

7.88J Protein Folding

Prof. David Gossard October 20, 2003

PDB Acknowledgements

The **Protein Data Bank** (PDB - <u>http://www.pdb.org/</u>) is the single worldwide repository for the processing and distribution of 3-D biological macromolecular structure data.

Berman, H. M., J. Westbrook, Z. Feng, G.Gilliland, T. N.Bhat, H.Weissig, I. N.Shindyalov, and P. E.Bourne. "The Protein Data Bank." *Nucleic Acids Research* 28 (2000): 235-242.

(PDB Advisory Notice on using materials available in the archive: <u>http://www.rcsb.org/pdb/advisory.html</u>)

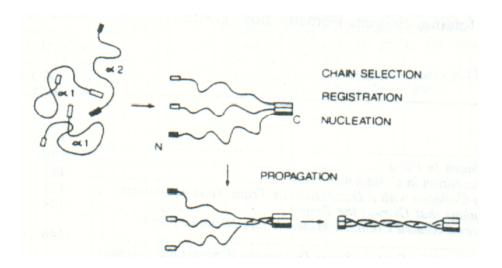
PDB molecules and citations used in the "Collagen" Lecture Notes for 7.88J - Protein Folding

PDB ID: 1CGD

JRNL reference: Bella, J., M. Eaton, B. Brodsky, and H. M. Berman. "Crystal and molecular structure of a collagen-like peptide at 1.9A resolution." *Science* 266 (October 7, 1994):75-8.

Pages: 16-17 ("Solved Structure – 1CGD")

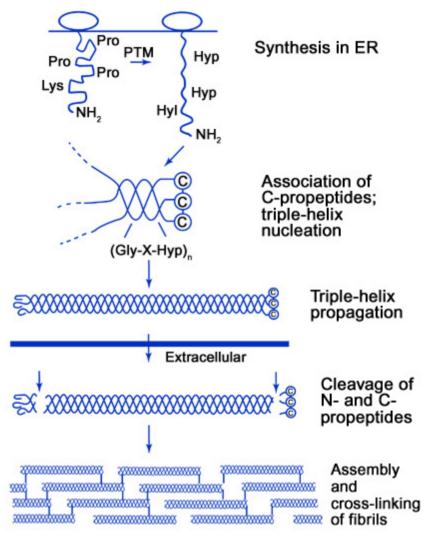
Collagen


✤ ~20% of all proteins in human body are collagen

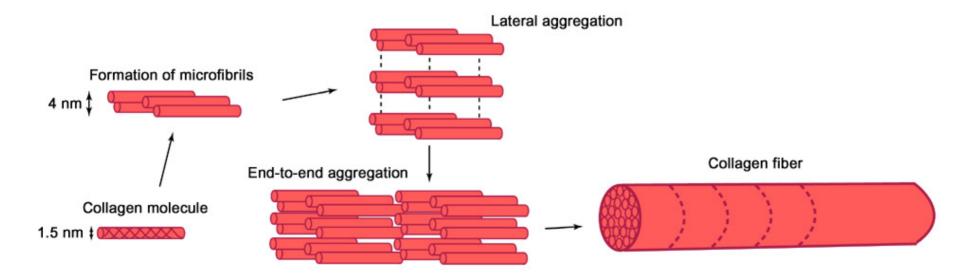
Extracellular matrix protein family

- At least 21 different types of collagen
- Structural protein
 - Bone, tendon, cartilage, cornea, etc.
- Mutations in collagen responsible for
 - Osteogenesis imperfecta
 - Hereditary aortic aneurysm

Pathway

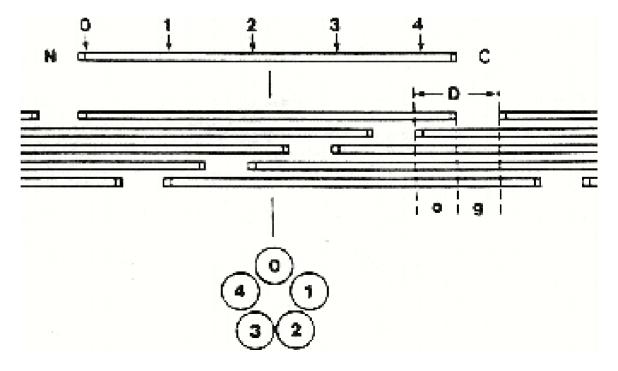

- Synthesized as longer precursors (procollagens) with globular extensions at both ends (propeptides)
- Propeptides form inter-chain disulfide bonds that align the chains prior to triple helix formation

Engel, J., and D. Prockop. "The zipper-like folding of collagen triple helices and the effects of mutations that distrupt the zipper", *Annu. Rev. Biophys. Biphys. Chem* 1991, **20**: 137-52.


