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1 Introduction
Establishing coordination between participants is at the core of many algorithmicchallenges in
distributed computing. A fundamental coordination task, and a basic prerequisite for many appli-
cations, is achieving a common notion of time. Typically every node in the networkhas access to a
local hardware clock, but the hardware clocks of different nodes run at slightly different rates, and
the rates can change over time. In addition, although a bound on the messagedelays in the network
may be known, specific message delays are unpredictable. As a consequence it is generally not
possible for any node in the network to get an accurate estimate of the clock values of neighboring
nodes.

Operating under these uncertainties, a distributed clock synchronization algorithm computes
logical clocks at every node, with the goal of synchronizing these clocks as tightly as possible.
Traditionally, distributed clock synchronization algorithms tried to minimize the maximaldiffer-
ence between any two logical clocks in the network. We call this quantity theglobal skewof a
clock synchronization algorithm. It is well-known that no algorithm can guarantee a global skew
better thanΩ(D), whereD is the diameter of the network [3].

In many cases it is more important to tightly synchronize the logical clocks of nearby nodes in
the network than it is to minimize the global skew. For example, to run a time division multiple ac-
cess (TDMA) protocol for coordinating access to the shared communication medium in a wireless
network, one only needs to synchronize the clocks of nodes that interfere with each other when
transmitting. The problem of achieving synchronization that depends on thedistance between the
two nodes is calledgradient clock synchronization. It was introduced in a seminal paper by Fan
and Lynch, where it is also shown that surprisingly, a clock skew ofΩ(log D/ log log D) cannot be
prevented even between immediate neighbors in the network [8]. The maximal difference between
the two logical clocks of adjacent nodes in the network is called thelocal skewof a clock synchro-
nization algorithm; for static networks, Lenzen et. al. have recently provenan asymptotically tight
bound ofΘ(log D) for the best possible local skew an algorithm can achieve [11, 12]. Forother
related work on clock synchronization, see Section 2.

Most existing work on clock synchronization considers static networks. However, many mod-
ern networks are inherently dynamic. Typically formed by autonomous agents without central
control, nodes can join and leave the network in an arbitrary pattern. In adhoc networks where
often the devices are even assumed to be mobile, the resulting network topology can be highly
dynamic even if the set of participating nodes remains stable. Coordination in dynamic networks
is challenging, and due to the increasing significance of such networks, itis also particularly im-
portant.

In this paper we study the gradient clock synchronization problem in dynamic networks. Be-
cause the distance between nodes in the network can change over time, the problem becomes
significantly harder in a dynamic setting. Consequently, unlike the static case,the requirements we
make on the skew between the logical clocks of different nodes can also change over time. Every
new edge that is formed induces a new and stronger constraint on the skew between its endpoints;
the algorithm must adapt by reducing the skew on the edge until the new constraint is satisfied.
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Hence, we distinguish between two requirements: astable local skewbound applies, conceptually,
to edges that exist for a long time. This is analogous to the local skew guaranteed by gradient clock
synchronization algorithms for static networks. In practice, we impose a weaker dynamic local
skewbound on all the edges, including new ones. The dynamic local skew bound is a function of
how long the edge has existed: the bound starts out weak and grows stronger with time, until in the
limit it converges to the stable local skew bound.

The following intuitive example shows that in general, the clock skew on a newedge cannot be
reduced too quickly without violating the stable local skew bound on edges that were formed a long
time before. Letu andv be two nodes at distancek from each other. As no algorithm can prevent a
skew ofΩ(k) between nodes at distancek, a newly formed edge between nodesu andv can carry
Ω(k) local skew. To reduce the skew on the new edge, whichever node is behind must increase its
logical clock by a large amount. However, a sudden increase inu or v’s clocks will create a large
skew along the edges of the old path that connects them. Specifically, if the algorithm guarantees
a stable local skew ofS, neitheru nor v can instantaneously increase their logical clocks to more
thanS ahead of their next neighbor along the old path. In turn, when this neighbor realizes it must
increase its clock, it cannot increase it to more thanS ahead ofits next neighbor, and so on. It takes
Ω(k/S) time until the skew can be reduced, as information about the new edge can take time to
propagate through the path.

Somewhat surprisingly, the example above is not the worst one possible: adjusting the local
skew on a newly formed edge can require even more thanΩ(k/S) time, wherek is the previous
distance between the endpoints of the new edge. We show that (almost) independent of the initial
skew on a new edge, the time required to reduce the initial skew toS is at leastΩ(n/S) wheren is
the number of nodes in the system. This is shown in Section 4.

In Section 5 we show that this lower bound is asymptotically tight for moderately small values
of S by extending a simple gradient clock synchronization algorithm described in[13] to the dy-
namic case. In a static setting, the algorithm of [13] guarantees a local skewof O(

√
ρD) where

ρ is the maximum hardware clock drift. When modeling a dynamic network, we assume that the
set of nodes remains fixed, but edges can appear and disappear in a completely arbitrary pattern.
If a weak connectivity requirement is satisfied, the algorithm guarantees aglobal skew ofO(n)
at all times. Further, for a parameterS ≥ √ρn and a sufficiently large constantλ, the algorithm
guarantees a local skew of at mostS on all edges that are present for at leastλ ·n/S time. It will be
interesting to see whether techniques used in the recent strong static gradient clock synchronization
algorithms in [11, 12] can be adapted to the dynamic setting, in order to obtain similar results for
smaller values ofS. A first step in this direction was recently made in [9], where we extended the
algorithm from [12] to handle links with different bounds on message delay[6].

2 Related Work
Being a fundamental problem, it is not surprising that there is a rich literatureon clock synchro-
nization algorithms and lower bounds Until recently, the work on clock synchronization focused on
global synchronization, i.e., on minimizing the maximal clock difference betweenany two nodes
in the system. Essentially all lower bounds on distributed clock synchronization use theshifting
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technique introduced in [14], which exploits uncertainty resulting from unknown message delays,
the scaling technique from [5], which uses uncertainty that arises as a consequence of different
clock rates, or a combination of the two techniques. Using the shifting technique, it is shown in
[3] that even if clocks experience no drift, a clock skew ofD/2 can not be avoided in a network of
diameterD. In light of this result, the algorithm described in [18] which guarantees a global skew
of O(D) is asymptotically optimal.

A number of related algorithms and lower bounds for varying models and with different prop-
erties have been described (see e.g. [1, 2, 7, 16, 17]). The algorithmsdescribed in these papers do
not guarantees a skew between neighboring nodes that is better thanO(D). The gradient clock
synchronization problem was introduced in [8], where it is shown that ona path of lengthD, no
clock synchronization algorithm can avoid having a skew ofΩ(log D/ log log D) between adjacent
nodes. This lower bound has recently been improved toΩ(log D) in [12]. The first algorithm to
guarantee a non-trivial local skew was described by Locher and Wattenhofer in [13]. The algorithm
in [13] guarantees a local skew ofO(

√
ρD) between any two neighbors in a network of diameter

D, whereρ denotes the maximal hardware clock drift. The algorithm of [13] forms the basis for the
dynamic gradient clock synchronization algorithm described in this paper.For static networks, the
upper bound was recently improved to an asymptotically optimal bound ofO(log D) by Lenzen
et. al. [11, 12].

Most closely related to the dynamic clock synchronization problem considered in this work
are algorithms that cope with faulty nodes (e.g. [4, 5, 10, 15]). While this lineof work goes far
beyond studying crash failures and describes algorithms that even copewith Byzantine faults, a
topic that is out of the scope of the present paper, none of these papers consider a truly dynamic
setting. In particular, the results rely on the fact that a considerable partof the network remains
non-faulty and stable. Moreover, all the described algorithms and lower bounds focus solely on
global synchronization. To the best of our knowledge, the present paper is the first to look at
gradient clock synchronization in dynamic networks.

3 Preliminaries

3.1 Notation

Given an undirected static graphG = (V, E), we denote byP the set of all (undirected) paths in
G. For convenience in notation we regard each pathP ∈ P as a set of edgesP ⊆ E. We use
P(u, v) to denote all paths between two nodesu, v ∈ V . The distance between two nodesu andv
is defined by

dist(u, v) := min
P∈P(u,v)

|P |.

The definitions above are used only in the context of a static graph. (We use static graphs in the
proof of the lower bound in Section 4). In this work we are often concerned with dynamic graphs,
which do not have a static set of edges. We useV (2) := {{u, v} | u, v ∈ V } to denote the set of
all potentialedges over a static setV of nodes.
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3.2 Network Model

We model a dynamic network over a static setV of nodes using Timed I/O Automata (TIOA).
Each node in the network is modelled as a TIOA, and the environment is also modelled as a
TIOA. The dynamic behavior of the network is modelled using events of the form add({u, v})
andremove({u, v}) for u, v ∈ V , which correspond to the formation and failure (respectively) of
a link betweenu andv. It is assumed that no edge is both added and removed at the same time.

The history of link formations and failures in a particular executionα, together with an initial
set of edgesEα

0 , induces adynamic graphG = (V, Eα), whereEα : R
+ → V (2) is a function that

maps a timet ≥ 0 to the set of edges (links) that exist inα at timet. We defineEα(t) to be the set
of edges that are added no later than timet, and not removed between the last time they are added
and timet (inclusive). This includes edges that appear inEα

0 and are not removed by timet. We
say that an edgee exists throughout the interval[t1, t2] in α if e ∈ Eα(t1) ande is not removed at
any time during the interval[t1, t2].

A static executionis one in which no edges are added or removed. Formally,α is a static
execution if for allt1, t2 ∈ R

+ we haveEα(t1) = Eα(t2).
We consider a very general model, in which edges can be inserted or removed arbitrarily,

subject only to the following connectivity constraint.

Definition 3.1 (T -interval connectivity). We say that a dynamic graphG = (V, Eα) is T -interval
connectedif for all t ≥ 0, the static subgraphG[t,t+T ] = (V, Eα|[t,t+T ]) is connected, where
Eα|[t,t+T ] is the set of all edges that exist throughout the interval[t, t + T ].

