E

Figure 4.2 Non-dimensional load for the different assumptions

It should be noted that the loads should not be compared between the short and the long

bearing, since they represent different geometries. The short bearing non-dimensional load

-a-

I, -

0.2 0.4 0.6 0.8
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Attitude Angle

-- %

- Long Bearing
- - - Long Gurnbel

- Short Bearing

0

Figure 4.3 Attitude

0.2 0.4 0.6

Eccentricity E

angle for the different assumptions

should be multiplied by 2 to obtain the actual load in addition to the non-dimensional-

ization factor to obtain the actual (dimensional) load.

The long bearing has always an attitude angle of 90', meaning the load and the displace-

ment are at right angles with respect to each other. For the other cases the angle varies

between 900 and 200 depending on the eccentricity. This attitude angle information can

be later used in designing the hydrostatic circuit so that this angle can be compensated for.

The most stable bearings usually have attitude angle close to 00.

4.2 Dynamic coefficients of a plain journal bearing

The dynamic coefficients characterizing bearing behavior are derived from the dynamic

form of Reynold's equation (Equation 4.14) with the following assumptions:

-

-

Rigid rotor

Small displacements about the static equilibrium (linear theory)

0)C
-*

100-

90-

80 -

70 -

60 -

50-

40 -

30-

20 -

10 -

0
0.8 1

' -
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70 ANALYTICAL CONSIDERATIONS

Linear theory is not able to predict the behavior of the rotor once it is unstable, but it is

able to predict the critical speed or mass at which the system becomes unstable. Assump-

tion of the rigid rotor makes the analysis simpler and allows for the comparison of differ-

ent bearings in more general form. When designing a real system with a specific bearing it

is, of course, important to take all the critical variables into account to achieve better

design.

4.2.1 Derivation of the dynamic coefficients

0*

t

X2X

Figure 4.4 Section showing bearing co-ordinate system

The dynamic form of the Reynold's equation is

-a hip + =ah -p7 6 (dh + 2Xcos * + 2Ysin* (4.14)
R 2a g a0*j az p.Zj )O



Dynamic coefficients of a plain journal bearing

With the change of variables (see Figure 4.4)

X = ecos$, Y = esin4$, 0* = 0 +$

the Equation 4.14 becomes

+ 2) dh= 6 (0- + 2ecos 0)

(4.15)

(4.16)

With small displacements x, y around the point of equilibrium and velocities x, y the

forces acting on the rotor can be written

F,(xo+x,yo+y,x,y) = F,(xo,yo,0,0)+x 

F,(xo+x,yo+y,x,y) = Fy(xo,y 0,,0)+x-

~FxJ)+ .(gx)

By taking only the first order terms this can be written as

{fx} [k 1 ] - [b ]

where fx and fy are the additional forces due to the displacements and velocities x, yx, y

i.e.

Tfx F(x

fy Fy(xo

+ x, y0 + y, x, y) - Fx(xo, y0 , 0,

+ x, y0 + y, x, y) - F,(x0 , y0, 0,

The dynamic coefficients, namely the stiffness and damping coefficients, in general form

are

ki. = -- Od
(4.21)

Fid

;ai b = --

(4.17)

+... (4.18)

(4.19)

0)

0)
(4.20)
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The first of the indices shows the direction of the force and the second that of displace-

ment (or velocity). The existence of cross coupling terms means that the force and the dis-

placement (velocity) are not co-linear. To actually calculate these eight dynamic

coefficients it is advantageous to choose an intermediate co-ordinate frame shown in

Figure 4.5.

W0 t

e +

e Y
0

x0

0
r

X

Figure 4.5 Intermediate bearing co-ordinate frame

With respect to the intermediate frame the position of the shaft center is

O = er (4.22)

and the velocity is given by

4.> .>

V(Od) = er + e~t (4.23)

The best way to derive the dynamic coefficients, is to first write down the dynamic form of

the Reynold's equation (Equation 4.14) with the following dimensionless variables:
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z h e __ _Z = H =- = + EOS(0), = P= (4.24)
L' C C' R1 2

po 1l - 2$

The Equation 4.14 becomes

a H 3aP (R 2  (H3 JP l dH E/W

2L a 2E 2 1 -2(5/w) cosO (4.25)

This equation cannot be integrated directly to get pressure and the forces acting on the

rotor (in the fluid film). For the rest of the analytical derivation it is assumed that a solu-

tion does exist. However, the components of the hydrodynamic forces are

r} LR 2 W 1 -2- f P . } dOdZ (4.26)
Ft ( -C)L/2 01 sin

The limits of integration are the beginning and the end of the active fluid film. What is

considered to be active film depends on the assumptions made (boundary conditions) and

the way negative pressures are handled. This will be discussed in more detail when analyt-

ical and numerical boundary conditions are presented. These limits depend on the position

of the journal center and its velocity; thus

(Fr (R2 / 3Fr(E, (,E/0, O/W))

= gLR- o1- 2 (4.27)
F, CtF- E/,O

By taking into account Equation 4.20 and then developing the resulting equation into a

first order Taylor series, the following equation is obtained for the additional forces due to

the small displacements and velocities

= pLR E [AE +[ A ( + + (A0,+)jjr ) (4.28)

-2 iLR(p Fr EE.0=0

E( = =
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In the case of small perturbations the limits of integration will not change and the Equa-

tion 4.25 becomes linear in P and is a function of the parameter and can be
1 - 2(/p)

solved by superposition method. Also the last terms in the first parenthesis vanish:

3Fr_= t

o/w) E=0
= 0 (4.29)

Equation 4.28 becomes

r= p CR E + A(
TO

+ Fr

E1t 0 (4.30)

-2pLR( 24]Fr

FE 0

from where the dynamic coefficients can be determined. Stiffness coefficients become:

C)

C)

2 W(Fr0;

2 a ) 0;
C a E)

krt -MLR (4.31)C)

= -tLRR 2 0t

and the damping coefficients become

brr = - tLR(J !

E

btr = -CLR

0

brt = -2LR( C' Fr

b,, = 2 4LR( F Fto

In dimensionless form, the coefficients may be written as

krr = - LR

kr = - LR

(4.32)
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Dynamic coefficients of a plain journal bearing

Ki _ C kj;
WO

B C 0 b..
SW0" (4.33)

with W0 being the external load. The simplest form of the dynamic so-efficient can be

found in terms of the Sommerfeld number S

S = LEC 2 (4.34)

and the partial derivatives

(3JFr>Krr = - tS I

Ktr = -7tS .

(E t) 0

Brr = -nS

Bt = 2 tSKaFt

Krt 2IS jFr) 0

tS (__

B=2cos40

Brt =- 2 s

R 2 sin 0

In addition it can be shown [Frene, 1990] that the approximation of constant limits of inte-

gration will lead to

B,. = B ,. (4.37)

The dimensionless stiffness and damping coefficient are function of the equilibrium posi-

tion only and in addition the damping tensor is symmetric.

These coefficients will be solved for two elementary cases, namely the infinitely short and

long bearing in next section. These coefficients also depend on the boundary conditions.

Other than the elementary cases these coefficients must be solved numerically.

(4.35)

(4.36)
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4.2.2 Infinitely Short Bearing

In an infinitely short bearing the circumferential pressure gradient becomes negligible

compared to the axial pressure gradient.

lap ap 1 (4.38)
RaO aJz R

The equation 4.25 is reduced to

a h3 ph
=6[(w- 2 ) a+ 2 ecos] . (4.39)

Equation 4.39 integrated with

p(0) = p(L) = 0; h(0) = C(1+ Ecos0) (4.40)

becomes

3pt L 2 2)[h

p(0, z) = - zL(O ) - + 2ecosj1 (4.41)

No boundary condition can be imposed in the circumferential direction (no feed or drain-

age grooves). Equation 4.41 can be integrated with either Sommerfeld's or Gumbel's

boundary conditions. These conditions are not always satisfactory from a physical point of

view, but in certain situations can produce satisfactory agreement with experimental

results [Frene, 1990]. Figure 4.6 shows the pressure distribution in a typical case (pressure

is normalized with maximum pressure).

Sommerfeld's Condition

Sommerfeld's boundary condition assumes a full oil film and allows large negative pres-

sures. This is the simplest case, since the integration is performed over the full extent of

the journal.
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P/Pmax

oiI
.3 1

III

/

11.5i
4

77

0

Figure 4.6 Pressure given by Equation 4.41.

The component forces can be found by performing the integration of Equation 4.26 with

01 = 0, 02 = 2n and IEI ; 1. The forces become

(4.42)F = LME +2

r 22)I ((I - E25/2)

S2R2 (1 E)3/2

from where (see the load capacity case)

S = 22(1 - E2)5/2
S = ; 2

Now the dynamic coefficients can be written

Krr = 0; Krt = 1;
E

(4.44)Ktr = -I ;22 K, 0
E(1 - E 2 )

Brr = -2(1 + 2 2 ) Br1 = Btr
E( -E2)

2=0 ; B,, = -
E

Iif

It k

(4.43)

I

1-1-),- , I I



ANALYTICAL CONSIDERATIONS

these coefficients can be transformed into a more convenient x-y coordinate system by the

normal coordinate change procedure, namely

[A] = [Q] T[A ].,[ Q] (4.45)

where

[Q] cos$ sin $ (4.46)
-sin$ coso$

is the rotation matrix.

t

y

r

XSx

Figure 4.7 Change of basis

Figure 4.8 shows the non-dimensional stiffness coefficients for this case and Figure 4.9

the non-dimensional damping coefficients. All other coefficients are zero.

Gumbel's Condition

Gumbel's condition ignores the negative pressures by integrating only over the positive

part of the pressure field (see Figure 4.6). The limits of integration become
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

eccentricity

Figure 4.8 Stiffness coefficients for infinitely short bearing with Sommerfeld's conditions

Damping, Short bearing (Sommerfeld)

10 000 - -- - - - - - - - - - - - - -

1000 -- _-_-_-

10_ __-_-----Bxx

- Byy

10 ---

-------------------------------------------------------

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
eccentricity

Figure 4.9 Damping coefficients for infinitely short bearing with Sommerfeld's conditions
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0 =atan 2e I'

1(o-2$)C

and the component forces are

02 = 0 1 +7

Fr =

F, =
L2

2(1 - E2)R2o0 I

E it(1 + 2E2)

(1 E2)
+ 2E2 (o - 2)]

- [4e + (o-20)V(1 -E2)

-2 2-

The Sommerfeld's number and the attitude angle are

2
S =(D)

0= atan

(1 _ 2)2

TcE[16E2 + 2 (I - E2) 1/2

(n(j - 2))
4EF

Dynamic coefficient for this case are:

Krr = 8(1 + E2)T (E); Krt
(1- 2)

'(1 _ E2)T(,)
E

Ktr- n(1 + E2)(E); Ktt = 4T(E)
£ (1 - 2)

Brr = -27E(1 + E2)T(E
E (1 - 2)

Btr = -8P(E); Btt

T(£) =

); Brt = -8T(E)

(-E2)T(F-)it

1
V16£2 + 7[2 ( 1 - £2)

(4.47)

(4.48)

(4.49)

(4.50)

where

(4.51)

(4.52)

2(1 - E,2)R2(0 I - 2 -
CO)
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Dynamic coefficients of a plain journal bearing

Figure 4.10 shows the non-dimensional stiffness coefficients for this case (Gumbel's con-

ditions) and Figure 4.11 the non-dimensional damping coefficients.

Stiffness, Short bearing (Gumbel)

10000

-- - - Kxx

10 - Kxy

- - Kyy

-Kyx

0.1 0.2 0.3 0.4 0-5 0.6 0.7 0.9

negative-
0.1

0.01 - - - - - - - - - - - - - -.- - - - -----

eccentricity

Figure 4.10 Stiffness coefficients for infinitely short bearing with Gumbel's conditions

For both cases it is good to derive the initial damping coefficient. By initial it is meant that

eccentricity is zero. This is done in dimensional form, so that these formulas can later be

used more conveniently. The initial stiffness is most easily obtained by letting the eccen-

tricity go to zero in the computed force and then differentiating with respect to squeeze

velocity e.

B inii a(f )
Binitial = - +0

ae
(4.53)

In the case of the short bearing the initial stiffness for the two different conditions become
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Damping, Short Bearing (Gumbel)

1000-

100-

10 -

001X

B B -

o.01 ------- - ---------- --------- --- --- ----

eccentricity

Figure 4.11 Damping coefficients for infinitely short bearing with Gumbel's conditions

Sommerfeld: B = ItRL3 7[
C 3 (4.54)

Gumbel: B = 1tRL3n
2C 3

These give rather large values and the damping goes down significantly as the eccentricity

is introduced.

4.2.3 Infinitely Long Bearing

In the approximation of an infinitely long bearing the axial flow is neglected. The criteria

is inverse of the Equation 4.38. The dimensionless Reynolds equation becomes

2) + 2ecos] (
I a h3p P

R 23 pO 0 Lo
(4.55)- 6 1(0 -



Dynamic coefficients of a plain journal bearing

The integration of Equation 4.55 is cumbersome. Either the Sommerfeld's coordinate

change must be used or the tables of integrations from [Booker, 1965, Frene, 1990]. The

film pressure is given by:

p(2) = 0(2{(-2P)(2 + coO)Esin0

(2 + F2)(1 + ECOS6)2

E+s 1

E ( +E O)2 (I + )21

Equation 4.56 is plotted with typical numbers in Figure 4.12. The pressure rise due to the

1
P/Pmax

0.5

0

-0.5 F. .. ..

-1
0 1 2 3 4 5 6 0

Figure 4.12 Pressure given by Equation 4.56.

squeeze effect is shown in the figure with the upper curve representing higher squeeze

velocity. This will be again solved for the case of complete oil film and the for the case

ignoring the negative pressures.

Sommerfeld's Condition

Again integrating from over the entire extent of the bearing the following results are

obtained:

(4.56)

S 2 > EI

...... . . . .. . . . . . . .

.- - - -.

-

83



ANALYTICAL CONSIDERATIONS

F =-12 .
r (1 _ 2 3 / 2 (W)- 2$)

12
R t_

(2 + E2)(1 - E2)1/2

o= 2

S = (2+E2)(1 -,)1/2
12,gE

and the stiffness coefficients become

Krr =0; Krt (4.58)

Ktr 2E4 -E 2 +2 K=0K= -4 - K = 2
Ktr E(2 + E2)( I - 2)' Ktt 0

and the damping coefficients:

Brr 2 + E2  B = 0 (4.59)

2
Btr 0; Bt, = -

E

The non-dimensional coefficients are plotted in Figure 4.13 and Figure 4.14.

Gumbel's Conditions

Again ignoring the negative pressures and integrating over only the positive portion of the

pressure distribution the following results are obtained:

(4.57)
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Stiffness, Long bearing (Sommerfeld)

1000 - --

100 -_-_--_ _---- _- -- -- - _ ------_ _ - -

Kxy

Kyx

negative

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

eccentricity

Figure 4.13 Stiffness coefficients for long bearing with Sommerfeld's conditions

Damping, Long bearing (Sommerfeld)

10000 - - - - - - - -. - - - - - - --.

1000

100 __ __ _
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--- - .Bxx

- - - - ---- - -------- -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

eccentricity

Figure 4.14 Damping coefficients for long bearing with Sommerfeld's conditions
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Fr = 12
(o -20)

F t = 12 *
((o - 20)

E2(O) - 2$)
(2 + 2 )( 1 - E2 )

TE(o - 2$)

(2 + E2)(I - E2 ) 1/ 2

+ 2)3/2(1 - - 2

2E E

(2 + E2)( c 2 )

0 = atan 1 -- C2 ;

S (2 + E2 ) 1 - E2)3/2Q )
6en

The stiffness coefficients become:

Krr = 4(2 + F 4 ) /
(2+ 2) I - 2 )1 2

Kt = 2E4+ E2 _ 2Q(E); K,,r F(2 + E2)

Krt =
T12 (I - 2 )

= 2(1 -- 2 )1/2Q(C)

and the damping:

(4.62)B,.r= n(2 + 2 ) B, -
E(1 2- E2 ,

Btr = -4(1 - E2 )Q(C); B,, = 2n(1 - 2)

Q(E) =
1

1( - 2)[n 2-F2(2- 4)]
(4.63)

These plotted in Figure 4.15 and Figure 4.16.

In the case of the long bearing the initial damping coefficient can be obtained the same

way as in the case of the short bearing. They become

8 

]

Tc(2 + E2)]
(4.60)

I

(4.61)

where
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Stiffness, Long bearing (Gumbel)

100

100 - --------- -_ - - - -

10_
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Figure 4.15 Stiffness coefficients for long bearing with Gumbel's conditions

Damping, Long bearing (Gumbel)
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Figure 4.16 Damping coefficients for long bearing with Gumbel's conditions
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Sommerfeld: B = l2jR3Li (4.64)
C3

Gumbel: B - 12 tR3Lr 4) ~ .3 12pR3 Lir
C 3  2 0 .3 . C 3

4.3 Fixed Restrictor Deep-Pocket Hydrostatic Bearing

Fixed restrictor (capillary or orifice) is the most commonly used hydrostatic bearing. Here

it is used as a baseline and it represents the lower bound for damping properties. The static

modeling of the bearing is fairly simple and can be done with the methods introduced in

the modeling section. The most convenient way to predict the stiffness is to use the meth-

ods introduced in the modeling section to obtain the force-displacement relation and then

use numerical differentiation to get the stiffness. There exist analytical solutions to these

relations, see for example [Bassani, 1992, Frene, 1990]. These relations will not be pre-

sented here since it is only desired to find an approximate relation for the damping.

The bearing for which the damping is calculated is represented in Figure 4.17. The follow-

ing assumptions are made:

- Laminar flow

" Centered shaft

- Translation speed is co-linear with x-axis

e Linear theory

Translational speed induces an pressure change in recess, which in turn induces a load.

The damping coefficients are:

AW A_
B - .= - , B = -- (4.65)

e e

From mass conservation it follows that the flow into the recess equals the flow out to the

atmosphere from the pocket plus the flow between the recesses minus the volume change
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L

Figure 4.17 Typical fixed restrictor hydrostatic bear-
ing

s - Pi) 12pan [4Pi +(2Pi -
na(L -a)

(4.66)Pi+1 -Pi_

Let the recess pressure be Pi = Pa + APi, where the AP is the pressure change due to the

velocity e. Substituting

Rc(Ps - Pa)

Pi into Equation 4.66 and noticing that at the centered position

n;C 4 Pa the equation becomes

RCAP = RC 3 4AP + (2AP - AP - AP )na(L - a) -LDesin cos) (I - 1)C) (4.67)

The pressure change in a recess is only function of its location around the bearing. It fol-

lows that

APicos 7-Ti) = APi, Icos (4.68)1))

Now the Equation 4.67 can be solved for Pi which becomes

6epLan sin cos (7 -

AP. =
1))

(4.69)

where

TEC3 I+C+2 a(L -a) sin 2nbR (n)
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= Rc IR )-1 (4.70)
12an

which is the resistance ratio. By integrating the APi over the bearing area the AW is

obtained and then using the Equation 4.65 damping coefficients are obtained.

2
3gLDan2 (L - a) sin j

Bxx = B,, = (4.71)

nC3 1 + ( + 2a(L - asin

Bx, = B,, = 0

Although these damping coefficients were obtained assuming centered shaft position it

has been shown numerically that for small eccentricity ratios E <0.4 these results do not

change [Frene, 1990].

4.4 Bearing Stability

Usually in the case of fluid film bearings the bearing stability is defined in terms of critical

mass above which the bearing becomes unstable. This critical mass is defined to be the

mass of the perfectly rigid rotor. This analysis is based entirely on linear analysis, but a

theorem by Liapounov [Frene, 1990] states that if a linearized system is stable then the

non-linear system is also stable to small perturbations. Therefore the stability of a operat-

ing point can be assessed by linear analysis. The assumption of a perfectly rigid rotor can

be justified by stating that this makes the comparison of different bearings easier. Natu-

rally, if a specific rotor-bearing system is considered the compliance of the rotor must be

taken into account.

The linearized equations of motion at a certain operating point are
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x

yI+ [ki.] = {0}
Y

(4.72)

Again, for the sake of generality, the Equation 4.72 is non-dimensionalized with

- MCw02
M = MW K..

Wv '.'1

k..C

W ' ii

XCW CO C W2' C(0 2

Solution of the form:

X = XeXwt where X = c + id

leads to the following system of equations

biCwX
W '

MX2 + BXX + Kxx

LB,,X + Kx,

B,,X + Kx,

MX2 + BX + K H

This system has a solution if the characteristic polynomial is zero. The characteristic poly-

nomial becomes

f(X) = A 0 X4 +AIX 3 +A 2 X2 +A 3X +A 4
(4.76)

Where

A = M , A1 = M -tr(Bij), A2 = M -tr(Kij) + det(Bij)

A3 = BxxK,, + B,,Kxx - B,,Kx - BxKx,, A 4 = det(Ki)

(4.77)

The system will be dynamically stable if all the real parts of the roots of the complex poly-

nomialf are negative [Den Hartog, 1985]. The Routh-Hurwitz criterion states that all roots

x

y
+ [bi]{I

C
Z
C

(4.73)

(4.74)

x
Y

= {}I (4.75)
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of f have negative real parts if, and only if, the following inequalities are satisfied [Den

Hartog, 1985, Frene, 1990]:

A0 A1 > 0, A2 >0, A3 >0, A4 > 0 (4.78)

where Ai represents the Hurwitz determinant of i:th order

Al A3 A5 A7 .

A 0 A2 A 4 A 6 -
Ai= 0 A A3 A 5 -- (4.79)

0 A 0 A2 A 4 ...

... ... ... ... A i

In this case the A0 is always positive (mass squared) and therefore the conditions 4.78 can

be written as

A >0, i = 1,2,3,4 (4.80)

These inequalities lead to the following conditions for stability

Al >0= A >0 (4.81)
A2 >0 => A 1A 2 - A0A 3 >0
A 3 > 0 = A1 A 2A3 --AA 4 -A 0 A2 >0
A4 >0 =A 4 (A 1A 2A -AA 4 -A 0 A) >0

These relations can also be written as [Den Hartog, 1985]

A >0,i = 1,2,3,4 (4.82)
A1 A 2A3 -AA 4 -A 0 A >0

The lower inequality represents the upper threshold for the mass [Frene, 1990]. The criti-

cal mass in terms of stiffness and damping becomes

- ( ] A3 - tr(Bij) -det(Bij)
M<[tr(Bj)]2det(Kjj)+A2-A tr(Bjj)-tr(Kjj) (.3
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and in terms of the individual coefficients

-KS
MC - , where (4.84)

Y

Ks= KxxB,, + K,,YB X - KXB,, - K,,BXY
s B+ BY

2 _ _K - Ks)(K K, - K) - K,K,
B XB - BYBY

There are three different zones for the bearing operation. 1) The mass is smaller than the

critical mass. In this case the operation is stable. 2) The mass is equal to critical mass. In

this case the equilibrium is marginal and the shaft centre describes a closed orbit. The

whirl exists. 3) The mass is greater than the critical mass and the equilibrium is unstable.

In order to calculate the shaft motion, in this case, non-linear analysis is required.

4.5 Summary of the Analytical Analysis

Analytical solutions to Reynolds equations in the limiting cases were obtained along with

the damping solution of a deep pocket hydrostatic bearing. These solutions can used to

obtain initial estimates for damping when designing a new hydrostatic or hybrid bearing.

It also yields estimates of the hydrodynamic load and load angle which can be used in esti-

mating the hydrodynamic effect on the hydrostatic bearing. These estimates represent the

absolute maximum possible hydrodynamic effect and in typical case are much larger than

the actual hydrodynamic effect. This is discussed in detail in the design section. Also, sim-

ple expressions for initial damping were derived.

The key results are summarized in the following paragraph.

Initial damping for the case of short bearing

Sommerfeld: B = 9RL37 (4.85)
C 3

Gumbel: B = tRL3n

2C 3
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Initial damping for the case of long bearing

Sommerfeld: B = 12iiR 3Ln
C 3

Gumbel: B = 12pRL7Cg _4

(4.86)

0.3 - 12pR
3Ln

C
3

Damping at small eccentricities for the case of deep pocket fixed restrictor hydrostatic

bearing

3 1LDan2(L - a)sin ( 2)
(4.87)

The approximate hydrodynamic load and load angle is presented in Figure 4.2 and

Figure 4.3 respectively.

TEC3 ( + + 2a nbRa sin "n
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Chapter 5

DESIGN

In this chapter the fundamental steps required to design a hydrostatic bearing are dis-

cussed. First the criteria why a surface self-compensating bearing might be advantageous

over traditional design are discussed and then different possibilities to achieve surface

self-compensation are introduced. Then a single design is chosen and its performance is

evaluated. High speed designs are then presented. Also, a possibility to adjust the bearing

clearance shape for certain applications is discussed.

5.1 General Considerations

In the introduction chapter the properties of self-compensating bearings compared to those

of fixed compensation were briefly discussed. In this section a comparison between capil-

lary compensated bearing and self-compensated bearing is made. The reason why capil-

lary compensation was chosen to justify the self-compensation is that it operates in

laminar flow regime as does the self-compensating bearing. The variable restrictor devices

are not considered, because they severely add to the complexity of the bearing system and

can not be justified in general use where simplicity is desired.

When designing a bearing system or specifically a hydrostatic bearing following func-

tional requirements must be considered:

0 Load capacity
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- Stiffness

" Power losses (due to shear and pump)

e Reliability/Robustness

e Cost (installing and maintenance)

In [Wasson, 1996] a number of different designs, both self-compensating and fixed (lami-

nar) restrictor, were characterized. The following non-dimensionalized variables are used

to compare the different designs. Load carrying efficiency is defined as

F
F = -(5.1)PSLD

This is simply the bearing force divided by the cross sectional area multiplied by the sup-

ply pressure. This is a function of the bearing eccentricity. In order to get a single number

what to compare the load capacity will be defined as the load carrying efficiency at 0.75

eccentricity. The specific stiffness is defined as

- FK =(5.2)

This also is a function of eccentricity. Here the specific stiffness is defines as a initial spe-

cific stiffness, meaning it is calculated at zero eccentricity. The specific flow rate is

defined as

Q = (5.3)
'P PnDC3

12 tL

which is the ratio between the flow through the bearing and the flow through a annulus

with same diameter and clearance as the bearing has. This measure indicates the pumping

power consumed by the bearing. The specific stiffness or load capacity also acts as an

approximate measure for the shear power loss, since shear loss is proportional to bearing

surface area and both measures are normalized by the cross sectional area. This works

because the bearing has to be designed for a certain load capacity or stiffness and then cer-
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tain shear power is obtained depending on the viscosity and the operational speed. It must

be noted that the actual shear power is proportional to the surface area, not the cross sec-

tional area of the bearing. Table 5.1 summarizes the aforementioned non-dimensional

parameters for different bearing geometries [Wasson, 1996]. These bearings all had LID

ratio of one with L=80mm. Each bearing was optimized for initial stiffness which, in

many cases, is the critical characteristic.

Bearings FRI and FR2 are fixed laminar restrictor bearings and bearings SCI trough SC8

are surface self-compensating bearings where the fluid circuitry is outside the bearing or

machined and cross-drilled in shaft. Bearing SC9 is basically the shallow recess bearing

discussed in the introductory section and the SC10 is a self-compensating bearing with all

the surface geometry internal to bearing, that is on the internal surface of the journal. The

gray areas represent areas of larger clearance (grooves).

It can be immediately noted that the shallow recess (groove compensation) design SC9 is

not comparable in terms of these performance parameters. However, if the bearing fluid is

compressible e.g. air, this design eliminates most stability problems associated with com-

pressibility and it is therefore used in air spindle applications. The second thing to note is

that the specific flow rate varies by a factor of 6 depending on the design. The flow rate

indicates the pumping power, but also the bearings ability to carry heat away from the

bearing. Therefore high flow rate is not necessarily an undesirable feature. The specific

stiffness of self-compensating designs is generally better that of the fixed restrictor ones.

The initial stiffness is not better by factor of two, unlike in the Figure 2.2 on page 38, due

to the leakage flows in a real bearing. The load carrying efficiency of the fixed restrictor

bearings are generally better than in the case of self-compensating bearings. This is due to

the fact that more of the total bearing area is carrying load. Any of the designs represented

in Table 5.1 could be the best design for a certain application. However, in general terms,

since the stiffness is usually more critical than load capacity and the difference in load car-

rying efficiency is not very large, the self-compensating designs can be said to have

slightly better performance.
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TABLE 5.1 Non-dimensional parameters for different bearing geometries and types [Wasson, 1996]

Bearing K F Q
FRI 0.856 0.542 57.4

FR2 0.915 0.562 12.1

SCi 1 0.469 50.5

SC2 1.29 0.54 27.7

SC3 1.16 0.487 26.6

SC4 1.01 0.425 7.3

SC5 0.729 0.323 20.2

I I
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TABLE 5.1 Non-dimensional parameters for different bearing geometries and types [Wasson, 1996]

Bearing K F Q
SC6 0.934 0.392 13.6

SC7 1.03 0.453 15.6

SC8 1.03 0.45 8.1

SC9 0.274 0.182 9.6

SC10 1.02 0.337 9.8
(0.723)

Here it must be noted that with design SC10, the angle between the beginning of the

groove and the pocket is not 180'. This results to the displacement and the applied force

not being parallel, but at 450 angle. This makes the K appear larger than it is in general

case. In a situation where only the direction of the load is the critical direction the value in

Table 5.1 is valid. In general situation this value would be 0.723. Similar capability can be

obtained with self-compensating designs SC1-SC8. This additional design parameter
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becomes important when hydrodynamic effects and stability are considered. This is

described in more detail in next sections.

