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1 Introduction

Establishing coordination between participants is at the core of many algoritralienges in
distributed computing. A fundamental coordination task, and a basic piisitegfor many appli-
cations, is achieving a common notion of time. Typically every node in the netiwaslaccess to a
local hardware clock, but the hardware clocks of different nodesat slightly different rates, and
the rates can change over time. In addition, although a bound on the mdstaggein the network
may be known, specific message delays are unpredictable. As a censeduis generally not
possible for any node in the network to get an accurate estimate of the alhues\of neighboring
nodes.

Operating under these uncertainties, a distributed clock synchronizagjoritan computes
logical clocks at every node, with the goal of synchronizing these slasktightly as possible.
Traditionally, distributed clock synchronization algorithms tried to minimize the maxdifier-
ence between any two logical clocks in the network. We call this quantitgliteal skewof a
clock synchronization algorithm. It is well-known that no algorithm can gasee a global skew
better tharf2( D), whereD is the diameter of the network [3].

In many cases it is more important to tightly synchronize the logical clocksarbgenodes in
the network than it is to minimize the global skew. For example, to run a time divisidtiptalac-
cess (TDMA) protocol for coordinating access to the shared commumicaigalium in a wireless
network, one only needs to synchronize the clocks of nodes that irgexith each other when
transmitting. The problem of achieving synchronization that depends atigtance between the
two nodes is callegiradient clock synchronizationit was introduced in a seminal paper by Fan
and Lynch, where it is also shown that surprisingly, a clock ske@(bdg D/ log log D) cannot be
prevented even between immediate neighbors in the network [8]. The maxffaetitice between
the two logical clocks of adjacent nodes in the network is callediaibed skewof a clock synchro-
nization algorithm; for static networks, Lenzen et. al. have recently pramexsymptotically tight
bound of®(log D) for the best possible local skew an algorithm can achieve [11, 12]otfer
related work on clock synchronization, see Section 2.

Most existing work on clock synchronization considers static networksveder, many mod-
ern networks are inherently dynamic. Typically formed by autonomoustageéthout central
control, nodes can join and leave the network in an arbitrary pattern. hoacdetworks where
often the devices are even assumed to be mobile, the resulting network tppalodpe highly
dynamic even if the set of participating nodes remains stable. Coordinatigmamrdc networks
is challenging, and due to the increasing significance of such netwoiksalgo particularly im-
portant.

In this paper we study the gradient clock synchronization problem inrdimaetworks. Be-
cause the distance between nodes in the network can change over timeghlempbecomes
significantly harder in a dynamic setting. Consequently, unlike the statictbesequirements we
make on the skew between the logical clocks of different nodes canlzsme over time. Every
new edge that is formed induces a new and stronger constraint on thdekeeen its endpoints;
the algorithm must adapt by reducing the skew on the edge until the newaiohss satisfied.



Hence, we distinguish between two requirementstasle local skewound applies, conceptually,
to edges that exist for a long time. This is analogous to the local skew deaddoy gradient clock
synchronization algorithms for static networks. In practice, we impose &ewegnamic local
skewbound on all the edges, including new ones. The dynamic local skewdbisanfunction of
how long the edge has existed: the bound starts out weak and growgestvath time, until in the
limit it converges to the stable local skew bound.

The following intuitive example shows that in general, the clock skew on aealgy® cannot be
reduced too quickly without violating the stable local skew bound on edgewtre formed a long
time before. Let, andv be two nodes at distanégfrom each other. As no algorithm can prevent a
skew ofQ2(k) between nodes at distankea newly formed edge between nodeandv can carry
Q(k) local skew. To reduce the skew on the new edge, whichever nodeiredehst increase its
logical clock by a large amount. However, a sudden increassoinu’s clocks will create a large
skew along the edges of the old path that connects them. Specifically, if hritladg guarantees
a stable local skew af, neitheru nor v can instantaneously increase their logical clocks to more
thanS ahead of their next neighbor along the old path. In turn, when this neighblizes it must
increase its clock, it cannot increase it to more t§aahead ofts next neighbor, and so on. It takes
Q(k/S) time until the skew can be reduced, as information about the new edge eatintekto
propagate through the path.

Somewhat surprisingly, the example above is not the worst one possiljlestiag the local
skew on a newly formed edge can require even more fh@n'S) time, wherek is the previous
distance between the endpoints of the new edge. We show that (almos#gnidéep of the initial
skew on a new edge, the time required to reduce the initial ske&ngat least2(n/S) wheren is
the number of nodes in the system. This is shown in Section 4.

In Section 5 we show that this lower bound is asymptotically tight for moderatedy salues
of S by extending a simple gradient clock synchronization algorithm describgd]rto the dy-
namic case. In a static setting, the algorithm of [13] guarantees a localafké\w/pD) where
p is the maximum hardware clock drift. When modeling a dynamic network, werassat the
set of nodes remains fixed, but edges can appear and disappeampketely arbitrary pattern.
If a weak connectivity requirement is satisfied, the algorithm guarantegsbal skew ofO(n)
at all times. Further, for a parametgr> ,/pn and a sufficiently large constant the algorithm
guarantees a local skew of at mé&son all edges that are present for at least /S time. It will be
interesting to see whether technigues used in the recent strong statiagchati& synchronization
algorithms in [11, 12] can be adapted to the dynamic setting, in order to obtainrsigsldts for
smaller values of. A first step in this direction was recently made in [9], where we extended the
algorithm from [12] to handle links with different bounds on message délay

2 Related Work

Being a fundamental problem, it is not surprising that there is a rich literatuitock synchro-
nization algorithms and lower bounds Until recently, the work on clock syméhation focused on
global synchronization, i.e., on minimizing the maximal clock difference betva@grtwo nodes
in the system. Essentially all lower bounds on distributed clock synchronizasie theshifting



technique introduced in [14], which exploits uncertainty resulting fronnomkn message delays,
the scalingtechnique from [5], which uses uncertainty that arises as a consegjoémlifferent
clock rates, or a combination of the two techniques. Using the shifting tealniigis shown in
[3] that even if clocks experience no drift, a clock skew/df2 can not be avoided in a network of
diameterD. In light of this result, the algorithm described in [18] which guarantedsiaadjskew
of O(D) is asymptotically optimal.

A number of related algorithms and lower bounds for varying models and vfiéneht prop-
erties have been described (see e.g. [1, 2, 7, 16, 17]). The algodisnsbed in these papers do
not guarantees a skew between neighboring nodes that is betteD{ian The gradient clock
synchronization problem was introduced in [8], where it is shown that path of lengthD, no
clock synchronization algorithm can avoid having a skef@bg D/ log log D) between adjacent
nodes. This lower bound has recently been improved(log D) in [12]. The first algorithm to
guarantee a non-trivial local skew was described by Locher and wtaiter in [13]. The algorithm
in [13] guarantees a local skew 6X(/pD) between any two neighbors in a network of diameter
D, wherep denotes the maximal hardware clock drift. The algorithm of [13] forms tisesifar the
dynamic gradient clock synchronization algorithm described in this p&pestatic networks, the
upper bound was recently improved to an asymptotically optimal bourid(lefz D) by Lenzen
et. al. [11, 12].

Most closely related to the dynamic clock synchronization problem coresiderthis work
are algorithms that cope with faulty nodes (e.g. [4, 5, 10, 15]). While thisdingork goes far
beyond studying crash failures and describes algorithms that evennitbpByzantine faults, a
topic that is out of the scope of the present paper, none of thesespap®sider a truly dynamic
setting. In particular, the results rely on the fact that a considerableoptre network remains
non-faulty and stable. Moreover, all the described algorithms and loaands focus solely on
global synchronization. To the best of our knowledge, the presgugrga the first to look at
gradient clock synchronization in dynamic networks.

3 Preliminaries

3.1 Notation

Given an undirected static gragh= (V, E'), we denote byP the set of all (undirected) paths in
G. For convenience in notation we regard each patk P as a set of edgeB C E. We use
P (u,v) to denote all paths between two nodes € V. The distance between two nodeandv
is defined by
dist(u,v) := min |P]|.
PeP(u,v)

The definitions above are used only in the context of a static graph. (8\&atic graphs in the
proof of the lower bound in Section 4). In this work we are often conakwith dynamic graphs,
which do not have a static set of edges. We U$&€ := {{u,v} |u,v € V} to denote the set of
all potentialedges over a static s&tof nodes.



3.2 Network Model

We model a dynamic network over a static $&bf nodes using Timed /O Automata (TIOA).
Each node in the network is modelled as a TIOA, and the environment is alsellptbas a
TIOA. The dynamic behavior of the network is modelled using events of tha &ad({u,v})
andremove({u,v}) for u,v € V, which correspond to the formation and failure (respectively) of
a link between, andv. It is assumed that no edge is both added and removed at the same time.

