12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring

Review

- In last lecture we looked at conventional methods of measuring coordinates
- Triangulation, trilateration, and leveling
- Astronomic measurements using external bodies
- Gravity field enters in these determinations

Gravitational potential

 \bullet In spherical coordinates: need to solve

$$
\frac{1}{r}\frac{\partial^2}{\partial r^2}(rV) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial \theta}(\sin\theta\frac{\partial V}{\partial \theta}) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2 V}{\partial \lambda^2} = 0
$$

• This is Laplace's equation in spherical coordinates

Solution to gravity potential

- The homogeneous form of this equation is a "classic" partial differential equation.
- In spherical coordinates solved by separation of variables, r=radius, λ=longitude and θ=co-latitude

$$
V(r, \theta, \lambda) = R(r)g(\theta)h(\lambda)
$$

Solution in spherical coordinates

- The radial dependence of form rⁿ or r⁻ⁿ depending on whether inside or outside body. N is an integer
- Longitude dependence is sin(mλ) and cos(m λ) where m is an integer
- The colatitude dependence is more difficult to solve

Colatitude dependence

- Solution for colatitude function generates Legendre polynomials and associated functions.
- $\bullet\,$ The polynomials occur when m=0 in λ dependence. t=cos($\theta)$

$$
P_n(t) = \frac{1}{2^n n!} \frac{d^n}{dt^n} (t^2 - 1)^n
$$

Legendre Functions

•

 $P_o(t) = 1$ $P_1(t) = t$ $P_{2}(t) =$ 1 $\frac{1}{2}$ (3*t* $^{2}-1)$ $P_3(t) =$ 1 $\frac{1}{2}$ (5*t* $3^3 - 3t$ $P_{4}(t) =$ 1 $\frac{1}{8}$ (35*t*) $^{4}-30t$ $^{2}+3)$

 Low order functions. Arbitrary n values are generated by recursive algorithms

Associated Legendre Functions

• The associated functions satisfy the following equation

$$
P_{nm}(t) = (-1)^m (1 - t^2)^{m/2} \frac{d^m}{dt^m} P_n(t)
$$

• The formula for the polynomials, Rodriques' formula, can be substituted

Associated functions

 $P_{00}(t) = 1$ $P_{10}(t) = t$ $P_{11}(t) = -(1$ − *t* 2 $)^{1/2}$ $P_{20}(t) =$ 1 $\frac{1}{2}$ (3*t* $^{2}-1)$ $P_{21}(t) = -3t(1)$ − *t* 2 $)^{1/2}$ $P_{22}(t) = 3(1-t)$ $^2)$

• Pnm(t): n is called degree; m is order • m<=n. In some areas, m can be negative. In gravity formulations m=>0

<http://mathworld.wolfram.com/LegendrePolynomial.html>

Ortogonality conditions

• The Legendre polynomials and functions are orthogonal:

$$
\int_{-1}^{1} P_n(t)P_n(t)dt = \frac{2}{2n+1} \delta_{n'n}
$$

$$
\int_{-1}^{1} P_{n'm}(t)P_{nm}(t)dt = \frac{2}{2n+1} \frac{(n+m)!}{(n-m)!} \delta_{n'n}
$$

Examples from Matlab

- Matlab/Harmonics.m is a small matlabprogram to plots the associated functions and polynomials
- Uses Matlab function: Legendre

Polynomials

02/13/02 12.540 Lec 03

"Sectoral Harmonics" m=n

02/13/02 12.540 Lec 03 12.540 Lec 03 12.540 Lec 03 13

Normalized

02/13/02 12.540 Lec 03 12.540 Lec 03 12.540 Lec 03 14

Surface harmonics

• To represent field on surface of sphere; surface harmonics are often used

$$
Y_{nm}(\theta,\lambda) = \sqrt{\frac{2m+1(n-m)!}{4\pi (n+m)!}} P_{nm}(\theta) e^{im\lambda}
$$

- Be cautious of normalization. This is only one of many normalizations
- Complex notation simple way of writing $\mathsf{cos}(\mathsf{m}{\lambda})$ and $\mathsf{sin}(\mathsf{m}{\lambda})$

Surface harmonics

02/13/02 12.540 Lec 03 12.540 Lec 03 12.540 Lec 03 16 Zonal ---- Terreserals-Sectorials

Gravitational potential

• The gravitational potential is given by:

$$
V = \iiint_{V} \frac{G\rho}{r} dV
$$

- $\bullet\,$ Where ρ is density, $\,$
- G is Gravitational constant 6.6732x10-11 m 3 kg⁻¹s⁻² (N m²kg⁻²)
- r is distance
- The gradient of the potential is the gravitational acceleration

Spherical Harmonic **Expansion**

• The Gravitational potential can be written as a series expansion

$$
V = -\frac{GM}{r} \sum_{n=0}^{\infty} \left(\frac{a}{r}\right)^n \sum_{m=0}^n P_{nm}(\cos\theta) \left[C_{nm} \cos(m\lambda) + S_{nm} \sin(m\lambda)\right]
$$

•Cnm and Snm are called Stokes coefficients

Stokes coefficients

- •The Cnm and Snm for the Earth's potential field can be obtained in a variety of ways.
- One fundamental way is that 1/r expands as:

$$
\frac{1}{r} = \sum_{n=0}^{\infty} \frac{d^n}{d^{n+1}} P_n(\cos \gamma)
$$

Spherical harmonics

- The Stokes coefficents can be written as volumn integrals
- C_{00} = 1 if mass is correct
- C_{10} , C_{11} , S_{11} = 0 if origin at center of mass
- C_{21} and S_{21} = 0 if Z-axis along maximum moment of inertia

Global coordinate systems

- If the gravity field is expanded in spherical harmonics then the coordinate system can be realized by adopting a frame in which certain Stokes coefficients are zero.
- What about before gravity field was well known?