
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2009-023 June 4, 2009

Modeling Radio Networks
Calvin Newport and Nancy Lynch

Modeling Radio Networks?

Calvin Newport and Nancy Lynch

MIT CSAIL, Cambridge, MA
{cnewport,lynch}@csail.mit.edu

Abstract. We describe a modeling framework and collection of foun-
dational composition results for the study of probabilistic distributed
algorithms in synchronous radio networks. Existing results in this set-
ting rely on informal descriptions of the channel behavior and therefore
lack easy comparability and are prone to error caused by definition sub-
tleties. Our framework rectifies these issues by providing: (1) a method
to precisely describe a radio channel as a probabilistic automaton; (2) a
mathematical notion of implementing one channel using another chan-
nel, allowing for direct comparisons of channel strengths and a natural
decomposition of problems into implementing a more powerful channel
and solving the problem on the powerful channel; (3) a mathematical
definition of a problem and solving a problem; (4) a pair of composi-
tion results that simplify the tasks of proving properties about channel
implementation algorithms and combining problems with channel imple-
mentations. Our goal is to produce a model streamlined for the needs of
the radio network algorithms community.

1 Introduction

In this paper we describe a modeling framework, including a collection of foun-
dational composition results, for the study and comparison of distributed al-
gorithms in synchronous radio networks. In the two decades that followed the
deployment of AlohaNet [1]—the first radio data network—theoreticians invested
serious effort in the study of distributed algorithms in this setting; c.f., [2–4].
This early research focused on the stability of ALOHA-style MAC layers under
varying packet arrival rates. In a seminal 1992 paper, Bar-Yehuda, Goldreich,
and Itai (BGI) [5] ushered in the modern era of radio network analysis by intro-
ducing a synchronous multihop model and a more general class of problems, such
as reliable broadcast. Variants of this model have been studied extensively in the
intervening years; c.f., [6–8]. Numerous workshops and conferences are now dedi-
cated exclusively to radio network algorithms–e.g., POMC, ADHOCNETS—and
all major distributed algorithms conference have sessions dedicated to the topic.
In short, distributed algorithms for radio networks is an important and well-
established field.
? This work has been support in part by Cisco-Lehman CUNY A New MAC-Layer

Paradigm for Mobile Ad-Hoc Networks, AFOSR Award Number FA9550-08-1-0159,
NSF Award Number CCF-0726514, and NSF Award Number CNS-0715397.

The vast majority of existing theory concerning radio networks, however, re-
lies on informal English descriptions of the communication model (e.g., “If two
or more processes broadcast at the same time then...”). This lack of formal rigor
can generate subtle errors. For example, the original BGI paper [5] claimed a
Ω(n) lower bound for multihop broadcast in small diameter graphs. It was sub-
sequently discovered that due to a small ambiguity in how they described the
collision behavior (whether or not a message might be received from among sev-
eral that collide at a receiver), the bound is actually logarithmic [9]. In our work
on consensus [10], for another example, subtleties in how the model treated trans-
mitters receiving their own messages—a detail often omitted in informal model
descriptions—induced a non-trivial impact on the achievable lower bounds. And
so on. We also note that informal model descriptions prevent comparability be-
tween different results. Given two such descriptions, it is often difficult to infer
whether one model is strictly stronger than the other or if the pair is incom-
parable. And without an agreed definition of what it means to implement one
channel with another, algorithm designers are denied the ability to build upon
existing results to avoid having to resolve problems in every model variant.

In this paper we describe a modeling framework that addresses these issues.
Specifically, we use probabilistic automata to describe executions of distributed
algorithms in a synchronous radio network.1 (We were faced with the decision of
whether to build a custom framework or use an existing formalism for modeling
probabilistic distributed algorithms, such as [11–13]. We opted for the custom
approach as we focus on the restricted case of synchronous executions of a fixed
set of components. We do not the need the full power of general models which,
among other things, must reconcile the nondeterminism of asynchrony with the
probabilistic behavior of the system components.)

In our framework: The radio network is described by a channel automa-
ton; the algorithm is described by a collection of n process automata; and
the environment—which interacts with the processes through input and out-
put ports—is described by its own automaton. In addition to the basic system
model, we present a rigorous definition of a problem and solving a problem, and
cast the task of implementing one channel with another as a special case of solv-
ing a problem. We then describe two foundational composition results. The first
shows how to compose an algorithm that solves a problem P using channel C1

with an algorithm that implements C1 using channel C2. We prove the result-
ing composition solves P using C2. (The result is also generalized to work with
a chain of channel implementation algorithms.) The second composition result
shows how to compose a channel implementation algorithm A with a channel
C to generate a new channel C′. We prove that A using C implements C′. This
result is useful for proving properties about a channel implementation algorithm
such as A. We conclude with a case study that demonstrates the framework and
the composition theorems in action.

1 We restrict our attention to synchronous settings as the vast majority of existing
theoretical results for radio networks share this assumption. A more general asyn-
chronous model remains important future work.

2 Model

We model n processes that operate in synchronized time slots and communicate
on a radio network comprised of F independent communication frequencies. The
processes can also receive inputs from and send outputs to an environment. We
formalize this setting with automata definitions. Specifically, we use a probabilis-
tic automaton for each of the n processes (which combine to form an algorithm),
another to model the environment, and another to model the communication
channel. A system is described by an algorithm, environment, and channel.

For any positive integer x > 1 we use the notation [x] to refer to the integer
set {1, ..., x}, and use Sx, for some set S, to describe all x-vectors with elements
from S. Let M, R, I, and O be four non-empty value sets that do not include
the special placeholder value ⊥. We use the notation M⊥, R⊥, I⊥, and O⊥
to describe the union of each of these sets with {⊥}. Finally, we fix n and F
to be positive integers. They describe the number of processes and frequencies,
respectively.

2.1 Systems

The primary object in our model is the system, which consists of an environment
automaton, a channel automaton, and n process automata that combine to define
an algorithm. We define each component below:

Definition 1 (Channel). A channel is an automaton C consisting of the fol-
lowing components:

– cstatesC, a potentially infinite set of states.
– cstartC, a state from statesC known as the start state.
– crandC, for each state s ∈ cstatesC, a probability distribution over cstatesC.

(This distribution captures the probabilistic nature of the automaton. Both
the environment and process definitions include similar distributions.)

– crecvC, a message set generation function that maps cstatesC ×Mn
⊥ × [F]n

to Rn
⊥.

– ctransC, a transition function that maps cstatesC ×Mn
⊥× [F]n to cstatesC.

Because we model a channel as an arbitrary automaton, we can capture
a wide variety of possible channel behavior—from simple deterministic receive
rules to complex, probabilistic multihop propagation.

