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Problem Set 2 Solutions February 16, 2003

Problem 1: 1. The switch is opened at time ¢ = 0, and the current source has a constant current
Iy = 10A. The particular solution is V}, = 0. Noting thta the homogeneous equation is:

which is solved by:

The initial condition is simply:
Vi = RIy = 10A x 1002 = 1,000V

So that the total solution is
vy = 10001000

2. The source is changed to be i5 = 10coswt with w = 27 X 60H 2. The particular solution
is the sinusoidal steady state solution to

o . Ldi
i + ES =1I; =1+ Ed—f = Re {|/;| cos wt}

That solution is simply:

i, = Re {lLeM}

where
I

I; = —= —
L 1—}—jw%

So then the particular solution for inductor current is

I
iLp = — coswt—¢

where the phase angle is ¢ = tan—! % The whole solution is

Vp = VHe_%t + I (cos wt — cos(wt — phi))

Since the same initial condition as in the first part of the problem holds, the full solution
is:
vo = RI (cos ¢6_%t + cos wt — cos(wt — ¢))



3. For 6.979 Here is a script which calculates and plots the results derived here and which
does the simulation too:

\% PS2 Problem 1

R=100;

L=.1;

t = 0:.000001:.01;

V1l = 1000 .* exp(-(R/L) .* t);

I10 = 0;

[ts, I1] = ode23(’isubs’, t, I10);

Vsi =R .*x (10 - I1);

figure (1)

plot(t, Vi, ts, Vsl);

om = 2%pi*60;

phi = atan(om*L/R) ;

t2 = 0:.000001:.05;

Is = 10;

I1p = (Is/sqrt(1+(om*L/R)"2)) .* cos(om .* t2 - phi);
V2 = RxIs*cos(phi) .* exp(-(R/L) .* t2) + RxIs.* cos(om .* t2) - R .* Ilp;
[tss, I12] = ode45(’isubs2’, t2, I10);

V2s = R .*x (Is .* cos(om .* tss) - I12);

figure(2)

plot(t2, V2, tss, V2s);

Below are the two subroutines called by ode23:

function didt = isubs(t, i)

R = 100;
L=.1;
Is = 10;

didt = R*(Is-i)/L;

function didt = isubs2(t, i)

R = 100;
L=.1;
om = 2%pi*60;

Is = 10*cos(om*t);
didt = R*(Is-i)/L;

Problem 2: 'Buck converter’

1. The average output voltage is simply

< v, >=dV;
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Figure 1: Solution to Problem 1, part 1

2. We know the maximum current (in steady state) is

where t,,, = dT' and of course the minimum current is:
. . _R
10 = Ime Lloff

and of course t,f; = (1 — d)T This little script here calculates and plots the ripple for
the full range of duty cycle and prints the value for a duty cycle of 1/2.:

R = 10;

L = .02;

T = 1le-4;

dc = .5;

ton = Tx*xdc;

toff = T*(1-dc);

Vs = 100;

Vm = Vs *(1l-exp(-(R/L)*ton))/(1-exp(-(R/L)*T));
V1l = Vm * exp(-(R/L)*toff);

Vr = Vm-V1;

fprintf(°50 percent duty cycle\n’);

fprintf (’Max Voltage = %g\n’,Vm);

fprintf (’Min Voltage = %g\n’,V1);

fprintf (’Ripple Voltage = %g\n’,Vr);

d =0:.01:1;

t_on =T .* d;

t_off =T .x (1-d);

Vm = Vs .*(l-exp(-(R/L) .*t_on)) ./(l-exp(-(R/L)*T));
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Figure 2: Solution to Problem 1, part 2

V1l = Vm .* exp(-(R/L) .*t_off);
Vr = Vm-V1;
figure(3)

plot(d, Vr)

title(’Problem Set 2, Problem 2°’)
ylabel(’Ripple Voltage’);
xlabel(’Duty Cycle’)

Here is the output for 50\%:
>> p2

50 percent duty cycle

Max Voltage = 50.625

Min Voltage = 49.375

Ripple Voltage = 1.24993

. Simulation: Here is a script which does the simulation. Note that this repeats a few
cycles at the end to get a better idea of steady state operation. These may be compared
with the numbers obtained above

% Problem set 2, PRoblem 2 simulation
% buck converter
global Vs L R

Vs=100;
L=.02;
R=10;
il=[1;

t = [1;
T = 1le-4;
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Figure 3: Buck Converter Ripple vs. duty cycle

d = .5;

ton = T*d;

toff = T*(1-d);
S0=0;

for n = 0:100
[tt, S] = ode23(’bon’, [n*T n*T+ton], SO);
t = [t? tt’]7%;
il = [il1 s’];
SO = S(length(tt));

