
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2009-018 May 5, 2009

ATAC: A Manycore Processor with
On-Chip Optical Network
Jason Miller, James Psota, George Kurian, Nathan
Beckmann, Jonathan Eastep, Jifeng Liu, Mark Beals,
Jurgen Michel, Lionel Kimerling, and Anant Agarwal

ATAC: A Manycore Processor with On-Chip Optical Network
Jason Miller, James Psota, George Kurian, Nathan Beckmann, Jonathan Eastep,

Jifeng Liu, Mark Beals, Jurgen Michel, Lionel Kimerling, Anant Agarwal
Massachusetts Institute of Technology, Cambridge, MA

CSAIL Technical Report, April 2009

Abstract

Ever since industry has turned to parallelism instead of fre-
quency scaling to improve processor performance, multicore
processors have continued to scale to larger and larger num-
bers of cores. Some believe that multicores will have 1000
cores or more by the middle of the next decade. However, their
promise of increased performance will only be reached if their
inherent scaling and programming challenges are overcome.
Meanwhile, recent advances in nanophotonic device manu-
facturing are making chip-stack optics a reality—interconnect
technology which can provide significantly more bandwidth at
lower power than conventional electrical analogs. Perhaps
more importantly, optical interconnect also has the potential
to enable new, easy-to-use programming models enabled by
an inexpensive broadcast mechanism.

This paper introduces ATAC, a new manycore architec-
ture that capitalizes on the recent advances in optics to ad-
dress a number of the challenges that future manycore de-
signs will face. The new constraints—and opportunities—
associated with on-chip optical interconnect are presented and
explored in the design of ATAC. Furthermore, this paper intro-
duces ACKwise, a novel directory-based cache coherence pro-
tocol that takes advantage of the special properties of ATAC to
achieve high performance and scalability on large-scale many-
cores. Early performance results show that a 1000-core ATAC
chip achieves a speedup of as much as 39% when compared
with a similarly sized manycore with an electrical mesh net-
work.

1. Introduction

The trend in modern microprocessor architectures is clear:
multicore is here. As silicon resources become increasingly
abundant, processor designers are able to place more and more
cores on a chip with massive multicore chips on the horizon.
Many industry pundits have predicted manycores with 1000 or
more cores by the middle of the next decade. But will cur-
rent processor architectures (especially their interconnection
mechanisms) scale to thousands of cores and will program-
ming such systems be tractable? This paper argues that current
multicore architectures will not scale to thousands of cores and

introduces ATAC (pronounced ā-tack), a new processor archi-
tecture that addresses these issues. ATAC integrates an on-
chip optical broadcast communication network within a mesh
based tiled multicore architecture to significantly improve the
performance, energy scalability, and ease of programmability
of multicore processors [1].

Current multicore architectures will not allow performance
to scale with Moore’s Law for several important classes of par-
allel applications. Although Moore’s Law enables increasing
numbers of cores on a single chip, the extent to which they can
be used to improve performance is limited both by the cost of
communication among the cores and off-chip memory band-
width. Although our research is investigating the application
of optical interconnect technology to both problems, this paper
focuses on the on-chip interconnect challenge. As computa-
tion is spread across multiple cores on a chip, distribution of
instructions to the cores, and communication of intermediate
values between cores account for an increasing fraction of ex-
ecution time. As processors scale to larger numbers of cores,
wire delay causes the cost of communication between any two
cores to grow relative to the physical separation of those cores.
This effect can be multiplied if communications between dif-
ferent pairs of cores interfere with each other by contending
for communication resources. The outlook is particularly dis-
mal for applications that require a lot of global communication
operations (e.g., broadcasts to maintain cache coherence) be-
cause each such operation ties up many resources. Besides
performance, global communication operations such as broad-
cast can also be power-hungry since the electrical signal must
be copied many times.

State-of-the-art multicore chips employ one of two strate-
gies to deal with interconnection costs. Small-scale multicores
typically interconnect cores using a bus. This simple design,
where communication costs are small and uniform, does not
scale efficiently to larger numbers of cores. As the number
of cores on a bus increases, the length of the bus wires in-
crease, forcing the use of a slower clock. Also, since all cores
share the same bus, contention increases very quickly. A more
scalable interconnection strategy used by some multicores is
a point-to-point network where communication is exposed to
software. For example, the Raw microprocessor [17] consists
of a 2-D array of cores where each core can communicate di-

rectly with its neighbors. This avoids long global wires but
communication between distant cores requires multiple hops.
This design allows for much less contention as long as commu-
nication patterns do not physically overlap in the mesh. How-
ever, for applications with irregular, statically unpredictable or
broadcast communication patterns, contention is unavoidable
and will become unacceptable as processors are scaled to thou-
sands of cores.

The scalability of today’s multicore architectures is also
threatened by the challenge of programming them. Multicore
programmers must spatially and temporally orchestrate com-
putation and communication if they want to extract high per-
formance from the hardware. Regardless of which existing
network topology is used, dynamic communication patterns
which result in network contention will make it extremely dif-
ficult to coordinate hundreds or thousands of processors. Even
simple functions like supplying instructions to all the cores is
difficult, even for the simple case where all cores run the same
program (this popular approach is called SPMD, single pro-
gram, multiple data, programming). Further, current multicore
programming techniques do not provide mechanisms that are
sufficiently fine-grained for scheduling inter-core communica-
tion for high performance. Broadcast and all-to-all communi-
cation operations inherent in many coherence, instruction dis-
tribution, and synchronization protocols present even greater
challenges since most existing scalable multicore network ar-
chitectures do not support these operations intrinsically, but
rather emulate them via multiple point-to-point messages.

The ATAC processor architecture addresses these con-
tention and programmability issues using on-chip optical com-
munications technologies to augment electrical communica-
tion channels. Current research in optical communications
technologies is making vast strides at integrating optoelec-
tronic components with standard CMOS fabrication processes.
ATAC leverages these advances to eliminate communication
contention using Wavelength Division Multiplexing (WDM).
WDM allows a single optical waveguide to simultaneously
carry multiple independent signals on different wavelengths.
For example, a single waveguide with the same switching
speed as its electrical counterpart and with 64 WDM channels
would match the bandwidth of a 64-bit electrical bus. Optical
waveguides, however, can also transmit data at higher speeds
than electrical wires (a function of the index of refraction of
the waveguide material for the optical signal; and a function
of the RC delays, the dielectric materials (SiO2) surrounding
the wires, and the delay of required repeaters for the electrical
signal). This virtually eliminates the heterogeneous distance-
dependent cost function for communication between a pair of
cores on any electrical interconnect, which complicates multi-
core programming. Optical signaling can also use less power
than electrical signaling (especially for long wires) because op-
tical waveguides have relatively low loss and therefore do not
require periodic repeaters.

The ATAC architecture capitalizes on the strengths of

Figure 1. High-level ATAC architecture

nanophotonic technology to implement a high-performance,
low-latency, contention-free global communication network.
The network consists of a set of optical waveguides that snake
through the chip and loop around on themselves to form a con-
tinuous loop as shown in Figure 1. Optical Hubs transmit data
by modulating a laser light source and injecting it into the loop.
The signal then quickly propagates around the loop and can be
received by all of the other Hubs in a single operation. Thus
every message on the optical network has the potential to be
a highly efficient global broadcast. Filtering at the receiving
Hubs can limit the scope of the message to create multicast or
unicast messages.

