Internal degrees of freedom - rotational partition function

Rotational energies & degeneracies

\[\varepsilon_{rot} (J) = J(J+1) \frac{\hbar^2}{8\pi^2 I} = J(J+1) \frac{\hbar^2}{8\pi^2 \mu r_e^2} = J(J+1) h c B_e \]

\[I = \mu r_e^2 \quad \text{moment of inertia} \quad B_e = \frac{\hbar}{8\pi^2 c l} = \frac{\hbar}{8\pi^2 c \mu r_e^2} \quad \text{rotational constant (cm}^{-1}) \]

\[g_{rot} (J) = 2J + 1 \]

Rotational partition function

\[q_{rot} = \sum_{\varepsilon_J} g(\varepsilon_J) e^{-\varepsilon_J/kT} = \sum_{J=0}^{\infty} (2J+1) e^{-h c B_e J(J+1)/kT} \]

High-\(T \) limit \(\varepsilon_{rot} \ll kT \) or \(h c B_e / kT \ll 1 \)

In this case we can consider \(\varepsilon_{rot} \) continuous - classical or high-\(T \) limit

Can do the sum using the Euler-Maclaurin summation formula

\[\sum_{J=m}^{n} f(J) = \int_{m}^{n} f(J)dJ + \frac{1}{2} [f(m) + f(n)] + \text{residue} \]

\[q_{rot} = \int_{0}^{\infty} (2J+1) e^{-h c B_e J(J+1)/kT} dJ + \frac{1}{2} (1+0) + \cdots \]

Do integral by substitution \(\omega = J(J+1) \)

\[d\omega = (2J+1) dJ \]

\[q_{rot} = \int_{0}^{\infty} e^{-h c B_e \omega/kT} d\omega + \frac{1}{2} + \cdots = -\frac{kT}{h c B_e} e^{-h c B_e \omega/kT} \bigg|_{\omega=0} + \frac{1}{2} + \cdots = 0 - \left(-\frac{kT}{h c B_e} \right) + \frac{1}{2} + \cdots \]

\[q_{rot} = \frac{kT}{h c B_e} \quad \text{High-}\ T \text{rotational partition function - almost!} \]

Important correction to \(q_{rot} \):
\[\sigma \equiv \text{symmetry number} \equiv \# \text{ equivalent orientations in space that leave the appearance of the molecule unchanged} \]

\[q_{\text{rot}} = \frac{kT}{\sigma \hbar c B_e} \equiv \frac{T}{\sigma \theta_{\text{rot}}} \]

with \[\theta_{\text{rot}} = \frac{\hbar B_e}{k} \]

Rotational partition function, diatomic molecule, high-\(T \) limit

Note we can rewrite \[\varepsilon_{\text{rot}}(J) = J(J+1)\hbar c B_e = J(J+1)k\theta_{\text{rot}} \]

Recall \[q_{\text{rot}} = \frac{T}{\sigma \theta_{\text{rot}}} + \frac{1}{2} + \cdots \]

\[\text{good approximation to drop } \frac{1}{2} ? \]

<table>
<thead>
<tr>
<th>Molecule</th>
<th>(B_e (\text{cm}^{-1}))</th>
<th>(\sigma)</th>
<th>(\theta_{\text{rot}}) (K)</th>
<th>(q_{\text{rot}}) (300 K)</th>
<th>% error</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl</td>
<td>10.59</td>
<td>1</td>
<td>15.24</td>
<td>19.688 + (\frac{1}{2})</td>
<td>2.5</td>
</tr>
<tr>
<td>CO</td>
<td>1.93</td>
<td>1</td>
<td>2.77</td>
<td>108.30 + (\frac{1}{2})</td>
<td>0.4</td>
</tr>
<tr>
<td>I(_2)</td>
<td>0.037</td>
<td>2</td>
<td>0.1065</td>
<td>1408.5 + (\frac{1}{2})</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Larger molecules have higher moment of inertia \(I \), more closely spaced rotational levels, higher \(q_{\text{rot}}(T) \).