The complexity of the system is considered next. In many journal bearing applications the

bearing has 6 or more recesses to ensure homogeneity that is same load and stiffness char-

acteristics in all directions. In the past the number of recesses was limited by the complex-

ity of supply system and manufacturing costs and therefore 4 recess bearings are widely

encountered. In the self-compensating system the number of recesses is limited only by

the land widths and manufacturing cost, the supply system is same for all number off

recesses. Six is still a good number of recesses, it ensures near optimal performance [Was-

son, 1996] and might be advantageous from the error motion point of view. It is suggested

that if the number of recesses is an even multiple of the number of error lobes in the jour-

nal the radial error motion are diminished [Stansfield, 1970]. Also there is evidence that a

great number of recesses diminishes the error motion, for example in [Sihler, 1998] reduc-

tion of error from part accuracy to bearing error motion by factor of 25 was obtained for a

10" diameter rotary table. However, a rotary table had 20 recesses which is not practical in

most cases for journal bearings, unless air is used the design SC9. Self-compensating

bearings SC1-SC8 all have the fluid circuitry external to bearing. The most convenient

way to accomplish this is to connect the compensator pocket to the load pocket by having

a groove on the outside surface of the bearing. This requires a precision shrink fit that is

fairly strong. It has to be accurate and strong so that the pressurized fluid can not flow to

the neighboring grooves thus creating fluid short circuits, which seriously degrade the

bearing performance. Bearing SCIG does not require this feature since the fluid circuitry is

on the internal surface. This is also very simple design, although manufacturing it can be

difficult, specially in a case of bushing. The manufacturing issue is discussed in detail in

Chapter 6. This thesis solves the manufacturing issue and the design SC1O becomes very

attractive.

The smallest opening in the self-compensating designs is at least two orders of magnitude

larger in area than in the capillary compensated bearings. This makes the clogging prob-
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lems practically non-existent. The SC10 design is again the most attractive since all the

grooves are exposed to the fluid shearing induced by the shaft rotation which makes the

clogging even less probable.

The final thing to consider when comparing self-compensating designs to fixed restrictor

design is the sensitivity to manufacturing errors in the bearing clearance and in the capil-

lary diameter. These errors are the reason for the expensive and tedious tuning that is nec-

essary for capillary compensated bearings. As mentioned in the introductory section the

bearing performance is a function of initial resistance ratio, meaning the ratio between the

inlet capillary resistance to the pocket resistance. Equation 5.4 describes the resistance

ratio normalized by the intended resistance ratio as function of relative manufacturing

errors (error/nominal).

'_ (1+eh)3
(ratio - - - ) 4  (5.4)

where eh is the relative error in bearing clearance and e, in capillary radius. This is plot-

ted in Figure 5.1 with the relative errors ranging from -10% to 10% of nominal values. It is

obvious from the figure that tuning is necessary, because the initial pressure ratio varies

between 0.5 and 2. For self-compensating bearing this parameter is always equal to 1,

which means that in the presence of constant manufacturing error the initial pressure ratio

is always equal to the designed value.
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Initial Resistance Ratio as function of manufacturing errors
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Figure 5.1 Sensitivity of initial pressure ratio to manufacturing
errors

To demonstrate the effect of errors in bearing clearance to the initial stiffness of the bear-

ing the stiffness with manufacturing errors normalized by the stiffness without the manu-

facturing errors are as follows. For capillary compensated bearing

^ 2
K 4(eh+1) (5.5)
K [(eh + 1) 3 + 1] 2

and for self-compensating bearing

K 1 (5.6)
K i+4'+ h

This parameter is plotted as a function of the normalized clearance error in Figure 5.2.

This assumes the initial resistance ratio of one, if any errors in clearance would not exist.

The capillary compensated bearing is slightly more sensitive to small errors but if large

errors exists then the self-compensated bearing becomes clearly superior.
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Effect of Mfg Errors

01
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-- Capillary

\ -U- Self-compesating

g4
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Relative manufacturing error

Figure 5.2 Sensitivity to clearance errors.

In summary the surface self-compensating bearings have generally:

- higher stiffness

- less complexity (parts)

" lower probability of clogging

- higher tolerance against manufacturing errors

- lower ultimate load capacity

Results of this comparison determine that in many cases the self-compensating design is

superior to fixed restrictor design.

In order to decide between the self-compensating designs more specific goals for the

design has to be set. In this work, simplicity, robustness and cost effectiveness are the

main goals along with adequate performance. Of these goals the robustness and cost

become the critical parameters, because simplicity is achieved when the need for the

external compensating devices is eliminated. The most robust of the designs is SC1O

because it eliminates the need for the precision shrink fit thus eliminating the possibility of

unwanted fluid shorts. Also the grooves are exposed to the fluid shearing to keep them

from clogging. Also the design can be manufactured very economically by using manu-

facturing methods described in Chapter 6. Also this design can be manufactured relatively
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easily by machining it to the shaft and was proven to work well that way [Wasson, 1996].

For these reasons the design SC1O was chosen to be manufactured as test bearings in this

thesis. The design aspects of this bearing are discussed in the next two sections.

5.2 Low (laminar) Speed

First the main design parameters of the SC10 design are introduced. The most general first

order design parameters are the diameter, length, clearance, supply pressure and fluid

properties of the bearing. These are the same for any hydrostatic bearing. The second

order design parameters are the resistance ratio ( (inlet/outlet resistance) which deter-

mines the stiffness and load carrying behavior as a function of eccentricity. A specific

parameter for self-compensating journal bearing is the angular position of the load carry-

ing pocket with respect to compensator (y in Figure 5.3). This can be utilized to introduce

cross-coupled stiffness terms, which in general are bad for stability but can be used to off-

set the cross-coupling terms introduced by the hydrodynamic effects. This can also be

used to make the bearing appear stiffer in a certain direction as explained in previous sec-

tion. How these bearing design parameters are related to the bearing geometry, in this par-

ticular design is shown in Figure 5.3.

Resistance Ratio is IRestrictor

defined by these areas

* 0O y ostatic
F ce

Pocket ydrodynamnic
Pocket- Force

Resultant
Force

Figure 5.3 Design parameter relation to bearing geometry
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Laminar speed designs will address a wide variety of operating conditions, which can be

divided into three different groups. First the operating speed in which both the land and

groove areas are laminar. Second the operating speed in which the lands are laminar but

the grooves transitional. Third the operating speed in which the groove areas are turbulent

but the lands are still laminar. The operating conditions where the land flow turns transi-

tional and turbulent are discussed in the next section. The criteria in Table 5.2 can be used

to determine if the land and the groove flow are laminar, transitional or turbulent.

TABLE 5.2 Flow regimes for different bearing regions

Bearing
Region Laminar Transitional Turbulent

Land Re<1600 1600<Re<2400 Re>2400

Groove Re<1000 1000<Re<2000 Re>2000

Where the Reynolds number is defined as

_pVh.

Re - ' (5.7)

where i refers to the land or groove depth.

It is very difficult to define a general design procedure or rules that would be valid in

every situation. However, the following procedure is proposed for the initial sizing of the

bearing. This procedure can be generalized to most design situations. First it is assumed

that the main functional requirement is to be able to carry a given load and/or have a cer-

tain stiffness. To first order following equations can be used

F = FPSLD (5.8)

where F is typical constant for this type of bearing. Typically value F can be used.

The stiffness is
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-PSLD
K = K h (5.9)

where K = 0.7 for a bearing which is optimized for stiffness (initial pressure ratio of

approximately 0.5). If only single sensitive direction exists value K 1 may be used.

The dependence as a function of resistance ratio is shown in

1

0.75

k(() 0.5

0.25

0
0 2.5 5 7.5 10

0 _ 10

Figure 5.4 K as function of resistance ratio

The flow rate is approximately

-nDh3
Q = QPS (5.10)

where Q ~ 10. Next the power consumed by the bearing is estimated. The power consists

of the power used to shear the fluid within the bearing and the power consumed by pump-

ing the fluid into bearing.Also power is consumed when the fluid is accelerated in the

bearing due to the rotation, but this momentum torque can be neglected in most cases

[Bassani, 1992]. It can become notable in very high speed cases and will be discussed in

the next section when turbulent design are explored. A first order estimate for the shear

power is that of shearing between two concentric rotating cylinders with fluid film sepa-

rating them:
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1 LD3 w 2

Ph (5.11)

The pumping power is

P = PSQ (5.12)

These provide enough relations to set up the design problem. The shear power estimate is

very crude and should only be used for very rough calculations. It works best when the

bearing rotates very slowly. In order to estimate the power consumption more accurately,

the bearing is divided into two regions, the lands and the grooves. The shearing power

consumed by the land areas is derived directly from equation 5.11 and is

1 W02D2

tIh = h Aland (5.13)

where Aland is the total area of land regions. This relation holds for speeds where the land

flow is laminar. The flow in the grooves and recesses can be modeled as cavity flow if the

recess depth is at least 10 times the clearance. In cavity flow the fluid circulates within the

recess and therefore the velocity gradient, which determines the shear, is no longer linear.

Also, the flow becomes turbulent even at relatively slow operating speeds due to the

higher clearance. In order to conveniently characterize such flow conditions friction fac-

tors are used. These friction factors are non-dimensional parameters and are defined as

fr = T (5.14)

-p V2

where V is the surface speed of the moving member. The power consumed by the recess

areas becomes

P,r = fr p V3A recess (5.15)

Here the power will be defined as
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fr* pV 3 Arecess I 0 2 D 2

ecess Re 8r h Arecess
p r

The total friction power becomes

P ,,, = P + PTland

1 _2D2__

1 h Aland +
I h

--fr*A recess)
r

where the friction factor is [Wasson, 1996]

0 < Rep < 1000

1000 < Rep < 200

Re p > 2000

fr* = 8 1 + 2.76(tj [

0 fr* = 0.0088Rep{ 1

f.* = 0.047ReO.774 1 +

1 + 0.00135Re 1-09 C0.21}

In I + 2.7lRe-0.134 3.5Re- 0131

In I + 2.71Re-0.134( h) 3.5 1_ReP_ 0 1
3 1

h
where the - is the depth to length ratio of the grooves. To simplify expressions the equa-

tion can be written as

I W2 D 2

' ,0, =4 11 h A* (5.19)

where A* is a equivalent friction area. The total power loss is the sum of friction and

pumping power

Ptot = P ,,,+P = (1+ H)P2Q EDh(i i~2L

where H is the power ratio (friction power/pumping power).

P _to 3g 2W2 DLA*
H - - -> h

Pp p2Qi7h4

By substituting p into equation 5.20 the total power becomes

(5.16)

(5.17)

(5.18)

(5.20)

Psh2  hi-i

( 3DLA*
(5.21)

108 DESIGN
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P = +H)P Dhl DQA*(5.22)
' 'fjl 48L

Equation 5.22 is minimized with power ratio equal to 1. This cannot always be obtained

and higher power ratios are regularly encountered. In general, higher the speed higher the

power ratio. Another important factor when minimizing power is A*. This is dependent

on the recess areas and depths. When the operating speed becomes high it is advantageous

to minimize the recess area. This can be done by removing the central land area of the

main recess as shown in Figure 5.5.This also improves the damping characteristics of the

bearing.

L1h'ri i
Figure 5.5 Removing central lands to improve high speed frictional characteristics

Now the design problem can be stated the following way:

min(P,0 ,) w.r.t L, D, Ps, pi, h (5.23)

subject to constraints

L
F F, K K, 1, h > hmin (5.24)

In general the clearance should be minimized, but it is subject to practical constraints,

namely the accuracy it can be manufactured economically. There also exists standards for

the minimum oil film thickness in hydrodynamic bearings and these minimum thicknesses
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can also be applied to hydrostatic bearings. Table 5.3 presents these minimum film thick-

nesses in pam as they are in DIN 31652 standard [Kivioja, 1996].

TABLE 5.3 Minimum film thickness for different bearing sizes and surface speeds

Surface Speed V (m/s)

Diameter
(mm) <1 1 < V 3 3 < V 10 10 < V 30 >30
24...63 3 4 5 7 10
63...160 4 5 7 9 12
160...400 6 7 9 11 14

400...1000 8 9 11 13 16
1000...2500 10 12 14 16 18

Also when selecting the pumping power, practical considerations must be taken into

account such as reasonable cost pumps and safety. Also the maximum surface pressure

allowed by different bearing materials must be considered and it must be kept in mind that

the bearing pressure can, in some situations, reach higher values than the supply pressure.

DIN 31652 standard describes the maximum allowable surface pressures for different typ-

ical bearing materials as shown in Table 5.4. The values in parenthesis can used with very

small surface speeds and other special cases [Kivioja, 1996].

TABLE 5.4 Maximum allowable surface pressures for different bearing materials

Maximum Surface
Bearing Material Pressure (MPa)

Pb- and Sn alloys 5 (15)

CuPb-alloys 7 (20)

CuSn-alloys 7 (25)

AlSn-alloys 7 (18)

AlZn-alloys 7 (20)

Once the minimization is done the temperature rise of the oil should be checked. This can

be done by [Bassani, 1992]
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P P
AT- = =-i(1+I)

Qpc PC

111

(5.25)

For most mineral oils pc ~ 1.6 - 106 J/n 'C. In order to use the equation 5.22 values for

the effective shear area A* are needed. In Figure 5.6-Figure 5.8 normalized values for A*

are plotted with the bearing diameter as a parameter for a typical bearing. These values

can be generalized for the most cases for the bearings with the central pocket lands. The

values are normalized by the total bearing surface area ntLD.
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Figure 5.6 Normalized A* for laminar flow

In this case the recess depth to clearance ratio was 30 with clearance of 25 pL m. The Rey-

nolds number figures refer to are the recess Reynolds number. The values of friction fac-

tors (and therefore the A*) do not change discontinuously between the different flow

regions in physical world, like they do in Figure 5.6-Figure 5.8. Therefore, if the Reynolds

number is close to transition the values obtained can be inaccurate and should be used

with care. However, these factors yield good results, as will be seen in the end of this sec-

tion.
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For the above discussion a smooth bearing surfaces were assumed. This assumption is

valid when estimating the friction power because the friction factors do not vary very

much with Reynolds numbers remaining less than 30000. In addition, only the flow in the

grooves is turbulent and the relative area of the grooves is small compared to land area.

Also the lands areas are smooth.
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As the land area with lower clearance is increased (as in Figure 5.5) the hydrodynamic

effects can become important. The basics of hydrodynamic pressure formation were intro-

duced in Chapter 4 for different boundary conditions and approximations. Here the valid-

ity of those approximations as applied to grooves surface self-compensating bearing are

considered.

In this type of bearing, the surface is interrupted with grooves which lessens the hydrody-

namic pressure formation. In order to evaluate when the hydrodynamic force starts to have

an effect the following analysis is performed. The force analysis is simplified to first order

case assuming that the bearing can be modeled approximately by Couette flow between

two converging plates. The force of that simplified case is then compared to similar case

in which the plates are interrupted by grooves in which the pressure is known (=0).

Figure 5.9 shows schematically the situation. This ratio can then be used together with

force analysis from Chapter 4 to estimate the effect of hydrodynamic pressure formation.

continuous film

interrupted film

hi __
h2

Figure 5.9 Pressure formation in converging gap

The Navier-Stokes equation simplifies in this case to

2
_ _ - ldp (5.26)
ay 2  gdx

+u(0) = -U, u(h) = 0

This is integrated to obtain velocity
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u(y) = (y2 - hy)+ U - 1)

This then integrated over the gap and solved for the pressure gradient

h

Q = u(y)dy=> f

0
(5.28)= 3 Q+ I U

By using a chain rule

dp dpdh
dx dhdx

dp
dT (5.29)L

By substituting 5.29 into 5.28 and separating variables and integrating with boundary con-

ditions p(O) = p(L) = 0 the flow rate is obtained

h- h2 

hi +h2
(5.30)

By substituting 5.30 back into 5.28 and integrating from 0 to x the following relation for

the pressure is obtained

p(x) = 6(h - h )(h - h2)h2 (h- - h 2)
(5.31)

By integrating once more the resultant force is obtained

L

F = Jpdx

0

1 h_ 2

- 6p UL 2  Ink-
h2(k- 1)

k + I (5.32)

Now the force is derived for the same case except that the plate is divided in to n sections

as shown in Figure 5.10.

(5.27)
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1

hi h 2
I I h2

Vf
Figure 5.10 Converging gap divided into sections

The h1 for each segment is

h = hi (k (k-1)

The length of each segment is

The ratio k becomes

where i is the index of each segment starting from h2

case becomes

F=

The total resultant force for this

(5.36)

Now the ratio between the forces is

(5.33)

LS L
n

k - (i 1)(k - 1)
n

k - i(k- 1)
n

(5.34)

(5.35)

6 tUL 2  s 2 n (k __)-2(

n2(ks - 1)h2 k - i(k - 1) k +1
I ( n
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F n 2(kS - 1) kS (kS n1) Ink- 2

ratio S (k- 1) (s
-n (k )-2(k s

k + 1

This is function of

in Figure 5.11.

only k and n. This is plotted for different values of n as a function of k

Fratio(k, n)

Fratio(k, 3)

Fratio( k, 4)

Fratio(k, 2)

Figure 5.11 Ratio
namic force

between uninterrupted and interrupted hydrody-

Typically this should be evaluated with k=2 and n= #pockets/2. The k value corresponds

approximately to an eccentricity of 0.5 which can be considered as maximum eccentricity

for most cases. The value of n comes from the cast that the hydrodynamic pressure forma-

tion zone is interrupted approximately that many times. For a 6 pocket bearing the

Fratio = 22 is obtained. Now this value should be used to divide the hydrodynamic force

derived in Chapter 4 in order to obtain an estimate of the hydrodynamic effect. This yields
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W = FLa ) (j E2 2[16E2 + C2 (1 - E2 ]1/ 2  (5.38)
F ratio L ) 2 I E2)

-> W ~ (0.14 - LR ) 2

when E = 0.5

Now it is of interest to find a limiting value for operating speed or viscosity when the

hydrodynamic effect becomes significant. Usually the viscosity is the free design variable

since the operating speed is fixed in most cases. The easiest way to do this is to substitute

values into equation 5.38 and compare the values obtained to the hydrostatic force values.

This problem is not well posed since the hydrostatic force can be altered by altering the

supply pressure. By setting the power ratio to a certain value, a closed form solution to the

hydrodynamic force can be obtained. Values for power ratio, which have yielded good

results in the past vary between 0.5-4 [Bassani, 1992]. By substituting the viscosity from

equation 5.21 into equation 5.38 the following formula for the hydrodynamic force as a

function of power ratio is obtained

W0.14PL 2  Q (5.39)

where A** is the A*/(nLD) for which a value can be obtained from Figure 5.6-

Figure 5.8. This relation shows that the hydrodynamic effect is proportional to square root

of the power ratio. As an example, a upper limit for the power ratio (II = 4) is chosen

[Bassani, 1992]. The ratio between hydrodynamic and hydrostatic forces for bearing with

typical geometry (L/D = 1) becomes

W = 0.0175 1 1 < 0.2 (5.40)
Fstatic F3inA**

This suggest that the hydrodynamic force will not exceed 20% of the hydrostatic force in

any case for eccentricity of 0.5 unless the power ratio becomes very large. In [Bassani,
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1992] it is suggested that the power ratio should be <3. To test the statement of equation

5.40, two example cases are evaluated and described next. First a case where the power

ratio is close to 0.5 and then a case where the power ratio has an extreme value of >30.

The latter case is used just to make the hydrodynamic force significant.

In order to evaluate the effect that the hydrodynamic pressure formation has on the bearing

performance, a 2.35" bearing is analyzed. The main dimensions of this bearing are sum-

marized in Table 5.5.

TABLE 5.5 Main dimensions of 2.35" bearing

Dimension Value

D 59.7 mm

L 55.8 mm

h 0.0305 mm

Ps 3.5 MPa

pt 0.0011 Pa s

p 995 kg/m3

N 10 000 rpm

First it is analyzed for static conditions (0 rpm) and then with rotational speed of 10 000

rpm which corresponds to Re = 850 at zero eccentricity in the clearance and

Re = 12750 in the grooves. By comparing these results the effect of the hydrodynamic

pressure formation can be determined. Bearing was also analyzed without supply pressure

in order to obtain a pure hydrodynamic pressure distribution. The coordinate system used

is shown in Figure 5.12.



Low (laminar) Speed 119

y

x

I * Fr

Figure 5.12 Coordinate system for the 2.35" bearing
results

The results for the different cases are summarized in Table 5.6.

TABLE 5.6 Summary of the computed results

Hydrostatic and
Only hydrostatic hydrodynamic Only hydrodynamic

0 rpm, Ps=3.5 MPa 10 000 rpm, Ps=3.5 MPa 10 000 rpm, Ps=0 MPa

Eccentricity Fr (N) Or Fr (N) Or Fr (N) 0,.
0.1 710 44 650 40 18 -110
0.3 1920 46 1750 42 100 -85
0.5 2850 47 2570 42 200 -73
0.7 3420 47 3040 38 415 -53
0.9 3700 48 5060 12 3360 -18

The difference in force between rotating and non-rotating cases

Even at relatively large eccentricity of 0.7 the difference is onl

expected since the power ratio is low. In Figure 5.13 the bean

is very small as expected.

y about 10%. This can be

ng pressure distribution is

shown for rotating and non-rotating case with eccentricity of 0.5. As can be seen there is

hardly any evidence of hydrodynamic pressure formation.Also it must be noted that the
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hydrostatic pressure is slightly less than in real situation due to the numerical problems

having grooves as deep as they are in real manufactured bearings. This was discussed in

more detail in modeling section.

Non-rotating rotating (n=10 000 rpm)

Hydrodynamic
effect

Figure 5.13 Pressure distribution for the grooved and plain bearing with supply pressure (E = 0.5)

In order to get better idea of the purely hydrodynamic effect and to illustrate that the

grooves interrupt the pressure formation, the bearing was analyzed without supply pres-

sure. In Figure 5.14 the pressure distribution of the self-compensating bearing without the

supply pressure and plain bearing are shown at 0.5 eccentricity. The highest pressure of

the plain bearing is an order of magnitude greater than in the case of the grooved bearing

(note the different scales for the pressure in Figure 5.14). In Figure 5.15 the force versus

the eccentricity is plotted for the hydrostatic, plain hydrodynamic, hydrostatic without

supply pressure and the short bearing approximation from Chapter 4. The short bearing

approximation is able to predict the plain bearing force fairly well at low to medium

eccentricities. Graph also shows how insignificant the pure hydrodynamic effect is for the

grooved bearing, which is consistent with the F ratio derived earlier. In Figure 5.16 the

force given by the short bearing approximation is divided by the Fratio and compared

with the finite difference results. Furthermore, at low eccentricities, the hydrostatic bear-

ing load is higher than for the plain journal bearing, which shows why hydrostatic bearing
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is advantageous in precision applications. It should also be mentioned that the plain bear-

ing is unstable at very low eccentricities (<0.01).

Grooved Bearing Plain Bearing

Figure 5.14 Pressure distribution for the grooved and plain bearing without supply pressure (E = 0.5)

Bearing Force vs. Eccentricity
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Figure 5.15 Bearing force for different 2.35" bearing cases
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Figure 5.16 Hydrodynamic force of the grooved bearing and the short bearing approxi-
mation divided by the Fratio

Only at very large eccentricities (-0.9) does the hydrodynamic effect become important.

Surprisingly the force of the non-rotating bearing is larger than in the rotating case for

most eccentricities. This is due to two effects; first the fluid is pumped back towards the

restrictors when bearing is rotating. This acts as extra restrictor hydraulic resistance,

which lowers the load and stiffness. In other words it makes the ( larger than intended.

Another effect is the pressure rise in the restrictors due to this effect. The groove end acts

as an step bearing creating pressure step, which can be considerable at high speeds. How-

ever, this effect is almost symmetric and therefore does not contribute to load when inte-

grated over the journal. This effect will be discussed in more detail in the next section.

Here the stiffness and load capacity loss are mainly due to the added hydraulic resistance

due to rotation.

For this case the hydrodynamic effect was very small as expected. In Table 5.7 the finite

difference results are compared to the results from the first order approximations derived

in this section for the bearing modeled above. The differences are very small and by taking

into account that the load and stiffness calculated by finite difference are slightly smaller

than real, for reasons explained in modeling section, the errors are reduced even further.

200-z

150
-- Finite Difference

--- Short bearing/Fratio
0

0.100

50.

0

0 0.1 0.2 0.3 0.4 0.5 0.6

Eccentricity
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The only significant difference is in the W This is partly due to fact that the power ratio

used to calculate W is calculated at zero eccentricity and the hydrodynamic force is esti-

mated at 0.5 eccentricity. However, this does not matter since the intention is to determine

only if the hydrodynamic force is significant.

TABLE 5.7 Comparison between finite difference computed and derived estimated values

Finite
Property 1st order estimate Difference Difference

KF = 264 N/(tm) 233 N/(pm) 13%

FE = 0.75 3830 N 3500 N 9%

Q 14.9 1/min 16.7 1/min 11%

Pp 860 W 960 W 10%

P 406 W 403 W 1%

IF 0.47 0.42 11%

W 130 N 200 N 35%

Next a bearing with a power ratio of approximately 38 is presented. This power ratio is

very high and should be avoided, if possible. The power ratio is increased by increasing

the viscosity to 0.012 Pa s. It is presented here to illustrate what type effects the hydrody-

namic pressure formation has. Figure 5.17 shows the pressure distribution for this case.

Now the typical hydrodynamic pressure formation is clearly evident. Also it should be

noticed that the hydrodynamic effect severely reduces the hydrostatic pressure in the

diverging part of the bearing. This is very detrimental to the bearing behavior and can lead

to instability by introducing large cross coupling stiffness terms. Here the pressure build

up along the grooves is also evident which further reduces the bearing performance.
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Figure 5.17 Pressure distribution for a bearing with high power ratio (38) (E 0.5)

In this case the bearing power ratio can be reduced by removing the central land regions in

the pocket, because even the groove flow is laminar. Removing the central lands and

therefore making the pockets deep will reduce the power ratio to about 25. Figure 5.18

shows the pressure distribution for this case. It is clear that the typical hydrodynamic pres-

sure distribution is removed and more even pressure distribution is obtained and the bear-

ing is more stable. However, the pressure build up along the grooves is still evident. It can

be concluded that for higher power ratios the possibility of the hydrodynamic pressure for-

mation should be minimized by removing the bearing lands. Depending on the Reynolds

number in the grooves, the friction can either go down (laminar) or up (turbulent) there-

fore changing the power ratio.
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Figure 5.18 Pressure distribution for a bearing
removed

with high power ratio (25) (E 0.5) and central lands

In order to test the hypothesis that higher power ratio alone determines if the bearing

works, the viscosity for the bearing with lands removed is increased to obtain higher

power ratio. Viscosity is increased to 0.019 Pa-s and the power ratio becomes approxi-

mately 40. Figure 5.19 shows the pressure distribution in this case. Again the hydrody-

namic pressure formation is absent, but the pressure build up in the grooves is very high.

In fact, the pressure goes to zero for the converging section of the bearing and the restric-

tor pressure for one of the grooves becomes higher than the supply pressure thus reversing

the flow on that part. The zero pressure zones should be avoided, because the oil film will

break down, dirt can be sucked into bearing and instability can occur. It is concluded that

the bearing behavior is undesirable for higher power ratios, but the power ratio alone can

not determine if the bearing will work or not due to the pressure build up effect in the

grooves. Removing the central lands allows higher power ratios but care should taken to

analyze every situation if the power ratio exceeds a value of 4.

125
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Figure 5.19 Pressure distribution for a bearing with high power ratio (40) (c 0 .5 ) and central lands
removed

As mentioned earlier, the pressure build up along the grooves is a separate effect from

hydrodynamic pressure formation and therefore the power ratio can not be successfully

used to determine if this effect will be detrimental to bearing behavior. Here a separate

non-dimensional variable is derived, which can be used to determine if the pressure rise in

the grooves is significant. The surface groove can be thought as a simple step bearing

shown in Figure 5.20. It must be noted that here the intention is only to derive a non-

dimensional variable, not solve for exact pressure distribution in the groove and therefore

such gross simplifications are justified.