Pathway

- Following exocytosis:
 - Propeptides cleaved off by extracellular enzymes
 - Triple-helix molecules polymerize into fibrils 50-200 nm long
 - Fibrils pack into fibers (stronger than steel of same size)
- When denatured, forms gelatin (missing propeptides lead to unordered cross-linking)

Higher-Order Structure


- * Levels: molecule => microfibril => fiber
- "Stagger" of molecules gives rise to "banding" observed in fiber

Packing of Collagen Molecules

S molecules/microfibril

 D/2 offset
 Gaps: locus of mineral deposition

Molecular Structure

Triple helix

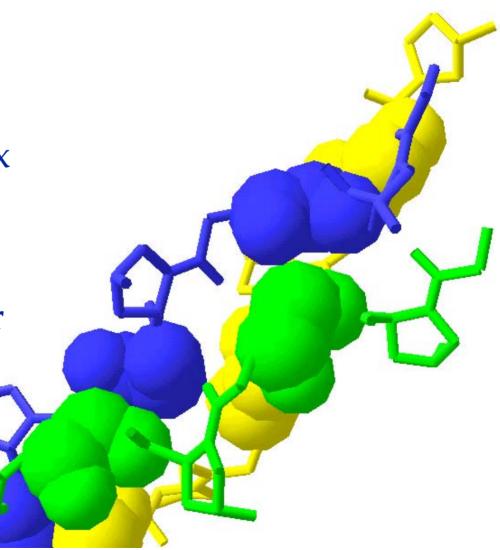
- Rod-like bundle
- Right-handed supercoil: 100A repeat
- Length: 2800 A (~1000 aa)
- Each chain is extended, left-handed helix
 - 3.3 residues per turn (3.6 in α -helix)
 - 2.9 A rise per residue (1.5 in α -helix)
 - 9.6 A rise per turn (5.4 in α -helix)
- Helices do not form in isolation
- Chains are staggered by one residue

Branden and Tooze

Sequence

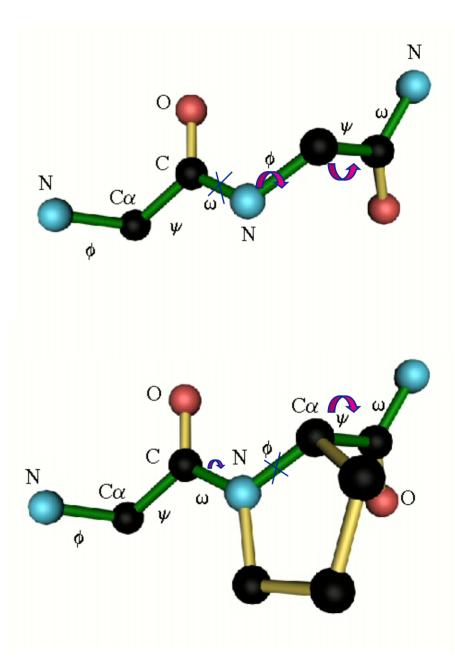
Glycine at every third residue

- $(Gly X Y)_n$
- X often proline (Pro)
- Y often hydroxyproline (Hyp)
 - ◆ In collagen Pro & Hyp constitute about 20% (40% ?) of all residues
- Glycine at center of triple helix
- Pro & Hyp side-chains fully exposed to solvent


The corresponding figure that illustrates these points may be found in:

Introduction to protein structure / Carl Branden, John Tooze. New York : Garland Pub., 1991.

