	12.540 Principles of the Global Positioning System Lecture 08		
	Prof. Thomas Herring		
03/05/03	12.540 Lec 08	1	

Basic measurement types							
Pseudorange:							
	$P_k^p = (t_k - t^p) \cdot c$						
Where P_k^p is the pseudorange between receiver k and satellite p; t_k is the receiver clock time, t^p is the satellite transmit time; and c is the speed of light							
This expression can be related to the true range by introducing corrections to the clock times							
	$t_k = \tau_k + \Delta t_k \qquad t^p = \tau^p + \Delta t^p$						
τ_k and τ^p are true times; Δt_k and Δt^p are clock corrections							
03/05/03	12.540 Lec 08	4					

F	^o hase measureme	nts
 When phase using the s vacuum sp 	se is used it is conver tandard L1 and L2 fre eed of light.	ted to distance equencies and
 Clock term difference nominal fre ionospheric for propaga 	s are introduced to ac between true frequen equencies. As with ra c and atmospheric de ation velocity	ccount for cies and inge lays account
03/05/03	12.540 Lec 08	13

Rinex header								
2.00 OBSERVATION DATA G (GPS) RI	NEX VERSION / TYPE							
Leqc 1998.011 Thomas Herring 20020117 061281280 Linux 2.0.30 PentPro gcc Linux 486/DX+ BIT 2 OF LLI FLAGS DATA COLLECTED UNDER A/S CONDITION ETAB tah MIT 7910 TRIMBLE 4000SSE NP 7.19; SP 3.04 7910 TRM22020.00+GP -2225431.6719 -4676995.2141 3711599.9580 1.0000 0.0000 0.0000 1 1 7 L1 L2 C1 P2 P1 D1 D2 15.0000 SNR is mapped to RINEX snr flag value [1-9] Ll 2 2 L 2 5 40 20	COMMENT COMMENT COMMENT MARKER NAME OBSERVER / AGENCY REC # / TYPE / VERS ANT # / TYPE APPROX POSITION XYZ ANTERNA: DELTA H/E/N WAVELENGTH FACT L1/2 # / TYPES OF OBSERV INTERVAL COMMENT							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	COMMENT TIME OF FIRST OBS END OF HEADER							
03/05/03 12.540 Lec 08	16							

RINEX Data block

2 1 16 18 49 15	.0000000 0 6G 2	2G 7G11G26G27G28	
787986.44256	602246.12855	23296205.6024	23296215.6954
-1344.9694	-1048.0284		
-2277471.81757	-1740781.13556	21398430.3444	21398436.5904
2700.6094	2104.3714		
-1100283.16556	-822375.51955	23502290.7894	23502300.4844
1062.9224	828.2514		
-1925082.16955	-1445658.56955	23293616.9844	23293626.4574
2176.8284	1696.2304		
1016475.79056	786021.95356	21979554.0634	21979561.0984
-1782.8124	-1389.2054		
-572573.66057	-446158.58357	20873925.7664	20873929.7624
446.3594	347.8134		
2 1 16 18 49 30	0.0000000 0 6G	2G 7G11G26G27G28	3
 Phase in cycles 	, range in meters		
03/05/03	12.5	540 Lec 08	