We continue by the defining the elements of a system: an environment, pro-
cess, and algorithm. We then define a system execution.

Definition 2 (Environment). A environment is some automaton E consisting
of the following components:

– estatesE , a potentially infinite set of states.
– estartE , a state from estatesE known as the start state.

– erandE , for each state s ∈ estatesE , a probability distribution over estatesE .
– einE , an input generation function that maps estatesE to In

⊥.
– etransE , a transition function that maps estatesE ×O⊥ to estatesE .

Definition 3 (Process). A process is some automaton P consisting of the
following components:

– statesP , a potentially infinite set of states.
– randP , for each state s ∈ statesP , is a probability distribution over statesP .
– startP , a state from statesP known as the start state.
– msgP , a message generation function that maps statesP × I⊥ to M⊥.
– outP , an output generation function that maps statesP × I⊥ ×R⊥ to O⊥.
– freqP , a frequency selection function that maps statesP × I⊥ to [F].
– transP , a state transition function mapping statesP ×R⊥ ×I⊥ to statesP .

Definition 4 (Algorithm). An algorithm A is a mapping from [n] to processes.

Definition 5 (System). A system (E ,A, C), consists of an environment E, an
algorithm A, and a channel C.

Definition 6 (Execution). An execution of a system (E ,A, C) is an infinite
sequence

S0, C0, E0, R
S
1 , RC

1 , RE
1 , I1,M1, F1, N1, O1, S1, C1, E1, ...

where for all r ≥ 0, Sr and RS
r map each i ∈ [n] to a process state from A(i),

Cr and RC
r are in cstatesC, Er and RE

r are in estatesE , Mr is in Mn
⊥, Fr is

in [F]n, Nr is in Rn
⊥, Ir is in In

⊥, and Or is in On
⊥. We assume the following

constraints:

1. C0 = cstartC, E0 = estartE , and ∀i ∈ [n] : S0[i] = startA(i).
2. For every round r > 0:

(a) ∀i ∈ [n] : RS
r [i] is selected according to distribution randA(i)(Sr−1[i]),

RC
r is selected according to crandC(Cr−1), and RE

r is selected according
to erandE(Er−1).

(b) Ir = einE(RE
r).

(c) ∀i ∈ [n] : Mr[i] = msgA(i)(RS
r [i], Ir[i]) and Fr[i] = freqA(i)(RS

r [i], Ir[i]).
(d) Nr = crecvC(RC

r ,Mr, Fr).
(e) ∀i ∈ [n] : Or[i] = outA(i)(RS

r [i], Ir[i], Nr[i]).
(f) ∀i ∈ [n] : Sr[i] = transA(i)(RS

r [i], Nr[i], Ir[i]), Cr = ctransC(RC
r ,Mr, Fr),

and Er = etransE(RE
r , Or).

In each round: first the processes, environment, and channel transform their
states (probabilistically); then the environment generates inputs to pass to the
processes; then the processes each generate a message to send (or ⊥ if they
plan on receiving) and a frequency to use; then the channel returns the received
messages to the processes; then the processes generate output values to pass
back to the environment; and finally all automata transition to a new state.

Definition 7 (Execution Prefix). An execution prefix of a system (E, A, C),
is a finite prefix of some execution of the system. The prefix is either empty or
ends with an environment state assignment Er, r ≥ 0. That is, it contains no
partial rounds.

2.2 Trace Probabilities

To capture the probability of various system behaviors we start by defining the
function Q:

Definition 8 (Q). For every system (E ,A, C), and every execution prefix α of
this system, Q(E ,A, C, α) describes the probability that (E ,A, C) generates α.
That is, the product of the probabilities of state transitions in α as described by
randA, crandC, and erandE .

Next, we define a trace to be a finite sequence of vectors from In
⊥ ∪ On

⊥;
i.e., a sequences of inputs and outputs passed between an algorithm and an
environment. And we use T to describe the set of all traces Using Q, we can
define functions that return the probability that a system generates a given trace.
First, however, we need a collection of helper definitions to extract traces from
prefixes. Specifically, the function io maps an execution prefix to the subsequence
consisting only of the In

⊥ and On
⊥ vectors. The function cio, by contrast, maps an

execution prefix α to io(α) with all ⊥n vectors removed. Finally, the predicate
term returns true for an execution prefix α if and only if the output vector in
the final round of α is not ⊥n.

Definition 9 (D & Dtf). For every system (E ,A, C), and every trace β :
D(E ,A, C, β) =

∑
α|io(α)=β Q(E ,A, C, α) and

Dtf (E ,A, C, β) =
∑

α|term(α)∧cio(α)=β Q(E ,A, C, α).

Both D and Dtf return the probability of a given system generating a
given trace. The difference between D and Dtf is that the latter ignores empty
vectors—that is, input or output vectors consisting only of ⊥. (The tf indicates
it is time-free; e.g., it ignores the time required between the generation of trace
elements.)

2.3 Problems

We define a problem and provide two definitions of solving a problem—one that
considers empty rounds (those with ⊥n) and one that does not. In the following,
let E be the set of all possible environments.

Definition 10 (Problem). A problem P is a function from environments to a
set of functions from traces to probabilities.

Definition 11 (Solves & Time-Free Solves). We say algorithm A solves
problem P using channel C if and only if ∀E ∈ E,∃F ∈ P (E),∀β ∈ T :
D(E ,A, C, β) = F (β). We say A time-free solves P using C if and only if:
∀E ∈ E,∃F ∈ P (E),∀β ∈ T : Dtf (E ,A, C, β) = F (β).

For some of the proofs that follow, we need to restrict our attention to envi-
ronments that are indifferent to delays.

Definition 12. We say an environment E is delay tolerant if and only if for
every state s ∈ estatesE and ŝ = etransE(s,⊥n), the following conditions hold:

1. einE(ŝ) = ⊥n.
2. erandE(ŝ)(ŝ) = 1.
3. etransE(ŝ,⊥n) = ŝ.
4. for every non-empty output assignment O, etransE(ŝ, O) = etransE(s,O).

When a delay tolerant environment receives output ⊥n in some state s, it
transitions to a special marked version of the current state, denoted ŝ, and cycles
on this state until it next receives a non-⊥n output. In other words, it behaves
the same regardless of how many consecutive ⊥n outputs it receives. We use this
definition of a delay tolerant environment to define a delay tolerant problem.

Definition 13 (Delay Tolerant Problem). We say a problem P is delay
tolerant if and only if for every environment E that is not delay tolerant, P (E)
returns the set containing every trace probability function.