The history of link formations and failures in a particular executigtogether with an initial
set of edge€’s, induces alynamic graptG = (V, %), whereE® : RT — V@) is a function that
maps a time > 0 to the set of edges (links) that existarat timet. We defineE(t) to be the set
of edges that are added no later than timand not removed between the last time they are added
and timet (inclusive). This includes edges that appeakj and are not removed by time We
say that an edge exists throughout the intervid,, t2] in « if e € E%(¢1) ande is not removed at
any time during the intervat, to].

A static executioris one in which no edges are added or removed. Formalig a static
execution if for allt1, to € RT we haveE“(t1) = E*(t2).

We consider a very general model, in which edges can be inserted owednaobitrarily,
subject only to the following connectivity constraint.

Definition 3.1 (T-interval connectivity) We say that a dynamic grapgh = (V, E¢) is T-interval
connectedf for all ¢ > 0, the static subgraplts; , 7 = (V, E“\[LHT]) is connected, where
E?|, 141 Is the set of all edges that exist throughout the inteftal + 7).

In the sequel we omit the superscriptvhen it is clear from the context.

We assume that nodes do not necessarily find out immediately about edg@omsand re-
movalg. Instead, we assume that there is a paranfetsuch that if an edge appears or disappears
at timet in an execution, and the change is not reversed by timé, the endpoints of the edge
find out no later than time + D. Transient link formations or failures, which do not persist for
D time, may or may not be detected by the nodes affected. We model the disbgveodeu of
a link formation or failureX € {add({u,v}), remove({u,v}) | v € V'} by an eventliscover(X)
that occurs at node. (A discover(X) event is always preceded by eveénttself.)

We also assume reliable FIFO message delivery, with message delaystdayif. This is
modelled using events of the forsand(u, v, m) andreceive(u, v, m) that occur at node. If node
u sends a message to nodat timet, the environment guarantees the following. If edaev}
exists throughout the interv@, ¢ + 77, then node is guaranteed to receive the message no later
than timet+ 7. If edge{u, v} exists at time but is removed at some point in the inter{tal + 7],
there are two possible outcomes: either the message is delivered befedgéhis removed, or the
message is not delivered and naddiscovers the edge removal no later than timeD. Finally,
if edge{u, v} does not exist at timg the message is not delivered, and nadiscovers that the
edge does not exist no later than time D. These definitions correspond to an abstract version of
MAC layer acknowledgements.

lotherwise reference-broadcast-style synchronization would bébp®ssing these events [6].



In the sequel we assume tlHat> 7, that is, nodes do not necessarily find out about changes
to the network withirZ” time units. This is a reasonable assumption because even if nodes transmit
very frequently, as much &stime may pass without any message being received on a link, leaving
the link formation or failure undiscovered.

3.3 The Clock Synchronization Problem

In the clock synchronization problem, each nade V' has access to a continudusrdware clock
H,(t), which may progress at a different rate than real time. The hardwac&scBuffer from
bounded driftp: although they progress at a variable rate, their rate is always betwegnand
1 + p the rate of real time, so that for any nodand times; < t, we have

(1= p)(t2 — t2) < Hu(tz) — Hu(t2) < (1 + p)(t2 — t1).

For simplicity we assume that at the beginning of any execution the hardleatevalues are all
0.

The goal of a dynamic clock synchronization algorithm (DCSA) is to outplogacal clock
L, (t) such that the logical clocks of different nodes are close to each dthparticular we con-
sider two requirements. global skew constrairttounds the difference between the logical clocks
of any two nodes in the network at all times in the executiondyfdamic local skew constraint
requires that if an edge exists for sufficiently long, the skew between therdpoints of the edge
should not be too large. These requirements are formally defined asdollow

Definition 3.2 (Global skew) A DCSA guarantees a
global skew oG (n) if in any execution of the algorithm in a networkrofiodes, for any two nodes
u, v and timet > 0 we have

Ly(t) — Ly(t) < G(n).

Definition 3.3 (Skew function) A functions : Nx R* x RT — RT (whereR™ are the nonnegative
reals) is said to be akew functionif the following conditions hold.

1. The functiors(n, I,t) is non-decreasing id and non-increasing im; and
2. Foralln € N, I € R*, the limitlim;_,, s(n, I,t) is defined and finite; and

3. Forall I, I, € R we have

tlim s(n, I1,t) = tlim s(n, I2,t).

Definition 3.4 (Dynamic local skew) A DCSA guaranteesdynamic local skevof s : N x R* x
RT — R, wheres is a skew function, if in every execution of the algorithm in a network aver
nodes, for any edge = {u, v} and timeg; < ¢, such that exists throughout the intervid; , ¢-]

in the execution, we have

| Lu(t2) = Lo(t2)] < s(n, [Lu(tr) = Lo(t1)] , t2 — 1)



Definition 3.5 (Stabilizing DCSA) A DCSAA is said to bestabilizingif there is a skew function
s such that4 guarantees a dynamic local skewsofin this case we say that guarantees atable
local skewof 5(n) = lim;_, s(n, I,t) for somel € R*.

Finally, logical clocks have to be strictly increasing and are thus not allaweéemporarily
stop. In particular, we require the rate of each logical clock to be at hedisthe rate of real time;
that is, for any node: and timest; < ¢, we require

Lu(tg) — Lu(tl) > (tQ — tl).

N | —

4 Lower Bound

We begin our analysis of dynamic clock synchronization algorithms with a Ib@and on the
time needed to adjust the local skew an a newly formed edge. The followingetheshows that
for every sufficiently large initial skew (a large enough constant times the stable local siewy
suffices), the time needed to reduce the skew by a constant faétn j$(n)). Thus, there is an
inherent tradeoff between the stable skew guaranteed by the algoriththeatime the algorithm
requires to reduce the skew on new edges.

4.1 Overview
The formal statement of the lower bound is as follows.

Theorem 4.1. Let A be a stabilizing DCSA that guarantees a global skew @0f) = O(n) and
a dynamic local skew of with a stable local skew of(n) = o(n) in networks with diameter
©(n). Then there exist constants{ > 0 such that for all sufficiently large. and I we have

s(n,I,)\'TZ))ZC-I.

We begin by establishing a lemma that lets us set up a large skew between t&g) nwhile
maintaining large message delays on some pre-specified links.

In the standard constructions, increasing the skew between node®ibyladjusting message
delays; in the resulting execution, some links in the network will have zeroagestelay, and we
do not have control over which links these will be. For our purposegain predetermined links
in the networkmusthave large message delays. We accomplish this by “setting aside” these links,
and using only the remaining links to build up skew. The following definitionswaghis notion
more formally.

Definition 4.1 (Delay mask) Given a network over a sé&f of nodes, alelay masKor N is a pair
M = (E€, P), whereEC C V(%) is a set ofconstrained linkand P : EC — [0, 7] is adelay
patternassigning a message delay to every constrained link.

Definition 4.2 (Constrained executionsfn execution is said to h&/-constrained until time, for
a delay mask/ = (EC, P), if the delay of messages sent on a link E€ and received by time
tisinthe range{ﬁlpP(e), P(e)]. We say that an execution Ag-constrainedf for all timest > 0
the execution id/-constrained until time.



Definition 4.3 (Flexible distance) Given a delay mask/ = (EC, P), the M-flexible distance
between two nodes, v € V, denotedlist; (u,v), is defined as the minimum number of uncon-
strained edges on any path betweeandwv.

Lemma 4.2(Masking Lemma) Let N = (V, E) be a static network, and Iet/ = (E, P) be a
delay mask fotV. For any timet > 7 - distas(u,v)(1 + 1/p), there is an)M -constrained static
execution in which

Lu(t) — Lo(t)] > deistM(u,v).

Proof. If distas(u,v) = 0 the claim is immediate. Assume therefore that y; (u, v) = d > 0.
> Part |: definitions and setup

We partition the graph into layers, ..., Lp whereL; = {w € V| distps(u,w) =i} andD =
max,ey dist s (u, w). In particular,Ly = {u} andv € L. We define a total order on nodes by
x X yiff distys(u, z) < distps(u,y). We writex = y if distys(u, z) = distps(u, y), andz < y if
x X yandx £ y.

Note the following properties of the relations defined above: for any ¢dge} € E,

1. If {z,y} € EC thenz = y: if {z,y} € E°, then any path from to = can be extended to a
path fromu to y that has the same number of unconstrained edges, and vice-vedcbawsf
thatdist s (u, x) = distas(u, y).

