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SEISMOLOGY: NORMAL MODES (FREE OSCILLATIONS) 
 

DECOMPOSING SEISMOLOGY INTO SUBDISCIPLINES 
Seismology can be decomposed into three representative subdisciplines: body waves, surface 
waves, and normal modes of free oscillation.  Technically, these domains form a continuum, 
each pertaining to particular frequency bands, spatial scales, etc.  In all cases, these 
representations satisfy the wave equation, but each is subject to different boundary conditions 
and simplifying assumptions.  Each is therefore relevant to particular types of subsurface 
investigation.  Below is a table summarizing the salient characteristics of the three.  
 

Seismic Domains Type Application Data 
Boundary 

Conditions
Body Waves P-SV SH High frequency travel times; waveforms unbounded

Surface Waves Rayleigh Love Lithosphere 
dispersion; group c(w) & 

phase u(w) velocities    interfaces

Normal Modes Spheroidal Modes Toroidal Modes Global power spectra 
spherical 

earth 
 

As the table suggests, the normal modes provide a framework for representing global seismic 
waves.  Typically, these modes of free oscillation are of extremely low frequency and are 
therefore difficult to observe in seismograms.  Only the most energetic earthquakes are capable 
of generating free oscillations that are readily apparent on most seismograms, and then only if 
the seismograms extend over several days. 

 

NORMAL MODES  

To understand normal modes, which describe the modes of free oscillation of a sphere, it’s 
instructive to consider the 1D analog of a vibrating string fixed at both ends as shown in panel 
Figure 1b.   This is useful because the 3D case (Figure 1c), similar to the 1D case, requires that 

Figure 1  

Figure by MIT OCW.
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standing waves ‘wrap around’ and meet at a null point.  The string obeys the 1D wave equation 
with fixed-end BCs, the general expression and solution to which are: 
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The BCs require that u(0,t) = u(L,t) = 0, which implies that A = -B and C = -D.  Hence: 
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So there are infinitely many discrete frequencies, ωn, that satisfy (1), and these are called 
eigenfrequencies. 

Figure 2 depicts several modes or eigenfrequencies that 
satisfy (2).  n=0 corresponds to the fundamental mode and all 
n≥1 correspond to higher modes (overtones). 

 

 

 

 

 

 

 

 

 

Normal Modes in the Fourier Domain 
The normal modes, just like the harmonic solutions we saw for the 1D case in (1) and (2), can be 
thought of as basis functions spanning the set of all possible waves we expect to encounter in a 
spherical body.  Therefore, we can employ weighted mode summation to reconstruct or represent 
waveforms occurring in a spherical body.  Heuristically, u can be represented by 

( ) ( )∑= nnAtxu ωmodes,            (3) 

and, more precisely 

Figure 2 

Aside: We have already seen ω-k plots for surface and 
body waves and have learned how to interpret and 
manipulate them.  Normal modes are also 
frequently graphically depicted using ω-l plots, 
where ω has the normal meaning and where l is the 
characteristic length or angular order.  But note 
that l=2πR/λ, and recall that k=2π/λ; so the 
angular order is like a wave number!  
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Stein and Wysession report (4a) in the equivalent form 
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In seismology, it is customary to express (4a) by 
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Equations 4a-c indicate that the power spectrum of u(x,t) could be used to reveal the normal 
modes.  Those discrete frequencies at which the Earth freely oscillates when it is excited by an 
earthquake will be evident in its normal mode power spectrum (see Figure 3). 

Figure 3 clearly indicates that the Earth possesses more than one normal mode.  Thinking of this 
as a forward modeling problem, we might begin to attempt to predict the Earth’s normal modes 
by assuming the Earth is homogeneous.  In that case, there would only be one peak apparent in 
the power spectrum of a seismogram.  We could then refine our Earth model, adding layers at 
various depths and these would produce additional spectral peaks.  Ultimately, we might apply 
PREM or some other Earth reference model to establish a reference power spectrum against 
which we could compare real data.  

 

Aside: Earthquake magnitudes are 
initially estimated based upon the 
energy observed in the first-arriving 
body waves; magnitudes are then 
sometimes adjusted based upon the 
energy observed in the later-
arriving surface waves; a final 
revision is also sometimes made 
once the energy in the long-
wavelength normal modes is 
determined.  For example, the 
Sumatra earthquake of 26 
December 2004 was initially 
ascribed M = 8.0 when the body 
waves arrived.  It was then adjusted 
to 9.0 when the surface waves were 
analyzed, and it was finally 
assessed a 9.3 when the normal 
modes were analyzed. 