3 Implementing Channels

Here we construct a precise notion of implementing a channel with another
channel as a special case of a problem. In the following, we say an input value
is send enabled if it is from (send × M⊥ × F). We say an input assignment
(i.e., vector from In

⊥) is send enabled if all inputs values in the assignment are
send enabled. Similarly, we say an output value is receive enabled if it is from
(recv×R⊥), and an output assignment (i.e., vector from On

⊥) is receive enabled
if all output values in the assignment are receive enabled. Finally, we say an
input or output assignment is empty if it equals ⊥n

Definition 14 (Channel Environment). An environment E is a channel en-
vironment if and only if it satisfies the following criteria: (1) It is delay tolerant;
(2) it generates only send enabled and empty input assignments; and (3) it gen-
erates a send enabled input assignment in the first round and in every round
r > 1 such that it received a receive enabled output vector in r − 1. In every
other round it generates an empty input assignment.

These constraints require the environment to pass down messages to send
as inputs and then wait for the corresponding received messages, encoded as
algorithm outputs, before continuing with the next batch messages to send. This
formalism is used below in our definition of a channel problem. The natural pair
to a channel environment is a channel algorithm, which behaves symmetrically.

Definition 15 (Channel Algorithm). We say an algorithm A is a channel
algorithm if and only if: (1) it only generates receive enabled and empty output
assignments; (2) it never generates two consecutive received enabled output as-
signments without a send enabled input in between; and (3) given a send enabled
input it eventually generates a receive enabled output.

Definition 16 (AI). Each process P of the channel identity algorithm AI be-
haves as follows. If P receives a send enabled input (send, m, f), it sends message
m on frequency f during that round and generates output (revc,m′), where m′

is the message it receives in this same round. Otherwise it sends ⊥ on frequency
1 and generates output ⊥.

Definition 17 (Channel Problem). For a given channel C we define the cor-
responding (channel) problem PC as follows: ∀E ∈ E, if E is a channel envi-
ronment, then PC(E) = {F}, where, ∀β ∈ T : F (β) = Dtf (E ,AI , C, β). If E is
not a channel environment, then PC(E) returns the set containing every trace
probability function.

The effect of combining E with AI and C is to connect E directly with C.
With the channel problem defined, we can conclude with what it means for an
algorithm to implement a channel.

Definition 18 (Implements). We say an algorithm A implements a channel
C using channel C′ only if A time-free solves PC using C′.

4 Composition

We prove two useful composition results. The first simplifies the task of solving
a complex problem on a weak channel into implementing a strong channel using
a weak channel, then solving the problem on the strong channel. The second
result simplifies proofs that require us to show that the channel implemented by
a channel algorithm satisfies given automaton constraints.

4.1 The Composition Algorithm

Assume we have an algorithm AP that time-free solves a delay tolerant prob-
lem P using channel C, and an algorithm AC that implements channel C using
some other channel C′. In this section we describe how to construct algorithm
A(AP ,AC) that combines AP and AC . We then prove that this composition al-
gorithm solves P using C′. We conclude with a corollary that generalizes this
argument to a sequence of channel implementation arguments that start with
C′ and end with C. Such compositions are key for a layered approach to radio
network algorithm design.

Composition Algorithm Overview. At a high-level, the composition algorithm
A(AP ,AC) calculates the messages generated by AP for the current round of
AP being emulated. It then pauses AP and executes AC to emulate the messages
being sent on C. This may require many rounds (during which the environment
is receiving only ⊥n from the composed algorithm—necessitating its delay toler-
ance property). When AC finishes computing the received messages, we unpause
AP and finish the emulated round using these messages. The only tricky point in
this construction is that when we pause AP we need to store a copy of its input,
as we will need this later to complete the simulated round once we unpause. The
formal definition follows:

Definition 19 (The Composition Algorithm: A(A,AC)). Let AP be an al-
gorithm and AC be a channel algorithm that implements channel C using channel
C′. Fix any i ∈ [n]. To simplify notation, let A = A(AP ,AC)(i), B = AP (i),
and C = AC(i). We define process A as follows:

– statesA ∈ statesB × statesC × {active, paused} × I⊥ .
Given such a state s ∈ statesA, we use the notation s.prob to refer to the
statesB component, s.chan to refer to the statesC component, s.status to
refer to the {active, paused} component, and s.input to refer to the I⊥ com-
ponent. The following two helper function simplify the remaining definitions
of process components:
• siminput(s ∈ statesA, in ∈ I⊥) : the function evaluates to ⊥ if s.status =

paused, and otherwise evaluates to input:
(send, msgB(s.prob, in), freqB(s.prob, in)).

• simrec(s ∈ statesA, in ∈ I⊥,m ∈ R⊥) : the function evaluates to ⊥ if
outC(s.chan, siminput(s, in),m) = ⊥, otherwise if
outC(s.chan, siminput(s, in),m) = (recv,m′) for some m′ ∈ R⊥, it re-
turns m′.

– startA = (startB , startC , active,⊥).
– msgA(s, in) = msgC(s.chan, siminput(s, in)).
– freqA(s, in) = freqC(s.chan, siminput(s, in)).
– outA(s, in,m) : let m′ = simrec(s.chan, siminput(s, in),m). The outA func-

tion evaluates to ⊥ if m′ = ⊥, or outB(s.prob, s.input,m′) if m′ 6= ⊥ and
s.state = passive, or outB(s.prob, in,m′) if m′ 6= ⊥ and s.state = active.

– randA(s)(s′) : the distribution evaluates to randC(s.chan)(s′.chan) if s.status =
s′.status = paused, s.input = s′.input, and s.prob = s′.prob, or evaluates
to randB(s.prob)(s′.prob) · randC(s.chan)(s′.chan) if s.status = s′.status =
active and s.input = s′.input, or evaluates to 0 if neither of the above two
cases hold.

– transA(s,m, in) = s′ where we define s′ as follows. As in our definition of
outA, we let m′ = simrec(s.chan, siminput(s, in),m):
• s′.prob = transB(s.prob, m′, s.input) if m′ 6= ⊥ and s.status = paused,

or transB(s.prob, m′, in) if m′ 6= ⊥ and s.status = active, or s.prob if
neither of the above two cases hold.

• s′.chan = transC(s.chan, m, siminput(s, in)).

• s′.input = in if in 6= ⊥, otherwise it equals s.input.
• s′.status = active if m′ 6= ⊥, otherwise it equals paused.