2. If z < y thendist s (u, x) = distas(u, y) — 1.

We define two executions andg. In «, all hardware clocks progress at the rate of real time,
and message delays on each eelgee defined as follows:

e If e € EC then messages anare delayed byP(e);

o If e = {z,y} € E\ E° wherez < y, then messages fromto y are delayed by and
messages from to = are delayed by.

In 3, we slowly increase the skew of the hardware clocks of nodes atatitfeayers, while keeping
the difference small enough that it can be disguised by altering messtyes.d&\Ve begin by
keepingu's hardware clock rate dtand letting nodes in layets,, ..., Lp run at a rate of + p,
until a skew of7 is built up between the hardware clockwfind any node il;. Then we keep
v and all L;-nodes at a rate of while nodes in layerd.s, ..., Lp run at a rate ofl + p until a
skew of7 is built up between nodes ib; and nodes ;. At this point the hardware clock skew
betweenu and any node i, is 27. We continue in this manner until we have built up a skew of
d - T betweenu and any node in layek , includingv.

More formally, 5 is constructed as a sequence of segmgépts . .. B4_10«, wheregs, is an

infinite suffix and foralld < i < d—1, 3; = [%T, %7) is a finite segment of duratiof /p.



(This is the time required to to build a skewbfbetween the hardware clocks of nodes in adjacent
layers when one node runs at a ratd @ind the other at + p.)
At any timet € 3;, the hardware clock rate of a nodec L; is given by

i . (1 i<
dz” " |1+p otherwise

In 3, all hardware clocks run at a rate bf
Message delays throughag@iare adjusted so thatis indistinguishable frona to all nodes. In
particular, ift$, £, e and¢! are times such that

1. Attimet? in o nodez sends a message that nodesceives at time?, and
2. H(t2) = HJ (1)) and HO (1) = HY (1)),

then ing, nodex will send the same message at titﬁand nodey will receive it at timetf.
From the definition of3, at any timet we have

HA(1) = (I+p)t if t € 8; where dist yr(u, z) > i,
Y 4 T - distys(u,z)  otherwise

That is,

Hf(t) =t+min{pt, T - distps(u,x)}. Q)
In o, where all hardware clocks run at a rate ofdl§ (t) = ¢t forall z € V.
> Part ll: 3 is an M-constrained execution

Next we claim that3 is a legalM -constrained execution, that is, all message delays are in the
rangel0, 7], and for alle € E, message delays erare in the rang%ﬁP(e), P(e)}. Consider

a message sent by nodeat timet? and received by nodg at timet?. Let t¢,t¢ be the send and
receive times (respectively) of the same message in executitnat is,

HJ(t]) = HZ(t2) =13, HJ(t]) = Hy(t}) = t;.
Using (1) we obtain
e a _ 15} By —
tr _ts - Hg(tr) - Hf(ts) -
= ¢7 + min {ptf, T- distM(u,y)} —t% — min {ptf,’f . distM(u,x)} 2)

We divide into cases.



o pt? <T. distas (u, x) andpt? < T - distas(u, y). In this case (2) implies
ty —t2 = (1+p)(t) —t])

By the definition ofa we havet® — ¢ < [0,7], and hence? — 2 € [0,7] as well. In

addition, if {z, y} € EC thent® —t> = P(e) (again by definition ofy); in this case we have
t? — 17 = P(e)/(1+ p) € [P(e)/(1 + p), P(e)], as required.
o pt? > T -disty(u, z) andpt? > T - distp(u, ). In this case (2) implies
& — 1@ =8 — 8 4+ T(dist s (u, y) — distas(u, x))

If {z,y} € EC orz =y, thendist (u, z) = dists(u,y), andts —t5 = t&¢—19 = P(e) €
[P(e)/(1+ p), P(e)] C [0,7], as needed.

Otherwise, either: < y anddistas(u,y) — distps(u, z) = 1, ory < x anddist s (u,y) —
distps(u, ) = —1. In the first case we hawd — tJ = -t —T =7 —-T =0 (by
definition of ), and in the second casé,— t; = t&—t¢4+7T =0+7 =T7. Inboth cases
the delays are legal.

° ptf > T - distas(u, x) andptf < T - distps(u,y). In this case (2) implies
t¢ —t& =18 — P 4 ptP — T - distps(u, z)
Sincept? < 7T -distps(u,y) and7 - distys(u, z) < ptf, we can write
(14 p) (2 —15) <& — 12 <18 — 15 + T(dist s (u,y) — distar(u, x))
If {x,y} € EC orz =y, thendist s (u, x) = dist;(u, y), and we obtain
(1+p) (8 —t0) <12 — 12 <tf —1f

which is impossible, becausgg — t& > 0 andp > 0.
Otherwise, ifr < y, thendist s (u, y) = distas(u, ) + 1, and we have® — t& = 7 and

A+p)tf -ty <T <t! 0+ 7T

It follows thatt? — ¢7 € [0,7 /(1 + p)) € [0,7T].
Finally, if y < x, thendist s (u, x) = distas(u, y) + 1, and we haved — t& = 0 and

(Lot —t) <0<t —t]-T

But this is impossible, because it implies bofh— 2 < 0 andt? — 2 > 7.



o pt? <T. distas (u, x) andpt? > T - distas(u, y). In this case (2) implies
& — 1 =t — 8 + T - distyr(u,y) — pt?

This time, we can re-write this to obtain

t9 — 7 + T (distar (u,y) — distar(u, ) <& — 2 < (14 p)(tF —t9)

If {x,y} € EC orz =y, then againlist s (u, z) = distys(u,y), and we have
t] =] <ty — 3 < (L+p)(t) — 1))

which implies that? — ¢ € [P(e)/(1+ p), P(e)] C [0,7], as required.

If z < yanddistys(u,y) = distar(u, z) 4+ 1, then we have
=t} + T <T <(1+p)(t] 1))

which is a contradiction.
And finally, if y < = anddist s (u, ) = distas(u,y) + 1, then

th—tP T <0< (1+p)t?—1t9)
and it follows thatt? — % € (0, 7.

> Part Il the skew between v and v

It remains only to show that in either or 3, the skew between andv at timet is large. Since
distps(u,v) = dandt > (7 - distar(u,v))(1 + 1/p), attimet’ :=t — T - distps(u, v) we have

HP () =t +min{pt', T - distas(u,v)} =t + T - distar(u,v) =
= H}(t' + T - distpr(u,v)) = HS (),

while
HS(t") =t 4 min {pt',T - distar(u,u)} =t' = HS(t').

No node in the network can distinguish betweeand 3, and consequently,$ (1) = Lﬁ(tg)
iff HS(t1) = Hg(tg) forall w € V and timeg, t5. In particular,

Lot = Li(t) 3)

and
L3 (t) = LY(t). (4)

Sinceu increases its logical clock at a rate of at lep&?,
1 1
L(t) > LX) + 5(t —t) =LAt + 57 -dist s (u, v), (5)
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and subtracting (4) from (5) yields
Lo(t) — L) > LB() — LB () + %T - dist s (u, v). (6)
This implies that eithel.2 () — L(t)| > 17 -dist s (u, v) or‘LE(t) — LY(t)| > L7 -distas (u, v).

That is, in one of the two executions,andv have at least the required skew. Sincés M-
constrained by construction and we showed that also)M -constrained, this proves the claim.

d
Lemma4.3.LetX = z4,...,x, be asequence of numbers whefe< x,, and for all1 <i < n,
|z; — xi41] < d for somed > 0. Then for any: > d, there is a subsequenc€ = z;,,...,x;,, C

X such that
1.m< == +1,and

2. foralll <j <m—1wehavez;,, —z;| €[c—dd.

Proof. We construct a sequencg i», . . . inductively, starting withi; := 1. Giveni;, we define
ij41 := min ({n} U {6 |ij < £ <nandxy —z;; > c—dandz, < xn}) @)

The sequence, io, . .. is strictly increasing, and eventually it must reachnd stay at forever.
Letm = max {j | ;; < n}. The sequence we returns = z;,,...,z;,.

By constructionz; = z;, < zj, < ... < x;, < x,, and for alll < i < m — 1 we have
Ti;,, —xi; > ¢—d > 0. [tremains to prove the following.

1. m < #2=71 +1: because

Tp — X1 > Tj, — Tiy = Z (a:iHl —acz-j) >(m—1)-(c—d).
1<j<m—1

2. Foralll < j <m—1wehavelz; , — ;| € [c—d,c]: sincex;,,, —z;, > c—d >0,
we need only to show that;, | — z;; < c. We consider two cases.

l. ij41 = i; + 1. in this case we already know thkact@'].Jr1 — xij\ < d. Sincec > d the
claim follows.