While this paper focuses on the architecture of ATAC and
how a cache coherence protocol could best utilize such an ar-
chitecture, note that ATAC enables new programming models
that could significantly improve the programmability of large
scale manycores. For instance, ATAC provides an inexpensive
broadcast operation, which allows new programming models
that encourage lots of on-chip data sharing and efficient in-
struction distribution in the simple SPMD programming style.
The broadcast mechanism also enables large-scale cache co-
herence where widespread sharing isn’t frowned upon. New
run time systems and APIs that take advantage of inexpensive
global communication operations could substantially improve
programmers’ productivity and ability to achieve great perfor-
mance without herculean effort. Issues surrounding program-
ming ATAC are outside the scope of this paper and are the
subject of ongoing research.

Using these new optical technologies, ATAC processors
have the potential to decrease programming difficulty, raise
power efficiency, provide high bandwidth (both on-chip and
off-chip), and enable performance scalability. The remainder
of this paper is organized as follows. Section 2 provides con-
text for the ATAC architecture, focusing on the constraints im-
posed on the architecture by the optical and electronic devices.
Section 3 provides an overview of the ATAC architecture, in-

cluding its processing, communication, and memory mecha-
nisms. Section 4 introduces the ACKwise cache coherence
protocol. Section 5 evaluates the ATAC architecture using the
ACKwise protocol and provides a preliminary set of results,
focusing on how ATAC enables high performance cache co-
herence across 1000 cores. Section 6 follows with a detailed
discussion of related work, and Section 7 concludes the paper.

2. Optical Technology Background

Over the past few decades optical interconnection technol-
ogy has found its way from long-haul telecommunications to
wide area networks to enterprise backbones to datacenters and,
more recently, to individual computer racks [16].

Recent advances in electronic-photonic integration continue
this trend of greater integration, smaller distances, and higher
bandwidths [13], [11], [10]. Optical interconnect is starting to
be seen at the board and module level. Recent research [12] has
shown that optical devices can be built using standard CMOS
processes and optics will soon begin to replace global wires
and on-chip buses [2]. The integration of photonic intercon-
nects into chips has the potential to address some of the great-
est challenges facing future large-scale multicore processors.

The ATAC architecture is enabled by these recent advances
in electronic-photonic integration. ATAC has been designed
with a substantial understanding of the limits of both state-of-
the-art and soon-to-come optical devices. This section presents
a brief overview of these devices and their contraints. The
key elements in a nanophotonic network such as the one em-
ployed by the ATAC chip include: the “optical power supply”
light source; waveguides to carry optical signals; modulators to
place signals into the waveguides; and detectors to receive sig-
nals from the waveguides. This section discusses each of these
components and describes the complete path for transmitting
data optically.

In ATAC the light source, or “optical power supply”, is gen-
erated by off-chip lasers and coupled into an on-chip waveg-
uide. On-chip light sources exist, but consume large quantities
of precious on-chip power and area. The power consumption
of an off-chip laser is roughly 1.5 W, with 0.2 W of optical
power ending up in the on-chip waveguide. Multiple lasers
can be used to generate an array of wavelengths, useful for
Wavelength Division Multiplexing (WDM) schemes.

Waveguides are the on-chip channels by which light is
transmitted. They guide and confine light by a combination
of a high-refractive-index material on the inside of the waveg-
uide and a low-refractive-index material on the outside (the
cladding). Waveguides can be made out of either silicon (Si)
or polymer. Due to the fact that Si waveguides can be packed
onto a chip at much higher densities and that modulators for
Si can be made much more compactly, the ATAC design em-
ploys Si waveguides. These waveguides can be manufac-
tured in a standard CMOS process, as both the waveguide and
cladding materials are commonly used elsewhere. ATAC re-

sending tile receiving tileflip-flop flip-flop

filter

photodetector

filter/
modulator

modulator driver

data waveguide

wideband laser source

Figure 2. Optical transmission of one bit be-
tween two cores

quires waveguides with losses of less than 0.3dB/cm and total
power capacity of about 10 mW, both of which are achievable
with Si.

To communicate information on a waveguide, several com-
ponents are used: the optical power supply, an optical filter,
a modulator, and the electronic modulator driver. The optical
filter is a ring resonator that couples only a specific wavelength
from the power supply waveguide to the data waveguide. The
exact wavelength, as well as the spacing between wavelengths,
is determined by the ring resonator dimensions. Further tun-
ing can be achieved by changing the ring’s temperature or by
injecting charge into the ring. The modulator is an optical de-
vice that imprints a digital signal on the laser light by varying
the absorption in the device. Modulators are used to translate
an electrical signal (amplified by the modulator driver) into an
optical signal, and can therefore be thought of as an “optical
switch”, placing values onto optical waveguides. The mod-
ulators used in the ATAC design have characteristics that are
expected to be reached by designs available in 2012: insertion
loss of 1dB; area less than 50 µm2; modulation rate higher than
20 Gbps; energy required to switch less than 25 fJ; and average
power consumption of 25 µW at 1 GHz [9].

At the receiving end of a waveguide additional components
are used to receive the signal and convert it to an electrical sig-
nal. An optical filter (also known as a “ring resonator”), is used
to extract light of a particular wavelength from the data waveg-
uide and transfer it to a photodetector. As with modulators, op-
tical filters must be tuned to “listen” to a particular frequency
during manufacturing. The photodetector is an extremely sen-
sitive optical device which absorbs photons and outputs an
electrical signal. The photodetector proposed for ATAC at the
11nm node has a responsitivity of greater than 1 A/W and 3dB
bandwidth performance at larger than 20 GHz. It has an area
footprint of less than 20 µm2. Furthermore, the expected ca-
pacitance of the photodetector is less than 1 fF [7]. In current
technology nodes, the output of the photodetector would need
to be amplified by a power-hungry TIA (transimpedance am-
plifier) before it could be used to drive a digital circuit. How-
ever, starting with the 22nm node, the smaller transistor input

64 Optically-Connected Clusters

16 Electrically-Connected Cores

Electrical In-Hub Networks
Connecting 16 Cores

Proc

Dir $

$

core a

Proc

Dir $

$

core c

Proc

Dir $

$

core b

1. req write A

3a. data 2. re
q write

 A

3b. ACK
Hub

BNet

ONet

ENet

Memory

Memory

Proc

Dir $

$

BNet
ENet

EMesh

64 Optically-Connected Clusters

Memory

Memory

Figure 3. ATAC architecture overview

capacitances will allow the photodetector to directly drive a
digital circuit, greatly reducing power consumption.