Similarly as in the case of flow between converging plates a pressure distribution can be

derived for the case in Figure 5.20. The pressure becomes [Pinkus, 1961]

6 U h2 1lh2 + L2)
p(x) = _ I - 22 I x, for part L1  (5.41)

h L L h+L 2 h0

6pU hl(2)(lh2 +L L2)
p(x) = 2 h2 - 1 x, for part L2h L h3+L 2 h3
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p

x

Figure 5.20 Simple step bearing

Here the analysis can be limited to the first equation only, which represents the pressure

build up in the groove. This can also be written in form

~LI h, 2-
+

p(x) - I -[ L2 2)1x (5.42)
h2 L1 h 3

- L2 h2_

The coordinate x represents the groove length which is some fraction of the bearing cir-

cumference. Also the groove depth is some multiple of clearance. Now equation 5.42 can

be written as

~LI h 2-
+ +

6pU L2 1)UD
P = 6 I -2 aD = (5.43)

h 2 LI h 3 h2
I +

- L2 h2)

where ; is a number which is a function of geometry only and does not change greatly for

different bearing sizes and can therefore be discarded. What is of real interest is the rela-

tion of the pressure build up in the groove to the supply pressure of the bearing. Therefore
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the result of the equation 5.43 is non-dimensionalized with the supply pressure P,. The

following non-dimensional parameter called pumping ratio is obtained

S= t UD pco>D2 (5.44)
h2P 2h 2 pS

By varying this parameter it was determined that pumping ratios less than 6 yielded

acceptable results with certain safety margin and pumping ratios greater than 10 are very

unlikely to work. In between 6-10 care should be taken and each design should be ana-

lyzed. For example the pressure distribution of Figure 5.19 is 11.3. The pumping ratio in a

case presented in Figure 5.18 has pumping ratio of 7. It can be noted that the pressure

build up noticeable but not yet detrimental.

5.2.1 Summary of Laminar Design Issues

In this section formulas for estimating bearing performance were derived and compared to

numerical results obtained with finite difference computations. These initial estimate for-

mulas can be used to estimate the bearing behavior fairly accurately. Parameters called

power ratio and pumping ratio were introduced and used to analyze the bearing behavior.

Namely, the effect of hydrodynamic pressure formation and pressure build up in the

grooves respectively. It was concluded, that at normal [Bassani, 1992] power ratios

(I< 4) the hydrodynamic effects are very small and can safely be ignored. Most situa-

tions fall into this category. For power ratios between 10 and 20 the bearing can work with

lands removed and for power ratios over 25 the bearing should not be used. For power

ratios 6-10 the bearing design should be analyzed carefully.

5.3 High Speed (Turbulent)

As the operating speed increases, at some point the flow on the bearing lands becomes tur-

bulent. Usually the viscosity has to be decreased as the operating speed is increased to

lower the shear power consumption. This results to earlier transition to turbulent flow. In

general, turbulence should be avoided if possible. The shear friction increases more rap-
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idly once turbulence is introduced and the bearing behavior is more difficult to predict

accurately.

When the flow on the lands turns turbulent can be determined by Taylor number. It is

defined as

NTa = Re (5.45)

The flow between two concentric cylinders is laminar when NTa < 41, transitional when

41 <NTa <63 and turbulent when NTa> 63 .For typical hydrostatic clearance-radius

ratios the first transition occurs at Reynolds numbers above 1000 and the second transition

around 2000. For small clearance-radius ratios the friction factors are [El Telbany, 1982]

0 <Re< 1600 21 = (5.46)
Re

1600 < Rep < 2400 = 0.00125

12

Re p> 2400 f 1 0.182
2 lo2 Re

These factors can be used in equation 5.17 to estimate the bearing power consumption.

When bearing is designed to operate in turbulent conditions it is natural to try to see if the

same design that worked very well under laminar conditions would work in turbulent flow

regime. A relatively small diameter (25 mm) and very high speed bearing (100 000 rpm)

will serve as an evaluation bearing for the high speed turbulent design. Major bearing

parameters are shown in Table 5.8
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TABLE 5.8 Dimensions of 100 000 rpm bearing

Dimension Value

D 25 mm

L 25 mm

h 19p m

PS 7 MPa

0.0009 Pa s

P 995 kg/m3

N 100 000 rpm

The Reynolds number for this bearing is approximately 2750

position. The pressure distribution is shown in Figure 5.21

in land regions at concentric

Figure 5.21 Pressure distribution for a high speed (100 000 rpm) bearing E = 0.5

There is evidence of hydrodynamic pressure formation, but the most detrimental thing is

the very large pressure rise in the grooves which causes the pressure to become zero in two

of the pockets in the diverging section. This bearing is unstable and contains zero pressure

zones. Removing the central lands does not help the situation significantly. Zero pressure

zones can be removed by increasing the initial pocket pressure by increasing the pocket

130 DESIGN
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outlet hydraulic resistance. However, these measures are not sufficient in this case and the

bearing can not be made to operate with the parameters described in Table 5.8. The previ-

ously described pumping ratio can not be applied to turbulent land flow because the wall

friction significantly increases as the flow turns turbulent. This causes the pressure rise to

become very large in the grooves for almost any situation. Therefore the use of this type of

bearing with turbulent land flow is not recommended. Another option, which is attractive

in this case since the Reynolds number is relatively close to the laminar region is to try to

move the land flow into the laminar flow regime. This can be done by decreasing the

clearance and increasing the viscosity. The surface velocity is approximately 130 m/s and

from Table 5.3 the minimum allowable film thickness is 10 p m. The clearance should

allow for eccentricity without minimum film thickness constraint being violated. In this

case the bearing is to operated at low eccentricities, so 15 g m clearance is selected. This

allows for 0.3 eccentricity without violating the minimum film thickness constraint. In

order to make the land flow laminar a minimum viscosity of 0.002 is needed. Here a vis-

cosity of 0.0025 is selected. Figure 5.22 shows the pressure distribution for this case. Pres-

sure field is calculated at eccentricity of 0.5 in order it to be comparable to the previous

case.

The pressure distribution is more even and the hydrodynamic effect is significant as can be

expected since the power ratio is very large H = 70. The pumping ratio W = 5 is in safe

region. By removing the bearing lands the hydrodynamic effect can be minimized making

the bearing more stable, but at the same time load capacity, stiffness and damping are

decreased. The summary of the results for the laminar 100 000 rpm bearing is represented

for the central land, removed central land, and turbulent design case. Only the laminar

cases work in this situation and between them there is a trade of between stability and load

capacity and stiffness. It should be noted that these results are for a single bearing. In most

applications bearings are used in pairs.
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Figure 5.22 Pressure distribution for laminar design at 100 000 rpm E 0.5

TABLE 5.9 Summary of different high speed cases (100 000 rpm)

Measure w/o Central Lands Central Lands Turbulent

Force (N), 120 150 155
E = 0.1

Force Angle( 0 ) -41 -51 -110

Pumping Power 90 90 410

(W)
Shear Power (W) 5400 5760 6650

Stiffness (N/m) - 5 65.5 5.6 -.107 6.6 10 * 107 -0.2 8 - 107
-4.7 5.6 -9.4 8.4 -7.9 0.1

Damping (Ns/m) 2.3 0 -.104 2.9 0 - 104 1.5 0 - 104

0 2.3 -0 2.9 -0 1.5

Critical Mass 10.9 6.9 Unstable

(kg) I I I _I

In the case described above, it was possible to make the flow on the lands laminar, if this is

not practical it is suggested that these exposed groove bearings should not be used. There-

fore other designs are suggested. These design are to be used in turbulent land flow which

X A
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is very rare and special situation and therefore it can be accepted that the simplicity of the

previously described design is lost to obtain acceptable behavior. Since the grooves that

connect the restrictors to pockets on the surface are the root of the problem, the most natu-

ral solution is to remove them. If the grooves are removed, the compensation has to be

either achieved by external devices such as orifices or capillaries or the connecting of the

restrictor pockets to load pockets has to be achieved some other way. This can be done by

machining the grooves on the external surface and drilling trough the bearing body to con-

nect to the pockets. This bearing is then precision shrink fitted into a bore.

Before it was concluded that the grooves should be removed, a number of different

grooved designs were tried. Designs included: higher initial pressure ratio, removed cen-

tral lands, reversed rotational direction and different combinations of these. These design

changes failed to yield acceptable performance.

Self-compensation was chosen as the compensation method in order to keep the bearing

monolithic without external restricting devices. The first bearing analyzed is the bearing

SC5 in Table 5.1. This type of bearing is close to a traditional hydrostatic bearing with

deep pockets and small land area. Bearing flow rate is relatively high which is desirable at

very high speeds for cooling purposes. Bearing dimensions are the same as in Table 5.8.

The pressure distribution is shown in Figure 5.23.

The recirculation pressure gradient is evident in this case causing the trailing edge of each

pocket to have higher pressure. This bearing works well at high speeds and is stable. Only

drawback is higher shear power due to the relatively large deep recesses. Results are sum-

marized in Table 5.10.
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Figure 5.23 Pressure distribution for SC5 design at 100 000 rpm E, 0. 1

In order to minimize shear power the pockets can be made smaller in size. This will result

in a smaller hydrostatic forces, but depending on the specifications it can still be used. By

removing grooves in between the pockets the shear power and flow rate can be reduced

further (design SC6 in Table 5.1). This also has an effect on hydrodynamic pressure for-

mation which becomes more significant which is evident from the increased load capacity.

No visual evidence of this formation can not be seen in pressure distribution.

As can be seen from the Table 5.10 the large recess bearing has the highest shear power

and the small recess the smallest. The small recess bearing without the drainage grooves

has the highest load capacity due to the largest hydrodynamic effect and larger high pres-

sure areas. The typical hydrodynamic pressure distribution is not clearly evident only by

looking at the pressure distribution as can be seen from Figure 5.24, but can be noticed by

observing the pressure in between the recesses. The trade off is in stability. The cross-cou-

pling stiffness terms are clearly larger in the case of the small recess bearing which is evi-

dent from the large load angle. Unfortunately, due to the special technique (see modeling

section) used to model these type of bearings where the oil film is non-continuous but con-

tains fluid paths outside the bearing bore reliable stiffness numbers were not obtained.

Therefore stability could not be calculated. By using engineering judgement it can be
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stated that the large pocket design is most likely to be most stable and the small recess

without drainage grooves the least stable. Although the small recess bearing has the high-

est damping. Also the initial recess pressure rises more for the small pocket designs than

for the large pocket design.

Figure 5.24 Pressure distribution for SC6 small recess design at 100 000 rpm. , = 0.1

It should be noted that all the results based on the finite difference method are subject to

certain possibility of errors. The bearing behavior change when the land flow becomes tur-

bulent is not as sudden in reality as the computational results indicate. These possible

errors are explained in more detail in the modeling section.
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TABLE 5.10 Summary of the high speed designs (100 000 rpm)

IiLII1EZ" rU7"r777
small recessSC5SC5

Measure

Force (N), 315 180 340
E = 0.1

Force Angle (0) 10 -29 -73

Pumping Power 700 430 350

(W)
Shear Power (W) 8470 7480 6440

Pp/Ps @ 0 rpm 0.3 0.3 0.3

Pp/Ps @ 100 000 0.5 0.55 0.58
rpm

Damping -0 .8 0  - - ~ 4

(Ns/m) 0. . 104 1.3 0 -104 3.7 0 -1 4

L 0.9 0 1.4j 0 3.9

5.4 Adjustable Clearance and Shape

In some cases it might be desirable to adjust the bearing clearance. One reason is that if the

bearing can be adjusted slightly the manufacturing tolerances can be loosened. Also in one

special application, namely a steady rest for large lathes and grinding machines a adjust-

able clearance is necessary. Since the machining operation removes material and therefore

makes the diameter of the machined part smaller the bearing clearance has to be adjusted

to keep stiffness and flow rate constant or nearly constant.
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First, a displacement relations are derived for two concentric cylinders with different

internal and external pressure with different material properties. Also the diameters are

different. These relations are also useful in determining displacements and stresses for

shrink fits, which are often used to hold the bushing in a housing. A convenient starting

point for deriving these relations is the Naviers displacement equations of motion [Malv-

ern, 1969]

(X+ pt)(V(V9u)) + pV 2u+pb = pa (5.47)

+Boundary Conditions

where X and g are the Lame constants. By assuming plain strain and radial symmetry

(uQ = u, = 0) and negligible body forces in static case the equation 5.47 simplifies to

2
d u Idu u
dr +rr r2

0 (5.48)

where u = u, This relation can also be derived easily from the equilibrium of a infinites-

imal radial section. Equation 5.48 has solutions of the form

C2
U = C r+ 2

r
(5.49)

where C, and C2 are constants which can be

strains are

au C 2  U
r r 1 2' F0=rorr r

Hooke's law relates the strains to the stresses.

sented in tensor notation

'3 ii = AFkk8 i]+ gg

determined from boundary conditions. The

C2
- Cl +2 Er = 0 (5.50)

For convenience the general form is repre-

(5.51)
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In the case of plain strain and in radial co-ordinates the stresses become

= 2C)X +2GC 1 2GC 2
r Ir

2GC2
= 2C 1X+2GC 1 + 2

0 11 r2

(5.52)

TrO = 0, z = 4Civ(X+G)

First the stresses and displacements are derived for a single cylinder with internal and

external pressures. This situation is shown in 5.25

PO

7.- --
Figure 5.25 Cylinder with internal and external pressure

a,(r) = 1 - C2 + V C1 + - -pi
-V2 r ri

E C2 C2(,.(ro)= - C1 2 +V C1 + -- p0
1-V2 r2 ro2

(5.53)

138 DESIGN
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Solving for C, and C2

C = 1 V ripi-ropo (5.54)
SE r2 - r

1 +v r r2(pi-po)
C2 = 102r2 E ro-rI

The displacement is

1vr pi - r2 PO + V r~r2(pi -p) I
u(r) = vr 2 0 r + 1 + 2 (5.55)

E r2 -r2 E r2-r; r

and the stresses are

= ('~pi~~PJ' r~r(p-p 0 )i

_r -ro 9 r 2 -r2 _ 2  (5.56)
r r2 -r2 r2 -r; r2

0 i0 1

Sr pi-r pJ~ r r(pi-po)i

r-r r3-r r2

0 = 2 - r2 r- o rrep - r2
0 r0

If the ends of the cylinder are free to move the stresses in longitudinal direction vanish i.e.

CTz = 0. It is of interest to know what is the maximum possible displacement that can

imposed on the internal diameter of the cylinder. This a function of the material properties

and the cylinder size and the internal and external pressures. For ductile material the max-

imum shear stress hypothesis can be used as a failure criteria [Ugural, 1987]. For this case

the failure criteria is

tmax C 0 (cTo r) CTfailure (5.57)

The failure will occur at the internal surface, in which case the criteria yields
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Pi-P, Pi-PO
2 _ failure (5.58)

1--

where g is the ratio of internal and external diameter. By inserting 5.58 into 5.55 at internal

surface the following relation for the displacement is obtained

u(rE) = [faure [ -V) I +(I+v)r] (5.59)

where P is the ratio between external and internal pressure. By letting the internal pressure

to approach zero, or by noting that in order to impose displacement to internal surface the

difference between internal and external pressure must be large, equation 5.59 becomes

u(r) = faiure[(I -v)+(1+v)ri] (5.60)

For typical materials the yield stress over the Young's modulus is approximately 1/1000

and Poisson's ratio is approximately 0.3. This lead to approximate maximum displace-

ment for typical bearing sizes of

Umax 0.75 r (5.61)

This shows that the clearance can be changed, at maximum, about the order of clearance

for typical bearing sizes.

Next the displacements and stresses are derived for the case of locational or shrink fit.

First a displacement of internal surface of a cylinder with internal pressure is

p*r( ;rh2; +r2
'L *r = r 2 +V (5.62)

Ell riii - rH;O

This is the displacement of the inner surface of the outer cylinder. Next a displacement of

the inner cylinder interface surface is
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____- ____p*r, rAi + r 0  (5.63)
10 _r - 1)~Io= 1 

1 \ 0 I

where p* is the interface pressure. The sum of displacements is equal to the interference

specified by the type of fit selected

Iu oI +| = 6 (5.64)

Substituting equations 5.62 and 5.63 into equation 5.64 and solving for p*

- I r 'r 1i + r 12I r,2ig + r21
P *A r Ho1+ -l (5.65)

p* r r 2-2 - I + E 2 2 +H; (.5rI _EI rrI 1 -_ ro 1 rA;; - r 0

Once the interface pressure is known the stresses can be solved to make sure that shrink fit

does not yield the material. This will not happen if the interference values are obtained

from tables provided by ANSI and ISO standards for example in [Oberg, 19961. What is

more of interest is the displacement of the internal surface due to the shrink fit, since this

determines how much material has to be removed to obtain the specified internal diameter.

In some cases it might be acceptable to machine the bearings before fitting them to hous-

ing. In this case the clearance would be smaller than intended by amount of this displace-

ment assuming it was at the intended value before fit. The displacement of the internal

surface due to fit is

2p*rIori. (5.66)
EI(ra - r2)

If the bearing clearance is to changed this must be done by forcing the outer surface of the

bearing assembly. To calculate the displacement of the internal surface the same approach

that was used earlier can be used. Namely, having constraint that the interface surfaces

must remain in contact and therefore have the same displacements. The interface pressure

is taken to be the unknown and solved for. The stresses obtained must be added to the

stresses caused by the interference or locational fit.
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The above analysis is for idealized case of smooth cylinders under plane strain. It does not

take into account stress concentrations caused by the grooves on the bearing surface.

These will make the largest possible adjustment possible even smaller. This makes the

adjusting unpractical for smaller bearing sizes. In practise, if approximately 0.001" shrink

fit is used it will cause stresses in the bearing that in the order of 2-15 ksi for 6-1.25" inter-

nal diameters, respectively. Yield strength for typical bearing bronze is in the order of 20-

25 ksi. This means that a smaller bearing can not be adjusted basically at all if shrink fit is

used to secure the bushing in the bearing housing. A 2 ksi maximum stress is result of

approximately 0.0002" change in internal diameter for 6" ID bearing. Taking into account

stress concentrations maximum displacement that can be imposed is in the order of

0.0015". If larger displacements than this are desired then the elastic deformation

approach is not practical.

5.5 Summary of Design

Here all the first order estimates necessary to estimate the bearing performance are sum-

marized. All the expressions are explained and derived in the previous section. These rela-

tions are derived for laminar land flow and for the bearing geometry described earlier.

Load capacity:

1
F = FPSLD where ~ (5.67)

Initial stiffness:

-PLD
K = K S where K =0.5 - 1 (5.68)

h

Flow rate:

- 7Dh3
Q = QPS where Q ~ 10 (5.69)

12pL
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Shear power:

1 LD 3 0 2

Ph = p (5.70)

(for more accurate prediction see equation 5.17)

Pumping power:

P, = PQ (5.71)

Power ratio:

-I =_ 3J12W2DLA* (5.72)
P P P2Qth4

where A* can be found from Figure 5.6-Figure 5.8. The hydrodynamic effects can safely

be discarded if this parameter is less than 4. For higher power ratio values are acceptable

but bearings should be analyzed more carefully. One way to lessen the hydrodynamic

effects is to remove the central bearing lands. This will lessen damping. It should also be

noted that the hydrodynamic effects not necessarily detrimental to bearing performance.

Pumping ratio:

S=t UD _ pwD2 (5.73)
h2P 2h 2pS

This parameter estimates how severely the fluid is being pumped back toward restrictors

by the bearing rotation. If this parameter exceeds the value of 6 great care should be taken

when designing the bearing and the bearing should be analyzed carefully. If this parameter

has high values it is recommended that the bearing circuitry is removed to the outside sur-

face of the bushing.
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Chapter 6

MANUFACTURING

In this chapter alternative methods for manufacturing the bushings are presented. The

selected methods are then described in detail. Shrinkage and dimensional variation is

determined by measuring dimensions in prototype bearings and then compared with fig-

ures obtained from literature. The effect of manufacturing errors to bearing performance

will be analyzed using models described in Section 6.4 and statistical methods (Monte-

Carlo method).

6.1 Selecting a Manufacturing Method

The fairly complex surface geometry of the bushing makes their manufacturing non-triv-

ial. Also different sizes pose additional constraints on different methods.

The main requirements for various potential manufacturing methods are:

- Cost effectiveness

- Ability to form required geometries

" Flexibility to produce many alternative sizes

- Ability to use selected materials

- Ability to meet required tolerances

In Table 6.1 different methods considered are summarized.
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TABLE 6.1 Possible bushing manufacturing methods

Part Size Toleran
Mfg. Method Cost Constraints ces Special
Sand Casting + ID>2.5" -0.05" Core box
Die Casting Oa ID, Length -0.01" Collapsible

core
Investment Casting + Wall thick- -0.005" RP wax model

ness

Injection Molding (++)b Wall thick- -0.005" Collapsible
ness, ID, core
Length

Machining - ID -0.001" 90 angle end-
mill

EDM - Tooling -0.001" Tooling

a. Expensive mold. Otherwise similar to sand casting

b. Expensive mold and limited materials

Sand Casting

Sand casting is a flexible manufacturing method in terms of part size and material. It's

shortcomings include fairly low accuracy and rough surface finish. In order to produce

geometry required for the surface self-compensated bushing a special core box is needed

in order to manufacture the internal geometry of the bushing. This special core constraints

the internal diameter of the bushing to larger than approximately 2.5".

Sand casting was chosen to manufacture the large 6" prototype bushing. The method, as it

is applied in this case, will be described in detail in Section 6.2.

Die Casting

In die casting the molds are expensive to manufacture, but once made can be used multiple

times. Material selection is also great and the tolerances are generally better than in sand

casting.
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In this application the internal surface geometry requires a collapsible core, which is not

readily available for metal castings. Also the length of the internal core poses problems for

the use of collapsible core. Hence die casting is not considered further as a possible manu-

facturing method

Investment Casting

Investment casting uses plastic or wax patterns to produce the mold, therefore for every

part produced, a wax pattern must be manufactured. Usually this is done with separate

molds, but in this case the internal geometry prohibits the use of simple mold. New manu-

facturing methods called rapid prototyping allows the fast and relatively cost effective

way of making wax or plastic patterns of complex geometry. Tolerances produced by

investment casting are good, provided the tolerances of the pattern are good. Accordingly

investment casting was chosen to manufacture small 1.25" ID bushings and the method, as

it is used in this case, is described in detail in Section 6.3.

Injection Molding

Injection molding is very cost effective if a large number of parts is needed. For smaller

batches the expensive molds will raise the unit price. The material selection is limited by

the high surface pressures in the bearing, which only few plastics can withstand. One pos-

sible material is Delrin. Internal geometry of the bushing will require a collapsible core,

which are available for injection molding. The use of collapsible core poses constraints on

the length and the diameter of the bore. The wall thickness must also be as small as possi-

ble to avoid molding problems and to minimize cooling time. In summary, it is possible to

use injection molding as a manufacturing method for mass producing smaller size bush-

ings.

Electric Discharge Machining (EDM)

Electric discharge machining can be used to make complex geometries, but it is fairly

expensive and slow. EDM can produce very good tolerances and surface finishes. It is not
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easily applicable to this case but with specialized tooling and machine it could be used if,

for some reason, very accurate surface geometry is needed.

Machining (milling)

Machining can be easily applied to produce the necessary surface geometry if the groov-

ing is made on the rotary part [Wasson, 1996]. If a bushing is produced, a 90' spindle is

needed and the internal diameter must be large enough for the tool to operate in. Toler-

ances of the grooving geometry produced this way would be good, but it is fairly expen-

sive and slow compared to casting the bushings. Trade off between the accuracy and cost

are discussed in more detail in Section 6.4.

Some of the alternative designs are also machined easily. The back groove design, where

the grooves connecting the restrictor collectors to the pocket region are on the backside of

the bushing is machinable. However, this will require a precision shrink fit between the

bushing and the bore. If the shrink fit is not strong or accurate enough a leakage flow

between the grooves might occur which is detrimental to the bearing performance.

Other Manufacturing Methods

Powder metallurgy and certain rapid prototyping methods could also be used to manufac-

ture the bushings. Powder metallurgy is not economically viable for this application and

using it is also problematic due to the surface geometry. There exists rapid prototyping

(RP) methods which are able to produce functional metal parts such as 3D-printing a

porous aluminum or stainless steel structure and infiltrating it with bronze. These methods

are better suited for producing few or a single prototype but are not economically compet-

itive with other methods described above.

6.2 Manufacturing of the 6" Prototype Bushing

Sand Casting was chosen to manufacture the 6" prototype bushings. In order to make the

sand core with the internal diameter grooving geometry, a special core box was needed.
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The geometry of the grooving is such that the sand cannot be packet in a standard to

halves box without breaking the core when opening the box, in other words the geometry

does not "draw". The box must be cut into multiple pieces in order to make the sand core

with required geometry. The following procedure was developed to make the core box:

- Stereolithography model of the negative of the internal diameter geometry of
the bushing, as shown in Figure 6.1, is made

- Epoxy is poured on the model and it is attached to the wooden frame of the
core box

- Cut the epoxy and wood into pieces in such way that the packed sand can be
removed to form the core for the casting as shown in Figure 6.2

Figure 6.1 Stereolithography negative of groov-
ing geometry

The finished sand core is shown in Figure 6.2 with the rest of the sand mold. After the

bearing material is poured and cooled the sand can be broken off and the desired geometry

is achieved as shown in Figure 6.3.

After the bushing is cast it must be cleaned and machined into its final dimensions. These

machining operations are relatively simple because the grooving can be left as cast, pro-

vided that no large residuals have been left into the grooves. For all of the bushings cast

(10 pieces), only wire brushing the grooves was enough to clean them. The process was

deemed very useful for mass production, should the need ever arise.
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Figure 6.2 A) Core-box, B) Sand core in the mold

A)

Figure 6.3 A) Cast bushing, B) Groove detail

6.2.1 Shrinkage and Dimensional Variation

In order to determine the dimensional variation and distribution of the prototype castings,

several measurements were made. This data was analyzed and then used as input to statis-

tical analysis of the effect of manufacturing errors on the performance of the bearing. Also

the actual shrinkage was measured to determine the allowances necessary to make func-

tional bearings.This was necessary due to the many processing steps to make the actual

sand core and therefore there are multiple unknown factors involved in the process.
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B)

B)
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CDA 937 Bronze alloy was chosen as a bearing material. This is a common high pressure

bearing material and it contains 80% Cu, 10% Sn and 10% Pb. According to CDA (Cop-

per Development Association) specifications the shrinkage allowance is 1.5% of the

dimension and the tolerance, according to manufacturer, are ±0.03".

In this case the shrinkage allowance must be correct within a certain envelope. If the bear-

ing shrinks too much, the grooves are not deep enough when the ID is machined to its final

dimension. If the bearing does not have sufficient shrinkage and machining allowances,

the internal diameter can not be machined to it final dimension and roundness tolerances.

This problem becomes more significant as the bearings get smaller. For small bearings,

the grooves cannot be made very deep because the molten metal would have trouble flow-

ing around them and might even break them as the metal is poured. As the bearing gets

bigger this situation eases and therefore it will not pose a significant problem in 6" bear-

ings once the correct shrinkage factors and machining allowances are determined.

The 6" bearing design was designed to be cast as 5.7" internal diameter to allow 0.15"

machining stock. This amount of machining stock is little less than recommended for this

size part, but in order to keep the groove depth reasonable it was chosen. The shrinkage

factor of 1.5% was added to that to make the internal diameter 5.7855" for the CAD file.

The internal diameter was measured from 3 different bushings and from 3 different loca-

tions circumferentially and 6 different locations axially, which makes total of 18 measure-

ments per bushing. Table 6.2 Summarizes diameter measurements of the bushings.
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TABLE 6.2 Diameter Measurements of 6" Bushings

Part 1 Part 2 Part3

Average Diame- 5.768 5.780 5.774
ter

Standard Devia- 0.018 0.020 0.014
tion

Max. Diameter 5.794 5.882 5.807
Min. Diameter 5.735 5.749 5.753

Average Diam- 5.744
eter of All Parts

Standard devi- 0.018
ation of All

Parts

The shrinkage factor is calculated from

CAD diameter - Average diameter- 100% = 0.20%. (6.1)
shrinkage % = CAD diameter

This shrinkage is very small compared to CDA provided shrinkage of 1.5%. There are two

possible explanations for such a low measured shrinkage. The stereolithography part

might have not shrank as much as the manufacturer thought. This is very well possible

since the internal geometry of stereolithography part is complex and the parts produced

this way are usually used only as visual aids or prototypes, without a need for high dimen-

sional accuracy and therefore the shrinkage factors are not very accurate. The second pos-

sibility is that since the sand core is very large, it prevented the bronze from freely

shrinking. This would cause internal stresses in the part that might be partly released when

the part is machined to its final dimensions, therefore the machining must be done care-

fully so that the tight dimensional tolerances required can be achieved. The low measured

shrinkage is probably due to the both of the above mentioned possibilities. This shows that

the dimensional allowances must be carefully selected and be large enough for such large

deviations from recommended shrinkage factors.
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In addition to measuring the diameter to determine the shrinkage factor, also the error or

deviation from desired values of land widths must be determined. This was done by mea-

suring the groove width from multiple locations (70). In Table 6.3 the groove width mea-

surement results are summarized.

TABLE 6.3 Groove Width Measurement Statistics

Statistic Value

Average 0.206"

Standard deviation 0.008"

Maximum Width 0.227"

Minimum Width 0.186"

Average Error 0.006"

Average Relative 3%
Error%

This information will be later used when the effect of manufacturing errors to the bearing

performance is analyzed. To effectively use statistical methods, the distribution of the

dimensional variation must be determined. The standard distribution that most manufac-

turing errors are suggested to follow is the normal or Gaussian distribution. Most statisti-

cal process control methods assume or invoke normal distribution by central limit

theorem. In this case, however, due to the non-standardness of the manufacturing meth-

ods, it was necessary to test if the measured data followed normal distribution. This can be

done by Chi-Square (X ) goodness of fit test. Another test must be performed before Chi-

Square test to determine that the variation in the data is random and does not have under-

lying trends. This can be done by run-test [Bendat, 1971].