. ij41 > i; + 1: let £ > i; be the minimal index such thaty — z;; > ¢ —d. By
construction;; 1 > i; is the minimal index that satisfies botlng — Ty > c— d and
Tiy < Tp; hencej;1 > ¢, andifi;; > ¢thenz, > x,. It follows thatgcij+1 < zy.
Since/ is the minimal index for whiche, — T, > c— d, for index?/ — 1 we have
re—1 — z;; < ¢ —d. Inaddition,z; — z,_1 < d. Together we have;, , — z;; <
Ty —Ti; =T — Tp1 + -1 — Ti; < d+c—d=c asrequired.
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Full Proof of Theorem 4.1Let§ = Zc and{ = 1 + % and define: = 6 (5. We assume that

n is large enough that the following requirements are satisfied.
e k> 1:sinces(n) = o(n), we can choose large enough so tha{n) < én andk > 1.

e 5(n) > T:sinces(n) = Q(7 -logn) in a network with diamete®2(n), for sufficiently large
n we haves(n) > 7.

o &€ (1, %]: this follows from the previous requirement.
e n—2(k+ 1) > 0:itis sufficient to requires(n) > 44, which is implied bys(n) > 7.

> Part |: setup

Consider the network” shown in Fig. 1(a), over nodés = {wq, w, }U(Ia x {A})U(Ip x {B}),
where

In={1,...,|n/2] -1}, and
Ip=A{1,...,[n/2] — 1}.
For the sake of convenience we also y$ed) and(0, B) to refer to nodev,, and(|n/2], A) and

([n/2], B) to refer to nodew,.
Using this notation, the initial set of edges is given by

E={((i,A),(i+1,A)|ielqori+1els}U
U{((i,B),(i+1,B))|icIgori+1¢eIg}.

Letu = ([k],A) andv = (|n/2 — k|, A). The distance betweenandv is at least:/2 —
2(k + 1), and the distance between nodesndu and between nodesandn is at least.

We useEPo%k to denote the set of edges on the shortest path between fAcatedu and
between nodes andn (these edges are covered by the double-sided arrows in Fig. 1¢analy,

EPok — En{(i,A)|0<i<[k] or [n/2—k|<i<n}?
LetS = ¢ - 5(n). By definition,s(n) = lim; .~ s(n,0,t). In particular, there is sonig such
that for allt > T} we haves(n,0,t) < S.

LetT, = Ti + ki Consider a delay mask/ = (E"°*, 7). By Lemma 4.2, there is an
M-constrained executiom in which

Lu(T2) — Lo(Ty)| > 3T ~distas(w,0) > 17 (5 20k +1)) (8)
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> Part Il: the skew between noded) and n

We will now show that the large skew betweemandv implies a large skew between nodeand
n. LetSy = |Lo(12) — Ly (T2)|. We proceed to boun8, from below.

By choice ofT» we haves(n,0,7,) < S. Sinces is non-decreasing in the initial skew, this
implies that the skew on each of the edges between ribded« and between nodesandn is at
mostS. There are at mogt + 1 edges between each pair, and hence

|Lo(T2) — Lu(T2)| < S+ (k+1) =&3(n)(k + 1) (9)

and
[Ly(T2) = Lyp(T2)| < S - (k+1) = £5(n)(k + 1). (10)

Combining with the known skew betweerandv (Eg. 8) yields

S = |Lo(12) — Ln(T2)| = |Lu(T2) — Ly(T2)| — |Lo(T2) — Lu(T2)| — [Lo(T2) — Ln(T2)| =

> énT _ %T(k 1) = 25m) (k4 1) > €5(n) > T)

> én’]’ —3¢5(n)(k+1) > (k>1,£<3)

> én’f — 8ks(n) = (k= 5?71))

:(éT—S&)-nz (6:%8)
1

= EHT'

> Part 11l adding new edges

We now construct another executignin which new edge&™°V appear attim@y = To — k- ?Tp.
Formally, the network in executiofiis defined by

29 = E°(t) t<T)
| EX(H)UE™ t>Ty

In 3, adiscover({u,v}) event occurs at tim&, + D at every node: such that{u,v} € E™V
for somev € V. All message delays on edgesifihand all hardware clock rates are the same in
«a and inf3. Message delays on edgesAri“Y in 3 are chosen arbitrarily. Note that sinaeis
M-constrainedg is M-constrained as well.

The new edge#/"" are chosen between nodes on fBehain using Lemma 4.3. For any
adjacent nodes, y on the B-chain we haveL,(71) — L,(T1)| < S. Therefore, by Lemma 4.3,
there is a sequenc€’ = xy, ..., x,, of B-chain nodes such that

1. Foralll <i<m—1we have|L,,(T1) — La,.,(T1)| € [I — S, 1], and

13



2. m < o) =La@)] 4 q,
SetEmeY = {{xi,l‘iJrl} ‘ 1<:<m-— 1}. Then

|Lo(T1) = Ln(Ty)] _ G(n)

EPV| =y — 1 <
[B* | =m—1< -3 =7-5

where in the last step we used the fact that the global skew is boundgghby
> Part IV: indistinguishability of « and 3

We show by induction omthat for all0 < i < k, executionsy and are indistinguishable up to
timet; :=T} +1- %p + D, exclusive, in the eyes of all nodes in the set

Yi= {0, AV i < < /2] —i}.

e (Base.) Fori = 0 the claim follows from the fact that and 5 are identical up to tim&?
(exclusive), and no node finds out about the new edges untilfime D.

e (Step.) Suppose that up to timg exclusive, executions and§ are indistinguishable in
the eyes of all nodes in the sBt = {(j, A) | i < j < |n/2] —i}. Letu € Y;41. From the
definition ofY; andY; 1, nodeu and its neighbors are ivi. Thus, at any time < t;, neither
u nor its neighbors can distinguish betweeand.

Since message delays and the hardware clocks of all nodes are the sanamdnin 3,

and no nodes iY; experience link formations or failures, the only way a nod&jircould
distinguish between executionsandg is by receiving a message from a node that previously
could distinguish between and3. We show that no node il;,; can receive a message
from a node that distinguishesfrom 5 until time ¢;,.; (exclusive).

Consider first messages sent by a nodeY; \ Y;;; and received by, € Y., at some time
t, < ti11. Letts be the time at whichy sent the message. Because 1 < k, the edge

{u,v} must be inEP'°%, and since3 is M-constrained this means that < ¢, — % <

tiﬂ—% = t;. Thus, the message was sent prior to timand node could not distinguish
betweeny and when it sent the message.

As for messages sent between nodeg;in, it is easy to show by induction on the number
of such messages received that neither sender nor recipient caguiistibetweem andg.

Sinceu,v € Y, andTy = T} + k% < Ty + k1= + D, nodesu andv cannot distinguish
betweenn and g at any timet < T5. It follows thatu andwv will have the same logical clocks at
time 75 in 3 as they do iny, and the skew between them will 15g.

> Part V: the skew on the new edges at tim&s

At time T5, every edge in™¢V carries a skew of no more thaitn, I, 7> — 77), since the initial
skew on every edge was no more thlaands is non-decreasing in the initial skew. Consequently,
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the total skew between the endpoints at tifhesatisfiesSy < |E™V| - s(n, I, T, — T1). However,
we have shown thaf, > -=n7T, and hence

1 G(n) T
—nT < < |E™Y| . 1,75 —1T)) < . k- ——).
16” _SZ—| | 8(”7 y 42 1)—I_S S(”) ok 1+p)
Rearranging the terms and substituting: 5% andj = % yields
i — "> TI-8)>-—o T
"T128(1+p) s(n)” 7 T 16G(n) ~ 32G(n) '
For the bound to be meaningful we must hayg—~7 - I > s(n), thatis,l > % O
skew = (n)
kedges o' .. gk edges L 3.
a9 Chain A \ o Chain A §
woe T/ oW,  Woe~~_ Skewoneachnewedge[il,]] - -ewWp,
Message delays [7/(1 + p), s AN ST = TN 7
IR ST R S A SR U ¥
Chain B Chain B
(a) Executionx at timeT5. (b) Executions at time T} (new edges shown as dashed
lines)
skew =Q (n) L (Ty)
< ks(n) =0(n)
L,(Th)t
W0 @~ ~ Skew on each new edgeé s (n, I, A%)/, -oWn
LN Lmm = e~ Lo(Ty) ¢ _
W W ¥ < ks(n) =0(n)
Chain B Ly(Ty)
(c) Executions at timeT; (d) The logical clocks otuv, u, v, w, attimeT: in execu-

tionsa andg (assumingL., (T1) < L, (T1))

Figure 1: lllustrations for the proof of Theorem 4.1

5 A Dynamic Clock Synchronization Algorithm

Next we present a simple DCSA that achieves the tradeoff demonstratedpretiious section.
The algorithm is based on nodes sending each other periodic updatasowntheir own

logical clock value and their estimate for the maximal logical clock in the netwdgdates are

sent to all neighbors everfx H subjective time units; that is, if node sends an update to all its
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neighbors at real time, the next time it will send an update is real tirtfesuch thatH, (') =
H,(t) + AH. Since the hardware clock efprogresses at a rate of at least p, updates are sent
at least once ever% real time units.
Define AH

AT::T+ﬁ, AT :=(1+p) AT.
Since every node sends messages to all its neighbors at least oryc%_épvﬂ'me units, and mes-
sages take at moSt time units to arrive A7 is the longest amount of real time that may pass
between the receipt of two messages along an edge, provided the éxtgetenughout the inter-
val. Since nodes do not have access to real time, theyAGSeo conservatively estimate the time
they have to wait between receiving two messages from a neighb&x7 1fsubjective time has
passed and a message was not received, the link to that neighbor weufaited.