Figure 2 puts all of these elements together, showing how
one bit is transmitted from a flip-flop of one core to a flip-flop
of another core. In this figure, the core on the left shows the
components relevant to sending and the core on the right shows
the components relevant to receiving; however, in the actual
chip all cores would contain both sets of components. From
end to end, the process for sending a bit on the ATAC’s opti-
cal network is as follows. The flip-flop signals the modulator
driver to send either a 0 or a 1. The modulator driver, which
consists of a series of inverter stages, drives the modulator’s
capacitive load. The modulator couples light at its pre-tuned
wavelength λi from the optical power source and encodes ei-
ther a 0 or 1 onto the data waveguide. The optically-encoded
data signal traverses the waveguide at approximately one-third
the speed of light and is detected by a filter that is also tuned to
wavelength λi. Photons are detected by the photodetector and
received by a flip-flop on the receiver side. Note that Figure 2
shows where a TIA would be needed to amplify the photode-
tector output, even though it would not be necessary for an
ATAC chip targeting the 11nm technology node.

3. Architecture Overview

The ATAC processor architecture is a tiled multicore ar-
chitecture combining the best of current scalable electrical in-
terconnects with cutting-edge on-chip optical communication
networks. The tiled layout uses a 2-D array of simple pro-
cessing cores, each containing a single- or dual-issue, in-order
RISC pipeline, L1 data and instruction caches. ATAC uses a
sophisticated directory-based cache coherence scheme which
is described later. A portion of the distributed cache-coherence
directory is also located in each core. The ATAC architecture
is targeted at an 11nm process in 2019, and will have at least
1000 cores (for the purposes of this paper, we assume a 1024-

core chip).
The cores in an ATAC processor are connected through

two networks: the electrical EMesh and the optical/electrical
ANet. The EMesh is a conventional 2-D point-to-point elec-
trical mesh network like those seen in other multicore proces-
sors [17, 6]. The EMesh is ideal for predictable, short-range
communication. The ANet employs state-of-the-art optical
technology to enable low-latency, energy-efficient, contention-
free global communication. The core of the ANet is the all-
optical ONet shown in Figure 3. The ANet also contains two
small electrical structures called the ENet and BNet that are
used to interface with the ONet. The ANet is especially use-
ful for long-distance communication or global operations such
as broadcasts. Other projects have studied networks like the
EMesh in detail so the remainder of this paper focuses primar-
ily on the ANet.

3.1. ONet Optical Network

The key to efficient global communication in a large ATAC
chip is the optical ONet. The ONet provides a low-latency,
contention-free connection between a set of optical endpoints
called Hubs. Hubs are interconnected via waveguides that visit
every Hub and loop around on themselves to form continu-
ous rings (see Figure 3). Each Hub can place data onto the
waveguides using an optical modulator and receive data from
the other Hubs using optical filters and photodetectors. Be-
cause the data waveguides form a loop, a signal sent from any
Hub will quickly reach all of the other Hubs. Thus every trans-
mission on the ONet has the potential to be a fast, efficient
broadcast.

To avoid having all of these broadcasts interfere with
each other, the ONet uses wavelength division multiplexing
(WDM). Each Hub has modulators tuned to a unique wave-
length to use when sending and contains filters that allow it to
receive signals on all the wavelengths. This eliminates con-

tention and the need for arbitration in the optical network.
In addition, the improved propagation speed of optical sig-
nals eliminates the heterogeneous, distance-dependent cost of
communication between cores; any pair of Hubs on the chip
can communicate with low, fixed latency instead of the one-
cycle-per-hop delay found in point-to-point networks. Taken
together, these features mean that the ONet is functionally sim-
ilar to a fully-connected, bi-directional point-to-point network
with an additional broadcast capability.

WDM is a key differentiator of the ATAC architecture from
a performance scalability perspective. WDM allows a single
waveguide to simultaneously carry bits of many overlapping
communications. To contrast, an electrical wire typically car-
ries a single bit. Whereas ATAC may share a single waveguide
medium between a large number of simultaneous communi-
cation channels, implementing multiple simultaneous commu-
nication channels in the electrical domain requires additional
physical wires. For network operations that are expensive to
implement in the electrical domain (such as broadcast), the
ATAC approach greatly improves efficiency.

The ATAC architecture was carefully designed taking into
account the physical limitations and constraints of both the op-
tical (see Section 2) and electronic devices. Based on these
constraints, the ONet as described above should scale to at
least 64 (and possibly as many as 100) Hubs. This limit is
based on several factors: 1) the total range of wavelengths
over which the optical devices can be tuned divided by the
minimum spacing between wavelengths, 2) the total amount of
optical power a waveguide can carry divided by the minimum
amount that each photodetector needs to receive to reliably reg-
ister a signal, and 3) the maximum length of a waveguide based
on the acceptable propagation losses.

These limits can be overcome using multiple waveguides
and dividing the communication channels between them.
However, eventually the area needed for the optical compo-
nents will become the limiting factor. The ONet’s optical com-
ponents and photonic interconnect can be placed on a sepa-
rate layer in the CMOS stack, and can therefore overlap the
electrical components to which they connect. However, for a
400 mm2 chip, the entire area would be consumed by an ONet
with approximately 384 Hubs. Since we believe that chips will
eventually grow to thousands of cores, some sharing of Hubs
will certainly be needed. Therefore, for the purposes of this
paper, we take the simple approach and assume that the ONet
is limited to 64 Hubs.

Because of this limit, the set of 1024 cores are broken into
64 clusters of 16 cores that each share an optical Hub. The
resulting architecture can be seen in Figure 3. The ONet in-
terconnects 64 symmetric clusters with a 64-bit wide optical
waveguide bus that snakes across the chip. Each cluster con-
tains 16 cores and an ONet Hub. Within a cluster, cores com-
municate electrically with each other using the EMesh and
with the Hub using two networks called the ENet and BNet.
The ENet is an electrical mesh that is used only to send data

sending hub (#1) sending hub (#22)
FIFO

FIFO

FIFO

FIFO

From
ENet

To BNet0

From
ENet

receiving hub (#55)

Figure 4. Hub-to-hub communication over the
ONet

from cores within a cluster to the Hub for transmission on the
ONet. The BNet is an electrical broadcast tree that is used to
forward data that the Hub receives from the ONet down to the
cores.

Sending data using the ANet is shown in more detail in
Figure 4. Messages from the cores arrive at the Hubs on
the ENet. Each Hub then retransmits the data on the ONet
using its unique wavelength. Note that this allows the two
Hubs shown to send their data simultaneously without inter-
ference. The ONet consists of a bundle of waveguides: 64 for
data, 1 for backwards flow control, and several for metadata.
The metadata waveguides are used to indicate a message type
(e.g.,memory read, barrier, raw data) or a message tag (for dis-
ambiguating multiple messages from the same sender). The
receiving Hub captures both of the values simultaneously into
sender-Hub-specific FIFOs. These values are then propagated
to the cores using the BNet.

The broadcast mechanism of the ATAC architecture is an-
other key differentiator. Optical technology provides a way
to build fast, efficient broadcast networks whereas electrical
mechanisms do not. When using optical components instead
of electrical components, signals may travel farther and be
tapped into by more receivers before they need be regenerated.
With electrical components, regeneration is accomplished via
buffers or sizing-up of transistors for increased drive strength.
When these electrical mechanisms are extensively employed,
as they would be in a large electrical broadcast network, it
leads to high power consumption and poor scaling.