6.2.2 Run-Test of Groove Width Measurement Data

The run test is used to determine if measurement data had some underlying trend or in

other words is not independent. Non-independents would suggest non-randomness of

manufacturing variability and therefore constitute out of control manufacturing accuracy.
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If measurements are independent observations of the same random variable, the probabil-

ity of change from measurement to measurement does not change. This can be tested in

the following way:

Let the null hypothesis be that there is no underlying trend in the N observations. By mark-

ing all observations with values above median with (+) and values below median with (-) a

sequence of (+) and (-) observations is obtained. Every time (+) changes to (-) or vice

versa it ends an run. Then the number of runs for N observations will be random variable r

with mean and variance as follows [Bendat, 1971]

N + 1 (6.2)
=2+

2 N(N-2) (6.3)
'~4(N- 1)'

assuming the number of (+) and (-) observations is equal (which is true since the observa-

tions were divided by the median). The sampling distribution has tabulated values in Ben-

dat, 1971. The hypothesis can be tested, to the desired level of significance u, by

comparing the observed runs to the interval between rn;1-(a/2) and rna;/ 2 , where

n = N/2. If the number of observed runs falls within the interval the hypothesis is

accepted with ax level of significance.

In this case, n = 35 and the number of runs equals 31. The acceptance region with

a = 0.05 level of significance is between 27 and 44 and therefore the null hypothesis that

there is no trend and the observations are independent is confirmed.

6.2.3 Chi-Square (x2 ) Test of Groove Width Measurement Data

Chi-Square goodness of fit test is often used to compare measured data to some theoretical

probability density function, such as normal distribution [Bendat, 1971]. In other words it

can be used to test the hypothesis that some measured data is actually distributed in a cer-

tain way. The approximate chi-squared distribution is used as a measure of the discrep-
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ancy between an observed probability density function and the theoretical density

function.

In this case it is necessary to check if groove widths and therefore the land widths are actu-

ally normally distributed. This will be done by grouping the measurements into intervals

or bins forming a frequency histogram. Then the frequency of measurements falling into

each bin is compared to the expected number of measurements in that bin. Discrepancies

between the sampled and expected data are summed over all the bins according to Equa-

tion 6.4, where f1 is sampled frequency, Fj expected frequency and K the number of bins.

K 2

X2 f -F)2 (6.4)

i= 1

The distribution of X2 is compared to X2 distribution with n degrees of freedom and

desired level of significance cx. The degrees of freedom are determined by Equation 6.5

n = K-3, (6.5)

where the 3 comes from the fact that two different parameters are calculated from mea-

sured data in order to determine the theoretical distribution, namely the mean and the vari-

ance (or standard deviation) and in addition when the frequencies in the K-1 bins are

determined the frequency in the last bin is also determined. The hypothesis will accepted

if the Equation 6.6 holds true.

X2 2-a (6.6)

2
The value for the Xa:, can be found from any basic statistics book, for example [Bendat,

1971] or can be calculated with an Excel function.

Chi-square test for this case is summarized in Table 6.4 and the histogram is shown in

Figure 6.4
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TABLE 6.4 Chi-Square Test for Groove Width Measurement Data

(f - F)'

Bin f F F

1 1 0.41 0.85

2 2 1.76 0.03

3 5 5.71 0.09

4 6 12.31 3.24

5 25 17.62 3.09

6 19 16.74 0.31

7 7 10.55 1.20

8 3 4.41 0.45

9 3 1.22 2.58

X 2 7.29

X6:0.05 12.59

Figure 6.4
data

The measured and normal distributions for groove width

The null hypothesis that the groove (and therefore the land widths) are normally distrib-

uted is accepted at c = 0.05 level of significance. Figure 6.4 also gives strong indication

that the measurements are indeed normally distributed.

Histogram
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6.3 Manufacturing of the 1.25" Prototype Bushing

Investment casting was chosen as the manufacturing method for the 1.25" bushings. The

sand casting of this size bearing would become very difficult because the core geometry

(grooves) are very intriguer. The wax patterns needed for the investment casting mold

were produced by 3D-Printing, which is a relatively new rapid prototyping technology.

Other possibility would have been stereolithography, but this was not chosen for economic

reasons, although it would have been able to produce slightly more accurate parts.

In 3D-Printing, the part is formed layer by layer in similar fashion as in stereolithography.

The part is formed by spraying binder on a bed covered by powder of cellulose and sugar.

After each layer is bind the bed is lowered and next layer is formed. After the part is fin-

ished it is cleaned of excess powder and infiltrated with glue or wax. If the part needs to be

investment cast afterwards, wax must be used, because the glue can form poisonous gases

as the mold is emptied. Infiltration with wax is a manual process. After the waxing, the

parts are baked in a oven for few hours to make the wax penetrate all areas of the part and

also to remove excess wax and make the part more durable. The finished 3D-Printed part

is shown in Figure 6.5.

A) B)

Figure 6.5 A) 3D-Printed wax pattern, B) Investment cast part

The grain size of the 3D-Printing powder is fairly large and therefore the surface finish of

the cast part is not very good. The cast prototype bushing is shown in Figure 6.5. The
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internal and the external surfaces of the bushings will be machined but the groove surfaces

are left as cast. The surface finish of the grooves is not of concern at lower speeds when

the flow is laminar (and therefore the surface finish does not affect the flow) and even at

high speeds the friction losses generated in the channels represent a small portion of the

total losses.

The investment casting of the wax pattern requires nothing unusual. The primary parame-

ters of interest are the formation of the grooves and to make certain that the metal has

enough free space to flow around the grooves and fill the spaces in between the grooves.

This has to be done before 3D-Printing the part by having the external diameter (OD) to be

large enough. The yield with prototype bushings was about 80% which is little less than

typical investment casting yield.

6.3.1 Problems with 1.25" Prototype Manufacturing

The bushing ID has to be ground or honed to very close tolerances. With the unknowns

associated with the dimensional tolerances of the 3d-printing, relatively large machining

stock is needed for the parts. We also have take into account the shrinkage and tolerances

of investment casting. These quantities are better known than the ones of 3d-printing but

still some uncertainty is associated with them. The casting handbook suggests dimensional

tolerances for linear dimensions of 1-2" to be ±0.013", but manufacturers tolerances are

stated as ±0.005". Shrinkage for the material in use (Copper alloy C872 Cu 89%, Si 5%,

Fe 2.5%, P 1.5%, Mn, Zn, Sn) is according to literature 2.1%, but measured shrinkage was

only 0.83% or 0.01" on a 1.17" dimension. It can be concluded from these discrepancies

that an ample machining stock is necessary. The dimensional variations and shrinkages are

described in more detail in the next section.

This relatively large machining stock requires deep grooves in order for them to remain

deep enough after the finish machining. The pressure drop in the groove has to much less

than the pressure drops across the lands or the flow in the groove must be much larger than

the flow in the land areas. The flow is proportional to h3 , therefore if the groove is 10
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times the clearance, the flow resistance would be approximately 1000 times less. This

indicates that the grooves do not have to be very deep but due to the tolerances and incon-

sistencies in manufacturing process, the 10 times the clearance is good guideline. This is

approximately 0.01" groove depth after machining for most bearings.

As the groove depth increases it makes the 3D-Printing of the patterns more difficult. Dur-

ing the wax infiltration process excess wax collects into the bottom of the grooves making

them too shallow. After finish machining some or parts of some grooves disappear there-

fore making the bearing loose its performance partly or in most cases totally (see

Figure 6.6).

Cast surface
Machined surface

Actual groove
Extra material
due to stuck wax

Intended groove __---------------

Figure 6.6 Problems with printing deep grooves

One set of prototype castings showed very unusual behavior. The 3D-Printed patterns

were measured before they were sent out to outside foundry. The cast parts were measured

and they were actually larger than the patterns meaning no shrinkage occurred. This of

course can not be true. Something happened to the patterns before they were used in cast-

ing. What exactly is almost impossible to tell, but one guess is that the patterns were

exposed to moisture and they expanded. Due to the large allowances designed in the pro-

totype stage bearing these bearings were still useful. This further highlights the fact that

there are large amount of unknowns in the manufacturing process and a great amount of

attention must be paid to the design and manufacturing process.
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6.3.2 Solutions to Manufacturing Problems

The obvious solution to the aforementioned problems is making the grooves deeper and

adding machining stock. This does not, however, solve the problem with wax stuck in the

grooves, but can make it even worse. Deep grooves are also more difficult to cast and

therefore reducing casting yield. The problem lies in the 3D-Printing process and therefore

the solution must be found in that process.

The excess wax can be taken out by hand, by running a tool through all the grooves. This

is very tedious and labor intensive process and is not recommended. It can also alter the

geometry by removing some of the material in between the grooves. Better solution was to

be very careful when waxing the parts and trying to use a minimum amount of wax. After

the waxing, parts must be kept in the oven for an extra long time to drain as much of the

wax as possible out of the grooves.

During machining, great care must be taken to make sure the external and internal diame-

ter are as concentric as possible before machining the internal diameter. This ensures the

minimum amount of material is removed from the internal surface. The easiest way to do

this is to machine the external surface first by holding the part by the internal surface.

Then the bushing is places in a collet and bored.

6.3.3 Shrinkage and Dimensional Variation

Two sets of measurements were taken from the 1.25" prototypes. One set of measurements

was taken from the 3D-printed patterns and second set from finished castings. Several dif-

ferent batches were measured in order to determine batch to batch variation and variation

within the batches.

The material for the 1.25" prototypes was chosen to be CDA87200 copper alloy (or silicon

bronze), containing 89% Cu, 5% Si and 5% Sn. The shrinkage factor for CDA87200 is

2.1% and manufacturers tolerances for the castings are ±0.005 "/inch. Table 6.5 summa-

rizes the first two sets of measurements from 3D-printed parts.
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TABLE 6.5 Measurement statistics of the first two sets of 3D-printed parts

There is a clear difference between the two sets and both sets have shrunk more than

expected. The shrinkage for set I is 2.1% and for set II 3.9%. Both are clearly larger than

the manufacturers expected value of approximately 1%. The most probable explanation is

that at some point in determining the shrinkage factors and applying it to CAD model

some error occurred and the parts were made smaller than intended. For these parts the

previously explained problem of too shallow groove becomes critical and the bushings

could not be machined to the intended ID.

The next two sets were manufactured and the solution to the problems explained in

Section 6.3.2 was applied. The summary of the measurements is presented in Table 6.6.

TABLE 6.6 Measurement statistics of the sets III and IV of 3D-printed parts

Statistic Set III Set IV

Average Diameter 1.193 1.197

Standard Deviation 0.007 0.007

Max. Diameter 1.205 1.212

Min. Diameter 1.18 1.187

Shrinkage% 1.1% 0.7%

These sets behave much more as expected, and can

desired ID.

be successfully machined to the

In the case of the 1.25" bushings there was no groove width measurements due to the

small size of the diameter and the groove width itself. When statistical analysis is per-

formed, the diameter measurements are converted to the groove width and scaled statistics

Statistic Set I Set II

Average Diameter 1.175 1.16

Standard Deviation 0.007 0.007

Max. Diameter 1.185 1.172

Min. Diameter 1.159 1.148
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will be used. Measurements followed normal distribution and it will also be used in this

case.

6.4 Sensitivity of the Bearing to Manufacturing Errors

In many cases the selection of manufacturing method is based simply on historical knowl-

edge of how different methods will work in a certain case and the decision to use a certain

method is either obvious or is made based on experience. In this case where the product

itself is novel and historical knowledge has not yet been developed it is justified to spend

more time and attempt to perform more rigorous analysis to justify a certain manufactur-

ing method. Also, the surface self-compensated bering is inherently less sensitive to errors

in bearing geometry than any other type of compensation, as explained in the introductory

section, but it also has many more geometry features. It is of interest to know how sensi-

tive the bearing is to the errors in its multiple features. It would also be interesting to cor-

relate these sensitivities to different errors introduced by different manufacturing methods.

An example of the results this type of analysis would give are the variation of the load

capacity at a certain eccentricity or variation or expected value of the rotation center com-

pared to geometrical center.

All this can be conveniently done by statistical methods, namely by the Monte-Carlo

method. A Monte-Carlo method is chosen due to fact that any closed form solutions of the

variation are very long and extremely tedious to find.

6.4.1 Model

The lumped parameter model is used to perform this analysis. The selected method

requires hundreds or thousands of single solutions and therefore the finite difference solu-

tion is too time consuming. The model is implemented in spreadsheet format, where each

land width and length is represented by one cell. The discretization for single pocket is

shown in Figure 6.7.
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Figure 6.7 Lumped parameter discretization.

This numbering is repeated n times, where n is the number of pockets. The flow in each

numbered patch is modeled as a flow between flat plates. Each of these patch dimensions

are assigned with probability distribution (probability density function), which represents

the manufacturing error. These assigned pdf's are called the assumptions. By assuming

that the manufacturing process used is under control, only random errors exists and these

errors can be represented with probability distribution. Most of the errors will follow nor-

mal distribution as was concluded from the measurement data. However if any other type

distribution is expected or reasonable that can also be assigned to represent the manufac-

turing error. Equation 6.7 defines the normal distribution with mean g and standard devi-

ation a being the two parameters defining the distribution [DeVor, 1992].

1 -0.5 ~
f(x) = e (6.7)

The mean and the standard deviation can be approximated by the sample mean and stan-

dard deviation obtained from the measured parts.
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When assigning thew manufacturing errors it is best to assign the error in the direction

where actual errors could occur. For example, the width of the patch number 4 does not

make a difference since this dimension exists only for modeling purposes. Instead the

length (direction of the flow) of patch number 4 is a real dimension and the variation

should be assigned to it. There are few assumptions one can make how the manufacturing

errors form and how they should be assigned. It is reasonable to argue that to certain

extent the manufacturing error is due to shrinkage or similar phenomena and is therefore a

function of the dimension or some percentage of that dimension value. In other words, the

longer the land width the larger the error. However this is not reasonable for all manufac-

turing methods, for example in EDM only the grooves are machined, which are constant

width resulting in constant error (constant mean and standard deviation) no matter what

the land width is (due to tool error and positioning error). In the following analysis both

methods are used when reasonable. Also a distinction should be made for mean error and

deviation. Mean error is an error that is a constant offset from desired value and deviation

represents the centered probability distribution around that point. The mean error is imple-

mented as an constant offset in either direction, meaning too wide or too shallow land

widths. It is also assumed that the groove width acts as an buffer dimension to keep the

bearing geometry consistent with the bearing outside dimensions.

After all the assumptions are defined, the Monte-Carlo method draws random values from

the pdf's assigned to that particular cell. The combination of these values are then used to

calculate single value of output measure, for example the bearing resultant force. This is

then repeated multiple times and each solution is stored in a histogram. This histogram

then represents the probability distribution function for the output measure. This output

measure is called the forecast.

6.4.2 The Effect of Manufacturing Errors on Load Capacity

In this section the effect of manufacturing error for load capacity at different eccentricities

and with different bearing sizes is discussed.
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1.25" Bearing

The first analysis presents the variation with zero offset, meaning that the mean value of

error distribution is the nominal design value. The standard deviation is set at conservative

10% of the particular land width. All the land widths are drawn from normal distributions.

The Monte-Carlo method is used to search for total bearing force distribution at a given

eccentricity and the corresponding force angle distribution. Figure 6.8 and Figure 6.9

shows the resulting distributions respectively.The results are overlaid with normal distri-

bution with calculated parameters.

Overlay Chart

Frequency Comparison
.025--

.019 U Normal Distribution
Z% Mean = 213.04

- Std Dev = 30.76

.013-

-006- -
Ftotal

.000

125.00 168.75 212.50 256.25 300.00

Figure 6.8 Bearing force distribution with ecc=0.1, Ap = 0, a = 10 % of land width

Results with multiple eccentricities are listed in Table 6.7. As can be expected both the

force and the angle are centered around the nominal value. The standard deviation of the

load is independent of the eccentricity, but the standard deviation of the force angle

decreases as eccentricity is increased. The standard deviation in this case is fairly large,

but the 10% deviation in land widths is very pessimistic estimate and would indicate min-

imum of 0.15 mm and maximum of 0.55 mm standard deviations for land widths. More

realistic analysis will be represented later in this section. Results scale linearly with

assumed land widths, meaning that if assumption standard deviation is 1/10 of the above

assumption (=1%) the resulting standard deviation will 1/10 from the listed results (=3.1).
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Figure 6.9 Force angle distribution

TABLE 6.7 Summary of the results for Ap

with ecc=0.1, Ap = 0, cy = 10 % of the land widths

= 0, a = 10 % of the land widths case

Eccentricity Fnominal tF TF Onominal

0.1 211.4 213.0 30.8 -46.2 -46.2 8.4

0.2 413.2 414 30.6 -46 -45.9 4.3

0.3 597.4 597.4 31.3 -45.7 -45.6 2.9

0.4 759.4 759.6 32.0 -46.4 -45.3 2.3

0.5 895.6 895.9 31.7 -45.2 -45.2 2.0

Another scenario is when the land width standard deviation is assumed to be constant

rather than dependent of the land width. The following results are obtained with the land

width standard distribution being 10% of the groove width. This again is fairly large value

but to get scalable results it will be used. Again the mean offset is zero. Results are listed

in Table 6.8. The standard deviation is about half of what it was in the previous case.

Again the standard deviation remains constant for the force and decreases for the angle.

Overlay Chart

Frequency Comparison
.027 --

.020- Normal Distribution
Mean = -46.24
Std Dev = 8.35

.007 Load Angle

.000

-70.00 -57.50 -45.00 -32.50 -20.00
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TABLE 6.8 Summary of the results for Aoi = 0, a = 10 % of the groove width case

Eccentricity Fnominal P-F GF Onominal G

0.1 211.4 212.1 17.0 -46.2 -46.3 4.5

0.2 413.2 414.0 16.9 -46 -46.0 2.3

0.3 597.4 598.0 17.0 -45.7 -45.7 1.6

0.4 759.4 759.6 16.7 -46.4 -45.4 1.2

0.5 895.6 895.8 16.5 -45.2 -45.3 1.0

In the previous cases the mean shift for the land widths has been zero. Next cases with 5%

mean shifts and 5% standard deviations (of the land widths) are presented. In this case

only two eccentricities were simulated since the way the results behave as a function of

eccentricity are already known, namely that the standard deviation for the force remains

approximately constant and decreases for the force angle. Table 6.9 summarizes the

results for the case o = 5%, Ap = 5% and Table 6.10 for the case

T = 5%, Ag = -5%.

TABLE 6.9 Summary of the results for A i = 5, a = 5 % of the land widths case

Eccentricity Fnominal 9F GF Onominal 9- G

0.1 211.4 215.2 15.7 -46.2 -46.1 4.2

0.2 413.2 419.7 15.7 -46 -45.6 2.1

TABLE 6.10 Summary of the results for A~t = -5, a = 5 % of the land widths case

Eccentricity Fnominal 9F GF Onominal L r

0.1 211.4 208.8 16.1 -46.2 -46.4 4.4

0.2 413.2 406.9 16.3 -46 -46.3 2.3

It can be noticed that the mean offset of assumption did not change the mean of the fore-

cast considerably, only between 1-1.5%. The standard deviation is what can be expected

from the previous simulations.

For the 1.25" bearing, the land width data is not available due to the difficulty of measur-

ing it. Therefore the values from the 6" bushing are used to represent the most likely error
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distributions. The values for the mean offset and the standard deviation are

c = 3%, Ap = 4% of the groove width. This corresponds to approximately 0.1 mm,

which is reasonable for the manufacturing method used. Results are summarized in

Table 6.11.

TABLE 6.11 Summary of the results for Ap = -4, a = 3 % of the land widths case

Eccentricity Fnominal F TF nominal (3 GO
0.1 211.4 208.7 9.2 -46.2 -46.4 2.6
0.2 413.2 408.0 9.6 -46.0 -46.3 1.4
0.3 597.4 589.9 9.5 -45.7 -45.9 0.9
0.4 759.4 749.8 9.7 -46.4 -45.7 0.7
0.5 895.6 884.1 9.8 -45.2 -45.5 0.6

This data will be later used in cost-quality analysis. The bearing resultant force distribu-

tion is shown in Figure 6.10 together with normal distribution with the sample mean and

standard deviation. The significance of the standard deviation decreases as the eccentricity

is increased, because it remains constant. This suggests that for precision applications

where only very low eccentricities are desirable the manufacturing accuracy becomes

more important. When eccentricity is zero, a perfect bearing would have zero eccentricity.

If this is not the case the bearing rotation center is not the geometrical center. This does not

matter in the case that the bearing geometry (grooves) are stationary. In the case that the

geometry is on the rotating element this will make the shaft center rotate around in the

bore. The radius of this circle is fairly small, even at the 3cy limit the radius is less than

0.4 p m.
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Figure 6.10 Bearing force distribution with ecc=0.5, Ap = -4, a = 3 % of land width

6" Bearing

In the case of the 6" bearing the measured data will be used to perform the same analysis

as in the case of the 1.25" bearing. The standard deviation and the mean offset are

(= 3%, Ap = 4% respectively. These correspond to approximately 0.2mm errors,

which is a reasonable number for this size casting. Figure 6.11 shows the distribution at

ecc=0. 1 together with the overlaid normal distribution with the sample mean and standard

deviation summarizes the results at different eccentricities..

TABLE 6.12 Summary of the results for Al = 4, a = 3 % of the land widths case

Eccentricity Fnominal PF F nominal A yQ
0.1 6832 6843 328 -28.1 -28.1 2.9

0.2 13139 13146 314 -28.2 -28.3 1.4

0.3 18563 18567 288 -28.5 -28.5 1.0

0.4 22966 22974 266 -28.8 -28.8 0.7

0.5 26387 26398 251 -29.1 -29.1 0.6

Overlay Chart

Frequency Comparison
.024-

.018 - Normal Distribution
Mean = 884.11
Std Dev =9.81

Z .012 -

.006 Ftotal

.000 -

855.00 868.75 882.50 896.25 910.00
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Overlay Chart

Frequency Comparison
.027-

.021 - Normal Distribution

Mean = 6,845 39
Std Dev 333.94

-M .014

k-.007-.00 Ftotal

.000 .-

5,750.00 6,250.00 6,750.00 7,250.00 7,750.00

Figure 6.11 Bearing force distribution with ecc=0.1, A p = -4, a = 3 % of groove width

Again the effect of the assumption mean offset is very small to the forecast mean offset.

The standard deviation is of the same order of magnitude as in the previous case or a little

less. The only major difference between the small and large designs is that it seems like

the standard deviation of the force is decreasing as the eccentricity is increased with the

large bearing. Large bearing does not have drainage grooves between the pockets which

can be the explanation to this behavior. Also the lack drainage grooves makes the lands

between the pockets fairly large. This makes the approximations made in the modeling

less accurate. When the cost-quality analysis is performed the maximum value for the

standard deviation is used. At ecc=O, the 3 7 limit force corresponds to a displacement of

approximately 0.4 p m.

It seems that the bearing size does not have a significant effect on the sensitivity of the

bearing to manufacturing errors. Although this can be expected if the errors introduced are

relative to bearing size (groove or land widths). In the case of absolute errors the larger

bearing is naturally less sensitive to errors.
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6.4.3 Cost vs. Quality Analysis

In this section an attempt is made to make non-biased comparison between different man-

ufacturing methods. Quality is a very broad term and can be understood very differently in

different situations. Quality could be described as fitness for use, the degree to which

product satisfies the wants of a specific customer, the degree to which a product conforms

to design specifications, providing products and services that meet customer expectations

over the life of the product or service at a cost that represents customer value, the charac-

teristics or attributes that distinguishes one item or article from another or conformance to

applicable engineering requirements as described in engineering drawings, specifications

and related documents [DeVor, 1992]. These criteria are reasonable, but they are qualita-

tive in nature and therefore of little help if a quantitative analysis is desired. These criteria

are also easily interpreted as two valued, either the product is good or bad. Instead of using

some arbitrary limit telling when the product is good or bad a concept called loss function

will be employed here and with the help of loss function the expected value of the total

cost of the product will be used as a measure to compare different manufacturing methods.

These concepts are borrowed from broad range of quality design methods called Taguchi

methods. Taguchi methods focus attention on the engineering design process and has

emphasis on minimizing variation and centering the mean on designed target. Taguchi

methodology has a much broader perspective on the design process as whole than what

some of its concepts are used here for.

The Loss Function Concept

Taguchi argues that it is important to think quality in terms of the loss imparted to society

during product use as result of functional variation and harmful effects. Taguchi defines

quality as loss due to functional variation and further argues that the loss is minimized (as

it should be) when performance is at design nominal and that the cost increases as the per-

formance deviates from the nominal. In many cases a quadratic loss function is appropri-

ate [DeVor, 1992]. Figure 6.12 illustrates the loss function concept. It is not enough to

define some arbitrary function to make any meaningful comparisons.
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Quality Characteristic

Figure 6.12 Loss function concept

This function has to be somehow consistently related to the performance of the product.

One way to do this is to define some acceptable quality level or variation from nominal

and associate a cost to the product when this variation is exceeded. This cost can be, for

example, scrap cost or some penalty cost at that point. This way the loss function

becomes:

L(x) = k(x -x0)2 (6.8)

where x is the quality characteristic, x0 the intended target value and k the factor used to

calibrate the cost function. Alternatively a simple way to define a cost function is to add

constant manufacturing cost term in the end of the loss function. It could be argued that in

the case of the bearing the loss function should not exist beyond the nominal value, mean-

ing that no loss should be associated with the bearing if it carries more load than intended.

This argument makes sense in most cases, but philosophically it could be argued that

resources are wasted if the performance is better than nominal. The quadratic function will

be used in this case.

C(x) = k(x -x 0 ) 2 +M (6

Loss Function

0

0

Nominal Value

/

'1Z

(6.9)
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Having the cost in a function form is still not very convenient if comparisons are to be

made. In addition the cost function does not in itself take into account the product quality

itself. The product quality characteristic or variation in product performance has to be

related to the cost function in order to obtain meaningful measure to compare. This can be

conveniently done by mathematical expectation which relates the probability density

function to the cost function. In the case of a continuous X, the mathematical expectation

is defined by [Kreyzig, 1993].

E(g(X)) = f g(x)p(x)dx (6.10)

The Expected Cost

The expected cost is defined as the expected value of the cost function. The probability

density function used will be the one simulated in the last section. The quality characteris-

tic will be the bearing force. This way the probable performance of the bearing is related

to the cost function. Figure 6.13 shows the cost function and the quality characteristic dis-

tribution which, in this case, is the bearing force.

Acceptable Quality Level Simulated Force Distribution
Used to Detemine k

Nominal Value

0
' ICost Function

Scrap or Penalty Cost -

Mfg. Cost

Quality Characteristic

Figure 6.13 The derivation of expected cost
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The expected value of the cost becomes

E(C(F)) = C(F)p(F)dF = 00 [k(F-F 0 ) 2 +M] 1 a dF (6.11)

where cT and are the mean and standard deviation calculated by the simulation in the

previous section. By expanding the square and taking into account the following relations

J p(x)dx = 1 (6.12)

f = xp(x)dx

V2 = X2p(x)dx = y2 + 2

the expected value becomes

ETC = E(C(F)) = k(2+( -F) 2)+ M (6.13)

What remains to be defined is the acceptable quality level or the level at which it should

be stated that the bearing does not function properly and therefore some cost can be

assigned to it. This definition can be somewhat arbitrary and depends on application. A

quick survey among machine designers proposed the 10% deviation as acceptable. On the

other hand it is hard to believe that such deviation would even be noticeable in most appli-

cations. On the other hand it can hardly be said that 50% deviation is acceptable. To be

safe the 10% limit will be used. The other question is what cost should associated with this

deviation? Should it be the manufacturing cost or some scrap cost with the manufacturing

plus some environmental impact cost. In a worse case it could be argued that the cost is the

cost of rebuilding the machine component with new better performing bearing or even

worse the loss of customer. Here as a primary mean of comparison the 10% limit with the

manufacturing cost as a penalty will be used. These assumption can be changed which

ever way the reader wants or is reasonable for the specific application. The main thing is
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accomplished once the variability is considered in the design. The coefficient k for the cost

function becomes

k = M _ M (6.14)
0.1 2F8 0.01F(

The most general form of the expected total cost is

ETC = X (2 + (p-F)2 ) + M (6.15)
(1 -0) 2F2

where X is the penalty cost (here set equal to manufacturing cost M), P is the fraction of

nominal value at which the penalty cost is applied (here 0 = 0.9), cT is the calculated

standard deviation and g is the calculated mean.

1.25" Bearing

It is clear that the expected total cost (ETC) will depend on which eccentricity the bearing

is designed to operate at. The smaller the eccentricity, the larger the ETC. Taking into

account that these bearing are used in pairs, but all the analysis in this section is done for a

single bearing, eccentricity of 0.1 will correspond to approximately 1p m displacement.

This is small displacement and therefore a conservative point to calculate the ETC. By

using the values from Table 6.7 the ETC will become

ETC = M (30.82 + 1.62) + M = 3.1M (6.16)
0.01 -211.22

This indicates that the actual or expected cost is approximately three times the manufac-

turing cost. However, if the larger eccentricity can be used the expected cost quickly drops

closer to manufacturing cost. At eccentricity = 0.5 the ETC will only 1.1 times the manu-

facturing cost. For the less pessimistic case from Table 6.8 the ETC becomes 1.65M for

the 0.1 eccentricity. In the case of more accurate manufacturing methods such as machin-

ing or EDM the ETC is very close to the manufacturing cost. This shows the robustness of

the design. In Figure 6.14 the normalized cost of the 1.25" bearings as a function of the



quantity they are manufactured is shown. for the different manufacturing methods. The

cost is normalized with respect to the ETC of the 3D-printing and investment cast method.