[tt, S] = ode23(’boff’, [n*T+toff (n+1)*T], SO);

t = [t’ tt’]7;
il = [il S°]1;
SO = S(length(tt));
end
vo = R .* il;
figure
plot(t, vo)
title(’Buck Converter Simulation’)
ylabel(’Volts’);
xlabel(’Time, sec’);
% now just to get the last few cycles
tf =[1;
ilf = [1;
for n = 100:102
[tt, S] = ode23(’bon’, [n*T n*T+ton], SO);
tf = [tf’ tt’]’;
ilf = [ilf S’];
SO = S(length(tt));




[tt, S] = ode23(’boff’, [n*T+toff (n+1)*T], SO);
tf = [tf’ tt’]7;

ilf = [ilf S’];

SO = S(length(tt));

end

vof = R*xilf;

figure

plot (tf, vof)

title(’Buck Converter Simulation’)
ylabel(’Volts’);

xlabel (’Time, sec’);

function DS = bon(t, il)
global Vs L R

DS

= (Vs - R*il)/L;

function DS = boff(t, il)
global Vs L R

DS

= (- R*il)/L;

Problem 3:
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Figure 4: Buck Converter Voltage Buildup

This problem has two loops and two energy storage elements. The two loop equations

i ) dv,.
L— + Ri;, — RC— V.
at dt s

dv .
2Rcd_tc +’UC—RZL = 0
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Figure 5: Buck Converter in Steady State

Now by multiplying the second of these by 1/2 and adding it to the first, we get a separated
set of state equations which we can solve directly and use in a simulation:

di, R. 1

S P T -
Vs 7 + 2zL—I- 21)0
dv )
0 = 2RC’d—:+vc—RzL

The characteristic equation for this is the determinant of:

SL+ & i i || Vs
—~R  2RCS+1||w | | O
which is R R
(SL+ 5) (2ROS+1) + 5 =0
or

1 R 1
2 P —_— _— =
5 +S(2RC+2L>+2LC 0

which is solved by
S=—-atjw

where

It is clear that the particular solution to this problem is vp = 0 (note that the excitation is
DC and the output is in series with a capacitor). So the whole solution must be:



vy = Ae(—a—l—jw)t + Be(—alpha—jw)t

Noting the inductor in series with the source, we can see that the voltage at ¢ = 04+ = 0, or
A+B=0.

The time derivative of output voltage at t = 0+ is:

dv, 1R )
— ==V, =2jwA
a 2L T e
so that whole solution is simply:
— V3 R1 —at _:
Vo 5T ae sin wt

Here is a script which simulates this and which plots both the simulated and analytical
solutions. Note they plot right on top of each other:

\% Problem Set 2, Problem 3
global Vs R L C

Vs = 100;
R = 10;

L = .001;
C = 1le-5;

alf = 1/(4xR*C)+R/ (4x*L);

om = sqrt(1/(2xL*C)-alf~2);

Vm = .5*(Vs/om)*(R/L);

t=0:5e-6:2e-3;

Vo = Vm .* exp(-alf .* t) .* sin(om .* t);
[ts X] = ode23(’rlcsim’, t, [0 0]7);

i L = X(:,1);

v_c = X(:,2);

V_o= .5%¥R . i_ L - .5 .* v_c;
figure

plot(t, Vo, ts, V_o)
title(’Problem Set 2, Problem 3°)
ylabel(’Volts’)
xlabel(’Seconds’);

function xdot = rlcsim(t, X);
global Vs R L C

il = X(1);

ve = X(2);

didt = (Vs - .5%R*il - .5%vc)/L;
dvdt = (R*il-vc)/(2%RxC);

xdot = [didt dvdt]’;
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Figure 6: Solution for Problem 3: Analytic and Simulated

Problem 4: for 6.979 This one is much easier than it looks!

Note that there are two periods of time. First, when the switch is ON (for 10 mS) the diode
is back-biased and inductor current is simply:

, |4

1, — ft
With a drive voltage of 100 volts and an inductance of 100 mHy, the rate of change of current
in the inductance is % = 1000A/sec. After 10 mS the inductor current is 10 A.

As the switch is opened current circulates through the capacitance and diode. At first it
looks like a simple harmonic oscillator with i, = Iycoswt. The frequency of oscillation is
w= \/%_c = 1000rad/sec. Now, note that this can keep up only for 1/4 of a cycle, or until the
current tries to reverse. The diode becomes forward biased and the voltage on the capacitance
becomes steady. That voltage is:

1 [ I L
Vc:—a/0 Iocoswtdt:—ﬁz—ﬂ) ol

Since the current I is 10 A and y/£ = 100, the final output voltage is 1000 V.
C