Rotational contributions to thermodynamic functions in high-\(T \) limit

\[q_{\text{rot}} = \frac{T}{\sigma \theta_{\text{rot}}} \quad Q_{\text{rot}} = q_{\text{rot}}^N = \left(\frac{T}{\sigma \theta_{\text{rot}}} \right)^N \]

\[A_{\text{rot}} = -kT \ln Q_{\text{rot}} = -NkT \ln \left(\frac{T}{\sigma \theta_{\text{rot}}} \right) \]

\[E_{\text{rot}} = kT^2 \left(\frac{\partial \ln Q_{\text{rot}}}{\partial T} \right)_{N,V} = NkT^2 \left(\frac{\partial \ln q_{\text{rot}}}{\partial T} \right)_{N,V} \]

\[E_{\text{rot}} = NkT \quad C_{\text{rot}} = \left(\frac{\partial E_{\text{rot}}}{\partial T} \right)_{N,V} = Nk \]

Classical equipartition theorem result!

Two rotational degrees of freedom, \(\frac{1}{2} kT \) energy per degree of freedom

As in the case of translation, we calculated \(q_{\text{rot}} \) quantum mechanically but ended up with a classical result. Why? For most molecules at room \(T \), the rotational
levels are closely spaced compared to kT. Once this limit is reached it doesn’t matter what the molecule is! The rotational energy is the same. Consider molecules A, B, C, and D with different densities of states.

In the sparse limit, in order to establish a Boltzmann distribution of populations in the levels, we just need a few of the N molecules to be in states 1 or 2. Almost all are in state 0. But as soon as any levels are within kT of the lowest level, the population of that level starts to decrease significantly. The partition function q starts to increase significantly. That’s already near the high- T limit.

Origin of σ - nuclear spin statistics

For identical nuclei, total wavefunction ψ_{tot} must be symmetric or antisymmetric with respect to interchange of nuclei.

$$\psi_{\text{tot}}(x) \xrightarrow{\text{exchange}} \pm \psi_{\text{tot}}(-x)$$
\(\psi_{\text{tot}} \) is **symmetric** for nuclei with integral spins (bosons)

\(\psi_{\text{tot}} \) is **antisymmetric** for nuclei with half-integral spins (fermions)

e.g. \(O_2 \) with \(^{16}O \) nuclei - \(I = 0 \) \(\Rightarrow \) bosons

\(H_2 \) with \(^1H \) nuclei - \(I = \frac{1}{2} \) \(\Rightarrow \) fermions

\(D_2 \) with \(^2D \) nuclei - \(I = 1 \) \(\Rightarrow \) bosons

\[
\psi_{\text{tot}} = \psi_{\text{trans}} \psi_{\text{elec}} \psi_{\text{vib}} \psi_{\text{rot}} \psi_{\text{spn}}
\]

look at each part

\(\psi_{\text{trans}} \) - only depends on C.O.M. coordinates, cannot interchange identical nuclei on the same molecule. We've already accounted for interchange of identical nuclei through translation.

\(\psi_{\text{elec}} \) - have to look at MO symmetries.

e.g.

![Diagram of MO symmetries](image)

\(\psi_{\text{vib}} \) - HO wavefunctions are all symmetric w.r.t. interchange of the nuclei. So no don't need to consider \(\psi_{\text{vib}} \).

\(\psi_{\text{rot}} \) - angular momentum wavefunctions are the spherical harmonics \(s, p, d, f, \ldots \)

\[
J = 0, 2, 4, \ldots \text{ even } J \quad \Rightarrow \quad \text{even } \psi_{\text{rot}}(J)
\]

\[
J = 1, 3, 5, \ldots \text{ odd } J \quad \Rightarrow \quad \text{odd } \psi_{\text{rot}}(J)
\]

with respect to particle interchange
\(\psi_{\text{nuc}} \) \text{ example: } ^{16}\text{O}^{16}\text{O} \text{ each nucleus has } I = 0 \Rightarrow \text{ boson} \\
\Rightarrow \psi_{\text{tot}} \text{ must be even} \\

The \(\text{O}_2 \) linear combination spin states also have 0 spin \Rightarrow \text{ all } \psi_{\text{nuc}} \text{ even.} \\

So for \(\text{O}_2 \):

\[
\psi_{\text{tot}} \text{ even} = \psi_{\text{elec odd}} \psi_{\text{rot even}} \psi_{\text{nuc even}} \\
\Rightarrow \psi_{\text{rot even}} \text{ must be odd! Only } J = 1, 3, 5, \ldots \text{ allowed!} \\
\Rightarrow \text{O}_2 \text{ never has zero rotational energy, when in the ground electronic state.} \\