The only method competitive with the selected method is injection molding at larger quan-

taties. The cross over quantity is approximately 650 bushings, which is 325 bearings when

the bushings are used in pairs. This is with ETC = 1.65M. If the pessimistic value for the

ETC is used these values become approximately half of the above. This analysis concludes

that unless very significant number of same size bearings are to be produced, the 3D-print-

ing/investment casting is the most cost effective way to make the bearings.

0

L)

0Z

Figure 6.14

Cost vs. Quantity
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Normalized manufacturing cost as function of quantity

6" Bearing

By using the data from Table 6.12 the ETC for the sand cast 6" bearing becomes

ETC = M (3282 + 11 2 ) + M = 1.23M
0.01 .68322

(6.17)
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Now the cost or expected cost for the different manufacturing methods can be compared.

In Figure 6.15 the manufacturing cost is plotted as function of quantity. In this case the

difference in cost is not as significant. All the methods require some special tooling that is

fairly expensive, which makes the quantity versus cost graphs similar. The 6" inside diam-

eter is a little too large for the 3D-Printing, but approximately 4" internal diameter bear-

ings could be manufactured with 3D-printing and investment casting..
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Figure 6.15 Normalized manufacturing cost as function of quantity
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Chapter 7

TESTING

In this chapter the testing of different prototypes will be described. In static testing the

force-displacement behavior of the bearing is measured. Also the flow rate is measured.

These results will then be compared to the theoretical predictions.

The combination of radial and tilt error motion of the bearing is measured by rotating a

shaft in the bearing. Error motion is a very important property of the bearing if it is to be

used in precision applications.

Dynamic tests are performed to evaluate the stiffness as a function of frequency and to

approximately evaluate the damping behavior of the bearing. The dynamic testing is very

difficult due to the high stiffness and very high damping of the bearing.

7.1 Static Testing of the 6" Prototype

The purpose of the testing of the 6" prototype was to determine the static behavior and to

prove the concept of low cost large hydrostatic surface self-compensating bearing.

When the bearing becomes large the manufacturing and assembly processes pose signifi-

cant challenges. Since the bearing is used in pairs, the alignment and precise manufactur-

ing becomes a challenge. It was intended to prove that due to the self-compensating

bearings robustness against manufacturing errors, no ultra high precision manufacturing
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was needed and the bearing would still work.Test results were also compared to the mod-

eled results.

7.1.1 Test Set-up

In order to perform the force-displacement measurements a test rig and bearing assembly

was designed and manufactured.

Test-rig

The requirements for the test rig was to be able to carry the bearing loading force which

could reach 100 000 N. It was also desired that the bearing could be moved along the shaft

while the bearing was loaded. Figure 7.1 shows the general view of the test setup. More

detailed drawings of the test stand are shown in Appendix E.

Linear Guide, Force Transducer

Hydraulic Jack

Bearing Assembly Capacitance Probe Holder

Bearing Shaft Supply and Drainage Lines

Support -

Figure 7.1 General view of the test setup

The test-rig allowed for the bearings or the shaft to supported during the testing. This was

desirable because in order to demonstrate the frictionless behavior of the bearing, the bear-

ing housing had to supported so that the shaft could float freely. If the shaft was supported,
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the hydraulic piping would introduce forces that would constraint the free motion and the

frictionless motion would be lost. When actual testing was done, it was better to support

the shaft and force the bearing assembly. The motion capability was provided by the linear

guide and the two trucks. If this capability was to be used, the shaft had to be supported.

This feature was not used due to the equipment failure and the linear guide assembly was

replaced by the stationary part.

A 50 ton hydraulic jack was chosen to be the forcing device. The force output was mea-

sured by tension-compression "s" load cell with maximum capacity of 5000 lbs or by low

profile tension-compression load cell with maximum capacity of 50000 lbs. Table 7.1

TABLE 7.1 Specifications of the load cells

Specification 50k Tranducer 5k Transducer

Output 3.015 mV/V 2.999 mV/V

Accuracy (Full Scale) NA 0.037%

Linearity FS ±0.1 % 0.03%

Repeatability FS ±0.03 % 0.01%

Zero Balance ±2% 1%

Thermal Effects 0.002% FS/ F 0.0015% FS/ F

Max. Deflection 0.003" 0.02"

summarizes the specifications of the load cells [Omega, 1992]. The 50k load cell was used

less due to its worse noise characteristics and the fact that the full load capacity was not

meaningful measurement in this case as explained in the results section. Both load cells

were supplied by a 12.15 V DC power supply.

The sensitivity of the of the 50k [lbs] force transducer is 15.027 mV/10V at 25000 lbs.

With the above mentioned power supply the conversion formula for the recorded voltages

to Newtons is the following:

Force [N] = 1000 - input [V] - 4.44822 25000 (7.1)
(1.215.- 15.027)(71
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The sensitivity of the of the 5k [lbs] force transducer is 2.999 mV/V at 5000 lbs. With the

above mentioned power supply the conversion formula for the recorded voltages to New-

tons is the following:

Force [N] = 1000 - input [V] -4.44822 5000 (7.2)
(12.15.-2.999)(72

The displacement was measured by four capacitance probes. These probes were held by

mounting brackets to the bearing assembly and measured the relative displacement

between the bearing assembly and the shaft thus eliminating most of the elastic deflection.

Not all the elastic deflection could be eliminated by the placement of the probes and had to

be eliminated computationally as explained in more detail in the next section. The probe

mounts could be moved around the shaft to measure the displacement in different direc-

tions. Figure 7.2 shows the location of the measuring devices.

Force

A

Probe Holder Housing Bushing

Capacitance Probes Shaft

Figure 7.2 Bearing assembly and the location of the capacitance probes
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Figure 7.3 shows a photograph of the test setup.

Figure 7.3 Photograph of the test setup

Both the capacitance probes and the force transducer were connected to data acquisition

board on PC. The data was collected with LABView software and saved as an ASCII file

and then imported to Excel for data analysis.

Bearing Assembly

These bearings have to used in pairs to obtain acceptable moment carrying capability,

unless other means are used to provide it. For a certain range of aspect ratios (L/D) the

casting of the part is considerably easier to cast with one bearing at a time and then assem-

bling the pair to obtain bearing pair. This also makes the handling and machining of the

bearings easier. On the other hand it requires fairly accurate alignment of the two bearing

parts or special machining. The two different procedures to make the bearing assembly are

as follows:

- Machine the housing
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- Determine how much the ID of the bushings will change due to locational fit
between them and the housing

- Machine the bushing taking into account the calculated change in ID

- Assemble the bushings and the housing together

This method will stack the inaccuracies in machining the housing ID, the bushing OD and

ID and the error in determining the change in ID due to the shrink or locational fit. On the

other hand, this is the easiest method and was therefore chosen. The alignment or the geo-

metrical errors can be improved by using replication to align the bushings in the housing.

This can be done by machining a small gap between the housing and the bushings and fill-

ing that gap with epoxy. While the epoxy is not yet set, the bearing will be turned on and it

is allowed to align itself and set into place. This is not recommended unless absolutely

necessary, as each bushing itself does not have high moment stiffness this may introduce

non-cylindricity (individual bushings are twisted with respect to each other).

An alternative more accurate, but also more difficult method, is:

- Machine the housing

- Machine the OD of the bushing

- Assemble the bushings and the housing

- Line bore the ID of both bushings simultaneously

The difficult part in the second method is the last step. The assembly can be fairly large (in

this case over im long) and finding a machine that is able to machine the ID to the

required tolerances is difficult. If this can be done it will produce the best results since it

eliminates any errors in the housing ID and bushing OD.

As mentioned earlier, this assembly consists of three parts, the two bearing halves and the

housing (see Figure 7.4) The two bearing halves are first cast then the supply and drainage

grooves are machined along with the interface to hydraulic system. They are then

machined to required tolerances and assembled into the housing. The hoses are then con-

nected and the bearings cleaned thoroughly. The cleaning is important so that the machin-

ing chips and dust do not interfere with the bearing performance. It will also loosen any
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particles that might come loose during the operation. After the cleaning, the shaft can be

inserted into the bearing assembly.

Housing Bushing

Drainage groove Supply groove Drainage groove

Figure 7.4 Bearing assembly

Normally the two bearing halves would be mirror images of each other, but in this case, in

order to save in tooling costs, they were identical. This will have an effect on the bearing

performance by introducing a moment around the center of the bearing. This will in turn

have an effect on the equilibrium position of the bearing. The bearing will have an reac-

tion force perpendicular to displacement due to the relative location of the collector

groove and the pockets. This will cause problems in measurement accuracy since the dis-

placement in the perpendicular direction is not constrained fully, but it is also not entirely

free. This will cause a reaction force in the forcing system, which magnitude is unknown

due to the side load rejection of the force transducers. However, the bearing design was

such that the side component of the force is relatively small (I of the vertical force).
f3

Also intention was to prove the functionality of the bearing and verify the theoretical

model, this is acceptable.

I

0 0 0

Z,
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Reaction forces on the shaft

Figure 7.5 Reaction forces on the shaft in the case that both bushings have the same geometry

Hydraulic unit

The bearing fluid supply system consisted of a constant pressure pump, oil cooler and

plumbing. The pressure of the pump was adjustable between 200 - 500 psi. The tempera-

ture of the oil was 25 C and was cooled to that temperature before returned to bearing.

Oil

The oil used was Shell Pella ISO 5 oil with viscosity of 5 cSt =4.56x10- 3 Pa s at 20' C
3and 4.43 cSt at 40 C. The density at 15'C is 823 kg/m . Pella A oil is a low viscosity

straight mineral oil. It is used as a dilutent to adjust viscometric properties of heavy duty

metalworking oils, as a cutting fluid in lapidary applications, and as a calibration fluid for

adjusting diesel fuel injectors. Pella A is nearly odorless and it has a near transparent

color. Pella A oil has been used to grind lenses for eye glasses, as a coolant and lubricant

for diamond tipped saws, for cutting stones and ceramics, and in the machining of non-fer-

rous metals and alloys. The fact that this oil can be used as a coolant makes it attractive

bearing fluid, so that the coolant system does not have to be entirely separate from the

bearing fluid system in some machine tool applications.
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7.1.2 Results

Clearance tests

To get an idea of the actual clearance of the bearings the following test was performed.

The displacement measurement was started and after a while the pump was turned on and

then after few moments turned off again. In this procedure the bearing will lift itself up

from the resting position on the shaft as the pressure is turned on and finds its equilibrium

within the bearing bore. This equilibrium position is the geometrical center of the bearing

under ideal conditions and is very close to it in the presence of manufacturing errors. The

measured displacement is therefore close to the clearance of the bearing. This of course is

a certain type of average or effective clearance, since the real clearance changes from

point to point and the only way to measure it would be to directly measure the ID of the

bearing and the OD of the shaft.

Figure 7.6 Shows typical results of the gap test. The clearance is approximately 23 pm,

which very close to the specification clearance of 25.4 pm.

Gap Test

5 -

pressure on pressure on
0

) 20 4 60 80 100 120

a.

-5
E~ -150 -- -- ---- - -------- _ _ _ __

0.

-20
pressure off pressure off

-25--

'time' (data points)

Figure 7.6 Gap test. Pump turned off and on while measuring the displacement.



Uncorrected (for elastic deflection) force-displacement tests

Figure 7.7 shows the uncorrected measurement data at 500 psi and the modeled force-dis-

placement curve. It is clear from the plot that a correction for shaft bending is needed due

to the fact that the maximum displacement measured is larger than the gap. The measured

data also deviates clearly from the theoretical curve. Dots represent the measured data and

the continuous line is the theoretical curve. Each point is an average value of four mea-

sured samples.

a)

EQ)

.
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Figure 7.7 Uncorrected force-displacement curves at 250 psi measured with the 50k force transducer

Data also shows that the moment created by the bearing is carried by the test structure.

This is shown by the fact that the horizontal displacements are small compared to the ver-

tical (force direction) displacements. If the bearing was free to move in a horizontal direc-

tion the displacements in that direction would be of the same order of magnitude. This

means the force transducer to takes heavy side loading and therefore it is important that it

has good side load rejection capabilities. The measurement shown in Figure 7.7 was done

with the large (50k) force transducer.

00
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There was also an unsuccessful attempt to do the measurements at 500 psi. The results

looked very similar to those of at 250 psi which suggest that either the pressure did not rise

or the other more likely possibility is that the gap between the capacitance probe and the

shaft surface was filled with oil, thus changing the sensitivity of the probes. The expected

change would be about a factor of 2, which agrees with results. These results were disre-

garded. In general it is easier to measure deflections at lower supply pressures, so that the

bearing stiffness is lower and not totally dominant compared to the test structures.

Corrected (for elastic deflection) force-displacement tests

Even though the test set up was such that the effect of the elastic deflections was mini-

mized they still have a significant effect on the results. If the pure performance of the bear-

ing is desired then these deflections must be eliminated. This is fairly straight forward

since most of the elastic deflection is due to the bending of the shaft which can be calcu-

lated using well known beam theory. The aspect ratio is such that it is necessary to take the

shear deflections into account so that the deflection is defined by [Pennala, 1993]

2

d v- ,- where . (7.3)
dx 2  El GA'

= fT2dA
Q2

A

The last term represent the deflection due to the shear and the C is dimensionless constant

determined by the geometry of the cross section of the beam. Equation 7.3 is rather

tedious to solve for the distributed load and in this case only one solution is required so a

finite element solution is sufficient. This one solution representing the case in question can

be scaled with load (due to linearity) to represent the different load magnitudes.

In order to check that no unexpected displacements exist, a 3-dimensional finite element

elasticity model of the bearing assembly and the shaft was first made. This model was

made to resemble the actual situation as closely as possible even with the cost of computa-

tional time. Symmetry was used where possible to make the solution as efficient as possi-
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ble Figure 7.8 describes the model. The support and the forcing devices were modeled

with contact elements. The rest of the system was modeled with 3-dimensional linear ele-

ments except the capacitance probe and its holder which were modeled with beam ele-

ments. The probe and its holder have no significant effect on the elastic response of the

system but the displacement of the probe tip is of utmost interest. The problematic feature

to model is the connection between the bearing assembly and the shaft, namely the oil

film. The best way to model that is to place a linear spring with stiffness of the bearing at

the effective center of the bearing. This introduces point reaction forces on both shaft and

the bearing assembly and therefore unrealistically large displacements (and infinite

stresses) in the vicinity of the spring. By invoking the St. Venants principle these displace-

ments can safely be ignored and the displacements sufficiently far away from the spring

will still be correct. The spring takes the bearings inability to carry moment loads correctly

into account while the alternative method of replacing the oil film with material with mod-

ified Young's modulus, to achieve the correct effective stiffness, does not. The system was

also modeled without the oil film i.e. with direct contact between the bushing and the

shaft. .

Load

Contact Element Symmetry Constraints

Beam Elements

3D Solid Elements

------ Contact Elements

Symmetry Constraints

Figure 7.8 3D Finite element model
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Figure 7.9 shows the displacements computed by the above described model. Nothing

unexpected happens. The displacement field is mainly due to the displacement of the

shaft. The displacements of the housing is not significant. This allows us to use much sim-

pler model consisting only of the shaft modeled with beam elements capable of taking the

shear deflections into account. The loading of the beam model can be thought of as distrib-

uted load around the effective center of the bearing or alternatively as a point load at the

effective center of the bearing. .

Dizplacement Mag 4.262e 02
Ma +4.7352E-02@79e0

Min +O.0oOO2+00 3.315u02

Deformed Original Model

I-lax Disp +4.7352E-02 2.368e-02

Scale L..0000+00 1.42le82

Loadt loadi 9,47e

"windowl" - anl%,3 - an1vs1

Figure 7.9 Displacement of the test setup with 10 OOON load

Figure 7.10 describes the beam model. Only half of the beam (length wise) is modeled due

to symmetry. The resulting displacement is shown at Figure 7.11. The x-coordinate repre-

sent the distance from the left edge of the shaft. The beam and the solid model agree very

well on the displacements (as can be expected).
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Load
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Support Constraint

Symmetry Constraint

Figure 7.10 The simplified beam model
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Figure 7.11 Beam model displacement

The correction for the displacement can be calculated many ways. It is reasonable to say

that the housing with the capacitance probes moves down by an amount that equals the

average between the displacements of the shaft at both ends of the bushing and the amount

the clearance closes, or it is equally reasonable to assume that the displacement of the

bearing assembly is equal to the displacement of the shaft at the location of the effective

center of the bearing and the amount the clearance closes. Both way yield very similar

192 TESTING
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results. Let this displacement be called the measured displacement. In order to determine

the stiffness of the bearing only it is desired to find out only the amount that the bearing

clearance closes. The clearance displacement of the bearing is now found by

cl = measured - 8correction ' (7.4)

where the 8correction is the difference between the extra housing displacement and the dis-

placement of the shaft at the location of the capacitance probe. The model suggest that the

correction is

(7.5)8correction = 4.6 pm /10 000 N

The corrected force-displacement curve is shown in Figure 7.12.

Corrected Data (250 psi)
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Figure 7.12 Corrected force-displacement curves at 250 psi with 50k force transducer. (Corrl=corrected
results of the probe 1, Corr2=corrected results of the probe 3)

It can be seen that the agreement is much better than in the uncorrected case. The agree-

ment is excellent until about 10 000 N. At loads greater than about 10 000 N the theory
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predicts the bearing to be stiffer than the measurements indicate. This can be expected due

to the model that neglects curvature effects in a bearing gap (this is explained in the mod-

eling section). Also the procedure to predict the correction and the way the theoretical

curve is computed is not entirely correct. The bending of the shaft makes the bearing

clearance vary along the bearing which in turn has an effect on the bearing pressure distri-

bution which in turn effects the load capacity and therefore the displacement of the bear-

ing and the shaft. This is clearly an iterative problem. In order to solve this problem the

bearing model has to be coupled with beam model. When designing a bearing for a certain

application this should be taken into account, but due to the inaccuracies of the testing and

the parts it does not add any information in this case. In addition usually only the small

displacements are of concern.

To get even better idea of the force-displacement behavior this measurement was repeated

with the less noisy 5k lbs force transducer for the smaller displacements of interest.

Figure 7.13 shows these results. In this case it seems that the forcing device was not quite

centered and the bearing assembly tilted slightly. The fact that the other probe shows such

excellent agreement with the theory is likely to be partly due to coincidence rather than

actual agreement. Agreement is still very good and the probe that deviates more from the-

ory actually shows stiffer bearing than the theory. This also probably partly due to the

computational correction made to the displacement.

As can be seen, the bearing behaves very linearly when displacements are small. This jus-

tifies the use of single number to describe the stiffness of the bearing. It must be noted,

however, that this number is only the initial stiffness and in the case of large displacements

the non-linearity of the behavior must be taken into account. Table 7.2 shows the initial

stiffness as predicted and measured with 250 psi supply pressure. The measured initial

stiffness is taken to be the average of the two measured and plotted in Figure 7.13. The

agreement is entirely satisfactory and it can be concluded that the bearing with cast hydro-

static features behaves as would be expected of a bearing with machined hydrostatic fea-

tures.
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Corrected Data (250 psi)
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Figure 7.13 Corrected force-displacement curves at 250 psi supply pressure and the 5k force transducer.
(Corrl=corrected results from probe 1, Corr3=corrected results from probe 3)

TABLE 7.2 Initial Stiffness at 250 psi

Measure Value Unit

Predicted Initial 1770 N/pm
Stiffness

Measured Initial 1915 N/pm
Stiffness

Difference 7.6 %

It must be noted that several data sets of these measurements had an problem where the

displacements indicated by the probes were about twice the expected, as explained earlier.

They were very consistent with each other and therefore it can said with fairly high confi-

dence that these sets have an systematic error and can be discarded. This is further proved

by the good agreement in the testing of the small prototype (See Section 7.3).
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The other characteristic that was measured was the flow rate. The predicted and the mea-

sured flow rate are in Table 7.3.

TABLE 7.3 Flow rate at 500 psi

Measure Value

Predicted Flow 11.2 1/min

Measured Flow 13.1 1/min

Difference 14.4%

This is in fact excellent agreement, even though the difference is percentage vise relatively

high, when the fact that the flow rate varies according to h3 is taken into account. Even a

lsmall errors in the clearance will cause the flow rate to vary considerably. Also the vis-

cosity of the fluid might not be exactly right since it varies with temperature. The mea-

sured temperature was at the tank and it is possible that the temperature rises sligtly as the

oil passes thorugh the pump and the bearing.

7.1.3 Conclusions

6" Diameter cast Bushings were tested for their static properties and compared to pre-

dicted values. The very high stiffness caused some problems measuring the actual dis-

placement of the bearing even though the test structure was designed to minimize the

effect of the elastic deflections in the measured results. This was corrected by calculating

the elastic deflection of the test structure by means of finite element method.

The corrected data was in good agreement with the predicted results. The relative error in

the initial stiffness was less than 8% and the error in flowrate prediction was less than

15%..

The most important conclusion is that large cast hydrostatic bearings work, even when the

bearing parts are machined separately and then assembled. Also when this technology is



Dynamic Stiffness Testing of the 6" Prototype

used, no special machining or manufacturing operation is needed which makes the bearing

very cost effective when compared to existing systems with similar performance.

The results and the difficulty of measuring them shows that when designing machine

structures with these bearings, it is likely that the compliance of the structure dominates

over the compliance of the bearings. Therefore much attention must be paid to design of

the structure, and if optimum performance is desired the bearing should be optimized

together with the structure.

7.2 Dynamic Stiffness Testing of the 6" Prototype

It was attempted to measure the dynamic stiffness of the 6" bearing. This was done with

impact hammer testing. Due to the time limitations only few separate points could be mea-

sured and therefore the results only yield an very rough idea of the dynamic behavior of

the bearing. Also due to the high damping and stiffness it is very hard to separate the struc-

tural modes of the bearing from the ones of the test structure and even the floor.

7.2.1 Test Set-up

The same test set-up was used as in static testing. The only difference was, this time the

bearing was supported instead of the shaft. Figure 7.14 shows the test-setup, the impact

Im act

2 U34

Figure 7.14 Impact and acceleration measurement points
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point and the points where the acceleration was measured. The shaft is floating free inside

the bearing and had to be constrained with a rope.

The measurement was taken with one Hz resolution for the range 0-400 Hz. The acceler-

ometer had sensitivity of lOOmV/g and the force transducer lmV/lbs. The data was col-

lected and Fourier transformed with signal analyzer and saved as an data file. Each trace

was taken with 10 averages and an constant window was applied to time signal before the

FFT (fast fourier transform).

The output frequency response function was in the form of inertance or accelerance

(acceleration/force). In order to get the dynamic stiffness this has to integrated twice or in

frequency domain divided by (02.

7.2.2 Results

The dynamic stiffness and the phase are presented in Figure 7.15. The dynamic stiffness is

presented for points 1,2 and 5 of Figure 7.14. The rest of the measured data was cor-

rupted.The frequency response does not show any apparent resonances. Also the level of

compliance is much lower than in the case static testing. This means that the response is in

large part due to dynamic properties of the test stand and floor rather than the bearing.
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Figure 7.15 The dynamic stiffness and phase traces for the points 1,2 and 5.

The bearing dynamic properties can be checked by simple one degree of freedom model.

Figure 7.16 shows the model and the parameter values.

m,I

k, kt

m = -(r2) - L - p = 96.7 kg

1 2
-m1 2 = 12 kgm
12

k = 1700 N/pm

6
kc = 106x10 Nm/rad

Figure 7.16 Simple single d.o.f system

First linear and rotational undamped natural frequencies are:
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I; = 670 Hz . (7.6)

fr = 475 Hz

This simplified model does not take into account the compliance or the stiffness of the

shaft. By performing a simple finite element beam analysis, with the bearings represented

by spring elements, it is confirmed that there is no undamped natural frequencies below

400 Hz. The crittical damping can be approximated by

C = 2imk ~ 8 - 105 Ns/m (7.7)

The bearing damping is approximately I - 108 Ns/m, which means that the first modes

are over damped. This makes the dynamic testing extremely difficult. This will left as

future work. There is little uncertainty in the bearing stiffness and damping properties, but

the main question is how to best utilize these properties in machine design.

7.3 Static Testing of the 1.25" Prototype

In this section the testing of the 1.25" prototype will be explained and the results com-

pared with the predicted values.

7.3.1 Test Set-up

In order to measure the static behavior of the bearing a test set-up was designed. To mini-

mize the effect of structural deformation the structural loop of the set-up was made as stiff

and small as possible. Figure 7.17 describes the test set-up. Figure 7.18 shows a photo-

graph of the test set-up. Other important issues to consider besides the stiffness of the

structural loop is the sealing the oil from getting into the gaps between the bearing housing

and the capacitance probe. Here this is achieved by placing the capacitance probes above

the bearing.
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Figure 7.17 General and side view of the test set-up.

Forcing nut

Force transducer

Capasitance
Probes

V-Benock

General view is rotated upside down for clarity.

Figure 7.18 Photograph of the test set-up

The bushings were shrunk fit into an aluminum housing. The internal surface was

machined after the assembly so that the cylindricity of the internal surface would be as
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good as possible. Flats were machined to the housing to accommodate the v-block support

and a flat surface for the capacitance probes.Figure 7.19 shows the bearing assembly.

Figure 7.19 Bearing assembly

The bearing was free to move in e (or rotational) direction. Therefore the displacement

was measured with three capacitance probes which were offset from the bearing center-

line. With three measurement points the location of the flat in the housing is known and

the tilt or the rotational displacement can be computationally removed from the results.

The bearing was loaded by threaded rod and a nut pushing against beam above the bear-

ing. Force was measured with the 5k 's' force transducer with specifications described in

Table 7.1. The force transducer was supplied with a 12.15V dc power supply. The output

voltage is transformed to Newtons by Equation 7.2. This force transducer was not optimal

for these measurements. The small bearing size and the test set-up limited the load to

under 2000 N which is less than 10% of the capacity of the transducer. This is one reason

why the results are fairly noisy.

Hydraulic Unit

The hydraulic unit used consisted of a constant pressure pump and a oil cooler and plump-

ing. The oil cooler kept the oil at 25 C. The oil was ISO 60 oil with viscosity of 60 cSt.

The viscosity was measured to be 0.061 Pa s [Kane, 1999]. This isa typical machine oil.
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7.3.2 Results

The force-displacement curve is shown in Figure 7.20 together with the predicted curve

and the curve fit for the measurements. The agreement between the measured and theoret-

ical values is excellent except for the relatively high noise. This noise is due to the too

large force transducer and the vibrating forcing structure. The agreement is good enough

so that it is not necessary to redo the test with more sensitive force transducer.
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Figure 7.20 Force displacement results at 500 psi.

Here again the displacement was only measured up to approximately 10 p m. This is the

most interesting part of the bearing behavior from application point of view. Also the tilt-

ing motion resulted in capacitance probes touching the bearing at larger forces.

The initial stiffness (taken as linear fit at 500N) is presented in Table 7.4. The maximum

relative error between the curve fit and the predicted data was 24.4% and the average rela-

tive error 8.4%. The maximum error occurred at small displacement and the absolute

value of the error was only 0.14 p m. These error values are acceptable taking into account

the noise and the variation due to the manufacturing errors shown in Section 6.4.

**_ . * -- _ _ _ _ -- 0

*. :. predicted

measured -
(curve-fit) - i .
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TABLE 7.4 Initial stiffness of the 1.25" prototype

Measure Value
Predicted Stiffness 170 N/t m

Measured Stiffness 185 N/t m
(curve fit)

Relative Error 8.1%

The flow rate was also measured. The results are summarized in Table 7.5. It seems that at

lower pressures the error is greater. This can be due to slight change in viscosity due to

temperature or most likely due to small errors in the clearance. At higher pressure the

clearance increases slightly thus correcting the flow rate. Overall the agreement is good. I

TABLE 7.5 Measured and predicted flow for the 1.25" bearing

Predicted Flow Difference
Pressure (psi) Measured Flow (1/min) (1/min) (%)

200 0.045 0.055 22%
500 0.116 0.139 20%

1000 0.28 0.28 0.4%

7.3.3 Conclusions

1.25" prototype was designed, manufactured and tested. The force-displacement curves

agreed well with the predicted values, the average relative error being 8.4%. More sensi-

tive force transducer would have produced less noisy data, but together with the 6" proto-

types test results it can be concluded that the lumped parameter model predicts the bearing

behavior well. Some problems were encountered due to the rotation of the bearing during

the measurements, but this error could be canceled by multiple measuring points up to dis-

placements of <10 p m. The agreement in the flow rate was also good.
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7.4 Error Motion Measurements

One important characteristic of a bearing is the accuracy of the motion the bearing pro-

vides. The bearing described in this thesis allows linear motion, so the only relevant error

motion is the radial error motion. The most common way to measure radial error motion is

to attach a precisely circular section to the rotating part and measure the radial movement

by means of dial indicator. However, this method is not satisfactory if pure eccentricity is

desired to be separated from other types of error motions [Tlusty, 1992]. Moreover, the

method does not provide any information on the course of the deviation vector during

rotation. Therefore a different method was selected as described in the following section.

