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12.540 Principles of the 
Global Positioning System

Lecture 03
Prof. Thomas Herring
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Review

• In last lecture we looked at conventional 
methods of measuring coordinates

• Triangulation, trilateration, and leveling
• Astronomic measurements using 

external bodies
• Gravity field enters in these 

determinations
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Gravitational potential

• In spherical coordinates: need to solve

• This is Laplace’s equation in spherical 
coordinates

1
r

∂ 2

∂r2 (rV )+ 1
r2 sinθ

∂
∂θ

(sinθ ∂V
∂θ

)+ 1
r2 sin2 θ

∂ 2V
∂λ2 = 0
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Solution to gravity potential

• The homogeneous form of this equation 
is a “classic” partial differential equation.

• In spherical coordinates solved by 
separation of variables, r=radius, 
λ=longitude and θ=co-latitude

V(r,θ,λ) = R(r)g(θ)h(λ)
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Solution in spherical 
coordinates

• The radial dependence of form rn or r-n

depending on whether inside or outside 
body. N is an integer

• Longitude dependence is sin(mλ) and 
cos(mλ) where m is an integer

• The colatitude dependence is more 
difficult to solve
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Colatitude dependence

• Solution for colatitude function 
generates Legendre polynomials and 
associated functions.

• The polynomials occur when m=0 in λ
dependence.  t=cos(θ)

Pn(t) = 1
2n n!

dn

dtn (t 2 −1)n
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Legendre Functions

• Low order 
functions.
Arbitrary n 
values are 
generated by 
recursive 
algorithms

Po(t) =1
P1(t) = t

P2 (t) = 1
2

(3t 2 −1)

P3(t) = 1
2

(5t 3 − 3t)

P4 (t) = 1
8

(35t 4 − 30t 2+3)
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Associated Legendre 
Functions

• The associated functions satisfy the 
following equation

• The formula for the polynomials, 
Rodriques’ formula, can be substituted

Pnm (t) = (−1)m (1− t 2 )m /2 dm

dt m Pn (t)
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Associated functions

• Pnm(t): n is called 
degree; m is order 

• m<=n.  In some 
areas, m can be 
negative.  In gravity 
formulations m=>0

P00 (t) =1
P10 (t) = t
P11(t) = −(1− t 2 )1/2

P20 (t) = 1
2

(3t 2 −1)

P21(t) = −3t(1− t 2 )1/2

P22 (t) = 3(1− t 2 )

http://mathworld.wolfram.com/LegendrePolynomial.html

http://mathworld.wolfram.com/LegendrePolynomial.html
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Ortogonality conditions

• The Legendre polynomials and 
functions are orthogonal:

Pn ' (t)
−1

1

∫ Pn(t)dt = 2
2n +1

δn 'n

Pn 'm (t)
−1

1

∫ Pnm (t)dt = 2
2n +1

(n + m)!
(n − m)!

δn 'n
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Examples from Matlab

• Matlab/Harmonics.m is a small matlab
program to plots the associated 
functions and polynomials

• Uses Matlab function: Legendre
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Polynomials
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“Sectoral Harmonics” m=n
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Normalized 
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Surface harmonics

• To represent field on surface of sphere; 
surface harmonics are often used

• Be cautious of normalization.  This is only one 
of many normalizations

• Complex notation simple way of writing 
cos(mλ) and sin(mλ)

Ynm (θ,λ) = 2m +1
4π

(n − m)!
(n + m)!

Pnm (θ)eimλ
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Surface 
harmonics

Zonal  ---- Terreserals ------------------------Sectorials



02/13/02 12.540 Lec 03 17

Gravitational potential

• The gravitational potential is given by:

• Where ρ is density, 
• G is Gravitational constant 6.6732x10-11

m3kg-1s-2 (N m2kg-2)
• r is distance
• The gradient of the potential is the 

gravitational acceleration

V = Gρ
r

dV∫∫∫
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Spherical Harmonic 
Expansion

• The Gravitational potential can be written as 
a series expansion

• Cnm and Snm are called Stokes coefficients

V = −GM
r

a
r

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

n=0

∞

∑
n

Pnm (cosθ ) Cnm cos(mλ)+ Snm sin(mλ)[ ]
m=0

n

∑
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Stokes coefficients

• The Cnm and Snm for the Earth’s 
potential field can be obtained in a 
variety of ways.

• One fundamental way is that 1/r 
expands as:

1
r

= d 'n

dn+1
n=0

∞

∑ Pn (cosγ )
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1/r expansion
• Pn(cosγ) can be expanded in 

associated functions as function of θ,λ

P

γ

dd'

dM

x
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Spherical harmonics

• The Stokes coefficents can be written 
as volumn integrals

• C00 = 1 if mass is correct
• C10, C11, S11 = 0 if origin at center of 

mass
• C21 and S21 = 0 if Z-axis along 

maximum moment of inertia



02/13/02 12.540 Lec 03 22

Global coordinate systems

• If the gravity field is expanded in 
spherical harmonics then the coordinate 
system can be realized by adopting a 
frame in which certain Stokes 
coefficients are zero.

• What about before gravity field was well 
known?
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