3.2. Cache Subsystem

The cores in ATAC each contain a simple processor with
L1 data and instruction caches. While the detailed core archi-
tecture is outside the scope of this paper, the cache coherence
system is an important aspect of ATAC that is now briefly de-
scribed. This protocol, known as ACKwise is described in more
detail in Section 4.

The data caches across all cores on the ATAC chip are
kept coherent using a directory-based MOESI coherence pro-

64 Optically-Connected Clusters

16 Electrically-Connected Cores

Electrical Broadcast
Distribution BNet Network

Connecting 16 Cores

Hub

Proc

Dir $

$

core a

Proc

Dir $

$

core c

Proc

Dir $

$

core b

1. req write A

3a. data 2. re
q write

 A

3b. ACK

Figure 5. Cache coherence example.

tocol [15]. The directory is distributed evenly across the cores.
Furthermore, each core is the “home” for a set of addresses (the
allocation policy of addresses to homes is statically defined).
Figure 5 shows a high level view of three cores, each located
in different clusters across an ATAC chip. Each core contains
a processor, data cache, and directory cache. For the purposes
of this example, assume that the directory cache always hits.
The arrows on the diagram depict a typical cache coherence
operation: a write miss of address A by core a. Note that in
this example, core b is the “home” of address A, and the initial
cache state of address A is “owned” (O state) by core c. All co-
herence traffic is sent over the ANet. The sequence of actions
needed to preserve coherence is as follows:

0. the processor in core a tries to write to address A and
misses

1. core a sends a write request to core b, the home of address
A

2. core b doesn’t have the data in its cache, but core c is
listed as the “owner” of it so core b sends a request to
write address A on behalf of core a

3a. core c forwards the data for address A to core a and up-
dates its cache state for address A to “invalid”

3b. core c sends an ACK back to the directory on core b
4. the cache line containing address A is updated on core a

and the cache state is set to “modified”
5. the processor on core a writes a value to address A

3.3. External Memory Subsystem

When cores need to communicate with external memory,
they do so via several on-chip memory controllers. Each mem-
ory controller replaces a cluster of cores and therefore has its
own dedicated optical Hub. After receiving requests on the op-
tical network, the memory controller communicates with ex-
ternal DRAM modules through standard I/O pins. Replies are

then sent back to the processing cores through the optical net-
work. By varying the number of clusters replaced by memory
controllers, different ATAC chips with different ratios of com-
pute power to memory bandwidth can be produced.

The primary task of the memory controller is to translate re-
quests from the processing cores into transactions on a mem-
ory I/O bus. The choice of I/O bus technology is indepen-
dent of the on-chip network architecture since the memory
controller is performing a translation. In the near term, it is
possible that ATAC processors would use standard electrical
I/O to interface to off-the-shelf DRAM modules (e.g., DDR3
DIMMs). However, once the costs of integrating optical com-
ponents into the chip and system have been paid, it seems logi-
cal to leverage those technologies for external I/O as well. Op-
tical I/O has several potential advantages over electrical I/O in-
cluding: lower power consumption, increased bandwidth, de-
creased pin-count, and great noise immunity.

A detailed design for an optical memory subsystem is be-
yond the scope of this paper and is left to future work. How-
ever, we can assume that an optical memory bus would con-
sist of some number of on-chip waveguides that are coupled to
external fibers or waveguides. Existing technology would re-
quire fibers to be mechanically bonded to the periphery of the
chip. However, on-going research suggests that it should be
possible to design free-space couplers that could transfer a sig-
nal from an on-chip waveguide to a waveguide embedded in a
printed circuit board without a permanent mechanical connec-
tion. This would essentially create optical ”pins” on a chip that
could replace electrical pins.

Note that such optical pins would be able to transmit far
more data than electrical pins. Each optical pin could carry
up to 64 wavelengths of light at speeds of up to 20 GHz. The
actual transmission speed would likely be limited by design
trade-offs in the electrical circuits driving the optical compo-
nents. We estimate that optical I/O pins operating at 5 GHz
should be practical. Thus a single optical I/O pin will have a
bandwidth of at least 320 Gb/s (or 40 GB/s). Contrast this with
a 64-bit DDR3 memory bus which has a total peak data trans-
fer rate of 12.8 GB/s. Thus an optical memory bus consisting
of a single fiber or waveguide can reduce pin count by a factor
of 64 while simultaneously increasing bandwidth by a factor of
3. These characteristics will make optical I/O highly desirable
for large ATAC chips that require several memory controllers
to meet their DRAM bandwidth needs.

4. Cache Coherence Protocol

This section presents ACKwise, a cache coherence protocol de-
rived from a MOESI-directory based protocol [15]. Each di-
rectory entry in this protocol, as shown in figure 6 is similar to
one used in a limited directory scheme [4] but with a few mod-
ifications. The 4 fields in each directory entry are as follows:
(1) State: This field specifies the state of the cached block(s)
associated with this directory entry (one of the MOESI states);

State Keeper ID Sharer 1 Sharer 5Sharer 4Sharer 3Sharer 2G

Figure 6. Structure of a Directory Entry

(2) Global(G): This field states whether the number of shar-
ers for this data block exceeds the capacity of the sharer list.
If so, a broadcast is needed to invalidate all the cached blocks
corresponding to this address when a cache demands exclu-
sive ownership of this data block; (3) KeeperID: This field
holds the ID of a core which contains an up-to-date copy of
this data block. This copy could be clean (as in Exclusive(E)
and Shared(S) state) or could be dirty (as in Modified(M) and
Owned(O) state); and (4) Sharers1−5: This field represents
the sharer list. It can hold upto 5 core IDs.

When the number of sharers exceeds 6 (including the
keeper), the Global(G) bit is set so that any number of shar-
ers beyond this point can be accommodated. Once the global
(G) bit is set, the sharer list (Sharers1−5) holds the total num-
ber of sharers of this data block. In other words, once the
global(G) bit is set, the directory has only the following in-
formation about a data block: (a) KeeperID; and (b) Number
of sharers.

4.1. Operation of the ACKwise Protocol

When a request for a shared copy of a data block is issued,
the directory controller first checks the state of the data block
in the directory cache. (a) If the state is Invalid(I), it forwards
the request to the memory controller. The memory controller
fetches the data block from memory and sends it directly to
the requester. It also sends an acknowledgement to the direc-
tory. The directory changes the state of the data block to Exclu-
sive(E) and sets the KeeperID field to the ID of the requester.
(b) If the state is one of the valid states (i.e.,one of MOES),
it forwards the request to the Keeper. The Keeper forwards
the data block directly to the requester and sends an acknowl-
edgement to the directory. Appropriate state changes happen
in the cache block of the Keeper and the directory according to
the rules of the MOESI protocol [15]. The directory controller
also tries to add the ID of the requester to the sharer list. This
is straightforward if the global(G) bit is clear and the sharer
list has vacant spots. If global(G) bit is clear but the sharer
list is full, it sets the global(G) bit and stores the total num-
ber of sharers (in this case, 7 (= 6+1)) in the sharer list. If the
global(G) bit is already set, then it increments the number of
sharers by one.

