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12.540 Principles of the Global
Positioning System
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Statistical approach to estimation 

view 

Prof. Thomas Herring 

• Summary 
–Look at estimation from statistical point of 

–Propagation of covariance matrices 
–Sequential estimation 
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Statistical approach to estimation 

• Examine the multivariate Gaussian distribution: 

• 
probability density function, we maximize the
likelihood of the estimates (MLE). 

• This is just weighted least squares where the weight
matrix is chosen to be the inverse of the covariance 
matrix of data noise 

f (x) = 
1 

(2p )n V 
e 

-
1 
2

(x-m )T V -1 (x-m ) 

(x - m)T V-1(x - m)

By minimizing the argument of the exponential in the 

Multivariant   

Minimize   gives largest probability density 
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Data covariance matrix 
• If we use the inverse of the covariance matrix of the 

Gaussian distribution. 
• 
• Difficult question to answer completely 
• Issues to be considered: 

the noise (discussed later in course). 

sometimes be treated as noise-like. 

angles 

noise in the data, we obtain a MLE if data noise is 

How do you obtain data covariance matrix? 

– Thermal noise in receiver gives on component 
– Multipath could be treated as a noise-like quantity 
– Signal-to-noise ratio of measurements allows an estimate of

– In-complete mathematical model of observables can

– Gain of GPS antenna will generate lower SNR at low elevation
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Data covariance matrix 

• In practice in GPS (as well as many other fields), the
data covariance matrix is somewhat arbitrarily chosen. 

• Largest problem is temporal correlations in the
measurements. Typical GPS data set size for 24-
hours of data at 30 second sampling is 8x2880=23000
phase measurements. Since the inverse of the 

correlations requires the inverse of 23000x23000
matrix. 

• To store the matrix would require, 4Gbytes of memory 
• 

correlations over a time short compared to 24-hours),

covariance matrix is required, fully accounting for 

Even if original covariance matrix is banded (ie.,

the inverse of banded matrix is usually a full matrix 
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Data covariance matrix 

• 

use samples every 5-minutes (JPL method) 

measurement so that equivalent to say 5-minute sampling (ie., 

(GAMIT method) 

assumptions (discussed more near end of course). 
• 

what can we say about noise in parameter estimates? 

Methods on handling temporal correlations: 
– If measurements correlated over say 5-minute period, then 

– Use full rate data, but artificially inflate the noise on each 

sqrt(10) higher noise on the 30-second sampled values 

– When looking a GPS results, always check the data noise 

Assuming a valid data noise model can be developed, 
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Propagation of covariances 

y = Ax with Vxx

 x 
Vyy =< yyT >=< AxxT A T >= A < xxT > A T 

Vyy = AVxxA T 

• Given a data noise covariance matrix, the 
characteristics of expected values can be 
used to determine the covariance matrix of 
any linear combination of the measurements. 

Given linear operation :  as 
covariance matrix of
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Propagation of covariance 

known. 

– 
least squares 

– Covariance matrix for post-fit residuals from least
squares 

– Covariance matrix of derived quantities such as
estimates. 

• Propagation of covariance can be used for 
any linear operator applied to random 
variables whose covariance matrix is already 

• Specific examples: 
Covariance matrix of parameter estimates from 

latitude, longitude and height from XYZ coordinate 

4




† 

03/17/03 12.540 Lec 11 9 

• Propagation of covariance can be applied to the

• Notice that the covariance matrix of parameter
estimates is a natural output of the estimator if ATV-1A 
is inverted (does not need to be) 

x̂ = (A T Vyy 
-1A)-1 A T Vyy 

-1y 

< x̂x̂T >= (A T Vyy 
-1A)-1 A T Vyy 

-1 < yyT > Vyy 
-1 T Vyy 

-1A)-1 

Vx̂x̂ = (A T Vyy 
-1A)-1 

Covariance matrix of parameter estimates 

weighted least squares problem: 

A(A

03/17/03 12.540 Lec 11 10 

Covariance matrix of estimated 

• Notice that for the rigorous estimation, the inverse of the data
covariance is needed (time consuming if non-diagonal) 

• To compute to parameter estimate covariance, only the
covariance matrix of the data is needed (not the inverse) 

• In some cases, a non-rigorous inverse can be done with say a
diagonal covariance matrix, but the parameter covariance matrix
is rigorously computed using the full covariance matrix. This is a 

correct (just not the best estimates that can found). 
• This techniques could be used if storage of the full covariance 

parameters 

non-MLE but the covariance matrix of the parameters should be 

matrix is possible, but inversion of the matrix is not because it 
would take too long or inverse can not be performed in place. 
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Covariance matrix of post-fit residuals 

• Post-fit residuals are the differences between the 
observations and the values computed from the
estimated parameters 

• Because some of the noise in the data are absorbed 
into the parameter estimates, in general, the post-fit
residuals are not the same as the errors in the data. 