The algorithm we present here is event-based: nodes react to mnessageeceive and to
discover(X) events, whereX € {add({u,v}),remove({u,v})|v € V}. In addition, each node
can set atimer to trigger a delayed event by caligtgtimer(At¢, timer-1D). If set_timer(At, timer-ID)
is called byu at real timef, then at real time’ such thatf,,(t') = H,(t) + At, analarm(timer-ID)
event is triggered at node A delayed event can be cancelled using the functiowel(timer-I1D).

The algorithm uses two types of timers: ek timer is set to go off every subjectiveH time,
and alost(v) timer is set to go ofA7” subjective time units after a message froms received.

Throughout the run of the algorithm each nad®aintains two setg,,, Y, suchthal’, C 1,,.
The setY,, contains all the nodes such thatu believes the edgéu, v} exists; that is, all the
nodesv such that adiscover(add({u,v})) event occurred at. and was not yet followed by a
discover(remove({u, v})) event. The criterion for membershiplh, is more restrictive: the nodes
in ", are those nodes af, thatu has heard from at mogt7” subjective time units ago. K7’
subjective time units pass andloes not receive a message fronthenv is removed fronT",, (but
not fromY,). The nodes i, are the only ones used to determirig logical clock value, since
they are the ones for whiahhas an accurate estimate. Howevesends (or tries to send) periodic
updates to all nodes iifi,,.

In addition toI',, andY,,, nodeu maintains the following local variables.

Ly, Nodew’s logical clock

Ly Nodewu’s estimate for the maximal logical clock in the network
Ciforvely The value of nodey’s hardware clock when was last added tb,
Ly forvel, Nodeu’s estimate for node’s current logical clock

The local variables are modified upon processing the various evertis\waa &1 Algorithm 2. Be-
tween events, the variablés, L};'** andL;, for all v € ', are increased at the rate«d$ hardware
clock.

Nodeu uses a non-increasing functiéh: R™ — R™ to determine how much perceived skew
it is willing to tolerate on the edgéu, v} for v € T',,. The parameter to the function(&,, — C7),
the subjective amount of time that has passed sintiscovered the edge. For a parametgr the
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function B is given by

B(At) := max {Bo, 5G(n) + (1 + p)7 + By — uf(;)TAt} ,

where .
= #A7+T+D, By > 2(1+ p)7,
—p

and wherej (n) is the bound on the global skew derived in Theorem 6.9. The parafBgt=an be
interpreted as the local skew that the algorithm is trying to maintain on evepy; edge the edge
is in the system for a sufficiently long time.

The logical clock of each node is adjusted after every event. In egabktagnt, node: in-
creased.,, to the largest value that it can, subject to the following constraints:L{1)s never
decreased, (2], cannot exceed.’®*, and (3) the perceived skew on every edgev} such
thatv € I', cannot exceed the value &f for that edge. That is, for alb € I', we require
L, - LY < B(H,— C}). If the constraints cannot be met (e.g.uihas a neighbor that is very
far behind), node: cannot make a discrete increase to its logical clock. However, the lodpecdd ¢
continues to increase at the rateu hardware clock. The update rule is given by

ProcedureAdj ust Cl ock
1 L, « max{Ly, min {LP™** min,cr, {LY + B(H, — CY)}}}

For simplicity, we assume that all nodes know (upper bounds on) the maximgtware clock
drift p, the propagation delay, as well as the boun® on the time between topology changes
and the nodes discovering these changes. Depending on how edd®mssand deletions are
discovered,D typically is a function ofp, 7, as well as the parametéxH. Throughout the
remainder of the paper, we assume at max{7,AH/(1—p)}. We also assume that all nodes
know n, the number of nodes participating in the system. With these assumptions, azech n
knows enough to compute the value®f for everyv € I',,. In particular, all nodes can compute
the boundG(n) on the global skew. Note that the same asymptotic results can be achieved if all
nodes known up to a constant factor. This would allow to generalize the setting and alpbtada
nodes joining and leaving the system as long @sly changes at a constant rate.
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Algorithm 2 : Responses to events that occur at nede

1 whendiscover(add({u, v})) occurs atu

2 send(u, v, (L, L))

3 T, — YT, U{v}

4 Adj ust d ock()

5 end

6 whendiscover(remove({u,v})) occurs at
7 I, —Ty\{v}

8 Yo — Yo\ {v}

9 Adj ust d ock()

10 end

11 whenalarm(lost(v)) occurs atu
12 Ty «—Ty,\{v}

13 Adj ust d ock()

14 end

15 when receive(u, v, (L,, L}***)) occurs atu
16 cancel(lost(v))
17 if v &I, then

18 ry —T,uU{v}

19 Cy — H,

20 Ly «— L,

21 L — max { L, Ly}

22 Adj ust d ock()

23 set_timer(A7’, lost(v))
24 end

25 whenalarm(tick) occurs ats
26 forall v € T, do

27 send(u, v, (L, L))
28 Adj ust O ock()

29 set_timer(AH, tick)

30 end
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6 Analysis of the Algorithm

6.1 Basic properties

To analyze the algorithm it is important to understand what conditions preeeles from making
discrete changes to their logical clocks. The following definitions and lemhmascterize these
conditions and describe basic properties of the algorithm.
Let

B, (t) := B(Hy(t) — Cy(t))

be the amount of perceived skew nadés willing to tolerate on the edggu, v} at real timef.

Definition 6.1 (Blocked nodes)We say that a node is blocked by node at timet if L;"**(¢) >
L, (t)andv € T',(t) and L, (t) — LY (t) > By (t). In this case we also say that nodélocks node
u at timet and that node: is blocked at time.

Property 6.1. If v € T',(t), then by timg nodeu has received at least one message that node
sentattime, >t — 7.

Proof. If v € T',(t) thenu has received a message framat some time,. such thatH,,(t) —
H,(t,) < (1 + p)AT, otherwiseu would have removed from I, prior to timet. Since the
hardware clock rate af is at leastl — p,

Hu(t) - Hu(tr) > (1 - p)(t - tr)'

Thus,t—t, < I AT. The message was sent at some thmne ¢, —7 > t—}f—gAT—T >t—7,
so the property ﬁolds. O

Property 6.2. If edge{w, v} exists throughout the interv@l, t2] wherety > ¢, + D, then for any
timet such thatty + A7 +D <t < t9,

1. uweT,(t)andv € T'y(t),
2. Nodeu receives at least one message froin the interval[t — A7, ¢], and

3. Nodev receives at least one message fromm the intervallt — AT, ¢].

Proof. Since the edgéu, v} exists throughout the intervt , t2] wherety > ¢; + D, it is discov-
ered byu andv at timest?, t9 respectively such thaf, t0 < ¢; + D.

Upon discovering the edge nodesand v add each other t&", and T, respectively. No
discover(remove(u, v)) event can occur at or atv between times., t? (respectively) and time;,
because the edge exists throughout the intgtyat;]. Therefore, for alk € [t; + D, t2] we have
v € T, andu € T,. It follows that nodes: andv send each other updates every subjectivé
time units at most throughout the interval + D, t2]. This implies that, andv send each other

updates every objecti\é% time units at most throughout this interval.
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Let ¢ be a time such thdt — A7 ,t¢] C [t; + D, ts]. Sincev sendsu a message at least once
every% time units throughout the intervith + D, t5], there is some, € [t — AT, t — AT + %]
such thaty sendsu a message at timg. The message is received bt timet,. such that

t—ATgtsgtrgts+7§t—AT+1A—H+T:t.
—p

Therefore, condition 2 of the lemma is satisfied. Condition 3 is similar.