When a request for an exclusive copy of a data block is is-
sued, the directory controller first checks the state of the data
block in the directory cache. (a) If the state is Invalid(I), the se-
quence of actions followed is the same as that above except that
the state of the data block in the directory is set to Modified(M)
instead of Exclusive(E). (b) If the state is one of the valid states
(i.e.,one of MOES), then the directory controller performs the

following 2 actions: (i) It forwards the request to the Keeper.
(ii) If the global bit is clear, it multicasts an invalidation mes-
sage to the cores in the sharer list. Else, if the global bit is set,
it broadcasts an invalidation message (to all the cores on the
chip). Now, the Keeper, on receiving the forwarded request
sends the data block directly to the requester, acknowledges
the directory and invalidates its cache block. The other shar-
ers invalidate their cache blocks and acknowledge the direc-
tory. The directory controller expects as many acknowledge-
ments as the number of sharers (encoded in the sharer list if
the global(G) bit is set and calculated directly if the global(G)
bit is clear). After all the acknowledgements are received, the
directory controller sets the state of the data block to Modi-
fied(M), the global(G) bit to 0 and the KeeperID field to the ID
of the requester.

Due to the broadcast capabilities of ATAC as described in
section 3, the sending of multicast and broadcast messages can
be achieved easily. A multicast invalidation message (referred
to in the previous paragraph) is synthesized by prepending the
sharer list to the invalidation address. This message is then sent
on the electrical mesh network (ENet) followed by the optical
ring (ONet). The receiving Hubs then filter out the invalidation
messages directed to cores within them and forward it through
one of the broadcast networks (BNet0 or BNet1). A broadcast
invalidation message, on the other hand, is received by all the
Hubs and broadcasted to all the cores within each Hub.

This protocol is named ACKwise because it keeps track of
the number of sharers after the capacity of the sharer list has
been exceeded and expects acknowledgements only from those
many sharers in response to a broadcast invalidation message.
The broadcast capabilities of ATAC coupled with this simple
sharer tracking mechanism enable the ACKwise protocol to
scale to 1000 cores.

A direct consequence of using this protocol is that silent
evictions must be avoided. A detailed diagram showing the
operation of this protocol and a table showing the set of coher-
ence messages involved are presented in Appendix A.

5. Evaluation

To demonstrate the capabilities of the ATAC network (ANet)
over a pure electrical mesh network denoted by pEMesh, we
evaluate the performance of a cache coherent shared memory
synthetic benchmark. The on-chip communication network’s
workload consists of the cache coherence messages that arise
while running this synthetic benchmark. Results show that
ANet is superior to pEMesh due to its higher bandwidth, lower
latency, and broadcast capabilities.

5.1. Methodology

The methodology for the evaluation is described in great
detail in Appendix B, but the salient aspects of the analytical
model are presented here.

System Parameters Value
CPI of Non-Memory Instructions 0.6
Number of Cores 1024
Number of Clusters 64
Off-Chip Memory Bandwidth 280 GB/s
Frequency of a Core 1 GHz
Cache Access Time 1 ns
Cache Line Size 64 bytes
Memory Access Time 0.1 µs
Single Hop Latency through Electrical Mesh 1 ns
Propagation Time though Optical Waveguide 2.5 ns
Number of Lanes (in an optical channel) 2
Number of Electrical Broadcast (BNeti) Networks 2
Link Width of the pure Electrical Mesh (pEMesh) 2 flits

Table 1. Baseline System Configuration

Due to the impracticality of simulating many-core systems
such as ATAC with current simulators, we built an analytical
model of processor performance. The model is based on an
in-order processor model focusing on latency of memory re-
quests. It takes into account queueing delay in the on-chip
network as well as off-chip. All network traffic generated
by cache coherence messages is modeled and contributes to
queueing delay.

The model distinguishes between different on-chip net-
works based on the expected transit time for a single flit in the
network and the cost of generating different types of messages
in the cache coherence protocol.

Comparing ANet to the pure electrical mesh (pEMesh),
ANet differs because the average transit time is much less
than an electrical mesh. In ANet, a flit goes through the op-
tical waveguide and a short distance at the sender and receiver
within a cluster. This time is, on average, much less than the
time required in an electrical mesh, in which the message must
be forwarded across the breadth of the chip.

Furthermore, ANet is much more efficient at multicast and
broadcast traffic generated by the cache coherence protocol.
In ANet, these messages consume a single packet along the
optical waveguide (as described in section 4), and therefore
their bandwidth is quite small. In a pure electrical mesh, a
broadcast is forwarded to every core in the mesh, consuming
enormous power and causing congestion.

5.2. Results

This sections details the different experiments conducted to
measure the performance of ANet against that of pEMesh. The
system parameters used are shown in Table 1 and the synthetic
benchmark characteristics are shown in Table 2. The char-
acteristics of the synthetic benchmark have been derived us-
ing the PARSEC benchmark suite [5]. Unless otherwise men-
tioned, these parameters are used in the performance studies
conducted in this section.

Recall that the ATAC Network, ANet is made up of an elec-
trical mesh network (ENet), an optical network (ONet) and

Parameter Value
Frequency of Data References 0.3
Fraction of Reads in Data References 2/3
Fraction of Writes in Data References 1/3
Cache Miss Rate 4%
Average Number of Sharers 4
Fraction of Memory Requests going off-chip 0.7
Fraction of Memory Write Requests that cause Invalidation
Broadcasts

0.1

Table 2. Benchmark Characteristics

0 10 20 30 40 50 60
0

100

200

300

400

500

Average Number of Sharers

IP
C

ANet (wb = 2)

ANet (wb = 3)

pEMesh

Figure 7. Performance of ANet vs pEMesh as a
function of Average Number of Sharers

two electrical broadcast networks (BNet0 & BNet1). The link
widths of ENet, BNet0 and BNet1 are 1 flit (= 32 bits) each.
Each optical channel consists of 2 lanes. Each lane comprises
of a particular wavelength from a total of 32 waveguides (1
wavelength each from 1 waveguide) and hence is 1 flit wide.
The ONet consists of 64 such optical channels (one for each
cluster). The link width of the pure electrical mesh network,
pEMesh with which we compare the performance of ANet is
64 bits (= 2 flits).

First, we describe how the number of electrical broadcast
networks for ANet is calculated. The ratio of the number of
electrical broadcast networks to the number of lanes in an op-
tical channel is given by fu + fmnm + fbC where fu, fm and
fb are the fraction of unicast, multicast and broadcast messages
respectively, nm is the average number of receivers (in terms of
number of clusters) of a multicast message and C(= 64) is the
total number of clusters. This ratio is calculated to be ∼ 1.15
in our experiments taking only cache coherence messages into
account. In figure 8(a), we vary the number of broadcast net-
works (wb) from 1 to 5. We observe that the performance
of ANet almost reaches its peak when there are 3 broadcast
networks. Note that 3 = d1.15 · 2e. Since the performance
improvement when the number of broadcast networks is in-
creased from 2 to 3 is relatively small, a reasonable choice
would be to opt for 2 broadcast networks (corresponding to 2
lanes in an optical channel) to save on cost and area.