In the sequel we omit the superscriptα when it is clear from the context.
We assume that nodes do not necessarily find out immediately about edge insertions and re-

movals1. Instead, we assume that there is a parameterD, such that if an edge appears or disappears
at timet in an execution, and the change is not reversed by timet + D, the endpoints of the edge
find out no later than timet + D. Transient link formations or failures, which do not persist for
D time, may or may not be detected by the nodes affected. We model the discovery by nodeu of
a link formation or failureX ∈ {add({u, v}), remove({u, v}) | v ∈ V } by an eventdiscover(X)
that occurs at nodeu. (A discover(X) event is always preceded by eventX itself.)

We also assume reliable FIFO message delivery, with message delays bounded byT . This is
modelled using events of the formsend(u, v, m) andreceive(u, v, m) that occur at nodeu. If node
u sends a message to nodev at timet, the environment guarantees the following. If edge{u, v}
exists throughout the interval[t, t + T ], then nodev is guaranteed to receive the message no later
than timet+T . If edge{u, v} exists at timet but is removed at some point in the interval[t, t+T ],
there are two possible outcomes: either the message is delivered before theedge is removed, or the
message is not delivered and nodeu discovers the edge removal no later than timet +D. Finally,
if edge{u, v} does not exist at timet, the message is not delivered, and nodeu discovers that the
edge does not exist no later than timet +D. These definitions correspond to an abstract version of
MAC layer acknowledgements.

1Otherwise reference-broadcast-style synchronization would be possible using these events [6].
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In the sequel we assume thatD > T , that is, nodes do not necessarily find out about changes
to the network withinT time units. This is a reasonable assumption because even if nodes transmit
very frequently, as much asT time may pass without any message being received on a link, leaving
the link formation or failure undiscovered.

3.3 The Clock Synchronization Problem

In the clock synchronization problem, each nodeu ∈ V has access to a continuoushardware clock
Hu(t), which may progress at a different rate than real time. The hardware clocks suffer from
bounded driftρ: although they progress at a variable rate, their rate is always between1 − ρ and
1 + ρ the rate of real time, so that for any nodeu and timest1 < t2 we have

(1− ρ)(t2 − t2) ≤ Hu(t2)−Hu(t2) ≤ (1 + ρ)(t2 − t1).

For simplicity we assume that at the beginning of any execution the hardware clock values are all
0.

The goal of a dynamic clock synchronization algorithm (DCSA) is to output alogical clock
Lu(t) such that the logical clocks of different nodes are close to each other.In particular we con-
sider two requirements. Aglobal skew constraintbounds the difference between the logical clocks
of any two nodes in the network at all times in the execution. Adynamic local skew constraint
requires that if an edge exists for sufficiently long, the skew between the two endpoints of the edge
should not be too large. These requirements are formally defined as follows.

Definition 3.2 (Global skew). A DCSA guarantees a
global skew ofḠ(n) if in any execution of the algorithm in a network ofn nodes, for any two nodes
u, v and timet ≥ 0 we have

Lu(t)− Lv(t) ≤ Ḡ(n).

Definition 3.3 (Skew function). A functions : N×R
+×R

+ → R
+ (whereR

+ are the nonnegative
reals) is said to be askew functionif the following conditions hold.

1. The functions(n, I, t) is non-decreasing inI and non-increasing int; and

2. For all n ∈ N, I ∈ R
+, the limit limt→∞ s(n, I, t) is defined and finite; and

3. For all I1, I2 ∈ R
+ we have

lim
t→∞

s(n, I1, t) = lim
t→∞

s(n, I2, t).

Definition 3.4 (Dynamic local skew). A DCSA guarantees adynamic local skewof s : N×R
+ ×

R
+ → R

+, wheres is a skew function, if in every execution of the algorithm in a network overn
nodes, for any edgee = {u, v} and timest1 ≤ t2 such thate exists throughout the interval[t1, t2]
in the execution, we have

|Lu(t2)− Lv(t2)| ≤ s(n, |Lu(t1)− Lv(t1)| , t2 − t1).
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Definition 3.5 (Stabilizing DCSA). A DCSAA is said to bestabilizingif there is a skew function
s such thatA guarantees a dynamic local skew ofs. In this case we say thatA guarantees astable
local skewof s̄(n) = limt→∞ s(n, I, t) for someI ∈ R

+.

Finally, logical clocks have to be strictly increasing and are thus not allowedto temporarily
stop. In particular, we require the rate of each logical clock to be at leasthalf the rate of real time;
that is, for any nodeu and timest1 ≤ t2 we require

Lu(t2)− Lu(t1) ≥
1

2
(t2 − t1).

4 Lower Bound
We begin our analysis of dynamic clock synchronization algorithms with a lowerbound on the
time needed to adjust the local skew an a newly formed edge. The following theorem shows that
for every sufficiently large initial skewI (a large enough constant times the stable local skews̄(n)
suffices), the time needed to reduce the skew by a constant factor isΩ(n/s̄(n)). Thus, there is an
inherent tradeoff between the stable skew guaranteed by the algorithm and the time the algorithm
requires to reduce the skew on new edges.

4.1 Overview

The formal statement of the lower bound is as follows.

Theorem 4.1. LetA be a stabilizing DCSA that guarantees a global skew ofḠ(n) = O(n) and
a dynamic local skew ofs with a stable local skew of̄s(n) = o(n) in networks with diameter
Θ(n). Then there exist constantsλ, ζ ≥ 0 such that for all sufficiently largen and I we have
s(n, I, λ · n

s̄(n)) ≥ ζ · I.

We begin by establishing a lemma that lets us set up a large skew between two nodes, while
maintaining large message delays on some pre-specified links.

In the standard constructions, increasing the skew between nodes is done by adjusting message
delays; in the resulting execution, some links in the network will have zero message delay, and we
do not have control over which links these will be. For our purposes, certain predetermined links
in the networkmusthave large message delays. We accomplish this by “setting aside” these links,
and using only the remaining links to build up skew. The following definitions capture this notion
more formally.

Definition 4.1 (Delay mask). Given a network over a setV of nodes, adelay maskfor N is a pair
M = (EC, P ), whereEC ⊆ V (2) is a set ofconstrained linksandP : EC → [0, T ] is a delay
patternassigning a message delay to every constrained link.

Definition 4.2 (Constrained executions). An execution is said to beM -constrained until timet, for
a delay maskM = (EC, P ), if the delay of messages sent on a linke ∈ EC and received by time
t is in the range[ 1

1+ρP (e), P (e)]. We say that an execution isM -constrainedif for all timest ≥ 0
the execution isM -constrained until timet.
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Definition 4.3 (Flexible distance). Given a delay maskM = (EC, P ), theM -flexible distance
between two nodesu, v ∈ V , denoteddistM (u, v), is defined as the minimum number of uncon-
strained edges on any path betweenu andv.

Lemma 4.2(Masking Lemma). Let N = (V, E) be a static network, and letM = (EC, P ) be a
delay mask forN . For any timet > T · distM (u, v)(1 + 1/ρ), there is anM -constrained static
execution in which

|Lu(t)− Lv(t)| ≥
1

4
T distM (u, v).

Proof. If distM (u, v) = 0 the claim is immediate. Assume therefore thatdistM (u, v) = d > 0.

B Part I: definitions and setup

We partition the graph into layersL0, . . . , LD whereLi = {w ∈ V | distM (u, w) = i} andD =
maxw∈V distM (u, w). In particular,L0 = {u} andv ∈ Ld. We define a total order� on nodes by
x � y iff distM (u, x) ≤ distM (u, y). We writex ≡ y if distM (u, x) = distM (u, y), andx ≺ y if
x � y andx 6≡ y.

Note the following properties of the relations defined above: for any edge{x, y} ∈ E,

1. If {x, y} ∈ EC thenx ≡ y: if {x, y} ∈ EC, then any path fromu to x can be extended to a
path fromu to y that has the same number of unconstrained edges, and vice-versa. It follows
thatdistM (u, x) = distM (u, y).

2. If x ≺ y thendistM (u, x) = distM (u, y)− 1.

We define two executionsα andβ. In α, all hardware clocks progress at the rate of real time,
and message delays on each edgee are defined as follows:

• If e ∈ EC then messages one are delayed byP (e);

• If e = {x, y} ∈ E \ EC wherex ≺ y, then messages fromx to y are delayed byT and
messages fromy to x are delayed by0.

In β, we slowly increase the skew of the hardware clocks of nodes at different layers, while keeping
the difference small enough that it can be disguised by altering message delays. We begin by
keepingu’s hardware clock rate at1 and letting nodes in layersL1, . . . , LD run at a rate of1 + ρ,
until a skew ofT is built up between the hardware clock ofu and any node inL1. Then we keep
u and allL1-nodes at a rate of1 while nodes in layersL2, . . . , LD run at a rate of1 + ρ until a
skew ofT is built up between nodes inL1 and nodes inL2. At this point the hardware clock skew
betweenu and any node inL2 is 2T . We continue in this manner until we have built up a skew of
d · T betweenu and any node in layerLd, includingv.

More formally, β is constructed as a sequence of segmentsβ0β1 . . . βd−1β∗, whereβ∗ is an

infinite suffix and for all0 ≤ i ≤ d − 1, βi =
[

i
ρT , i+1

ρ T
)

is a finite segment of durationT /ρ.
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(This is the time required to to build a skew ofT between the hardware clocks of nodes in adjacent
layers when one node runs at a rate of1 and the other at1 + ρ.)

At any timet ∈ βi, the hardware clock rate of a nodex ∈ Lj is given by

d

dx
Hβ

x =

{

1 if i ≤ j,

1 + ρ otherwise.