Condition 1 of the lemma follows from conditions 2 and 3: from lines 6-22 of 1ge-a
rithm, if u received a message fromat timet, such thatd,,(t) — H,(t,) < (1 4+ p)A7 and no
discover(remove({u, v})) event occurs during the intervgl., ¢], thenv € T',(t). Lett be a time
such thaft— AT, t] C [t;+D, t2]. Condition 2 of the lemma shows that nadeeceives a message
from nodev at some time, € [t — AT, t]. In particular,H,,(t) — Hy,(t;) < (1 4+ p)(t —t,) <
(14 p)(t — (t — AT)) = (1 + p)AT. Finally, we know that naliscover(remove({u,v})) event
occurs during the intervat,, t], because the edde:, v} exists throughout the intervil,, t5] and
[t,,t] C [t — AT, t] C [t; + D, ts]. O

Property 6.3 (Max estimates)For all © € V and times > 0,

Ly () = Lu(t).

Proof. The variabled.);'** andL,, are modified in three circumstances: in line 21 of the algorithm,
which is executed when receives a message; in proceddd ust Cl ock() , which is called
after every event; and in between discrete events. It is sufficient t@ stad all of these preserve
the invariantL;** > L,,.

Between processing discrete everit3?* andL,, are both increased at the rate«s hardware
clock, and the invariant is preserved. Suppose ther/tfi&t > L,, prior to the execution of line 21
or of procedureAdj ust C ock() . In line 21 the value of_}'** can only be increased, so the
invariant is preserved. IAdj ust Cl ock() , nodeu sets

L, « max {L,, min {L;*, ... }}.

Since we assume that}** > L, prior to the execution ofdj ust C ock( ), both terms in the
max are no greater thah**. Following the assignment we still have, < L}*.
O

Property 6.4 (Sufficient condition to be blocked)f L**(¢) > L, (t), then nodeu is blocked at
timet.

Proof. Lett' < ¢ be the most recent time a discrete event occurs at nageto (and including)
timet.
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Between time’ and timet nodeu increased.}'** and L,, at the rate of its hardware clock, and
thereforeL?®* (') — L, (t') = L?®*(t) — L,(t). Since we assume thaf’**(¢) > L,,(t) it follows
that L2ax(¢') > L, (t').

Nodewu must be blocked following the last event that occurs at titpetherwise it would have
setL,(t') — L2**(t¢') in ProceduréAdj ust G ock( ) after processing the last event. Thus, there
is some neighbor € T, (¢') such thatL,,(t') — LY (¢') > BL(t').

Between timeg’ and timet nodev was not removed frort,,, because nodes are only removed
from I',, following discrete events and no discrete event occurs at ndatween the last event
that occurs at time’ and timet. Thus,v € T',(t). Also, between time¢' and¢, the values
L, and LY, were both increased at the rate«t$ hardware clocks, and hendg,(t) — L{(t) =
L,(t") — Ly(t") > BE(t') > BL(t). This shows that node blocks node: at timet. O

Lemma 6.5(Estimate quality) If v € T, (t) thenL? (t) > L, (t — 7).

Proof. Lett, be the latest time that nodesends a messadé, (ts), L;"**(ts)) which is received
by u at some time&,. < ¢. Upon receiving the message nadsetsL! < L,(ts) (line 20).

Since messages are delivered in FIFO fashion, nodees not receive another message from
v during the intervalt,, t]; during this intervalL?, is increased at the rate afs hardware clock,
and in particularL;, is not decreased. Finally, from Property 6.1 we have ¢t — 7, and therefore

Ly(t) > LY(t) > Ly(ts) > Lo(t - 7).
O

Each node; decides whether or not to increase its clock based on its estimates of itsorsighb
clocks, aiming to keep the skew on edfye v} no greater tharB.. Since the estimate may be
larger than the real value of the neighbor’s clock, naedeay overshoot the mark, but the following
lemma shows that it does not overshoot it by much.

Lemma 6.6. If u’s logical clock made a discrete jump at timethen immediately following the
jump, for allv € T',,(¢t) we haveL,,(t) — L,(t) < B.(t) +2p - 7.

Proof. If u’s logical clock made a discrete jump at timethen following the jump in Procedure
Adj ust d ock() we have
Lu(t) < min (L (0) + Bi(1)). (11)

Letv € I'y,. From Property 6.1, there is a timg < ¢ such that at time, nodew receives a
message sent by nodeat timet; > t — 7. Lett, be the last time sent a message thareceived
by time ¢, < t. The message carrids,(ts), and following the receipt of the message we have
LY (t,) = L,(ts). Between time, and timet, nodeu increased.;, at the rate of its own hardware
clock, and hence

Ly(t) < Ly(tr) + (t = tr) (1 + p) < Lo(ts) + (t —t5)(1 + p). (12)
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Also, nodev increases its logical clock at a rate of at le@dst- p), and consequently,
Lu(ts) < Lo(t) — (t — t)(1 - p). (13)
Combining (12) and (13) yields
Ly (t) < Ly(t) + 2p(t — ts) < Ly(t) + 2pr, (14)
and from (14) and (11) we obtain

Lu(t) — Ly(t) < Ly(t) — LU(t) + 2p7 < BY(t) + 2p7.

6.2 Global Skew

The basic strategy to bound the global skew of our dynamic clock synidation algorithm is the
same as the one used in a static network (see [13]). We first show theyfdwo nodes: and
v, the estimated)'**(¢) and L**(¢) of the maximum clock value in the system are not too far
apart. Second, we show that if the global skew exceeds a certain vdloea, the nodev with
the smallest logical clock valug,(t) cannot be blocked at time By Lemma 6.4, we then have
L,(t) = L**(t) and thus the bound on the maximal difference between two estimgtes¢)
andL;**(t) also yields a bound on the global skew.
For anyt > 0, define
max P max

L™M(t) = max L7(t). (15)
Property 6.7 (Rate of L™#*), The value ofL™?* increases at a rate at mos$t+ p. That is, for all
ta > t1 > 0 we have

L2X(tg) — L™™(t;) < (1 + p)(t2 — t1)

Proof. First observe that no discrete changd i’ made by a node changes the value df™*:
nodes only make discrete changesi9®* in line 21 of the algorithm, following receipt of a
message from some neighbor. Suppose that attimedewu receives a message that was sent by
nodev at timet, < t,. Inline 21, nodeu setsLi’®* « max {L*, L7"®*(¢,)}; this assignment
can neither increas€™#* nor decrease it, and hence it remains unchanged. (Note theaver
decrease&’®*, so the value of.™** prior to the assignment is at leadst**(t;).)

The proof of the claim is by induction on the total number of times line 21 is exedytall
nodes in the network. (We also refer to each execution of line 21 as “getbsthange”.) Suppose
first that during the intervalt;, t2] no node ever executes line 21, but®*(ty) — L™ (t1) >
(1+ p)(t2 — t1). Letu be a node such thdt**(ty) = L™**(t2). Throughout the intervat;, ],
the value ofL** is increased at’s hardware clock rate, and therefab&(¢,) > LI**(tq) —
(14 p)(ta — t1) = L™*(t2) — (1 + p)(t2 — t1) > L™**(¢1). This contradicts the definition of
Lmax(tl).
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Now suppose that the claim holds when at miodiscrete changes to local?* variables are
made, and consider an intervay, t2] during whichk + 1 discrete changes occur. Let [¢1, t2]
be the last time a discrete change occurs, and le¢ a node such that***(to) = L™(t9).
Since discrete changes do not affect the valué'®, we can apply the induction hypothesis to
obtain L™#*(t) — L™**(¢1) < (1 + p)(t — t1). In addition, sinceu makes no discrete change
to L*** during the interval¢, to], it holds thatL™®*(to) — Li'®(t) = LI (t2) — L™ (t) <
(14 p)(t2 —t). Finally, by definition,L™**(¢) > LX**(¢). Combining the three inequalities yields
L7M(tg) — L™*(t1) < (1 + p)(t2 — t1). O

The accuracy of the estimatéd’**(¢) can be bounded by applying the interval connectivity
property of the dynamic network graph. This is stated by the following lemma.

Lemma 6.8(Max Propagation Lemma)f the dynamic grapld=(¢) is (7 + D)-interval connected,
then for all¢ > 0 and allu € V' it holds that

LM(8) — LP(t) < (1+p) - T +2p-D)- (n—1).

Proof Sketch.Letv be a node for whiclL}’**(t — (n —1)(7 + D)) = L™(t — (n—1)(7 +D)).
We want to show that’s estimateL}'** at timet — (n — 1)(7 + D) or a larger estimate has
reached every node by timet. On the way fronv to u, the estimate is increased at at the rate of
some hardware clock whenever it is not in transit between two nodeauBethe total transit time
between nodes is at magt — 1)7, the estimate has been increased by at least 1)(1 — p)D
by timet.

