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– First-order Gauss Markov Processes 
– 

to be estimated are changing with time 

Estimation 

• Summary 

Kalman filters – Estimation in which the parameters
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Specific common processes 

jxx (t ) = s 2e -

Fxx (w) = 
2bs 2 

w 2 + b 2 
1 
b

 is correlation time 

• White-noise: Autocorrelation is Dirac-delta 
function; PSD is flat; integral of power under 
PSD is variance of process (true in general) 

• First-order Gauss-Markov process (one of 
most models common in Kalman filtering) 

b t 
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Other characteristics of FOGM 

dx 
dt 

x(t)b + w(t) 

x(t t) = e -Dtb x(t) + e -Dtb eub w(t + u)du 
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Variance of change in t D(t) = 2s 2 1- e - t b( ) 
w(t s 2 /(2b) 

Excitation function = -

Solution + D

White Noise Excitation 
444 444 

White noise, ), variance = F
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Characteristics of FOGM 

• This process noise model is very useful because as b, 
inverse correlation time, goes to infinity (zero
correlation time), the process is white noise 

• When the correlation time goes to infinity (b
process becomes random walk (ie, sum of white
noise). 

• NOTE: Random walk is not a stationary process
because its variance tends to infinity as time goes to
infinity 

• In the FOGM solution equation, note the damping
term e-Dtbx which keeps the process bounded 
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Formulation of Kalman filter 

measurements. 

deterministic. 

–>0),

• A Kalman filter is an implementation of a 
Bayes estimator. 

• Basic concept behind filter is that some of the 
parameters being estimated are random 
processes and as data are added to the filter, 
the parameter estimates depend on new data 
and the changes in the process noise between 

• Parameters with no process noise are called 
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properties. 
yt = A t xt + vt 

xt +1 = St xt + wt 

< vtvt 
T >= Vt < wtwt 

T >= Wt 

Formulation 

• For a Kalman filter, you have measurements 
y(t) with noise v(t) and a state vector 
(parameter list) which have specified statistical 

Observation equation at time t 
State transition equation 

Covariance matrices 
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Basic Kalman filter steps 

steps 

– 
data 

x̂t +1 
t = St x̂ t 

t St

Ct +1 
t = St Ct 

tSt 
T + Wt Wt

• Kalman filter can be broken into three basic 

• Prediction: Using process noise model, 
“predict” parameters at next data epoch 

Subscript is time quantity refers to, superscript is 

 is state transition matrix 
 is process noise covariance matrix 
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Prediction step 

• The state transition matrix S projects state vector
(parameters) forward to next time. 

Dt][0 1] 
-Dtb 

• The second equation projects the covariance matrix of
the state vector , C, forward in time. Contributions 
from state transition and process noise (W matrix). W 
elements are 0 for deterministic parameters 

– For random walks: S=1 
– For rate terms: S is matrix [1 
– For FOGM: S=e 
– For white noise S=0 
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Kalman Gain 

K = Ct +1 
t A t +1 

T Vt +1 + A t +1Ct +1 
t A t +1 

T( ) -1 

• The Kalman Gain is the matrix that allocates 
the differences between the observations at 
time t+1 and their predicted value at this time 
based on the current values of the state vector 
according to the noise in the measurements 
and the state vector noise 
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Update step 

• 
the filter and the covariance matrix of the state vector 
is updated. 

• The filter has now been updated to time t+1 and
measurements from t+2 can added and so on until all 
the observations have been added. 

x̂t +1 
t +1 = x̂t +1 

t + K(yt +1 - A t +1 x̂t +1 
t ) 

Ct +1 
t +1 = Ct +1 

t - KA t +1Ct +1 
t 

Step in which the new observations are “blended” into 
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Aspects to note about Kalman Filters 
• How is the filter started? Need to start with an apriori

state vector covariance matrix (basically at time 0) 
• Notice in updating the state covariance matrix. C, that

at each step the matrix is decremented. If the initial 
covariances are too large, then significant rounding

(variance 1010 mm apriori and data determines to 1
mm, then C

digits). 
• Square-root-information filters overcome this problem

filter. 

error in calculation eg. If position assumed ±100 m 

 is decremented by 10 orders of 
magnitude (double precision has on 12 significant 

but usually take longer to run than a standard Kalman 
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“Smoothing” filters 

• In a standard Kalman filters, the stochastic 
parameters obtained during the filter run are 
not optimum because they do not contain 
information about the deterministic parameters 
obtained from future data. 

• A smoothing Kalman filter, runs the filter 
forwards (FRF) and backwards in time (BRF), 
taking the full average of the forward filter at 
the update step with the backwards filter at the 
prediction step. 
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Smoothing filters 

B = C+ (C+ + C -)-1 C+ from FRF, C - from BRF 
x̂t 

s = x̂+ + B( ̂x - - x̂+ ) Smoothed state vector estimate 
Ct 

s = C+ - BC - Smoothed estimate covariance matrix 

• The derivation of the full average can be 
derived from the filter equations. 

• The smoothing filter is 
Smoothing Kalman Gain 
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Note on apriori constraints 

• In Kalman filter, apriori covariances must be applied to
all parameters, but cannot be too large or else large

matrices). 
• Error due to apriori constraints given approximately

by (derived from filter equations). 
• Approximate formulas assuming uncorrelated

parameter estimates and the apriori variance is large

can be determined. 

Properties of smoothing filter 

• Deterministic parameters (ie., no process 
noise) should remain constant with constant 
variance in smoothed results. 

• Solution takes about 2.5 times longer to run 
than just a forward filter 

• If deterministic parameters are of interest only, 
then just FRF needed. 

rounding errors (non-positive definite covariance 

compared to intrinsic variance with which parameter 
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Errors due to apriori constraints 

Dx̂ ª 
s 2 

s 0 
2 (x0 - x̂) D ̂x

(x0 - x̂); s 0 
2 s 2

s 2 

s 0 
2 1 

ª 
s 4 

s 0 
2 

to apriori variance 

 is error in estimates due to error in 

apriori  is apriori variance,  is variance of estimate. 

is assumed << 

Error in variance estimate is 

Note: Error depends on ratio of aposteriori to apriori 
variance rather than absolute magnitude of error in apriori 
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• In Kalman filters, apriori constraints must be given for all
parameters; not needed in weighted least squares (although can
be done). 

• Kalman filters allow zero variance parameters; can not be done is
WLS since inverse of constraint matrix needed 

• Kalman filters allow zero variance data; can not be done in WLS 

• Kalman filters allow method for applying absolute constraints;
can only be tightly constrained in WLS 

• In general, Kalman filters are more prone to numerical stability
problems and take longer to run (strictly many more parameters). 

• Process noise models can be implemented in WLS but very slow. 

Contrast between WLS and Kalman Filter 

again due to inverse of data covariance matrix. 
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Applications in GPS 

application 

• Most handheld GPS receivers use Kalman 
filters to estimate velocity and position as 
function of time. 

• Clock behaviors are “white noise” and can be 
treated with Kalman filter 

• Atmospheric delay variations ideal for filter 

• Stochastic variations in satellite orbits 
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