In β∗ all hardware clocks run at a rate of1.
Message delays throughoutβ are adjusted so thatβ is indistinguishable fromα to all nodes. In

particular, iftαs , tβs , tαr andtβr are times such that

1. At time tαs in α nodex sends a message that nodey receives at timetαr , and

2. Hα
x (tαs ) = Hβ

x (tβs ) andHα
y (tαr ) = Hβ

x (tβr ),

then inβ, nodex will send the same message at timetβs and nodey will receive it at timetβr .
From the definition ofβ, at any timet we have

Hβ
x (t) =

{

(1 + ρ)t if t ∈ βi wheredistM (u, x) > i,

t + T · distM (u, x) otherwise

That is,
Hβ

x (t) = t + min {ρt, T · distM (u, x)} . (1)

In α, where all hardware clocks run at a rate of 1,Hα
x (t) = t for all x ∈ V .

B Part II: β is anM -constrained execution

Next we claim thatβ is a legalM -constrained execution, that is, all message delays are in the

range[0, T ], and for alle ∈ EC, message delays one are in the range
[

1
1+ρP (e), P (e)

]

. Consider

a message sent by nodex at timetβs and received by nodey at timetβr . Let tαs , tαr be the send and
receive times (respectively) of the same message in executionα; that is,

Hβ
x (tβs ) = Hα

x (tαs ) = tαs , Hβ
y (tβr ) = Hα

y (tαr ) = tαr .

Using (1) we obtain

tαr − tαs = Hβ
y (tβr )−Hβ

x (tβs ) =

= tβr + min
{

ρtβr , T · distM (u, y)
}

− tβs −min
{

ρtβs , T · distM (u, x)
}

(2)

We divide into cases.
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• ρtβs ≤ T · distM (u, x) andρtβr ≤ T · distM (u, y). In this case (2) implies

tαr − tαs = (1 + ρ)(tβr − tβs )

By the definition ofα we havetαr − tαs ∈ [0, T ], and hencetβr − tβs ∈ [0, T ] as well. In
addition, if{x, y} ∈ EC thentαr − tαs = P (e) (again by definition ofα); in this case we have
tβr − tβs = P (e)/(1 + ρ) ∈ [P (e)/(1 + ρ), P (e)], as required.

• ρtβs > T · distM (u, x) andρtβr > T · distM (u, y). In this case (2) implies

tαr − tαs = tβr − tβs + T (distM (u, y)− distM (u, x))

If {x, y} ∈ EC or x ≡ y, thendistM (u, x) = distM (u, y), andtβr − tβs = tαr − tαs = P (e) ∈
[P (e)/(1 + ρ), P (e)] ⊆ [0, T ], as needed.

Otherwise, eitherx ≺ y anddistM (u, y) − distM (u, x) = 1, or y ≺ x anddistM (u, y) −
distM (u, x) = −1. In the first case we havetβr − tβs = tαr − tαs − T = T − T = 0 (by
definition ofα), and in the second case,tβr − tβs = tαr − tαs + T = 0 + T = T . In both cases
the delays are legal.

• ρtβs > T · distM (u, x) andρtβr ≤ T · distM (u, y). In this case (2) implies

tαr − tαs = tβr − tβs + ρtβr − T · distM (u, x)

Sinceρtβr ≤ T · distM (u, y) andT · distM (u, x) < ρtβs , we can write

(1 + ρ)(tβr − tβs ) < tαr − tαs ≤ tβr − tβs + T (distM (u, y)− distM (u, x))

If {x, y} ∈ EC or x ≡ y, thendistM (u, x) = distM (u, y), and we obtain

(1 + ρ)(tβr − tβs ) < tαr − tαs ≤ tβr − tβs

which is impossible, becausetαr − tαs ≥ 0 andρ ≥ 0.

Otherwise, ifx ≺ y, thendistM (u, y) = distM (u, x) + 1, and we havetαr − tαs = T and

(1 + ρ)(tβr − tβs ) < T ≤ tβr − tβs + T

It follows thattβr − tβs ∈ [0, T /(1 + ρ)) ⊆ [0, T ].

Finally, if y ≺ x, thendistM (u, x) = distM (u, y) + 1, and we havetαr − tαs = 0 and

(1 + ρ)(tβr − tβs ) < 0 ≤ tβr − tβs − T

But this is impossible, because it implies bothtβr − tβs < 0 andtβr − tβs ≥ T .
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• ρtβs ≤ T · distM (u, x) andρtβr > T · distM (u, y). In this case (2) implies

tαr − tαs = tβr − tβs + T · distM (u, y)− ρtβs

This time, we can re-write this to obtain

tβr − tβs + T (distM (u, y)− distM (u, x)) ≤ tαr − tαs < (1 + ρ)(tβr − tβs )

If {x, y} ∈ EC or x ≡ y, then againdistM (u, x) = distM (u, y), and we have

tβr − tβs ≤ tαr − tαs < (1 + ρ)(tβr − tβs )

which implies thattβr − tβs ∈ [P (e)/(1 + ρ), P (e)] ⊆ [0, T ], as required.

If x ≺ y anddistM (u, y) = distM (u, x) + 1, then we have

tβr − tβs + T ≤ T < (1 + ρ)(tβr − tβs )

which is a contradiction.

And finally, if y ≺ x anddistM (u, x) = distM (u, y) + 1, then

tβr − tβs − T ≤ 0 < (1 + ρ)(tβr − tβs )

and it follows thattβr − tβs ∈ (0, T ].

B Part III: the skew between u and v

It remains only to show that in eitherα or β, the skew betweenu andv at timet is large. Since
distM (u, v) = d andt > (T · distM (u, v))(1 + 1/ρ), at timet′ := t− T · distM (u, v) we have

Hβ
v (t′) = t′ + min

{

ρt′, T · distM (u, v)
}

= t′ + T · distM (u, v) =

= Hα
v (t′ + T · distM (u, v)) = Hα

v (t),

while
Hβ

u (t′) = t′ + min
{

ρt′, T · distM (u, u)
}

= t′ = Hα
u (t′).

No node in the network can distinguish betweenα andβ, and consequently,Lα
w(t1) = Lβ

w(t2)

iff Hα
w(t1) = Hβ

w(t2) for all w ∈ V and timest1, t2. In particular,

Lα
u(t′) = Lβ

u(t′) (3)

and
Lα

v (t) = Lβ
v (t′). (4)

Sinceu increases its logical clock at a rate of at least1/2,

Lα
u(t) ≥ Lα

u(t′) +
1

2
(t− t′) = Lβ

u(t′) +
1

2
T · distM (u, v), (5)
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and subtracting (4) from (5) yields

Lα
u(t)− Lα

v (t) ≥ Lβ
u(t′)− Lβ

v (t′) +
1

2
T · distM (u, v). (6)

This implies that either|Lα
u(t)− Lα

v (t)| ≥ 1
4T ·distM (u, v) or

∣

∣

∣
Lβ

u(t)− Lβ
v (t)

∣

∣

∣
≥ 1

4T ·distM (u, v).

That is, in one of the two executions,u andv have at least the required skew. Sinceα is M -
constrained by construction and we showed thatβ is alsoM -constrained, this proves the claim.

Lemma 4.3. LetX = x1, . . . , xn be a sequence of numbers wherex1 ≤ xn and for all1 ≤ i < n,
|xi − xi+1| ≤ d for somed > 0. Then for anyc > d, there is a subsequenceX ′ = xi1 , . . . , xim ⊆
X such that

1. m ≤ xn−x1

c−d + 1, and

2. for all 1 ≤ j ≤ m− 1 we have
∣

∣xij+1
− xij

∣

∣ ∈ [c− d, c].

Proof. We construct a sequencei1, i2, . . . inductively, starting withi1 := 1. Givenij , we define

ij+1 := min
(

{n} ∪
{

` | ij < ` < n andx` − xij ≥ c− d andx` ≤ xn

})

(7)

The sequencei1, i2, . . . is strictly increasing, and eventually it must reachn and stay atn forever.
Let m = max {j | ij < n}. The sequence we return isX ′ = xi1 , . . . , xim .

By construction,x1 = xi1 ≤ xi2 ≤ . . . ≤ xim ≤ xn, and for all1 ≤ i ≤ m − 1 we have
xij+1

− xij ≥ c− d > 0. It remains to prove the following.

1. m ≤ xn−x1

c−d + 1: because

xn − x1 ≥ xim − xi1 =
∑

1≤j≤m−1

(

xij+1
− xij

)

≥ (m− 1) · (c− d).

2. For all1 ≤ j ≤ m − 1 we have
∣

∣xij+1
− xij

∣

∣ ∈ [c − d, c]: sincexij+1
− xij ≥ c − d > 0,

we need only to show thatxij+1
− xij ≤ c. We consider two cases.

I. ij+1 = ij + 1: in this case we already know that|xij+1
− xij | ≤ d. Sincec > d the

claim follows.

II. ij+1 > ij + 1: let ` > ij be the minimal index such thatx` − xij ≥ c − d. By
construction,ij+1 > ij is the minimal index that satisfies bothxij+1

− xij ≥ c− d and
xij+1

≤ xn; hence,ij+1 ≥ `, and if ij+1 > ` thenx` > xn. It follows thatxij+1
≤ x`.

Since` is the minimal index for whichx` − xij ≥ c − d, for index ` − 1 we have
x`−1 − xij < c − d. In addition,x` − x`−1 ≤ d. Together we havexij+1

− xij ≤
x` − xij = x` − x`−1 + x`−1 − xij ≤ d + c− d = c, as required.
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Full Proof of Theorem 4.1.Let δ = T
128 andξ = 1 + T

3s̄(n) , and definek = δ n
s̄(n) . We assume that

n is large enough that the following requirements are satisfied.

• k ≥ 1: sinces̄(n) = o(n), we can choosen large enough so that̄s(n) ≤ δn andk ≥ 1.

• s̄(n) ≥ T : sinces̄(n) = Ω(T · log n) in a network with diameterΩ(n), for sufficiently large
n we havēs(n) ≥ T .