The estimate can reach every node within time- 1)(7 + D) for the following reason. The
(T + D)-interval connectivity implies that throughout every interval of len@th+ D, there is
an edge over every cut in the network. In particular, there alwayscis an edge over the cut
separating all nodes that have already received the estimate from alhotless. Because this edge
is discovered withirD time units and because transmitting a message over the edge takes at most
7 time, the number of nodes that have received the estimate grows by at &testeveryD + 7
time units. O

Full Proof. All hardware clocks and max-estimates are initialized to 0 at time 0, and H&H¢€0) —
L?**(0) = 0. The max clockL™** increases at a rate of no more thar- p, and the max-
estimateL**(t) of any nodeu increases at a rate of at ledst- p. Consequently, the difference
L™ (t) — L**(t) grows at a rate of no more thah + p) — (1 — p) = 2p, and becausg < 1,
the claim holds at least until time

(14+p)T+2p-D
2p

t=

(n—=1)>(T+D) - (n—1).

Thus, it is sufficient to consider timesuch that > (7 + D) - (n — 1).
Fori € {1,...,n}, define
tir=t—(n—14)(7 +D)
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and
Vi = {v e V| LB™(t;) > L™ (ty) + (i — 1)(1 - p)D}.

We prove by induction onthat for alli € {1,...,n} we havelV;| > i.

e (Base) By definition}; = {v € V' | L**(t1) > L™**(t;)}. There exists some nodesuch
that L2 (t1) = L™*(¢;), and consequently/;| > 1.

e (Step) Suppose thél;_;| > i — 1. By definition, for allv € V;_; we have
LE(t;_y) > L"™(ty) + (i — 2)(1 — p)D. (16)
The max estimate of each node increases at least at the rate of its hactheareConse-
guently, forallv € V;_,
Ly(t) = L™ (tima) + (6 — tic))(1 — p) 2 (From (16))
> LM (t) + (i = 2) (L= p)D+ (& —tima)(1 —p) =
> L™ (1) + (i = 1)(1 - p)D,
and hencé/;_; C V;.
If V'\ Vici =0, then|V;| > |Vi_1| = n and we are done. Otherwise by + D)-interval
connectivity ofG(¢) there exists an edge= {v, w}, wherev € V;_; andw € V\V;_1, such
thate exists throughout the intervid;_;,t;]. By Property 6.2, there are times,q > ¢;_1
andt,., < t; such that node sends nodev a message containing**(ts,q) at timetg,q,
and nodeaw receives the message at timg, and updates its max estimate. Thus we have
LE(t;) > L% (tyey) + (1= p)(t; — trey) >
> Lqr}nax( ) ( p) (tz - trcv) =
> Lvmax(tz 1) ( p)(tz - rcv) (1 - p)(tsnd - ti—l) >
> Ly™(tic) +(1—=p)ti —tin —T) =
= Ly™(tic1) + (1= p)D > (From (16))
> L™ (t) + (i —1)(1 = p)D.

It follows thatw € V;. Sincew ¢ V;_; andV;_; U{w} C V; we havelV;| > |V,_1|+1 > i.

+
_|_

The claim we proved implies th&f, = V; that is, for allv € V, at timet,, = ¢t we have
LE(t) > L™ (t1) + (n — 1)(1 — p)D. (17)
From Property 6.7,
L™ () < L™ () + (1+p)(t —t1) = L™ (t1)) + (1 +p)(n —1)(T +D),  (18)
and combining (17) and (18) yields
L™ (t) — L2(t) < (n — 1) (14 p)T + 29 D).
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Using the approach sketched above, Lemma 6.8 allows us to prove the fgjltwgorem,
which bounds the global skew of our algorithm.

Theorem 6.9(Global skew) The algorithm guarantees a global skew of
Gn):=((1+p)-T+2p-D)-(n—1).
Proof. We show the stronger statement that at all times
YoeV o L™¥(t) — Ly(t) < G(n)

and the claim then follows from Property 6.3 and the definitiof 8.
For the sake of contradiction, assume that this is not the case. Then teeredgdimet, node
v € V ande > 0 such that
L™() — Ly(t) > G(n) + ¢ (19)

Let ¢ be the infimum of times when (19) holds for some nadeBy Lemma 6.8, we have
Lmax(t) — L*%(¢) < G(n) and thusL,(t) < L2**(¢). Hence, as a consequence of Lemma
6.4, v is blocked at timef. Therefore by Definition 6.1, there is a nodec T',(¢) such that
L,(t) — L%(t) > BY(t) > By. By Lemma 6.5, it therefore holds that,(¢t — 7) < L,(t) — By.

By Property 6.7, we havé™®*(¢t — 1) > L™*(¢) — (1 + p)7. We therefore obtain

L™ — 7) — Ly(f— 1) > ™) — Ly(f) — (1 + p)7 + B,

Because we assume thBh > (1 + p)7, this is a contradiction to the assumption thas the
infimum of times when (19) is satisfied for the first time for some nede O

6.3 Local Skew

The local skew guarantee of the algorithm hinges on the fact that theaiomémposed by a newly

formed edge is so weak thab edge can violate it: for a long time after edfge v} is detected, the

value of B! stays greater than the global skéin). Since no edge carries a skew that is greater
g(n)

thang(n), the requirement is trivially satisfied. In fact, only after( %5~ ) time can a node be

blocked by a new neighbor, and this is formalized by the following lemma.

Lemma 6.10. If nodev blocks node: at timet, thenv € T',,(¢') for all ¢’ € [t — W, t], where

W e (199 1)

(Informally, the intervalt — W, t] corresponds to the time required according to Theorem 4.1
for information about the new edge to spread throughout the network.)
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Proof. For nodev to block nodeu at timet, we must have
Lu(t) — L) > BY(t). (20)
Using Lemma 6.5, Property 6.7 and the global skew guarantee (Thm. 6.8ptaia
Ly(t) = Ly(t) < LM(t) — Lo(t —7) S L™t —7) — Ly(t = 7) + (1 + p)7 <
<G(n)+(1+p)T.
Substituting the definition oB;, yields

By

Bi0) = max { B0, 50() + (14 )7 + B

(Ha (1) - c:z<t>>} <
< La(t) — L2(t) < G(n) + (14 p).

and in particular,

5G(n) + (14 p)7 + Bo — a fOp)T (Hu(t) — C5(t) < G(n) + (14 p)7.
Rearranging we obtain
H,(t)— C.(t) > (4%(;;) + 1> (14 p)r. (21)

Let¢; < t be the most recent time nodeadds node to ', (lines 17-19). Such a time must
exist, because € I',(t). To prove the lemma it is sufficient to show thiat ¢; > . Observe
that by choice of, we haveC(t) = H,(t1), and thereforef,, (t) — Cy(t) = H,(t) — Hu(t1) <
(14 p)(t —t1). Using (21) we obtain

Hy(t) — CU(t) _ (,G(n)
btz —a > (430“>T
]

Lemma 6.11(Edge reversal)lf nodev blocks node: at timet then for allt’ € [t— W+ A7 ,t—D]
we haveL®*(¢') > LMt/ — 7).

Proof. From Lemma 6.10, it blocksu at timet, then for allt’ € [t — W, ¢] we havev € T, (¢).
Sincel', (') € Y, (¢), this implies thaw € T, throughout the interval. Hence, throughout the
interval [t — W, t], nodeu sends node an update ever% real time units at most.

The model guarantees that if a message sent by v at time ¢’ is not delivered, node
experiences discover(remove({u,v})) event no later than time+ D, which leadsu to remove
v from T, (line 7). Sincev € T, throughout the intervdt — W, ¢], all messages sent fromto
v during the intervalt — W, ¢ — D] are delivered. It follows that during the interval— W +
AT,t — D], nodev receives a message fromat least once everA7 time units, and hence
throughout the interval we havee T',. Property 6.1 implies that***(¢') > L2 (¢’ — 7) for all
t'e[t—W+AT,t—D. O
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The local skew guarantee of the algorithm is as follows.

Theorem 6.12. For any two nodes, v and timet such thatw € T',(¢),

L, (t) — Ly(t) < By (t = W) +2pW = By, (t — W) + 2p1 <4gl(£) + 1>

Proof. Suppose by way of contradiction that at timh¢here are two nodes,v € V such that
v e, but
L,(t) — Ly(t) > By (t = W) + 2pW.

SinceB} is non-increasing, for alf € [t — W, ¢] we have
BU(t') < BY(t —W). (22)

From Lemma 6.6 and Lemma 6.10, at any tithe [t — W, ¢] nodeu’s logical clock cannot jump
to a value that exceeds, (t') + BL(t') + 2pT < L,(t') + B(t — W) + 2p7. Thus, the excess
skew of2pW — 2p7 was built up by increasing’s logical clock at the rate af’s hardware clock,
which is at most + p, while v’s clock increased at a rate of at ledst p. In other words, as long
as the skew is greater thdj, (¢t — W) + 2p7 itincreases at a rate of at m@t, which implies that
u's clock cannot make a discrete jump throughout the intdtval W + 7, ¢].