7.4.1 Testing Method

The method selected is a two gauge method for rotating sensitive direction [ASME, 1985].

In this method two gauges are spaced angularly 90' apart (mutually perpendicular) and

measure the motion of a spherical master. The spherical master is offset on purpose from

the axis of rotation This set-up is shown schematically in Figure 7.21. In case of perfect

rotation the gauges would measure a x and y-coordinates of a perfect circle. In other

words, the offset provides information about the angular position of the rotating member.

Any deviation of the measured trace from perfect circle indicate error motions. After the

data is collected a circle has to be fitted to the data in order to determine the error motions.

This can be done many different ways. The [] describes the following ways:

* minimum radial separation (MRS)

* least squares circle (LSC)

" maximum inscribed circle (MIC)

" minimum circumscribed circle (MCC)

The one most convenient to use in case of computerized measurement is the least squares

circle. It is unique and can be defined mathematically (MRS is not unique and defining it

requires trial and error method). In addition it is conservative, the error motion values

obtained by it are generally 10% larger the values obtained using MRS method [ASME,
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Spherical Master

Offset

x x

Cauges

Figure 7.21 Two gauge method with offset spherical
master

1985]. The LSC can be found by performing the following unconstrained optimization

problem

min r {[(xi -xo) 2 + (yi -yo) 2 ] 1/2 - R}2 (7.8)

w.r.t xO, yO, R

where subscript i refers to a measured point and the optimization variables are the coordi-

nates of the center point and the radius of the LSC. The minimization can be performed

by, for example, Nelder-Mead direct search method, which is multidimensional uncon-

strained nonlinear minimization method used by MATLAB function fminsearch. The error

motion values are then the maximum and the mean deviation from the LSC. Asynchro-

nous error motion is the variation of the error vector in single direction during multiple

revolutions.This can be calculated as the thickness of the error motion trace in radial direc-
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tion. Maximum and mean asynchronous error motions are calculated. MATLAB scripts

that perform the circle fit and the error motion calculations are shown in Appendix B.

7.4.2 Test Set-up

Some special arrangements had to be made in order to measure this bearing, since it does

not have thrust bearing. The test set-up consists of the bearing assembly, V-block, shaft,

wobble plate, precision ball and a precision cast iron angle. Whole set-up is assembled on

a surface plate which is at very slight angle from horizontal (approximately 0.0005:1).

This slight tilt is used to preload the shaft against the cast iron angle. The precision ball

contacts the cast iron angle and acts as an thrust bearing. The ball is 1" diameter grade 5

steel ball. Grade 5 means that the spherity of the ball is within 5 microinches or 0.127 jim.

The wobble plate is used to offset the ball from the canter of the rotation. A machining

drawing of the wobble plate is shown in Appendix A. The viscous forces due to the fluid

flowing in the grooves is enough to rotate the shaft slowly (10-20 s/rev depending on the

pressure). Therefore, no external drive is needed to rotate the shaft. The hydraulic unit and

the oil are the same as in the static testing of the 1.25" bearing. The motion is measured

with two capacitance probes. The data is collected with a National Instruments PMCIA

data acquisition card and processed with Labview software and saved into a ASCII file for

further analysis. A drawing of the test set-up is shown in Figure 7.22 and a photograph is

shown in Figure 7.23. This set-up measures both radial and angular error motions com-

bined without separating them..

Possible error sources in the measurement are the environment noise, the ball spherity

errors, probe alignment, friction force caused by the ball touching the cast iron angle and

the pump pressure pulsations. The pump pressure pulsations are inherent to a hydrostatic

system, but by carefully designing a hydraulic system with sufficient accumulators, this

effect can be made smaller.
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Probe mounts Capacitance probes

Wobble plate Bearing assembly
Shaft

Cast iron =
angle V-block

Precision ball

Figure 7.22 The error motion test set-up.

Figure 7.23 Error motion test set-up (2" ball)

7.4.3 Results

In Figure 7.24 the motion trace for single revolution is shown.The maximum deviation

from LSC is 0.17 p m and the mean deviation 0.055 p m.

In Figure 7.25 the motion trace for single revolution is shown.The maximum deviation

from LSC is 0.20 p m and the mean deviation 0.05 p m. This test was run at 6 rpm and

there is 10 revolutions in the error motion trace. By looking at the error motion trace it
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Figure 7.24 Error motion trace for single revolution
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Figure 7.25 Error motion for multiple revolutions
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seems that the largest deviations from the LSC are of fairly short wavelength. This would
seem to indicate a scratch with burr on its edges in bearing surface or a dimple either in the
ball or in the bearing surface. A fairly large surface feature would be necessary in the bear-
ing for it to produce a significant deviation, because of the error averaging effect of the oil
film.

The asynchronous error motion for the error motion trace of Figure 7.25 shown in
Figure 7.26. The maximum asynchronous error motion is 0.20 p m and the mean asyn-
chronous error motion is 0.07 p m. Spectral analysis of the asynchronous error motion
does not reveal any specific frequencies at which the error occurs.

0.25 I I I I
Max Asynchronous Error
0.2085 .LmI

0.2 - - - - - -L-- - -
M I I I I

Mean Asynchrorfous Error-=
0.071047 Lm

0.15 - - - - - -- - -- - -- - - --

PM

0.05 -

00 50 10 15 20 25 300 35 400
Measured point

Figure 7.26 Asynchronous error motion

In order to assess the noise level the measurement was run with the bearing rotation

enabled with the pump on and off. Figure 7.27 shows the noise measurement with the

pump on. The maximum deviation from a straight line is 0. 13 [tm and the mean deviation
is 0.024 p m. Figure 7.28 shows the noise level with the pump turned off. The maximum
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deviation from a straight line is 0.49 gim and the mean deviation is 0.14 jim. An interest-

ing phenomenon is observed, the noise level with the pump on is larger than with the

pump turned on. This can be explained by the damping properties of the bearing. The

bearing actually isolates itself from the environment, thus lowering the noise level when

the pump is turned on and the shaft is supported by oil film.

0 50 100 150 200 250
Measured point

300 350 400 450

Figure 7.27 Noise level with pump on

The bearing bore and shaft was made to tolerances of 5 p m. The error motion is less than

0.2 g m which means error reduction approximately by a factor of 25.
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Figure 7.28 Noise without the pump

7.4.4 Conclusions

The bearing error motion is less than 0.2 g m with manufacturing tolerances of 5 g m. The

error motion value of 0.2 p m is conservative considering all the environmental distur-

banses. This leads to a error reduction factor of approximately 25. This is very accurate

bearing, considering no special precision manufacturing steps were needed to manufacture

them. The shaft used can be standard ground shaft and the bearing bore can be ground or

honed to desired tolerances by almost any standard machine shop.
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Chapter 8

APPLICATIONS

In this chapter a general discussion is presented about suitable applications of this bearing.

Then a few specific applications are discussed in a little more detail. The bearing design is

discussed in detail in the design chapter, in this chapter the emphasis is on the application

itself. Also some general ideas about sealing is presented because it will be encountered in

most applications.

8.1 General

In the introduction a typical applications for hydrostatic bearings were listed. They were

[Bassani, 1992, Slocum, 1992]

- Telescopes, radio telescopes, large radar antennas. For example the Mount
Palomar telescope where hydrostatic bearings support 500 ton mass that
makes a one revolution in a day

- Air preheaters for boilers in power plants

- Rotating mills for ores or slags

- Stamping presses

- Machine tool slides and spindles

- Hydrostatic steady rests for large lathes and cylindrical grinders

- Vibration attenuators for measuring instruments

- Dynamometers

213
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The most obvious uses for the bearing introduced by this thesis are naturally the ones

where the hydrostatic bearings are already used. This bearing provides, in most cases,

more cost efficient and robust hydrostatic bearing which is very easy to install and main-

tain.

8.2 TurboTool

TurboTool is a very high speed machining spindle driven by turbine instead of a electric

motor. This way very large cutting power can be achieved without significant heating

problems. This potential application is described in [Slocum, 1997]. The general problem

with high speed, high power spindles is, in addition to power source, the high power losses

due to bearings. On the other hand the damping properties of fluid film bearings are very

desirable in this case, as shown later in this chapter. In case of a fluid film bearing the vis-

cosity of the fluid and the radius of the bearing should be minimized in order to reduce the

power losses. For example, a 50 mm diameter water bearing would consume about 60 kW

at 50 000 rpm as a 25 mm water bearing would consume about 25 kW at 100 000 rpm.

Because the hydrostatic bushing can operate on smooth shaft, the tool shaft may directly

be used without a tool holder, thus reducing the diameter of the bearing. The tool is

attached to the turbine by shrink fit and is then balanced dynamically. This assembly can

then be inserted into a tool head which is part of machine tool and has all the necessary

fluid connections. An embodiment of the design is shown in Figure 8.1 [Slocum, 1997].

In the concept shown in Figure 8.1 the bearing geometry is machined into the tool shaft,

which is then inserted into a smooth bore. Having the bearing grooves on a bushing offers

several advantages. No expensive machining operation is needed. The tool is carbide or

some other very hard material which makes the machining process difficult. Also the bal-

ancing is easier as the tool without grooves is inherently more balanced. Also in a case of

a crash the bushings are very easy to replace and since they are very low cost this can pro-

vide large economic benefits.
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Figure 8.1 Embodiment of a TurboTool concept

8.2.1 Preliminary Analysis of 'IurboTool Concept

TMrbine and Fluid Supply System

First a required pressure drop is calculated for a turbine. Here a inviscid and incompress-

ible flow is assumed and only the first order equations are used to estimate the turbine per-

formance. This analysis is not meant go into detail about turbine design but rather to show

feasibility of the concept. The required flow rate and turbine diameter for a given turbine

power can be calculated from [Fay, 1994]

P = QAp = rnw2R2  (8.1)

1 30 a Alp

If 120 000 W is required and the pressure drop across the turbine is 7 MPa (1000 psi), the

flow rate becomes approximately 1000 1/m and the turbine radius 8 mm. Above equa-

tions assume perfect radial turbine. In practise the turbine would be larger in size, approx-

imately 20 mm in radius [Slocum, 1997]. This calculation shows that a very small turbine
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can produce the necessary power. There are two options for choosing the fluid supply sys-

tem, either choosing low pressure high flow rate or high pressure low flow rate system.

The high flow rate system is more desirable, because it can be used more easily with the

bearing, where maximum allowable pressure is limited. In addition higher flow rate has

higher momentum which is important when the rotating tool is pushed into material it is

supposed to cut. Also, the high flow rate can be used to remove heat from the system very

effectively. The pumping system that can deliver required power is fairly expensive and

comparable in price to other spindles that could have similar capabilities. Although rolling

element bearings can not reach speeds as high as is required here, magnetic and air bear-

ings could. The major advantage with this system is that the expensive equipment is sepa-

rated from the actual machining head that is moving at high speed in hazardous

environment. The expensive equipment is located away from the machining operation. In

case of a crash only the relatively inexpensive tool and in worst case the housing for it is

destroyed, not the entire drive. Fluid bearings also provide higher load capacity and damp-

ing than magnetic or air bearings.

Rotor System

The rotor system consists of bearings and the tool shaft and the attached turbine. In order

to size the bearings first the shaft radius is selected. As mentioned earlier in order to mini-

mize the shear losses the radius should be minimized. The manufacturing methods

described in the manufacturing section determine the minimum diameter for the bushing

to be approximately 25 mm. Also for sizing the tool and the bearings expected machining

forces must estimated. This can be done simply once the cutting power is determined. The

total required power was stated as 120 kW from where 100 kW is the power reserved for

the cutting. The force can be calculated from

T P
F - - P(8.2)

R Rw
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]For a 25 mm diameter tool this force becomes approximately 765 N. For a 50 mm over

hang tool this will lead to a tool tip deflection of approximately without bearing deflec-

tions.

8i _= Fl3 _ -6M (8.3)
3EI

This is reasonable for such a high power operation. The high speed bearing from

Section 5.3 is used as a bearing. The clearance and the viscosity are chosen in such a way

that the land flow remains laminar (see Table 8.1).

TABLE 8.1 Bearing dimensions for TurboTool

Dimension Value

D 25 mm

L 25 mm

h 15 m

PS 7 MPa

pt 0.0025 Pa s

P 995 kg/m3

N 100 000 rpm

The bearing with central lands in the pocket is chosen due to its better damping properties

and slightly higher load capacity and stiffness. A simple finite element model of the rotor

system is constructed in order to estimate linearized dynamic behavior in the vicinity of

the equilibrium under machining load. This analysis is simplified and does not take into

account the gyroscopic effects which will make the natural frequencies dependent on the

rotational speed and make the mode shapes complex (rotating). The bearing properties at

equilibrium point are summarized in Table 8.2.
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TABLE 8.2
machining force

Bearing properties at equilibrium point under maximum

Property Value

Eccentricity at 0.25
765 N

Force Angle -510

Pumping Power 90 W

Shear Power 5880 W

Stiffness (N/m) -
5.8 9.2 107

-7.4 6.5

Damping (Ns/m)
2.9 0 -[104

_ M 3.1

Critical Mass 8.2 kg

From there the linearized stiffness and damping coefficients in the load direction are: stiff-

ness 65 N/p m and damping 31 000 Ns/m per bearing half. The finite element model is

shown in Figure 8.2. The spring and the dashpot are located at effective force center of the

bearings. A two node, four degree of freedom beam element is chosen to model the sys-

tem. The mass matrix is consistent, meaning same polynomials are used to formulate the

mass and stiffness matrices. The system equations of motion become

[M]{x}+ [C]{x}+ [K]{x} = {F} (8.4)

where M, C and K are the mass, damping and stiffness matrix respectively. This can be

transformed to a first order state space system by defining state variable vector

{x}{x= { { }
{4}

The first order system of equations is

{x} = [A]{x}+[B]{F}

(8.5)

(8.6)
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In terms of the mass, damping and stiffness matrices and displacement vector equation 8.6

becomes

{I} U [] {x} 0 0 0 (8.7)

{} } [M]-[-K] [M ]-i[-C] {} } + [M ]-[Ii{ { } (8.

where the vector F is input vector of forces and moments. In this analysis contains only

one non-zero element, the cutting force applied at tool tip. The MATLAB program that

assembles the finite element system and sets up the state space model and solves it is pre-

sented in Appendix D. The desired dynamic response is the dynamic response of the tool

tip. Convenient MATLAB function to obtain is the bode-function. In order to use this

function the output is formulated the following way

(Y} = [Cc]{X}+[D]{F} (8.8)

where Cc and D are row vectors. The only non zero component is the component in C

which corresponds to the tip displacement and can be set to equal the magnitude of the

cutting the force in which case the output corresponds to the actual displacement. The

stiffness and damping coefficients of the bearings are added to the associated degrees of

freedom in the stiffness and damping matrices. A damping ratio ( can be set for all modes

by setting the damping matrix [O'Sullivan, 1998]

C = 2CM 1/ 2 (M-1/ 2 KM-1/ 2 ) 1/ 2 M 1 / 2  (8.9)

The transfer function of the TurboTool is shown in Figure 8.3. Also shown is the same

system with bearings having low damping These results are computed with modal damp-

ing of 1% ( C = 0.001 ). Figure 8.3 shows clearly the advantageous damping properties of

fluid film bearings. All of the resonance peaks almost vanish due to the high damping.

Actually some modes become over damped, thus vanishing from the plot. This can be

seen by calculating the eigenvalues of the A matrix, which for the most part, are complex.

The real part of the eigenvalue indicates the rate at which free oscillations will die out and
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Figure 8.2 Finite element representation of the TurboTool

the imaginary part the frequency of the damped oscillations [Den Hartog, 1985]. Some of

the computed eigenvalues are real for the damped case, indicating over damped mode.

The only undamped resonant peak that exists below the rotational frequency of 10 470

rad/s (100 000 rpm) is one of the modes that vanish. Only the sixth undamped mode

remains approximately the same. This mode does not have large displacements at the

bearing locations and therefore the damping of the bearings does not play significant role.

The model deceases the effect of damping in this case since it concentrates the damping

into a single node although in reality it is distributed along the bearing length. The static

displacement of the tool tip is approximately -75 dB which corresponds to 180 p m. This

is also the maximum displacement for the damped case.

According to the linearized analysis the concept seems feasible due to the high damping in

the bearings, which highly reduces the risk of chatter. The excitation frequency from cut-

ting depends also on the number of flutes the tool will have. Due to the high damping there

is much wider spans where these excitation frequencies can fall without necessarily caus-

ing any problems. In another words, the modal density is far less for the damped case.
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Figure 8.3 Transfer function for the tool tip displacement of the TurboTool

8.3 Conceptual Very Small Machine Tool

Hydrostatic bearings have a special property that a single bearing can provide both rotary

and linear motion. This can be used as an advantage when multiple degree of freedom

tools are designed. It can reduce the number of stacked axis dramatically. Here a concep-

tual design of small 5 degree of freedom (5-axis) machine tool is presented as an example

of linear-rotary capabilities of the bearing and the new freedom it can provide when

designing multiple d.o.f machinery.

8.3.1 Functional Requirements for Small 5-Axis Machine

The first order functional requirements for a small 5-axis machine are (numbers in paren-

thesis are target assumptions):



222 APPLICATIONS

§ § Accuracy in the order of 10 t m

§ § 5-Axis of motion

§ Small workspace (30x30x30mm)

e § Small footprint (400x400x400 mm)

* § Simplicity

Additional requirements for a machine would be the reliability, ease of use and operating

ergonomics. Concepts shown here show only the primary component configuration and do

not consider the latter requirements. Later in design process these requirements will be

given the attention they deserve.

There are literally hundreds of different ways of arranging the machine axis to achieve the

required degrees of freedom. However, very few of them are fundamentally different. The

most typical 5-axis arrangement is gantry type as shown in Figure 8.4. The machine con-

sists of a bridge and worktable. The bridge, which holds the spindle, has vertical, one hor-

izontal and one rotary degree of freedom. The base, where the workpiece is located, has

usually the two remaining degrees of freedom (one horizontal and one rotary). There can

be many different permutations of this same basic design. The advantages of this design

are that it does not need any special components and it can be made fairly stiff. In addi-

tion, the work space to footprint ratio is good when larger machines are concerned. The

disadvantages are cantilevered structures, stacked axis and large ABBE errors. ABBE

errors are angular errors that are magnified by the distance between the error source and

the tool tip. Most significant ones are the result of the offset between the tool tip and the

center of stiffness of the bearings carrying the axis in question. In case of the stacked axis

the errors add up quickly and can become unacceptably high. The accuracy of this type of

machine depends greatly on manufacturing, assembly and component quality. One aspect

also of concern, in the most typical arrangement, is that one of the rotary axis is aligned

with the rotary axis of the spindle when it is in vertical position. This results in a singular-

ity in the tool motion in the middle of the work space.
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4)

Figure 8.4 Typical gantry type arrangement of axis

The second fundamentally different configuration is the hexapod or Steward platform. In

this type of machine the spindle is moved by changing the angular position and length of

the rods that support the spindle (see Figure 8.5). The advantages of this type of machine

are the high stiffness (in the middle of the work space) and relatively simple structure.

Hexapod also scales well when machine size gets larger. The disadvantages are the highly

non-constant stiffness within the work space, ABBE errors and control problems. In addi-

tion, most of the components have to be custom made and are very complicated. This type

of machine was expected to change the machine tool business, but it has not done so,

mainly due to the above mentioned problems. There is also different variations of this

type, some of the degrees of freedom can be achieved by linear tables or rotary platforms

and only some with moving platform. This type can be called a mix between the hexapod

and the traditional type. With true hexapods the goal accuracy of 10 g m will be hard to

achieve.
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Figure 8.5 Hexapod (Steward plat-
form)

The third type here is by far the simplest for a small machine. It introduces the idea of hav-

ing the same physical structure perform both rotary and linear degrees of motion. By com-

bining two of these structures perpendicular to each other and utilizing direct drive

technology the total of four degrees of freedom (the rotational and horizontal) can be

achieved by just two moving parts, as shown in Figure 8.6. The fifth degree of freedom

(vertical) can be achieved either by moving one of the axes up and down as a whole or by

moving just the spindle. The former is more attractive in terms of simplicity. The advan-

tages of this design are very high stiffness, high accuracy due to the close proximity of

tool point to the center of stiffness of the bearings. This also results to almost zero

moments around the bearing axis due to the cutting forces. Another advantage is the sim-

plicity of the structure and the components. Disadvantages are that this type of machine

does not scale up well. As the machine is scaled up the footprint grows very rapidly and

the inertia of moving parts becomes large. Also linear rotary actuators are not readily

available. A separate rotary and linear actuator can be combined to achieve the desired

motion, but his will lead to inefficient use of space for larger machines. A work space up

to 100x100x100mm can be achieved with a desktop size machine. There are several con-

figurations derivable from this basic idea. For example, by cutting the machine shown in
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Figure 8.6 A into half a cantilevered design is achieved as shown in Figure 8.6 B. Having

both yokes cantilevered will save footprint but will sacrifice stiffness.

A) B)

linear-rotary bearings

Figure 8.6 Linear-rotary concepts (actuators not shown)

One variation of the double yoke concept is shown in Figure 8.7. This configuration is

more complex, but can be made to fit into smaller footprint.

Figure 8.7 Circular concept
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8.3.2 Concept Selection

In Table 8.3 different configurations are compared in terms of the functional requirements.

This comparison is done at very general level and its intent is to find the configuration

with most potential. As the design process goes further more detailed comparisons can be

made and the issue revisited. The results can also vary if different requirements are given

different weights. The work space to footprint ratio is not very important if footprint is

kept under certain limits (desktop size). More thorough comparison can utilize, for exam-

ple, analytical hierarchy process (AHP) [Slocum, 1992], in which inputs from all the peo-

ple involved in the project can be utilized.

TABLE 8.3 Concept selection

Functional Double
Requirement Weight Gantry Hexapod yoke Circular

Accuracy 3 0 - ++ +

Work space/ 1 + ++ - 0
Footprint

Simplicity 2 - -- + 0

Total -1 -5 7 2

The double yoke and the circular concept seem most promising, according to preliminary

studies, and are therefore studied further.

8.3.3 Concept Feasibility

This concept is fundamentally different from other types of axis arrangements in two

ways. The tool point is very close to the center line of the rotational axis at all times and

the rotary and linear motions are combined into one structural element. This arrangement

has several desirable properties, which are explained later.
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Kinematics

Singularities. A singularity is defined as the situation when a machine tool passes

through a configuration where infinite power of an actuator is needed to satisfy the tool

orientation and position. 5-axis machine can not avoid such situations, but the location of

the singularities can be designed into less obstructive place. In the concept shown above,

the singularity is located at b=p/2 (equator), which is rarely visited during the machining

operation. Depending on the design the singularity might not be accessible because of the

limited range of motion.

Coupling of rotational and translational axis. If the tool tip is not placed on the center

line of the rotational axis, the coupling effect exists. When the tool is oriented with angular

velocity, the translational axis has to compensate with corresponding velocity.

With this design, the maximum offset between the center line of the rotational axis (a) and

the tool point is small (max. half of the z travel = 15mm). The tool tip is always located at

the center line of b-axis, if the z-axis moves the whole structure (not just the spindle).

Geometric Error Gains

The geometry is very beneficial when geometric error gains are considered. Again, the

close location of the tool tip to the center lines of rotational axis almost eliminates ABBE-

errors. Table 1 shows the error gains for different components. The locations of co-ordi-

nate system are at the center of stiffness of different components. Since some of the struc-

tural loops are closed, the values of angular errors are worst case estimates, which are

obtained by dividing the linear error of the bearing by the distance from the center of stiff-

ness of that component to the tool tip. The error gains are shown in Table 8.4. The sub-

script s refers to spindle, subscript c to the component in question (or bearings that support

that component) and a, d and h are shown in Figure 8.8 and are the dimensions between x-

axis, y-axis and z-axis bearing center of stiffness and tool tip, respectively.
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TABLE 8.4 Geometric error gains

x y z x y
Component

Spindle gs+ Eys 6 ys + ExSg _zs Exs ys

x - B Axis control 6SY 62z control 28(
d

y - a Axis axe control 6zc 26zc control

h
z Axis EY a Exca control Exc Eyc

9h

ya

z

Figure 8.8 Double yoke design

The component error values are substituted into the table and the corresponding tool tip

errors can be calculated with the formulas in the cells. The only ABBE-errors that exist are

introduced by spindle and z-axis. If all the component errors are expected to be in sub-

micron range, that will result in micron range total errors even if the errors are simply

added up. Adding up the errors is very conservative method to approximate errors, since it
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occurs very rarely, if at all, that all the errors would add rather than partly cancel each

other. It can be concluded that the geometric error gains of this arrangement are almost

negligible.

Static Stiffness

The static stiffness of the system is a strong function of the diameter of the yokes

(K oc D4 ) and can therefore be easily increased, and the bearing stiffness, which is the

function of supply pressure. Both can be orders of magnitude higher than the actual cut-

ting tool stiffness. The presented results are calculated with following general properties:

- Kb=350 N/g m (bearing stiffness @1000 psi)

" D=1.25"

- Work space 30x30x30mm

" Total mass 5 kg

The static stiffness properties of the yokes are presented in

TABLE 8.5 Static stiffness of the double yoke concept

Property Upper yoke Lower yoke

x stiffness Kx 160 N/ gm 750 N/grm

y stiffness Ky 150 N/p m 130 N/p m

z stiffness Kz 65 N/gr m 10N/p mn

displacement, 0.5 pm 0.35 p m
F=50 N in direc-

tion {1,1,1}

Static stiffness of the structure will not present a problem due to the low cutting forces

expected in a small machine. This system is a direct drive system and therefore some of

the compliance comes from the control loop. This question is discussed more detailed in

next section. Calculated values are based on the assumption that the drive is infinitely

rigid and therefore any static compliance of the control loop must be added.
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These stiffness coefficients do not take into account the compliance of the cutting tool

itself. The compliance of the cutting tool often dominates the total static deflection and

therefore the structures static stiffness characteristics are not very critical in small machine

tools.

Dynamic Characteristics

The dynamic characteristics become increasingly important as machining speed increase.

One of the advantages of a smaller machine is its superior dynamics compared to larger

and more compliant machines. Also the moving masses are much smaller, allowing for

higher accelerations. The natural frequencies of the yokes will mostly determine the

dynamic behavior of the machine. summarizes the first undamped natural frequencies.

TABLE 8.6 First natural frequencies of the yokes

Lower
Mode Upper Yoke Yoke

1 570 Hz 720 Hz

2 655 Hz 810 Hz

3 710 Hz 2310 Hz

4 770 Hz 3350 Hz

The finite element representation of the lower yoke is shown in Figure 8.9.

A O

165

125-

165-

125-

*0000000 C Tee t* SOC C C C CO 001CC T ** * ***. C C

Bearing Bearing

Figure 8.9 Finite element representation of the lower yoke
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This length includes the necessary lengths for the actuators outside the bearings. The same

state space model is used as in a case of the TurboTool to obtain a transfer function for the

lower yoke. This is done in order to estimate the effect of damping on the frequency

response of the structure. The transfer function (for 1 N force) is for the center node of the

yoke and is shown in Figure 8.10 for the fluid film bearing case and for low damping case.

The bearing damping is calculated with oil viscosity of p = 0.06 Pa s (approximately 60

cSt) and is 3.7 - 10 5 Ns/m per bearing half.

Bode Diagrams

From: U(1)-250 T - - .....--.

-300

-350 - - - - -

-400 - - ----- - - --

-450 - - - -40

-500 - -

-1000

-1500 -- - -------------- -

-2000 -
10 10

Frequency (rad/sec)

Figure 8.10 Transfer functions for the lower yoke

Again the benefits of high damping are very evident. By looking at the roots of character-

istic equation, the two first undamped modes become over damped and vanish. The first

damped mode is the third undamped one. The frequency of the first resonant peak moves

from 4500 rad/s (720 Hz) to approximately 7500 rad/s (1190 Hz).
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Another dynamic characteristic of importance is the damping in the linear and rotary

(actuated) directions of the moving axis. These can be approximated to first order by

b= F gnDL (8.10)
U h

for the linear case and for the rotary case

b = T - W L (8.11)
4h

These relations yield results that are very close to actual for the bearing discussed in lami-

nar design section. Since the surface speed are not likely to reach similar values as in the

case of rotary bearings the laminar design with damping lands is recommended for these

types of applications.

Another desirable characteristic of hydrostatic bearing in these types of applications is

zero static friction, which results in a very possible motion resolution. This is possible

because no stick-slip effects occur.

One issue that is not discussed here in detail, but is left as future work, is the motion con-

trol of these very light weight direct drive structures. With low mass there is less inertia to

eliminate higher frequency disturbances and with direct drive there is no mechanical stops

either. This might pose control problems if very high accuracy is desired.

8.4 Sealing

One of the major practical issues of using hydrostatic bearings is the sealing of the bearing

and therefore a quick look at the possible sealing methods is provided here. Standard con-

tacting seals such as lip seals can be used, but if the non stick slip conditions are desired a

non-contact seal is required. Examples of non-contacting seals are slingers, labyrinth-,

screw-, pump seals and air barriers [Heinz, 1998, Warring, 1981]. Slingers are formed by

circular rings that centrifugally spray off the liquid on the shaft surface as shown in
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Figure 8.11. The rotor diameter is made smaller than actual to better illustrate the seal

geometry. This seal can also incorporate a pump seal, which contains the grooves in stator

face, which pump the fluid back towards collecting chamber when rotor rotates. Seal exit

gap should be larger than 0.5 mm to prevent surface tension driven flow out through the

seal (fluid bridging) [Heinz, 1998]. .