From figure 8(a), we also observe that with a single elec-
trical broadcast network, pEMesh outperforms ANet. This can

1 2 3 4 5
0

100

200

300

400

500

Number of Broadcast Networks in a Cluster

IP
C

ANet
pEMesh

(a)

0 0.05 0.1 0.15
0

200

400

600

800

1000

Miss Rate

IP
C

ANet
pEMesh

(b)

0 100 200 300 400
0

100

200

300

400

500

600

Off-chip Bandwidth (GB/s)

IP
C

ANet
pEMesh

Bsat

Bthres

(c)

Figure 8. Performance of ANet vs pEMesh as a function of (a) Number of Broadcast Networks; (b) Miss
Rate; and (c) Off-Chip Bandwidth

be attributed to the high queueing delays at the receiving Hub
due to the extremely low broadcast bandwidth of the receiving
cluster. In all other cases, ANet outperforms pEMesh.

Next, we study the effect of miss rates on the performance
of ANet and pEMesh. The miss rate is varied from 1% to 15%.
From figure 8(b), we observe that the performance of ANet
is on an average 33.6% above that of pEMesh. Hence, ANet
can outperform pEMesh over a wide range of applications with
varying miss rates.

The effect of off-chip memory bandwidth on the perfor-
mance of ANet and pEMesh is illustrated in figure 8(c). In this
graph, we vary the off-chip bandwidth from 40 GB/s to 400
GB/s in steps of 40 GB/s. Observe that the performance of
the chip is solely dominated by the memory bandwidth at low
bandwidths, and it becomes sensitive to the on-chip network
only when the memory bandwidth reaches a certain thresh-
old (Bthres as shown in figure 8(c)). Once this threshold is
exceeded, we observe that the performance of ANet is above
that of pEMesh by 39%. We also observe that the perfor-
mance of both ANet and pEMesh saturates after the memory
bandwidth reaches another threshold (Bsat) since the queue-
ing delays when going off-chip are extremely small beyond
this point. Stated in a different way, beyond Bsat, the off-chip
bandwidth provided exceeds what the application demands.

The effect of the average sharing density of a data block on
the performance of ANet and pEMesh is shown in figure 7. In
this performance study, we vary the average number of shar-
ers from 1 to 64. As the number of sharers of a data block
increases, the performance of pEMesh degrades due to the in-
crease in number of broadcasts needed to invalidate cached
copies of a data block (due to exclusive requests for that data
block). On the other hand, in ANet, broadcasts are cheap on
the optical network but lead to a significant increase in queue-
ing delay at the receiving Hub due to the small number of
broadcast networks (wb = 2). The number of broadcast net-
works is decided based on evaluations where the average num-
ber of sharers is 4 (common case). Due to the above reasons,

the performance improvement of ANet over pEMesh increases
very slowly as the sharing density increases. To illustrate the
effect of the number of broadcast networks on performance
when the sharing density becomes large, we plot the perfor-
mance of ANet when the number of broadcast networks is 3
(i.e., wb = 3) also in figure 7. We observe that the perfor-
mance of ANet when wb = 3 exceeds that when wb = 2 by
a large margin when the average number of sharers is high.
When wb = 3, the performance improvement of ANet over
pEMesh across the studied sharing density range is 57.5%.

5.3. Discussion

In our experimental studies, we find that the ATAC
network(ANet) outperforms a pure electrical mesh network
(pEMesh) due to its higher bandwidth, lower latency and
broadcast capabilities. To demonstrate this fact, we measure
the contribution to the average memory latency due to the
following 3 factors: (1) On-Chip Base Latency; (2) On-Chip
Queueing Delay; and (3) Off-Chip Latency.

The on-chip base latency is the average on-chip latency of
a memory request assuming infinite bandwidth. The on-chip
queueing delay is the contribution to the average memory la-
tency due to the queueing delays at the sending and receiving
Hubs in the ATAC network (ANet) or due to the contention
delay in the pure electrical mesh (pEMesh). The off-chip la-
tency is the contribution due to the DRAM access time and the
queueing delays while going off-chip. This factor is almost
the same for both ANet and pEMesh since we assume the same
off-chip bandwidth for both of them.

From our experimental study using the system configura-
tion shown in Table 1 and the benchmark characteristics shown
in Table 2, we observe that the average memory access time of
the synthetic benchmark is 6.26 on ANet and 9.26 on pEMesh.
Out of 6.26 on ANet, the contribution of the on-chip base la-
tency is 2.71 (43.3%) and that of the on-chip queueing delay is
0.78 (12.5%). Out of 9.26 on pEMesh, the contribution of the

on-chip base latency is 5.12 (55.3%) and that of the on-chip
queueing delay is 1.37 (14.8%). The contribution due to the
off-chip latency is 2.77 in both the cases. (All numbers in this
paragraph are reported in terms of processor cycles).

From the above figures, we conclude that ANet outperforms
pEMesh in terms of both on-chip bandwidth and base latency.
The on-chip base latency is 47.1% lesser in ANet as compared
to pEMesh while the on-chip queueing delay is 43.1% lesser in
ANet as compared to pEMesh. ANet also outperforms EMesh
in its broadcast capability but could do so more significantly if
the number of broadcast networks is increased in proportion to
the amount of broadcast traffic (as illustrated in figure 7).

6. Related Work

CMOS-compatible nanophotonic devices are an emerging
technology. Therefore there have only been a few archi-
tectures proposed that use them for on-chip communication:
Corona [8], the optical cache-coherence bus of Kirman et
al [14], and the switched optical NoC of Shacham et al [3].

The Corona architecture [8] uses optics for two different
on-chip networks: an optical crossbar and an optical broad-
cast bus. Corona is similar to ATAC in that it uses a snaking
waveguide pattern to connect 64 clusters of cores. However,
the two designs differ in the way that they assign communi-
cation channels. Corona assigns a physical channel to each
receiver and uses WDM to send multiple bits of a dataword si-
multaneously. ATAC assigns a physical channel to each sender
and uses WDM to carry multiple channels in each waveguide.
The Corona design requires arbitration between senders wish-
ing the communicate with the same receiver. The ATAC design
uses more optical components but allows all communication to
occur independently and without any form of contention. This
creates a uniform communication latency and allows the re-
ceiver to choose the order in which it processes messages.

Kirman et al [14] discuss the integration of optical technol-
ogy into the cache-coherence bus of a future CMP. The design
of their network is very similar to ATAC, consisting of a top-
level optical broadcast bus which feeds into small electrical
networks connecting groups of cores. However, the ATAC net-
work is designed to be a general communication mechanism
whereas Kirman’s network is limited to snooping cache co-
herence traffic. We believe that their snooping architecture is
unlikely to scale to hundreds or thousands of cores. Our ACK-
Wise coherence protocol is designed to make efficient use of
the optical broadcast network and scale to thousands of cores.