Glycines


On the insideof the triple helix

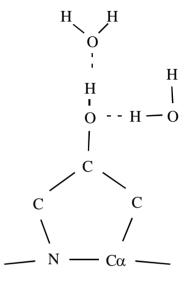
Staggered wrt
 to Gly's on other
 chains

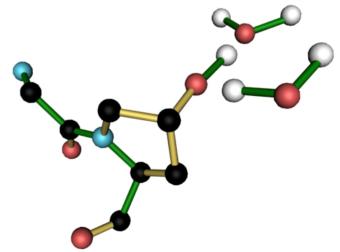
Proline (Pro)

- Increases "stiffness" of chain
 - Eliminates one rotational degree of freedom
 (ψ–angle)
 - Slightly increases another
 (ω-angle)
- Promotes an extended (not globular) conformation

Key Features of Collagen

High content of Hyp residues


Unique interaction with water


Hydroxyproline (Hyp)

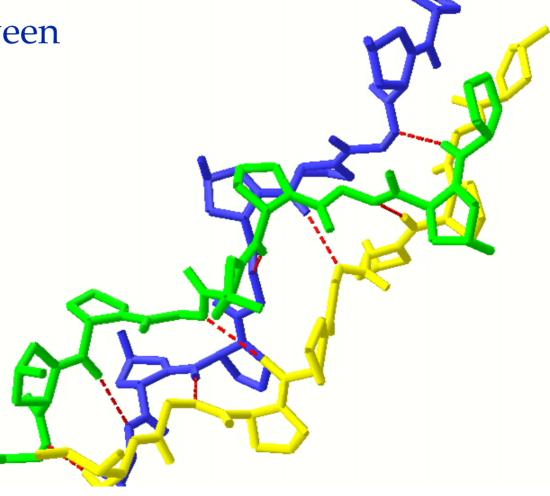
- Produced from Pro by post-translational modification
- ✤ Is unusual,

always found in triple helix domains in animal proteins, rarely in other proteins

- Provides binding sites for water molecules
 - Important to stability

Hydrogen Bonding Pattern

H-bonds between


- Gly N H
- Pro C=O

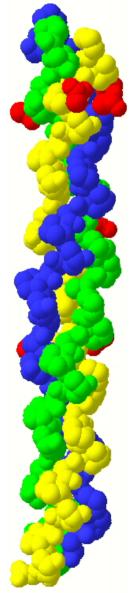
The corresponding figure that illustrates these points may be found in:

Introduction to protein structure / Carl Branden, John Tooze. New York : Garland Pub., 1991.

3D Hydrogen Bonding Pattern

H-bonds between
Gly N - H
Pro C=O

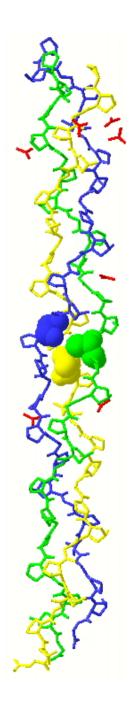
Principles of icosahedral virus structure published by Caspar and Klug, Cold Spring Harbor Laboratory Press, Symp. Quant. Biol. vol 27, 1962.


Solved Structure –1CGD

- Gly -> Ala
 (single aa substitution, all 3 chains)
- Formed crystals instead of fibrils
- ✤ 3 chains triple helix
- ✤ 30 residues (not 1000 !)

✤ Tm: 62 °C -> 29 °C !!!

Bella, J., M. Eaton, B. Brodsky, and H. M. Berman. "Crystal and molecular structure of a collagen-like peptide at 1.9A resolution." *Science* **266** (October 7, 1994) :75-81.


Principles of icosahedral virus structure published by Caspar and Klug, Cold Spring Harbor Laboratory Press, Symp. Quant. Biol. vol 27, 1962.

Solved Structure – 1CGD

	Chain 1				Chain 2				Chain 3		
1	Pro	Нур	Gly	31	Pro	Нур	Gly	61	Pro	Нур	Gly
4	Pro	Нур	Gly	34	Pro	Нур	Gly	64	Pro	Нур	Gly
7	Pro	Нур	Gly	37	Pro	Нур	Gly	67	Pro	Нур	Gly
10	Pro	Нур	Gly	40	Pro	Нур	Gly	70	Pro	Нур	Gly
13	Pro	Нур	Ala	43	Pro	Нур	Ala	73	Pro	Нур	Ala
16	Pro	Нур	Gly	46	Pro	Нур	Gly	76	Pro	Нур	Gly
19	Pro	Нур	Gly	49	Pro	Нур	Gly	79	Pro	Нур	Gly
22	Pro	Нур	Gly	52	Pro	Нур	Gly	82	Pro	Нур	Gly
25	Pro	Нур	Gly	55	Pro	Нур	Gly	85	Pro	Нур	Gly
28	Pro	Нур	Gly	58	Pro	Нур	Gly	88	Pro	Нур	Gly

Principles of icosahedral virus structure published by Caspar and Klug, Cold Spring Harbor Laboratory Press, Symp. Quant. Biol. vol 27, 1962.