• ξ ∈ (1, 4
3 ]: this follows from the previous requirement.

• n− 2(k + 1) > 0: it is sufficient to requirēs(n) > 4δ, which is implied bys̄(n) ≥ T .

B Part I: setup

Consider the networkN shown in Fig. 1(a), over nodesV = {w0, wn}∪(IA × {A})∪(IB × {B}),
where

IA = {1, . . . , bn/2c − 1} , and

IB = {1, . . . , dn/2e − 1} .

For the sake of convenience we also use〈0, A〉 and〈0, B〉 to refer to nodew0, and〈bn/2c, A〉 and
〈dn/2e, B〉 to refer to nodewn.

Using this notation, the initial set of edges is given by

E = {(〈i, A〉, 〈i + 1, A〉) | i ∈ IA or i + 1 ∈ IA}∪
∪ {(〈i, B〉, 〈i + 1, B〉) | i ∈ IB or i + 1 ∈ IB} .

Let u = 〈dke , A〉 andv = 〈bn/2− kc , A〉. The distance betweenu andv is at leastn/2 −
2(k + 1), and the distance between nodes0 andu and between nodesv andn is at leastk.

We useEblock to denote the set of edges on the shortest path between nodes0 and u and
between nodesv andn (these edges are covered by the double-sided arrows in Fig. 1(a)). Formally,

Eblock = E ∩ {〈i, A〉 | 0 ≤ i ≤ dke or bn/2− kc ≤ i ≤ n}(2)

Let S = ξ · s̄(n). By definition,s̄(n) = limt→∞ s(n, 0, t). In particular, there is someT1 such
that for allt ≥ T1 we haves(n, 0, t) ≤ S.

Let T2 = T1 + k T
1+ρ . Consider a delay maskM = (Eblock, T ). By Lemma 4.2, there is an

M -constrained executionα in which

|Lu(T2)− Lv(T2)| ≥
1

4
T · distM (u, v) ≥ 1

4
T

(n

2
− 2(k + 1)

)

. (8)
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B Part II: the skew between nodes0 and n

We will now show that the large skew betweenu andv implies a large skew between nodes0 and
n. Let S2 = |L0(T2)− Ln(T2)|. We proceed to boundS2 from below.

By choice ofT2 we haves(n, 0, T2) ≤ S. Sinces is non-decreasing in the initial skew, this
implies that the skew on each of the edges between nodes0 andu and between nodesv andn is at
mostS. There are at mostk + 1 edges between each pair, and hence

|L0(T2)− Lu(T2)| ≤ S · (k + 1) = ξs̄(n)(k + 1) (9)

and
|Lv(T2)− Ln(T2)| ≤ S · (k + 1) = ξs̄(n)(k + 1). (10)

Combining with the known skew betweenu andv (Eq. 8) yields

S2 = |L0(T2)− Ln(T2)| ≥ |Lu(T2)− Lv(T2)| − |L0(T2)− Lu(T2)| − |Lv(T2)− Ln(T2)| ≥

≥ 1

8
nT − 1

2
T (k + 1)− 2ξs̄(n)(k + 1) ≥ (ξs̄(n) ≥ T )

≥ 1

8
nT − 3ξs̄(n)(k + 1) ≥ (k ≥ 1, ξ ≤ 4

3 )

≥ 1

8
nT − 8ks̄(n) = (k = δ n

s̄(n) )

=

(

1

8
T − 8δ

)

· n = (δ = T
128 )

=
1

16
nT .

B Part III: adding new edges

We now construct another executionβ, in which new edgesEnew appear at timeT1 = T2−k · T
1+ρ .

Formally, the network in executionβ is defined by

Eβ(t) =

{

Eα(t) t < T1

Eα(t) ∪ Enew t ≥ T1

In β, a discover({u, v}) event occurs at timeT1 + D at every nodeu such that{u, v} ∈ Enew

for somev ∈ V . All message delays on edges inE and all hardware clock rates are the same in
α and inβ. Message delays on edges inEnew in β are chosen arbitrarily. Note that sinceα is
M -constrained,β is M -constrained as well.

The new edgesEnew are chosen between nodes on theB-chain using Lemma 4.3. For any
adjacent nodesx, y on theB-chain we have|Lx(T1) − Ly(T1)| ≤ S. Therefore, by Lemma 4.3,
there is a sequenceX ′ = x1, . . . , xm of B-chain nodes such that

1. For all1 ≤ i ≤ m− 1 we have
∣

∣Lxi
(T1)− Lxi+1

(T1)
∣

∣ ∈ [I − S, I], and
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2. m ≤ |L0(T1)−Ln(T1)|
I−S + 1.

SetEnew = {{xi, xi+1} | 1 ≤ i ≤ m− 1}. Then

|Enew| = m− 1 ≤ |L0(T1)− Ln(T1)|
I − S

≤ Ḡ(n)

I − S
,

where in the last step we used the fact that the global skew is bounded byḠ(n).

B Part IV: indistinguishability of α and β

We show by induction oni that for all0 ≤ i ≤ k, executionsα andβ are indistinguishable up to
time ti := T1 + i · T

1+ρ +D, exclusive, in the eyes of all nodes in the set

Yi = {〈j, A〉 | i ≤ j ≤ bn/2c − i} .

• (Base.) Fori = 0 the claim follows from the fact thatα andβ are identical up to timeT1

(exclusive), and no node finds out about the new edges until timeT1 +D.

• (Step.) Suppose that up to timeti, exclusive, executionsα andβ are indistinguishable in
the eyes of all nodes in the setYi = {〈j, A〉 | i ≤ j ≤ bn/2c − i}. Let u ∈ Yi+1. From the
definition ofYi andYi+1, nodeu and its neighbors are inYi. Thus, at any timet < ti, neither
u nor its neighbors can distinguish betweenα andβ.

Since message delays and the hardware clocks of all nodes are the same inα and in β,
and no nodes inYi experience link formations or failures, the only way a node inYi could
distinguish between executionsα andβ is by receiving a message from a node that previously
could distinguish betweenα andβ. We show that no node inYi+1 can receive a message
from a node that distinguishesα from β until time ti+1 (exclusive).

Consider first messages sent by a nodev ∈ Yi \ Yi+1 and received byu ∈ Yi+1 at some time
tr < ti+1. Let ts be the time at whichv sent the message. Becausei + 1 ≤ k, the edge
{u, v} must be inEblock, and sinceβ is M -constrained this means thatts ≤ tr − T

1+ρ <

ti+1− T
1+ρ = ti. Thus, the message was sent prior to timeti, and nodev could not distinguish

betweenα andβ when it sent the message.

As for messages sent between nodes inYi+1, it is easy to show by induction on the number
of such messages received that neither sender nor recipient can distinguish betweenα andβ.

Sinceu, v ∈ Yk andT2 = T1 + k T
1+ρ < T1 + k T

1+ρ + D, nodesu andv cannot distinguish
betweenα andβ at any timet ≤ T2. It follows thatu andv will have the same logical clocks at
timeT2 in β as they do inα, and the skew between them will beS2.

B Part V: the skew on the new edges at timeT2

At time T2, every edge inEnew carries a skew of no more thans(n, I, T2 − T1), since the initial
skew on every edge was no more thanI ands is non-decreasing in the initial skew. Consequently,
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the total skew between the endpoints at timeT2 satisfiesS2 ≤ |Enew| · s(n, I, T2 − T1). However,
we have shown thatS2 ≥ 1

16nT , and hence

1

16
nT ≤ S2 ≤ |Enew| · s(n, I, T2 − T1) ≤

Ḡ(n)

I − S
· s(n, I, k · T

1 + ρ
).

Rearranging the terms and substitutingk = δ n
s̄(n) andδ = T

128 yields

s(n, I,
T

128(1 + ρ)
· n

s̄(n)
T ) ≥ n

16Ḡ(n)
T (I − S) ≥ n

32Ḡ(n)
T · I.

For the bound to be meaningful we must haven
32Ḡ(n)

T · I > s̄(n), that is,I > 32Ḡ(n)s̄(n)
T n .

w0 wn

k edges u b
k edgesv

skew =Ω(n)

Chain A

Chain B

Message delays∈ [T /(1 + ρ), T ]

(a) Executionα at timeT2.

w0 wn

u bv

Chain A

Chain B

Skew on each new edge∈ [ 1
2
I, I]

(b) Executionβ at timeT1 (new edges shown as dashed
lines)

w0 wn

k edges u b
k edgesv

skew =Ω(n)

Chain A

Chain B

Skew on each new edge≤ s
(

n, I, λ n
s

)

(c) Executionβ at timeT2

Ω(n)

Lu(T1)

Lv(T1)
|

|

L0(T1)

Lw(T1)

≤ ks̄(n) = O(n)

≤ ks̄(n) = O(n)

Ω(n)

(d) The logical clocks ofw0, u, v, wn at timeT2 in execu-
tionsα andβ (assumingLu(T1) ≤ Lv(T1))

Figure 1: Illustrations for the proof of Theorem 4.1

5 A Dynamic Clock Synchronization Algorithm
Next we present a simple DCSA that achieves the tradeoff demonstrated in the previous section.

The algorithm is based on nodes sending each other periodic updates containing their own
logical clock value and their estimate for the maximal logical clock in the network.Updates are
sent to all neighbors every∆H subjective time units; that is, if nodeu sends an update to all its
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neighbors at real timet, the next time it will send an update is real timet′ such thatHu(t′) =
Hu(t) + ∆H. Since the hardware clock ofu progresses at a rate of at least1− ρ, updates are sent
at least once every∆H

1−ρ real time units.
Define

∆T := T +
∆H

1− ρ
, ∆T ′ := (1 + ρ)∆T .