Shacham et al [3] propose a novel hybrid architecture in
which they combine a photonic mesh network with electronic
control packets. Whereas ATAC uses photonics to create an ef-
ficient broadcast network, Shacham et al construct a switched
mesh network using similar components. To overcome the cur-
rent impossibilities of directly buffering or processing optical
information, they use an electronic control network to setup
photonic switches in advance of the optical signal transmis-

sion. This scheme is therefore still partially limited by the
properties of electrical signal propagation. It only becomes
efficient when a very large optical payload follows the electri-
cal packet. ATAC, on the other hand, leverages the efficiencies
of optical transmission for even a single word packet.

7. Conclusion

The recent advances of optical technology have certainly in-
spired confidence in computer architects that optics may very
well continue to make its way into smaller and smaller pack-
ages; just as optical interconnect has moved from connecting
cities to connecting data centers, it seems likely that it will
soon connect chips and on-chip components.

Overall, this paper presented a novel manycore architec-
ture that scales to 1000 cores by embracing new technology
offered by recent advances in nanophotonics. This paper also
introduced ACKwise, a novel directory-based cache coherence
protocol that takes advantage of special properties of ATAC to
achieve high performance. Early analytical model based stud-
ies of performance show that a 1000-core ATAC chip achieves
a speedup of as much as 39% when compared with a similarly
sized manycore with an electrical mesh network. Our eval-
uations also provide significant insight into how the different
parameters of an opto-electric network (like ANet) should be
tuned to perform well together.

References

[1] ATAC: All-to-All Computing Using On-Chip Optical Intercon-
nects. In BARC, 1/2007.

[2] The International Technology Roadmap for Semicon-
ductors (ITRS) Technology Working Groups, 2008.
http://public.itrs.net.

[3] A. Shacham, B.G.Lee, A.Biberman, K.Bergman, and
L.P.Carloni. Photonic NoC for DMA Communications in Chip
Multiprocessors. In IEEE Hot Interconnects, August 2007.

[4] Anant Agarwal et al. An evaluation of directory schemes for
cache coherence. In ISCA, 1988.

[5] Christian Bienia et al. The PARSEC Benchmark Suite: Char-
acterization and Architectural Implications. In PACT, 2008.

[6] I. Corporation. Intel’s Teraflops Research Chip.
http://techresearch.intel.com/articles/Tera-Scale/1449.htm.

[7] D. A. et al. High performance, waveguide integrated Ge pho-
todetectors, 2007.

[8] D. V. et al. Corona: System Implications of Emerging
Nanophotonic Technology. In ISCA, 2008.

[9] J. F. L. et al. Waveguide-integrated, ultra-low energy GeSi
electro-absorption modulators, 2008.

[10] J. M. et al. Advances in Fully CMOS Integrated Photonic Cir-
cuits, 2007.

[11] M. B. et al. Process flow innovations for photonic device inte-
gration in CMOS, 2008.

[12] R. Kirchain and L. Kimerling. A roadmap for nanophotonics,
2007.

[13] J. F. Liu and J. Michel. High Performance Ge Devices for
Electronic-Photonic Integrated Circuits, 2008.

[14] N.Kirman et al. Leveraging Optical Technology in Future Bus-
based Chip Multiprocessors. In MICRO, 2006.

[15] Paul Sweazey and Alan Jay Smith. A Class of Compatible
Cache Consistency Protocols and their Support by the IEEE Fu-
turebus. In ISCA, 1986.

[16] C. Schow. Optical Interconnects in Next-Generation High-
Performance Computers. OIDA 2008 Integration Forum, 2008.

[17] Taylor et al. Evaluation of the Raw Microprocessor: An
Exposed-Wire-Delay Architecture for ILP and Streams. In
ISCA, 2004.

APPENDIX

A. Cache Coherence Protocol

The coherence messages involved in the protocol described
in section 4 are shown in table 3. Numbers assigned to each
type of coherence message are used in the next section for
building an analytical model to study the performance of the
ATAC network compared with a normal electrical mesh.

Figure 9 shows the dynamics of the cache coherence pro-
tocol. This figure can be understood from the description of
the protocol given in section 4. In this figure, R stands for
Requester, H stands for Home (core on which the directory is
present), K stands for Keeper (as explained in section 4) and
M stands for Memory controller.

R

H

InvReq

InvRep

InvReq

InvReq

InvRep

InvRep

S

S

S

ForReqForRep

ExRep

ExReq

K

4

1
3

4

4

3

3 4

3

5

R

H S

S

S

ForReq
ForRep

ShRep

ShReq

K

1

4

3

5

R

H

ExReq
/ ShReq

ExRep /
 ShRep

1

2

M
MemRep

MemReq

2

2

(a)

(b)

(c)

Figure 9. Operation of the ACKwise cache co-
herence protocol

B. Analytical Performance Model

We developed an analytical model of processor perfor-
mance for the given cache coherence protocol. It is built to
model two different on chip networks: an electrical mesh net-
work and the ATAC optical network. The model focuses on the
latency and queueing delay of memory requests in the on-chip
networks. Queueing delay to main memory is also modeled.
Parameters to the model are listed in Table 4. All times are
measured in cycles, except where otherwise stated. Message
lengths are measured in flits.

Parameter Description
CPInon-mem The CPI of non-memory instructions.
N The number of cores.
n The number of cores per cluster.
M The number of memory controllers.
B The off-chip bandwidth (GB/s).
fcore Frequency of a core.
tcache Average access time in the cache.
tmem Memory access time.
tmesh Hop time through the electrical mesh.
topt Time through optical waveguide (in-

cluding transitions between electrical
and optical).

fmem Frequency of data references.
fr Frequency of data references that are

reads.
fw Frequency of data references that are

writes. (fr + fw = 1)
mr Miss rate of reads.
mw Miss rate of writes.
p0 Probability that a miss encounters no

sharers in the directory. (And therefore
must go off-chip.)

k The maximum number of sharers al-
lowed before using broadcast.

pk Probability that a miss encounters be-
tween 1 and k sharers in the directory.

Ek Expected number of sharers, given that
there is at least one sharer.

EC,k Expected number of unique clusters
containing sharers, given that there is
at least one sharer. (Any cluster could
contain up to n sharers, so EC,k ≤
Ek.)

`A Length of an address or acknowledge-
ment packet.

`D Length of a data packet.
`M Length of a multicast packet.
wopt Number of lanes in an optical channel.
wbroad Number of electrical broadcast net-

works.
welec Link Width of electrical mesh network

(in flits).

Table 4. Parameters to the analytical model.

CC Mes-
sages

Msg
Num-
ber

Description

ExReq 1 Request for an exclusive copy of a cache block
ExRep 2/5 An exclusive copy of a cache block returned to its requester (Memory Controller - 2, Keeper - 5)
ShReq 1 Request for a shared copy of a cache block
ShRep 2/5 A shared copy of a cache block returned to the requester (Memory Controller - 2, Keeper - 5)
InvReq 3 Invalidation Request from Directory to a sharer
InvRep 4 Acknowledgement for InvReq
ForReq 3 Request (ShReq/ExReq) forwarded from the Directory to the Keeper
ForRep 4 Acknowledgement for ForReq
MemReq 2 Request forwarded from the Directory to the Memory Controller
MemRep 2 Acknowledgement from the Memory Controller to the Directory

Table 3. Coherence Messages in a MOESI Directory CC protocol

B.1. CPI

The performance of a processor is computed as a function
of the CPI of each core, which is calculated using a simple in-
order processor model. Because of the different actions taken
in the cache coherency protocol, reads and writes are modeled
separately. The basic equation for CPI is,

CPI = CPInon-mem + fmem(tcache + frmrtr-miss

+ fwmwtw-miss) (1)

Where tr-miss and tw-miss represent the latency of read misses
and write misses, respectively.