We now prove that this composition works (i.e., solves P on C′). Our strategy
uses channel-free prefixes: execution prefixes with the channel states removed.
We define two functions for extracting these prefixes. The first, simpleReduce,
removes the channel states from an execution prefix. The second, compReduce,
extracts the channel-free prefix that describes the emulated execution prefix of
AP captured in an execution prefix of a (complex) system that includes a com-
position algorithm consisting of AP and a channel implementation algorithm.

Definition 20 (Channel-Free Prefix). We define a sequence α to be a channel-
free prefix of an environment E and algorithm A if and only if there exists an
execution prefix α′ of a system including E and A, such that α describes α′ with
the channel state assignments removed.

Definition 21 (simpleReduce). Let E be a delay tolerant environment, AP

be an algorithm, and C a channel. Let α be an execution prefix of the system
(E ,AP , C). We define simpleReduce(α) to be the channel-free prefix of E and
AP that results when remove the channel state assignments from α.

Definition 22 (compReduce). Let E be a delay tolerant environment, AP be
an algorithm, AC be a channel algorithm, and C′ a channel. Let α′ be an exe-
cution prefix of the system (E ,A(AP ,AC), C′). We define compReduce(α′) to be
the channel-free prefix of E and AP that describes the emulated execution of AP

encoded in the composition algorithm state. If the final round of α′ is in the mid-
dle of an emulated round of AP (that is, the simulated output of AC—described
by simoutput in the formal definition of the composition algorithm—is ⊥n for
this round), we return the special marker null. This matches the intuition that
the emulated execution is undefined for such prefixes. Otherwise, we return the
channel-free prefix α defined as follows:

1. Divide α′ into emulated rounds. Each emulated round begins with a round
in which siminput returns a send enabled input for all processes and ends
with the next round in which simrec returns a message at every process.
(Recall, simrec and siminput are defined in the definition of the composition
algorithm.) It is possible that this is the same round; i.e., if the AC emulation
of C used only a single round.

2. For each emulated round r of α′, we define the corresponding round r of α
as follows:
(a) Set the randomized algorithm state (RS

r) equal to the algorithm state
described in the prob component of the algorithm state from the first
round of the emulated round.

(b) Set the send message and frequency assignments equal to the values gen-
erated by applying siminput to the first round of the emulated round.

(c) Set the receive message assignments equal to the values generated by
applying simrec to the last round of the emulated round.

(d) Set the input assignment equal to the input assignment from the first
round of the emulated round.

(e) Set the output assignment equal to the output assignment from the last
round of the emulated round.

(f) Set the final algorithm state (Sr) equal to the final algorithm state of the
last round of the emulated round.

(g) Set the final environment state to the the final environment state of the
last round of the emulated round.

In other words, we are extracting the simulation of AP running on C that is
captured in the composition algorithm. Roughly speaking, we are projecting the
algorithm state onto the prob component and removing the rounds in which AP

was paused. Though in reality it is slightly more complicated as we also have to
“glue” the initial states of the first round and the final states of the last round
of the emulated round together (for both the algorithm and environment). In
addition, we also have to replace the message and frequency assignments with
the values emulated in the composition algorithm.

We continue with a helper lemma that proves that the execution of AP

emulated in an execution of a composition algorithm that includes AP , unfolds
the same as AP running by itself.

Lemma 1. Let E be a delay tolerant environment, AP be an algorithm, and AC
be a channel algorithm that implements C with C′. Let α be a channel-free prefix
of E and AP . It follows:∑
α′|simpleReduce(α′)=α

Q(E ,AP , C, α′) =
∑

α′′|compReduce(α′′)=α

Q(E ,A(AP ,AC), C′, α′′)

Proof. To simplify notation, we begin with two helper definitions. Let S′s(γ), for
channel-free prefix γ of E and AP , contain every prefix α′ of (E ,AP , C) such that
simpleReduce(α′) = γ. Let S′c(γ) contain every prefix α′′ of (E ,A(AP ,AC), C′)
such that compReduce(α′′) = γ.

We proceed by induction on the rounds of α. Assume there are R total rounds.
We use the notation α[r], 0 ≤ r ≤ R, to refer to the prefix of α through round
r. Our hypothesis assumes that for a given r, 0 ≤ r < R:∑

α′∈S′
s(α[r])

Q(E ,AP , C, α′) =
∑

α′′∈S′
c(α[r])

Q(E ,A(AP ,AC), C′, α′′)

The base case of r = 0 is trivial, as S′s(α[0]) and S′c(α[0]) both contain the
single unique start state of their respective system. All systems generate their
start state with same probability: 1.

We continue with the inductive step. Fix some r < R for which our hypoth-
esis holds. Consider any α′ ∈ S′s(α[r]) and α′′ ∈ S′c(α[r]). Let se by the final
environment state in α′. Let si

p, ∀i ∈ [n], be the final state for process i in α′.
We first claim that se is also the final environment state in α′′ and si

p, ∀i ∈ [n],

is the state stored in the prob component of the final process i state in α′′. This
follows from our assumption that compReduce(α′′) = simpleReduce(α′).

Now let us consider how the two systems unfold for round r + 1. We begin
with the input. In the simple system (i.e., (E ,AP , C)), the new environment
state is chosen by the distribution erandE(se) which then uniquely determines
the input for this round. In the complex system (i.e., (E ,A(AP ,AC), C′)), the
new environment state is chosen by the same distribution. It follows that the
inputs for round r + 1 are chosen the same in both systems.

We turn next to the algorithms random transitions. For each process i, both
systems probabilistically chose the state for this r+1 using the same distribution
randAP (i)(si

p). The messages and frequencies are uniquely determined by this
choice of state and the input.

We continue with the received messages. By the definition of implements,
given a message and frequency assignment, the emulation of AC will return a
given received message assignment with the same probability as the actual chan-
nel C. Therefore, the probability of each possible received message assignment—
given the same messages sent—is the same in both systems. The output is
uniquely determined by these messages and the input.

We conclude with the final state transitions. If the emulation of AC took
multiple rounds, the delay tolerant environment E has been cycling on ŝe. The
transition of ŝe, given the non-⊥n input eventually generated by the composition
algorithm, behaves identically to the same transition given se (by the definition of
delay tolerant), so, given the same outputs, both systems transition to the same
environment state. The same holds true for the process states. As both systems
unfold according to the same distributions, their probabilities of generating α[r+
1] (by their respective reduce functions) are the same. ut

We can now prove our main theorem and then a corollary that generalizes
the result to a chain of implementation algorithms.

Theorem 1 (Algorithm Composition). Let AP be an algorithm that time-
free solves delay tolerant problem P using channel C. Let AC be an algorithm that
implements channel C using channel C′. It follows that the composition algorithm
A(AP ,AC) time-free solves P using C′.