Since every node sends messages to all its neighbors at least once every ∆H
1−ρ time units, and mes-

sages take at mostT time units to arrive,∆T is the longest amount of real time that may pass
between the receipt of two messages along an edge, provided the edge exists throughout the inter-
val. Since nodes do not have access to real time, they use∆T ′ to conservatively estimate the time
they have to wait between receiving two messages from a neighbor. If∆T ′ subjective time has
passed and a message was not received, the link to that neighbor must have failed.

The algorithm we present here is event-based: nodes react to messages they receive and to
discover(X) events, whereX ∈ {add({u, v}), remove({u, v}) | v ∈ V }. In addition, each node
can set a timer to trigger a delayed event by callingset timer(∆t, timer-ID). If set timer(∆t, timer-ID)
is called byu at real timet, then at real timet′ such thatHu(t′) = Hu(t)+∆t, analarm(timer-ID)
event is triggered at nodeu. A delayed event can be cancelled using the functioncancel(timer-ID).

The algorithm uses two types of timers: thetick timer is set to go off every subjective∆H time,
and alost(v) timer is set to go off∆T ′ subjective time units after a message fromv is received.

Throughout the run of the algorithm each nodeu maintains two setsΓu, Υu such thatΓu ⊆ Υu.
The setΥu contains all the nodesv such thatu believes the edge{u, v} exists; that is, all the
nodesv such that adiscover(add({u, v})) event occurred atu and was not yet followed by a
discover(remove({u, v})) event. The criterion for membership inΓu is more restrictive: the nodes
in Γu are those nodes ofΥu thatu has heard from at most∆T ′ subjective time units ago. If∆T ′
subjective time units pass andu does not receive a message fromv, thenv is removed fromΓu (but
not fromΥu). The nodes inΓu are the only ones used to determineu’s logical clock value, since
they are the ones for whichu has an accurate estimate. However,u sends (or tries to send) periodic
updates to all nodes inΥu.

In addition toΓu andΥu, nodeu maintains the following local variables.
Lu Nodeu’s logical clock
Lmax

u Nodeu’s estimate for the maximal logical clock in the network
Cv

u for v ∈ Γu The value of nodeu’s hardware clock whenv was last added toΓu

Lv
u for v ∈ Γu Nodeu’s estimate for nodev’s current logical clock

The local variables are modified upon processing the various events as shown in Algorithm 2. Be-
tween events, the variablesLu, Lmax

u andLv
u for all v ∈ Γu are increased at the rate ofu’s hardware

clock.
Nodeu uses a non-increasing functionB : R

+ → R
+ to determine how much perceived skew

it is willing to tolerate on the edge{u, v} for v ∈ Γu. The parameter to the function is(Hu − Cv
u),

the subjective amount of time that has passed sinceu discovered the edge. For a parameterB0, the
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functionB is given by

B(∆t) := max

{

B0, 5G(n) + (1 + ρ)τ + B0 −
B0

(1 + ρ)τ
∆t

}

,

where

τ :=
1 + ρ

1− ρ
∆T + T +D, B0 > 2(1 + ρ)τ,

and whereG(n) is the bound on the global skew derived in Theorem 6.9. The parameterB0 can be
interpreted as the local skew that the algorithm is trying to maintain on every edge, once the edge
is in the system for a sufficiently long time.

The logical clock of each node is adjusted after every event. In each adjustment, nodeu in-
creasesLu to the largest value that it can, subject to the following constraints: (1)Lu is never
decreased, (2)Lu cannot exceedLmax

u , and (3) the perceived skew on every edge{u, v} such
that v ∈ Γu cannot exceed the value ofB for that edge. That is, for allv ∈ Γu we require
Lu − Lv

u ≤ B (Hu − Cv
u). If the constraints cannot be met (e.g., ifu has a neighbor that is very

far behind), nodeu cannot make a discrete increase to its logical clock. However, the logical clock
continues to increase at the rate ofu’s hardware clock. The update rule is given by

ProcedureAdjustClock

Lu ← max {Lu, min {Lmax
u , minv∈Γu {Lv

u + B(Hu − Cv
u)}}}1

For simplicity, we assume that all nodes know (upper bounds on) the maximum hardware clock
drift ρ, the propagation delayT , as well as the boundD on the time between topology changes
and the nodes discovering these changes. Depending on how edge insertions and deletions are
discovered,D typically is a function ofρ, T , as well as the parameter∆H. Throughout the
remainder of the paper, we assume thatD > max{T , ∆H/(1−ρ)}. We also assume that all nodes
know n, the number of nodes participating in the system. With these assumptions, each nodeu
knows enough to compute the value ofBv

u for everyv ∈ Γu. In particular, all nodes can compute
the boundG(n) on the global skew. Note that the same asymptotic results can be achieved if all
nodes known up to a constant factor. This would allow to generalize the setting and also adapt to
nodes joining and leaving the system as long asn only changes at a constant rate.
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Algorithm 2 : Responses to events that occur at nodeu

whendiscover(add({u, v})) occurs atu1

send(u, v, 〈Lu, Lmax
u 〉)2

Υu ← Υu ∪ {v}3

AdjustClock()4

end5

whendiscover(remove({u, v})) occurs atu6

Γu ← Γu \ {v}7

Υu ← Υu \ {v}8

AdjustClock()9

end10

whenalarm(lost(v)) occurs atu11

Γu ← Γu \ {v}12

AdjustClock()13

end14

when receive(u, v, 〈Lv, L
max
v 〉) occurs atu15

cancel(lost(v))16

if v 6∈ Γu then17

Γu ← Γu ∪ {v}18

Cv
u ← Hu19

Lv
u ← Lv20

Lmax
u ← max {Lmax

u , Lmax
v }21

AdjustClock()22

set timer(∆T ′, lost(v))23

end24

whenalarm(tick) occurs atu25

forall v ∈ Υu do26

send(u, v, 〈Lu, Lmax
u 〉)27

AdjustClock()28

set timer(∆H, tick)29

end30
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6 Analysis of the Algorithm

6.1 Basic properties

To analyze the algorithm it is important to understand what conditions prevent nodes from making
discrete changes to their logical clocks. The following definitions and lemmas characterize these
conditions and describe basic properties of the algorithm.
Let

Bv
u(t) := B(Hu(t)− Cv

u(t))

be the amount of perceived skew nodeu is willing to tolerate on the edge{u, v} at real timet.

Definition 6.1 (Blocked nodes). We say that a nodeu is blocked by nodev at timet if Lmax
u (t) >

Lu(t) andv ∈ Γu(t) andLu(t)−Lv
u(t) > Bv

u(t). In this case we also say that nodev blocks node
u at timet and that nodeu is blocked at timet.

Property 6.1. If v ∈ Γu(t), then by timet nodeu has received at least one message that nodev
sent at timets ≥ t− τ .

Proof. If v ∈ Γu(t) thenu has received a message fromv at some timetr such thatHu(t) −
Hu(tr) ≤ (1 + ρ)∆T , otherwiseu would have removedv from Γu prior to time t. Since the
hardware clock rate ofu is at least1− ρ,

Hu(t)−Hu(tr) ≥ (1− ρ)(t− tr).

Thus,t−tr ≤ 1+ρ
1−ρ∆T . The message was sent at some timets ≥ tr−T ≥ t− 1+ρ

1−ρ∆T −T ≥ t−τ ,
so the property holds.

Property 6.2. If edge{u, v} exists throughout the interval[t1, t2] wheret2 ≥ t1 +D, then for any
timet such thatt1 + ∆T +D ≤ t ≤ t2,

1. u ∈ Γv(t) andv ∈ Γu(t),

2. Nodeu receives at least one message fromv in the interval[t−∆T , t], and

3. Nodev receives at least one message fromu in the interval[t−∆T , t].

Proof. Since the edge{u, v} exists throughout the interval[t1, t2] wheret2 ≥ t1 +D, it is discov-
ered byu andv at timest0u, t0v respectively such thatt0u, t0v ≤ t1 +D.

Upon discovering the edge nodesu and v add each other toΥu and Υv respectively. No
discover(remove(u, v)) event can occur atu or atv between timest0u, t0v (respectively) and timet2,
because the edge exists throughout the interval[t1, t2]. Therefore, for allt ∈ [t1 + D, t2] we have
v ∈ Υu andu ∈ Υv. It follows that nodesu andv send each other updates every subjective∆H
time units at most throughout the interval[t1 + D, t2]. This implies thatu andv send each other
updates every objective∆H

1−ρ time units at most throughout this interval.
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Let t be a time such that[t −∆T , t] ⊆ [t1 + D, t2]. Sincev sendsu a message at least once
every∆H

1−ρ time units throughout the interval[t1+D, t2], there is somets ∈ [t−∆T , t−∆T + ∆H
1−ρ ]

such thatv sendsu a message at timets. The message is received byu at timetr such that

t−∆T ≤ ts ≤ tr ≤ ts + T ≤ t−∆T +
∆H

1− ρ
+ T = t.

Therefore, condition 2 of the lemma is satisfied. Condition 3 is similar.
Condition 1 of the lemma follows from conditions 2 and 3: from lines 6–22 of the algo-

rithm, if u received a message fromv at timetr such thatHu(t) −Hu(tr) ≤ (1 + ρ)∆T and no
discover(remove({u, v})) event occurs during the interval[tr, t], thenv ∈ Γu(t). Let t be a time
such that[t−∆T , t] ⊆ [t1+D, t2]. Condition 2 of the lemma shows that nodeu receives a message
from nodev at some timetr ∈ [t − ∆T , t]. In particular,Hu(t) − Hu(tr) ≤ (1 + ρ)(t − tr) ≤
(1 + ρ)(t − (t −∆T )) = (1 + ρ)∆T . Finally, we know that nodiscover(remove({u, v})) event
occurs during the interval[tr, t], because the edge{u, v} exists throughout the interval[t1, t2] and
[tr, t] ⊆ [t−∆T , t] ⊆ [t1 +D, t2].

Property 6.3 (Max estimates). For all u ∈ V and timest ≥ 0,

Lmax
u (t) ≥ Lu(t).