Image removed due to copyright considerations.
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Synthetic Seismograms 
Recall that we have already established a method for creating synthetic seismograms for body 
waves, using the following expression: 
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This triple infinite integral is computationally prohibitive to calculate, and a number of 
simplifications have been introduced to circumvent these difficulties.  Such techniques include 
the so-called WKBJ method, the Reflectivity method, and the Cagniard-de Hoop method, none 
of which will be developed here.  The point is that simplifications are imperative.  For plane 
waves, two useful simplifications are: 

1. Integrate over a finite frequency band, ω0-δω < ω < ω0+δω.  This is useful if the phase 
of interest can be isolated within a practical frequency band. 

2. Integrate over a finite ‘wave number band’, k0-δk < k < k0+δk.  This is possible because 
arrivals at a particular station are only incident over a finite sub-range of all possible 
directions.  The wave vector indicates the direction in which a plane wave travels, so we 
can reduce the range of integration to something finite, since only particular directions 
can physically arrive at a station for a given event. 

The same simplifications are applicable for normal 
modes.  Whereas the preceding simplifications are 
applicable for body waves in the ω-k domain, with 
normal modes we work in the in the ω-l domain 
(recalling that l is the angular order – or basically a 
normal mode wave number).  Figure 4 provides an 
explanatory cartoon of this in the ω-l domain.  The 
frequency band of interest is ∆ω, which of course would 
correspond to waves having only particular frequency 
content.  The waves might only arrive at a particular 
station in certain directions, allowing us to limit the range 
of integration in l as well.  The shaded area therefore 
depicts the actual range over which modes must be 

summed to approximate waves having desired properties.  
Note that c = ω/k (body/surface waves) and c = ω/l 
(normal modes), so straight lines in the ω-l domain still 
correspond to constant wavespeeds. 

And, just as in the ω-k domain, we can identify ‘phases’ 
in the ω-l domain (see Figure 5), which correspond to the 
average wavespeeds of rays interacting with various 
features at depth. 
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Normal Mode Nomenclature 
The wave equation, subject to spherical boundary conditions, gives rise to the so-called spherical 
harmonics: 

harmonicsspherical
BCs

spherical
22 ⎯⎯⎯ →⎯∇= ucu&& . 

For example, the gravitational potential can be expressed in spherical harmonics by: 
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Equation (6) displays a 2l+1 degeneracy.  That is, for each l there exist 2l+1 modes (solutions).  
For example, for l = 0 there is only one mode; for l = 1, there are three modes corresponding to 

0
1A , 1

1A , and 1
1B .  n indicates the number of nodes along the radius of the Earth (also called the 

overtone number), and l is the angular order, which indicates the number of nodal planes on the 
surface (see Figures 6 and 7).   

Spheroidal modes (~P-SV; changes in volume) are denoted by nSl and are sensitive to 
compressional and shear wavespeed as well as density.  Toroidal modes (~SH; rotation or shear; 
no change in volume) are denoted by nTl and are sensitive only to shear wavespeed.  There are 
more spheroidal than toroidal modes. 

 

There are a number of modes that have been given special names.  One such mode is 0S0 (see 
Figure 7, bottom left), which is called the breathing mode because the entire spherical volume 
periodically expands and contracts. Another is 0S2 (see Figure 7, top left), which is called the 
football mode because the extrema of this free oscillation are shaped like an American football 
(also because a European football displays this oscillation when it is kicked).  Two modes that do 

Figure 6
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not exist naturally are the 0S1 and 0T1 modes.  The 0S1 spheroidal mode cannot exist because it 
requires the displacement of the center of gravity, which cannot happen.  The 0T1 toroidal mode 
cannot exist because it requires the entire sphere to ‘twist’ back and forth, which contradicts the 
conservation of angular momentum for a rotating sphere. 

3D examples of several of spherical 
harmonics are provided in Figure 9.  Each 
spherical harmonic or normal mode of the 
Earth can be treated as a basis function.  
Any wave on Earth can be represented as a 
weighted sum of normal modes or 
spherical harmonics, as heuristically 
expressed in (4a).  Therefore, if we take 
the normal mode power spectrum of a 
seismogram (as in Figure 3) we shall see 
spectral peaks corresponding to the 
frequency of these modes.  But, because of 
the 2l+1 degeneracy described above, 
there are multiple modes of free oscillation 
for each l.  Each of these modes should 
oscillate at the same frequency.  However, 
because of the Earth’s rotation, the 2l+1 
modes will not be observed to be 
oscillating at precisely the same frequency.  
Hence, while we should observe a sharp 
spike in the power spectrum for each l 
(this is called a singlet), we often observed 
a broadened or ‘smeared’ spike around the expected frequency of the normal mode (this is called 
a multiplet).  These ideas are illustrated in Figure 8. 

In fact, a multiplet can sometimes become so spread out that the power spectrum for a particular 
mode appears multimodal.  This is aptly termed normal mode splitting.  It is currently 
hypothesized that normal mode splitting is the effect of anisotropy, not rotational frequency 
modulation.    

Figure 7
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Figure 8 
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