Proof. By unwinding the definition of time-free solves, we rewrite our task as
follows:

∀E ∈ E,∃F ∈ P (E),∀β ∈ T : Dtf (E ,A(AP ,AC), C′, β) = F (β).

Fix some E . Assume E is delay tolerant (if it is not, then P (E) describes every
trace probability function, and we are done). Define trace probability function
F such that ∀β ∈ T : F (β) = Dtf (E ,AP , C, β). By assumption F ∈ P (E).
It is sufficient, therefore, to show that ∀β ∈ T : Dtf (E ,A(AP ,AC), C′, β) =
F (β) = Dtf (E ,AP , C, β). Fix some β. Below we prove the equivalence. We begin,
however, with the following helper definitions:

– Let ccp(β) be the set of every channel-free prefix α of E and AP such that
term(α) = true and cio(α) = β.2

– Let Ss(β), for trace β, describe the set of prefixes included in the sum that
defines Dtf (E ,AP , C, β), and Sc(β) describe the set of prefixes included in the
sum that defines Dtf (E ,A(AP ,AC), C′, β). (The s and c subscripts denote
simple and complex, respectively.) Notice, for a prefix to be included in Sc

it cannot end in the middle of an emulated round, as this prefix would not
satisfy term.

– Let S′s(α), for channel-free prefix α of E and AP , be the set of every prefix α′

of (E ,AP , C) such that simpleReduce(α′) = α. Let S′c(α) be the set of every
prefix α′′ of (E ,A(AP ,AC), C′) such that compReduce(α′′) = α. Notice, for
a prefix α′′ to be included in S′c, it cannot end in the middle of an emulated
round, as this prefix would cause compReduce to return null.

We continue with a series of 4 claims that establish that {S′s(α) : α ∈ ccp(β)}
and {S′c(α) : α ∈ ccp(β)} partition Ss(β) and Sc(β), respectively.

Claim 1:
⋃

α∈ccp(β) S′s(α) = Ss(β).
We must show two directions of inclusion. First, given some α′ ∈ Ss(β),
we know α = simpleReduce(α′) ∈ ccp(β), thus α′ ∈ S′s(α). To show the
other direction, we note that given some α′ ∈ S′s(α), for some α ∈ ccp(β),
simpleReduce(α′) = α. Because α generates β by cio and satisfies term, the
same holds for α′, so α′ ∈ Ss(β).

Claim 2:
⋃

α∈ccp(β) S′c(α) = Sc(β).
As above, we must show two directions of inclusion. First, given some α′′ ∈
Sc(β), we know α = compReduce(α′′) ∈ ccp(β), thus α′′ ∈ S′c(α). To show
the other direction, we note that given some α′′ ∈ S′c(α), for some α ∈ ccp(β),
compReduce(α′′) = α. We know α generates β by cio and satisfies term.
It follows that α′′ ends with the same final non-empty output as α, so it
satisfies term. We also know that compReduce removes only empty inputs
and outputs, so α′′ also maps to β by cio. Therefore, α′′ ∈ Sc(β).

Claim 3: ∀α1, α2 ∈ ccp(β), α1 6= α2 : S′s(α1) ∩ S′s(α2) = ∅.
Assume for contradiction that some α′ is in the intersection. It follows that
simpleReduce(α′) equals both α1 and α2. Because simpleReduce returns a
single channel-free prefix, and α1 6= α2, this is impossible.

Claim 4: ∀α1, α2 ∈ ccp(β), α1 6= α2 : S′c(α1) ∩ S′c(α2) = ∅.
Follows from the same argument as claim 3 with compReduce substituted
for simpleReduce.

The following two claims are a direct consequence of the partitioning proved
above and the definition of Dtf :

2 This requires some abuse of notation as cio and term are defined for prefixes, not
channel-free prefixes. These extensions, however, follow naturally, as both cio and
term are defined only in terms of the input and output assignments of the prefixes,
and these assignments are present in channel-free prefixes as well as in standard
execution prefixes.

Claim 5:
∑

α∈ccp(β)

∑
α′∈S′

s(α) Q(E ,AP , C, α′) = Dtf (E ,AP , C, β).

Claim 6:
∑

α∈ccp(β)

∑
α′∈S′

c(α) Q(E ,A(AP ,AC), C′, α′) = Dtf (E ,A(AP ,AC), C′, β).

We conclude by combining claims 5 and 6 with Lemma 1 to prove that:

Dtf (E ,A(AP ,AC), C′, β) = Dtf (E ,AP , C, β),

as needed. ut

Corollary 1 (Generalized Algorithm Composition). Let A1,2, ..., Aj−1,j,
j > 2, be a sequence of algorithms such that each Ai−1,i, 1 < i ≤ j, implements
channel Ci−1 using channel Ci. Let AP,1 be an algorithm that time-free solves de-
lay tolerant problem P using channel C1. It follows that there exists an algorithm
that time-free solves P using Cj.

Proof. Given an algorithm AP,i that time-free solves P with channel Ci, 1 ≤
i < j, we can apply Theorem 1 to prove that AP,i+1 = A(AP,i, Ai,i+1) time-free
solves P with channel Ci+1. We begin with AP,1, and apply Theorem 1 j − 1
times to arrive at algorithm AP,j that time-free solves P using Cj .

4.2 The Composition Channel

Given a channel implementation algorithm A and a channel C′, we define the
channel C(A, C′). This composition channel encodes a local emulation of A and C′
into its probabilistic state transitions. We formalize this notion by proving that
A implements C(A, C′) using C′. To understand the utility of this result, assume
you have a channel implementation algorithm A and you want to prove that A
using C′ implements a channel that satisfies some useful automaton property.
(As shown in Sect. 5, it is often easier to talk about all channels that satisfy a
property than to talk about a specific channel.) You can apply our composition
channel result to establish that A implements C(A, C′) using C′. This reduces
the task to showing that C(A, C′) satisfies the relevant automaton properties.

Composition Channel Overview. At a high-level, the composition channel C(A, C′),
when passed a message and frequency assignment, emulates A using C′ being
passed these messages and frequencies as input and then returning the emulated
output from A as the received messages. This emulation is encoded into the
crand probabilistic state transition of C(A, C′). To accomplish this feat, we have
define two types of states: simple and complex. The composition channel starts
in a simple state. The crand distribution always returns complex states, and the
ctrans transition function always returns simple states, so we alternate between
the two. The simple state contains a component pre that encodes the history
of the emulation of A and C′ used by C(A, C′) so far. The complex state also
encodes this history in pre, in addition it encodes the next randomized state

transitions of A and C′ in a component named ext, and it stores a table, en-
coded in a component named oext, that stores for each possible pair of message
and frequency assignments, an emulated execution prefix that extends ext with
those messages and frequencies arriving as input and ending when A generates
the corresponding received messages. The crecv function, given a message and
frequency assignment and complex state, can look up the appropriate row in
oext and return the received messages described in the final output of this ex-
tension. This approach of simulating prefixes for all possible messages in advance
is necessitated by the fact that the randomized state transition occurs before the
channel receives the messages being sent in that round.