• In some cases, they can be considerably smaller. 
• The covariance matrix of the post-fit residuals can be

computed using propagation of covariances. 
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Covariance matrix of post-fit residuals 

covariances: e 
v 

y = Ax + e 
x̂ = (A T Vyy 

-1A)-1A T Vyy 
-1 y 

v = y - Ax̂ = I - A(A T Vyy 
-1A)-1A T Vyy 

-1 

Amount error reduced 
1 2 3 

È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 
e  Eqn 1 

Vvv =< vvT >= Vyy - A(A T Vyy 
-1A)-1A T 

• This can be computed using propagation on 
is the vector of true errors, and 

is vector of residuals 

444 444 
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Post-fit residuals 

• Notice that we can compute the compute the
covariance matrix of the post-fit residuals (a large
matrix in generate) 

• 
v=Be; why can we not compute the actual errors with
e=B-1v? 

• 
(there is in fact one inverse which would generate the
true errors) 

• Note: In this case, singularity does not mean that
there is no inverse, it means there are an infinite
number of inverses. 

Eqn 1 on previous slide gives an equation of the form 

B is a singular matrix which has no unique inverse 
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Example 

as D

0 

1 

2 

3 

4 

5 

6 

0.0 10.0 20.0 30.0 40.0 50.0 

Da
ta

 

Time 

Dt 

Postfit error bar 
somewhat reduced 

• Consider the case shown below: When a rate 
of change is estimated, the slope estimate will 
absorb error in the last data point particularly 

t increases. (Try this case yourself) 

Postfit error bar very small; 
slope will always pass close 

to this data point 

Example of fitting slope to non-uniform data distribution 
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• Propagation of covariances can be used to determine

longitude and radius. q is co-latitude, l is longitude, R
is radius. DN, DE and DU are north, east and radial 
changes (all in distance units). 

DN 
DE 
DU 

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

= 

-cos(q)cos(l) -cos(q) l) q) 
- l) cos(l) 0 

X / R Y / R Z / R 

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

A
1 2 3 

DX 
DY 
DZ 

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

Covariance of derived quantities 

the covariance of derived quantities.  Example latitude, 

Geocentric Case : 
sin( sin(

sin(

 matrix for use in propagation from Vxx 
4444444 4444444 
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V1 0 0 
0 V2 0 
0 0 V3 

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

-1 

= 

V1 
-1 0 0 

0 V2 
-1 0 

0 0 V3 
-1 

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

Estimation in parts/Sequential estimation 

• A very powerful method for handling large 
data sets, takes advantage of the structure of 
the data covariance matrix if parts of it are 
uncorrelated (or assumed to be uncorrelated). 
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Sequential estimation 

• Since the blocks of the data covariance matrix can be 
separately inverted, the blocks of the estimation 
(ATV-1A) can be formed separately can combined 
later. 

• Also since the parameters to be estimated can be 
often divided into those that effect all data (such as 
station coordinates) and those that effect data a one 

estimations (shown next page). 

time or over a limited period of time (clocks and 
atmospheric delays) it is possible to separate these 
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Sequential estimation 

• Sequential estimation with division of global and local parameters.
V
parameter estimates), Vxg is covariance matrix of prior parameter 

xg and xl are local parameter estimates, 
xg 

+ are new global parameter estimates. 

y 
x g 

È 

Î
Í 

˘ 

˚ 
˙ = 

A g A l 
I 0 

È 

Î
Í 

˘ 

˚
˙ 

xg 

x l 

È 

Î
Í 

˘ 

˚
˙ 

x g 
+ 

xl 

È 

Î
Í 

˘ 

˚ 
˙ = 

A g 
T V-1A g + Vxg 

-1( ) A g 
T V-1A l 

A l 
T V-1A g A l 

T V-1A l 

È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

-1 
A g 

T V-1 y + Vxg 
-1 xg 

A l 
T V-1 y 

È 

Î 
Í 

˘ 

˚ 
˙ 

 is covariance matrix of new data (uncorrelated with priori

estimates with estimates 
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Sequential estimation 

parameters, xl
xg 
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• As each block of data is processed, the local 
, can be dropped and the 

covariance matrix of the global parameters 
passed to the next estimation stage. 

• Total size of adjustment is at maximum the 
number of global parameters plus local 
parameters needed for the data being 
processed at the moment, rather than all of 
the local parameters. 

Summary 

• We examined the way covariance matrices 
and be manipulated 

• Estimation from a statistical point of view 
• Sequential estimation. 
• Next class continue with sequential estimation 

in terms of Kalman Filtering. 
• Reminder: Paper topic and outline due 

Wednesday. 
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