Proof. The variablesLmax
u andLu are modified in three circumstances: in line 21 of the algorithm,

which is executed whenu receives a message; in procedureAdjustClock(), which is called
after every event; and in between discrete events. It is sufficient to show that all of these preserve
the invariantLmax

u ≥ Lu.
Between processing discrete events,Lmax

u andLu are both increased at the rate ofu’s hardware
clock, and the invariant is preserved. Suppose then thatLmax

u ≥ Lu prior to the execution of line 21
or of procedureAdjustClock(). In line 21 the value ofLmax

u can only be increased, so the
invariant is preserved. InAdjustClock(), nodeu sets

Lu ← max {Lu, min {Lmax
u , . . .}} .

Since we assume thatLmax
u ≥ Lu prior to the execution ofAdjustClock(), both terms in the

max are no greater thanLmax
u . Following the assignment we still haveLu ≤ Lmax

u .

Property 6.4 (Sufficient condition to be blocked). If Lmax
u (t) > Lu(t), then nodeu is blocked at

timet.

Proof. Let t′ ≤ t be the most recent time a discrete event occurs at nodeu up to (and including)
time t.
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Between timet′ and timet nodeu increasesLmax
u andLu at the rate of its hardware clock, and

thereforeLmax
u (t′)−Lu(t′) = Lmax

u (t)−Lu(t). Since we assume thatLmax
u (t) > Lu(t) it follows

thatLmax
u (t′) > Lu(t′).

Nodeu must be blocked following the last event that occurs at timet′, otherwise it would have
setLu(t′)← Lmax

u (t′) in ProcedureAdjustClock()after processing the last event. Thus, there
is some neighborv ∈ Γu(t′) such thatLu(t′)− Lv

u(t′) > Bv
u(t′).

Between timet′ and timet nodev was not removed fromΓu, because nodes are only removed
from Γu following discrete events and no discrete event occurs at nodeu between the last event
that occurs at timet′ and timet. Thus,v ∈ Γu(t). Also, between timest′ and t, the values
Lu andLv

u were both increased at the rate ofu’s hardware clocks, and henceLu(t) − Lv
u(t) =

Lu(t′)− Lv
u(t′) > Bv

u(t′) ≥ Bv
u(t). This shows that nodev blocks nodeu at timet.

Lemma 6.5(Estimate quality). If v ∈ Γu(t) thenLv
u(t) ≥ Lv(t− τ).

Proof. Let ts be the latest time that nodev sends a message〈Lv(ts), L
max
v (ts)〉 which is received

by u at some timetr ≤ t. Upon receiving the message nodeu setsLv
u ← Lv(ts) (line 20).

Since messages are delivered in FIFO fashion, nodeu does not receive another message from
v during the interval(tr, t]; during this intervalLv

u is increased at the rate ofu’s hardware clock,
and in particular,Lv

u is not decreased. Finally, from Property 6.1 we havets ≥ t− τ , and therefore

Lv
u(t) ≥ Lv

u(tr) ≥ Lv(ts) ≥ Lv(t− τ).

Each nodeu decides whether or not to increase its clock based on its estimates of its neighbors’
clocks, aiming to keep the skew on edge{u, v} no greater thanBv

u. Since the estimate may be
larger than the real value of the neighbor’s clock, nodeu may overshoot the mark, but the following
lemma shows that it does not overshoot it by much.

Lemma 6.6. If u’s logical clock made a discrete jump at timet, then immediately following the
jump, for allv ∈ Γu(t) we haveLu(t)− Lv(t) ≤ Bv

u(t) + 2ρ · τ .

Proof. If u’s logical clock made a discrete jump at timet, then following the jump in Procedure
AdjustClock()we have

Lu(t) ≤ min
v∈Γu

(Lv
u(t) + Bv

u(t)) . (11)

Let v ∈ Γu. From Property 6.1, there is a timetr ≤ t such that at timetr nodeu receives a
message sent by nodev at timets ≥ t− τ . Let ts be the last timev sent a message thatu received
by time tr ≤ t. The message carriesLv(ts), and following the receipt of the message we have
Lv

u(tr) = Lv(ts). Between timetr and timet, nodeu increasesLv
u at the rate of its own hardware

clock, and hence

Lv
u(t) ≤ Lv

u(tr) + (t− tr)(1 + ρ) ≤ Lv(ts) + (t− ts)(1 + ρ). (12)
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Also, nodev increases its logical clock at a rate of at least(1− ρ), and consequently,

Lv(ts) ≤ Lv(t)− (t− ts)(1− ρ). (13)

Combining (12) and (13) yields

Lv
u(t) ≤ Lv(t) + 2ρ(t− ts) ≤ Lv(t) + 2ρτ, (14)

and from (14) and (11) we obtain

Lu(t)− Lv(t) ≤ Lu(t)− Lv
u(t) + 2ρτ ≤ Bv

u(t) + 2ρτ.

6.2 Global Skew

The basic strategy to bound the global skew of our dynamic clock synchronization algorithm is the
same as the one used in a static network (see [13]). We first show that forany two nodesu and
v, the estimatesLmax

u (t) andLmax
v (t) of the maximum clock value in the system are not too far

apart. Second, we show that if the global skew exceeds a certain value at time t, the nodev with
the smallest logical clock valueLv(t) cannot be blocked at timet. By Lemma 6.4, we then have
Lv(t) = Lmax

v (t) and thus the bound on the maximal difference between two estimatesLmax
u (t)

andLmax
v (t) also yields a bound on the global skew.

For anyt ≥ 0, define
Lmax(t) := max

u∈V
Lmax

u (t). (15)

Property 6.7 (Rate ofLmax). The value ofLmax increases at a rate at most1 + ρ. That is, for all
t2 ≥ t1 ≥ 0 we have

Lmax(t2)− Lmax(t1) ≤ (1 + ρ)(t2 − t1)

Proof. First observe that no discrete change toLmax
u made by a nodeu changes the value ofLmax:

nodes only make discrete changes toLmax
u in line 21 of the algorithm, following receipt of a

message from some neighbor. Suppose that at timetr nodeu receives a message that was sent by
nodev at timets ≤ tr. In line 21, nodeu setsLmax

u ← max {Lmax
u , Lmax

v (ts)}; this assignment
can neither increaseLmax nor decrease it, and hence it remains unchanged. (Note thatv never
decreasesLmax

v , so the value ofLmax prior to the assignment is at leastLmax
v (ts).)

The proof of the claim is by induction on the total number of times line 21 is executed by all
nodes in the network. (We also refer to each execution of line 21 as “a discrete change”.) Suppose
first that during the interval[t1, t2] no node ever executes line 21, butLmax(t2) − Lmax(t1) >
(1 + ρ)(t2 − t1). Let u be a node such thatLmax

u (t2) = Lmax(t2). Throughout the interval[t1, t2],
the value ofLmax

u is increased atu’s hardware clock rate, and thereforeLmax
u (t1) ≥ Lmax

u (t2) −
(1 + ρ)(t2 − t1) = Lmax(t2) − (1 + ρ)(t2 − t1) > Lmax(t1). This contradicts the definition of
Lmax(t1).
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Now suppose that the claim holds when at mostk discrete changes to localLmax variables are
made, and consider an interval[t1, t2] during whichk + 1 discrete changes occur. Lett ∈ [t1, t2]
be the last time a discrete change occurs, and letu be a node such thatLmax

t (t2) = Lmax(t2).
Since discrete changes do not affect the value ofLmax, we can apply the induction hypothesis to
obtainLmax(t) − Lmax(t1) ≤ (1 + ρ)(t − t1). In addition, sinceu makes no discrete change
to Lmax

u during the interval(t, t2], it holds thatLmax(t2) − Lmax
u (t) = Lmax

u (t2) − Lmax
u (t) ≤

(1+ρ)(t2− t). Finally, by definition,Lmax(t) ≥ Lmax
u (t). Combining the three inequalities yields

Lmax(t2)− Lmax(t1) ≤ (1 + ρ)(t2 − t1).

The accuracy of the estimatesLmax
u (t) can be bounded by applying the interval connectivity

property of the dynamic network graph. This is stated by the following lemma.

Lemma 6.8(Max Propagation Lemma). If the dynamic graphG(t) is (T +D)-interval connected,
then for allt ≥ 0 and allu ∈ V it holds that

Lmax(t)− Lmax
u (t) ≤ ((1 + ρ) · T + 2ρ · D) · (n− 1).

Proof Sketch.Let v be a node for whichLmax
v (t− (n−1)(T +D)) = Lmax(t− (n−1)(T +D)).

We want to show thatv’s estimateLmax
v at time t − (n − 1)(T + D) or a larger estimate has

reached every nodeu by timet. On the way fromv to u, the estimate is increased at at the rate of
some hardware clock whenever it is not in transit between two nodes. Because the total transit time
between nodes is at most(n − 1)T , the estimate has been increased by at least(n − 1)(1 − ρ)D
by timet.

The estimate can reach every node within time(n− 1)(T +D) for the following reason. The
(T + D)-interval connectivity implies that throughout every interval of lengthT + D, there is
an edge over every cut in the network. In particular, there always is such an edge over the cut
separating all nodes that have already received the estimate from all other nodes. Because this edge
is discovered withinD time units and because transmitting a message over the edge takes at most
T time, the number of nodes that have received the estimate grows by at least1 after everyD + T
time units.

Full Proof. All hardware clocks and max-estimates are initialized to 0 at time 0, and henceLmax(0)−
Lmax

u (0) = 0. The max clockLmax increases at a rate of no more than1 + ρ, and the max-
estimateLmax

u (t) of any nodeu increases at a rate of at least1 − ρ. Consequently, the difference
Lmax(t) − Lmax

u (t) grows at a rate of no more than(1 + ρ) − (1 − ρ) = 2ρ, and becauseρ < 1,
the claim holds at least until time

t =
(1 + ρ)T + 2ρ · D

2ρ
· (n− 1) > (T +D) · (n− 1).