Below we provide a collection helper definitions which we then use in the
formal definition of the composition channel.

Definition 23 (toinput). Let the function toinput map pairs from Mn
⊥ × [F]n

to the corresponding send enabled input assignment describing these messages
and frequencies.

Definition 24 (Environment-Free Prefix). We define a sequence of assign-
ments α to be an environment-free prefix of an algorithm A and channel C if
and only if there exists an execution prefix α′, of a system including A and C,
such that α describes α′ with the environment state assignments removed.

Definition 25 (State Extension). Let α be an environment-free prefix of
some algorithm A and channel C. We define a state extension of α to be α
extended by any RS , RC , where ∀i ∈ [n] : RS [i] ∈ statesA(i), RC ∈ cstatesC, and
the final process and channel state assignments of α can transform to RS and
RC with non-0 probability by randA and crandC, respectively.

In other words, we extend the prefix α by the next states of the channel and
algorithm. We continue with a longer extension.

Definition 26 (I-Output Extension). Let α be an environment-free prefix of
some algorithm A and channel C. Let α′ be a state extension of α. We define
a I-output extension of α′, for some I ∈ In

⊥, to be any extension of α′ that has
input I in the first round of the extension, an empty input assignment (i.e., ⊥n)
in every subsequent round, and that ends in the first round with a receive enabled
output.

In other words, we extend our state extension with a particular input, after
which we run it with empty inputs until it outputs are receive enabled (if this
never happens, the extension is infinite).

We can now provide the formal definition of the composition channel:

Definition 27 (The Composition Channel: C(A, C′)). Let A be a channel
algorithm and C′ be a channel. To simplify notation, let C = C(A, C′). We define
the composition channel C as follows:

1. cstatesC contains two types of states: simple states that encode only an
environment-free prefix of A and C′; and complex states that encode an
environment-free prefix α of A and C′, a state extension α′ of α, and a
table that maps every pair, (M ∈ Mn

⊥,F ∈ [F]n) to an (toinput(M,F))-
output extension of α′.
(For any simple state s, we use the notation s.pre to describe the environment-
free prefix encoded in s. For any complex state c, we use c.pre to describe the
environment-free prefix, c.ext to describe the state extension, and c.oext(M,F),
for message and frequency assignments M and F , to describe the output ex-
tension encoded in the table for those assignments.)

2. cstartC equals the simple state s0 where s0.pre describes the 0-round environment-
free prefix of A and C′.

3. crandC is defined for a simple state s, as follows: For every complex state
q: if q.pre 6= s.pre, then crandC(s)(q) = 0. Else, the distribution returns q
with the probability described by the probability that q.pre extends to q.ext
multiplied by the product of the probabilities of every extension in q.oext
conditioned on q.ext and the relevant input.

4. ctransC, when passed complex channel state q, message assignment M ∈
msgn

⊥, and frequency assignment F ∈ [F]n, returns the simple state s, where
s.pre = q.oext(M,F).

5. crecvC, when passed complex channel state q, message assignment M ∈
msgn

⊥, and frequency assignment F ∈ [F]n, returns the messages encoded in
the receive enabled output of the final round of q.oext(M,F).

To prove that A implements C(A, C′) on C′, we begin with a collection of
helper definitions and a helper lemma.

Definition 28 (ex). Let α be an execution prefix of a system (E ,AI , C(A, C′)),
where E is a channel environment, A is a channel algorithm, and C′ is a channel.
Let s be the final state of C(A, C′) in α. We define ex(α) to be the execution
prefix of (E ,A, C′) that results when we take the environment-free prefix s.pre
and then add in states of E to match the inputs encoded in s.pre. To do so, we
first add the states of E from α to the corresponding rounds in s.pre where the
inputs generated from those states appear. In all other rounds in s.pre we add
the marked version of the most recent preceding state from E. (Recall, because E
is a channel environment it is also delay tolerant, meaning the addition of these
marked states leaves a valid prefix.)

Notice, the new rounds added to α in s.pre—that is, the rounds that capture
the simulation of A and C′ captured by the composition channel—all return
⊥n as output. Therefore, by simply adding marked versions of the most recent
preceding E state to these new rounds, the resulting evolution of E in the prefix
remains valid.

Definition 29 (comp). Let α′ be an execution prefix of a system (E ,A, C′), E
be channel environment, and A be channel algorithm. Let comp(α′) be the set
that contains every execution prefix α of (E ,AI , C(A, C′)) such that ex(α) = α′.

Theorem 2 (The Composition Implementation Theorem). Let A be a
channel algorithm and C′ be a channel. It follows that A implements C(A, C′)
using C′.

To prove this theorem, we begin with a useful helper lemma.

Lemma 2. Let α′ be an execution prefix of a system (E ,A, C′), where E is a
channel environment, A is a channel algorithm, C′ is a channel, and the final out-
put in α′ is receive enabled. It follows: Q(E ,A, C′, α′) =

∑
α∈comp(α′) Q(E ,AI , C(A, C′), α)

Proof. Divide α′ into execution fragments, each beginning with a round with
a send enabled input and ending with the round containing the corresponding
receive enabled output. We call these fragments emulated rounds. By our as-
sumption that α′ ends with a receive enabled output, no part of α′ falls outside
of an emulated round.

Fix some emulated round er of α′. Let I be the send enabled input passed
down by the environment during er. Let M and F be the message and frequency
assignments encoded in I.

To simplify notation, in the following we use C as shorthand for the compo-
sition channel C(A, C′). Let s be the simple state of C that encodes in s.pre the
environment-free prefix obtained by removing the environment state assignments
from the prefix of α′ through emulated round er−1. Let X be the set containing
every complex state q such that: q.pre = s.pre and q.oext(M,F) extends q.pre
as described by er. (There is exactly one such extension for q.oext(M,F). There
can be multiple complex states, however, because the entries can vary freely in
the other rows of oext.)