Letl¢ = L%J. Forall0 < i < 2/, definet; =t — ¢ - 7. In particulart, =t — 7, and

-7

144
tog =t —20r >t — 21 - =t—-W+r.

T

It follows that for allt’ € [toy, t],
Lu(t) - Lu(t/> < (1 + p)(t - t/)a (23)

sinceu cannot make a discrete change to its clock during this interval.
We show that there exists a chain of nodgs. . . , uy such that for alll <4 </,

(C1) Ly(t) — Ly, (ti) > i- By, and

(C2) Forallt’ € [top—iy1,t;] we haveL™(t') > L,(t' —i7), and
(C3) Nodeu; is blocked at time;.

The proof is by induction on, the length of the chain.

e (Base.) Fori = 1 we chooseu; = v. We need to show that conditions (C1)—-(C3) are
satisfied.

(C1) Sincet; = t — 7 < t and the logical clocks are strictly increasing we hdvgt) —
Lv(tl) > Lu(t) - Lv(t) > Bﬁ(t) > BO-
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(C2) Lett’ € [tos,t1]. Sincev blocksu at timet and |ty t1] C [t — W + AT ,t — D], we
can use Lemma 6.11 witt to obtain

Lt > Ly(t' — 1), (24)

as required.

(C3) From Lemma 6.4, to show thats blocked at time; it suffices to show thak***(¢;) >
L,(t1). Applying (24) and (C1) with’ = ¢t; =t — 7 yields

LP¥(t) 2 Lu(ty —7) 2

(29)
> Ly(t) —2(1 4+ p)T > Ly(t1) + Bo — 2(1 + p)7 >

> Lv(tl).
e (Step.) Suppose that there is a hageuch that

(IH1) Ly(t) — Ly, (ti) > i - Bp, and
(IH2) For allt’ € [tar—i11,t;) we haveL;™(t') > Ly (t' — iT).
(IH3) Nodeuw; is blocked at time;,

Letu; 1 be a node that blocks; at timet;. We show that conditions (C1)—(C3) are satisfied
for Uj41-

(C1) Sinceu;;1 blocksu; at timet;,
Ly, (t;) — Ly ™ (t;) > By (t;) > Bo. (25)
Using Lemma 6.5 we obtain
L;Z-H (tl) > Lui+1 (ti - T) = Lm+1 (ti-‘rl): (26)
and combining (25), (26) and (IH1) yields
Lu(t) = Lugyy (tiv1) = Lu(t) = Lugt (t:) > Ly(t) — Lu, (t;) + Bo >
IH1 ,
> i-By+ By = (Z+1)Bo.

(C2) Lett' € [tor—_i,tit1]. Sincetoy—; = top_iy1 + 7 andt;1 = t; — 7, we havet’ —
T € [tar—it1,t; — 27], and we can apply IH2 at tim& — 7. In addition we have
t' e [t — W + AT ,t; — 7], and sinceu; 1 blocksu; at timet;, Lemma 6.11 shows

that
Ly (') > L™t —7) > (27)
IH2
> Ly(t' —7—i1) = L,(t' — (i + 1)7), (28)
as required.
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(C3) Itremains to verify that node, ., ; is blocked at time; ;. Applying (28) witht’ = ;11
yields

L% (tiv1) = Ly(tivr — (i 4+ 1)7) = Lu(tayn)) 2
> Ly(t) — (14 p)(t = taiig1)) = Lu(t) — (14 p)(2i + 1)7
> L, (tis1) + (i + 1) By — (14 p) (20 + 1)

> Luy,y, (tit1).
From Lemma 6.4, node;, 1 is blocked at time;_ ;.
This completes the induction.
The claim shows that there is a nogdesuch that
e Nodeuy is blocked at time,, and
o L,(t)— Ly, (te) > - By.

Let uy1; be a node that blocks, at timet,. As we already showed, it follows thdt,, (t,) —
Ly, (tex1) > Bo, which implies that

Ug+1
Lu(t) - Lu£+1 (tf+1) > (E + 1>BU' (29)

Sincetyy1 > ty(e41) We can use (23) to obtain

Ly(tegr) > Lu(t) — (L4 p) (€ + D), (30)

and combining (29) and (30) yields

Lu(t€+1) - Lue+1 (t€+1) > L ( ) - Lw+1 (t€+1) ( )( + 1)7— >
> +1)By—(1+p)l+1)r >
> (L+1)(Bo— (14 p)7) > (Bo = 2(1+ p)7)

which is a contradiction to the global skew guaranteed by the algorithm.
O

Theorem 6.12 describes the local skew guarantee from a point of végwstbubjective to node
u: the statement of the theorem assumes thatI",,, and the value oB3; depends on the local
variablesC; and H,,. The following corollary states the “objective” local skew guarantee ef th
algorithm.
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Corollary 6.13. The algorithm guarantees a dynamic local skew of
s(n, I, At) = s(n,At) = B (max{(1 — p)(At — AT —D —W),0}) + 2pW,
regardless of the initial skewon the edge.

Proof. Lete = {u,v} be an edge that exists throughout an intefval + At]. If At — AT —
D — W <0, thens(n, At) = B(0) + 2pW > G(n), and all edges carry less thafm, At) skew.
Suppose then thatt — A7 —D — W > 0, thatis,t + At — W >t + AT + D.

Since the edge exists throughout the intefval + At¢], from Property 6.2, at any timé €
[t + AT + D,t + At] we havev € T',(t'). Thus, the last time was added td", prior to time
t+ Atissometime; <t+ A7 +D < t+ At — W, and from the algorithm(Y (t + At — W) =
H,(t1) < H,(t + AT + D). SinceB is non-increasing,

Bi(t+ At —W) t+At—W)-Co(t+ At —W))
t+At—W)—H,(t+ AT + D))
p)t+At—t—AT —-D-W)) =
p) (At — AT —D—-W)).

Hy( <
H,( <

u

= B(
< B(
<B((1-
= B((1-
Now we can use Theorem 6.12 to obtain

L,(t+ At) — Ly(t + At) < B (t + At — W) + 2pW < s(n, At),

and similarly we can show thdt, (t + At) — L, (t + At) < s(n, At) as well. Together we have
|Lu(t + At) — Ly(t + A)| < s(n, At), as required. 0

Corollary 6.14. If the parameterB, is chosen as3y > \,/pn for a constantA > 0, the stable
local skew of the algorithm i©(By). Further, the time to reach this stable skew on a new edge
is O(n/By). Hence, for this choice aBy, the trade-off achieved by the algorithm asymptotically
matches the trade-off given by the lower bound in Theorem 4.1.

7 Conclusion

We have established fundamental trade-offs for gradient clock synidation algorithms in dy-
namic networks. First, the time to adjust the skew on a newly formed edge iséhyeroportional
to the skew one is willing to tolerate on well-established edges. Hence, hastngnger skew re-
guirement in stable conditions impairs the ability to adapt to dynamic changesn&eamntrary
to what one might initially think, reducing the skew on edges with a small initial $kews out to
be as hard as reducing the skew on edges with a large initial skew. The tadechim both cases
is linear in the global skew bound of the algorithm and is thus at least linear in

It will be interesting to see whether the trade-off established by our algoritéin also be
achieved for smaller stable skew bounds. In particular, it will be interestirsge whether the
techniques developed in [11, 12] to guarantee a local ske@(tfgn) in the static case can be
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adapted for the dynamic setting. Note, however, that such an improvddkavabound necessar-
ily comes at the cost of worse adaptability to topology changes.

In this paper we used a weighted-graph approach to deal with the dyngmoiody: in the
algorithm of Section 5, each edge carries a weight, which starts out vge/\\hen the edge first
appears and decreases over time. We use the dynamic weights to graduedigse the effective
diameter of the graph, giving nodes time to adapt to the appearance ofiges. én a companion
paper [9] we use a similar approach to incorporate reference brstaglagachronization in the al-
gorithm from [12]. In that case the weight of the edge has the traditionahing in the context of
clock synchronization: it corresponds to the uncertainty along the didigeour hope that extend-
ing the algorithm from [12] to the weighted-graph model will serve as adiegi towards a dynamic
clock synchronization algorithm wit®(log n) stable local skew, but this seems challenging.

An additional obvious generalization would be to incorporate node inseréind deletions in
the dynamic graph model. As long as nodes join and leave at a constarit maitght be possible
to be able to adapt all the parameters used sufficiently quickly in order toisithgtee the same
basic results. The details of such a protocol as well as possible limitationsveifalst one can
adapt to changes of the network size are fascinating open questions.
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