\(\text{O}_2 \):

\[
q_{\text{rot}} = \sum_{J=1,3,5,\ldots} (2J + 1)e^{-J(J+1)\theta_{\text{rot}}/T} \approx \frac{1}{2} \int_0^\infty (2J + 1)e^{-J(J+1)\theta_{\text{rot}}/T} dJ = \frac{T}{2\theta_{\text{rot}}} = \frac{T}{\sigma \theta_{\text{rot}}} \\
\]

Symmetry number \(\sigma = 2 \)

\(\text{O}_2 \) is a simple case, with \(I = 0 \). For \(I > 0 \), need to look at linear combination spin states and their symmetries.

General result for homonuclear diatomics

Degeracies of even and odd nuclear spin states:

\[
g_{\text{even}}(I) = (2I + 1)(I + 1) = \# \text{ even nuclear spin states} \\
g_{\text{odd}}(I) = (2I + 1)I = \# \text{ odd nuclear spin states} \\
\]

e.g. \(^1\text{H}^1\text{H} \) \(I = \frac{1}{2} \) \(I_z = \pm \frac{1}{2} \) \text{ label the two spin states } \alpha, \beta \\

Properly symmetrized spin wavefunctions:

\[
\alpha(1)\alpha(2) \quad \beta(1)\beta(2) \quad \alpha(1)\beta(2) + \alpha(2)\beta(1) \quad \alpha(1)\beta(2) - \alpha(2)\beta(1) \\
\]

\(g_{\text{even}}(1/2) = 3 \quad g_{\text{odd}}(1/2) = 1 \quad \text{as predicted above} \]}
Also can see this from vector addition of the z-components, giving total nuclear spin \(I = 0 \) or 1 and total nuclear spin z-component \(I_z = 0 \) for \(I = 0 \) and \(I_z = -1, 0, \) or +1 for \(I = 1 \).

\[
\begin{align*}
I &= \hbar \sqrt{I(I+1)} = \hbar \sqrt{2} \\
I_z &= \hbar (−1, 0, \text{ or } 1)
\end{align*}
\]

e.g. \(^2\text{H}-^2\text{H} \quad I = 1 \quad I_z = -1, 0, +1 \)

Adding the z-components shows that we could have \(I = 0, 1, \) or 2, and these have 1, 3, and 5 different \(I_z \) states, giving 9 states in all.

\[g_{\text{even}} (1) = 6 \quad g_{\text{odd}} (1) = 3 \quad \text{as predicted above} \]

\(\sigma = \frac{2}{2} \) for all homonuclear diatomics. For any spin state, only half the rotational states are allowed. \(\sigma \) is given by rotational symmetry - how many equivalent configurations can be reached through rotation.

Ortho-para hydrogen example

\(^1\text{H}-^1\text{H} \quad \text{spin } I = \frac{1}{2} \quad \text{fermions} \)

\[\Rightarrow \quad \psi_{\text{tot}} \text{ must be odd w.r.t. } ^1\text{H} \text{ interchange} \]

Electronic ground state \(\psi_{\text{elec}} \) of \(\text{H}_2 \) is even

\[
\psi_{\text{tot}} \text{ odd} = \psi_{\text{elec}} \psi_{\text{rot}} \psi_{\text{nuc}} \text{ even}
\]

so product \(\psi_{\text{rot}} \psi_{\text{nuc}} \) must be odd. We already saw

\[g_{\text{even}} (1/2) = 3 \quad g_{\text{odd}} (1/2) = 1 \]

so our possibilities are
\[\psi_{\text{tot}} = \psi_{\text{elec}} \psi_{\text{rot}} \psi_{\text{nuc}} \]

- para-hydrogen

\[\psi_{\text{tot}} = \psi_{\text{elec}} \psi_{\text{rot}} \psi_{\text{nuc}} \]

- ortho-hydrogen

When \(\psi_{\text{nuc \, ODD}} \) state is occupied, only even \(J \) states allowed.

When any of the 3 \(\psi_{\text{nuc \, EVEN}} \) states are occupied, only odd \(J \) states allowed.

Degeneracy \(g(J_{\text{odd}}) = 3g(J_{\text{even}}) \) since 3x more \(\psi_{\text{nuc \, EVEN}} \) states than \(\psi_{\text{nuc \, ODD}} \).