We prove the following claim which we will subsequently wield to prove the
lemma:

1. Let pI describe the probability that er occurs given the prefix of α′ through
er − 1 and the input I. It follows:∑

q∈X

crandC(s)(q) = pI

To prove our claim, we unwind the definition of crandC and then simplify:

∑
q∈X

crandC(s)(q) =
∑
q∈X

Pr[q.ext|q.pre]
∏

(M ′,F ′)

Pr[q.oext(M ′, F ′)|s.ext, (M ′, F ′)]

= pI

∑
q∈X

∏
(M ′,F ′) 6=(M,F)

Pr[q.oext(M ′, F ′)|s.ext, (M ′, F ′)]

= pI

Notice, the final simplification depends on the fact that this product considers
every possible combination of extensions for the non-(M,F) rows.

We now apply this claim, which concerns only a single emulated round, to
prove the lemma, which concerns the entire prefix α′. We use induction on the
emulated round number of α′. Let R be the total number of emulated rounds in
α′. Let α′[r], 0 ≤ r ≤ R, describe the execution prefix of α′ through emulated
round r. Notice, because we assumed that α′ ends with a receive enabled output,
α′[R] = α′. Our hypothesis for any emulated round r ≤ R states:

Q(E ,A, C′, α′[r]) =
∑

α∈comp(α′[r])

Q(E ,AI , C, α)

We now prove our inductive step, given some r < R. Every execution in comp(α′[r])
concludes with the same simple channel state sr, where sr.pre describes the
environment-free prefix generated by removing the environment assignment states
from α′[r].

We know the probability that E passes down I for the next emulated round
of α′ is the same as the probability that it passes down I in round r + 1 of
any of the prefixes in comp(α′[r]). Finally, by applying claim 1 from above, we
determine that given a prefix that ends in sr, the probability that it transform
by crandC to a state that describes α′[r+1] (given I) equals the probability that
α′[r] transforms to α′[r +1] (also given I). This combines to prove the inductive
step.

To summarize: the probability of a prefix in comp(α′[r]) equals the proba-
bility of α′[r]. The probability of a prefix in comp(α′[r]) extending to a prefix
in comp(α′[r + 1]), given the input I, is the same as α′[r] extending to α′[r + 1]
given I. Finally, the probability of I is the same in both.

We conclude the proof by noting that the base case is follows from the fact
that the probability of α[0] and comp(α[0]) is 1 in both systems. ut

We now return to the main theorem.

Proof (of Theorem 2). By unwinding the definition of implements, we can rewrite
the theorem statement as follows: for every channel environment E and trace
β ∈ T :
Dtf (E ,A, C′, β) = Dtf (E , AI , C(A, C′), β). Fix one such channel environment E .
To prove our above equality, it is sufficient to show that for every β ∈ T , the two
trace probability functions return the same probability. We first introduce some
simplifying notation: Scomp = (E , AI , C), and S = (E ,A, C′). We now rewrite our
equality regarding Dtf in terms of Q:

∀β ∈ T :
∑

α′|term(α′)∧cio(α′)=β Q(S, α′) =∑
α|term(α)∧cio(α)=β Q(Scomp, α)

For simplicity, we will call the Q(S, ∗) sum the first sum and the Q(Scomp, ∗) sum
the second sum. We restrict our attention to traces that end with a non-empty
output, as any other trace would generate 0 for both sums. Fix one such trace
β. For this fixed β, consider each α′ included in the first sum. (By the definition

of term, each such α′ must also end with a non-empty output.) By Lemma 2,
we know:

Q(S, α′) =
∑

α∈comp(α′)

Q(Scomp, α)

Recall that α ∈ comp(α′) ⇒ cio(α′) = cio(α) and term(α) = true, so each
execution in our comp set is included in the second sum.

We next note that for every pair of executions α′1 and α′2 of S, such that
α′1 6= α′2: comp(α′1)∩comp(α′2) = ∅. In other words, each execution included from
S is associated with a disjoint set of matching executions from Scomp. To see why,
assume for contradiction that there exists some α ∈ comp(α′1) ∩ comp(α′2). It
follows that ex(α) equals both α′1 and α′2. However, because ex is deterministic,
and α′1 6= α′2, this is impossible.

It follows that for each α′ included in the first sum there is a collection of
execution prefixes included in the second sum that add the same probability
mass. Furthermore, none of these collections overlap.

To prove that the probability mass is exactly equal, we are left only to argue
that every prefix included in the second sum is covered by one of these comp
sets. Let α be a prefix included in the second sum. We know that cio(α) = β
and term(α) = true, therefore the same holds of ex(α) which implies that α is
covered by comp(ex(α)). ut

5 Case Study

We highlight the power and flexibility of our framework with a simple example.
We begin by defining two types of channels: p-reliable and t-disrupted. The for-
mer is an idealized single-hop single-frequency radio channel with a probabilistic
guarantee of successful delivery (e.g., as considered in [15]). The latter is a real-
istic single-hop radio channel, comprised of multiple independent frequencies, up
to t of which might be permentantly disrupted by outside sources of interference
(e.g., as considered in [16]). We then describe a simple algorithm Arel and sketch
a proof that it implements the reliable channel using the disrupted channel. Be-
fore defining the two channel types, however, we begin with this basic property
used by both:

Definition 30 (Basic Broadcast Property). We say a channel C satisfies
the basic broadcast property if and only if for every state s, message assignment
M , and frequency assignments F , N = crecvC(s,M,F) satisfies the following:

1. If M [i] 6= ⊥ for some i ∈ [n]: N [i] = M [i].
(Broadcasters receive their own messages.)

2. If N [i] 6= ⊥, for some i ∈ [n], then there exists a j ∈ [n] : M [j] = N [i] ∧
F [j] = F [i].
(If i receives a message then some process sent that message on the same
frequency as i.)

3. If there exists some i, j, k ∈ [n], i 6= j 6= k, such that F [i] = F [j] = F [k],
M [i] 6= ⊥, M [j] 6= ⊥, and M [k] = ⊥, it follows that N [k] = ⊥.
(Two or more broadcasters on the same frequency cause a collision at re-
ceivers on this frequency.)

Definition 31 (p-Reliable Channel). We say a channel C satisfies the p-
reliable channel property, p ∈ [0, 1], if and only if C satisfies the basic broadcast
property, and there exists a subset S of the states, such that for every state
s, message assignment M , and frequency assignments F , N = crecvC(s,M,F)
satisfies the following:

1. If F [i] > 1 ∧M [i] = ⊥, for some i ∈ [n], then N [i] = ⊥.
(Receivers on frequencies other than 1 receive nothing.)

2. If s ∈ S and |{i ∈ [n] : F [i] = 1,M [i] 6= ⊥}| = 1, then for all j ∈ [n] such
that F [j] = 1 and M [j] = ⊥: N [j] = M [i].
(If there is a single broadcaster on frequency 1, and the channel is in a state
from S, then all receivers on frequency 1 receive its message.)