Thus, it is sufficient to consider timest such thatt > (T +D) · (n− 1).
For i ∈ {1, . . . , n}, define

ti := t− (n− i)(T +D)
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and
Vi := {v ∈ V | Lmax

v (ti) ≥ Lmax(t1) + (i− 1)(1− ρ)D} .

We prove by induction oni that for alli ∈ {1, . . . , n} we have|Vi| ≥ i.

• (Base) By definition,V1 = {v ∈ V | Lmax
v (t1) ≥ Lmax(t1)}. There exists some nodev such

thatLmax
v (t1) = Lmax(t1), and consequently|V1| ≥ 1.

• (Step) Suppose that|Vi−1| ≥ i− 1. By definition, for allv ∈ Vi−1 we have

Lmax
v (ti−1) ≥ Lmax(t1) + (i− 2)(1− ρ)D. (16)

The max estimate of each node increases at least at the rate of its hardwareclock. Conse-
quently, for allv ∈ Vi−1,

Lmax
v (ti) ≥ Lmax

v (ti−1) + (ti − ti−1)(1− ρ) ≥ (From (16))

≥ Lmax(t1) + (i− 2)(1− ρ)D + (ti − ti−1)(1− ρ) ≥
≥ Lmax(t1) + (i− 1)(1− ρ)D,

and henceVi−1 ⊆ Vi.

If V \ Vi−1 = ∅, then|Vi| ≥ |Vi−1| = n and we are done. Otherwise by(T + D)-interval
connectivity ofG(t) there exists an edgee = {v, w}, wherev ∈ Vi−1 andw ∈ V \Vi−1, such
thate exists throughout the interval[ti−1, ti]. By Property 6.2, there are timestsnd ≥ ti−1

andtrcv ≤ ti such that nodev sends nodew a message containingLmax
v (tsnd) at timetsnd,

and nodew receives the message at timetrcv and updates its max estimate. Thus we have

Lmax
w (ti) ≥ Lmax

w (trcv) + (1− ρ)(ti − trcv) ≥
≥ Lmax

v (tsnd) + (1− ρ)(ti − trcv) ≥
≥ Lmax

v (ti−1) + (1− ρ)(ti − trcv) + (1− ρ)(tsnd − ti−1) ≥
≥ Lmax

v (ti−1) + (1− ρ)(ti − ti−1 − T ) =

= Lmax
v (ti−1) + (1− ρ)D ≥ (From (16))

≥ Lmax(t1) + (i− 1)(1− ρ)D.

It follows thatw ∈ Vi. Sincew 6∈ Vi−1 andVi−1 ∪{w} ⊆ Vi we have|Vi| ≥ |Vi−1|+ 1 ≥ i.

The claim we proved implies thatVn = V ; that is, for allv ∈ V , at timetn = t we have

Lmax
v (t) ≥ Lmax(t1) + (n− 1)(1− ρ)D. (17)

From Property 6.7,

Lmax(t) ≤ Lmax(t1) + (1 + ρ)(t− t1) = Lmax(t1) + (1 + ρ)(n− 1)(T +D), (18)

and combining (17) and (18) yields

Lmax(t)− Lmax
v (t) ≤ (n− 1) ((1 + ρ)T + 2ρ · D) .
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Using the approach sketched above, Lemma 6.8 allows us to prove the following theorem,
which bounds the global skew of our algorithm.

Theorem 6.9(Global skew). The algorithm guarantees a global skew of

G(n) := ((1 + ρ) · T + 2ρ · D) · (n− 1).

Proof. We show the stronger statement that at all timest,

∀v ∈ V : Lmax(t)− Lv(t) ≤ G(n)

and the claim then follows from Property 6.3 and the definition ofLmax.
For the sake of contradiction, assume that this is not the case. Then there issome timet, node

v ∈ V andε > 0 such that
Lmax(t)− Lv(t) ≥ G(n) + ε (19)

Let t̄ be the infimum of times when (19) holds for some nodev. By Lemma 6.8, we have
Lmax(t̄) − Lmax

v (t̄) ≤ G(n) and thusLv(t̄) < Lmax
v (t̄). Hence, as a consequence of Lemma

6.4, v is blocked at timēt. Therefore by Definition 6.1, there is a nodeu ∈ Γv(t̄) such that
Lv(t̄) − Lu

v (t̄) > Bu
v (t̄) ≥ B0. By Lemma 6.5, it therefore holds thatLu(t̄ − τ) < Lv(t̄) − B0.

By Property 6.7, we haveLmax(t̄− τ) ≥ Lmax(t̄)− (1 + ρ)τ . We therefore obtain

Lmax(t̄− τ)− Lu(t̄− τ) > Lmax(t̄)− Lv(t̄)− (1 + ρ)τ + B0.

Because we assume thatB0 ≥ (1 + ρ)τ , this is a contradiction to the assumption thatt̄ is the
infimum of times when (19) is satisfied for the first time for some nodev.

6.3 Local Skew

The local skew guarantee of the algorithm hinges on the fact that the constraint imposed by a newly
formed edge is so weak thatnoedge can violate it: for a long time after edge{u, v} is detected, the
value ofBv

u stays greater than the global skewG(n). Since no edge carries a skew that is greater

thanG(n), the requirement is trivially satisfied. In fact, only afterΘ
(

G(n)
B0

)

time can a node be

blocked by a new neighbor, and this is formalized by the following lemma.

Lemma 6.10. If nodev blocks nodeu at timet, thenv ∈ Γu(t′) for all t′ ∈ [t−W, t], where

W :=

(

4
G(n)

B0
+ 1

)

τ.

(Informally, the interval[t −W, t] corresponds to the time required according to Theorem 4.1
for information about the new edge to spread throughout the network.)
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Proof. For nodev to block nodeu at timet, we must have

Lu(t)− Lv
u(t) > Bv

u(t). (20)

Using Lemma 6.5, Property 6.7 and the global skew guarantee (Thm. 6.9), weobtain

Lu(t)− Lv
u(t) ≤ Lmax(t)− Lv(t− τ) ≤ Lmax(t− τ)− Lv(t− τ) + (1 + ρ)τ ≤
≤ G(n) + (1 + ρ)τ.

Substituting the definition ofBv
u yields

Bv
u(t) = max

{

B0, 5G(n) + (1 + ρ)τ + B0 −
B0

(1 + ρ)τ
(Hu(t)− Cv

u(t))

}

<

< Lu(t)− Lv
u(t) ≤ G(n) + (1 + ρ)τ,

and in particular,

5G(n) + (1 + ρ)τ + B0 −
B0

(1 + ρ)τ
(Hu(t)− Cv

u(t)) < G(n) + (1 + ρ)τ.

Rearranging we obtain

Hu(t)− Cv
u(t) >

(

4
G(n)

B0
+ 1

)

(1 + ρ)τ. (21)

Let t1 ≤ t be the most recent time nodeu adds nodev to Γu (lines 17–19). Such a time must
exist, becausev ∈ Γu(t). To prove the lemma it is sufficient to show thatt − t1 ≥ W . Observe
that by choice oft1 we haveCv

u(t) = Hu(t1), and therefore,Hu(t)−Cv
u(t) = Hu(t)−Hu(t1) ≤

(1 + ρ)(t− t1). Using (21) we obtain

t− t1 ≥
Hu(t)− Cv

u(t)

1 + ρ
>

(

4
G(n)

B0
+ 1

)

τ.

Lemma 6.11(Edge reversal). If nodev blocks nodeu at timet then for allt′ ∈ [t−W +∆T , t−D]
we haveLmax

v (t′) ≥ Lmax
u (t′ − τ).

Proof. From Lemma 6.10, ifv blocksu at timet, then for allt′ ∈ [t −W, t] we havev ∈ Γu(t′).
SinceΓu(t′) ⊆ Υu(t′), this implies thatv ∈ Υu throughout the interval. Hence, throughout the
interval[t−W, t], nodeu sends nodev an update every∆H

1−ρ real time units at most.
The model guarantees that if a message sent byu to v at time t′ is not delivered, nodeu

experiences adiscover(remove({u, v})) event no later than timet + D, which leadsu to remove
v from Γu (line 7). Sincev ∈ Γu throughout the interval[t −W, t], all messages sent fromu to
v during the interval[t −W, t − D] are delivered. It follows that during the interval[t −W +
∆T , t − D], nodev receives a message fromu at least once every∆T time units, and hence
throughout the interval we haveu ∈ Γv. Property 6.1 implies thatLmax

v (t′) ≥ Lmax
u (t′ − τ) for all

t′ ∈ [t−W + ∆T , t−D].

26



The local skew guarantee of the algorithm is as follows.

Theorem 6.12.For any two nodesu, v and timet such thatv ∈ Γu(t),

Lu(t)− Lv(t) ≤ Bv
u(t−W ) + 2ρW = Bv

u(t−W ) + 2ρτ

(

4
G(n)

B0
+ 1

)

Proof. Suppose by way of contradiction that at timet there are two nodesu, v ∈ V such that
v ∈ Γu but

Lu(t)− Lv(t) > Bv
u(t−W ) + 2ρW.

SinceBv
u is non-increasing, for allt′ ∈ [t−W, t] we have

Bv
u(t′) ≤ Bv

u(t−W ). (22)

From Lemma 6.6 and Lemma 6.10, at any timet′ ∈ [t−W, t] nodeu’s logical clock cannot jump
to a value that exceedsLv(t

′) + Bv
u(t′) + 2ρτ ≤ Lv(t

′) + Bv
u(t −W ) + 2ρτ . Thus, the excess

skew of2ρW − 2ρτ was built up by increasingu’s logical clock at the rate ofu’s hardware clock,
which is at most1 + ρ, while v’s clock increased at a rate of at least1− ρ. In other words, as long
as the skew is greater thanBv

u(t−W )+ 2ρτ it increases at a rate of at most2ρ, which implies that
u’s clock cannot make a discrete jump throughout the interval[t−W + τ, t].