Sometimes degeneracy written explicitly as \(g(I)g(J) \) or \(g_I(J) \)

\[g(J) = 2J + 1 \text{ and } g(I) = 1 \text{ or } 3. \]

At high \(T \), equilibrium \(\text{H}_2 \) gas is 25%-75% para:ortho.

At \(T = 0 \text{ K} \), at equilibrium, it's all para! - since only para can have \(J = 0 \).

Rotational partition function at low \(T \)

At low or intermediate \(T \), we can't replace the sum with an integral and arrive at our simple results \(q_{\text{rot}} = \frac{T}{\sigma \theta_{\text{rot}}} \), \(E_{\text{rot}} = NkT \), \(C_{\text{rot}} = Nk \).

Then we have to take the terms in the sum one by one.

\[q_{\text{rot}} = \sum_J (2J + 1)e^{-J(J+1)\theta_{\text{rot}}/T} = 1 + 3e^{-2\theta_{\text{rot}}/T} + 5e^{-6\theta_{\text{rot}}/T} + \ldots \]

Usually converges quickly since Boltzmann factors become very small.

\(E_{\text{rot}} \cdot C_{\text{rot}} \) in low- \(T \) limit

\[E_{\text{rot}} = kT^2 \left(\frac{\partial \ln Q_{\text{rot}}}{\partial T} \right)_{N,V} = NkT^2 \left(\frac{\partial \ln q_{\text{rot}}}{\partial T} \right)_{N,V} \]
\[
\ln q_{\text{rot}} = \ln \left(1 + 3e^{-2\theta_{\text{rot}}/T} + 5e^{-6\theta_{\text{rot}}/T} + \cdots \right) \approx \ln \left(1 + 3e^{-2\theta_{\text{rot}}/T} \right)
\]

\[
\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \cdots \quad \text{for} \quad -1 < x \leq 1 \quad \approx x \quad \text{for} \quad |x| \ll 1
\]

\[
\ln q_{\text{rot}} \approx 3e^{-2\theta_{\text{rot}}/T} \quad \text{for low} \quad T \ll \theta_{\text{rot}}
\]

\[
E_{\text{rot}} \approx NkT^2 \left(\frac{\partial \left(3e^{-2\theta_{\text{rot}}/T} \right) }{\partial T} \right)_{N,V} = NkT^2 \frac{6\theta_{\text{rot}}}{T^2} e^{-2\theta_{\text{rot}}/T} = 6Nk\theta_{\text{rot}} e^{-2\theta_{\text{rot}}/T}
\]

\[
C_{v,\text{rot}} = \left(\frac{\partial E_{\text{rot}}}{\partial T} \right)_{N,V} = 6Nk\theta_{\text{rot}} \frac{2\theta_{\text{rot}}}{T^2} e^{-2\theta_{\text{rot}}/T} = \frac{12Nk\theta_{\text{rot}}^2}{T^2} e^{-2\theta_{\text{rot}}/T}
\]

\[E_{\text{rot}}, C_{v,\text{rot}} \text{ both } \rightarrow 0 \text{ as } T \rightarrow 0.\]

In this limit, there’s not enough thermal energy to reach even \(J = 1 \). So there’s essentially no rotational energy. And if some heat is put into the system, it still isn’t enough to reach \(J = 1 \), so the rotational heat capacity is zero also.

\[J = 1 \quad \square \quad J = 0 \quad \uparrow \quad kT\]

\[E_{\text{rot}}, C_{v,\text{rot}} - \text{ full } T \text{ dependence}\]

No simple analytical expressions for intermediate \(T \) regime. Can calculate the results numerically and display them to see when the transitions from low- \(T \) limit to intermediate \(T \) to high- \(T \) limit occur.

To connect to thermodynamics, substitute \(Nk = nR \) in our expressions for \(E_{\text{rot}}, C_{v,\text{rot}} \) and show the results per mole.
Note high-T limit is reached when $\frac{T}{\theta_{rot}} \approx 2$ - not very high! $\frac{\epsilon_{rot}}{k} = J(J+1)\theta_{rot}$, so this is when $kT \approx 2\theta_{rot} = \epsilon_{rot}(J = 1)$, just the first level above $J = 0$!

Levels are not very "continuous" yet - but $J = 0$ state is significantly depleted as soon as $J = 1$ level is within kT. At this point high-T limit is near.