3. For any state s′,
∑

s∈S crandC(s′)(s) ≥ p.
(The probability that we transition into a state in S—i.e., a state that guar-
antees reliable message delivery—is at least p.)

Definition 32 (t-Disrupted Channel). We say a channel C satisfies the t-
disrupted property, 0 ≤ t < F , if and only if C satisfies the basic broadcast chan-
nel property, and there exists a set Bt ⊂ [F], |Bt| ≤ t, such that for every state
s, message assignment M , and frequency assignment F , N = crecvC(s,M,F)
satisfies the following:

1. If M [i] = ⊥ and F [i] ∈ Bt, for some i ∈ [n]: N [i] = ⊥.
(Receivers receive nothing if they receive on a disrupted frequency.)

2. If for some f ∈ [F], f /∈ Bt, |{i ∈ [n] : F [i] = f,M [i] 6= ⊥}| = 1, then for all
j ∈ [n] such that F [j] = f and M [j] = ⊥, N [j] = M [i], where i is the single
process from the above set of broadcasters on f .
(If there is a single broadcaster on a non-disrupted frequency then all re-
ceivers on that frequency receive the message.)

Consider the channel algorithm, Arel, that works as follows: The randomized
transition randArel(i) encodes a random frequency fi for each process i in the re-
sulting state. This choice is made independently and at random for each process.
If a process Arel(i) receives an input from (send, m ∈M, 1), it broadcasts m on
frequency fi and outputs (recv,m). If the process receives input (send,⊥, 1) it
receives on fi, and then outputs (recv,m′), where m′ is the message it receives.
Otherwise, it outputs (recv,⊥). We now prove that Arel implements a reliable
channel using a disrupted channel.

Theorem 3. Fix some t, 0 ≤ t < F . Given any channel C that satisfies the
t-disrupted channel property, the algorithm Arel implements a channel that sat-
isfies the (F−t

Fn)-reliable channel property using C.

Proof (Sketch). By Theorem 2 we know Arel implements C(Arel, C) using C.
We are left to show that C(Arel, C) satisfies the (F−t

Fn)-reliable channel property.
Condition 1 of this property follows from the definition of Arel. More interesting
is the combination of 2 and 3. Let Bt be the set of disrupted frequencies asso-
ciated with C. A state s returned by crandC(Arel,C) is in S if the final state of
Arel in s.ext encodes the same f value for all processes, and this value is not
in Bt. Because each process chooses this f value independently and at random,
this occurs with probability at least (F−t

Fn). ut

Next, imagine that we have some algorithm AP that solves a delay tolerant
problem P (such as randomized consensus, which is easily defined in a delay tol-
erant manner) on a (F−t

Fn)-reliable channel. We can apply Theorem 1 to directly
derive that A(AP ,Arel) solves P on any t-disrupted channel C′. In a similar
spirit, imagine we have an algorithm A+

rel that implements a (1/2)-reliable chan-
nel using a (F−t

Fn)-reliable channel, and we have an algorithm AP ′ that solves
delay tolerant problem P ′ on a (1/2)-reliable channel. We could apply Corol-
lary 1 to AP ′ , A+

rel, and Arel, to identify an algorithm that solves P ′ on our
t-disrupted channel. And so on.

6 Conclusion

In this paper we present a modeling framework for synchronous probabilistic
radio networks. The framework allows for the precise definition of radio channels
and includes a pair of composition results that simplify a layered approach to
network design (e.g., implementing stronger channels with weaker channels). We
argue that this framework can help algorithm designers sidestep problems due
to informal model definitions and more easily build new results using existing
results. Much future work remains regarding this research direction, including
the formalization of well-known results, exploration of more advanced channel
definitions (e.g., multihop networks or adversarial sources of error), and the
construction of implementation algorithms to link existing channel definitions.

References

1. Abramson, N.: The Aloha system - Another approach for computer communica-
tions. The Proceedings of the Fall Joint Computer Conference 37 (1970) 281–285

2. Roberts, L.G.: Aloha packet system with and without slots and capture. In:
ASS Note 8. Advanced Research Projects Agency, Network Information Center,
Stanford Research Institute (1972)

3. Kleinrock, L., Tobagi, F.: Packet switching in radio channels. IEEE Transactions
on Communications COM-23 (1975) 1400–1416

4. Hajek, B., van Loon, T.: Decentralized dynamic control of a multiaccess broadcast
channel. IEEE Transactions on Automation and Control AC-27 (1979) 559–569

5. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in
multi-hop radio networks: An exponential gap between determinism and random-
ization. Journal of Computer and System Sciences 45(1) (1992) 104–126

6. Chlamtac, I., Weinstein, O.: The wave expansion approach to broakodcasting in
multihop radio networks. IEEE Transactions on Communications 39 (1991) 426–
433

7. Clementi, A., Monti, A., Silvestri, R.: Round robin is optimal for fault-tolerant
broadcasting on wireless networks. Journal of Parallel and Distributed Computing
64(1) (2004) 89–96

8. Kowalski, D., Pelc, A.: Broadcasting in undirected ad hoc radio networks. In: The
Proceedings of the International Symposium on Principles of Distributed Comput-
ing. (2003) 73–82

9. Kowalski, D., Pelc, A.: Time of deterministic broadcasting in radio networks with
local knowledge. SIAM Journal on Computing 33(4) (2004) 870–891

10. Chockler, G., Demirbas, M., Gilbert, S., Lynch, N., Newport, C., Nolte, T.: Con-
sensus and collision detectors in radio networks. Distributed Computing 21 (2008)
55–84

11. Wu, S.H., Smolka, S.A., Stark, E.W.: Composition and behaviors of probabilistic
I/O automata. In: The Proceedings of the International Conference on Concur-
rency Theory. (1994)

12. Segala, R.: Modeling and verification of randomized distributed real-time sys-
tems. PhD thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology (June 1995)

13. Cheung, L.: Reconciling Nondeterministic and Probabilistic Choices. PhD thesis,
Radboud University Nijmege (2006)

14. Newport, C., Lynch, N.: Modeling radio networks. Technical report, MIT CSAIL
(2009)

15. Bar-Yehuda, R., Goldreich, O., Itai, A.: Efficient emulation of single-hop radio
network with collision detection on multi-hop radio network with no collision de-
tection. Distributed Computing 5 (1991) 67–71

16. Gilbert, S., Guerraoui, R., Kowalski, D., Newport, C.: Interference-resilient infor-
mation exchange. In: The Proceedings of the Conference on Computer Communi-
cation. (2009)