Slinger
Stator

Stator face
Bearing

.R Fotor

Drjain

Figure 8.11 Slinger seal

Labyrinth seals are based on passage with higher hydraulic resistance as shown schemati-

cally in Figure 8.12. The rotor diameter is made smaller than actual to better illustrate the

seal geometry.
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Stator
Bearing

Rotor

77- Drain

Figure 8.12 Labyrinth seal

Screw and pump seals have grooves on the shaft surface that pump back the fluid as the

bearing is rotated, similarly to the pumping back effect discussed in the design chapter.

These types of seals are not recommended since they can more easily than slingers or lab-

yrinth seals effect the dynamics of the bearing system. It must be noted that when design-

ing any kind of sealing system attention should be paid to the dynamics of the seal and if

possible try to design the seals in such way that they do not have significant effect on the

system dynamics.

Air barriers use pressurized air to make sure flow in the sealing area is into desired direc-

tion thus preventing flow into opposing direction. These types of seals can be used in com-

bination with contacting lip seals to make them non-contacting. The air pressure can be

used to lift off the lip from contacting the surface. A desirable characteristic of this

arrangement is that even if the air pressure fails or is turned off the seal will still prevent

leakage. This approach was successfully used in [Sihler, 1998]. In this approach it is

important that the sealing material and structure is stiff enough that lift off can be ensured

along the entire circumference of the seal. The deflection of the lip can be estimated by the

following formula [Avallone, 1999]

0.0025La4 (8.12)
Et3
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which is for the case shown in Figure 8.13 with R/r of 1.25. This formula is not entirely

correct because it assumes Poisson's ratio of 0.3. For rubber like material the actual Pois-

son's ratio is between 0.4-0.5 The complete formula for the tip is [Roark, 1938]

-= 3 3Et[a4+5b4 -6a 2 b2 + 8b4log( (8.13)

(8b 6 (m + 1) - 4a2 b 4 (m + 3) + 4a4 b2 (m + 1))log - 16a2 b4(m + 1) (log a2 - 4a2 b4 + 2a4 b2(m + 1)- 2b 6(m - I

a 2 (M - 1) + b 2 (m + 1)

1where m = - (1/Poisson's ratio). E is the Young's modulus which typically for elas-
V

tomers is 1-20 MPa.This is fairly low value and standard shop air provides more than

enough pressure to lift the seal up. Therefore a hard stop should be designed that deter-

mines the maximum deformation for the lip seal (as shown in following figures).

b
t

a

Figure 8.13 Clamped circular flat plate

A one possible seal design combining slinger, lip and air barrier seals is shown in

Figure 8.14. The simpler implementation of air barrier lip seal is shown in Figure 8.15 .
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Stator

Elastomer V-ring
Pressurized with air pressure

air

Slinger

Rotor \Elastomer V-ring
without air pressure

Figure 8.14 Combination of slinger, lip and air barrier
seal

Pressurized Stator

air

Rotor

Drain

Figure 8.15 Combined air barr ier lip seal



Chapter 9

CONCLUSIONS AND FUTURE WORK

In this work surface self-compensating hydrostatic bearing technology was successfully

implemented into a bushing. This means very low cost, robust and simple hydrostatic

bearings which do not require expensive tuning procedures to be implemented into

machines. Finite difference methods were explored to solve the pressure field in a bearing

and solutions were obtained and also some limitations to these methods as applied to this

type of bearing were discovered. Different hydrostatic bearing designs were compared and

it was concluded that they have very similar performance characteristics and therefore the

simplest design to implement was chosen as the design manufactured and considered in

this work. Next, a simple first order equations were developed that can be used to estimate

the performance of the bearing without going into detailed modeling. These types of rela-

tions are very useful in iterative design process where time consuming numerical solutions

are not usable. These relations also included two non-dimensional parameters, power ratio

and pumping ratio, that can be used to predict the significance of hydrodynamic effects on

bearing performance. The design problem was stated as a general optimization problem.

Finally the first order solutions were compared to numerical solutions and very good

agreement was found.

Different manufacturing methods were considered next. In general, the more expensive

the method better the tolerances that can be achieved. In order to compare different meth-

ods more quantitatively a single metric is derived. This was done by computing the proba-
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bility density function for the bearing characteristic as function of the probability density

function(s) of the manufacturing error. This was done by using Monte-Carlo method.

Then a cost function was assigned to variations from the nominal bearing characteristic

value. By calculating the mathematical expectation using the derived probability density

function and the cost function a single metric, called estimated total cost is obtained. By

using this metric it was shown that the most economical way of producing the bushings is

casting (even when taking into account the loss in quality).

Two different prototype sizes, 6' and 1.25" ID, were manufactured. The larger prototype

was manufactured by sand casting. In order to make the necessary surface geometry on the

internal surface, novel manufacturing steps were introduced. The smaller prototype was

manufactured by investment casting. The patterns were produced by 3D-Printing. Both of

these methods are very cost effective, especially the 3D-Printing and investment casting

procedure.

The prototypes were tested and good agreement with the theory was achieved. The error

motion of the smaller prototype was measured. The maximum error motion was smaller

than 0.2 tm and the average error motion less than 0.05 prm. Both of these values were

close to the noise and measuring ball tolerance levels. The error motion characteristics are

excellent considering the economic manufacturing of the bearing.

As future work, the main question is how to implement these bearings in such way that the

excellent characteristics are best utilized. Also the effect of surface roughness in the

grooves is of interest. It was concluded that globally they have very little effect in fric-

tional characteristics of the bearing. However, the local effect is of interest, namely the

effect of higher friction factors on the hydraulic resistance. This could be done computa-

tional with finite element or finite difference codes that allow to modify the friction factors

according to surface finish. As first order analysis only the groove could be modeled. Also

high speed experimental testing to verify bearing performance at high speeds together

with non-linear rotor dynamics. The high speed experimental work should search for
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instabilities and the results should indicate what happens instability occurs. High speed

testing could also be used to verify the pressure rise along the surface grooves and the

search for the limits of power and pumping ratios could be performed. This would help to

determine how accurately the finite difference code can predict this phenomena and what

is the effect of modeling the grooves with only half of the actual depth. As mentioned

before, the final proof of the performance of the bearing is its use in real world applica-

tions.
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Appendix A

AUTOMATIC GEOMETRY
GENERATION

This MATLAB script generates the geometry for the SC10 Bearing

clear all;

%Automatic Bearing Geometry Creation for RBTS

%** ***** *** ** *** *** *** *** ****** *** *** * ***** * * ****** ** ******** **** ********

************************************ **

%INPUT

***** ****** ********************** ****************************************

***** ****** ************* *******

%System of Units

units=1; %0=english, 1=SI (actually mm in linear dimensions)

%General Dimensions

D=2.35*25.4; %Diameter

L=2.2*25.4; %Total lenght (from end to the symmetry plane)

CL=0.015; %bearing clearance 0.0012*25.4

np=6; %number of pockets

GW=0.08*25.4; %Groove widht

GD=-CL*13; %Groove depth (give negative value (a bug :) ))

%drainage grooves

drains=1; %drains (0=false, 1=true)

dgl=0.96*25.4; %drainage groove lenght 0.96*25.4
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divgw=30; %determines how close the points are to the grooves (GW/

divgw)

%Circumferential dimensions

cpcl=0.74*25.4; %lst dimension (pocket widht)

cpc2=0.985*25.4; %2nd dimension (0 to first drainage groove)

cpc3=3.089*25.4; %3rd dimension (0 to beginning of restrictor groove)

rgl=0.51*25.4; %restrictor groove length

%Axial dimensions

cpal=0.15*25.4; %1st dimension (exit land width)

cpa2=1.955*25.4; %2nd dimension (end to the rstrictor groove (first

edge from end)

cpa3=2.1*25.4; %3rd dimension (from end to the supply)

dl=1.271*25.4; %0 to end of first pocket groove (defines the snake

line)

%pockets

deeppock=1; %if land is removed deeppock=1 if not deeppock=0;

********************************** ** ** * ******** ******* *

*** *.* ***** * ** **** **.* ** **** ** * * **** ***

%CONVERT DIMENSIONS INTO DEGREES

* *-k*** *** ****** -k* -* * k ***k-**** -* * * ** * ** k** -k-* * * *** *-A* ---** *** *** *-* ***-k*** *-A* *

* ** *

GWD=GW*360/ (pi*D);

cpc1=cpc1*360/(pi*D);

cpc2=cpc2*360/(pi*D);

cpc3=cpc3*360/(pi*D);

rgl=rgl*360/(pi*D);

*- - * -* * ** * -* * -A* ** * * * k* -k* * ** * ** -k

%GENERATE GRID LOCATION VECTORS

CRG=[];

AXG=[];

cld=GW*360/(divgw*pi*D); %the dimension of how close the "close"
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points are to the groove edges (degrees)

cl=GW/divgw; %same in axial units

%Circumferential locations (in

degrees)*** *** **** ****** ** **** *** ***** ****** **** **** *** **** ** **** *** *****

if drains==1 %locations if drains exists

%locations of the given points

CRG=[O cld GWD-cld GWD GWD+cld cpcl-cld cpcl cpcl+cld cpcl+GWD-cld

cpcl+GWD cpcl+GWD+cld ...

cpc2-cld cpc2 cpc2+cld cpc2+GWD-cld cpc2+GWD cpc2+GWD+cld 360/

np-cld];

%add 2 points into the grooves

gs=(GWD-2*cld)/3; %step lenght (dimension between grid points)

CRG=[CRG cld+gs cld+2*gs cpcl+cld+gs cpcl+cld+2*gs cpc2+cld+gs

cpc2+cld+2*gs];

%add 14 points into the pocket

pos=(cpc1-GWD-2*cld)/15; %step lenght inside pocket

i=1;

for i=1:14

CRG=[CRG GWD+cld+i*pos];

end

%add 10 points between the pocket and drainage grooves

ros=(cpc2-cld-(cpcl+GWD+cld))/11; %step lenght between pockets

i=1;

for i=1:10

CRG=[CRG cpcl+GWD+cld+i*ros cpc2+GWD+cld+i*ros];

end

else %locations if drains do not exists

%locations of the given points

CRG=[0 cld GWD-cld GWD GWD+cld cpcl-cld cpcl cpcl+cld cpcl+GWD-cld

cpcl+GWD cpcl+GWD-cld 360/np-cld];
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%add 2 points into the grooves

gs=(GWD-2*cld)/3; %step length (dimension between grid points)

CRG=[CRG cld+gs cld+2*gs cpcl+cld+gs cpcl+cld+2*gs];

%add 14 points into the pocket

pos=(cpc1-GWD-2*cld)/15; %step length inside pocket

i=1;

for i=1:14

CRG=[CRG GWD+cld+i*pos];

end

%add 20 points between the pockets

ros=(360/np-(cpcl+GWD+cld)-cld)/21; %step length between pockets

i=1;

for i=1:20

CRG=[CRG cpcl+GWD+cld+i*ros];

end

end %end making first set of circumferential points

%Arrange points in ascending order

CRG=sort(CRG);

%make the rest of the points

CRG=[CRG CRG+360/np CRG+2*360/np CRG+3*360/np CRG+4*360/np CRG+5*360/

np];

%Axial loca-

t ions ************ ****** *** ** **** * * * ***** * * ***** *** ** *** ** * * k*** **** *-***

%Given locations

AXG=[Q cl cpal-cl cpal cpal+cl cpal+GW-cl cpal+GW cpal+GW+cl ...

cpa2-cl cpa2-2*cl cpa2 cpa2+cl cpa2+GW-cl cpa2+GW cpa2+GW+cl ...

cpa3-cl cpa3 cpa3+cl (L-cpa3-cl)/2+cpa3+cl L-cl L];

%add 2 points into the grooves
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gsa=(GW-2*cl)/3; %step length

AXG=[AXG cpal+cl+gsa cpal+cl+2*gsa cpa2+cl+gsa cpa2+cl+2*gsa;

%add 7 points into drainage land and compensator land

d1s=(cpa1-2*c1)/8; %drainage land step size

cls= (cpa3-cl- (cpa2+GW+cl) ) /8; %compensator land step size

i=1;

for i=1:7

AXG=[AXG cl+i*dls cpa2+GW+cl+i*clsI;

end

%add 60 points to the rest of the bearing

step= (cpa2-cpa1-2*c1-GW) /61;

i=1;

for i=1:60

AXG= [AXG cpal+GW+cl+i*step];

end

%Arrange points into ascending order

AXG=sort (AXG);

%end making point locations

%Start making the deformation

* * *** ****

GDM= [];

%make the snake grooves

%calculate the dimensions that locate the groove

k=(dl-cpa2)/(GWD-cpc3); %slope of the snake z=k*theta+b

b=dl-k*GWD;

k2=(d1-cpa2)/(GWD-cpc3); %second snake line (defines the end of the
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groove in axial direction)

b2= (dl+GW) -k2*GWD;

for circumindex=1:size(CRG,2)/6

z1=k*CRG(circumindex)+b; %calculate the starting locations of the

grooves

z2=k*(CRG(circumindex)+360/np)+b;

z3=k*(CRG(circumindex)+2*360/np)+b;

z1e=k2*CRG(circumindex)+b2; %calculate the ending location of the

groove (axially)

z2e=k2*(CRG(circumindex)+360/np)+b2;

z3e=k2*(CRG(circumindex)+2*360/np)+b2;

diff2=AXG-zl;

diff3=AXG-z2;

diff4=AXG-z3;

diff2e=AXG-zle;

diff3e=AXG-z2e;

diff4e=AXG-z3e;

[value2,index2]=min(abs(diff2)); %get the index of the closest axial

point to the starting point

[value3,index3]=min(abs(diff3));

[value4,index4l=min(abs(diff4));

[value2e,index2e]=min(abs(diff2e)); %get the index of the closest

axial point to the ending point

[value3e,index3el=min(abs(diff3e));

[value4e,index4e]=min(abs(diff4e));

for axialindex=1:size(AXG,2)-14 %make the 3d matrix of deformations

for the snakegrooves

if axialindex>=index2&axialindex<=index2e

GDM(circumindex,axialindex)=GD;

elseif axialindex>=index3&axialindex<=index3e

GDM(circumindex,axialindex)=GD;
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elseif value4<=cpa2

if axialindex>=index4&axialindex<=index4e

GDM(circumindex,axialindex)=GD;

else

end

else

GDM(circumindex,axialindex)=0;

end

end

end

%make the first pocket groove

if deeppock==1 %make deep pockets if desired

varcirc=22;

else

varcirc=6;

end

for circumindex=1:varcirc

z6=k*CRG(circumindex)+b;

diff6=AXG-z6;

[value6,index6]=min(abs(diff6));

for axialindex=11:index6

GDM(circumindex,axialindex)=GD;

end

end

%make the second pocket groove

for circumindex=23:28

z7=k*CRG(circumindex)+b;

diff7=AXG-z7;

[value7,index7]=min(abs(diff7));

for axialindex=11:index7

251APPENDIX A
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GDM(circumindex,axialindex)=GD;

end

end

%make the drainage groove

if drains==1

diff5=AXG-dgl;

[value5,index5]=min(abs(diff5));

for circumindex=41:46

for axialindex=l:index5

GDM(circumindex, axialindex) =GD;

end

end

else

end

%make the circumferential pocket groove

for circumindex=7:22

for axialindex=11:16

GDM (circumindex, axialindex) =GD;

end

end

%mnake the rest rictor collect ing groove

diff8=CRG-cpc3;

diff9=CRG-(cpc3+rgl);

(value8,index8]=min(abs(diff8));

[value9,index9]=min(abs(diff9));

if cpc3>=120 %if collector if more than 2 pockets away

cpc3reg=cpc3-2*360/np;

252 APPENDIX A

A
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diff8=CRG-cpc3reg;

diff9=CRG-(cpc3reg+rgl);

[value8,index8]=min(abs(diff8));

[value9,index9l=min(abs(diff9));

for circumindex=index8 :index9

for axialindex=80:85

GDM (circumindex, axialindex) =GD;

end

end

else %collector one pocket away

cpc3reg=cpc3-360/np;

diff8=CRG-cpc3reg;

diff9=CRG- (cpc3reg+rgl);

[value8,index8]=min(abs(diff8));

[value9,index9]=min(abs(diff9));

for circumindex=index8 : index9

for axialindex=80:85

GDM(circumindex, axialindex) =GD;

end

end

end

%Make the restrictor lands

for circumindex=1:size(CRG,2)/6

for axialindex=86:94

GDM (circumindex, axialindex) =0;

end

for axialindex=95:99 %make center groove

GDM(circumindex, axialindex) =GD;

end

end

%GDM2=[GDM;GDM;GDM;GDM;M;G;GDM};

%CRG2=CRG(15:15+size(GDM,1)-);

%CRG2=[CRG2 CRG2+360/np CRG2+2*360/np CRG2+3*360/np CRG2+4*360/np

CRG2+5*360/np];
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%GDM=GDM2(15:15+size(GDM,1)-l, :);

%end making GDM

***** ** ***** ** ***** ** *** * * *** * ** *** *** *** *** ****** *** ** *** *** * ** **** *** **

** ***** ** ** ** ****.* ** ******.* *** * * **** *

CRGx=CRG(1:58);

surf (AXG, CRGx, GDM)

This script writes the geometry generated by the previous script into a .inp file, which can

be used by the finite difference code

%THIS PROGRAM GENERATES THE JOURNB. INP FILE THAT IS NEEDED BY THE RBTS

PROGRAM

%RUN FIRST THE GEOMETRYGEN.M PROGRAM BEFORE USING THIS

%*** *** ** ***** *.** *** * **** * ** **** ** * *** ****** ***.* ** * *** *** **** ****** ** ***

***** **** ** *** ** *

*** *** *** *.*** ****

L=2.2*25.4; %total length of the bearing (NOT from end to the symmetry

plane)

necc=1; %number of eccentricities considered in this run

niter=1; %number of iterations to solve for load angle convergence (if

niter=1 displacement will along -y axis

% and the Fx and Fy are calculated) if >1 the displacement angle

will be calculated

npiter=15; %# of iterations to solve for recess pressure (only with ori-

fice restrict:ors)

nreces=O; %# of recesses in the bearing

npump=O; %# of pumps in the bearing

nfastp=O; %axial grid point # of the FIRST axial location of circumfer-

ential step or beginning of pocket

nsastp=O; %axial grid point # of the SECOND axial location of circum-

ferential step or beginning of pocket

ncstp=O; %circumferential grid point # of circumferential step or

pocket
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vargrd='T';

taperb='F';

symtr= 'F ';

dambrg=' F';

condns=' F';

struct='T';

nondim= 'F';

padang=360;

flmang=0;

ortang=0;

prelod=0;

stepht=0;

angecc=270;

anglod=270;

SPEED=10000; %RPM

cavp=O;

grovep=0;

sidelp=0;

side2p=3447500;

amisx=0;

amisy=0;

rens=0.0011; %lubricant viscosity (lbf*sec/in,^2 or PA*sec)

densty=995; %lubricant density (lb/in^3 or kg/m^3)

dx=0.5; %if 0 automatically set by the program

dy=-0 .5;

dxdot=0;

dydot=0;

trunc=0;

%eccentrities (type in wanted ecc) See that the variable necc corresponds

to #ecc typed in the vector ECC

ECC=[0];
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Psupply=3500000; %psi or Pa

%generate

file*********************************************************

** .****

fid=fopen('C: \temp\oldcomputer\bearing\jurnbr.inp','wt');

fprintf(fid,

fprintf(fid,

fprintf (fid,

fprintf(fid,

fprintf(fid,

fprintf(fid,

'%d',units); %system of units (0=english,

'\t');

'V5.OG1 \n'); %version

'Heading

'Heading

'Heading

\n')

\n')

\n')

fprintf(fid,'

fprintf(fid,'

fprintf(fid,'

fprintf(fid,'

fprintf(fid, '

4*size(CRG,2)

fprintf(fid,'

fprintf(fid,'

fprintf(fid,'

fprintf(fid,'

fprintf(fid,'

%d\t'

%dl\t'

%d\t'

%d\t'

%d'\t'

,size(AXG,2));

,size (CRG, 2) +1)

,1);

,necc);

,0); %if sidepr

%start line 5

essure is not used this should read

%d\t',niter);

%d\t',npiter);

%d\t',nreces);

%d',npump);

\n');

'%d\t',nfastp);

'%d\t',nsastp);

'%d',ncstp);

'\n');

' %s\t

'%s\t

'%s\t

' %s\ t

'%s\t

'%s\t

',vargrd)

',taperb)

',symtr);

',dambrg)

',condns)

',struct)

%start line 6

%start Line 7

1=si)

fprintf

fprintf

fprintf

fprintf

fprintf

fprintf

fprintf

fprintf

fprintf

fprintf

(fid,

(fid,

(fid,

(fid,

(fid,

(fid,

(fid,

(f id,

(fid,

(fid,

;
;

;
;
;
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fprintf(fid,

fprintf(fid,

fprintf(fid,

fprintf(fid,

fprintf(fid,

fprintf(fid,

fprintf(fid,

fprintf(fid,

fprintf (fid,

fprintf (fid,

fprintf(fid,

fprintf(fid,

fprintf(fid,

fprintf(fid,

fprintf(fid,

fprintf(fid,

fprintf (f id,

fprintf (f id,

fprintf (f id,

fprintf(fid,

fprintf(fid,

fprintf (f id,

fprintf(fid,

fprintf(fid,

fprintf(fid,

fprintf(fid,

fprintf(fid,

fprintf(fid,

fprintf(fid,

fprintf(fid,

fprintf(fid,

fprintf(fid,

%line 13

'%s',nondim);

'\n');

'%d\t',D); %start line 8

'%d\t',L);

'%d\t',padang);

'%d\t',flmang);

'%d',ortang);

'\n');

'%d\t',CL); %start line 9

'%d\t',prelod);

'%d\t',stepht);

'%d\t',angecc);

'%d\t',anglod);

'%d',SPEED);

'\n');

'%d\t',cavp);

'%d\t',grovep);

'%d\t',sidelp);

'%d',side2p);

'\n');

'%d\t',amisx);

'%d\t',amisy);

'%d\t',rens);

'%d',densty);

'\n');

%start line 10

%start line 11

'%d\t',dx); %start line 12

'%d\t',dy);

'%d\t',dxdot);

'%d\t',dydot);

'%d' ,trunc);

'\n');

'%12.3f %12.3f %12.3f %12.3f %12.3f %12.3f\n',ECC(:));
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fprintf(fid,'\n');

%generate the given pressures in format (axialpoint circum-point value)

%for j=1:size(CRG,2)

%for i=96:size(AXG,2)

% fprintf(fid, '%12.0f %12.0f %12.0f\n',i,j,Psupply);

%fprintf(fid,'\n');

% end

%end

%generate grid intervals in circumferential direction (degrees)

ANGINC=[];

for i=2:size(CRG,2)

ANGINC=[ANGINC CRG(i)-CRG(i-1)];

end

ANGINC=[ANGINC 360-CRG(size(CRG,2))];

fprintf(fid,'%12.8f %12.8f %12.8f %12.8f %12.8f %12.8f\n',ANGINC(:));

fprintf(fid,'\n');

%generate grid intervals in axial direction

AXLINC=[];

for i=2:size(AXG,2)

AXLINC=[AXLINC AXG(i)-AXG(i-1));

end

fprintf(fid,'%12.8f %12.8f %12.8f %12.8f %12.8f %12.8f\n',AXLINC(:));

fprintf(fid,'\n');

%print number of POINTS in format (AXIAL CIRCUM) (NOTICE! CIRCUM=CIRCUM-

GRID+3)

fprintf(fid,'%d\t',size(AXG,2));

fprintf(fid,'%d\t',size(CRG,2)+3);

fprintf(fid,'\n');

%print the locations of points in circumferential direction

fprintf(fid,'%12.8f %12.8f %12.8f %12.8f %12.8f

%12.8f\n',CRG(size(CRG,2))-360,CRG(:),360,360+CRG(2)-CRG(l));

fprintf(fid,'\n');
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%print the locations of points in

fprintf(fid,'%12.8f %12.8f %12.8f

fprintf(fid,'\n');

axial direction

%12.8f %12.8f %12.8f\n',AXG(:));

%print the structural deformation values

fprintf(fid,'%12.8f %12.8f %12.8f

%12.8f\n',GDM(size(CRG,2)/6,:));

fprintf(fid,'\n');

%12.8f %12.8f

%print the first theta value

for j=1:np

i=1;

for i=1:size(CRG,2)/6

fprintf(fid,'%12.8f %12.8f %12.8f %12.8f %12.8f

%12.8f\n',GDM(i, :));

fprintf(fid, '\n');

end

end

fprintf(fid,'%12.8f %12.8f %12.8f %12.8f %12.8f %12.8f\n',GDM(1,:));

%print the theta=360 value

fprintf(fid, '\n');

fprintf(fid,'%12.8f %12.8f %12.8f %12.8f %12.8f %12.8f\n',GDM(2,:));

%print the last theta value

fclose(fid);

This MATLAB script generates the geometry and calculates the equivalent capillaries for

the backgroove SC5-6 designs

clear all;

%Automatic Bearing Geometry Creation for RBTS

%Backgroove designs

259APPENDIX A
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%** *** * *****k* * ** * * *** ****** * **** ***** ** ******** *** ** * * ** ******* ** * ****

%INPUT

** *** *** *** * * * ****** *********** * ** ****.* **.* ********* ****** **** *** ** **** **

** *** *** *

%System of Units

units=1; %O=english, l=SI (actually n in linear dimensions)

%General Dimensions

D=25; %Diameter

L=27; %Total lenght (from end to the symmetry plane)

CL=0.00075*25.4; %bearing clearance

np=6; %number of pockets

GW=1; %Groove widht

GD=-CL*13; %Groove depth (give negative value (a bug :) ))

ecc=0.1; %eccentricity

Ps=7000000; %supply pressure

%drainage grooves

drains=1; %drains (O=false, 1=true)

dgl=20; %drainage groove lenght

divgw=30; %determines how close the points are to the grooves (GW/

divgw)

%Circumferential dimensions

cpcl=7.1; %1st dimension (pocket widht)

cpc2=10.1; %2nd dimension (0 to first drainage groove)

%cpc3=31.794; %3rd dimension (0 to beginning of restrictor groove)

rgl=7; %restrictor groove length

ANG=180; %wraparound angle in degrees

%Axial dimensions

cpal=3; %1st dimension (exit land width)

cpa2=17; %2nd dimension (0 to end of pocket)

cpa3=20; %3rd dimension (from end to the separation groove)

cpa4=25

d1=0.7; %restrictor land width

%pockets

deeppock=1; %if land is removed deeppock=1 if not deeppock=0;

" ' I' lloin
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******* *******k

%CONVERT DIMENSIONS INTO DEGREES

*** ********.* ***** ** *** **** ** ****** **** ************ * **

GWD=GW*360/ (pi*D);

cpc1=cpc1*360/(pi*D);

cpc2=cpc2*360/(pi*D);

%cpc3=cpc3*360/(pi*D);

rgl=rgl*360/(pi*D);

% ************* *** *** *** * ** **** ******** *** *** *** ******** **** *** *********

* * ******* *****

%GENERATE GRID LOCATION VECTORS

***** *** ** ****** **** ****** **** ***** **.* ****** **** *.* *.****

CRG=[];

AXG=[];

cld=GW*360/(divgw*pi*D); %the dimension of how close the "close"

points are to the groove edges (degrees)

cl=GW/divgw; %same in axial units

%Circumferential locations (in

degrees)*** ********************************************

if drains==1 %locations if drains exists

%locations of the given points

CRG=[Q cld GWD-cld GWD GWD+cld cpcl-cld cpcl cpcl+cld cpcl+GWD-cld

cpcl+GWD cpcl+GWD+cld ...

cpc2-cld cpc2 cpc2+cld cpc2+GWD-cld cpc2+GWD cpc2+GWD+cld 360/

np-cld];

%add 2 points into the grooves

gs=(GWD-2*cld)/3; %step lenght (dimension between grid points)

CRG=[CRG cld+gs cld+2*gs cpcl+cld+gs cpcl+cld+2*gs cpc2+cld+gs

cpc2+cld+2*gs];

%add 7 points into the pocket

pos=(cpc1-GWD-2*c1d)/8; %step lenght inside pocket

i=1;
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for i=1:7

CRG=[CRG GWD+cld+i*pos];

end

%add 5 points between the pocket and drainage grooves

ros=(cpc2-cld-(cpcl+GWD+cld))/6; %step lenght between pockets

i=1;

for i=1:5

CRG=[CRG cpcl+GWD+cld+i*ros cpc2+GWD+cld+i*ros];

end

else %locations if drains do not exists

%locations of the given points

CRG=[Q cld GWD-cld GWD GWD+cld cpcl-cld cpcl cpcl+cld cpcl+GWD-cld

cpcl+GWD 360/np-cld];

%add 2 points into the grooves

gs=(GWD-2*cld)/3; %step length (dimension between grid points)

CRG=[CRG cld+gs cld+2*gs cpcl+cld+gs cpcl+cld+2*gs];