Hydrogen Bonding Pattern - 1CGD

- At Gly -> Ala substitution site
 - triple helix "unwinds" slightly
 - H-bonds broken
 - 4 Water molecules establish
 bridges between the groups
 with the broken H-bonds

The corresponding figure that illustrates these points may be found in:

Introduction to protein structure / Carl Branden, John Tooze. New York : Garland Pub., 1991.

Types of Water Bridges

Table 2 may be found on page 896 of:

Bella, J., B. Brodsky, and H. M. Berman. "Hydration structure of a collagen peptide." *Structure* **3** (September 15, 1995): 893-906.

Location of Water Bridges

Figure 2 may be found on page 897 of:

Bella, J., B. Brodsky, and H. M. Berman. "Hydration structure of a collagen peptide." *Structure* **3** (September 15, 1995): 893-906.

Interchain & Intrachain Water Bridges

- ✤ A: interchain,
 - 1 water molecule
- B: interchain,2 water molecules
- C: Intrachain,3 water molecules
- D: Intrachain, network of water

Figures may be found in: Bella, J., M. Eaton, B. Brodsky, and H. M. Berman. "Crystal and molecular structure of a collagen-like peptide at 1.9A resolution." *Science* **266** (October 7, 1994): 75-81.

Water Bridges

Images may be found in:

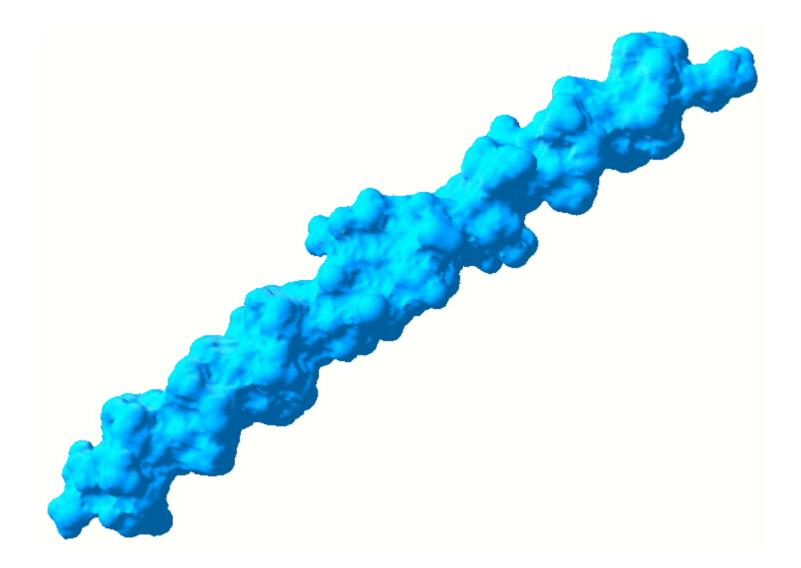
Bella, J., B. Brodsky, and H. M. Berman. "Hydration structure of a collagen peptide." *Structure* **3** (September 15, 1995): 893-906.

Hydration Shell

Image may be found in:

Bella, J., Brodsky, B. and Berman, H.M., "Hydration structure of a collagen peptide", Structure, **3**:893-906, September 15, 1995.

Packing of Triple Helices


✤ Hexameric

- Anti-parallel
- Separation distance Sc
 between axes (14 A)
 too large for direct contact
- Water matrix

Corresponding image may be found in: Bella, J. M. Faton, B. Brodsky, and H. M. Bern

Bella, J., M. Eaton, B. Brodsky, and H. M. Berman. "Crystal and molecular structure of a collagen-like peptide at 1.9A resolution." *Science* **266** (October 7, 1994): 75-81.

Molecular Surface