We now show in detail how the miss latency is derived. The
latency of memory references is determined by the three-hop
latency in steps 1, 3, and 5 in the protocol (or, equivalently,
steps 1 and two hops in 2 if the cache line is not shared) (re-
fer table 3 above). The latency of a message of length ` is
given by tflit + (`− 1), where tflit is the latency of a single flit
through the network, assuming uniformly distributed senders
and receivers. tflit depends on the type of network being mod-
eled, and will be derived for ATAC and mesh networks later.
Referring to the protocol above, we have

tr-miss =p0(Latency off-chip) + (1− p0)(Latency on-chip)
tr-miss =p0 [3tflit + (tmem + Qmem) + 2(`A − 1) + (`D − 1)]

+ (1− p0) [3tflit + 2(`A − 1) + (`D − 1)] (2)

Qmem gives the queueing delay off-chip. The expression for
tw-miss is very similar, except in that case we must also account
for the slightly longer multicast packets that can occur when
there are less than k sharers.

B.2. Queueing Delay

There are two queueing delays of interest: the queueing de-
lay off-chip and the queueing delay in the on-chip network.

In either case, delay is modeled by an M/D/1 queueing model
with infinite queues. In this model, queueing delay is given by

Q =
λ

2µ(λ− µ)
(3)

With λ the arrival rate and µ the service rate.
The off-chip queuing delay is slightly simpler, so that is de-

rived first. To get the delay in terms of cycles, we must express
the off-chip bandwidth in flits per cycle.

µmem =
B

Mfcorew
(4)

Where w is the width of the network. The arrival rate is the
miss rate to memory per cycle. Miss rates are given per in-
struction, so the arrival rate is inversely proportional to CPI.
The per-core arrival rate is given by

λmem,core =
1

CPI
p0fmem(frmr + fwmw)

This gives an overall arrival rate off chip of1

λmem =
Nλmem,core`D

M
(5)

Qmem is given by substituting equations (4) and (5) into equa-
tion (3).

On-chip queueing delay is modeled under the same frame-
work, but the arrival and service rates depend on the network
being modeled. This is covered in the next section.

B.3. On-Chip Networks

This section derives tflit, the mean transit time of a single
flit through the network for uniformly distributed senders and
receivers.

1It is assumed that addresses use separate control lines off-chip and do not
contend with data traffic. Therefore queueing delay is dominated by the much
larger data packets.

B.3.1. ATAC

Define tATAC as tflit for the ATAC architecture. From the archi-
tecture above,

tATAC = (dsend + drecv)tmesh + topt + Qsend + Qrecv (6)

Here, dsend and drecv are the mean distances traveled in the elec-
trical mesh within a cluster at the sender and receiver. Specif-
ically, dsend =

√
n

2 and drecv = log2 n. We assume that con-
tention on the electrical mesh within a cluster is insignificant,
as it is limited by the bandwidth onto the optical waveguide
and will never have high utilization.

Qsend and Qrecv are the queueing delay at modulator and de-
tector, respectively. We derive Qsend using equation (3). µsend
is simply the width of the optical network, µsend = wopt. The
arrival rate is more complicated. It can be split by defining cr

and cw as the total network cost (i.e., number of flits generated)
for a read and write, respectively. This yields,

λsend =
fmem

CPI
· (frmrcr + fwmwcw) (7)

cr and cw are computed by referring to the cache coherence
protocol. cr is simpler than cw and nearly identical for both
ATAC and electrical meshes, so we only give the derivation of
cw.

cw = `A Initial request
+ p0(`D + 2`A) Off-chip traffic
+ pk`M + (1− p0 − pk)`A Invalidates
+ (1− p0)Ek`A Replies
+ (1− p0)`D Data to requestor

Qrecv is derived similarly. The service rate is µrecv = wbroad.
The only additional complication is that a single message on
the optical waveguide can have several clusters as its destina-
tion. Therefore, the arrival rate at the receiver exceeds that of
the senders by a factor of the mean number of destinations for a
message. This is computed very similarly to λsend — we condi-
tion on the type of message based on the arrival rates for reads
and writes, and multicast and broadcast packets from step 3 of
the protocol are more heavily weighted.

B.3.2. Electrical Mesh Networks

Define telec as tflit for an electrical mesh network. By the model
given in REFERENCE ANANT’S PAPER HERE!,

telec = dp2p(thop + Qelec) (8)

Where dp2p is the mean number of hops between sender and
receiver, or dp2p =

√
N . Qelec is the queueing delay at each

hop. By SAME REFERENCE HERE!,

Qelec =
3ρ

1− ρ

dp2p − 2
dp2p

(9)

ρ is the utilization of the mesh, which is given by λelec
µelec

. As
before, µelec = welec. λelec is derived exactly as λsend, except
the costs of read and write misses are different. For reads, cr

simply increases by a factor of dp2p. Writes are complicated
by broadcasts in an electrical network, which are forwarded
dbroad = N − 1 times,2 and the lack of a true multicast mecha-
nism. This gives,

cw = dp2p`A

+ dp2pp0(`D + 2`A)
+ dp2ppkEk`A + dbroad(1− p0 − pk)`A

+ dp2p(1− p0)Ek`A

+ dp2p(1− p0)`D

B.4. Solving for CPI

A complication with this model is that the CPI as given
by equation (1) is dependent on several queueing delays that
themselves depend on the CPI. Finding a consistent solution
algebraically seems hopeless due to the nonlinearity of the
queueing models and the large number of parameters.

Numerical methods address this, however. Unfortunately,
iteration to a fixed point is ineffective because of the extreme
instability of the CPI. But an equally simple solution works
since the right side of equation (1), when viewed as a function
of CPI, is monotonically decreasing. Therefore one can use
binary search to find the fixed point. We used this method to
find solutions within 0.001 accuracy.

B.5. Sources of Error

There are a few known sources of error in the model:

• Instruction cache misses are not modeled. It is assumed
that since the instruction miss rate is low and will never
generate invalidates or dirty cache blocks, the additional
traffic in the network is not a first order effect.

• Queueing delay at the directory itself is not modeled.
With high utilization, there could be multiple outstand-
ing requests that force delay in the processing of later re-
quests.

• Evictions are not modeled. Evictions would not increase
the latency of misses, but would increase the utilization
of the network and consequently the queueing delay.

• Congestion control in the networks is not modeled. We
assume infinite queues in our queueing model, but in re-
ality under high loads the networks will engage in some
form of congestion control that limits performance.

2The simplest way to see this is that the message must be sent to every core
except the sender, but a more rigorous counting argument produces the same
result.