%add 7 points into the pocket

pos=(cpc1-GWD-2*cld) /8; %step length inside pocket

i=1;

for i=1:7

CRG=[CRG GWD+cld+i*pos];

end

%add 10 points between the pockets

ros=(360/np-(cpcl+GWD+cld)-cld)/11; %step length between pockets

i=1;

for i=1:10

CRG=[CRG cpcl+GWD+cld+i*ros];

end

end %end making first set of circumferential points

%Arrange points in ascending order

CRG=sort (CRG);
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%make the rest of the points

CRG=[CRG CRG+360/np CRG+2*360/np CRG+3*360/np CRG+4*360/np CRG+5*360/

np];

%Axial loca-

t ions ******** *** ***** **** **** ** **** **** ****** ** *** **** ****** *** *** ** *** ***

**** ***

%Given locations

AXG=[Q cl cpal-cl cpal cpal+cl cpal+GW-cl cpal+GW cpal+GW+cl ...

cpa2-cl cpa2 cpa2+cl cpa2-GW-cl cpa2-GW cpa2-GW+cl ...

cpa3-cl cpa3 cpa3+cl cpa3+GW-cl cpa3+GW cpa3+GW+cl cpa4-dl-GW ...

cpa4-d1-GW-cl cpa4-dl-GW+cl cpa4-dl-cl cpa4-dl+cl cpa4 cpa4-cl

cpa4+cl L-(L-cpa4)/3 L-2*(L-cpa4)/3 L]; %cpa4+cl L-(L-cpa4)/3 L-2*(L-

cpa4)/3 L

%add 2 points into the grooves

gsa=(GW-2*cl)/3; %step length

AXG=[AXG cpal+cl+gsa cpal+cl+2*gsa cpa2-GW+cl+gsa cpa2-GW+cl+2*gsa

cpa3+cl+gsa cpa3+cl+2*gsa ...

cpa4-d1-GW+cl+gsa cpa4-d1-GW+cl+2*gsa];

%add 5 points into drainage land and compensator land

dls1=(cpal-2*cl)/6; %drainagel land step size

dls2=(cpa3-cpa2-2*cl)/6;

cls=(dl-2*cl)/6; %compensator land step size

i=1;

for i=1:5

AXG=[AXG cl+i*dlsl cpa2+cl+i*dls2 cpa4-cl-i*cls cpa4-d1-GW-cl-i*cls];

end

%add 20 points into the pocket

step=(cpa2-cpa1-2*cl-2*GW)/21;

i=1;
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for i=1:20

AXG=[AXG cpa1+GW+c1+i*step];

end

%Arrange points into ascending order

AXG=sort(AXG);

%end making point locations

%Start making the deformation

mat r ix **** * *************** **** * ** *** **** ******* ** **** ** ** * ** *

GDM=[];

%find all the indeces for looping

diffl=CRG-(180-ANG);

diff2=CRG-(180-ANG+rgl);

diff4=AXG-cpa4;

diff5=AXG-(cpa4-d1-GW);

diff6=AXG-(cpa4-dl);

diff7=AXG-cpal;

diff8=AXG-cpa2;

diff9=AXG-cpa3;

diff1O=AXG-(cpa3+GW);

[valuel,indexl=min(abs(diffl));

[value2,index2]=min(abs(diff2));

[value4,index4l=min(abs(diff4));

[value5,index5l=min(abs(diff5));

[value6,index6]=min(abs(diff6));

[value7,index7l=min(abs(diff7));

[value8,index8]=min(abs(diff8));

[value9,index9l=min(abs(diff9));

[valuelO,indexlO]=min(abs(difflO));

%make the first pocket groove
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if deeppock==1 %make deep pockets if desired

varcirc=15;

else

varcirc=6;

end

for circumindex=1:varcirc

for axialindex=index7:index8

GDM(circumindex, axialindex) =GD;

end

end

%make the second pocket groove

for circumindex=16:20

for axialindex=index7:index8

GDM (c ircumindex, axialindex) =GD;

end

end

%make the drainage groove

if drains==1

diff5d=AXG-dgl;

[value5d,index5d]=min(abs(diff5d));

for circumindex=29:34

for axialindex=l:index5d

GDM(circumindex, axialindex) =GD;

end

end

else

end

%make the circumferential pocket groove

for circumindex=7:15

for axialindex=9:14
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GDM(circumindex, axialindex) =GD;

end

end

%make the 2nd circumferential pocket groove

for circumindex=7:15

for axialindex=index8-4:index8

GDM(circumindex,axialindex)=GD;

end

end

%make the separation groove

GDM(1:size(CRG,2)/np,index9+1:indexl)=GD;

%make the restrictor collecting gr oove

GDM(indexi:index2,index5:index6)=GD;

%make the supply groove

GDM(1:size(CRG,2)/np,index4:size(AXG,2))=GD;

%end Raking GDM
* *-k*** *** *** ** *** *** ***-* **** ****** * k* ****-****** * **** ** * * *** * **** **

%determine the recess loca-

tions ***** * ** *** *** *** *** *** ** *** * **** * ***** ** *.* ** *********** *

NAGL1=(index8-6)/2+6; %NW axial

NAGL2=(index8-6)/2+8; %SE axial

NCGL1=[10]; %[3 17]

for i=l:np-1

NCGL1=[NCGL1 NCGL1(1)+i*size(CRG,2)/np]; %NW circum

NCGLl(2)+i*size(CRG,2)/np

end

266
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NCGL2=NCGL1+2; %SE circum

%determine the restrictor recess loca-

tions******* **************** ** *********************

NAGL1r=index5 %NW axial

NAGL2r=index6 %SE axial

NCGL1r=indexl+4;

NCGL2r=index2-2;

for i=1:np-1

NCGL1r= [NCGLlr NCGLlr (1) +i*size (CRG, 2) /np] ;%NW circum

NCGL2r=[NCGL2r NCGL2r(1)+i*size(CRG,2)/np];

end

%determine the equivalent capillary dimen-

sin *** ***** ** ** * **** **** * *** *** ** * ** ** * **** ** *

Lc=30; %equivalent capillary lenght

Ncap=1; %# of capillaries per pocket

Lz=rgl*(pi*D/360); %restrictor length

fi=(ANG-0.5*rgl)*pi/180; %angle from x-axis to first restrictor groove

i=0:5;

hr=CL*(1+ecc*sin(fi+i*2*pi/np));

Dc=((3.395.*Lc.*Lz.*hr.^3)/(Ncap*dl)).^(1/4);

Dc2=[];

for i=1:size(Dc,2)

Dc2=[Dc2 Dc(i)];

end

%determine the equivalent capillary dimensions for restric-

tors ** ** ********* *** ******* * ***

Lcr=5; %equivalent capillary lenght= thickness of the part

Lzr=rgl*(pi*D/360); %restrictor length

Dcr=sqrt (4*GW*Lzr/pi);

Dcr(1:6)=Dcr;

%Create "pumps" for the restrictors
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Prets=[0.5*Ps 0.5*Ps 0.5*Ps 0.5*Ps 0.5*Ps 0.5*PsI; %initial quess values

for the pumps

axpi=index5+(index6-index5)/2;

i=0:5;

circpi=[(index2-indexl)/2+i*(size(CRG,2)/np)];

%**** ****** *** * **** ****** * ***** *** *** *** *** *** ** *** *** *** ***** **** ******

**** * ***** * *** ****

CRGx=CRG(1:size(CRG,2)/np);

surf(AXG,CRGx,GDM)

view(2)

This MATLAB script writes the input file for the finite difference code for the backroove

designs SC5-6

%THIS PROGRAM GENERATES THE JOURNB.INP FILE THAT IS NEEDED BY THE RBTS

PROGRAM

%RUN FIRST THE GEOMETRY_GEN.M PROGRAM BEFORE USING THIS

%-************* **********************************************************

**A*********** ****

%INPUTr* **--* * ** * * *** ** * ** *** ** * ** ** ** ** ** ** ** * * *********--* ** * * ** ** ***

A-* *** * ** *********

L=27; %total length of the bearing (NOT from end to the symmetry plane)

necc=1; %number of eccentricities considered in this run

niter=1; %number of iterations to solve for load angle convergence (if

niter=1 displacement will along -y axis

% and the Fx and Fy are calculated) if >1 the displacement angle

will be calculated

npiter=15; %# of iterations to solve for recess pressure (only with ori-

fice restrictors)

nreces=2*np; %# of recesses in the bearing

npump=12; %# of pumps in the bearing

nfastp=O; %axial grid point # of the FIRST axial location of circumfer-

ential step or beginning of pocket

now_
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nsastp=0; %axial grid point # of the SECOND axial location of circum-

ferential step or beginning of pocket

ncstp=0; %circumferential grid point # of circumferential step or

pocket

vargrd='T';

taperb='F';

symtr= ' F';

dambrg=' F';

condns='F';

struct='T';

nondim= 'F';

padang=360;

flrmang=0;

ortang=0;

prelod=O;

stepht=0;

angecc=270;

anglod=270;

SPEED=100000; %RPM !

cavp=0;

grovep=0;

sidelp=0;

side2p=7000000;

amisx=0;

amisy=0;

rens=0.0009; %lubricant viscosity (lbf*sec/in^2 or PA*sec)

densty=995; %lubricant density (lb/in^3 or kg/m^3)

dx=0; %if 0 automatically set by the program

dy=0;

dxdot=0;

dydot=0;

trunc=0;
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%eccentrities (type in wanted ecc) See that the variable necc corresponds

to #ecc typed in the vector ECC

ECC=[ecc];

Psupply=3500000; %psi or Pa

%generate

file********************************************************************

fid=fopen( 'C: \temp\oldcomputer\bearing\jurnbr.inp', 'wt');

fprintf

fprintf

fprintf

fprintf

fprintf

fprintf

(fid,

(fid,

(fid,

(fid,

(fid,

(fid,

'%d',units); %system of units (0=english,

'\t');

'V5.1G2 \n'); %version

1=si)

'TurboTool REV 4 \n');

'100000 rpm backgrooves \n');

'11/4/99 \n');

fprintf (fid,

fprintf(fid,

fprintf(fid,

fprintf(fid,

fprintf(fid,

4*s-ize(CRG,2

fprintf (fid,

fprintf (fid,

fprintf (fid,

fprintf (fid,

fprintf(fid,

'%d\t',size(AXG,2)); %start line 5

'%d\t' ,size(CRG,2)+1);

'%d\t',1);

'%d\t',necc);

'%d\t',2); %if sidepressure is not used this should read

) #number of point press:ure is specified

'%d\t',niter);

'%d\t',npiter);

'%d\t',nreces);

'%d',npump);

'\n');

'%d\t',nfastp)

'%d\t',nsastp)

'%d',ncstp);

'\n');

'%s\t',vargrd)

'%s\t' ,taperb)

%start line 6

%start line 7

fprintf

fprintf

fprintf

fprintf

fprintf

fprintf

(fid,

(fid,

(fid,

(fid,

(fid,

(fid,

;
;

;
;



APPENDIX A 271

fprintf(fid,

fprintf(fid,

fprintf(fid,

fprintf (fid,

fprintf(fid,

fprintf(fid,

fprintf(fid,

fprintf(fid,

fprintf(fid,

fprintf(fid,

fprintf(fid,

fprintf(fid,

fprintf

fprintf

fprintf

fprintf

fprintf

fprintf

fprintf

(fid,

(fid,

(fid,

(fid,

(fid,

(fid,

(fid,

'%s\t',symtr);

'%s\t',dambrg);

'%s\t',condns);

'%s\t',struct);

'%s',nondim);

'\n');

'%d\t',D); %start line 8

'%d\t',L);

'%d\t',padang);

'%d\t',flmang);

'%d',ortang);

'\n');

'%d\t',CL); %start line 9

'%d\t',prelod);

'%d\t',stepht);

'%d\t',angecc);

'%d\t',anglod);

'%d',SPEED);

'\n');

fprintf(fid,

fprintf (fid,

fprintf(fid,

fprintf (fid,

fprintf(fid,

fprintf(fid,

fprintf (fid,

fprintf(fid,

fprintf (fid,

fprintf(fid,

fprintf(fid,

fprintf(fid,

fprintf (fid,

fprintf(fid,

fprintf(fid,

'%d\t',cavp);

'%d\t',grovep);

'%d\t',sidelp);

'%d',side2p);

'\n');

'%d\t',amisx);

'%d\t',amisy);

'%d\t',rens);

'%d',densty);

'\n');

%start line 10

%start line 11

'%d\t',dx); %start line 12

'%d\t',dy);

'%d\t',dxdot);

'%d\t' ,dydot);

'%d' ,trunc);
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fprintf(fid,'\n');

fprintf(fid,'%12.3f %12.3f %12.3f %12.3f %12.3f %12.3f\n',ECC(:));

%line 13

fprintf(fid,'\n');

%generate the given pressures in format (axialpoint circumpoint value)

%for j=1:size(CRG,2)
%for i=96:size(AXG,2)

%for i=l:np

%fprintf(fid,'%12.Of %12.Of %12.Of\n',axpi,circpi (i),Pri (i));

%end

fprintf(fid,'%12.Of %12.Of %12.0f\n',index9+1,5,O);

fprintf(fid,'%12.Of %12.Of %12.0f\n',index9+1,120,0);

% end

%end

%generate grid intervals in circumferential direction

ANGINC= [];

for i=2:size(CRG,2)

ANGINC= [ANGINC CRG(i) -CRG(i-1)];

end

ANGINC=[ANGINC 360-CRG(size(CRG,2))];

(degrees)

fprintf(fid,'%12.8f %12.8f %12.8f %12.8f %12.8f %12.8f\n',ANGINC(:));

%fprintf (fid, '\n');

%generate grid intervals in axial direction

AXLINC=[];

for i=2:size(AXG,2)

AXLINC=[AXLINC AXG(i)-AXG(i-1)];

end

fprintf(fid,'%12.8f %12.8f %12.8f %12.8f %12.8f %12.8f\n',AXLINC(:));

%fprintf (fid, ' \n' ) ;

%generate recess and capillaries

for i=1:6

fprintf(fid,'%3.Of %3.Of %3.Of %3.Of %3.Of %3.Of %3.Of %3.Of %12.8f
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%5.3f %5.6f\n',l,i,i,3,NAGL1,NCGL1(i),NAGL2,NCGL2(i),Dc2(i),Lc,rens);

end

%fprintf (fid, '\n')

%restrictor recesses

for i=1:6

fprintf(fid,'%3.Of %3.Of %3.Of %3.Of %3.Of %3.Of %3.Of %3.Of %12.8f

%5. 3f

%5.6f\n',l,i+6,i+6,3,NAGL1r,NCGLlr(i),NAGL2r,NCGL2r(i),Dcr(i),Lcr,rens);

end

%generate pumps

%fprintf(fid, '\n');

for i=1:6

fprintf(fid,'%3.Of %3.Of %3.0f

end

for i=1:6

fprintf(fid,'%3.Of %3.Of %3.Of

pressure quess for fake pumps

end

%fprintf(fid, '\n');

%print number of POINTS in format

GRID+3)

fprintf(fid, '%d\t' ,size(AXG,2));

fprintf(fid, '%d\t',size(CRG,2)+3);

fprintf(fid,'\n');

%5.3f\n',i,2,0,side2p); %supply pump

%5.3f\n',i+6,2,0,side2p/2);%initial

(AXIAL CIRCUM) (NOTICE! CIRCUM=CIRCUM-

%print the locations of points in circumferential direction

fprintf(fid,'%12.8f %12.8f %12.8f %12.8f %12.8f

%12.8f\n',CRG(size(CRG,2))-360,CRG(:),360,360+CRG(2)-CRG(1));

fprintf(fid,'\n');

%print the locations of points in

fprintf(fid,'%12.8f %12.8f %12.8f

fprintf(fid,'\n');

axial direction

%12.8f %12.8f %12.8f\n',AXG(:));

%print the structural deformation values

fprintf(fid,'%12.8f %12.8f %12.8f %12.8f %12.8f

%12.8f\n',GDM(size(CRG,2)/6,:)); %print the first theta value
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fprintf(fid,'\n');

for j=1:np

i=1;

for i=1:size(CRG,2)/6

fprintf(fid, '%12.8f %12.8f %12.8f %12.8f %12.8f

%12.8f\n',GDM(i, :));

fprintf(fid,'\n');

end

end

fprintf(fid,'%12.8f %12.8f %12.8f %12.8f %12.8f %12.8f\n',GDM(1,:));

%print the theta=360 value

fprintf(fid,'\n');

fprintf(fid,'%12.8f %12.8f %12.8f %12.8f %12.8f %12.8f\n',GDM(2,:));

%print the last theta value

fclose(fid);
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DATA ANALYSIS FOR ERROR
MOTION MEASUREMENTS

This script performs least squares circle fit for measured error motion data

clear all;

close all;

%read in data

[A,B]=textread('Z: \Hydrobushing\testing\small bushing tests\errormo-

tion\testl44.txt','%f %f');

%Initial Quess for xOyO,R

D=[-47;31;35];

%Valuate error function with initial quess

C=feval('qfunction',D)

%set tolerances for terminating optimisation routine

OPTIONS=OPTIMSET('TolFun',le-7,'TolX',le-8);

%minimize Q

[Param,val]=fminsearch('qfunction',D,OPTIONS)

%Plot Data and Fitted Curve

plot(A,B,'r.')

hold on

Theta=linspace(0,2*pi,1000);

X=Param(3) *cos (Theta) +Param(l);

Y=Param(3)*sin(Theta)+Param(2);

plot(X,Y, 'k')

grid on;

axis equal;

%Calculate maximum and mean deviation from best fit

Rm=sqrt( (A-Param(l)) .A2+(B-Param(2)) .^2);

275



276 APPENDIX B

%mean deviation

Meandeviation=sum(abs(Rm-Param(3)))/(length(Rm))

%maximum deviation

Maxdeviation=max(abs(Rm-Param(3)))

%place calculated deviations on graph

gtext({'Max Dev =',num2str(Maxdeviation)})

gtext({'Mean Dev =',num2str(Meandeviation)})

Following is the qfunction called by the previous script

%minimized function to fit circle in to data

%q=sum of squares of deviation from fitted circle

function q=qfunction(xQ);

[A,B]=textread('Z: \Hydrobushing\testing\small bushing tests\errormo-

tion\testl44.txt','%f %f');

d=sqrt((A-xO(1)).^2+(B-xQ(2)).^2);

q=sum((d-xQ(3)).^2);

Following script calculates the asynchronous error motions from the measured data

%find asynchronous error motion

zerovector=[];

indeces=[I;

threshold=0.1; %value which the point can deviate from xero

%to be still picked into zerovector

AA=A-Param(l);

BB=B-Param(2);

%find when the curve crosses x=O axis

for i=l:length(AA);

if abs(AA(i))<=threshold

zerovector=[zerovector AA(i)];

indeces=[indeces ii;

end

end

%Throw out double points

indeces2=[];

for i=l:length(indeces)-1

if indeces(i+1)-indeces(i)<50

indeces2=[indeces2];

else

indeces2=[indeces2 indeces(i)];
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end

end

%pick out points that form full circle

indeces3=[];

Astar=[];

for i=1:(length(indeces2)+1)/2

indeces3=[indeces3 indeces2(2*i-1)];

end

%calculate how many points approximately form a single circle

npoints=[];

j=1:length(indeces3)-1;

npoints=[indeces3(j+l)-indeces3(j)];

npoints=min(npoints);

%make a matrix containing one revolution per row

for i=1:length(indeces3) -1;

Astar(i,:)=[AA(indeces3(i):indeces3(i)+npoints)'];

Bstar(i,:)=[BB(indeces3(i):indeces3(i)+npoints)'];

end

%calculate the radius for each point

Rstar=(Astar.^2+Bstar.^2) .^0.5;

Async=max(Rstar)-min(Rstar);

figure

plot (Async);

grid on;

MaxAsynchronousError=max (Async)

MeanAsynchronous_Error=mean (Async)

gtext ( { 'Max Asynchronous Error =' ,num2str (MaxAsynchronousError) })

gtext ( { 'Mean Asynchronous Error =',num2str (MeanAsynchronousError) })

figure

spectrum(Async)
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Appendix C

WOBBLE PLATE

Following is the drawing of the wobble plate used in the error motion measurements.
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Appendix D

FINITE ELEMENT PROGRAM TO
SOLVE LINEARIZED DYNAMIC
RESPONSE OF THE TURBOTOOL

This MATLAB program solves the linearized dynamic response of the TurboTool to the

cutting forces.

clear;

%SIMPLE BEAM FEA TO GET FREQUENCY RESPONSE

%WITH BEARING AND DAMPING

%PARAMETERS

L=0.144; %length of the entire beam

xQ=0.02; %length of the turbine

x1=0.038; %x coordinate of the first bearing spring dashpot

x2=0.078; %x coordinate of the second bearing spring and dashpot

NO=2; %number of elements to represent the turbine

N1=10; %number of elements before xl

N2=10; %number of elements after x2

N3=10; %number of elements between xl and x2

%beam x-sectional parameters

El=206e9; %Youngs Modulus

Izz=1.917e-8; %x-sections 2nd moment of inertia

A=4.91e-4; %x-sectional area
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rho=7850; %density

%turbine x-sectional parameters

IzzO=7.36e-8;

AO=9.62e-4;

%bearing parameters

stiff=65e6; %bearing stiffness (per half)

damp=3el; %bearing damping (per half)

ksi=0.01 % proportional modal (material) damping

%calculate element lengths

lengthO=xQ/NO;

lengthl=(x1-xQ)/N1;

length2=(L-x2)/N2;

length3=(x2-x1)/N3;

%calculate element stiffness and mass matrices

[keQ,me0l=febeaml(El,IzzO,lengthO,AO,rho,1);

[kel,mel]=febeam1l(El,Izz,lengthl,A,rho,1); %last number=1 for consistent

mass matrix, number=2 for lumped

[ke2,me2l=febeaml(El,Izz,length2,A,rho,1);

[ke3,me3]=febeaml(El,Izz,length3,A,rho,1);

%Assemble element matrices into global matrices

Kg(1:2*(NO+Nl+N2+N3+1),1:2*(NO+N1+N2+N3+1))=;

Mg(1:2*(NO+N1+N2+N3+1),1:2*(NO+Nl+N2+N3+1))=O;

index=[-l 0 1 21;

k=1;

for k=1:NO

index=index+2;

Kg=feasmbl1(Kg,keO,index);

Mg=feasmbl1(Mg,meO,index);

end

k=1;

for k=1:Nl

index=index+2;

Kg=feasmbll(Kg,kel,index);

Mg=feasmbl1(Mg,mel,index);
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end

k=1;

for k=1:N3

index=index+2;

Kg=feasmbl1 (Kg, ke3, index);

Mg=feasmbl1 (Mg, me3, index);

end

k=1;

for k=1:N2

index=index+2;

Kg=feasmbl1 (Kg, ke2, index);

Mg=feasmbl1 (Mg,me2, index);

end

%THIS PORTION IS TO CHECK DEFLECTIONS AND FIRST 5 NATURAL FREQUENCIES

AGAINST ANALYTICAL SOLUTIONS

%constrain the dofs

constraints=[1 2];

[Kgt,Mgt]=feaplycs(Kg,Mg,constraints);

%deflection test

Ft(1,1:(NO+N1+N2+N3+1)*2)=0;

Ft((NO+N1+N2+N3+1)*2-1)=100;

def=inv(Kg(3:size(Kgt,2),3:size(Kgt,2)))*Ft(3:size(Ft,2))';

check=100*L^3/(3*El*Izz);

Errorstatic=def(size(def,1)-1)-check

%calculate natural frequencies

F=[];

[Omegat, Phit, ModF]=femodal(Mgt,Kgt,F);

%Check natural frequencies

acoeff=[3.52 22 61.7 121 200];

omegaanalyt=acoeff.*sqrt(El*Izz/(rho*A*LA4));

errormod=omegaanalyt' -Omegat (3 :7)

errormodrel=100. * (errormod) . /omegaanalyt'

%REAL RESPONSE CALCULATION STARTS FROM HERE AGAIN

%add bearing springs

Kg(2*N1+1,2*N1+1)=Kg(2*N1+1,2*N1+1)+stiff;

Kg(2*(N3+N1)+1,2*(N3+N1)+1)=Kg(2*(N3+N1)+1,2*(N3+N1)+1)+stiff;
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%make damping matrix

%proportional damping

C=2*ksi*sqrtm(Mg)*sqrtm((inv(sqrtm(Mg))*Kg*inv(sqrtm(Mg))))*sqrtm(Mg);

%add dashpots

C(2*Nl+1,2*N1+1)=C(2*N1+1,2*N1+1)+damp;

C(2*(N3+N1)+1,2*(N3+N1)+l)=C(2*(N3+N1)+1,2*(N3+N1)+l)+damp;

%apply boundary condition

constraints=[]; %first d.o.f is constrained

%[Kg,Mg]=feaplycs(Kg,Mg,constraints);

Kg=Kg(2:size(Kg,2),2:size(Kg,2));

Mg=Mg(2:size(Mg,2),2:size(Mg,2));

C=C(2:size(C,2),2:size(C,2));

%another test

Ft(1,1: (N1+N2+N3+1)*2)=0;

Ft((N1+N2+N3+1)*2-1)=800;

def=inv(Kg)*Ft(2:size(Ft,2))'

%set up state-space model

Aa=[zeros(size(Mg,2)) diag(ones(l,size(Mg,2)),O);inv(Mg)*(-Kg)

inv(Mg)*(-C)];

Bb=(zeros(size(Mg,2)) zeros(size(Mg,2));zeros(size(Mg,2))

inv(Mg)*diag(ones(1,size(Mg,2)),0)];

Cc=zeros(1,2*size(Mg,2));

Dd=zeros(1,2*size(Mg,2));

Cc( (size(Mg,2) )-1)=800;

%calculate natural frequencies

F=[];

[Omega, Phi, ModF]=femodal(Mg,Kg,F);

%plot the modes

Ndisp=size(Phi,1);

j=1;

for j=1:Ndisp

i=1;

for i=1: (Ndisp-1)/2

Phi2(i,j)=Phi(2*i,j);

end

A
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end

OM=linspace(0,1000000,10000);

bode(Aa,Bb,Cc,Dd,2*size(Mg,2)-1,oM)

Next the function called by the main program are presented.

function [k,m]=febeaml(el,xi,leng,area,rho,ipt)

% ------------------------------- -------- ---- -- -------- - - -

% Purpose:

% Stiffness and mass matrices for Hermitian beam element

% nodal dof {v_1 theta_1 v_2 theta_2}

% Synopsis:

% [k,m]=febeaml(elxi,leng,area,rho,ipt)

% Variable Description:

% k - element stiffness matrix (size of 4x4)

% m - element mass matrix (size of 4x4)

% el - elastic modulus

% xi - second moment of inertia of cross-section

% leng - element length

% area - area of beam cross-section

% rho - mass density (mass per unit volume)

% ipt 1: consistent mass matrix

% 2: lumped mass matrix

% otherwise: diagonal mass matrix

%----------------------------------------------------------------

% stiffness matrix

c=el*xi/(leng^3);

k=c*[12 6*1eng -12 6*leng;...

6*leng 4*leng^2 -6*1eng 2*leng^2;...

-12 -6*1eng 12 -6*1eng;...

6*1eng 2*leng^2 -6*1eng 4*leng^2];

% consistent mass matrix
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if ipt==l

mm=rho*area*leng/420;

M=MM*[156 22*leng

22*leng 4*lengA2

54 13*leng

-13*leng -3*leng^2

54

13*leng

156

-22*leng

-13*leng; ...

-3*lengA2; ...

-22*leng; ...

4*leng^2];

% lumped mass matrix

elseif ipt==2

m=zeros(4,4);

mass=rho*area*leng;

m=diag([mass/2 0 mass/2 0]);

% diagonal mass matrix

else

m=zeros(4,4);

mass=rho*area*leng;

m=mass*diag([1/2 leng^2/78 1/2 leng^2/78]);

end

function [kk]=feasmbll(kk,k,index)

Purpose:

Assembly of element matrices into the system matrix

Synopsis:

[kk]=feasmbl1(kk,k,index)

Variable Description:

kk - system matrix

9-

(;2~
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k -- element matri

index - d.o.f. vector associated with an element

% - - - -- - - ---------------------------------------- ---- - -

edof = length(index);

for i=1:edof

ii=index(i);

for j=l:edof

jj=index(j);

kk(ii,jj)=kk(ii,jj)+k(i,j);

end

end

function [kk,mm]=feaplycs(kk,mm,bcdof)

% Purpose:

% Apply constraints to eigenvalue matrix equation

% [kk] {x}=lamda[mm] {x}

% Synopsis:

[kk,mm]=feaplycs(kk,mm,bcdof)

% Variable Description:

kk - system stiffness matrix before applying constraints

mm - system mass matrix before applying constraints

bcdof - a vector containging constrained d.o.f

%--------------------------------------------------------- -- ------

n=length(bcdof);

sdof=size(kk);

for i=1:n

c=bcdof(i);

for j=1:sdof

kk(c,j)=0;
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kk(j,c)=0;

mm (c, j) = 0;

mmn(j , c) =0;

end

mm (c, c) =1;

end
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Appendix E

DETAILED DRAWINGS OF THE 6"
BEARING TEST STAND

This appendix shown the machine drawings of the 6" prototype and the static test stand.
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