Let ` = bW−τ
2τ c. For all0 ≤ i ≤ 2`, defineti = t− i · τ . In particular,t1 = t− τ , and

t2` = t− 2`τ ≥ t− 2τ · W − τ

2τ
= t−W + τ.

It follows that for allt′ ∈ [t2`, t],

Lu(t)− Lu(t′) ≤ (1 + ρ)(t− t′), (23)

sinceu cannot make a discrete change to its clock during this interval.
We show that there exists a chain of nodesu1, . . . , u` such that for all1 ≤ i ≤ `,

(C1) Lu(t)− Lui
(ti) > i ·B0, and

(C2) For allt′ ∈ [t2`−i+1, ti] we haveLmax
ui

(t′) ≥ Lu(t′ − iτ), and

(C3) Nodeui is blocked at timeti.

The proof is by induction oni, the length of the chain.

• (Base.) Fori = 1 we chooseu1 = v. We need to show that conditions (C1)–(C3) are
satisfied.

(C1) Sincet1 = t − τ < t and the logical clocks are strictly increasing we haveLu(t) −
Lv(t1) > Lu(t)− Lv(t) > Bv

u(t) > B0.
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(C2) Lett′ ∈ [t2`, t1]. Sincev blocksu at timet and[t2`, t1] ⊆ [t −W + ∆T , t − D], we
can use Lemma 6.11 witht′ to obtain

Lmax
v (t′) ≥ Lu(t′ − τ), (24)

as required.

(C3) From Lemma 6.4, to show thatv is blocked at timet1 it suffices to show thatLmax
v (t1) >

Lv(t1). Applying (24) and (C1) witht′ = t1 = t− τ yields

Lmax
v (t1) ≥ Lu(t1 − τ) ≥

(23)
≥ Lu(t)− 2(1 + ρ)τ > Lv(t1) + B0 − 2(1 + ρ)τ >

> Lv(t1).

• (Step.) Suppose that there is a nodeui such that

(IH1) Lu(t)− Lui
(ti) > i ·B0, and

(IH2) For all t′ ∈ [t2`−i+1, ti] we haveLmax
ui

(t′) ≥ Lu(t′ − iτ).

(IH3) Nodeui is blocked at timeti,

Let ui+1 be a node that blocksui at timeti. We show that conditions (C1)–(C3) are satisfied
for ui+1.

(C1) Sinceui+1 blocksui at timeti,

Lui
(ti)− L

ui+1

ui (ti) > B
ui+1

ui (ti) ≥ B0. (25)

Using Lemma 6.5 we obtain

L
ui+1
ui (ti) ≥ Lui+1

(ti − τ) = Lui+1
(ti+1), (26)

and combining (25), (26) and (IH1) yields

Lu(t)− Lui+1
(ti+1) ≥ Lu(t)− L

ui+1

ui (ti) > Lu(t)− Lui
(ti) + B0 >

IH1
> i ·B0 + B0 = (i + 1)B0.

(C2) Let t′ ∈ [t2`−i, ti+1]. Sincet2`−i = t2`−i+1 + τ and ti+1 = ti − τ , we havet′ −
τ ∈ [t2`−i+1, ti − 2τ ], and we can apply IH2 at timet′ − τ . In addition we have
t′ ∈ [ti −W + ∆T , ti − τ ], and sinceui+1 blocksui at timeti, Lemma 6.11 shows
that

Lmax
ui+1

(t′) ≥ Lmax
ui

(t′ − τ) ≥ (27)

IH2
≥ Lu(t′ − τ − iτ) = Lu(t′ − (i + 1)τ), (28)

as required.
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(C3) It remains to verify that nodeui+1 is blocked at timeti+1. Applying (28) witht′ = ti+1

yields

Lmax
ui+1

(ti+1) ≥ Lu(ti+1 − (i + 1)τ) = Lu(t2(i+1)) ≥
≥ Lu(t)− (1 + ρ)(t− t2(i+1)) = Lu(t)− (1 + ρ)(2i + 1)τ >

> Lui+1
(ti+1) + (i + 1)B0 − (1 + ρ)(2i + 1)τ

≥ Lui+1
(ti+1).

From Lemma 6.4, nodeui+1 is blocked at timeti+1.

This completes the induction.

The claim shows that there is a nodeu` such that

• Nodeu` is blocked at timet`, and

• Lu(t)− Lu`
(t`) > ` ·B0.

Let u`+1 be a node that blocksu` at time t`. As we already showed, it follows thatLu`
(t`) −

Lu`+1
(t`+1) > B0, which implies that

Lu(t)− Lu`+1
(t`+1) > (` + 1)B0. (29)

Sincet`+1 > t2(`+1) we can use (23) to obtain

Lu(t`+1) ≥ Lu(t)− (1 + ρ)(` + 1)τ, (30)

and combining (29) and (30) yields

Lu(t`+1)− Lu`+1
(t`+1) ≥ Lu(t)− Lu`+1

(t`+1)− (1 + ρ)(` + 1)τ >

> (` + 1)B0 − (1 + ρ)(` + 1)τ ≥
≥ (` + 1) (B0 − (1 + ρ)τ) ≥ (B0 ≥ 2(1 + ρ)τ )

≥ (` + 1)
B0

2
≥ W − τ

2τ
· B0

2
≥ 2G(n)

B0
· B0

2
= G(n),

which is a contradiction to the global skew guaranteed by the algorithm.

Theorem 6.12 describes the local skew guarantee from a point of view that is subjective to node
u: the statement of the theorem assumes thatv ∈ Γu, and the value ofBv

u depends on the local
variablesCv

u andHu. The following corollary states the “objective” local skew guarantee of the
algorithm.
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Corollary 6.13. The algorithm guarantees a dynamic local skew of

s(n, I,∆t) = s(n, ∆t) = B (max {(1− ρ)(∆t−∆T − D −W ), 0}) + 2ρW,

regardless of the initial skewI on the edge.

Proof. Let e = {u, v} be an edge that exists throughout an interval[t, t + ∆t]. If ∆t − ∆T −
D −W ≤ 0, thens(n, ∆t) = B(0) + 2ρW > G(n), and all edges carry less thans(n, ∆t) skew.
Suppose then that∆t−∆T − D −W > 0, that is,t + ∆t−W > t + ∆T +D.

Since the edge exists throughout the interval[t, t + ∆t], from Property 6.2, at any timet′ ∈
[t + ∆T + D, t + ∆t] we havev ∈ Γu(t′). Thus, the last timev was added toΓu prior to time
t+∆t is some timet1 ≤ t+∆T +D < t+∆t−W , and from the algorithm,Cv

u(t+∆t−W ) =
Hu(t1) ≤ Hu(t + ∆T +D). SinceB is non-increasing,

Bv
u(t + ∆t−W ) = B (Hu(t + ∆t−W )− Cv

u(t + ∆t−W )) ≤
≤ B (Hu(t + ∆t−W )−Hu(t + ∆T +D)) ≤
≤ B ((1− ρ)(t + ∆t− t−∆T − D −W )) =

= B ((1− ρ)(∆t−∆T − D −W )) .

Now we can use Theorem 6.12 to obtain

Lu(t + ∆t)− Lv(t + ∆t) ≤ Bv
u(t + ∆t−W ) + 2ρW ≤ s(n, ∆t),

and similarly we can show thatLv(t + ∆t) − Lu(t + ∆t) ≤ s(n, ∆t) as well. Together we have
|Lu(t + ∆t)− Lv(t + ∆)| ≤ s(n, ∆t), as required.

Corollary 6.14. If the parameterB0 is chosen asB0 ≥ λ
√

ρn for a constantλ > 0, the stable
local skew of the algorithm isO(B0). Further, the time to reach this stable skew on a new edge
is O(n/B0). Hence, for this choice ofB0, the trade-off achieved by the algorithm asymptotically
matches the trade-off given by the lower bound in Theorem 4.1.

7 Conclusion
We have established fundamental trade-offs for gradient clock synchronization algorithms in dy-
namic networks. First, the time to adjust the skew on a newly formed edge is inversely proportional
to the skew one is willing to tolerate on well-established edges. Hence, having astronger skew re-
quirement in stable conditions impairs the ability to adapt to dynamic changes. Second, contrary
to what one might initially think, reducing the skew on edges with a small initial skewturns out to
be as hard as reducing the skew on edges with a large initial skew. The time needed in both cases
is linear in the global skew bound of the algorithm and is thus at least linear inn.

It will be interesting to see whether the trade-off established by our algorithm can also be
achieved for smaller stable skew bounds. In particular, it will be interestingto see whether the
techniques developed in [11, 12] to guarantee a local skew ofO(log n) in the static case can be
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adapted for the dynamic setting. Note, however, that such an improved local skew bound necessar-
ily comes at the cost of worse adaptability to topology changes.

In this paper we used a weighted-graph approach to deal with the dynamic topology: in the
algorithm of Section 5, each edge carries a weight, which starts out very large when the edge first
appears and decreases over time. We use the dynamic weights to gradually decrease the effective
diameter of the graph, giving nodes time to adapt to the appearance of new edges. In a companion
paper [9] we use a similar approach to incorporate reference broadcast synchronization in the al-
gorithm from [12]. In that case the weight of the edge has the traditional meaning in the context of
clock synchronization: it corresponds to the uncertainty along the edge.It is our hope that extend-
ing the algorithm from [12] to the weighted-graph model will serve as a firststep towards a dynamic
clock synchronization algorithm withO(log n) stable local skew, but this seems challenging.

An additional obvious generalization would be to incorporate node insertions and deletions in
the dynamic graph model. As long as nodes join and leave at a constant rate,it might be possible
to be able to adapt all the parameters used sufficiently quickly in order to still guarantee the same
basic results. The details of such a protocol as well as possible limitations on how fast one can
adapt to changes of the network size are fascinating open questions.
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