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Problem 1: The current source will launch two pulses along the line, one going to the right as v,
and one to the left as v_. These will have associated currents and as the point of injection,

v(t) = v + v
i) =I(t)= iy —i =242
AR/

From symmetry we can see that the two pulses that get launched must be of the same
magnitude, so that:

Z
vy =v_ = 7010 = 10004 x 125Q = 125,000V

Time of flight is 7 = -2X10CM_ — 11§ — 1000S.
3x108m/s

At the right-hand end, when the forward going pulse reaches the short, a second, reverse
direction pulse is generated, and there because of the short, v; +v_ = 0. The current in the
pulse is doubled, so that at peak it has value of 1000 A. It takes 2 x T' = 20u.S for this pulse
to get to the left hand end. Since the left-hand end is terminated in impedance R = Zj, both
pulses appear across the resistor but no reflections are generated. The results are shown in
graphical form in Figure 1
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Figure 1: Transmission Line Example




Problem 2: Once corrected, the notes give us the pertinent formula: the ratio of receiving end to

sending end voltage is:
R
Vr Zo

Ve Z% cos(kl) + jsin(k?)

Since the wavelength is A = 3’%})08 =5 x 10%m = 5000km, Here,

600
kl = 2#—5000

To find out what happens at the sending end, note that, at x = 0, voltage and current are:

V, = Vi+V
1
I, = Z_O(V+_Vf)

Since the ratio of reflected to incident wave voltage is:

R
E: Z_o_le—ijZ
Vi E+1

then, with a little algebraic pain we may conclude that:

Vo = L

Then, with a little more algebra the sending end current can be found to be:

V, jz% sin k¢ + cos k£

I, =
A Z% coskl + jsink/

This leads to the expression for sending end complex (real + reactive) power as:

_ WP

P +jQs = Zo {

—jz% sin kZ + cos k£
Z% coskf — jsink/l

The calculations from here are carried out in MATLAB. Here is the session. More results
show up later



>> p2
R/Z0O Vr Ps Qs

Open 685900.6 0 9.39e+08
1.2500 548391.2 9.62e+08 -2.16e+08
1.0000 500000.0 1le+09 -8.69e-08

0.8333 455263.5 9.95e+08 1.82e+08

For the final two parts of this problem, note that the derivation done in the notes can be
generalized to a termination with a complex impedance. In this case the complex amplitudes
of receiving end and sending end voltages are related by:

Zr

V,=V &
- g—’; cos(kl) + j sin(k)

For the first part, we note that the load is drawing surge impedance load when Zz = Z;,. As
a practical matter we can use load admittance Ggr = 1/Zg as a parameter, calculating both
load power and voltage as a function of that parameter and doing a cross-plot. The result is

shown in Figure 2
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Figure 2: Voltage vs. power

Now for the second part, we may approximate things by assuming a real part of the termi-
nating admittance suitable for the power levels involved and then note that reactive power
supplied by the termination is:

Qs = [Ve["Im {Y}
A cross-plot of receiving end voltage against () is shown in Figure 3.

The script that implements these calculations is in the appendix.

Problem 3: Voltage across the resistor is:

@ =~ 346v

V3
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Figure 3: Voltage vs. reactive injection

So that power is P = 100 x 346 ~ 34.6kW.
The turns ratio of the transformer is % ~ 12.1.

Current on the primary side of the transformer is in phases A and C and is:
ig=—ic =8.25Ae77%
Since the primary side voltage is % = 2425v,
P, =P.= 2425 x8.25 x cos% ~ 17.3kW
Qs =—-Q.= 2425 x 8.25 x sin% ~ 10kVAR

Since there is no current in Phase B, its real and reactive powers are both zero. Current on
the primary side is shown in Figure 4.

Figure 4: Currents for Problem 3



Problem 4: For 6.979: This one is actually even easier, at least to start. Since the voltage is
600 V and current is 100 A, power is P = 600 x 100 = 60kW .

The turns ratio is N = 2225 ~ 4.04.

600
Note that since the primary is ungrounded, i4 +ip +ic = 0. And since there is no connection
to the B-C corner, i¢c = ig, leaving us with i¢c =i = —%A. Then:
2 1
ia=-xX— x100 =~ 16.5A4
4737 404

This is shown in Figure 5.

Figure 5: Phasor Diagram for Problem 4

Then:

Pa — 16.5 x 2425 ~ 40kW
Qa = 0
Pg =Po= 825x 2425 x cosg ~ 10kW

Qp =—-Q.= 825 x 2425 x sing ~ 17.3kV AR

Finally, nothing happens when the ground is restored. To see this, view the equivalent delta
side of the transformer as is shown in Figure 5. Since the combination of Phase B and
Phase C voltage is equal to the Phase A voltage, the thevenin equivalent, including 'leakage’
impedance, has the same back voltage but twice the series impedance. That combination will
source half the current of Phase A, so there is really no difference between the grounded and
ungrounded situations here.

Scripts

% Problem Set 5, Problem 2

C=3e8; % speed of light

L=600e3; % line length

Z0 = 250; % characteristic impedance
Vs = 500e3; % line voltage



Figure 6: Delta Equivalent

f = 60;
lambda = C/f;
k = 2%pi/lambda;
% part 0: easy part
Vro = Vs /cos(k*L);
Qso = (Vs~2/Z0) * tan(k*L);
rr = [1/.8 1 1/1.2];
Vrr= Vs .* rr ./ (rr .* cos(k*L) + j*sin(kxL));
VAs = (Vs~2/Z0) .* (-rr .* jxsin(k*L) + cos(k*L)) ./ (rr .* cos(k*L) -j*sin(kx*L));
fprintf (’R/Z0 Vr Ps Qs\n’);
fprintf(’ Open %10.1f %10.3g %10.3g\n’,abs(Vro), 0, Qso);
for i = 1:length(rr)
fprintf(°%10.4f %10.1f %10.3g %10.3g\n’,rr(i),abs(Vrr(i)),real (VAs(i)),imag(VAs(i)))
end

% part 1: Real loading only

rf = 1; % fudge factor
Gr = 0:.01:rf;
Gi = 0;

Vr = 1 ./ (cos(k*L) + j*sin(k*L) .* (Gr + j * Gi));
V_.r = Vs .*x abs(Vr);
P.r = V_r .”2 .x (Gr/Z0);

figure(1)

plot(P_r, V_r)

title(’Problem 5.2, Real Loading’);
ylabel(’Volts, RMS’);

xlabel(’Real Load, Watts’)

grid omn

%part 2: Reactive Loading



Gr = 0.8;

Gi =-.6:.01:.2;

Vr = 1 ./ (cos(k*L) + j*sin(k*L) .* (Gr + j .* Gi));
V_rl = Vs .* abs(Vr);

Q_rl = V_rl .~2 .*x (Gi/Z0);

Gr = 1.0;

Gi .4:.01:.4;

./ (cos(k*L) + j*sin(k*L) .* (Gr + j .* Gi));
Vs .* abs(Vr);

Q_r2 = V_r2 .”2 .*x (Gi/Z0);

Gr = 1.2;

Gi = -.2:.01:.6;

Vr = 1 ./ (cos(k*L) + j*sin(k*L) .* (Gr + j .* Gi));
V_r3 = Vs .* abs(Vr);

Q_r3 = V_r3 .”2 .*x (Gi/Z0);
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figure(2)

plot(Q_rl, V_ri1, Q_r2, V_r2, Q_r3, V_r3)
title(’Problem 5.2, Reactive Compensation’);
ylabel(’Volts, RMS’);

xlabel (’Reactive Comp, VARS’)

grid on



